WO2020015245A1 - 热活化延迟荧光材料及其合成方法 - Google Patents

热活化延迟荧光材料及其合成方法 Download PDF

Info

Publication number
WO2020015245A1
WO2020015245A1 PCT/CN2018/113270 CN2018113270W WO2020015245A1 WO 2020015245 A1 WO2020015245 A1 WO 2020015245A1 CN 2018113270 W CN2018113270 W CN 2018113270W WO 2020015245 A1 WO2020015245 A1 WO 2020015245A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
heat treatment
reactant
synthesis method
reaction solution
Prior art date
Application number
PCT/CN2018/113270
Other languages
English (en)
French (fr)
Inventor
罗佳佳
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US16/337,463 priority Critical patent/US11279873B2/en
Publication of WO2020015245A1 publication Critical patent/WO2020015245A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1022Heterocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom

Definitions

  • the invention relates to the technical field of organic light-emitting materials, in particular to a thermally activated delayed fluorescent material and a synthesis method thereof.
  • OLED displays have attracted wide attention due to their advantages of autonomous light emission, high luminous efficiency, large viewing angle, fast response speed, low driving voltage, thinner and thinner.
  • OLED light-emitting devices the dominant light-emitting guest material is very important.
  • the light-emitting guest materials used in early OLEDs were fluorescent materials. Because the ratio of singlet and triplet excitons in OLEDs is 1: 3, based on fluorescence
  • IQE theoretical internal quantum efficiency
  • heavy metal complex phosphorescent materials Due to the spin-orbit coupling of heavy atoms, heavy metal complex phosphorescent materials can make use of singlet and triplet excitons at the same time, so that the quantum efficiency reaches 100%.
  • the commonly used heavy metals are all noble metals such as Ir and Pt, and the phosphorescent materials of heavy metal complexes have yet to be broken through in terms of blue light materials.
  • Thermally activated delayed fluorescence (TADF) materials through clever molecular design, make the molecule have a small minimum single triplet energy level difference, so that triplet excitons can be crossed back to the singlet state by inverting the intersystem, and then by radiative transition It emits light to the ground state, so that single and triplet excitons can be used at the same time, and the quantum efficiency can be 100%.
  • TADF materials fast reverse intersystem crossing constants and high photoluminescence quantum yield are necessary conditions for the preparation of high-efficiency OLEDs.
  • TADF materials with the above conditions are still relatively scarce compared to heavy metal Ir complexes. TADF materials are even more scarce in the dark blue light field that phosphorescent heavy metal materials need to break through.
  • the quantum efficiency of existing OLED light-emitting materials is low, resulting in low OLED light-emitting efficiency.
  • the invention provides a thermally activated delayed fluorescent material to solve the problem of low luminous efficiency of the existing OLED.
  • the invention provides a method for synthesizing a thermally activated delayed fluorescent material, and the structural general formula of the thermally activated delayed fluorescent material is: Wherein, D 1 is selected from one of the following functional groups:
  • the D 2 is selected from one of the following functional groups:
  • the synthesis method includes the following steps:
  • Step S10 adding 4-bromo-4'-iodine-diphenylsulfone, a first reactant, and a first catalyst to a first container, and performing a first heat treatment to obtain a first reaction solution.
  • the first catalyst is carbonic acid Mixture of cesium, cuprous iodide, 18-crown ether-6, and N, N-dimethylpropenylurea. ;
  • Step S20 performing a separation treatment on the first reaction solution to obtain a first intermediate
  • Step S30 adding the first intermediate, the second reactant, and the second catalyst to a second container, and obtaining a second reaction solution through a second heat treatment.
  • the second catalyst is palladium acetate and tri-tert-butylphosphine. A mixture of tetrafluoroborate and toluene. ;
  • step S40 the second reaction solution is processed to obtain the thermally activated delayed fluorescent agent.
  • the first reactant is selected from one of the following organic compounds:
  • the second reactant is selected from one of the following organic compounds:
  • step S10 further includes:
  • S102 evacuate the first container three times, and pass in nitrogen or inert gas
  • the temperature of the first heat treatment is 180 degrees Celsius, and the time of the first heat treatment is 24 hours.
  • step S30 further includes:
  • the second container is placed in a glove box vented with nitrogen or inert gas, sodium tert-butoxide is added to the second container, and then the toluene is added to the second container. A second heat treatment to obtain the second reaction solution;
  • the temperature of the second heat treatment is 110 degrees Celsius, and the time of the second heat treatment is 24 hours.
  • the present invention also provides a thermally activated delayed fluorescent material, the structural general formula is as follows:
  • D 1 is selected from one of the following functional groups:
  • the D 2 is selected from one of the following functional groups:
  • the invention provides another method for synthesizing a thermally activated delayed fluorescent material.
  • the structural formula of the thermally activated delayed fluorescent material is:
  • D 1 is selected from one of the following functional groups:
  • the D 2 is selected from one of the following functional groups:
  • the synthesis method includes the following steps:
  • Step S10 adding 4-bromo-4'-iodine-diphenylsulfone, a first reactant, and a first catalyst to a first container, and performing a first heat treatment to obtain a first reaction solution;
  • Step S20 performing a separation treatment on the first reaction solution to obtain a first intermediate
  • Step S30 adding the first intermediate, the second reactant, and the second catalyst to a second container, and obtaining a second reaction solution through a second heat treatment;
  • step S40 the second reaction solution is processed to obtain the thermally activated delayed fluorescent agent.
  • the first reactant is selected from one of the following organic compounds:
  • the second reactant is selected from one of the following organic compounds:
  • the first catalyst is a mixture of cesium carbonate, cuprous iodide, 18-crown ether-6, and N, N-dimethylpropenylurea.
  • step S10 further includes:
  • S102 evacuate the first container three times, and pass in nitrogen or inert gas
  • the temperature of the first heat treatment is 180 degrees Celsius, and the time of the first heat treatment is 24 hours.
  • the second catalyst is a mixture of palladium acetate, tri-tert-butylphosphine tetrafluoroborate, and toluene.
  • step S30 further includes:
  • the second container is placed in a glove box vented with nitrogen or inert gas, sodium tert-butoxide is added to the second container, and then the toluene is added to the second container. A second heat treatment to obtain the second reaction solution;
  • the temperature of the second heat treatment is 110 degrees Celsius, and the time of the second heat treatment is 24 hours.
  • the beneficial effect of the present invention is that the present invention synthesizes a thermally activated delayed fluorescent material with excellent light emitting properties through the combination of different functional groups, thereby improving the light emitting efficiency of the OLED light emitting device.
  • FIG. 1 is a flow chart of the method for synthesizing a thermally activated delayed fluorescent material according to the present invention
  • FIG. 2 is a schematic structural diagram of an OLED light emitting device according to the present invention.
  • the present invention is directed to the existing OLED light-emitting materials. Due to the low quantum efficiency, the OLED's light-emitting efficiency is low, which further affects the technical problems of display. This embodiment can solve this defect.
  • the present invention provides a thermally activated delayed fluorescent material, the general structure of which is shown by the following formula: Wherein, D 1 is selected from one of the following functional groups:
  • the D 2 is a carbazole or a carbazole derivative, and is selected from one of the following functional groups:
  • the present invention also provides a method for synthesizing the thermally activated delayed fluorescent material, including the following steps:
  • Step S10 adding 4-bromo-4'-iodine-diphenylsulfone, a first reactant, and a first catalyst to a first container, and performing a first heat treatment to obtain a first reaction solution;
  • Step S20 performing a separation treatment on the first reaction solution to obtain a first intermediate
  • Step S30 adding the first intermediate, the second reactant, and the second catalyst to a second container, and obtaining a second reaction solution through a second heat treatment;
  • step S40 the second reaction solution is processed to obtain the thermally activated delayed fluorescent agent.
  • the first reactant corresponds to D 2 in the structural formula of the thermally activated delayed fluorescent material, and the first reactant is selected from one of the following organic compounds:
  • the second reactant corresponds to D 1 in the structural formula of the thermally activated delayed fluorescent material, and the second reactant is selected from one of the following organic compounds:
  • the first catalyst is a mixture of cesium carbonate, cuprous iodide, 18-crown ether-6, and N, N-dimethylpropenyl urea.
  • the step S10 includes:
  • S102 evacuate the first container three times, and pass in nitrogen or inert gas
  • the temperature of the first heat treatment is 180 ° C., and the time of the first heat treatment is 24 hours.
  • the second catalyst is a mixture of palladium acetate, tri-tert-butylphosphine tetrafluoroborate, and toluene.
  • the step S30 further includes:
  • the second container is placed in a glove box vented with nitrogen or inert gas, sodium tert-butoxide is added to the second container, and then the toluene is added to the second container. A second heat treatment to obtain the second reaction solution.
  • the temperature of the second heat treatment is 110 degrees Celsius, and the time of the second heat treatment is 24 hours.
  • the method for synthesizing the thermally activated delayed fluorescent material includes:
  • Step S10 adding 4-bromo-4'-iodine-diphenylsulfone, a first reactant, and a first catalyst to a first container, and performing a first heat treatment to obtain a first reaction solution;
  • the first container in this example is a two-necked bottle of 100 ml.
  • 4-bromo-4'-iodine-diphenylsulfone (4.21 g, 10 mmol), carbazole (1.67 G, 10 mmol); then, to the first container were added cesium carbonate CsCO 3 (2.31 g, 12 mmol), cuprous iodide CuI (0.11 g, 0.6 mmol) and 18-crown ether- 6 (52 mg, 0.2 mmol); then evacuate the first container three times and pass in argon to avoid water and oxygen in the air from affecting the reaction; then add 20 ml to the first container Remove N, N-dimethylpropenylurea of oxygen in advance; finally, the first container is heated to a temperature of 180 ° C, and the reactants are reacted at 180 ° C for 24 hours, and the reaction liquid is cooled to room temperature To obtain the first reaction solution;
  • Step S20 performing a separation treatment on the first reaction solution to obtain a first intermediate
  • the first reaction solution was poured into 200 ml of ice water, and suction filtration was performed to obtain an off-white solid; then, the off-white solid was dissolved by dichloromethane and rotated into silica gel; and then solid-liquid was subjected to column chromatography
  • the eluent used in the column chromatography is a mixed solvent of dichloromethane and n-hexane, and the volume ratio of the two is 1: 3 to obtain 3.3 g of a blue-white powder with a yield of 72%;
  • the first intermediate is preferably 4-carbazole-4'-bromo-diphenyl sulfone, and the chemical structural formula is as follows:
  • the first intermediate has a chemical formula of C 24 H 16 BrNO 2 S, has eight different chemical environmental hydrogens, a theoretical relative molecular mass of 462.36, and a theoretical mass content ratio of carbon, hydrogen, and nitrogen: 62.35%: 3.49% : 3.03%.
  • the molecular weight of the compound obtained in the experiment was 462.27, and the mass content ratio of carbon, hydrogen and nitrogen in the compound was: 62.31%: 3.47%: 3.00%;
  • the analysis shows that the blue-white powder has the same chemical structural formula as the ideal first intermediate, that is, the blue-white powder is the first intermediate.
  • Step S30 adding the first intermediate, the second reactant, and the second catalyst to a second container, and obtaining a second reaction solution through a second heat treatment;
  • the second container in this example is a two-neck vial of 100 ml.
  • the first intermediate is added to the second container, namely 4-carbazole-4'-bromo-diphenylsulfone (2.31 G, 5 mmol)
  • the second reactant namely 9,10-dihydro-9,9-diphenylacridine (2.00 g, 6 mmol)
  • palladium acetate 45 mg, 0.2 mmol
  • tri-tert-butylphosphine tetrafluoroborate (0.17 g, 0.6 mmol)
  • the second container was placed in a glove box under argon, after which tertiary was added to the second container Sodium butoxide NaOt-Bu (0.58 g, 6 mmol), then; 40 ml of toluene in which water and oxygen were removed in advance was added to the second container; and the second container was heated to 110 ° C to make the reaction The product was reacted at 110 ° C
  • step S40 the second reaction solution is processed to obtain the thermally activated delayed fluorescent agent.
  • the second reaction solution was added to 50 ml of ice water, and then extracted three times with dichloromethane to obtain an organic phase, and the organic phase was spun into silica gel. After that, solid-liquid separation was performed by column chromatography. The volume ratio of dichloromethane and n-hexane of the eluent in the column chromatography was 1: 5 to obtain 2.14 g of a light blue powder with a yield of 60%. Finally, the light blue was sublimated by a sublimation apparatus. The colored powder was purified to give 1.3 g of product.
  • the product was subjected to nuclear magnetic resonance hydrogen spectrum, carbon spectrum, mass spectrum, and elemental analysis.
  • the specific analysis is as follows:
  • the chemical formula of the target product is C 49 H 34 N 2 O 2 S, the relative molecular mass is 714.88, and the relative molecular mass of the experimentally synthesized product is 714.67; the mass content ratio of carbon, hydrogen, and nitrogen in the target product is 82.33%: 4.79% : 3.92%, the mass content ratio of carbon, hydrogen and nitrogen elements in the experimentally synthesized product is 82.17%: 4.63%: 3.74%.
  • the theoretical simulation calculation is performed on the molecules of the thermally activated delayed fluorescent material in this embodiment.
  • the lowest singlet energy level is 2.88eV
  • the lowest triplet energy level is 2.81eV.
  • the difference between the two energy levels is small, which can make the triplet state.
  • the excitons pass back to the singlet state by inter-channel migration, so that the quantum efficiency reaches 100%.
  • the photoluminescence spectrum of the heat-activated delayed fluorescent material in this embodiment in a toluene solution at room temperature shows that the wavelength is about 430 nanometers and has a peak, indicating that the heat-activated delayed fluorescent material in this embodiment can be used for blue light OLEDs. field.
  • the method for synthesizing the thermally activated delayed fluorescent material includes:
  • Step S10 adding 4-bromo-4'-iodine-diphenylsulfone, a first reactant, and a first catalyst to a first container, and performing a first heat treatment to obtain a first reaction solution;
  • the first container in this example is a two-necked bottle of 100 ml.
  • 4-bromo-4'-iodine-diphenylsulfone (4.21 g, 10 mmol), 3, 6 are added to the two openings, respectively.
  • Step S20 performing a separation treatment on the first reaction solution to obtain a first intermediate
  • the first reaction solution was poured into 200 ml of ice water, and suction filtration was performed to obtain an off-white solid; then, the off-white solid was dissolved by dichloromethane and rotated into silica gel; and then solid-liquid was subjected to column chromatography. Isolation and purification.
  • the eluent used in the column chromatography is a mixed solvent of dichloromethane and n-hexane. The volume ratio of the two is 1: 3. 3.2 g of blue-white powder is obtained with a yield of 65%.
  • the first intermediate is ideally 4-dimethylcarbazole-4'-bromo-diphenylsulfone, and the chemical structural formula is as follows:
  • the chemical formula of the first intermediate is C 26 H 20 BrNO 2 S, the theoretical relative molecular mass is 489.04, and the theoretical mass content ratio of carbon, hydrogen, and nitrogen is: 63.68%: 4.11%: 2.86%.
  • the analysis shows that the blue-white powder has the same chemical structural formula as the ideal first intermediate, that is, the blue-white powder is the first intermediate.
  • Step S30 adding the first intermediate, the second reactant, and the second catalyst to a second container, and obtaining a second reaction solution through a second heat treatment;
  • the second container in this embodiment is a two-necked bottle of 100 ml.
  • the first intermediate namely 4-dimethylcarbazole-4'-bromo-diphenyl
  • Sulfone (2.45 g, 5 mmol)
  • the second reactant 9,10-dihydro-9,9-diphenylacridine (2.00 g, 6 mmol)
  • palladium acetate 45 mg, 0.2 mmol)
  • tri-tert-butylphosphine tetrafluoroborate (0.17 g, 0.6 mmol);
  • the second container was placed in a glove box under argon, and after that, was added to the second container Sodium tert-butoxide NaOt-Bu (0.58 g, 6 mmol), and then; 40 ml of toluene in which water and oxygen were removed in advance was added to the second container; and the second container was heated to 110 ° C. so that The reactant was re
  • step S40 the second reaction solution is processed to obtain the thermally activated delayed fluorescent agent.
  • the second reaction solution was added to 50 ml of ice water, and then extracted three times with dichloromethane to obtain an organic phase, and the organic phase was spun into silica gel. After that, solid-liquid separation was performed by column chromatography. The volume ratio of dichloromethane and n-hexane of the eluent in the column chromatography was 1: 5 to obtain 2.08 g of light blue powder with a yield of 56%. Finally, the light blue was sublimated by a sublimation apparatus. The colored powder was purified to give 1.1 g of product.
  • the product was subjected to nuclear magnetic resonance hydrogen spectrum, carbon spectrum, mass spectrum, and elemental analysis.
  • the specific analysis is as follows:
  • the chemical formula of the target product is C 51 H 38 N 2 O 2 S, the relative molecular mass is 742.27, and the relative molecular mass of the experimentally synthesized product is 742.20.
  • the mass content ratio of carbon, hydrogen, and nitrogen in the target product is 82.45%: 5.16%. : 3.77%, the mass content ratio of carbon, hydrogen and nitrogen elements in the experimentally synthesized product is 82.31%: 5.07%: 3.69%.
  • the theoretical simulation calculation is performed on the molecules of the thermally activated delayed fluorescent material in this embodiment.
  • the lowest singlet energy level is 2.88eV, and the lowest triplet energy level is 2.81eV.
  • the difference between the two energy levels is small, which can make the triplet
  • the excitons pass back to the singlet state by inter-channel migration, so that the quantum efficiency reaches 100%.
  • the photoluminescence spectrum of the heat-activated delayed fluorescent material in this embodiment in a toluene solution at room temperature shows that the wavelength is about 430 nanometers and has a peak, indicating that the heat-activated delayed fluorescent material in this embodiment can be used for blue light OLEDs. field.
  • the method for synthesizing a thermally activated delayed fluorescent material includes: Step S10, adding 4-bromo-4'-iodine-diphenylsulfone, a first reactant, and a first catalyst to a first container, and performing a first heat treatment to obtain a first A reaction solution
  • the first container in this example is a two-necked bottle of 100 ml.
  • 4-bromo-4'-iodine-diphenylsulfone (4.21 g, 10 mmol), 3, 6 are added to the two openings, respectively.
  • -Diphenylcarbazole (3.19 g, 10 mmol); then, CsCO 3 (2.31 g, 12 mmol), CuI (0.11 g, 0.6 mmol), and 18-crown were added to the first container.
  • Ether-6 52 mg, 0.2 mmol
  • the first container was evacuated three times, and argon was passed to prevent water and oxygen in the air from affecting the reaction; and then added to the first container 20 ml of N, N-dimethylpropenylurea with oxygen removed in advance; finally, the first container was heated to a temperature of 180 ° C, and the reactants were reacted at 180 ° C for 24 hours, and the reaction liquid was allowed to cool To room temperature to obtain the first reaction solution;
  • Step S20 performing a separation treatment on the first reaction solution to obtain a first intermediate
  • the first reaction solution was poured into 200 ml of ice water, and suction filtration was performed to obtain an off-white solid; then, the off-white solid was dissolved by dichloromethane and rotated into silica gel; and then solid-liquid was subjected to column chromatography.
  • the eluent used in the column chromatography is a mixed solvent of dichloromethane and n-hexane, and the volume ratio of the two is 1: 3 to obtain 4.1 g of a blue-white powder with a yield of 67%;
  • the first intermediate is ideally 4-diphenylcarbazole-4'-bromo-diphenylsulfone, and the chemical structural formula is as follows:
  • the chemical formula of the first intermediate is C 36 H 24 BrNO 2 S, the theoretical relative molecular mass is 613.07, and the theoretical mass content ratio of carbon, hydrogen, and nitrogen is 70.36%: 3.94%: 2.28%.
  • the molecular weight of the compound obtained in the experiment was 613.01, and the mass content ratio of carbon, hydrogen and nitrogen in the compound was: 70.21%: 3.81%: 2.11%;
  • the analysis shows that the blue-white powder has the same chemical structural formula as the ideal first intermediate, that is, the blue-white powder is the first intermediate.
  • Step S30 adding the first intermediate, the second reactant, and the second catalyst to a second container, and obtaining a second reaction solution through a second heat treatment;
  • the second container in this embodiment is a two-necked bottle of 100 ml.
  • the first intermediate is added to the second container, that is, 4-diphenylcarbazole-4'-bromo-diphenyl. Sulfone (3.07 g, 5 mmol), the second reactant, 9,10-dihydro-9,9-diphenylacridine (2.00 g, 6 mmol), palladium acetate (45 mg, 0.2 mmol) ) And tri-tert-butylphosphine tetrafluoroborate (0.17 g, 0.6 mmol); then, the second container was placed in a glove box under argon, and after that, was added to the second container Sodium tert-butoxide NaOt-Bu (0.58 g, 6 mmol), and then; 40 ml of toluene in which water and oxygen were removed in advance was added to the second container; and the second container was heated to 110 ° C. so that The reactant was
  • step S40 the second reaction solution is processed to obtain the thermally activated delayed fluorescent agent.
  • the second reaction solution was added to 50 ml of ice water, and then extracted three times with dichloromethane to obtain an organic phase, and the organic phase was spun into silica gel. After that, solid-liquid separation was performed by column chromatography. The volume ratio of dichloromethane and n-hexane of the eluent in the column chromatography was 1: 5 to obtain 1.95 g of a light blue powder with a yield of 45%. Finally, the light blue was sublimated by a sublimation apparatus. The colored powder was purified to obtain 0.8 g of the product, that is, the heat-activated delayed fluorescent material.
  • the theoretical simulation calculation is performed on the molecules of the thermally activated delayed fluorescent material in this embodiment.
  • the lowest singlet energy level is 2.91eV, and the lowest triplet energy level is 2.85eV.
  • the difference between the two energy levels is small, which can make the triplet state.
  • the excitons pass back to the singlet state by inter-channel migration, so that the quantum efficiency reaches 100%.
  • the photoluminescence spectrum of the heat-activated delayed fluorescent material in this embodiment in a toluene solution at room temperature shows that the wavelength is about 430 nanometers and has a peak, indicating that the heat-activated delayed fluorescent material in this embodiment can be used for blue light OLEDs. field.
  • the invention also provides an OLED light emitting device, which includes a substrate, a positive electrode, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and a cathode.
  • the light emitting layer is prepared by using the above-mentioned thermally activated delayed fluorescent material, or by using the material synthesized by the above-mentioned synthesis method.
  • the OLED light emitting device includes a substrate 100, an anode 200, a hole injection layer 300, a hole transport layer 400, a light emitting layer 500, an electron transport layer 600, and an electron injection layer 700. And cathode 800.
  • the substrate 100 includes a substrate, a thin film transistor layer, a source, and a drain.
  • the substrate is a glass substrate or a flexible substrate.
  • the anode 200 is made of ITO (Indium Tin Oxide) material on the surface of the substrate 100.
  • the hole injection layer 300 and the hole transport layer 400 are both made of poly 3,4-ethylenedioxythiophene: polystyrene sulfonate material.
  • the sum of the thicknesses of the anode 200, the hole injection layer 300, and the hole transport layer 400 is 50 nanometers.
  • the material of the light-emitting layer 240 includes a host light-emitting material and a guest light-emitting material.
  • the guest light-emitting material of the light-emitting layer 240 in this embodiment is selected from the heat-activated delayed fluorescent material synthesized by the synthesis method described in the preferred embodiment 1.
  • the chemical structural formula is:
  • the thickness of the guest luminescent material is 40 nanometers.
  • the electron transporting layer 600 is made of 1,3,5-tris (3- (3-pyridyl) phenyl) benzene material.
  • the cathode 800 is made of an alloy of lithium fluoride and aluminum, and the thickness of the lithium fluoride film is 1 nanometer.
  • the thickness of the aluminum film is 100 nm.
  • the OLED light-emitting device was measured by a Keithley source measurement system with a calibrated silicon photodiode and a French SPY CCD3000 spectrometer from JY.
  • the maximum brightness of the OLED light-emitting device can reach 1395cd / m 2 and the highest current efficiency can be achieved. 7.7 cd / A, the CIE chromatogram y value is 0.09, when the y value is equal to zero, it is blue, and the y value in this embodiment is close to zero, and the maximum external quantum efficiency is 7.9%.
  • the difference between the OLED light-emitting device provided in this embodiment and the above-mentioned fourth embodiment is that the guest light-emitting materials are different, and the others are the same as those in the fourth embodiment.
  • the guest luminescent material provided in this embodiment is prepared by using the thermally activated delayed fluorescent material synthesized by the synthesis method described in the preferred embodiment 2. Its chemical structural formula is:
  • the highest brightness of the OLED light emitting device in this embodiment can reach 1057 cd / m 2 , the highest current efficiency can reach 7.6 cd / A, the CIE chromatogram y value is 0.09, and the maximum external quantum efficiency is 7.9%.
  • the difference between the OLED light-emitting device provided in this embodiment and the above-mentioned fourth embodiment is that the guest light-emitting materials are different, and the others are the same as those in the fourth embodiment.
  • the guest luminescent material provided in this embodiment is prepared by using the thermally activated delayed fluorescent material synthesized by the synthesis method described in Embodiment 3, and its chemical structural formula is:
  • the highest brightness of the OLED light-emitting device in this embodiment can reach 983 cd / m 2 , the highest current efficiency can reach 7.9 cd / A, the CIE chromatogram y value is 0.08, and the maximum external quantum efficiency is 7.9%.
  • the present invention synthesizes a thermally activated delayed fluorescent material with excellent light emitting performance, and improves the light emitting efficiency of the OLED light emitting device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Indole Compounds (AREA)

Abstract

一种热活化延迟荧光材料及其合成方法,其结构通式为(I)。合成方法包括将4-溴-4'-碘-二苯基砜、第一反应物以及第一催化剂混合进行热处理得到第一反应液;将第一反应液进行分离处理得到第一中间体;将第一中间体、第二反应物以及第二催化剂混合进行热处理得到第二反应液;将第二反应液处理得到热活化延迟荧光剂。

Description

热活化延迟荧光材料及其合成方法 技术领域
本发明涉及有机发光材料技术领域,尤其涉及一种热活化延迟荧光材料及其合成方法。
背景技术
目前有机电致发光(organic light-emitting diodes,OLED)显示器以其自主发光、发光效率高、可视角度大、响应速度快、驱动电压低、更轻薄等优点,受到广泛关注。在OLED发光器件中,起主导作用的发光客体材料至关重要,早期的OLED使用的发光客体材料为荧光材料,由于在OLED中单重态和三重态的激子比例为1:3,基于荧光材料的OLED的理论内量子效率(IQE)只能达到25%,极大的限制了荧光电致发光器件的应用。重金属配合物磷光材料由于重原子的自旋轨道耦合作用,使得它能够同时利用单重态和三重态激子,从而使得量子效率达到100%。然而,通常使用的重金属都是Ir、Pt等贵重金属,并且重金属配合物磷光发光材料在蓝光材料方面尚有待突破。
热活化延迟荧光(TADF)材料,通过巧妙的分子设计,使得分子具有较小的最低单三重能级差,这样三重态激子可以通过反向系间窜越回到单重态,再通过辐射跃迁至基态而发光,从而能够同时利用单、三重态激子,也能够使得量子效率达到100%。对于TADF材料,快速的反向系间窜越常数以及高的光致发光量子产率是制备高效率OLED的必要条件。目前,具备上述条件的TADF材料相对于重金属Ir配合物而言还是比较匮乏,在磷光重金属材料有待突破的深蓝光领域,TADF材料更是匮乏。
综上所述,现有的OLED发光材料的量子效率较低,导致OLED发光效率低。
技术问题
本发明提供一种热活化延迟荧光材料,以解决现有的OLED发光效率较低的问题。
技术解决方案
为解决上述问题,本发明提供的技术方案如下:
本发明提供一种热活化延迟荧光材料的合成方法,所述热活化延迟荧光材料的结构通式为:
Figure PCTCN2018113270-appb-000001
其中,所述D 1选自以下官能团中的一种:
Figure PCTCN2018113270-appb-000002
Figure PCTCN2018113270-appb-000003
所述D 2选自以下官能团中的一种:
Figure PCTCN2018113270-appb-000004
所述合成方法包括以下步骤:
步骤S10,将4-溴-4’-碘-二苯基砜、第一反应物以及第一催化剂加入到第一容器内,进行第一热处理得到第一反应液,所述第一催化剂为碳酸铯、碘化亚铜、18-冠醚-6以及N,N-二甲基丙烯基脲的混合物。;
步骤S20,将所述第一反应液进行分离处理,得到第一中间体;
步骤S30,将所述第一中间体、第二反应物以及第二催化剂加入到第二容器内,经过第二热处理得到第二反应液,所述第二催化剂为醋酸钯、三叔丁基膦四氟硼酸盐、以及甲苯的混合物。;
步骤S40,将所述第二反应液进行处理,得到所述热活化延迟荧光剂。
在本发明的至少一种实施例中,所述第一反应物选自以下有机化合物中的一种:
Figure PCTCN2018113270-appb-000005
在本发明的至少一种实施例中,所述第二反应物选自以下有机化合物中的一种:
Figure PCTCN2018113270-appb-000006
在本发明的至少一种实施例中,所述步骤S10还包括:
S101,将所述4-溴-4’-碘-二苯基砜、所述第一反应物、所述碳酸铯、所述碘化亚铜以及所述18-冠醚-6加入到第一容器内;
S102,对所述第一容器进行三次抽真空,并通入氮气或惰性气体;
S103,向所述第一容器内加入所述N,N-二甲基丙烯基脲,进行所述第一热处理,得到所述第一反应液。
在本发明的至少一种实施例中,所述第一热处理的温度为180摄氏度,所述第一热处理的时间为24小时。
在本发明的至少一种实施例中,所述步骤S30还包括:
S301,将所述第一中间体、所述第二反应物、所述醋酸钯以及所述三叔丁基膦四氟硼酸盐加入到第二容器内;
S302,将所述第二容器置于通有氮气或惰性气体的手套箱中,向所述第二容器中加入叔丁醇钠,之后,将所述甲苯加入到所述第二容器内,进行第二热处理,得到所述第二反应液;
在本发明的至少一种实施例中,所述第二热处理的温度为110摄氏度,所述第二热处理的时间为24小时。
本发明还提供一种热活化延迟荧光材料,结构通式如下式所示:
Figure PCTCN2018113270-appb-000007
其中,所述D 1选自以下官能团中的一种:
Figure PCTCN2018113270-appb-000008
Figure PCTCN2018113270-appb-000009
所述D 2选自以下官能团中的一种:
Figure PCTCN2018113270-appb-000010
本发明提供另一种热活化延迟荧光材料的合成方法,所述热活化延迟荧光材料的结构通式为:
Figure PCTCN2018113270-appb-000011
其中,所述D 1选自以下官能团中的一种:
Figure PCTCN2018113270-appb-000012
所述D 2选自以下官能团中的一种:
Figure PCTCN2018113270-appb-000013
所述合成方法包括以下步骤:
步骤S10,将4-溴-4’-碘-二苯基砜、第一反应物以及第一催化剂加入到第一容器内,进行第一热处理得到第一反应液;
步骤S20,将所述第一反应液进行分离处理,得到第一中间体;
步骤S30,将所述第一中间体、第二反应物以及第二催化剂加入到第二容器内,经过第二热处理得到第二反应液;
步骤S40,将所述第二反应液进行处理,得到所述热活化延迟荧光剂。
在本发明的至少一种实施例中,所述第一反应物选自以下有机化合物中的一种:
Figure PCTCN2018113270-appb-000014
在本发明的至少一种实施例中,所述第二反应物选自以下有机化合物中的一种:
Figure PCTCN2018113270-appb-000015
Figure PCTCN2018113270-appb-000016
在本发明的至少一种实施例中,所述第一催化剂为碳酸铯、碘化亚铜、18-冠醚-6以及N,N-二甲基丙烯基脲的混合物。
在本发明的至少一种实施例中,所述步骤S10还包括:
S101,将所述4-溴-4’-碘-二苯基砜、所述第一反应物、所述碳酸铯、所述碘化亚铜以及所述18-冠醚-6加入到第一容器内;
S102,对所述第一容器进行三次抽真空,并通入氮气或惰性气体;
S103,向所述第一容器内加入所述N,N-二甲基丙烯基脲,进行所述第一热处理,得到所述第一反应液。
在本发明的至少一种实施例中,所述第一热处理的温度为180摄氏度,所述第一热处理的时间为24小时。
在本发明的至少一种实施例中,所述第二催化剂为醋酸钯、三叔丁基膦四氟硼酸盐、以及甲苯的混合物。
在本发明的至少一种实施例中,所述步骤S30还包括:
S301,将所述第一中间体、所述第二反应物、所述醋酸钯以及所述三叔丁基膦四氟硼酸盐加入到第二容器内;
S302,将所述第二容器置于通有氮气或惰性气体的手套箱中,向所述第二容器中加入叔丁醇钠,之后,将所述甲苯加入到所述第二容器内,进行第二热处理,得到所述第二反应液;
在本发明的至少一种实施例中,所述第二热处理的温度为110摄氏度,所述第二热处理的时间为24小时。
有益效果
本发明的有益效果为:本发明通过不同官能团的组合,合成了具有优良的发光性能的热活化延迟荧光材料,提高了OLED发光器件的发光效率。
附图说明
为了更清楚地说明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明热活化延迟荧光材料的合成方法的步骤流程图;
图2为本发明OLED发光器件的结构示意图。
本发明的实施方式
以下各实施例的说明是参考附加的图示,用以例示本发明可用以实施的特定实施例。本发明所提到的方向用语,例如[上]、[下]、[前]、[后]、[左]、[右]、[内]、[外]、[侧面]等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。在图中,结构相似的单元是用以相同标号表示。
本发明针对现有的OLED发光材料,由于量子效率较低,导致OLED发光效率较低,进而影响显示的技术问题,本实施例能够解决该缺陷。
本发明提供一种热活化延迟荧光材料,其结构通式如下式所示:
Figure PCTCN2018113270-appb-000017
其中,所述D 1选自以下官能团中的一种:
Figure PCTCN2018113270-appb-000018
所述D 2为咔唑或咔唑类衍生物,选自以下官能团中的一种:
Figure PCTCN2018113270-appb-000019
如图1所示,本发明还提供上述热活化延迟荧光材料的合成方法,包括以下步骤:
步骤S10,将4-溴-4’-碘-二苯基砜、第一反应物以及第一催化剂加入到第一容器内,进行第一热处理得到第一反应液;
步骤S20,将所述第一反应液进行分离处理,得到第一中间体;
步骤S30,将所述第一中间体、第二反应物以及第二催化剂加入到第二容器内,经过第二热处理得到第二反应液;
步骤S40,将所述第二反应液进行处理,得到所述热活化延迟荧光剂。
其中,所述第一反应物与所述热活化延迟荧光材料的结构通式中的D 2对应,所述第一反应物选自以下有机化合物中的一种:
Figure PCTCN2018113270-appb-000020
所述第二反应物与所述热活化延迟荧光材料的结构通式中的D 1对应,所述第二反应物选自以下有机化合物中的一种:
Figure PCTCN2018113270-appb-000021
所述第一催化剂为碳酸铯、碘化亚铜、18-冠醚-6以及N,N-二甲基丙烯基脲的混合物。
所述步骤S10包括:
S101,将所述4-溴-4’-碘-二苯基砜、所述第一反应物、所述碳酸铯、所述碘化亚铜以及所述18-冠醚-6加入到第一容器内;
S102,对所述第一容器进行三次抽真空,并通入氮气或惰性气体;
S103,向所述第一容器内加入所述N,N-二甲基丙烯基脲,进行所述第一热处理,得到所述第一反应液。
其中,所述第一热处理的温度为180℃,所述第一热处理的时间为24小时。
所述第二催化剂为醋酸钯、三叔丁基膦四氟硼酸盐、以及甲苯的混合物。
所述步骤S30还包括:
S301,将所述第一中间体、所述第二反应物、所述醋酸钯以及所述三叔丁基膦四氟硼酸盐加入到第二容器内;
S302,将所述第二容器置于通有氮气或惰性气体的手套箱中,向所述第二容器中加入叔丁醇钠,之后,将所述甲苯加入到所述第二容器内,进行第二热处理,得到所述第二反应液。
其中,所述第二热处理的温度为110摄氏度,所述第二热处理的时间为24小时。
下面结合具体实施例来进行说明。
实施例一
本优选实施例中的热活化延迟荧光材料的化学结构式为:
Figure PCTCN2018113270-appb-000022
该热活化延迟荧光材料的合成方法包括:
步骤S10,将4-溴-4’-碘-二苯基砜、第一反应物以及第一催化剂加入到第一容器内,进行第一热处理得到第一反应液;
本实施例中的第一容器为100毫升的二口瓶,首先分别向两个开口处加入4-溴-4’-碘-二苯基砜(4.21克,10毫摩尔)、咔唑(1.67克,10毫摩尔);然后,再向所述第一容器中加入碳酸铯CsCO 3(2.31克,12毫摩尔),碘化亚铜CuI(0.11克,0.6毫摩尔)和18-冠醚-6(52毫克,0.2毫摩尔);接着对所述第一容器进行三次抽真空,并通入氩气,避免空气中的水氧对反应造成影响;之后向所述第一容器中加入20毫升事先除去氧气的N,N-二甲基丙烯基脲;最后,对所述第一容器进行升温,使温度达到180℃,使反应物在180℃条件下反应24小时,待反应液冷却至室温,得到所述第一反应液;
其中,所述4-溴-4’-碘-二苯基砜的化学结构式为:
Figure PCTCN2018113270-appb-000023
咔唑的化学结构式为:
Figure PCTCN2018113270-appb-000024
步骤S20,将所述第一反应液进行分离处理,得到第一中间体;
首先,将第一反应液倒入200毫升的冰水中,进行抽滤,得到灰白色固体;然后,通过二氯甲烷对该灰白色固体进行溶解,并旋成硅胶;之后用柱层析法进行固液分离、纯化,所述柱层析法中用到的洗淋剂为二氯甲烷和正己烷的混合溶剂,两者体积比为1:3,得到蓝白色粉末3.3克,产率72%;
其中,理想中的所述第一中间体为4-咔唑-4’-溴-二苯基砜,化学结构式如下:
Figure PCTCN2018113270-appb-000025
所述第一中间体的化学式为C 24H 16BrNO 2S,具有八个不同的化学环境氢,理论相对分子质量为462.36,碳、氢、氮的理论质量含量比为:62.35%:3.49%:3.03%。
对得到的所述蓝白色粉末进行核磁共振氢谱、质谱、碳谱等结构分析,具体如下:
1H NMR(300MHz,CD 2Cl 2,δ):8.55(d,J=6.9Hz,2H),8.19(d,J=6.6Hz,2H),7.90~7.74(m,4H),7.58(d,J=6.6Hz,2H),7.58(d,J=6.9Hz,2H),7.35~7.16(m,4H);
实验所得的化合物分子量为462.27,碳、氢、氮在该化合物中的质量含量比为:62.31%:3.47%:3.00%;
分析可知,所述蓝白色粉末与理想中的第一中间体的化学结构式相同,即所述蓝白色粉末为所述第一中间体。
步骤S30,将所述第一中间体、第二反应物以及第二催化剂加入到第二容器内,经过第二热 处理得到第二反应液;
本实施例中的第二容器为100毫升的二口瓶,首先,向所述第二容器中加入所述第一中间体,即4-咔唑-4’-溴-二苯基砜(2.31克,5毫摩尔),所述第二反应物,即9,10-二氢-9,9-二苯基吖啶(2.00克,6毫摩尔),醋酸钯(45毫克,0.2毫摩尔)和三叔丁基膦四氟硼酸盐(0.17克,0.6毫摩尔);然后,将所述第二容器置于通有氩气的手套箱中,之后,向所述第二容器中加入叔丁醇钠NaOt-Bu(0.58克,6毫摩尔),接着;向所述第二容器内加入40毫升事先除去水氧的甲苯;再将所述第二容器进行升温,达到110℃,使得反应物在110℃条件下,反应24小时;最后,冷却至室温,得到所述第二反应液。
其中,所述第二反应物9,10-二氢-9,9-二苯基吖啶的化学结构式如下:
Figure PCTCN2018113270-appb-000026
步骤S40,将所述第二反应液进行处理,得到所述热活化延迟荧光剂。
首先,将所述第二反应液加入到50毫升的冰水中;再用二氯甲烷萃取三次,得到有机相,并将所述有机相旋成硅胶;之后,通过柱层析法进行固液分离,所述柱层析法中的洗淋剂二氯甲烷和正己烷的体积比为1:5,得到淡蓝色粉末2.14克,产率为60%;最后,利用升华仪对所述淡蓝色粉末进行纯化,得到1.3克的产物。
对所述产物进行核磁共振氢谱、碳谱、质谱以及元素分析,具体分析如下:
1H NMR(300MHz,CD 2Cl 2,δ):8.57(d,J=6.6Hz,2H),8.20(d,J=6.0Hz,2H),7.90-7.80(m,4H),8.63(d,J=6.3Hz,2H),7.56(d,J=6.9Hz,2H),7.52-7.46(m,4H),7.40(d,J=6.0Hz,2H),7.36-7.21(m,10H),7.00-6.93(m,4H);
目的产物的化学式为C 49H 34N 2O 2S,相对分子质量为714.88,实验合成的产物相对分子质量为714.67;目的产物中碳、氢、氮元素的质量含量比为82.33%:4.79%:3.92%,实验合成的产物中碳、氢、氮元素的质量含量比为82.17%:4.63%:3.74%。
分析可知,实验合成的产物与目的产物一致,即所述1.3克的产物为所述热活化延迟荧光材料,其化学结构式为:
Figure PCTCN2018113270-appb-000027
对本实施例中的热活化延迟荧光材料的分子进行理论模拟运算,最低单重态的能级为2.88eV,最低三重态的能级为2.81eV,两者能级相差很小,能够使得三重态激子通过反向系间窜越回到单重态,进而使得量子效率达到100%。
本实施例中的热活化延迟荧光材料在室温下,在甲苯溶液中的光致发光光谱图显示,波长在430纳米左右,具有峰值,说明本实施例中的热活化延迟荧光材料可用于蓝光OLED领域。
实施例二
本实施例中的热活化延迟荧光材料的化学结构式为:
Figure PCTCN2018113270-appb-000028
该热活化延迟荧光材料的合成方法包括:
步骤S10,将4-溴-4’-碘-二苯基砜、第一反应物以及第一催化剂加入到第一容器内,进行第一热处理得到第一反应液;
本实施例中的第一容器为100毫升的二口瓶,首先,分别向两个开口处加入4-溴-4’-碘-二苯基砜(4.21克,10毫摩尔)、3,6-二甲基咔唑(1.67克,10毫摩尔);然后,再向所述第一容器中加入CsCO 3(2.31克,12毫摩尔),CuI(0.11克,0.6毫摩尔)和18-冠醚-6(52毫克,0.2毫摩尔);接着对所述第一容器进行三次抽真空,并通入氩气,避免空气中的水氧对反应造成影响;之后向所述第一容器中加入20毫升事先除去氧气的N,N-二甲基丙烯基脲;最后,对所述第一容器进行升温,使温度达到180℃,使反应物在180℃条件下反应24小时,待反应液冷却至室温,得到所述第一反应液;
其中,所述4-溴-4’-碘-二苯基砜的化学结构式为:
Figure PCTCN2018113270-appb-000029
3,6-二甲基咔唑的化学结构式为:
Figure PCTCN2018113270-appb-000030
步骤S20,将所述第一反应液进行分离处理,得到第一中间体;
首先,将第一反应液倒入200毫升的冰水中,进行抽滤,得到灰白色固体;然后,通过二氯甲烷对该灰白色固体进行溶解,并旋成硅胶;之后用柱层析法进行固液分离、纯化,所述柱层析法中用到的洗淋剂为二氯甲烷和正己烷的混合溶剂,两者体积比为1:3,得到蓝白色粉末3.2克,产率65%;
其中,理想中的所述第一中间体为4-二甲基咔唑-4’-溴-二苯基砜,化学结构式如下:
Figure PCTCN2018113270-appb-000031
所述第一中间体的化学式为C 26H 20BrNO 2S,理论相对分子质量为489.04,碳、氢、氮的理论质量含量比为:63.68%:4.11%:2.86%。
对得到的所述蓝白色粉末进行核磁共振氢谱、质谱、碳谱等结构分析,具体如下:
1H NMR(300MHz,CD 2Cl 2,δ):8.80(d,J=6.6Hz,2H),7.89(d,J=6.9Hz,2H),7.65(d,J=6.3Hz,2H),7.53(d,J=6.6Hz,2H),7.36(d,J=6.9Hz,2H),6.96-6.90(m,4H),2.48(s,6H)。实验所得的化合物分子量为489.00,碳、氢、氮在该化合物中的质量含量比为:63.90%:4.17%:2.91%;
分析可知,所述蓝白色粉末与理想中的第一中间体的化学结构式相同,即所述蓝白色粉末为所述第一中间体。
步骤S30,将所述第一中间体、第二反应物以及第二催化剂加入到第二容器内,经过第二热处理得到第二反应液;
本实施例中的第二容器为100毫升的二口瓶,首先,向所述第二容器中加入所述第一中间体,即4-二甲基咔唑-4’-溴-二苯基砜(2.45克,5毫摩尔),第二反应物,即9,10-二氢-9,9-二苯基吖啶(2.00克,6毫摩尔),醋酸钯(45毫克,0.2毫摩尔)和三叔丁基膦四氟硼酸盐(0.17克,0.6毫摩尔);然后,将所述第二容器置于通有氩气的手套箱中,之后,向所述第二容器中加入叔丁醇钠NaOt-Bu(0.58克,6毫摩尔),接着;向所述第二容器内加入40毫升事先除去水氧的甲苯;再将所述第二容器进行升温,达到110℃,使得反应物在110℃条件下,反应24小时;最后,冷却至室温,得到所述第二反应液。
步骤S40,将所述第二反应液进行处理,得到所述热活化延迟荧光剂。
首先,将所述第二反应液加入到50毫升的冰水中;再用二氯甲烷萃取三次,得到有机相,并将所述有机相旋成硅胶;之后,通过柱层析法进行固液分离,所述柱层析法中的洗淋剂二氯甲烷和正己烷的体积比为1:5,得到淡蓝色粉末2.08克,产率为56%;最后,利用升华仪对所述淡蓝色粉末进行纯化,得到1.1克的产物。
对所述产物进行核磁共振氢谱、碳谱、质谱以及元素分析,具体分析如下:
1H NMR(300MHz,CD 2Cl 2,δ):8.76(d,J=6.6Hz,2H),8.13(d,J=6.3Hz,2H),7.93(d,J=6.9Hz,2H),7.64(d,J=6.6Hz,2H),7.53(d,J=6.3Hz,2H),7.42(t,J=6.0Hz,4H),7.36-7.08(m,14H),6.96-6.84(m,4H),2.45(m,6H);
目的产物的化学式为C 51H 38N 2O 2S,相对分子质量为742.27,实验合成的产物相对分子质量为742.20;目的产物中碳、氢、氮元素的质量含量比为82.45%:5.16%:3.77%,实验合成的产物中碳、氢、氮元素的质量含量比为82.31%:5.07%:3.69%。
分析可知,实验合成的产物与目的产物一致,即所述1.1克的产物为所述热活化延迟荧光材料,其化学结构式为:
Figure PCTCN2018113270-appb-000032
对本实施例中的热活化延迟荧光材料的分子进行理论模拟运算,最低单重态的能级为2.88eV,最低三重态的能级为2.81eV,两者能级相差很小,能够使得三重态激子通过反向系间窜越回到单重态,进而使得量子效率达到100%。
本实施例中的热活化延迟荧光材料在室温下,在甲苯溶液中的光致发光光谱图显示,波长在430纳米左右,具有峰值,说明本实施例中的热活化延迟荧光材料可用于蓝光OLED领域。
实施例三
本实施例中的热活化延迟荧光材料的化学结构式为:
Figure PCTCN2018113270-appb-000033
该热活化延迟荧光材料的合成方法包括: 步骤S10,将4-溴-4’-碘-二苯基砜、第一反应物以及第一催化剂加入到第一容器内,进行第一热处理得到第一反应液;
本实施例中的第一容器为100毫升的二口瓶,首先,分别向两个开口处加入4-溴-4’-碘-二苯基砜(4.21克,10毫摩尔)、3,6-二苯基咔唑(3.19克,10毫摩尔);然后,再向所述第一容器中加入CsCO 3(2.31克,12毫摩尔),CuI(0.11克,0.6毫摩尔)和18-冠醚-6(52毫克,0.2毫摩尔);接着对所述第一容器进行三次抽真空,并通入氩气,避免空气中的水氧对反应造成影响;之后向所述第一容器中加入20毫升事先除去氧气的N,N-二甲基丙烯基脲;最后,对所述第一容器进行升温,使温度达到180℃,使反应物在180℃条件下反应24小时,待反应液冷却至室温,得到所述第一反应液;
其中,所述4-溴-4’-碘-二苯基砜的化学结构式为:
Figure PCTCN2018113270-appb-000034
3,6-二苯基咔唑的化学结构式为:
Figure PCTCN2018113270-appb-000035
步骤S20,将所述第一反应液进行分离处理,得到第一中间体;
首先,将第一反应液倒入200毫升的冰水中,进行抽滤,得到灰白色固体;然后,通过二氯甲烷对该灰白色固体进行溶解,并旋成硅胶;之后用柱层析法进行固液分离、纯化,所述柱层析法中用到的洗淋剂为二氯甲烷和正己烷的混合溶剂,两者体积比为1:3,得到蓝白色粉末4.1克,产率为67%;
其中,理想中的所述第一中间体为4-二苯基咔唑-4’-溴-二苯基砜,化学结构式如下:
Figure PCTCN2018113270-appb-000036
所述第一中间体的化学式为C 36H 24BrNO 2S,理论相对分子质量为613.07,碳、氢、氮的理论质量含量比为:70.36%:3.94%:2.28%。
对得到的所述蓝白色粉末进行核磁共振氢谱、质谱、碳谱等结构分析,具体如下:
1H NMR(300MHz,CD 2Cl 2,δ):8.30(d,J=6.9Hz,2H),8.13(d,J=6.6Hz,2H),7.90(d,J=6.3Hz,2H),7.75-7.65(m,6H),7.57(d,J=6.9Hz,2H),7.49-7.41(m,10H);
实验所得的化合物分子量为613.01,碳、氢、氮在该化合物中的质量含量比为:70.21%:3.81%:2.11%;
分析可知,所述蓝白色粉末与理想中的第一中间体的化学结构式相同,即所述蓝白色粉末为所述第一中间体。
步骤S30,将所述第一中间体、第二反应物以及第二催化剂加入到第二容器内,经过第二热 处理得到第二反应液;
本实施例中的第二容器为100毫升的二口瓶,首先,向所述第二容器中加入所述第一中间体,即4-二苯基咔唑-4’-溴-二苯基砜(3.07克,5毫摩尔),第二反应物,即9,10-二氢-9,9-二苯基吖啶(2.00克,6毫摩尔),醋酸钯(45毫克,0.2毫摩尔)和三叔丁基膦四氟硼酸盐(0.17克,0.6毫摩尔);然后,将所述第二容器置于通有氩气的手套箱中,之后,向所述第二容器中加入叔丁醇钠NaOt-Bu(0.58克,6毫摩尔),接着;向所述第二容器内加入40毫升事先除去水氧的甲苯;再将所述第二容器进行升温,达到110℃,使得反应物在110℃条件下,反应24小时;最后,冷却至室温,得到所述第二反应液。
步骤S40,将所述第二反应液进行处理,得到所述热活化延迟荧光剂。
首先,将所述第二反应液加入到50毫升的冰水中;再用二氯甲烷萃取三次,得到有机相,并将所述有机相旋成硅胶;之后,通过柱层析法进行固液分离,所述柱层析法中的洗淋剂二氯甲烷和正己烷的体积比为1:5,得到淡蓝色粉末1.95克,产率为45%;最后,利用升华仪对所述淡蓝色粉末进行纯化,得到0.8克的产物,即所述热活化延迟荧光材料。
对本实施例中的热活化延迟荧光材料的分子进行理论模拟运算,最低单重态的能级为2.91eV,最低三重态的能级为2.85eV,两者能级相差很小,能够使得三重态激子通过反向系间窜越回到单重态,进而使得量子效率达到100%。
本实施例中的热活化延迟荧光材料在室温下,在甲苯溶液中的光致发光光谱图显示,波长在430纳米左右,具有峰值,说明本实施例中的热活化延迟荧光材料可用于蓝光OLED领域。本发明还提供一种OLED发光器件,包括衬底、阳、空穴注入层、空穴传输层、发光层、电子传输层、电子注入层以及阴极。
其中,所述发光层采用上述热活化延迟荧光材料制备,或采用上述的合成方法所合成的材料制备。
下面结合具体实施例进行说明。
实施例四
如图2所示,本实施例提供的OLED发光器件,包括:包括衬底100、阳极200、空穴注入层300、空穴传输层400、发光层500、电子传输层600、电子注入层700以及阴极800。
所述衬底100包括:基板、薄膜晶体管层、源极、漏极,所述基板为玻璃基板,也可以为柔性基板。
所述阳极200采用ITO(Indium tin oxide,氧化铟锡)材料制备在所述衬底100表面。
所述空穴注入层300与所述空穴传输层400均采用聚3,4-乙撑二氧噻吩:聚苯乙烯磺酸盐材料制备。
所述阳极200、所述空穴注入层300以及所述空穴传输层400的厚度之和为50纳米。
所述发光层240的材料包括主体发光材料和客体发光材料,本实施例中的所述发光层240的客体发光材料选用优选实施例一所述的合成方法合成的热活化延迟荧光材料制备,其化学结构式为:
Figure PCTCN2018113270-appb-000037
所述客体发光材料的厚度为40纳米。
所述电子传输层600采用1,3,5-三(3-(3-吡啶基)苯基)苯材料制备。
所述阴极800采用氟化锂和铝的合金制备,氟化锂薄膜的厚度为1纳米。铝薄膜的厚度为 100纳米。
通过带有校正过的硅光电二极管的Keithley源测量系统和法国JY公司SPEX CCD3000光谱仪对所述OLED发光器件进行测量,所述OLED发光器件的最高亮度可达到1395cd/m 2,最高电流效率可达到7.7cd/A,CIE色谱图y值是0.09,当y值等于零的时候,处于蓝色,而本实施例中的y值接近于零,最大外量子效率为7.9%。
实施例五
本实施例提供的OLED发光器件与上述实施例四的不同之处在于,客体发光材料的不同,其他均与实施例四相同。
本实施例提供的客体发光材料采用优选实施例二中所述的合成方法合成的热活化延迟荧光材料制备,其化学结构式为:
Figure PCTCN2018113270-appb-000038
本实施例中的所述OLED发光器件的最高亮度可达到1057cd/m 2,最高电流效率可达到7.6cd/A,CIE色谱图y值是0.09,最大外量子效率为7.9%。
实施例六
本实施例提供的OLED发光器件与上述实施例四的不同之处在于,客体发光材料的不同,其他均与实施例四相同。
本实施例提供的客体发光材料采用实施例三中所述的合成方法合成的热活化延迟荧光材料制备,其化学结构式为:
Figure PCTCN2018113270-appb-000039
本实施例中的所述OLED发光器件的最高亮度可达到983cd/m 2,最高电流效率可达到7.9cd/A,CIE色谱图y值是0.08,最大外量子效率为7.9%。
有益效果:本发明通过不同官能团的组合,合成了具有优良的发光性能的热活化延迟荧光材料,提高了OLED发光器件的发光效率。
综上所述,虽然本发明已以优选实施例揭露如上,但上述优选实施例并非用以限制本发明,本领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。

Claims (17)

  1. 一种热活化延迟荧光材料的合成方法,其中,所述热活化延迟荧光材料的结构通式为:
    Figure PCTCN2018113270-appb-100001
    其中,
    所述D 1选自以下官能团中的一种:
    Figure PCTCN2018113270-appb-100002
    所述D 2选自以下官能团中的一种:
    Figure PCTCN2018113270-appb-100003
    所述合成方法包括以下步骤:
    步骤S10,将4-溴-4’-碘-二苯基砜、第一反应物以及第一催化剂加 入到第一容器内,进行第一热处理得到第一反应液,所述第一催化剂为碳酸铯、碘化亚铜、18-冠醚-6以及N,N-二甲基丙烯基脲的混合物;
    步骤S20,将所述第一反应液进行分离处理,得到第一中间体;
    步骤S30,将所述第一中间体、第二反应物以及第二催化剂加入到第二容器内,经过第二热处理得到第二反应液,所述第二催化剂为醋酸钯、三叔丁基膦四氟硼酸盐、以及甲苯的混合物;
    步骤S40,将所述第二反应液进行处理,得到所述热活化延迟荧光剂。
  2. 根据权利要求1所述的合成方法,其中,所述第一反应物选自以下有机化合物中的一种:
    Figure PCTCN2018113270-appb-100004
  3. 根据权利要求1所述的合成方法,其中,所述第二反应物选自以下有机化合物中的一种:
    Figure PCTCN2018113270-appb-100005
    Figure PCTCN2018113270-appb-100006
  4. 根据权利要求1所述的合成方法,其中,所述步骤S10包括:
    S101,将所述4-溴-4’-碘-二苯基砜、所述第一反应物、所述碳酸铯、所述碘化亚铜以及所述18-冠醚-6加入到第一容器内;
    S102,对所述第一容器进行三次抽真空,并通入氮气或惰性气体;
    S103,向所述第一容器内加入所述N,N-二甲基丙烯基脲,进行所述第一热处理,得到所述第一反应液。
  5. 根据权利要求4所述的合成方法,其中,所述第一热处理的温度为180摄氏度,所述第一热处理的时间为24小时。
  6. 根据权利要求1所述的合成方法,其中,所述步骤S30包括:
    S301,将所述第一中间体、所述第二反应物、所述醋酸钯以及所述三叔丁基膦四氟硼酸盐加入到第二容器内;
    S302,将所述第二容器置于通有氮气或惰性气体的手套箱中,向所述第二容器中加入叔丁醇钠,之后,将所述甲苯加入到所述第二容器内,进行第二热处理,得到所述第二反应液。
  7. 根据权利要求6所述的合成方法,其中,所述第二热处理的温度为110摄氏度,所述第二热处理的时间为24小时。
  8. 一种热活化延迟荧光材料,其中,结构通式如下式所示:
    Figure PCTCN2018113270-appb-100007
    其中,所述D 1选自以下官能团中的一种:
    Figure PCTCN2018113270-appb-100008
    所述D 2选自以下官能团中的一种:
    Figure PCTCN2018113270-appb-100009
  9. 一种热活化延迟荧光材料的合成方法,其中,所述热活化延迟荧光材料的结构通式为:
    Figure PCTCN2018113270-appb-100010
    其中,所述D 1选自以下官能团中的一种:
    Figure PCTCN2018113270-appb-100011
    所述D 2选自以下官能团中的一种:
    Figure PCTCN2018113270-appb-100012
    所述合成方法包括以下步骤:
    步骤S10,将4-溴-4’-碘-二苯基砜、第一反应物以及第一催化剂加入到第一容器内,进行第一热处理得到第一反应液;
    步骤S20,将所述第一反应液进行分离处理,得到第一中间体;
    步骤S30,将所述第一中间体、第二反应物以及第二催化剂加入到第二容器内,经过第二热处理得到第二反应液;
    步骤S40,将所述第二反应液进行处理,得到所述热活化延迟荧光剂。
  10. 根据权利要求9所述的合成方法,其中,所述第一反应物选自以下有机化合物中的一种:
    Figure PCTCN2018113270-appb-100013
  11. 根据权利要求9所述的合成方法,其中,所述第二反应物选自以下有机化合物中的一种:
    Figure PCTCN2018113270-appb-100014
  12. 根据权利要求9所述的合成方法,其中,所述第一催化剂为碳酸铯、碘化亚铜、18-冠醚-6以及N,N-二甲基丙烯基脲的混合物。
  13. 根据权利要求12所述的合成方法,其中,所述步骤S10包括:
    S101,将所述4-溴-4’-碘-二苯基砜、所述第一反应物、所述碳酸铯、所述碘化亚铜以及所述18-冠醚-6加入到第一容器内;
    S102,对所述第一容器进行三次抽真空,并通入氮气或惰性气体;
    S103,向所述第一容器内加入所述N,N-二甲基丙烯基脲,进行所述第一热处理,得到所述第一反应液。
  14. 根据权利要求13所述的合成方法,其中,所述第一热处理的温度为180摄氏度,所述第一热处理的时间为24小时。
  15. 根据权利要求9所述的合成方法,其中,所述第二催化剂为醋酸钯、三叔丁基膦四氟硼酸盐、以及甲苯的混合物。
  16. 根据权利要求15所述的合成方法,其中,所述步骤S30包括:
    S301,将所述第一中间体、所述第二反应物、所述醋酸钯以及所述三叔丁基膦四氟硼酸盐加入到第二容器内;
    S302,将所述第二容器置于通有氮气或惰性气体的手套箱中,向所述第二容器中加入叔丁醇钠,之后,将所述甲苯加入到所述第二容器内,进行第二热处理,得到所述第二反应液。
  17. 根据权利要求16所述的合成方法,其中,所述第二热处理的温度为110摄氏度,所述第二热处理的时间为24小时。
PCT/CN2018/113270 2018-07-18 2018-11-01 热活化延迟荧光材料及其合成方法 WO2020015245A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/337,463 US11279873B2 (en) 2018-07-18 2018-11-01 Thermally activated delayed fluorescent and synthesizing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810787840.5A CN108658940A (zh) 2018-07-18 2018-07-18 热活化延迟荧光材料、其合成方法及oled发光器件
CN201810787840.5 2018-07-18

Publications (1)

Publication Number Publication Date
WO2020015245A1 true WO2020015245A1 (zh) 2020-01-23

Family

ID=63788494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/113270 WO2020015245A1 (zh) 2018-07-18 2018-11-01 热活化延迟荧光材料及其合成方法

Country Status (3)

Country Link
US (1) US11279873B2 (zh)
CN (1) CN108658940A (zh)
WO (1) WO2020015245A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108658940A (zh) * 2018-07-18 2018-10-16 武汉华星光电半导体显示技术有限公司 热活化延迟荧光材料、其合成方法及oled发光器件
CN109627265A (zh) * 2018-11-26 2019-04-16 武汉华星光电半导体显示技术有限公司 一种敏化材料的制备方法及有机发光二极管
CN109608437B (zh) * 2018-12-04 2020-06-02 武汉华星光电半导体显示技术有限公司 蓝光tadf材料及其制备方法和电致发光器件
CN109970715B (zh) * 2019-03-26 2020-10-16 武汉华星光电半导体显示技术有限公司 热活化延迟荧光材料及有机发光二极管显示设备
CN109897065B (zh) * 2019-04-16 2021-06-01 武汉华星光电半导体显示技术有限公司 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
CN110577513A (zh) * 2019-08-28 2019-12-17 武汉华星光电半导体显示技术有限公司 电致发光材料、电致发光材料的制备方法及发光器件
US11430959B2 (en) * 2019-11-22 2022-08-30 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Thermally activated delayed fluorescence material and organic light-emitting diode prepared using same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103483332A (zh) * 2013-09-11 2014-01-01 中山大学 具有热激活延迟荧光和聚集诱导发光性能的新型压致发光材料及其合成方法和应用
CN105038764A (zh) * 2015-06-17 2015-11-11 中山大学 基于二苯砜吩噁嗪结构的不对称型热激活延迟聚集诱导发光材料及其合成方法和应用
CN105859714A (zh) * 2016-05-09 2016-08-17 武汉大学 一种含有1,10菲啰啉单元的热激活延迟荧光材料及其应用
CN106589324A (zh) * 2016-11-30 2017-04-26 武汉大学 一种热激活延迟荧光高分子化合物及其制备方法和应用
CN107698568A (zh) * 2017-09-26 2018-02-16 长春海谱润斯科技有限公司 一种联嘧啶衍生物的热激活延迟荧光材料及其有机电致发光器件
CN108658940A (zh) * 2018-07-18 2018-10-16 武汉华星光电半导体显示技术有限公司 热活化延迟荧光材料、其合成方法及oled发光器件

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161437A1 (ja) 2012-04-25 2013-10-31 国立大学法人九州大学 発光材料および有機発光素子
EP3431568B1 (en) * 2014-11-12 2020-04-08 LG Display Co., Ltd. Delayed fluorescence compound

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103483332A (zh) * 2013-09-11 2014-01-01 中山大学 具有热激活延迟荧光和聚集诱导发光性能的新型压致发光材料及其合成方法和应用
CN105038764A (zh) * 2015-06-17 2015-11-11 中山大学 基于二苯砜吩噁嗪结构的不对称型热激活延迟聚集诱导发光材料及其合成方法和应用
CN105859714A (zh) * 2016-05-09 2016-08-17 武汉大学 一种含有1,10菲啰啉单元的热激活延迟荧光材料及其应用
CN106589324A (zh) * 2016-11-30 2017-04-26 武汉大学 一种热激活延迟荧光高分子化合物及其制备方法和应用
CN107698568A (zh) * 2017-09-26 2018-02-16 长春海谱润斯科技有限公司 一种联嘧啶衍生物的热激活延迟荧光材料及其有机电致发光器件
CN108658940A (zh) * 2018-07-18 2018-10-16 武汉华星光电半导体显示技术有限公司 热活化延迟荧光材料、其合成方法及oled发光器件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAN, JIHUA ET AL.: "Progress on Donor-Acceptor Type Thermally Activated delayed Fluorescence based Blue Emitters", CHINESE JOURNAL OF ORGANIC CHEMISTRY, vol. 37, 15 October 2017 (2017-10-15), pages 2457 - 2480 *

Also Published As

Publication number Publication date
US20210363416A1 (en) 2021-11-25
CN108658940A (zh) 2018-10-16
US11279873B2 (en) 2022-03-22

Similar Documents

Publication Publication Date Title
WO2020015245A1 (zh) 热活化延迟荧光材料及其合成方法
CN105175313B (zh) 一种空穴注入化合物及其有机电致发光器件
US11485905B2 (en) Green light thermally activated delayed fluorescent material and synthesizing method thereof, and electroluminescent device
US20160260907A1 (en) Organic electroluminescent material and organic electroluminescent device
WO2020082601A1 (zh) 深红光热活化延迟荧光材料及其合成方法、电致发光器件
CN105294663B (zh) 一种含吡啶化合物及其有机电致发光器件
WO2020113789A1 (zh) 绿光热活化延迟荧光材料及其合成方法、电致发光器件
US10937971B2 (en) Organic monomolecular white light material, manufacturing method for the same, and OLED element
CN109336772A (zh) 一种含螺结构的三芳香胺化合物及其用途和发光器件
CN109535175A (zh) 一种含五元环螺结构的双三芳香胺化合物、应用及发光器件
CN106432078B (zh) 化合物及使用其的有机电子装置
WO2020211125A1 (zh) 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
Venkatakrishnan et al. Twisted bimesitylene-based oxadiazoles as novel host materials for phosphorescent OLEDs
WO2022242521A1 (zh) 一种稠合氮杂环化合物及其应用以及包含该化合物的有机电致发光器件
WO2021073385A1 (zh) 一种含硼类化合物及含有其的有机电致发光器件
CN107556292A (zh) 吖啶‑咔唑给体衍生物及其制备方法以及基于其的有机电致发光器件
US20200185614A1 (en) Green light thermally activated delayed fluorescence (tadf) material and application thereof
CN109320495A (zh) 一种含螺结构的双三芳香胺化合物、应用及发光器件
CN103896966B (zh) 一类阳极修饰薄膜材料及其在电致发光器件中的应用
CN110563633B (zh) 蓝光热活化延迟荧光材料及其制备方法、电致发光器件
WO2020237885A1 (zh) 深蓝色热活化延迟荧光材料和其制备方法、电致发光器件
TWI397516B (zh) 含聯三伸苯基之芳香族化合物及有機發光二極體
CN109232495A (zh) 一种含茚并噻吩和呋喃的三芳香胺化合物及发光器件
WO2015085720A1 (zh) 一种含蒽类衍生物、其制备方法及有机电致发光显示器件
JP7053487B2 (ja) 有機エレクトロルミネッセンス素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18926573

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18926573

Country of ref document: EP

Kind code of ref document: A1