WO2020124346A1 - 激光测量装置及无人飞行器 - Google Patents

激光测量装置及无人飞行器 Download PDF

Info

Publication number
WO2020124346A1
WO2020124346A1 PCT/CN2018/121689 CN2018121689W WO2020124346A1 WO 2020124346 A1 WO2020124346 A1 WO 2020124346A1 CN 2018121689 W CN2018121689 W CN 2018121689W WO 2020124346 A1 WO2020124346 A1 WO 2020124346A1
Authority
WO
WIPO (PCT)
Prior art keywords
scanning
light
module
reflective
laser
Prior art date
Application number
PCT/CN2018/121689
Other languages
English (en)
French (fr)
Inventor
王佳迪
黄淮
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to EP18944015.9A priority Critical patent/EP3896488A4/en
Priority to CN201880073834.1A priority patent/CN111587382A/zh
Priority to JP2021532162A priority patent/JP2022511542A/ja
Priority to PCT/CN2018/121689 priority patent/WO2020124346A1/zh
Publication of WO2020124346A1 publication Critical patent/WO2020124346A1/zh
Priority to US17/351,188 priority patent/US20210311173A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/933Lidar systems specially adapted for specific applications for anti-collision purposes of aircraft or spacecraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/108Scanning systems having one or more prisms as scanning elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • G02B26/121Mechanical drive devices for polygonal mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/30Collimators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • B64U2101/32UAVs specially adapted for particular uses or applications for imaging, photography or videography for cartography or topography

Definitions

  • the present application relates to the field of laser ranging technology, in particular to a laser measuring device and an unmanned aerial vehicle.
  • Laser measuring devices such as lidar, use optical remote sensing technology for distance measurement. Specifically, the laser measuring device measures the distance between the laser measuring device and the target by emitting a beam of light to the target, usually a pulsed laser, and calculating the time difference between emitting the pulsed laser and receiving the pulsed laser reflected back by the target distance.
  • the existing laser measuring device has a limited field of view when emitting light, and the range capable of measuring targets in the scene is small.
  • the embodiments of the present application provide a laser measuring device and an unmanned aerial vehicle.
  • the laser measurement device of the present application includes a light transceiver module, a scanning module and a reflection module.
  • the light transceiving module is used to emit laser pulses and receive laser pulses reflected back by the detection object, the scanning module and the reflecting module are sequentially arranged on the light exiting optical path of the light transceiving module; the scanning
  • the module includes a rotatable transmission optical element.
  • the scanning module is used to change the transmission direction of the laser pulse passing through the scanning module.
  • the reflection module includes a rotatable reflection optical element. The element is used to reflect the laser pulse passing through the reflective optical element.
  • the unmanned aerial vehicle of the present application includes a fuselage and the laser measuring device of the above embodiment, and the laser measuring device is provided on the fuselage.
  • the scanning module can increase the laser The measuring range of the measuring device (specifically, the scanning module increases the angle of view of the laser measuring device); further, since the reflective optical element can change the transmission direction of the laser pulse passing through the reflective optical element, and the reflective optical element can be relatively
  • the light transceiver module rotates, so that the reflected laser pulse can be emitted around the laser measuring device to the detection object, and part of the return light reflected by the detection object around the laser measurement device can also be reflected to the light transmission and reception by the reflective optical element Module, therefore, the reflection module can further increase the measurement range of the laser measurement device, so that the distance of all the detection objects surrounding the entire laser measurement device (within 360 degrees) can be detected by the laser measurement device.
  • the laser measurement device of the present application includes a light transceiver module and a reflection module.
  • the light transceiving module is used to emit laser pulses and receive laser pulses reflected by the detection object.
  • the reflection module is disposed on the light exiting optical path of the light transceiving module; the reflection module includes a rotatable reflection An optical element and a counterweight component relatively fixed to the reflective optical element, the reflective optical element can rotate around a rotation axis, the reflective optical element includes a reflective surface facing the light transceiving module, and the reflective surface is opposite The rotation axis is inclined, the counterweight assembly is used to counterweight the reflective optical element to reduce the centrifugal force couple that the reflective module receives when rotating, and the reflective optical element is used to reflect through the reflective optics The laser pulse of the component.
  • the unmanned aerial vehicle of the present application includes a fuselage and the laser measuring device of the above embodiment, and the laser measuring device is provided on the fuselage.
  • the reflecting module can be reduced by providing a weight component for balancing the reflecting optical element
  • the centrifugal force couple applied to the reflection module by the small reflection optical element during rotation increases the stability of the rotation of the reflection module.
  • FIG. 1 is a three-dimensional schematic diagram of a laser measuring device according to some embodiments of the present application.
  • FIG. 2 is an exploded perspective view of a laser measuring device according to some embodiments of the present application.
  • FIG. 3 is a schematic block diagram of a light transceiver module of a laser measurement device according to some embodiments of the present application.
  • FIG. 4 is a schematic diagram of a distance measuring principle and a module diagram of a laser measuring device according to some embodiments of the present application.
  • FIG. 5 is a schematic cross-sectional view of the distance detection device in FIG. 1 along line V-V.
  • FIG. 6 is a schematic cross-sectional view of a reflection module of a laser measurement device according to some embodiments of the present application.
  • FIG. 7 is a schematic perspective view of a laser measuring device according to some embodiments of the present application.
  • FIG. 8 is a schematic cross-sectional view of the distance detection device in FIG. 7 along line VIII-VIII.
  • 9 to 11 are schematic perspective structural views of a detector of a laser measurement device according to some embodiments of the present application.
  • FIG. 12 is a schematic structural view of an unmanned aerial vehicle according to some embodiments of the present application.
  • first and second are used for description purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features.
  • the features defined as “first” and “second” may explicitly or implicitly include one or more of the features.
  • the meaning of “plurality” is two or more, unless otherwise specifically limited.
  • the first feature “above” or “below” the second feature may include the direct contact of the first and second features, or may include the first and second features Not direct contact but contact through another feature between them.
  • the first feature is “above”, “above” and “above” the second feature includes that the first feature is directly above and obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • the first feature is “below”, “below”, and “below” the second feature includes that the first feature is directly below and obliquely below the second feature, or simply means that the first feature is less horizontal than the second feature.
  • the present application provides a laser measurement device 100.
  • the laser measurement device 100 includes a light transceiver module 20, a scanning module 30 and a reflection module 40.
  • the light transceiver module 20 is used to emit laser pulses and receive the laser pulses reflected by the detection object.
  • the scanning module 30 and the reflection module 40 are sequentially arranged on the light emitting path of the light transceiver module 20.
  • the scanning module 30 includes a rotatable transmission optical element 31.
  • the scanning module 30 is used to change the transmission direction of the laser pulse passing through the scanning module 30.
  • the reflection module 40 includes a reflective optical element 43 capable of rotating.
  • the reflective optical element 43 is used to reflect the laser pulse passing through the reflective optical element 43.
  • the scanning module 30 can Increase the measurement range of the laser measurement device 100 (specifically, the scanning module 30 increases the angle of view of the laser measurement device 100); further, since the reflective optical element 43 can change the transmission of the laser pulse passing through the reflective optical element 43 Direction, and the reflective optical element 43 can rotate relative to the light transceiver module 20, so that the reflected laser pulse can be emitted around the laser measuring device 100 to the detection object, and at the same time, the part reflected by the detection object around the laser measurement device 10 The returned light can also be reflected by the reflective optical element 43 to the light transceiving module 20. Therefore, the reflective module 40 can further increase the measurement range of the laser measurement device 100 and surround all of the laser measurement device 100 (within 360 degrees) The distance of the detected object can be detected by the laser measuring device 100.
  • the laser measurement device 100 includes a light transceiver module 20 and a reflection module 40.
  • the light transceiving module 20 is used to emit laser pulses and receive the laser pulses reflected back by the detection object.
  • the reflection module 40 is disposed on the light emitting path of the light transceiving module 20.
  • the reflective module 40 includes a rotatable reflective optical element 43 and a counterweight assembly 44 relatively fixed to the reflective optical element 43.
  • the reflective optical element 43 can rotate around a rotation axis OO3, and the reflective optical element 43 includes a light toward the light transceiver module 20
  • the reflecting surface 431, the reflecting surface 431 is inclined with respect to the rotation axis OO3, the counterweight assembly 44 is used to counterweight the reflective optical element 43 to reduce the centrifugal force couple when the reflective module 40 is rotated, and the reflective optical element 43 is used to reflect through the reflection The laser pulse of the optical element 43.
  • the reflecting module 40 is provided with a weighting and recombination for setting the weight of the reflecting optical element 43
  • the piece 44 can reduce the centrifugal force couple applied to the reflective module 40 when the reflective optical element 43 rotates, and improve the smoothness of the rotation of the reflective module 40.
  • the present application also provides an unmanned aerial vehicle 200.
  • the unmanned aerial vehicle 200 includes a fuselage 60 and the laser measuring device 100 of any one of the above embodiments.
  • the laser measuring device 100 is mounted on the fuselage 60.
  • the laser measurement device 100 includes a housing 10, a light transceiver module 20, a scanning module 30, a reflection module 40 and a locking member 50 (as shown in FIG. 5 ).
  • the casing 10 includes a base 11, a mask 12 and an end cover 13.
  • the base 11 includes a bottom plate 111 and a ring-shaped housing 112.
  • the housing 112 is disposed on the bottom plate 111 and collectively surrounds a receiving cavity 113.
  • the end of the housing 112 away from the bottom plate 111 surrounds a housing opening 1120 communicating with the receiving cavity 113 .
  • the housing 112 is provided with a through hole 1121 communicating with the receiving cavity 113 and the outside of the housing 112.
  • the laser measuring device 100 further includes a heat dissipating element 14 installed in the through hole 1121 and closing the through ⁇ 1121.
  • the mask 12 includes an annular side shell 121 and a top wall 122 at one end of the side shell 121.
  • the side shell 121 and the top wall 122 together define a receiving cavity 123.
  • the end of the side shell 121 away from the top wall 122 A side shell opening 1210 communicating with the accommodating cavity 123 is formed.
  • the end of the side shell 121 away from the top wall 122 is disposed at the end of the housing 112 away from the bottom plate 111, and the accommodating cavity 123 communicates with the accommodating cavity 113.
  • the top wall 122 is provided with a mounting hole 124, a fixing hole 125 and a ring-shaped mounting groove 126, the mounting hole 124 and the fixing hole 125 are both in communication with the accommodating cavity 123, the number of the fixing holes 125 is plural, and the plurality of fixing holes 125 surround the mounting hole 124 settings.
  • the mounting groove 126 surrounds the mounting hole 124 and the fixing hole 125.
  • the side shell 121 can transmit the laser pulse emitted by the light transceiving module 20 without transmitting visible light and the laser pulse reflected back from the outside of the casing 10.
  • the mask 12 has an integrated structure. In other facilities, the mask 12 is assembled from two separate structures, the side shell 121 and the top wall 122.
  • the end cover 13 is fixed to the top of the mask 12 by means of assembly, and is used to connect the reflection module 40 to the mask 12 in rotation.
  • the end cover 13 includes a cover body 131 and an annular coupling portion 132 extending from a surface of the cover body 131.
  • the cover 131 is provided on the top wall 122 and covers the mounting hole 124 and the fixing hole 125.
  • the cover body 131 is substantially in the shape of a hat, and includes a cover top wall 1311, a cover body side wall 1312, an annular cover body coupling wall 1313, and an annular cover body protrusion 1314.
  • the cover side wall 1312 extends downward from the edge of the cover top wall 1311 toward the side of the cover top wall 1311, and the cover coupling wall 1313 extends radially from the end of the cover side wall 1312 away from the cover top wall 1311
  • the cover body protrusion 1314 extends from the surface of the cover body combining wall 1313 away from the top wall 1311 of the cover body in a direction away from the top wall of the cover body.
  • the coupling portion 132 extends from the top wall 1311 of the cover, and the coupling portion 132 and the side wall 1312 of the cover are located on the same side of the top wall 1311 of the cover.
  • the cover body coupling wall 1313 is attached to the top wall 122, and the cover body protrusion 1314 is received in the mounting groove 126.
  • a sealing ring (not shown) may also be provided in the mounting groove 126, and both ends of the sealing ring respectively interfere with the bottom surface of the mounting groove 126 and the lid protrusion 1314.
  • the base 11, the mask 12 and the end cap 13 together form a closed cavity.
  • the entire housing 10 does not necessarily adopt the approximately cylindrical structure shown in the figure of this embodiment, but may be a polygonal prism structure, then correspondingly, the base 11, the mask 12, and the end cover 13
  • the parts each representing the outline and the internal shape may also correspond to a polygonal structure, for example, the top wall 1311 of the cover 1311, the side wall 1312 of the cover, and the combining wall 1313 of the cover may each have a polygonal shape.
  • the embodiment of the present application provides a light transceiving module 20.
  • the light transceiving module 20 can be used to determine the distance and/or direction of the detection object relative to the light transceiving module 20.
  • the light transceiver module 20 may be an electronic device such as a laser radar or a laser ranging device.
  • the light transceiver module 20 can be used to sense external environment information, such as distance information, azimuth information, reflection intensity information, speed information, etc. of the environmental target.
  • the light transceiving module 20 can detect the detection object to the light transceiving time by measuring the time of light propagation between the light transceiving module 20 and the detection object, that is, Time-of-Flight (TOF) Module 20 distance.
  • TOF Time-of-Flight
  • the light transceiving module 20 can also detect the distance from the detected object to the light transceiving module 20 through other techniques, such as a distance measurement method based on phase shift measurement, or a measurement based on frequency shift measurement The distance method is not limited here.
  • the distance and orientation detected by the light transceiver module 20 can be used for remote sensing, obstacle avoidance, mapping, modeling, navigation, and so on.
  • the light transceiver module 20 may include a transmitting circuit 201, a receiving circuit 202, a sampling circuit 203, and an arithmetic circuit 204.
  • the transmission circuit 201 may transmit a sequence of light pulses (for example, a sequence of laser pulses).
  • the receiving circuit 202 can receive the optical pulse sequence reflected by the detected object, and photoelectrically convert the optical pulse sequence to obtain an electrical signal, which can be output to the sampling circuit 203 after processing the electrical signal.
  • the sampling circuit 203 can sample the electrical signal to obtain the sampling result.
  • the arithmetic circuit 204 can determine the distance between the detected object and the light transceiver module 20 based on the sampling result of the sampling circuit 203.
  • the light transceiver module 20 can also include a control circuit 205, which can control other circuits, for example, can control the working time of each circuit and/or set parameters for each circuit.
  • a control circuit 205 can control other circuits, for example, can control the working time of each circuit and/or set parameters for each circuit.
  • the light transceiver module 20 shown in FIG. 3 includes a transmitting circuit 201, a receiving circuit 202, a sampling circuit 203, and an arithmetic circuit 204, the embodiments of the present application are not limited thereto.
  • the transmitting circuit 201, The number of any of the receiving circuit 202, the sampling circuit 203, and the arithmetic circuit 204 may be at least two.
  • the light transceiver module 20 includes a distance measuring housing 21, a light source 22, an optical path changing element 23, a collimating element 24 and a detector 25.
  • the ranging housing 21 is installed on the base 11 and is accommodated in the accommodating cavity 113. In other embodiments, the ranging housing 21 may also be installed on the side shell 121 of the mask 12.
  • the ranging housing 21 includes a hollow ranging housing side wall 211 and a ranging housing bottom wall 212.
  • the ranging housing side wall 211 is disposed on the ranging housing bottom wall 212, and the ranging housing side wall 211 and The bottom wall 212 of the distance measuring housing together forms a cavity 213 of the distance measuring housing.
  • An end of the side wall 211 of the distance measuring housing away from the bottom wall 212 of the distance measuring housing is surrounded by a distance measuring light port 214 communicating with the cavity 213 of the distance measuring housing.
  • the side wall 211 of the distance measuring housing includes a distance measuring mounting base 215 located at an end away from the bottom wall 212 of the distance measuring housing.
  • the distance measuring mounting base 215 includes a plurality of distance measuring support bases 2151 which surround the distance measuring channel
  • the optical ports 214 are arranged at intervals.
  • the light source 22 is mounted on the ranging housing 21.
  • the light source 22 may be used to emit a sequence of laser pulses.
  • the laser beam emitted by the light source 22 is a narrow-bandwidth beam with a wavelength outside the visible light range.
  • the light source 22 can be installed on the side wall 211 of the ranging housing, and the laser pulse sequence emitted by the light source 22 can enter the cavity 213 of the ranging housing.
  • the light source 22 may include a laser diode (Laser diode) through which laser light in the nanosecond level is emitted.
  • the laser pulse emitted by the light source 22 lasts for 10 ns.
  • the light source 22 may include the transmission circuit 201 shown in FIG. 3.
  • the collimating element 24 is disposed on the light exiting light path of the light source 22.
  • the collimating element 24 is used to collimate the laser beam emitted from the light source 22, that is, to collimate the laser beam emitted from the light source 22 into parallel light.
  • the collimating element 24 is installed in the ranging housing cavity 213 and is located at an end of the ranging housing cavity 213 close to the ranging light port 214. More specifically, the collimating element 24 is located between the light source 22 and the scanning module 30.
  • the laser beam emitted by the light source 22 is collimated by the collimating element 24 and then exits the light-transmitting and receiving module 20 from the range-finding light port 214, and the optical axis OO1 of the light-transmitting and receiving module 20 is parallel to the parallel light and passes through the range-finding light port 214 in the center.
  • the collimating element 24 is also used to converge at least a part of the return light reflected by the detection object.
  • the collimating element 24 may be a collimating lens or other element capable of collimating the light beam.
  • the collimating element 24 is coated with an AR coating, which can increase the intensity of the transmitted beam.
  • the optical path changing element 23 is installed in the distance measuring housing cavity 213 and is provided on the light exiting optical path of the light source 22.
  • the optical path changing element 23 is used to change the optical path of the laser beam emitted by the light source 22 and the output optical path of the light source 22 and The receiving optical paths of the detector 25 are merged.
  • the optical path changing element 23 is located between the collimating element 24 and the bottom wall 212 of the ranging housing. In other words, the optical path changing element 23 is located on the side of the collimating element 24 opposite to the scanning module 30.
  • the optical path changing element 23 may be a mirror or a half mirror, the optical path changing element 23 includes a distance measuring and reflecting surface 232, and the light source 22 is opposite to the distance measuring and reflecting surface 232.
  • the optical path changing element 23 is a small mirror, and can change the optical path direction of the laser beam emitted by the light source 22 by 90 degrees or other angles.
  • the detector 25 is installed on the ranging housing 21 and is accommodated in the ranging housing cavity 213.
  • the detector 25 is located at the end of the ranging housing cavity 213 away from the scanning module 30.
  • the detector 25 and the light source 22 are placed in the standard On the same side of the collimating element 24, where the detector 25 is directly opposite to the collimating element 24, the detector 25 is used to convert at least part of the returned light passing through the collimating element 24 into an electrical signal.
  • the detector 25 may include the receiving circuit 202, the sampling circuit 203, and the arithmetic circuit 204 shown in FIG. 3, or may further include the control circuit 205 shown in FIG.
  • the scanning module 30 is disposed on the optical path of the light transceiver module 20.
  • a part of the scanning module 30 is accommodated in the accommodating cavity 113 formed by the base 11, and the other part of the scanning assembly 30 is accommodated in the accommodating cavity 123 formed by the mask 12.
  • the scanning module 30 may be completely contained in the receiving cavity 113; or, the scanning module 30 may be completely contained in the receiving cavity 123.
  • the scanning module 30 includes a transmission optical element 31 and a scanning driver 32.
  • the scan driver 32 includes a scan rotor assembly 321, a scan stator assembly 322, and a scan bearing 323.
  • the scanning stator assembly 322 includes a hollow scanning housing 3221 and a scanning winding 3222.
  • the scan housing 3221 surrounds the scan housing cavity 32210.
  • the scan housing 3221 includes a scan mount 32211 and a scan heat sink 32212 connected to each other.
  • the scanning mount 32211 is located at the end of the scanning housing 3221 near the light transceiver module 20.
  • the scanning mount 32211 is mounted on the distance measuring mount 215.
  • the scanning mounting base 32211 includes a plurality of scanning support bases 32215 corresponding to the plurality of ranging support bases 2151, and the scanning support base 32215 and the corresponding ranging support base 2151 may be connected together by a connecting member.
  • the outer circumferential surface of the scan heat sink 32212 is a circumferential surface.
  • the scan winding 3222 is installed in the scan heat dissipation portion 32212.
  • the scanning rotor assembly 321 includes an annular scanning yoke 3211 and an annular scanning magnet 3212.
  • the scanning yoke 3211 passes through the scanning housing 3221 and the scanning winding 3222.
  • the scan yoke 3211 surrounds the storage cavity 3213.
  • the end of the scan yoke 3211 corresponding to the scan mount 32211 surrounds the first light port 3215 communicating with the storage cavity 3213.
  • the scan yoke 3211 and the scan heat dissipation part 32212 The corresponding one end encloses a second light port 3216 communicating with the storage cavity 3213.
  • the accommodating cavity 3213 communicates with the distance measuring light port 214 of the distance measuring housing cavity 213 through the first light port 3215.
  • the scanning magnet 3212 is sheathed outside the scanning yoke 3211 and is accommodated in the scanning winding 3222.
  • the scanning magnet 3212 is opposed to the scanning winding 3222 and spaced apart.
  • the scanning stator assembly 322 is used to drive the scanning rotor assembly 321 to rotate around the central axis OO2 of the scanning yoke 3211.
  • the central axis OO2 of the scanning yoke 3211 is parallel to the optical axis OO1 of the light transceiver module 20.
  • the central axis OO2 of the scanning yoke 3211 coincides with the optical axis OO1 of the light transceiver module 20.
  • the scanning bearing 323 is sleeved outside the scanning yoke 3211 and accommodated in the scanning housing 3221. Specifically, the scanning bearing 323 is provided between the scanning yoke 3211 and the scanning housing 3221 and is used to restrict the scanning yoke 3211 to the central axis OO2 Turn. In the direction of the axis OO2 of the scanning yoke 3211, the scanning bearing 323 is spaced from the scanning yoke 3211.
  • the transmissive optical element 31 is installed in the storage cavity 3213 and located on the optical path of the light transceiving module 20. Specifically, the light emitted by the light transceiving module 20 is projected from the first light port 3215 to the transmissive optical element 31 and from the second The optical port 3216 exits the scanning module 30.
  • the scan driver 32 is used to drive the transmission optical element 31 to rotate to change the transmission direction of the laser pulse passing through the transmission optical element 31.
  • the transmission optical element 31 may be a lens, a mirror, a prism, a grating, an optical phased array (Optical Phased Array), or any combination of the above optical elements.
  • the transmission optical element 31 of this embodiment is a prism 31, and the prism 31 is a wedge-shaped body. Specifically, the prism 31 is approximately cylindrical, the bottom surface of the prism 31 is perpendicular to the axis of the prism 31, and the top surface of the prism 31 is The axis is relatively inclined, and the thickness of the prism 31
  • the scanning rotor assembly 321 further includes a protrusion 3214 disposed on the inner wall of the scanning yoke 3211 and used to weight the prism 31 to reduce the sway generated when the scanning rotor assembly 321 rotates.
  • the bump 3214 is provided on the inner wall of the scanning yoke 3211 directly opposite the top surface of the prism 31, and more specifically, the center of the bump 3214 is provided on the inner wall of the scanning yoke 3211 corresponding to the place where the thickness of the prism 31 is the smallest on.
  • the reflective module 40 is disposed on the light exiting optical path of the light transceiver module 20.
  • the scanning module 30 and the reflection module 40 are sequentially arranged on the light exiting optical path of the light transceiving module 20.
  • the laser pulses emitted by the light transceiving module 20 pass through the transmission optical element 31 and are transmitted to the reflection module 40 for reflection.
  • the module 40 is used to reflect the laser pulse passing through the reflection module 40.
  • the reflection module 40 is accommodated in the accommodating cavity 123 formed by the mask 12 and rotatably connected to the casing 10.
  • the reflection module 40 includes a mounting frame 41, a reflection driver 42, a reflection optical element 43, a weight assembly 44 and a detector 45.
  • the reflection driver 42 includes a reflection stator assembly 421, a reflection rotor assembly 422, a reflection positioning assembly 423, and a reflection fixing assembly 424.
  • the reflective driver 42 is used to drive the reflective rotor assembly 422 to rotate around the rotation axis OO3.
  • the rotation axis OO3 of this embodiment is parallel to the optical axis OO1 of the light transceiver module 20.
  • the rotation axis OO3 coincides with the optical axis OO1 of the light transceiver module 20.
  • the reflective stator assembly 421 includes a sleeve 4211, a winding body 4212, and a reflective winding 4213.
  • the sleeve 4211 has a hollow cylindrical structure.
  • the sleeve 4211 includes a fixed end 42111, a mounting end 42112, and a mounting table 42113.
  • the fixed end 42111 and the mounting end 42112 are located at opposite ends of the sleeve 4211.
  • the mounting base 42113 extends from the outer peripheral surface of the fixed end 42111.
  • the mounting base 42113 surrounds the fixed end 42111.
  • the sleeve 4211 is fixed to the mask 12 with a single end.
  • a plurality of locking members 50 are respectively inserted into corresponding fixing holes 125 and combined with the mounting platform 42113 to install the sleeve 4211 on the top wall 122 of the mask 12, the mounting end 42112 is a free end (overhanging setting) .
  • the end cap 13 is provided on the mask 12 and couples the coupling portion 132 with the fixed end 42111.
  • the winding body 4212 is sleeved on the mounting end 42112.
  • the reflection winding 4213 is provided on the winding body 4212.
  • the reflective rotor assembly 422 includes a rotor 4221 and a magnet 4223.
  • the rotor 4221 includes a rotor cover 42211 and a rotating shaft 4222.
  • the rotating shaft 4222 is inserted into the sleeve 4211 and can rotate relative to the sleeve 4211.
  • the end of the rotating shaft 4222 away from the mounting end 42112 extends out of the mounting hole 124 to the outside of the mask 12 and is accommodated inside the coupling portion 132.
  • the axis of the rotating shaft 4222 coincides with the rotating shaft OO3.
  • the rotor cover 42211 includes a bottom wall 42212, an annular side wall 42213, and an annular mounting plate 42214.
  • the bottom wall 42212 extends from the outer peripheral surface of the rotation shaft 4222 near the mounting end 42112.
  • the side wall 42213 extends from the bottom wall 42212 to the side where the mounting end 42112 is located, and the side wall 42213 and the bottom wall 42212 enclose a receiving space 42215.
  • the rotating shaft 4222 extends from the bottom wall 42212 into the receiving space 42215 and penetrates the sleeve 4211.
  • the winding body 4212 and the reflection winding 4213 are accommodated in the accommodation space 42215.
  • the mounting plate 42214 extends from an end of the side wall 42213 away from the bottom wall 42212 and extends away from the receiving space 42215.
  • the magnet 4223 is accommodated in the accommodation space 42215 and is opposed to the winding body 4212 at a distance.
  • the magnet 4223 is fixed on the side wall 42213 of the rotor cover 42211 and can rotate around the rotation axis OO3 following the rotor 4221.
  • the reflection positioning assembly 423 is used to limit the rotation of the reflection rotor assembly 422 around the fixed rotation axis OO3.
  • the reflective positioning assembly 423 includes a first bearing 4231 and a second bearing 4232.
  • the first bearing 4231 is sleeved on the rotating shaft 4222 and is located between the inner surface of the sleeve 4211 and the rotating shaft 4222, and the first bearing 4231 is located at the mounting end 42112.
  • the second bearing 4232 is sleeved on the rotating shaft 4222 and is located between the inner side of the sleeve 4211 and the rotating shaft 4222, and the second bearing 4232 is located at the fixed end 42111.
  • the first bearing 4231 and the second bearing 4232 are used to restrict the rotation of the rotating shaft 4222 about the rotating shaft OO3.
  • the reflection fixing component 424 is used to fix the reflection positioning component 423.
  • the reflective fixing assembly 424 includes a sleeve 4241, a fastener 4242, and an elastic member 4243.
  • the sleeve 4241 is sleeved on the rotating shaft 4222 and bears on an end of the second bearing 4232 away from the first bearing 4231.
  • the fastener 4242 is installed at the end of the rotating shaft 4222 away from the rotor cover 42211.
  • the elastic member 4243 is sleeved on the rotating shaft 4222, and the two ends of the elastic member 4243 bear against the sleeve 4341 and the fastener 4242 respectively.
  • the fastener 4242 bears the sleeve 4241 on the second bearing 4232 through the elastic member 4243 to fix the second bearing 4232 on the rotating shaft 4222 and the sleeve 4211.
  • the mounting frame 41 (please refer to FIG. 2 at the same time) is installed on the rotor 4221 and can rotate around the rotation axis OO3 following the rotor 4221.
  • the mounting frame 41 and the rotor 4221 may be an integral structure.
  • the mounting frame 41 includes two connecting arms 411 and a connecting ring 412 that are mounted on the mounting plate 42214 at intervals. One end of each connecting arm 411 is connected to the mounting plate 412, and the other end of each connecting arm 411 extends toward the side close to the light transceiver module 20.
  • the connecting ring 412 is connected to an end of the two connecting arms 411 away from the mounting plate 42214 and is located between the two connecting arms 411.
  • the two connecting arms 411 are symmetrical about the axis of the connecting ring 412, and the axis of the connecting ring 412 coincides with the rotation axis OO3.
  • the connecting ring 412 of the present embodiment has a circular ring shape.
  • a plurality of heat dissipating teeth 4121 are formed on the inner wall of the connecting ring 412 at intervals.
  • the heat dissipating teeth 4121 extend in the axial direction of the connecting ring 412.
  • the connecting ring 412 is sleeved outside the scanning heat dissipation portion 32212 and can rotate relative to the scanning heat dissipation portion 32212, and the heat dissipation teeth 4121 are spaced from the outer surface of the scanning heat dissipation portion 32212.
  • the connecting ring 412 is suspended from the scanning heat dissipation portion 32212 and the housing 10 and is a free end.
  • the connecting ring 412 rotates relative to the scanning heat dissipating portion 32212, the heat dissipating teeth 4121 can disturb the air between the inner wall of the connecting ring 412 and the outer peripheral surface of the scanning heat dissipating portion 32212 to radiate heat to the scanning heat dissipating portion 32212.
  • the reflective optical element 43 is mounted on the mounting frame 41 and located on the light exiting optical path of the light transceiving module 20.
  • the reflective optical element 43 can rotate around the rotation axis OO3 following the mounting frame 41.
  • the reflective optical element 43 is used to project the laser pulse emitted by the light transceiver module 20 from the side shell 121 of the mask 12 to the detection object located outside the shell 10.
  • the reflective optical element 43 is located between the connecting ring 412 and the mounting plate 42214, and the reflective optical element 43 is inclined with respect to the rotation axis OO3.
  • the reflective optical element 43 of this embodiment has a rectangular sheet shape, and the reflective optical element 43 includes a reflective surface 431 and two side surfaces 432.
  • the reflective surface 431 faces the light transceiver module 20, and the reflective surface 431 is relatively inclined with respect to the rotation axis OO3.
  • the two side surfaces 432 are connected to the reflective surface 431 and are respectively located on opposite sides of the reflective surface 431, and the two side surfaces 432 are respectively mounted on the two connecting arms 411.
  • the reflective optical element 43 includes a central axis C passing through two side surfaces 432.
  • a plane parallel to the central axis C of the reflective optical element 43 and including the rotation axis OO3 is defined as an auxiliary surface A.
  • the auxiliary surface A and the reflective optical element 43 intersect to form a virtual intersection line L.
  • the connecting line between the two side surfaces 432 and the two connecting points of the two connecting arms 411 in this embodiment coincides with the virtual intersection line L, which is also perpendicular to the rotation axis OO3.
  • the virtual intersection line L divides the reflective optical element 43 into a first segment 433 and a second segment 434 that are in contact with each other.
  • the second segment 434 is closer to the scanning module 30 than the first segment 433 is.
  • the length of the first segment 433 is greater than the length of the second segment 434.
  • the length of the first segment 433 can also be equal to or less than the length of the second segment 434.
  • the weight assembly 44 is disposed on the reflective rotor assembly 422 and used to weight the reflective optical element 43 to reduce the centrifugal force couple that the reflective module 40 receives when rotating.
  • the weight assembly 44 includes a weight projection 441 and a weight projection 442.
  • the weight protrusion 441 is provided on the mounting plate 42214, and the weight protrusion 442 is provided on the connecting ring 412.
  • the weight projection 441 and the weight projection 442 are respectively located on opposite sides of the auxiliary surface A, and the weight projection 441 is located on the side opposite to the first segment 433 of the auxiliary surface A, and the weight projection 442 is located on the side of the auxiliary surface A opposite to the second segment 434.
  • the weight protrusion 441 is used to weight the reflective optical element 43 at the end where the first section 433 is located, and the weight protrusion 442 is used to weight the reflective optical element 43 at the end where the second end 434 is located.
  • the weight projection 441 and the mounting plate 42214 may be an integral structure; or, the weight projection 441 and the mounting plate 42214 are two separate structures.
  • the weight projection 441 is screwed, glued, welded, snapped, etc. One or more of them are installed on the installation disk 42214.
  • the weight boss 442 and the connecting ring 412 are an integral structure; or, the weight boss 442 and the connecting ring 412 are two separate structures, and the weight boss 442 is screwed, glued, welded, snapped, etc.
  • One or more types are installed on the connecting ring 412.
  • the detector 45 includes a code wheel 451 and at least one optical switch 452.
  • the code wheel 451 is disposed at the end of the connecting ring 412 close to the scanning module 30.
  • the code wheel 451 can rotate with the scanning module 30 about the rotation axis OO3.
  • At least one optical switch 452 is disposed on the scan mount 32211.
  • the code wheel 451 cooperates with at least one optical switch 452 and is commonly used to detect the rotation parameter of the reflective optical element 43.
  • a plurality of light-transmitting regions 4511 and a plurality of non-light-transmitting regions 4512 are alternately distributed along the same circumference on the code wheel 451.
  • the plurality of light-transmitting regions 4511 include a plurality of first light-transmitting regions 4513 having the same width, and a second light-transmitting region 4514 having a width different from the width of the first light-transmitting regions 4513, and the plurality of non-light-transmitting regions 4512 have the same width , Where the width is the circumferential width along the circumference.
  • the number of the optical switches 452 may be one or two.
  • the optical switch 452 includes a transmitting tube (not shown) and a receiving tube (not shown).
  • the transmitting tube and the receiving tube are respectively located on opposite sides of the code wheel 451, and the transmitting tube and the receiving tube are located in the light transmitting area 4511 and the non-light transmitting The circumference of zone 4512.
  • the laser light emitted by the transmitting tube can be transmitted to the receiving tube through the light-transmitting area 4511, and the non-transparent area 4512 can block the light-emitting tube to emit laser light to the receiving tube.
  • the optical switch 452 When the mounting frame 41 drives the code wheel 451 to rotate, the optical switch 452 is still.
  • the transmitting tube of the optical switch 452 emits an optical signal.
  • the light-transmitting area 4511 reaches the position aligned with the transmitting tube and the receiving tube, the receiving tube is sufficient.
  • the receiving tube When receiving the optical signal emitted by the transmitting tube, when the light-transmitting area 4511 does not reach the position aligned with the transmitting tube and the receiving tube, that is, when the non-transparent area 4512 is aligned with the transmitting tube and the receiving tube, the receiving tube cannot receive the transmitting tube
  • the transmitted optical signal causes the light-transmitting area 4511 and the non-light-transmitting area 4512 of the code wheel 451 to rotate to a position aligned with the optical switch 452
  • the optical switch 452 outputs different level signals, respectively.
  • the light switch 452 when the light-transmitting area 4511 of the code wheel 451 rotates to a position aligned with the light switch 452, the light switch 452 outputs a high level; accordingly, the non-light-transmitting area 4512 of the code wheel 451 rotates to match the light When the switch 452 is aligned, the optical switch 452 outputs a low level. In some embodiments, when the light-transmitting area 4511 of the code wheel 451 rotates to a position aligned with the optical switch 452, the light switch 452 outputs a low level, and the non-light-transmitting area 4512 of the code wheel 451 rotates to match the light When the switch 452 is aligned, the optical switch 452 outputs a high level.
  • the number of optical switches 452 is one.
  • the optical switch 452 outputs a high level
  • the optical switch 452 outputs a low level. There is a zero position for each rotation of the code wheel 451 (for example, intermediate shaft, edge, etc.).
  • the width of the second light transmitting area 4514 is different from that of the first light transmitting area 4513
  • the pulse corresponding to the second light-transmitting area 4514 is different from the pulse corresponding to the first light-transmitting area 4513, thereby marking the zero position of the code wheel 451.
  • the length of the high level output by the optical switch 452 (such as high level) The length of time or the number of counts) is greater than the length of the high level output by the optical switch 452 when the first light-transmitting area 4513 is rotated to the position aligned with the optical switch 452, so the processor determines the length of the high level, The rising edge, the falling edge, or the middle position corresponding to the high level with a long length may be used as the zero position of the code wheel 451.
  • the use of an optical switch 452 can only be used to detect the zero position of the mounting frame 41 rotating at a uniform speed, because the length of the pulse sequence detected by the optical switch 452 and the rotation speed of the code wheel 451 The rotation speed of the code wheel 451 is determined by the rotation speed of the mounting frame 41.
  • the mounting frame 41 rotates at a variable speed, the lengths of the pulses corresponding to the first light transmitting area 4513 and the second light transmitting area 4514 detected by the optical switch 452 exist The uncertainty makes it impossible to determine the zero position of the code wheel 451.
  • the number of the optical switch 452 is two, and the pulse information output from the two optical switches 452 is used to determine the zero position information of the code wheel 451 and the relative rotation position of the code wheel 451, thereby obtaining the absolute value of the mounting frame 41 Turn position.
  • the use of two optical switches 452 is not only applicable to the zero position detection of the mounting frame 41 rotating at a constant speed, but also applicable to the zero position detection of the mounting frame 41 rotating at a variable speed.
  • the pulse sequence detected by each optical switch 452 is processed to obtain a unique zero position pulse, thereby uniquely determining the zero position of the mounting frame 41 (code wheel 451).
  • the rotation angle of the mounting frame 41 relative to the zero position at a specific time can be based on: the number of light-transmitting areas 4511, the number of complete signal cycles detected by the optical switch 452 at the specific time and the last time the zero position was detected, and The angle at which the code wheel 451 rotates during the time interval between the specific time and the last time the optical switch 452 detected the rising or falling edge of the high level last time.
  • one complete signal period may be the duration between the rising edge and the falling edge of the pulses corresponding to the two adjacent first light-transmitting regions 4513 on the code wheel 451; or, one complete signal period may also be the upper phase of the code wheel 451.
  • the angle of the code wheel 451 can be rotated according to the rotation speed of the code wheel 451, and the specific moment is closest to the optical switch 452
  • the time interval between a rising edge or a falling edge that detects a high level is calculated.
  • the plurality of light-transmitting regions 4511 have the same width
  • the plurality of non-light-transmitting regions 4512 include a plurality of first non-light-transmitting regions 4515 having the same width, and one width is different from the first
  • the width of the non-light-transmitting region 4515 is the second non-light-transmitting region 4516, wherein the width is a circumferential width along the circumference.
  • the number of the optical switches 452 may be one or two.
  • the optical switch 452 detects the zero position of the code wheel 451 according to the second non-light transmitting area 4516.
  • the code wheel 451 includes a plurality of light-transmitting areas 4511 and a plurality of non-light-transmitting areas 4512.
  • the light-transmitting areas 4511 include a first light-transmitting area 4513 and a second light-transmitting area 4514.
  • the plurality of first light-transmitting regions 4513 and the plurality of non-light-transmitting regions 4512 are alternately arranged along a circle, and the second light-transmitting regions 4514 are not located on the circle.
  • the plurality of first light-transmitting regions 4513 have the same width
  • the plurality of non-light-transmitting regions 4512 have the same width, where the width is a circumferential width along the circumference.
  • the number of the optical switches 452 may be two, in which the transmitting tube and the receiving tube of one optical switch 452 are located on the circumference where the first light-transmitting area 4513 is located, and the transmitting tube and the receiving tube of the other optical switch 452 are located in the second transparent
  • the light zone 4514 is located on the circumference and is used to detect the zero position of the code wheel 451.
  • the light source 22 emits a laser pulse.
  • the laser pulse is collimated by the collimating element 24 after the optical path changing element 23 changes the direction of the optical path (which can be 90 degrees or other angles).
  • the collimated and collimated laser pulses are projected onto the reflective optical element 43 by the prism 31 after changing the transmission direction.
  • the reflective optical element 43 will be reflected by the prism 31 to change the transmission direction of the laser pulse, and the reflected laser pulse passes through the side shell 121 to reach On the detection object, the laser pulse (returned light) reflected by the detection object passes through the side shell 121 and is reflected by the reflective optical element 43 and then transmitted to the prism 31.
  • At least a part of the returned light will be converged by the collimating element 34 after passing through the prism 31 Detector 35.
  • the detector 35 converts at least part of the returned light passing through the collimating element 34 into electrical signal pulses, and the laser measurement device 100 determines the laser pulse reception time by the rising edge time and/or the falling edge time of the electrical signal pulse. In this way, the laser measurement device 100 can calculate the time of flight using the pulse reception time information and the pulse emission time information, thereby determining the distance of the detected object from the laser measurement device 100.
  • the scanning module 30 can increase the measurement range of the laser measuring device 100 (specifically, the scanning module 30 increases The angle of view of the laser measuring device 100).
  • the reflective optical element 43 can change the transmission direction of the laser pulse passing through the reflective optical element 43, and the reflective optical element 43 can rotate relative to the light transceiver module 20, the reflected laser pulse can be emitted around the side shell 121 to On the detection object, part of the return light reflected by the detection object surrounding the side shell 121 at the same time can also be reflected by the reflection optical element 43 to the detector 45, therefore, the reflection module 40 can further increase the measurement range of the laser measurement device 100 , So that the distance of all the detection objects surrounding the entire side shell 121 (within 360 degrees) can be detected by the laser measuring device 100.
  • the side shell 121 can transmit the laser pulse emitted by the light transceiving module 20 without transmitting visible light, the user will not see the internal structure of the laser measurement device 100 without affecting the laser emission and recovery.
  • the laser measuring device 100 is beautiful and elegant.
  • the laser measuring apparatus 100 of the present application sequentially sets the scanning module 20 and the reflection module on the optical path of the light transceiver module 20 Group 40 increases the measurement range of the laser measurement device 100.
  • the weight assembly 44 includes both the weight projection 441 and the weight projection 442.
  • the weight assembly 44 may include any of the weight projection 441 and the weight projection 442. One is specifically determined by parameters such as the tilt angle of the reflective optical element 43 in the laser measuring device 100 and the mounting position.
  • the unmanned aerial vehicle 200 of the present application includes a fuselage 60 and the laser measuring device 100 of the above embodiment.
  • the laser measuring device 100 is mounted on the fuselage 60.
  • the laser measurement device 100 on the unmanned aerial vehicle 200 of the present application uses the scanning module 30 and the reflection module 40 to increase the measurement range for measuring the distance of the detected object, so that the unmanned aerial vehicle 200 can detect the distance of a larger range of the detected object.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种无人飞行器(200)及激光测量装置(100)。激光测量装置(100)包括光线收发模组(20)、扫描模组(30)及反射模组(40)。光线收发模组(20)用于发射激光脉冲及接收经探测物反射回的激光脉冲,扫描模组(30)与反射模组(40)依次设置在光线收发模组(20)的出光光路上。扫描模组(30)包括能够转动的透射光学元件(31),扫描模组(30)用于改变经过扫描模组(30)的激光脉冲的传输方向。反射模组(40)包括能够转动的反射光学元件(43),反射光学元件(43)用于反射经过反射光学元件(43)的激光脉冲。无人飞行器(200)包括机身(60)及激光测量装置(100)。同时,由于反射光学元件(43)的反射面相对于反射模组(40)的旋转轴倾斜,反射模组(40)上通过设置用于给反射光学元件(43)配重的配重组件(44),能够减小反射光学元件(43)在转动时施加到反射模组(40)上的离心力偶,从而提升了反射模组(40)转动的平稳性。

Description

激光测量装置及无人飞行器 技术领域
本申请涉及激光测距技术领域,特别涉及一种激光测量装置及无人飞行器。
背景技术
激光测量装置,例如激光雷达,采用的是光学遥感技术来进行测距。具体地,激光测量装置通过向目标发射一束光,通常是一束脉冲激光,并根据计算发射脉冲激光与接收被目标反射回的脉冲激光之间的时间差来测量激光测量装置与目标之间的距离。然而,现有的激光测量装置发射光线时的视场有限,能够测量场景中的目标的范围较小。
发明内容
本申请的实施方式提供了一种激光测量装置及无人飞行器。
本申请的激光测量装置包括光线收发模组、扫描模组及反射模组。所述光线收发模组用于发射激光脉冲及接收经探测物反射回的激光脉冲,所述扫描模组与所述反射模组依次设置在所述光线收发模组的出光光路上;所述扫描模组包括能够转动的透射光学元件,所述扫描模组用于改变经过所述扫描模组的所述激光脉冲的传输方向;所述反射模组包括能够转动的反射光学元件,所述反射光学元件用于反射经过所述反射光学元件的激光脉冲。
本申请的无人飞行器包括机身及上述实施方式的所述的激光测量装置,所述激光测量装置设置在所述机身上。
本申请的无人飞行器和激光测量装置中,由于透射光学元件能够改变经过透射光学元件的激光脉冲的传输方向,并且透射光学元件能够相对光线收发模组转动,因此,扫描模组能够增大激光测量装置的测量范围(具体地,扫描模组增大了激光测量装置的视场角);进一步地,由于反射光学元件能够改变经过反射光学元件的激光脉冲的传输方向,并且反射光学元件能够相对光线收发模组转动,使得反射后的激光脉冲能够环绕激光测量装置一周发射至探测物上,同时被环绕激光测量装置一周的探测物反射回的部分回光也可以被反射光学元件反射至光线收发模组,因此,反射模组能够进一步增大激光测量装置的测量范围,使环绕整个激光测量装置(360度范围内)的所有探测物的距离都能被激光测量装置检测到。
本申请的激光测量装置包括光线收发模组及反射模组。所述光线收发模组用于发射激光脉冲及接收经探测物反射回的激光脉冲,所述反射模组设置在所述光线收发模组的出光光路上;所述反射模组包括能够转动的反射光学元件及与所述反射光学元件相对固定的配重组件,所述反射光学元件能够绕着旋转轴转动,所述反射光学元件包括朝向所述光线收发模组的反射面,所述反射面相对所述旋转轴倾斜,所 述配重组件用于给所述反射光学元件配重以减小所述反射模组在旋转时受到的离心力偶,所述反射光学元件用于反射经过所述反射光学元件的激光脉冲。
本申请的无人飞行器包括机身及上述实施方式的所述的激光测量装置,所述激光测量装置设置在所述机身上。
本申请的无人飞行器和激光测量装置中,由于反射光学元件的反射面相对于反射模组的旋转轴倾斜,反射模组上通过设置用于给反射光学元件配重的配重组件,从而能够减小反射光学元件在转动时施加到反射模组上的离心力偶,提升了反射模组转动的平稳性。
本申请的实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实施方式的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本申请某些实施方式的激光测量装置的立体结构示意图。
图2是本申请某些实施方式的激光测量装置的立体分解示意图。
图3是本申请某些实施方式的激光测量装置的光线收发模组的模块示意图。
图4是本申请某些实施方式的激光测量装置的测距原理示意图和模块示意图。
图5是图1中的距离探测设备沿V-V线的剖面示意图。
图6是本申请某些实施方式的激光测量装置的反射模组的剖面示意图。
图7是本申请某些实施方式的激光测量装置的立体结构示意图。
图8是图7中的距离探测设备沿VIII-VIII线的剖面示意图。
图9至图11是本申请某些实施方式的激光测量装置的检测器的立体结构示意图。
图12是本申请某些实施方式的无人飞行器的结构示意图。
具体实施方式
下面详细描述本申请的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对 本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
下文的公开提供了许多不同的实施方式或例子用来实现本申请的不同结构。为了简化本申请的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。
请参阅图1及图2,本申请提供一种激光测量装置100,激光测量装置100包括光线收发模组20、扫描模组30及反射模组40。光线收发模组20用于发射激光脉冲及接收经探测物反射回的激光脉冲,扫描模组30与反射模组40依次设置在光线收发模组20的出光光路上。扫描模组30包括能够转动的透射光学元件31,扫描模组30用于改变经过扫描模组30的激光脉冲的传输方向。反射模组40包括能够转动的反射光学元件43,反射光学元件43用于反射经过反射光学元件43的激光脉冲。
本实施方式的激光测量装置100中,由于透射光学元件31能够改变经过透射光学元件31的激光脉冲的传输方向,并且透射光学元件31能够相对光线收发模组20转动,因此,扫描模组30能够增大激光测量装置100的测量范围(具体地,扫描模组30增大了激光测量装置100的视场角);进一步地,由于反射光学元件43能够改变经过反射光学元件43的激光脉冲的传输方向,并且反射光学元件43能够相对光线收发模组20转动,使得反射后的激光脉冲能够环绕激光测量装置100一周发射至探测物上,同时被环绕激光测量装置10一周的探测物反射回的部分回光也可以被反射光学元件43反射至光线收发模组20,因此,反射模组40能够进一步增大激光测量装置100的测量范围,使环绕整个激光测量装置100(360度范围内)的所有探测物的距离都能被激光测量装置100检测到。
请参阅图1、图2及图5,本申请还提供了另一种激光测量装置100,激光测量装置100包括光线收发模组20及反射模组40。光线收发模组20用于发射激光脉冲及接收经探测物反射回的激光脉冲,反射 模组40设置在光线收发模组20的出光光路上。反射模组40包括能够转动的反射光学元件43及与反射光学元件43相对固定的配重组件44,反射光学元件43能够绕着旋转轴OO3转动,反射光学元件43包括朝向光线收发模组20的反射面431,反射面431相对旋转轴OO3倾斜,配重组件44用于给反射光学元件43配重以减小反射模组40在旋转时受到的离心力偶,反射光学元件43用于反射经过反射光学元件43的激光脉冲。
本实施方式的激光测量装置100中,由于反射光学元件43的反射面431相对于反射模组40的旋转轴OO3倾斜,反射模组40上通过设置用于给反射光学元件43配重的配重组件44,从而能够减小反射光学元件43在转动时施加到反射模组40上的离心力偶,提升了反射模组40转动的平稳性。
本申请还提供了一种无人飞行器200,无人飞行器200包括机身60及上述任意一实施方式的激光测量装置100,激光测量装置100安装在机身60上。
请参阅图1及图2,本申请实施方式的激光测量装置100包括外壳10、光线收发模组20、扫描模组30、反射模组40及锁紧件50(如图5所示)。
外壳10包括底座11、面罩12及端盖13。
底座11包括底板111及环形壳体112,壳体112设置在底板111上并共同围成有收容腔113,壳体112的远离底板111的一端围成有与收容腔113连通的壳体开口1120。在某些实施方式中,壳体112上开设有连通收容腔113的及壳体112外部的通孔1121,激光测量装置100还包括散热元件14,散热元件14安装在通孔1121内并封闭通孔1121。
请结合图5,面罩12包括环形的侧壳121及位于侧壳121一端的顶壁122,侧壳121和顶壁122共同围成有容置腔123,侧壳121的远离顶壁122的一端形成有与容置腔123连通的侧壳开口1210。侧壳121的远离顶壁122的一端设置在壳体112的远离底板111的一端,容置腔123与收容腔113连通。顶壁122开设有安装孔124、固定孔125及环形安装槽126,安装孔124及固定孔125均与容置腔123连通,固定孔125的数量为多个,多个固定孔125环绕安装孔124设置。安装槽126环绕安装孔124及固定孔125。侧壳121能够透过由光线收发模组20发出的激光脉冲而不透射可见光、以及外壳10外部反射回来的激光脉冲。本实施方式中,面罩12为一体结构。在其他设施方式中,面罩12由侧壳121和顶壁122这两个分体结构组装得到。
请结合图4、图7及图8,端盖13采用装配的方式固定于面罩12的顶部,用于将反射模组40转动连接于面罩12上。本实施例中,端盖13包括盖体131及自盖体131的一表面延伸形成的环状的结合部132。盖体131设置在顶壁122上并覆盖安装孔124及固定孔125。具体地,盖体131大致呈帽子形状,包括盖体顶壁1311、盖体侧壁1312、环形的盖体结合壁1313及环形的盖体凸起1314。盖体侧壁1312自盖体顶壁1311的边缘朝盖体顶壁1311的一侧向下倾斜延伸,盖体结合壁1313自盖体侧壁1312的远离盖体顶壁1311的一端径向向外延伸,盖体凸起1314自盖体结合壁1313的远离盖体顶壁1311的表面向远离盖体顶壁的方向延伸。结合部132自盖体顶壁1311延伸,结合部132与盖体侧壁1312位于盖体 顶壁1311的同一侧。当端盖13设置在面罩12上时,盖体结合壁1313与顶壁122贴合,盖体凸起1314收容在安装槽126内。在某些实施方式中,安装槽126内还可以设置有密封环(图未示),密封环的两端分别与安装槽126的底面和盖体凸起1314抵触。底座11、面罩12和端盖13共同形成一个封闭的腔体。在某些实施方式中,整个外壳10也并不一定是采用本实施方式图中所示的近似圆筒状结构,而可以是多棱镜的结构,那么相应的,底座11、面罩12、端盖13及各自表示轮廓和内部形状的部分则也可以相应的是多边形结构,例如端盖13的盖体顶壁1311、盖体侧壁1312、盖体结合壁1313均可以相应的具有多边形的外形。
请结合图3,本申请实施方式提供一种光线收发模组20,该光线收发模组20可以用来确定探测物相对光线收发模组20的距离和/或方向。该光线收发模组20可以是激光雷达、激光测距设备等电子设备。在一种实施方式中,光线收发模组20可用于感测外部环境信息,例如,环境目标的距离信息、方位信息、反射强度信息、速度信息等。一种实现方式中,光线收发模组20可以通过测量光线收发模组20和探测物之间光传播的时间,即光飞行时间(Time-of-Flight,TOF),来探测探测物到光线收发模组20的距离。或者,光线收发模组20也可以通过其他技术来探测探测物到光线收发模组20的距离,例如基于相位移动(phase shift)测量的测距方法,或者基于频率移动(frequency shift)测量的测距方法,在此不做限制。光线收发模组20探测到距离和方位可以用于遥感、避障、测绘、建模、导航等。
为了便于理解,以下将结合图3所示的光线收发模组20对测距的工作流程进行举例描述。如图3所示,光线收发模组20可以包括发射电路201、接收电路202、采样电路203和运算电路204。
发射电路201可以发射光脉冲序列(例如激光脉冲序列)。接收电路202可以接收经过被探测物反射的光脉冲序列,并对该光脉冲序列进行光电转换,以得到电信号,再对电信号进行处理之后可以输出给采样电路203。采样电路203可以对电信号进行采样,以获取采样结果。运算电路204可以基于采样电路203的采样结果,以确定被探测物与光线收发模组20之间的距离。
可选地,该光线收发模组20还可以包控制电路205,该控制电路205可以实现对其他电路的控制,例如,可以控制各个电路的工作时间和/或对各个电路进行参数设置等。
应理解,虽然图3示出的光线收发模组20中包括一个发射电路201、一个接收电路202、一个采样电路203和一个运算电路204,但是本申请实施例并不限于此,发射电路201、接收电路202、采样电路203、运算电路204中的任一种电路的数量也可以是至少两个。
上面对光线收发模组20的电路框架的一种实现方式进行了描述,下面将结合各个附图对光线收发模组20的结构的一些示例进行描述。
请结合图4,光线收发模组20包括测距壳体21、光源22、光路改变元件23、准直元件24及探测器25。
测距壳体21安装在底座11上并收容在收容腔113内。在其他实施方式中,测距壳体21也可以安装在面罩12的侧壳121上。测距壳体21包括中空的测距壳体侧壁211及测距壳体底壁212,测距壳体 侧壁211设置在测距壳体底壁212上,测距壳体侧壁211和测距壳体底壁212共同围成测距壳体腔体213。测距壳体侧壁211的远离测距壳体底壁212一端围成有与测距壳体腔体213连通的测距通光口214。测距壳体侧壁211包括位于远离测距壳体底壁212一端的测距安装座215,测距安装座215包括多个测距支撑座2151,多个测距支撑座2151环绕测距通光口214间隔设置。
光源22安装在测距壳体21上。光源22可以用于发射激光脉冲序列,可选地,光源22发射出的激光束为波长在可见光范围之外的窄带宽光束。光源22可以安装在测距壳体侧壁211上,光源22发出的激光脉冲序列能够进入到测距壳体腔体213内。在一些实施例中,光源22可以包括激光二极管(Laser diode),通过激光二极管发射纳秒级别的激光。例如,光源22发射的激光脉冲持续10ns。一些示例中,光源22可以包括图3中所示的发射电路201。
准直元件24设置在光源22的出光光路上。准直元件24用于准直从光源22发出的激光光束,即,用于将光源22发出的激光光束准直为平行光。具体地,准直元件24安装在测距壳体腔体213内并位于测距壳体腔体213的靠近测距通光口214的一端。更具体地,准直元件24位于光源22与扫描模组30之间。光源22发出的激光光束经准直元件24准直后从测距通光口214射出光线收发模组20,光线收发模组20的光轴OO1平行于该平行光并穿过测距通光口214的中心。准直元件24还用于会聚经探测物反射的回光的至少一部分。准直元件24可以是准直透镜或者是其他能够准直光束的元件。在一个实施例中,准直元件24上镀有增透膜,能够增加透射光束的强度。
光路改变元件23安装在测距壳体腔体213内并设置在光源22的出光光路上,光路改变元件23用于改变光源22发出的激光光束的光路、及用于将光源22的出射光路和探测器25的接收光路合并。
具体地,光路改变元件23位于准直元件24与测距壳体底壁212之间,换句话说,光路改变元件23位于准直元件24的与扫描模组30相背的一侧。光路改变元件23可以为反射镜或半反半透镜,光路改变元件23包括测距反射面232,光源22与测距反射面232相对。本实施方式中,光路改变元件23为小反射镜,能够将光源22发出的激光光束的光路方向改变90度或其他角度。
探测器25安装在测距壳体21上并收容在测距壳体腔体213内,探测器25位于测距壳体腔体213的远离扫描模组30的一端,探测器25与光源22放置于准直元件24的同一侧,其中,探测器25与准直元件24正对,探测器25用于将穿过准直元件24的至少部分回光转换为电信号。一些示例中,探测器25可包括图3中所示的接收电路202、采样电路203和运算电路204,或者还包括图3中所示控制电路205。
请一并参阅图4及图5,扫描模组30设置在光线收发模组20的光路上。本实施方式中,扫描模组30的一部分收容在底座11形成的收容腔113内,扫描组件30的另一部分收容在面罩12形成的容置腔123内。在其他实施方式中,扫描模组30也可以完全收容在收容腔113内;或者,扫描模组30也可以完全收容在容置腔123内。扫描模组30包括透射光学元件31及扫描驱动器32。扫描驱动器32包括扫描转子组件321、扫描定子组件322及扫描轴承323。
扫描定子组件322包括中空的扫描壳体3221及扫描绕组3222。扫描壳体3221围成有扫描壳体腔体32210。扫描壳体3221包括相连接的扫描安装座32211及扫描散热部32212。扫描安装座32211位于扫描壳体3221的靠近光线收发模组20的一端。扫描安装座32211安装在测距安装座215上。具体地,扫描安装座32211包括与多个测距支撑座2151对应的多个扫描支撑座32215,扫描支撑座32215与对应的测距支撑座2151可通过连接件连接在一起。扫描散热部32212的外周面为圆周面。扫描绕组3222安装在扫描散热部32212内。
扫描转子组件321包括环状扫描磁轭3211及环状扫描磁铁3212。扫描磁轭3211穿设在扫描壳体3221及扫描绕组3222内。扫描磁轭3211围绕形成有收纳腔3213,扫描磁轭3211的与扫描安装座32211对应的一端围成有与收纳腔3213连通的第一通光口3215,扫描磁轭3211的与扫描散热部32212对应的一端围成有与收纳腔3213连通的第二通光口3216。收纳腔3213通过第一通光口3215与测距壳体腔体213的测距通光口214连通。扫描磁铁3212套设在扫描磁轭3211外并收容在扫描绕组3222内,扫描磁铁3212与扫描绕组3222相对并相间隔。扫描定子组件322用于驱动扫描转子组件321围绕扫描磁轭3211的中心轴线OO2转动。本实施方式中,扫描磁轭3211的中心轴线OO2与光线收发模组20的光轴OO1平行。优选的,扫描磁轭3211的中心轴线OO2与光线收发模组20的光轴OO1重合。
扫描轴承323套设在扫描磁轭3211外并收容在扫描壳体3221内,具体地,扫描轴承323设置在扫描磁轭3211与扫描壳体3221之间并用于限制扫描磁轭3211以中心轴线OO2转动。沿扫描磁轭3211的轴线OO2方向上,扫描轴承323与扫描磁轭3211相间隔。
透射光学元件31安装在收纳腔3213内并位于光线收发模组20的光路上,具体地,光线收发模组20发出的光线从第一通光口3215投射至透射光学元件31并从第二通光口3216射出扫描模组30。扫描驱动器32用于驱动透射光学元件31转动以改变经过透射光学元件31的激光脉冲的传输方向。透射光学元件31可以是透镜、反射镜、棱镜、光栅、光学相控阵(Optical Phased Array)或上述光学元件的任意组合。本实施方式的透射光学元件31为棱镜31,棱镜31为楔形体,具体地,棱镜31近似呈圆柱体状,棱镜31的底面与棱镜31的轴线相垂直,棱镜31的顶面与棱镜31的轴线相对倾斜,棱镜31的厚度不均匀。
在其他实施方式中,扫描转子组件321还包括凸块3214,凸块3214设置在扫描磁轭3211的内壁上并用于给棱镜31配重,以减小扫描转子组件321在转动时产生的晃动。具体地,凸块3214设置在棱镜31的顶面正对的扫描磁轭3211的内壁上,更具体地,凸块3214的中心设置在扫描磁轭3211的与棱镜31的厚度最小处对应的内壁上。
请结合图6、图7及图8,反射模组40设置在光线收发模组20的出光光路上。本实施方式中,扫描模组30和反射模组40依次设置在光线收发模组20的出光光路上,光线收发模组20发出的激光脉冲经过透射光学元件31后传输至反射模组40,反射模组40用于反射经过反射模组40的激光脉冲。反射模组40收容在面罩12形成的容置腔123内并转动连接于外壳10上。反射模组40包括安装架41、反射 驱动器42、反射光学元件43、配重组件44及检测器45。
反射驱动器42包括反射定子组件421、反射转子组件422、反射定位组件423及反射固定组件424。反射驱动器42用于驱动反射转子组件422围绕旋转轴OO3转动。本实施方式的旋转轴OO3与光线收发模组20的光轴OO1平行。优选的,旋转轴OO3与光线收发模组20的光轴OO1重合。
反射定子组件421包括套筒4211、绕组本体4212及反射绕组4213。
套筒4211呈中空的筒状结构。套筒4211包括固定端42111、安装端42112及安装台42113。固定端42111和安装端42112位于套筒4211的相对两端,安装台42113自固定端42111的外周面延伸形成,安装台42113环绕固定端42111。套筒4211通过单端固定在面罩12上。具体地,多个锁紧件50分别穿设在对应的固定孔125内并与安装台42113结合以将套筒4211安装在面罩12的顶壁122上,安装端42112为自由端(悬空设置)。在套筒4211安装在面罩12上之后,端盖13设置在面罩12上并使结合部132与固定端42111结合。
绕组本体4212套设在安装端42112上。反射绕组4213设置在绕组本体4212上。
反射转子组件422包括转子4221和磁铁4223。转子4221包括转子盖42211及转轴4222。转轴4222穿设在套筒4211内并能够相对套筒4211转动,转轴4222的远离安装端42112的一端从安装孔124伸出至面罩12外并收容在结合部132内部。转轴4222的轴线与旋转轴OO3重合。
转子盖42211包括底壁42212、环形侧壁42213及环状安装盘42214。底壁42212自转轴4222的靠近安装端42112的外周面延伸。侧壁42213自底壁42212朝安装端42112所在的一侧延伸,侧壁42213与底壁42212围成收容空间42215。换句话说,转轴4222自底壁42212朝收容空间42215内延伸并穿设套筒4211。绕组本体4212及反射绕组4213收容在收容空间42215内。安装盘42214自侧壁42213的远离底壁42212的一端朝远离收容空间42215的方向延伸形成。
磁铁4223收容在收容空间42215内并与绕组本体4212间隔相对。磁铁4223固定在转子盖42211的侧壁42213上并能够跟随转子4221围绕旋转轴OO3转动。
反射定位组件423用于限制反射转子组件422以固定的旋转轴OO3为中心转动。反射定位组件423包括第一轴承4231及第二轴承4232。第一轴承4231套设在转轴4222上并位于套筒4211内侧面与转轴4222之间,第一轴承4231位于安装端42112。第二轴承4232套设在转轴4222上并位于套筒4211内侧面与转轴4222之间,第二轴承4232位于固定端42111。第一轴承4231和第二轴承4232用于限制转轴4222绕旋转轴OO3转动。
反射固定组件424用于固定反射定位组件423。反射固定组件424包括轴套4241、紧固件4242及弹性件4243。轴套4241套设在转轴4222上并抵持在第二轴承4232的远离第一轴承4231的一端。紧固件4242安装在转轴4222的远离转子盖42211的一端。弹性件4243套设在转轴4222上,弹性件4243的两端分别抵持在轴套4341和紧固件4242上。紧固件4242通过弹性件4243将轴套4241抵持在第二轴承4232上以将第二轴承4232固定在转轴4222和套筒4211上。
安装架41(请同时参阅图2)安装在转子4221上并能够跟随转子4221绕旋转轴OO3转动。在其他实施方式中,安装架41与转子4221也可以为一体结构。安装架41包括间隔安装在安装盘42214上的两个连接臂411及连接环412。每个连接臂411的一端与安装盘412连接,每个连接臂411的另一端朝接近光线收发模组20一侧延伸。连接环412连接在两个连接臂411的远离安装盘42214的一端并位于两个连接臂411之间。两个连接臂411关于连接环412的轴线对称,连接环412的轴线与旋转轴OO3重合。本实施方式的连接环412呈圆环状,连接环412的内壁形成有间隔设置的多个散热齿4121,散热齿4121沿连接环412的轴线方向延伸。连接环412套设在扫描散热部32212外并能够相对扫描散热部32212转动,散热齿4121与扫描散热部32212的外表面相间隔。连接环412相对于扫描散热部32212及外壳10悬空设置并为自由端。当连接环412相对扫描散热部32212旋转时,散热齿4121能够扰动连接环412内壁与扫描散热部32212外周面之间的空气以给扫描散热部32212散热。
反射光学元件43安装在安装架41上并位于光线收发模组20的出光光路上,反射光学元件43能够跟随安装架41绕旋转轴OO3转动。反射光学元件43用于将光线收发模组20发出的激光脉冲从面罩12的侧壳121投射至位于外壳10外部的探测物。反射光学元件43位于连接环412与安装盘42214之间,并且反射光学元件43相对旋转轴OO3倾斜。具体地,本实施方式的反射光学元件43呈矩形片状,反射光学元件43包括反射面431和两个侧面432。反射面431朝向光线收发模组20,反射面431与旋转轴OO3相对倾斜。两个侧面432均连接反射面431并分别位于反射面431的相对两侧,两个侧面432分别安装在两个连接臂411上。
请参阅图2,反射光学元件43包括经过两个侧面432的中心轴线C,平行于反射光学元件43的中心轴线C并包含旋转轴OO3的平面定义为辅助面A,辅助面A与反射光学元件43相交形成虚拟交线L。本实施方式的两个侧面432与两个连接臂411的两个连接点之间的连线与虚拟交线L重合,虚拟交线L还垂直于旋转轴OO3。虚拟交线L将反射光学元件43划分为相接的第一段433与第二段434,第二段434相较于第一段433更靠近扫描模组30。本实施方式的第一段433的长度大于第二段434的长度。在其他实施方式中,第一段433的长度也可以等于或小于第二段434的长度。
请参阅图2及图5,配重组件44设置在反射转子组件422上并用于给反射光学元件43配重以减小反射模组40在旋转时受到的离心力偶。配重组件44包括配重凸块441及配重凸台442。配重凸块441设置于安装盘42214上,配重凸台442设置在连接环412上。具体地,配重凸块441与配重凸台442分别位于辅助面A的相背两侧,配重凸块441位于辅助面A的与第一段433相背的一侧,配重凸台442位于辅助面A的与第二段434相背的一侧。配重凸块441用于给第一段433所在一端的反射光学元件43配重,配重凸台442用于给第二端434所在一端的反射光学元件43配重。配重凸块441与安装盘42214可以为一体结构;或者,配重凸块441与安装盘42214为两个分体结构,配重凸块441通过螺合、胶合、焊接、卡合等方式中的一种或多种安装在安装盘42214上。配重凸台442与连接环412为一体结构;或者,配重凸台442与连接环412为两个分体结构,配重凸台442通过螺合、胶合、焊接、卡合等方式中 的一种或多种安装在连接环412上。
请参阅图2及图9,检测器45包括码盘451和至少一个光开关452。码盘451设置在连接环412的靠近扫描模组30的一端,码盘451能够跟随扫描模组30绕旋转轴OO3转动。至少一个光开关452设置在扫描安装座32211上。码盘451与至少一个光开关452配合并共同用于检测反射光学元件43的转动参数。
请参阅图9,在一个实施方式中,码盘451上沿同一圆周设有交替分布的多个透光区4511和多个非透光区4512。多个透光区4511包括多个宽度相同的第一透光区4513、以及一个宽度异于第一透光区4513的宽度的第二透光区4514,多个非透光区4512的宽度相同,其中,宽度为沿该圆周上的周向宽度。此时,光开关452的数量可以为一个也可以为两个。
光开关452包括发射管(图未示)和接收管(图未示),发射管和接收管分别位于码盘451的相对两侧,并且发射管和接收管位于透光区4511和非透光区4512所在的圆周。发射管发射的激光可以通过透光区4511传输至接收管,非透光区4512能够遮挡发光管向接收管发射激光。
安装架41带动码盘451转动的过程中,光开关452是静止的,光开关452的发射管发射光信号,透光区4511到达与发射管及接收管对准的位置时,接收管即可接收到发射管发射的光信号,透光区4511未到达与发射管及接收管对准的位置时,即,非透光区4512与发射管及接收管对准时,接收管无法接收到发射管发射的光信号,从而使得码盘451的透光区4511和非透光区4512转动至与光开关452对准的位置时,光开关452分别输出不同的电平信号。在一些实施例中,码盘451的透光区4511转动至与光开关452对准的位置时,光开关452输出高电平;相应地,码盘451的非透光区4512转动至与光开关452对准的位置时,光开关452输出低电平。在一些实施例中,也可以是码盘451的透光区4511转动至与光开关452对准的位置时,光开关452输出低电平,码盘451的非透光区4512转动至与光开关452对准的位置时,光开关452输出高电平。
在某些实施例中,光开关452的数量为一个。本实施例中,安装架41带动码盘451转动后,码盘451上的透光区4511转动到与光开关452对准的位置时,光开关452输出高电平,而码盘451上的非透光区4512转动到与光开关452对准的位置时,光开关452则会输出低电平。码盘451每转动一圈存在一个零位(例如,中间轴、边缘等等),相应地,码盘451每转动一圈,由于第二透光区4514的宽度异于第一透光区4513的宽度,故光开关452输出的脉冲序列中第二透光区4514对应的脉冲与第一透光区4513对应的脉冲不同,从而标记出码盘451的零位。在一些例子中,安装架41带动码盘451匀速转动时,由于第二透光区4514转动至与光开关452对准的位置时,光开关452输出的高电平的长度(例如高电平的时间长度或者计数量)要大于第一透光区4513转动至与光开关452对准的位置时,光开关452输出的高电平的长度,故通过处理器判断该高电平的长度,将长度较长的高电平对应的上升沿或者下降沿或者中间位置处作为码盘451的零位即可。需要说明的是,本发明实施例中,利用一个光开关452只能用于检测匀速转动的安装架41的零位,这是由于光开关452检测到的脉冲序列的长度与码盘451的 转速相关,而码盘451的转速是由安装架41的转速决定的,安装架41变速转动时,光开关452检测到的第一透光区4513和第二透光区4514对应的脉冲的长度存在不确定性,从而无法确定码盘451的零位。
在某些实施例中,光开关452的数量为两个,通过两个光开关452输出的脉冲序列来确定码盘451的零位信息以及码盘451相对转动位置,从而获得安装架41的绝对转动位置。需要说明的是,本发明实施例中,利用两个光开关452不仅适用于匀速转动的安装架41的零位检测,还适用于变速转动的安装架41的零位检测,这是由于通过两个光开关452检测到的脉冲序列进行处理,可得到唯一的零位脉冲,从而唯一确定安装架41(码盘451)的零位。
安装架41在特定时刻相对于零位的转动角度可以根据:透光区4511的数量、在该特定时刻与最近一次检测到零位的时间间隔内光开关452检测到完整信号周期的数量、及该特定时刻与在该特定时刻之前光开关452最近一次检测到高电平的上升沿或下降沿之间的时间间隔内,码盘451所转动的角度。其中,一个完整信号周期可以为码盘451上相邻两个第一透光区4513对应的脉冲的上升沿至下降沿之间的时长;或者,一个完整信号周期也可以为码盘451上相邻两个非透光区4512对应的脉冲的下降沿至上升沿之间的时长。该特定时刻与光开关452最近一次检测到高电平的上升沿或下降沿之间的时间间隔内,码盘451所转动的角度可以根据码盘451的转速、该特定时刻与光开关452最近一次检测到高电平的上升沿或下降沿之间的时间间隔计算得到。
请参阅图10,在另一实施方式中,多个透光区4511的宽度相同,多个非透光区4512包括多个宽度相同的第一非透光区4515,以及一个宽度异于第一非透光区4515的宽度的第二非透光区4516,其中,宽度为沿该圆周上的周向宽度。此时,光开关452的数量可以为一个也可以为两个。光开关452根据第二非透光区4516检测码盘451的零位。
请参阅图11,在其他实施方式中,码盘451包括多个透光区4511及多个非透光区4512,透光区4511包括第一透光区4513及第二透光区4514。多个第一透光区4513和多个非透光区4512沿一圆周交替排布,第二透光区4514不位于该圆周上。多个第一透光区4513的宽度相同,多个非透光区4512的宽度相同,其中,宽度为沿该圆周上的周向宽度。此时,光开关452的数量可以为两个,其中一个光开关452的发射管和接收管位于第一透光区4513所在圆周上,另一个光开关452的发射管和接收管位于第二透光区4514所在的圆周上并用于检测码盘451的零位。
请参阅图4及图5,激光测量装置100工作时,光源22发出激光脉冲,该激光脉冲经光路改变元件23改变光路方向(可以为改变90度或改变其他角度)后被准直元件24准直,准直后的激光脉冲被棱镜31改变传输方向后投射至反射光学元件43上,反射光学元件43将被棱镜31改变传输方向的激光脉冲反射,反射后的激光脉冲穿过侧壳121到达探测物上,经探测物反射回的激光脉冲(回光)穿过侧壳121并经过反射光学元件43反射后传输至棱镜31,至少一部分回光经过棱镜31后会被准直元件34会聚到探测器35上。探测器35将穿过准直元件34的至少部分回光转换为电信号脉冲,激光测量装置100通过该电信号脉冲的上升沿时间和/或下降沿时间确定激光脉冲接收时间。如此,激光测量装置100可以利 用脉冲接收时间信息和脉冲发出时间信息计算飞行时间,从而确定探测物到激光测量装置100的距离。
由于棱镜31能够改变经过棱镜31的激光脉冲,并且棱镜31能够相对光线收发模组20转动,因此,扫描模组30能够增大激光测量装置100的测量范围(具体地,扫描模组30增大了激光测量装置100的视场角)。进一步地,由于反射光学元件43能够改变经过反射光学元件43的激光脉冲的传输方向,并且反射光学元件43能够相对光线收发模组20转动,使得反射后的激光脉冲能够环绕侧壳121一周发射至探测物上,同时被环绕侧壳121一周的探测物反射回的部分回光也可以被反射光学元件43反射至检测器45,因此,反射模组40能够进一步增大激光测量装置100的测量范围,使环绕整个侧壳121(360度范围内)的所有探测物的距离都能被激光测量装置100检测到。另外,由于侧壳121能够透过由光线收发模组20发出的激光脉冲而不透射可见光,使得在不影响激光发射与回收的前提下,用户不会看到激光测量装置100内部的结构,使得激光测量装置100美观大方。
由于扫描模组30和反射模组40都能够增大光线收发模组40的测量范围,因而本申请的激光测量装置100通过在光线收发模组20的光路上依次设置扫描模组20和反射模组40,增大了激光测量装置100的测量范围。
进一步地,本申请通过在反射模组40上设置配重组件44,从而减小了反射光学元件43在转动时施加到反射模组40上的力偶,提升了反射模组40转动的平稳性。本实施方式中,配重组件44同时包括了配重凸块441及配重凸台442,在其他实施方式中,配重组件44可以包括配重凸块441及配重凸台442中的任意一种,具体由激光测量装置100中的反射光学元件43的倾斜角度、安装位置等参数来决定。
请参阅图12,本申请的无人飞行器200包括机身60及上述实施方式的激光测量装置100,激光测量装置100安装在机身60上。
本申请的无人飞行器200上的激光测量装置100利用扫描模组30和反射模组40增大测量探测物距离的测量范围,使得无人飞行器200能够检测较大范围的探测物的距离,可以广泛应用于航拍、避障、绕飞、探测等场景中。
在本说明书的描述中,参考术语“某些实施方式”、“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
尽管上面已经示出和描述了本申请的实施方式,可以理解的是,上述实施方式是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施方式进行变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (67)

  1. 一种激光测量装置,其特征在于,包括:光线收发模组、扫描模组及反射模组;
    所述光线收发模组用于发射激光脉冲及接收经探测物反射回的激光脉冲,所述扫描模组与所述反射模组依次设置在所述光线收发模组的出光光路上;
    所述扫描模组包括能够转动的透射光学元件,所述扫描模组用于改变经过所述扫描模组的所述激光脉冲的传输方向;
    所述反射模组包括能够转动的反射光学元件,所述反射光学元件用于反射经过所述反射光学元件的激光脉冲。
  2. 根据权利要求1所述的激光测量装置,其特征在于,所述激光测量装置还包括外壳,所述光线收发模组、所述扫描模组及所述反射模组均设置在所述外壳内,所述反射模组的一端能够转动地固定在所述外壳上,另一端为自由端。
  3. 根据权利要求1所述的激光测量装置,其特征在于,所述激光测量装置还包括外壳,所述光线收发模组、所述扫描模组及所述反射模组均设置在所述外壳内,所述反射模组还包括:
    安装架,所述反射光学元件安装在所述安装架上并位于所述出光光路上;及
    反射驱动器,所述反射驱动器安装在所述外壳上并用于驱动所述安装架相对所述外壳转动以带动所述反射光学元件绕着旋转轴转动。
  4. 根据权利要求3所述的激光测量装置,其特征在于,所述旋转轴与所述光线收发模组的光轴平行。
  5. 根据权利要求3所述的激光测量装置,其特征在于,所述旋转轴与所述光线收发模组的光轴重合。
  6. 根据权利要求3所述的激光测量装置,其特征在于,所述反射光学元件相对所述旋转轴倾斜。
  7. 根据权利要求3所述的激光测量装置,其特征在于,平行于所述反射光学元件的中心轴线并包含所述旋转轴的平面定义为辅助面,所述辅助面与所述反射光学元件相交形成虚拟交线,所述虚拟交线将所述反射光学元件划分为相接的第一段与第二段,所述第二段相较于所述第一段更靠近所述扫描模组,所述第一段的长度大于所述第二段的长度。
  8. 根据权利要求3所述的激光测量装置,其特征在于,所述反射驱动器包括:
    反射定子组件,所述反射定子组件安装在所述外壳上;及
    围绕所述旋转轴旋转的反射转子组件,所述反射定子组件用于驱动所述反射转子组件围绕所述旋转轴转动。
  9. 根据权利要求8所述的激光测量装置,其特征在于,所述反射模组还包括配重组件,所述配重组件设置在所述反射转子组件上并用于给所述反射光学元件配重以减小所述反射模组在旋转时受到的离心力偶。
  10. 根据权利要求9所述的激光测量装置,其特征在于,所述反射定子组件包括:
    套筒,所述套筒包括相对的固定端及安装端,所述固定端固定在所述外壳上;
    绕组本体,所述绕组本体套设在所述安装端;及
    安装在所述绕组本体上的反射绕组。
  11. 根据权利要求10所述的激光测量装置,其特征在于,所述反射转子组件包括:
    转子,所述转子包括转子盖及转轴,所述转子盖包括底壁及自所述底壁延伸的环形的侧壁,所述侧壁与所述底壁围成收容空间,所述转轴自所述底壁朝所述收容空间内延伸并穿设所述套筒,所述绕组本体及所述反射绕组收容在所述收容空间内;及
    磁铁,所述磁铁收容在所述收容空间内并与所述反射绕组本体相对。
  12. 根据权利要求11所述的激光测量装置,其特征在于,所述反射驱动器还包括位于所述反射定子组件与所述反射转子组件之间的反射定位组件,所述反射定位组件用于限制所述反射转子组件以固定的所述旋转轴为中心转动,所述反射定位组件包括:
    位于所述安装端内的第一轴承,所述第一轴承套设在所述转轴上并位于所述套筒内侧面与所述转轴之间;及
    位于所述固定端内的第二轴承,所述第二轴承套设在所述转轴上并位于所述套筒内侧面与所述转轴之间。
  13. 根据权利要求12所述的激光测量装置,其特征在于,所述反射驱动器还包括反射固定组件,所述反射固定组件包括:
    轴套,所述轴套套设在所述转轴上并抵持在所述第二轴承的远离所述第一轴承的一端;及
    紧固件,所述紧固件安装在所述转轴的远离所述转子盖的一端并将所述轴套抵持在所述第二轴承上。
  14. 根据权利要求13所述的激光测量装置,其特征在于,所述反射固定组件还包括弹性件,所述弹性件套设在所述转轴上,所述弹性件的两端分别抵持在所述轴套和所述紧固件上。
  15. 根据权利要求11所述的激光测量装置,其特征在于,所述反射转子组件还包括自所述侧壁的外表面延伸的安装盘;所述配重组件包括配重凸块,所述配重凸块设置于所述安装盘上。
  16. 根据权利要求11所述的激光测量装置,其特征在于,所述反射转子组件还包括自所述侧壁的外表面延伸的安装盘;所述安装架包括:
    间隔安装在所述安装盘上的两个连接臂,每个所述连接臂的一端与所述安装盘连接,每个所述连接臂的另一端朝接近所述光线收发模组一侧延伸,所述反射光学元件位于两个所述连接臂之间;及
    连接环,所述连接环连接在两个所述连接臂的另一端并位于两个所述连接臂之间。
  17. 根据权利要求16所述的激光测量装置,其特征在于,两个所述连接臂关于所述连接环的轴线对称,所述连接环的轴线与所述旋转轴重合。
  18. 根据权利要求16所述的激光测量装置,其特征在于,所述反射光学元件包括:
    朝向所述光线收发模组的反射面,所述反射面与所述旋转轴相对倾斜;及
    两个侧面,每个所述侧面均与所述反射面连接,两个所述侧面分别安装在两个所述连接臂上。
  19. 根据权利要求16所述的激光测量装置,其特征在于,所述配重组件包括配重凸台,所述配重凸台设置在所述连接环上。
  20. 根据权利要求3所述的激光测量装置,其特征在于,所述反射驱动器包括安装盘,所述安装架包括间隔安装在所述安装盘上的两个连接臂及安装在两个所述连接臂之间的连接环,所述连接环和所述安装盘位于所述连接臂的相对两端,所述反射光学元件位于所述连接环与所述安装盘之间;所述反射模组还包括配重组件,所述配重组件包括配重凸块及配重凸台,所述配重凸块安装在所述安装盘上,所述配重凸台设置在所述连接环上。
  21. 根据权利要求20所述的激光测量装置,其特征在于,平行于所述反射光学元件的中心轴线并包含所述旋转轴的平面定义为辅助面,所述辅助面与所述反射光学元件相交形成虚拟交线,所述虚拟交线将所述反射光学元件划分为相接的第一段与第二段,所述第二段相较于所述第一段更靠近所述扫描模组,所述配重凸块与所述配重凸台分别位于所述辅助面的相背两侧,所述配重凸块位于所述辅助面的与所述第一段相背的一侧,所述配重凸台位于所述辅助面的与所述第二段相背的一侧。
  22. 根据权利要求3所述的激光测量装置,其特征在于,所述安装架包括连接环,所述扫描模组还包括扫描壳体,所述扫描壳体包括环形扫描散热部,所述连接环的内壁形成有间隔设置的多个散热齿,所述散热齿沿所述连接环的轴线方向延伸,所述连接环套设在所述扫描散热部外,所述散热齿与所述扫描散热部的外表面相间隔。
  23. 根据权利要求1所述的激光测量装置,其特征在于,所述扫描模组还包括扫描壳体,所述扫描壳体包括扫描安装座,所述反射模组还包括检测器及能够转动的安装架,所述反射光学元件安装在所述安装架上,所述检测器包括码盘和至少一个光开关,所述码盘设置在所述安装架的靠近所述扫描模组的一端,所述至少一个光开关设置在所述扫描安装座上,所述码盘与所述至少一个光开关配合并共同用于检测所述反射光学元件的转动参数。
  24. 根据权利要求23所述的激光测量装置,其特征在于,所述码盘上沿同一圆周设有交替分布的多个透光区和多个非透光区;
    所述多个透光区包括多个宽度相同的第一透光区,以及一个宽度异于所述第一透光区的宽度的第二透光区,所述宽度为沿所述圆周上的周向宽度;或
    所述多个非透光区包括多个宽度相同的第一非透光区,以及一个宽度异于所述第一非透光区的宽度的第二非透光区,所述宽度为沿所述圆周上的周向宽度。
  25. 根据权利要求24所述的激光测量装置,其特征在于,所述码盘上设有多个第一透光区、多个非透光区和第二透光区,所述多个第一透光区和所述多个非透光区沿一圆周交替排布,所述第二透光区不位于所述圆周上;所述多个第一透光区的宽度相同,所述多个非透光区的宽度相同,所述宽度为沿所述圆周上的周向宽度。
  26. 根据权利要求1所述的激光测量装置,其特征在于,所述激光测量装置还包括外壳,所述光线 收发模组、所述扫描模组及所述反射模组均设置在所述外壳内,所述外壳包括底座和面罩,所述光线收发模组安装在所述底座内,所述面罩包括环形侧壳及位于所述侧壳一端的顶壁,所述侧壳的远离所述顶壁的一端安装在所述底座上,所述反射模组安装在所述顶壁上并收容在所述面罩内,所述光线收发模组发出的所述激光脉冲被所述反射光学元件反射后能够穿过所述侧壳并投射至所述探测物。
  27. 根据权利要求26所述的激光测量装置,其特征在于,所述反射模组包括套筒及能够转动地穿设在所述套筒内的转轴,所述顶壁开设有安装孔,所述转轴的一端从所述安装孔伸出至所述面罩外;所述激光测量装置还包括端盖,所述端盖包括盖体及自所述盖体的一表面延伸形成的环状结合部,所述结合部与所述套筒结合,所述盖体与所述顶壁结合并封闭所述安装孔。
  28. 根据权利要求27所述的激光测量装置,其特征在于,所述激光测量装置还包括多个锁紧件,所述顶壁上开设有多个固定孔,所述套筒形成有安装台,多个所述锁紧件分别穿设在对应的所述固定孔内并与所述安装台结合以将所述套筒安装在所述顶壁上,所述盖体设置在所述顶壁上并覆盖多个所述固定孔。
  29. 根据权利要求1至28任意一项所述的激光测量装置,其特征在于,所述扫描模组还包括扫描驱动器,所述透射光学元件包括棱镜,所述棱镜位于所述光路上,所述棱镜的厚度不均匀,所述扫描驱动器用于驱动所述棱镜转动以改变经过所述棱镜的所述激光脉冲的传输方向。
  30. 根据权利要求29所述的激光测量装置,其特征在于,所述扫描驱动器包括:
    扫描转子组件,所述扫描转子组件包括环状扫描磁轭及套设在所述扫描磁轭外的扫描磁铁,所述扫描磁轭形成有能够容置所述棱镜的收纳腔;
    扫描定子组件,所述扫描定子组件包括扫描壳体及扫描绕组,所述扫描壳体套设在所述扫描磁铁外,所述扫描绕组设置在所述扫描壳体上并位于所述扫描壳体与所述扫描磁铁之间;及
    扫描轴承,所述扫描轴承设置在所述扫描壳体与所述扫描磁轭之间。
  31. 根据权利要求30所述的激光测量装置,其特征在于,所述光线收发模组包括测距壳体,所述测距壳体包括位于在靠近所述扫描模组一端的测距安装座;所述扫描壳体包括位于靠近所述光线收发模组一端的扫描安装座,所述扫描安装座安装在所述测距安装座上。
  32. 根据权利要求31所述的激光测量装置,其特征在于,所述测距安装座包括间隔设置的多个测距支撑座,多个所述测距支撑座环绕所述光线收发模组的出光光路间隔分布,所述扫描安装座包括与多个所述测距支撑座分别对应的多个扫描支撑座,每个所述扫描支撑座与对应的一个所述测距支撑座结合。
  33. 根据权利要求1所述的激光测量装置,其特征在于,所述光线收发模组包括:
    光源,所述光源用于发出所述激光脉冲;
    光路改变元件,所述光路改变元件设置在所述光源的光路上并用于改变所述激光脉冲的光路;
    准直元件,所述准直元件设置在被所述光路改变元件改变的光路上,所述准直元件用于准直经过所述准直元件的所述激光脉冲并将经过准直的所述激光脉冲投射至所述反射光学元件、以及用于汇聚被所 述反射光学元件反射回来的所述激光脉冲;及
    探测器,所述探测器设置在经过所述准直元件汇聚的所述激光脉冲的光路上,所述探测器用于将汇聚到所述探测器上的所述激光转化为电信号。
  34. 一种无人飞行器,其特征在于,所述无人飞行器包括:
    机身;及
    权利要求1至33任意一项所述的激光测量装置,所述激光测量装置设置在所述机身上。
  35. 一种激光测量装置,其特征在于,包括:光线收发模组及反射模组;
    所述光线收发模组用于发射激光脉冲及接收经探测物反射回的激光脉冲,所述反射模组设置在所述光线收发模组的出光光路上;
    所述反射模组包括能够转动的反射光学元件及与所述反射光学元件相对固定的配重组件,所述反射光学元件能够绕着旋转轴转动,所述反射光学元件包括朝向所述光线收发模组的反射面,所述反射面相对所述旋转轴倾斜,所述配重组件用于给所述反射光学元件配重以减小所述反射模组在旋转时受到的离心力偶,所述反射光学元件用于反射经过所述反射光学元件的激光脉冲。
  36. 根据权利要求35所述的激光测量装置,其特征在于,所述激光测量装置还包括外壳,所述光线收发模组、所述扫描模组及所述反射模组均设置在所述外壳内,所述反射模组的一端能够转动地固定在所述外壳上,另一端为自由端。
  37. 根据权利要求35所述的激光测量装置,其特征在于,所述激光测量装置还包括外壳,所述光线收发模组、所述扫描模组及所述反射模组均设置在所述外壳内,所述反射模组还包括:
    安装架,所述反射光学元件安装在所述安装架上并位于所述出光光路上;及
    反射驱动器,所述反射驱动器安装在所述外壳上并用于驱动所述安装架相对所述外壳转动以带动所述反射光学元件绕着旋转轴转动。
  38. 根据权利要求37所述的激光测量装置,其特征在于,所述旋转轴与所述光线收发模组的光轴平行。
  39. 根据权利要求37所述的激光测量装置,其特征在于,所述旋转轴与所述光线收发模组的光轴重合。
  40. 根据权利要求37所述的激光测量装置,其特征在于,平行于所述反射光学元件的中心轴线并包含所述旋转轴的平面定义为辅助面,所述辅助面与所述反射光学元件相交形成虚拟交线,所述虚拟交线将所述反射光学元件划分为相接的第一段与第二段,所述第二段相较于所述第一段更靠近所述扫描模组,所述第一段的长度大于所述第二段的长度。
  41. 根据权利要求37所述的激光测量装置,其特征在于,所述反射驱动器包括:
    反射定子组件,所述反射定子组件安装在所述外壳上;及
    围绕所述旋转轴旋转的反射转子组件,所述反射定子组件用于驱动所述反射转子组件围绕所述旋转 轴转动。
  42. 根据权利要求41所述的激光测量装置,其特征在于,所述反射定子组件包括:
    套筒,所述套筒包括相对的固定端及安装端,所述固定端固定在所述外壳上;
    绕组本体,所述绕组本体套设在所述安装端;及
    安装在所述绕组本体上的反射绕组。
  43. 根据权利要求42所述的激光测量装置,其特征在于,所述反射转子组件包括:
    转子,所述转子包括转子盖及转轴,所述转子盖包括底壁及自所述底壁延伸的环形的侧壁,所述侧壁与所述底壁围成收容空间,所述转轴自所述底壁朝所述收容空间内延伸并穿设所述套筒,所述绕组本体及所述反射绕组收容在所述收容空间内;及
    磁铁,所述磁铁收容在所述收容空间内并与所述反射绕组本体相对。
  44. 根据权利要求43所述的激光测量装置,其特征在于,所述反射驱动器还包括位于所述反射定子组件与所述反射转子组件之间的反射定位组件,所述反射定位组件用于限制所述反射转子组件以固定的所述旋转轴为中心转动,所述反射定位组件包括:
    位于所述安装端内的第一轴承,所述第一轴承套设在所述转轴上并位于所述套筒内侧面与所述转轴之间;及
    位于所述固定端内的第二轴承,所述第二轴承套设在所述转轴上并位于所述套筒内侧面与所述转轴之间。
  45. 根据权利要求44所述的激光测量装置,其特征在于,所述反射驱动器还包括反射固定组件,所述反射固定组件包括:
    轴套,所述轴套套设在所述转轴上并抵持在所述第二轴承的远离所述第一轴承的一端;及
    紧固件,所述紧固件安装在所述转轴的远离所述转子盖的一端并将所述轴套抵持在所述第二轴承上。
  46. 根据权利要求45所述的激光测量装置,其特征在于,所述反射固定组件还包括弹性件,所述弹性件套设在所述转轴上,所述弹性件的两端分别抵持在所述轴套和所述紧固件上。
  47. 根据权利要求43所述的激光测量装置,其特征在于,所述反射转子组件还包括自所述侧壁的外表面延伸的安装盘;所述配重组件包括配重凸块,所述配重凸块设置于所述安装盘上。
  48. 根据权利要求43所述的激光测量装置,其特征在于,所述反射转子组件还包括自所述侧壁的外表面延伸的安装盘;所述安装架包括:
    间隔安装在所述安装盘上的两个连接臂,每个所述连接臂的一端与所述安装盘连接,每个所述连接臂的另一端朝接近所述光线收发模组一侧延伸,所述反射光学元件位于两个所述连接臂之间;及
    连接环,所述连接环连接在两个所述连接臂的另一端并位于两个所述连接臂之间。
  49. 根据权利要求48所述的激光测量装置,其特征在于,两个所述连接臂关于所述连接环的轴线对称,所述连接环的轴线与所述旋转轴重合。
  50. 根据权利要求48所述的激光测量装置,其特征在于,所述反射光学元件包括:
    朝向所述光线收发模组反射面,所述反射面与所述旋转轴相对倾斜;及
    两个侧面,每个所述侧面均与所述反射面连接,两个所述侧面分别安装在两个所述连接臂上。
  51. 根据权利要求48所述的激光测量装置,其特征在于,所述配重组件包括配重凸台,所述配重凸台设置在所述连接环上。
  52. 根据权利要求37所述的激光测量装置,其特征在于,所述反射驱动器包括安装盘,所述安装架包括间隔安装在所述安装盘上的两个连接臂及安装在两个所述连接臂之间的连接环,所述连接环和所述安装盘位于所述连接臂的相对两端,所述反射光学元件位于所述连接环与所述安装盘之间;所述配重组件包括配重凸块及配重凸台,所述配重凸块安装在所述安装盘上,所述配重凸台设置在所述连接环上。
  53. 根据权利要求52所述的激光测量装置,其特征在于,平行于所述反射光学元件的中心轴线并包含所述旋转轴的平面定义为辅助面,所述辅助面与所述反射光学元件相交形成虚拟交线,所述虚拟交线将所述反射光学元件划分为相接的第一段与第二段,所述第二段相较于所述第一段更靠近所述扫描模组,所述配重凸块与所述配重凸台分别位于所述辅助面的相背两侧,所述配重凸块位于所述辅助面的与所述第一段相背的一侧,所述配重凸台位于所述辅助面的与所述第二段相背的一侧。
  54. 根据权利要求35所述的激光测量装置,其特征在于,所述激光测量装置还包括外壳,所述光线收发模组、所述扫描模组及所述反射模组均设置在所述外壳内,所述外壳包括底座和面罩,所述光线收发模组安装在所述底座内,所述面罩包括环形侧壳及位于所述侧壳一端的顶壁,所述侧壳的远离所述顶壁的一端安装在所述底座上,所述反射模组安装在所述顶壁上并收容在所述面罩内,所述光线收发模组发出的所述激光脉冲被所述反射光学元件反射后能够穿过所述侧壳并投射至所述探测物。
  55. 根据权利要求54所述的激光测量装置,其特征在于,所述反射模组包括套筒及能够转动地穿设在所述套筒内的转轴,所述顶壁开设有安装孔,所述转轴的一端从所述安装孔伸出至所述面罩外;所述激光测量装置还包括端盖,所述端盖包括盖体及自所述盖体的一表面延伸形成的环状结合部,所述结合部与所述套筒结合,所述盖体与所述顶壁结合并封闭所述安装孔。
  56. 根据权利要求55所述的激光测量装置,其特征在于,所述激光测量装置还包括多个锁紧件,所述顶壁上开设有多个固定孔,所述套筒形成有安装台,多个所述锁紧件分别穿设在对应的所述固定孔内并与所述安装台结合以将所述套筒安装在所述顶壁上,所述盖体设置在所述顶壁上并覆盖多个所述固定孔。
  57. 根据权利要求35至56任意一项所述的激光测量装置,其特征在于,所述激光测量装置还包括扫描模组,所述扫描模组与所述反射模组依次设置在所述光线收发模组的出光光路上,所述扫描模组包括能够转动的透射光学元件,所述透射光学元件用于改变经过所述扫描模组的所述激光脉冲的传输方向。
  58. 根据权利要求57所述的激光测量装置,其特征在于,所述反射模组包括用于安装所述反射光学元件的安装架,所述安装架的靠近所述扫描模组的一端包括连接环,所述连接环的内壁形成有间隔设置 的多个散热齿,所述散热齿沿所述连接环的轴线方向延伸;所述扫描模组包括扫描壳体,所述扫描壳体包括环形扫描散热部,所述连接环套设在所述扫描散热部外,所述散热齿与所述扫描散热部的外表面相间隔。
  59. 根据权利要求58所述的激光测量装置,其特征在于,所述反射模组包括用于安装所述反射光学元件的安装架及检测器,所述安装架的靠近所述扫描模组的一端包括连接环,所述检测器包括码盘和至少一个光开关,所述码盘设置在所述连接环的远离所述连接臂的一端;所述扫描模组包括扫描壳体,所述扫描壳体包括扫描安装座,所述至少一个光开关设置在所述扫描安装座上,所述码盘与所述至少一个光开关配合并共同用于检测所述反射光学元件的转动参数。
  60. 根据权利要求59所述的激光测量装置,其特征在于,所述码盘上沿同一圆周设有交替分布的多个透光区和多个非透光区;
    所述多个透光区包括多个宽度相同的第一透光区,以及一个宽度异于所述第一透光区的宽度的第二透光区,所述宽度为沿所述圆周上的周向宽度;或
    所述多个非透光区包括多个宽度相同的第一非透光区,以及一个宽度异于所述第一非透光区的宽度的第二非透光区,所述宽度为沿所述圆周上的周向宽度。
  61. 根据权利要求59所述的激光测量装置,其特征在于,所述码盘上设有多个第一透光区、多个非透光区和第二透光区,所述多个第一透光区和所述多个非透光区沿一圆周交替排布,所述第二透光区不位于所述圆周上;所述多个第一透光区的宽度相同,所述多个非透光区的宽度相同,所述宽度为沿所述圆周上的周向宽度。
  62. 根据权利要求35所述的激光测量装置,其特征在于,所述激光测量装置还包括扫描模组,所述扫描模组与所述反射模组依次设置在所述光线收发模组的出光光路上,所述扫描模组包括扫描驱动器及棱镜,所述棱镜位于所述光路上,所述棱镜的厚度不均匀,所述扫描驱动器用于驱动所述棱镜转动以改变经过所述棱镜的所述激光脉冲的传输方向。
  63. 根据权利要求62所述的激光测量装置,其特征在于,所述扫描驱动器包括:
    扫描转子组件,所述扫描转子组件包括环状扫描磁轭及套设在所述扫描磁轭外的扫描磁铁,所述扫描磁轭形成有能够容置所述棱镜的收纳腔;
    扫描定子组件,所述扫描定子组件包括扫描壳体及扫描绕组,所述扫描壳体套设在所述扫描磁铁外,所述扫描绕组设置在所述扫描壳体上并位于所述扫描壳体与所述扫描磁铁之间;及
    扫描轴承,所述扫描轴承设置在所述扫描壳体与所述扫描磁轭之间。
  64. 根据权利要求63所述的激光测量装置,其特征在于,所述光线收发模组包括测距壳体,所述测距壳体包括位于在靠近所述扫描模组一端的测距安装座;所述扫描壳体包括位于靠近所述光线收发模组一端的扫描安装座,所述扫描安装座安装在所述测距安装座上。
  65. 根据权利要求64所述的激光测量装置,其特征在于,所述测距安装座包括间隔设置的多个测距 支撑座,多个所述测距支撑座环绕所述光线收发模组的出光光路间隔分布,所述扫描安装座包括与多个所述测距支撑座分别对应的多个扫描支撑座,每个所述扫描支撑座与对应的一个所述测距支撑座结合。
  66. 根据权利要求65所述的激光测量装置,其特征在于,所述光线收发模组包括:
    光源,所述光源用于发出所述激光脉冲;
    光路改变元件,所述光路改变元件设置在所述光源的光路上并用于改变所述激光脉冲的光路;
    准直元件,所述准直元件设置在被所述光路改变元件改变的光路上,所述准直元件用于准直经过所述准直元件的所述激光脉冲并将经过准直的所述激光脉冲投射至所述反射光学元件、以及用于汇聚被所述反射光学元件反射回来的所述激光脉冲;及
    探测器,所述探测器设置在经过所述准直元件汇聚的所述激光脉冲的光路上,所述探测器用于将汇聚到所述探测器上的所述激光转化为电信号。
  67. 一种无人飞行器,其特征在于,所述无人飞行器包括:
    机身;及
    权利要求35至66任意一项所述的激光测量装置,所述激光测量装置设置在所述机身上。
PCT/CN2018/121689 2018-12-18 2018-12-18 激光测量装置及无人飞行器 WO2020124346A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18944015.9A EP3896488A4 (en) 2018-12-18 2018-12-18 LASER SENSING DEVICE AND UNMANNED AIR VEHICLE
CN201880073834.1A CN111587382A (zh) 2018-12-18 2018-12-18 激光测量装置及无人飞行器
JP2021532162A JP2022511542A (ja) 2018-12-18 2018-12-18 レーザ測定装置及び無人航空機
PCT/CN2018/121689 WO2020124346A1 (zh) 2018-12-18 2018-12-18 激光测量装置及无人飞行器
US17/351,188 US20210311173A1 (en) 2018-12-18 2021-06-17 Laser measuring device and unmanned aerial vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/121689 WO2020124346A1 (zh) 2018-12-18 2018-12-18 激光测量装置及无人飞行器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/351,188 Continuation US20210311173A1 (en) 2018-12-18 2021-06-17 Laser measuring device and unmanned aerial vehicle

Publications (1)

Publication Number Publication Date
WO2020124346A1 true WO2020124346A1 (zh) 2020-06-25

Family

ID=71100039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/121689 WO2020124346A1 (zh) 2018-12-18 2018-12-18 激光测量装置及无人飞行器

Country Status (5)

Country Link
US (1) US20210311173A1 (zh)
EP (1) EP3896488A4 (zh)
JP (1) JP2022511542A (zh)
CN (1) CN111587382A (zh)
WO (1) WO2020124346A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113176552A (zh) * 2021-04-14 2021-07-27 北醒(北京)光子科技有限公司 激光扫描装置、激光测距雷达及激光扫描装置的安装方法
CN113589258A (zh) * 2021-07-09 2021-11-02 佛山华国光学器材有限公司 一种可监控电机转速的雷达系统及其实现方法和雷达设备
CN114639327A (zh) * 2022-03-11 2022-06-17 武汉奇致激光技术股份有限公司 一种激光演示光路导向装置
JP2022159019A (ja) * 2021-04-01 2022-10-17 ジック アーゲー 光電センサ
USD975560S1 (en) * 2021-02-04 2023-01-17 Argo AI, LLC Sensor housing
USD994094S1 (en) 2021-02-04 2023-08-01 Lg Innotek Co., Ltd. Sensor housing

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114413767B (zh) * 2022-01-24 2023-06-13 中国工程物理研究院机械制造工艺研究所 一种激光透射精密旋转定位调节装置
CN114608532B (zh) * 2022-03-21 2024-02-06 重庆市捷晟工程项目管理有限公司 一种智能化工程造价施工水平度检测仪
CN114812745B (zh) * 2022-03-29 2023-08-18 浙江瑞林信息科技有限公司 激光侧扫实时水位计
WO2024088086A1 (zh) * 2022-10-24 2024-05-02 科沃斯机器人股份有限公司 清洁装置及其应用的透光罩、自移动装置
CN117148319B (zh) * 2023-10-31 2024-02-23 山东富锐光学科技有限公司 一种360°旋转扫描激光雷达

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003287693A (ja) * 2002-01-28 2003-10-10 Matsushita Electric Works Ltd 光ビームスキャン機構
JP2005326278A (ja) * 2004-05-14 2005-11-24 Denso Corp 距離検出装置
CN102176087A (zh) * 2011-01-19 2011-09-07 哈尔滨工业大学 偏振光组合靶标共光路补偿的二维光电自准直方法与装置
CN206411260U (zh) * 2016-10-28 2017-08-15 深圳市镭神智能系统有限公司 一种基于时间飞行法的激光雷达系统
CN206863211U (zh) * 2017-06-06 2018-01-09 保定市天河电子技术有限公司 一种小型化激光雷达
CN207037075U (zh) * 2017-08-21 2018-02-23 北京因泰立科技有限公司 一种用于激光扫描测距的转镜装置
CN107765263A (zh) * 2017-10-30 2018-03-06 武汉海达数云技术有限公司 激光扫描装置及移动测量系统
CN207114760U (zh) * 2017-08-21 2018-03-16 北京因泰立科技有限公司 一种收发一体式扫描激光测距雷达
CN107990876A (zh) * 2017-11-20 2018-05-04 北京科技大学 基于无人飞行器的地下矿山采空区快速扫描装置及方法

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4870274A (en) * 1987-12-07 1989-09-26 Micro Video, Inc. Laser scanner with rotating mirror and housing which is transparent to the scanning radiation
US5903300A (en) * 1993-01-12 1999-05-11 Canon Kabushiki Kaisha Deflection scanning apparatus having balance control
JPH08160333A (ja) * 1994-12-08 1996-06-21 Canon Inc 偏向走査装置
JPH09269461A (ja) * 1996-03-29 1997-10-14 Toshiba Lighting & Technol Corp スキャナモータおよびモータ組込機器
JP3529615B2 (ja) * 1998-02-18 2004-05-24 株式会社東芝 ミラー回転駆動装置およびそれを用いたマルチビーム走査装置
US6185030B1 (en) * 1998-03-20 2001-02-06 James W. Overbeck Wide field of view and high speed scanning microscopy
EP0949524A1 (en) * 1998-04-07 1999-10-13 Fujifilm Electronic Imaging Limited Rotatable mirror assembly
JP2000075235A (ja) * 1998-08-26 2000-03-14 Aisin Seiki Co Ltd 光走査装置
CN100424540C (zh) * 2004-09-14 2008-10-08 中国科学院安徽光学精密机械研究所 大口径光学潜望式激光雷达三维扫描装置
KR101249598B1 (ko) * 2004-10-26 2013-04-01 가부시키가이샤 니콘 광학 장치, 경통, 노광 장치, 및 디바이스의 제조 방법
JP2006221001A (ja) * 2005-02-14 2006-08-24 Canon Inc 偏向走査装置
US7336407B1 (en) * 2005-07-28 2008-02-26 Lockheed Martin Corporation Scanner/pointer apparatus having super-hemispherical coverage
CN201378231Y (zh) * 2009-03-31 2010-01-06 北京北科天绘科技有限公司 一种光学扫描装置
WO2010131449A1 (ja) * 2009-05-11 2010-11-18 パナソニック株式会社 光学反射素子
US9651417B2 (en) * 2012-02-15 2017-05-16 Apple Inc. Scanning depth engine
KR20130128242A (ko) * 2012-05-16 2013-11-26 삼성디스플레이 주식회사 레이저빔 주사를 위한 광학 모듈
WO2014010107A1 (ja) * 2012-07-11 2014-01-16 北陽電機株式会社 走査式測距装置
JP5886394B1 (ja) * 2014-09-24 2016-03-16 シャープ株式会社 レーザレーダ装置
CN204613514U (zh) * 2015-04-29 2015-09-02 北京万集科技股份有限公司 一种双面转镜结构
JP6220814B2 (ja) * 2015-06-01 2017-10-25 株式会社平和 遊技機
JP6375503B2 (ja) * 2015-10-15 2018-08-22 株式会社プロドローン 飛行型検査装置および検査方法
CN105929518B (zh) * 2016-06-22 2018-03-20 中国工程物理研究院应用电子学研究所 可调的环状光束生成机构
CN106814364A (zh) * 2017-01-17 2017-06-09 西安交通大学 基于盘式转子电机的扫描激光主动探测装置及实现方法
CN106842233A (zh) * 2017-01-17 2017-06-13 西安交通大学 基于环形外转子电机的线扫描激光雷达及其实现方法
CN107450060B (zh) * 2017-08-28 2024-03-29 苏州元坤智能科技有限公司 一种激光扫描装置
CN207335629U (zh) * 2017-09-27 2018-05-08 广东金东建设工程公司 地面位移监测装置
CN107991661B (zh) * 2017-11-23 2020-01-07 武汉万集信息技术有限公司 一种机械式激光雷达及其配重方法
CN207516546U (zh) * 2017-12-18 2018-06-19 保定市天河电子技术有限公司 一种微型化激光脉冲测距扫描装置
CN108415002A (zh) * 2018-05-14 2018-08-17 天津杰泰高科传感技术有限公司 激光雷达光学系统及激光雷达
CN208239615U (zh) * 2018-06-08 2018-12-14 上海禾赛光电科技有限公司 一种激光雷达装置
CN108710134A (zh) * 2018-07-17 2018-10-26 苏州元联传感技术有限公司 基于收发组合镜头的二维扫描激光测距雷达
CN108957484B (zh) * 2018-09-11 2023-09-19 山东莱恩光电科技股份有限公司 一种agv小车激光扫描安全保护装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003287693A (ja) * 2002-01-28 2003-10-10 Matsushita Electric Works Ltd 光ビームスキャン機構
JP2005326278A (ja) * 2004-05-14 2005-11-24 Denso Corp 距離検出装置
CN102176087A (zh) * 2011-01-19 2011-09-07 哈尔滨工业大学 偏振光组合靶标共光路补偿的二维光电自准直方法与装置
CN206411260U (zh) * 2016-10-28 2017-08-15 深圳市镭神智能系统有限公司 一种基于时间飞行法的激光雷达系统
CN206863211U (zh) * 2017-06-06 2018-01-09 保定市天河电子技术有限公司 一种小型化激光雷达
CN207037075U (zh) * 2017-08-21 2018-02-23 北京因泰立科技有限公司 一种用于激光扫描测距的转镜装置
CN207114760U (zh) * 2017-08-21 2018-03-16 北京因泰立科技有限公司 一种收发一体式扫描激光测距雷达
CN107765263A (zh) * 2017-10-30 2018-03-06 武汉海达数云技术有限公司 激光扫描装置及移动测量系统
CN107990876A (zh) * 2017-11-20 2018-05-04 北京科技大学 基于无人飞行器的地下矿山采空区快速扫描装置及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3896488A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD975560S1 (en) * 2021-02-04 2023-01-17 Argo AI, LLC Sensor housing
USD994094S1 (en) 2021-02-04 2023-08-01 Lg Innotek Co., Ltd. Sensor housing
JP2022159019A (ja) * 2021-04-01 2022-10-17 ジック アーゲー 光電センサ
JP7387788B2 (ja) 2021-04-01 2023-11-28 ジック アーゲー 光電センサ
CN113176552A (zh) * 2021-04-14 2021-07-27 北醒(北京)光子科技有限公司 激光扫描装置、激光测距雷达及激光扫描装置的安装方法
CN113589258A (zh) * 2021-07-09 2021-11-02 佛山华国光学器材有限公司 一种可监控电机转速的雷达系统及其实现方法和雷达设备
CN114639327A (zh) * 2022-03-11 2022-06-17 武汉奇致激光技术股份有限公司 一种激光演示光路导向装置

Also Published As

Publication number Publication date
US20210311173A1 (en) 2021-10-07
EP3896488A1 (en) 2021-10-20
JP2022511542A (ja) 2022-01-31
EP3896488A4 (en) 2022-01-12
CN111587382A (zh) 2020-08-25

Similar Documents

Publication Publication Date Title
WO2020124346A1 (zh) 激光测量装置及无人飞行器
US20210215803A1 (en) Scanning module, distance measuring device, distance measuring assembly, distance detection device, and mobile platform
KR20180080384A (ko) 송수광 일체형 광학계 모듈 및 이를 구비하는 스캐닝 라이다
CN220271559U (zh) 激光雷达及移动设备
CN110235025A (zh) 距离探测装置
CN209878990U (zh) 扫描模组、测距装置及移动平台
WO2020142965A1 (zh) 扫描模组、测距装置及移动平台
CN212646993U (zh) 一种激光雷达及移动机器人
US20210333393A1 (en) Scanning module, distance measuring device and mobile platform
CN211206787U (zh) 测距组件及移动平台
CN210894703U (zh) 测距装置及移动平台
WO2020142919A1 (zh) 一种测距装置及移动平台
WO2020142913A1 (zh) 驱动器、扫描模组及激光测量装置
CN111670337B (zh) 测距装置及移动平台
US20210356736A1 (en) Scanning assembly and ranging device
CN211206773U (zh) 扫描模组、测距组件及移动平台
CN211627823U (zh) 测距装置、距离探测设备及移动平台
WO2021138752A1 (zh) 扫描模组、测距装置及移动平台
CN215116779U (zh) 抗反射干扰的测距雷达和移动机器人
WO2022141347A1 (zh) 激光测量装置及可移动平台
US20240004040A1 (en) Scanning module, distance measuring device, and movable platform
WO2020062111A1 (zh) 距离探测设备及移动平台
WO2020062115A1 (zh) 距离探测设备及移动平台
WO2020142963A1 (zh) 测距装置及移动平台
WO2023065117A1 (zh) 扫描模组及测距装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18944015

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021532162

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018944015

Country of ref document: EP

Effective date: 20210712