WO2020142919A1 - 一种测距装置及移动平台 - Google Patents

一种测距装置及移动平台 Download PDF

Info

Publication number
WO2020142919A1
WO2020142919A1 PCT/CN2019/070955 CN2019070955W WO2020142919A1 WO 2020142919 A1 WO2020142919 A1 WO 2020142919A1 CN 2019070955 W CN2019070955 W CN 2019070955W WO 2020142919 A1 WO2020142919 A1 WO 2020142919A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
measuring device
distance measuring
working surface
optical
Prior art date
Application number
PCT/CN2019/070955
Other languages
English (en)
French (fr)
Inventor
董帅
王栗
梅雄泽
陈涵
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201980005646.XA priority Critical patent/CN111670375A/zh
Priority to PCT/CN2019/070955 priority patent/WO2020142919A1/zh
Publication of WO2020142919A1 publication Critical patent/WO2020142919A1/zh
Priority to US17/371,927 priority patent/US20210333374A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/487Extracting wanted echo signals, e.g. pulse detection
    • G01S7/4876Extracting wanted echo signals, e.g. pulse detection by removing unwanted signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4812Constructional features, e.g. arrangements of optical elements common to transmitter and receiver transmitted and received beams following a coaxial path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4816Constructional features, e.g. arrangements of optical elements of receivers alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning

Definitions

  • the invention generally relates to the technical field of distance measuring devices, and more particularly to a range measuring device system and a mobile platform.
  • the ranging device of lidar is a perception system for the outside world.
  • the lidar based on the principle of time of flight (TOF) as an example, the lidar emits pulses outwards and receives echoes generated by reflections from external objects. By measuring the delay of the echo, the distance between the object and the lidar in this emission direction can be calculated. By dynamically adjusting the laser emission direction, it is possible to measure the distance information between objects of different orientations and lidar, so as to realize the modeling of three-dimensional space.
  • TOF time of flight
  • T0 echo Part of the emitted light will hit the structural part or the non-working surface of the optical element directly or after being reflected by the working surface of the optical element, forming stray light. After one or more reflections, it may be received by the receiving detector and form a laser An important source of T0 echo contribution inside the radar. The T0 echo will interfere with the detection of nearby objects by Lidar and affect the overall performance of the system.
  • the light of the other light sources is received by the detector through the side wall scattering and other paths, causing the background noise to increase, reducing the system's signal-to-noise ratio, and deteriorating the system's ranging performance ; Or false alarm noise increases.
  • the present invention has been proposed to solve at least one of the above problems. Specifically, in one aspect, the present invention provides a distance measuring device.
  • the distance measuring device includes:
  • Transmitter used to emit light pulse sequence
  • a detector for receiving at least part of the returned light reflected by the object and converting it into an electrical signal, and determining the distance and/or orientation of the object from the distance measuring device according to the electrical signal;
  • the non-working surface outside the emission optical path of the optical pulse sequence and the reception optical path of the return light is provided with an anti-reflection material and/or a reflection surface with a preset tilt angle is provided to reflect impurities Astigmatism is outside the detector, where the non-working surface is the surface through which the light pulse sequence and the return light do not pass.
  • the distance measuring device includes a structural member, wherein the non-working surface includes at least a part of the surface of the structural member.
  • the distance measuring device further includes: an optical path changing element for changing the direction of the transmitting optical path or the receiving optical path, so that the transmitting optical path and the receiving optical path are merged, and the optical path changing element is provided There is a light-transmitting area, and the non-working surface includes an area where the surface of the light path changing element facing the emitter receives a light pulse sequence other than the light pulse sequence passing through the light-transmitting area.
  • the non-working surface includes all the surfaces of the light-transmitting element facing the light-transmitting surface and the emitter.
  • the optical path changing element includes a mirror whose central area is provided with a light-transmitting area, wherein the divergence angle of the light pulse sequence emitted by the emitter is greater than the spread of the light-transmitting area relative to the emitter angle.
  • the non-working surface includes at least part of the surface of the first structural member for supporting the optical path changing element.
  • the non-working surface further includes a surface facing the emitter and opposite to the light-transmitting area.
  • the distance measuring device further includes:
  • a collimating element which is located on the emitting optical path of the emitter, is used to collimate the light pulse sequence emitted by the emitter and then exit, and converge at least a part of the return light reflected by the object to all Describe the detector;
  • a second structural member for supporting the collimating element wherein the non-working surface of the second structural member includes a surface capable of reflecting stray light to the detector.
  • the distance measuring device further includes a scanning module for sequentially changing the propagation path of the light pulse sequence to different directions for exit, wherein the scanning module includes at least one optical element for changing the light The propagation path of the pulse sequence.
  • the optical element includes two opposing non-parallel surfaces and a side surface located on the periphery, and the non-working surface includes the side surface.
  • At least a part of the non-working surface of the optical element includes a surface capable of reflecting part of the light pulse sequence to the detector.
  • At least part of the non-working surface of the optical element includes a surface capable of reflecting part of the light pulse sequence, and part of the light pulse sequence reflected by the non-working surface undergoes at least one reflection and/or at least one refraction To the detector.
  • the thickness of the optical element gradually increases from the first end to the second end opposite to the first end, wherein the non-working surface of the optical element includes an end face at the second end,
  • the anti-reflection material is provided on the end surface of the second end.
  • the optical element includes a first optical element and a second optical element that are sequentially arranged along the emission optical path, wherein the non-working surface includes an end surface of the second end of the second optical element.
  • the distance measuring device further includes a second structural member for supporting the optical element, wherein the non-working surface of the second structural member includes facing the detector to reflect at least a portion of stray light to the The face of the detector.
  • the first optical element includes a wedge angle prism
  • the second optical element includes a wedge angle prism
  • the stray light includes:
  • the part of the light pulse sequence emitted by the transmitter that is not used for detection is light that can be received by the detector after at least one reflection and/or at least one refraction, and/or,
  • the anti-reflection material includes at least one of a light-absorbing material and a low-reflectivity material, and the anti-reflection material is disposed on the non-working surface by spraying or sticking.
  • the light absorbing material includes at least one of matting ink, black glue, and black foam.
  • the detector includes:
  • a receiving circuit configured to convert the received return light reflected by the object into an electric signal output
  • a sampling circuit for sampling the electrical signal output by the receiving circuit to measure the time difference between transmission and reception of the optical pulse sequence
  • the arithmetic circuit is configured to receive the time difference output by the sampling circuit and calculate and obtain a distance measurement result.
  • the distance measuring device includes a laser radar.
  • a mobile platform including the foregoing distance measuring device;
  • a platform body, the distance measuring device is installed on the platform body.
  • the mobile platform includes a drone, robot, car or boat.
  • the non-working surface other than the emission optical path of the optical pulse sequence and the reception optical path of the return light is provided with an anti-reflection material and/or with a reflection having a preset tilt angle A surface to reflect stray light outside the receiver, wherein the non-working surface is a surface through which the light pulse sequence and the return light do not pass.
  • the anti-reflection material can reduce the stray light, reduce the T0 echo intensity inside the ranging device, improve the system performance, and reduce the crosstalk noise between multiple ranging devices, and also reduce the amount of noise received by the ranging device. Stray light noise improves the ranging performance of the system.
  • a reflective surface with a preset tilt angle is provided to reflect stray light outside the detector of the distance measuring device. Since it is set as a reflective surface with a preset tilt angle, it is irradiated to the The stray light on the reflecting surface can be emitted in a specific direction after changing the direction through the reflecting surface, so it can well control the direction of the stray light and reflect it to the detector of the distance measuring device, thereby reducing Or eliminate noise and improve the ranging performance of the ranging device.
  • FIG. 1 shows a partial schematic diagram of a distance measuring device in an embodiment of the present invention
  • 2A shows a schematic diagram of crosstalk between different ranging devices in the first case
  • 2B shows a schematic diagram of crosstalk between different ranging devices in the second case
  • 2C shows a schematic diagram of crosstalk between different ranging devices in the third case
  • FIG. 3 shows a partial schematic diagram of a distance measuring device in still another embodiment of the present invention.
  • FIG. 4 shows a partial schematic diagram of a distance measuring device in another embodiment of the present invention.
  • FIG. 5 shows a partial schematic diagram of a distance measuring device in still another embodiment of the present invention.
  • FIG. 6 shows a schematic structural diagram of a distance measuring device in an embodiment of the present invention
  • FIG. 7 shows a schematic diagram of a distance measuring device in an embodiment of the present invention.
  • the distance measuring device shown in FIG. 1 is a typical transmitting and receiving coaxial distance measuring device.
  • the light pulse sequence 221 emitted by the transmitter 203 passes through the light-transmitting area of the light path changing element 206, and the collimating element 104 is disposed on the exit light path of the light source to collimate the light beam emitted from the light source 103 The light beam is collimated as parallel light.
  • the return light 212 reflected by the object is converged by the collimating element 204 and irradiated to the outside of the light-transmitting area of the optical path changing element 206 after being reflected and then detected by the detector 205 Receive, thereby achieving ranging.
  • T0 echo An important source of internal T0 echo contribution.
  • the T0 echo will interfere with the detection of nearby objects by Lidar and affect the overall performance of the system.
  • the light of the other light sources is received by the detector through the side wall scattering and other paths, which causes the background noise to increase, reduces the system's signal-to-noise ratio, and deteriorates the system's ranging performance ; Or false alarm noise increases.
  • the crosstalk between multiple ranging devices such as lidar will be explained and explained below with reference to FIGS. 2A to 2C.
  • multiple distance measuring devices are installed on a car, or one or more distance measuring devices are installed on multiple mobile platforms in the environment.
  • the above-mentioned setting method may cause crosstalk between multiple ranging devices, that is, the optical signal emitted by one ranging device is received by other ranging devices, and noise is generated.
  • the light pulses emitted by Lidar A impinge on Lidar B and are not in the receiving field of view of Lidar B, but the pulses emitted by Lidar A pass through each of Lidar B’s
  • the reflection and the like of this structure are finally received by its internal detector (the optical signal received by lidar B is generated by structural scattering, etc., hereinafter referred to as'stray light'), forming noise.
  • the position where the laser pulse emitted by Lidar A is irradiated on the object is not in the receiving field of view of Lidar B, and the light pulse emitted by Lidar A is reflected by the object and irradiated to the lidar At B, it is received by Lidar B's detector in the form of stray light, forming noise.
  • Lidar A emits light pulses on an object, after multiple reflections, it illuminates Lidar B and is received by Lidar B in the form of stray light, forming noise (Also called noise).
  • the light pulse emitted by Lidar A or the light pulse emitted by Lidar A reflected by the object is not in the receiving field of view of Lidar B, but can illuminate Lidar B and is inside Lidar B Emission reflection/scattering, etc., are finally received by Lidar B, forming noise.
  • one ranging system may include at least two ranging devices, and the number of the at least two ranging devices may be 2, 3, 4, 5, or more ranging devices, the at least The two distance measuring devices may be installed on different mobile platforms, or may be installed on the same mobile platform.
  • the mobile platform may include an aerial mobile platform or a bottom mobile platform. For example, it may include a drone, a robot, a car, or a ship.
  • the at least two distance measuring devices include two distance measuring devices that are adjacent to each other on the same mobile platform. Since the two distance measuring devices are adjacent and the distance is short, one of the distance measuring devices emits The laser pulse sequence is received by another distance measuring device, which is prone to crosstalk.
  • the at least two ranging devices include two ranging devices disposed on the same mobile platform with an overlapping field of view (FOV), and the two ranging devices may be adjacent ranging devices
  • the device may also be a distance-measuring device. Since the field-of-view of the distance-measuring device has overlapping portions, crosstalk problems are also likely to occur.
  • the at least two distance measuring devices include two distance measuring devices provided on the same mobile platform with the same detection direction, or the at least two distance measuring devices include The two distance measuring devices on the same side of the platform are also prone to crosstalk problems between the distance measuring devices provided in the above manner.
  • the present invention improves the distance measuring device to reduce or avoid crosstalk.
  • the invention provides a distance measuring device, which includes an emitter and a detector, the emitter is used to emit a sequence of light pulses; the detector is used to receive at least part of the return light reflected by the object and convert it into an electrical signal, and according to The electrical signal determines the distance and/or azimuth of the object from the distance measuring device; wherein, it is provided on at least part of the non-working surface outside the emission optical path of the optical pulse sequence and the receiving optical path of the return light There is anti-reflection material and/or a reflective surface with a preset tilt angle is provided to reflect stray light out of the detector, wherein the non-working surface is the light pulse sequence and the return light does not pass Face.
  • stray light can be reduced by setting anti-reflection materials on the non-working surface, the intensity of the T0 echo inside the ranging device can be reduced, system performance can be improved, and crosstalk noise between multiple ranging devices can be reduced. In addition, it can reduce the stray light noise received by the ranging device and improve the ranging performance of the system.
  • a reflective surface with a preset tilt angle is provided on at least part of the non-working surface to reflect stray light outside the detector of the distance measuring device, because it is set to have a preset tilt Angled reflection surface, the stray light irradiated on the reflection surface can change the direction of the reflection surface and exit in a specific direction, so it can control the direction of the stray light and reflect it to the distance measuring device Outside the detector, so as to reduce or eliminate noise, improve the ranging performance of the ranging device.
  • the distance measuring device includes a transmitter 203, and the transmitter 203 is used to transmit a light pulse sequence 221, such as a laser pulse sequence.
  • the distance measuring device further includes a detector 205 for receiving at least part of the return light reflected by the object and converting it into an electrical signal, and determining the distance between the object and the distance measuring device according to the electrical signal and/or Or orientation.
  • the distance measuring device further includes an optical path changing element 206, and the transmitting optical path and the receiving optical path in the distance measuring device are merged before the collimating element by the optical path changing element 206 for changing the The direction of the transmitting optical path or the receiving optical path, so that the transmitting optical path and the receiving optical path are combined, so that the transmitting optical path and the receiving optical path can share the same collimating element, and the optical path is more compact.
  • the transmitter 203 and the detector 205 may use respective collimating elements, and the optical path changing element 206 may be disposed after the collimating element.
  • the optical path changing element 206 is provided with a light-transmitting area, which can be provided in the central area of the optical path changing element 206 or an area off-center.
  • the optical path changing element 206 It may also include a mirror provided with a light-transmitting area in the center area, such as a mirror with a through hole, where the through hole is used to transmit the light pulse sequence 221 emitted by the emitter 203, and the mirror is used to reflect the return light to the detector 205. This can reduce the situation where the support of the small mirror will block the return light in the case of using the small mirror.
  • the optical path changing element 206 may use a small-area mirror to combine the transmitting optical path and the receiving optical path.
  • the distance measuring device includes a structural member, wherein the non-working surface includes a partial surface of the structural member, and the structural member may include a housing of the distance measuring device, the housing having a receiving cavity, wherein the transmitter and the detector are disposed In the accommodating cavity, the structural member further includes a support member, for example, for supporting the optical device included in the distance measuring device, the optical device including but not limited to the optical path changing element, the collimating element, and the optical element of the scanning module
  • the non-working surface includes a part of the surface of the structural member, for example, at least part of the inner surface of the housing, and the part of the inner surface may include a surface facing the emitter and/or detector.
  • the non-working surface also includes a partial surface of the optical device included in the distance measuring device that faces the emitter and/or detector.
  • the divergence angle of the light pulse sequence 221 emitted by the emitter 203 is greater than the opening angle of the light-transmitting region of the light path changing element 206 relative to the emitter 203, for example, the light path changing element 206 is a reflector with a through hole
  • the through hole is provided in the central area of the mirror
  • the divergence angle of the light pulse sequence 221 emitted by the transmitter 203 is greater than the opening angle of the through hole of the optical path changing element 206 relative to the transmitter 203
  • the transmitter 203 emits At least a part of the light pulse sequence 221 passes through the light-transmitting area, and part of the light pulse sequence 221 is irradiated on the surface (ie, non-working surface) facing the emitter 203 and opposite to the light-transmitting area, for example, the light path changes
  • the element 206 faces at least a part of the surface of the emitter 203, or the structural member faces at least a part of the surface of the emitter 203.
  • the sequence of light pulses emitted by the emitter 203 partially irradiates the first structural member 220
  • the surface facing the emitter 203 if no treatment is performed on the surface, stray light is generated after diffuse reflection on the surface (as shown by the dotted line in FIG. 3), and the first structural member 220 reflects the stray light through the optical path
  • the light transmission area of the element 206 is changed and received by the detector 205 to form a T0 echo. Therefore, the non-working surface includes the above-mentioned surfaces, and at least a part of these surfaces is provided with an anti-reflection material and/or a reflective surface with a preset tilt angle to reflect stray light outside the detector.
  • the non-working surface includes a region where the surface of the optical path changing element 206 facing the transmitter 203 receives light pulse sequences other than the light pulse sequence passing through the light-transmitting region, and further, the non-working surface Including the light path changing element 206 facing all the surfaces of the emitter 203 except the light transmission area.
  • the non-working surface includes at least part of a surface of the first structural member 220 for supporting the optical path changing element, the at least part of the surface facing the emitter 203 and receiving the translucent Further, the light pulse sequence other than the light pulse sequence passing through the light-transmitting area, further, the non-working surface may also include all surfaces of the first structural member 220 facing the emitter 203.
  • the distance measuring device further includes a collimating element 204.
  • the collimating element 204 is located on the emitting optical path of the transmitter 203 and is used to transmit the The collimated light pulse sequence exits after being collimated, and condenses at least a part of the return light reflected by the object to the detector 205.
  • the collimating element 204 includes but is not limited to a lens or other suitable collimating element.
  • the distance measuring device further includes a scanning module 202, which is used to sequentially change the propagation path of the optical pulse sequence to different directions and exit, wherein the scanning module 202 includes at least one optical element, To change the propagation path of the optical pulse sequence.
  • the optical element includes two opposite non-parallel surfaces and one side surface located on the peripheral edge, and the non-working surface includes the side surface located on the peripheral edge of the optical element.
  • at least part of the non-working surface of the optical element includes a surface capable of reflecting part of the light pulse sequence to the detector, for example, the optical element is located on the side of the periphery.
  • the thickness of the optical element gradually increases from the first end to the second end opposite to the first end, wherein the non-working surface of the optical element includes an end face located at the second end. Furthermore, the anti-reflection material is provided on the end surface (also called side surface) of the second end.
  • the optical element includes a first optical element 214 and a second optical element 215 that are sequentially arranged along the emission optical path of the emitter, wherein the non-working surface includes the second optical element 215 The end surface 2151 of the second end.
  • At least part of the non-working surface of the optical element includes a surface capable of reflecting part of the light pulse sequence, and part of the light pulse sequence reflected by the non-working surface undergoes at least one reflection and/or at least one time Refracted to the detector.
  • the outgoing light of the emitter 203 passes through the opening of the optical path changing element 206, is collimated by the collimating element 204, is deflected by the first optical element 214, and is partially reflected by the working plane of the second optical element 215
  • the reflected light 2152 will irradiate the non-working surface of the second optical element 215 (for example, on the end surface 2151).
  • the detector 205 After being reflected by the end surface 2151, it is finally received by the detector 205 after multiple reflections and refractions, forming a T0 echo.
  • an anti-reflection material on the non-working surface of the second optical element 215 (for example, on the end surface 2151), its reflectivity can be greatly reduced, so that the intensity of the reflected light 2152 is greatly reduced, and the T0 echo is reduced, or, in
  • the non-working surface of the second optical element 215 (for example, on the end surface 2151) is provided with a reflective surface with a preset inclination angle, which reflects the reflected light out of the detector and controls its reflection direction so that the reflected light will not eventually Received by the detector 205, thereby reducing the T0 echo.
  • the stray light may include: a part of the light pulse sequence emitted by the transmitter that is not used for detection may be received by the detector after at least one reflection and/or at least one refraction Rays of light, and/or other light rays that can be received by the detector after at least one reflection and/or at least one refraction other than the light pulse sequence and the return light.
  • the distance measuring device further includes a second structural member 222 that can be used to support the collimating element 204 and the optical element of the scanning module, such as Supporting the first optical element 214 and the second optical element 215, wherein the second structural member 222 may be an integrated structure that is used to support the collimating element 204, and also to support the optical elements spaced apart from the collimating element 204, or Each of the collimating element 204 and the optical element of the scanning module uses different second structural members 222.
  • the non-working surface of the second structural member 222 includes a surface capable of reflecting stray light to the detector. More specifically, the non-working surface of the second structural member includes a surface facing the detector that reflects at least part of stray light to the detector. Setting anti-reflective materials and/or reflecting surfaces with preset tilt angles on the surfaces of other optical elements or structures other than the optical working surface can reduce the stray light energy received by the detector, thereby effectively reducing The generation of crosstalk.
  • an anti-reflection material (not shown) is provided on at least part of the non-working surface outside the transmission optical path of the optical pulse sequence and the reception optical path of the return light, wherein, The non-working surface is a surface through which the light pulse sequence and the return light do not pass.
  • the non-working surface includes the surface illustrated in the foregoing, and other non-working surfaces that may cause crosstalk.
  • the anti-reflective material includes at least one of a light-absorbing material and a low-reflectivity material, where the low-reflectivity material may include a low-reflectivity material with a reflectivity of less than 20%, and further, the low-reflectivity material may include a reflectivity of less than 10 % Low reflectivity materials, where the lower the reflectance, the better.
  • the low-reflectivity material may include a low-reflectivity coating or an adhesive film with a low-reflectivity material on the surface, or any other suitable low-reflectivity material, and the anti-reflection material may be disposed on the non-working surface by spraying or pasting .
  • the light-absorbing material includes at least one of matting ink, black glue and black foam, or other suitable light-absorbing materials.
  • the light-absorbing material can be arranged on the non-working surface by spraying or pasting, for example, by coating or spraying, etc.
  • a light absorbing material such as matting ink and black glue is provided on the non-working surface, and a light absorbing material such as black foam is provided on the non-working surface by, for example, pasting.
  • a reflective surface having a preset tilt angle is provided on at least part of the non-working surface outside the transmission optical path of the optical pulse sequence and the reception optical path of the return light, to The stray light is reflected outside the detector, wherein the non-working surface is a surface through which the light pulse sequence and the return light do not pass.
  • the non-working surface includes the surface exemplified in the foregoing, and other non-working surfaces that may cause crosstalk.
  • the stray light irradiated to the reflective surface passes through the The direction of the reflection surface becomes more controllable, and by setting the preset tilt angle reasonably, the reflected stray light is controlled to be outside the detector, thereby reducing or eliminating crosstalk, including reducing or eliminating the T0 echo, and Reduce crosstalk and noise generated by stray light in the environment, improve system performance.
  • the inclination angle of the reflection surface of the above-mentioned preset inclination angle is specifically determined according to the direction of the stray light it reflects and the position of the detector, as long as it is any suitable preset inclination angle that can reflect the stray light outside the detector Be applicable.
  • the reflecting surface may be a part of the non-working surface set as a tilted surface with a preset tilt angle, and the tilted surface is set as a mirror surface as a reflective surface, or in other suitable manners in the emission optical path of the light pulse sequence and the At least a part of the non-working surface outside the receiving light path of the returned light is provided with a reflective surface having a preset inclination angle to reflect stray light outside the detector.
  • the solution in the embodiment of the present invention can reduce or eliminate the T0 echo, thereby avoiding the interference of the T0 echo on the detection of nearby objects by the ranging device, improving the overall performance of the system, and when multiple ranging devices are used at the same time
  • the solution of the present invention can also reduce or eliminate crosstalk between different ranging devices.
  • the solution of the present invention can prevent the light of other light sources from being received by the detector, thereby reducing or eliminating the noise floor, improving the signal-to-noise ratio of the system, and optimizing the system Ranging performance, and reduce or eliminate false alarm noise.
  • the distance measuring device includes a laser radar.
  • the distance measuring device is only used as an example.
  • the distance device can also be applied to this application.
  • the above solutions provided by various embodiments of the present invention to provide an anti-reflective material on a non-working surface of a distance measuring device and/or a reflective surface with a preset inclination angle can be applied to a distance measuring device.
  • the distance measuring device may be a laser radar, Electronic equipment such as laser ranging equipment.
  • the distance measuring device is used to sense external environment information, for example, distance information, azimuth information, reflection intensity information, speed information, etc. of the environmental target.
  • the distance measuring device can detect the distance between the detecting object and the distance measuring device by measuring the time of light propagation between the distance measuring device and the detection object, that is, Time-of-Flight (TOF).
  • TOF Time-of-Flight
  • the distance measuring device may also detect the distance between the detected object and the distance measuring device through other techniques, such as a distance measuring method based on phase shift measurement, or a distance measuring method based on frequency shift measurement. There are no restrictions.
  • the distance measuring device 100 may include a transmitting circuit 110, a receiving circuit 120, a sampling circuit 130 and an arithmetic circuit 140.
  • the transmission circuit 110 may transmit a sequence of light pulses (for example, a sequence of laser pulses).
  • the receiving circuit 120 can receive the optical pulse sequence reflected by the detected object, and photoelectrically convert the optical pulse sequence to obtain an electrical signal, which can be output to the sampling circuit 130 after processing the electrical signal.
  • the sampling circuit 130 may sample the electrical signal to obtain the sampling result.
  • the arithmetic circuit 140 may determine the distance between the distance measuring device 100 and the detected object based on the sampling result of the sampling circuit 130.
  • the distance measuring device 100 may further include a control circuit 150, which may control other circuits. For example, it may control the working time of each circuit and/or set parameters for each circuit.
  • a control circuit 150 may control other circuits. For example, it may control the working time of each circuit and/or set parameters for each circuit.
  • the distance measuring device shown in FIG. 6 includes a transmitting circuit, a receiving circuit, a sampling circuit, and an arithmetic circuit for emitting a beam of light for detection
  • the embodiments of the present application are not limited thereto, and the transmitting circuit
  • the number of any one of the receiving circuit, the sampling circuit, and the arithmetic circuit may also be at least two, for emitting at least two light beams in the same direction or respectively in different directions; wherein, the at least two light paths may be simultaneously
  • the shot may be shot at different times.
  • the light-emitting chips in the at least two emission circuits are packaged in the same module.
  • each emitting circuit includes a laser emitting chip, and the die in the laser emitting chips in the at least two emitting circuits are packaged together and housed in the same packaging space.
  • the distance measuring device 100 may further include a scanning module for changing at least one laser pulse sequence emitted by the transmitting circuit to change the propagation direction.
  • the module including the transmitting circuit 110, the receiving circuit 120, the sampling circuit 130, and the arithmetic circuit 140, or the module including the transmitting circuit 110, the receiving circuit 120, the sampling circuit 130, the arithmetic circuit 140, and the control circuit 150 may be referred to as a measurement Distance module, the distance measuring module may be independent of other modules, for example, a scanning module.
  • a coaxial optical path may be used in the distance measuring device, that is, the light beam emitted by the distance measuring device and the reflected light beam share at least part of the optical path in the distance measuring device.
  • the distance measuring device may also adopt an off-axis optical path, that is, the light beam emitted from the distance measuring device and the reflected light beam are respectively transmitted along different optical paths in the distance measuring device.
  • 7 shows a schematic diagram of an embodiment of the distance measuring device of the present invention using a coaxial optical path.
  • the distance measuring device 200 includes a distance measuring module 210.
  • the distance measuring module 210 includes a transmitter 203 (which may include the above-mentioned transmitting circuit), a collimating element 204, and a detector 205 (which may include the above-mentioned receiving circuit, sampling circuit, and arithmetic circuit) and Optical path changing element 206.
  • the distance measuring module 210 is used to emit a light beam and receive back light, and convert the back light into an electrical signal.
  • the transmitter 203 may be used to transmit a light pulse sequence.
  • the transmitter 203 may emit a sequence of laser pulses.
  • the laser beam emitted by the transmitter 203 is a narrow-bandwidth beam with a wavelength outside the visible light range.
  • the collimating element 204 is disposed on the exit optical path of the emitter, and is used to collimate the light beam emitted from the emitter 203, and collimate the light beam emitted by the emitter 203 into parallel light to the scanning module.
  • the collimating element is also used to converge at least a part of the return light reflected by the detection object.
  • the collimating element 204 may be a collimating lens or other element capable of collimating the light beam.
  • the optical path changing element 206 is used to merge the transmitting optical path and the receiving optical path in the distance measuring device before the collimating element 204, so that the transmitting optical path and the receiving optical path can share the same collimating element, so that the optical path More compact.
  • the transmitter 203 and the detector 205 may respectively use respective collimating elements, and the optical path changing element 206 is disposed on the optical path behind the collimating element.
  • the light path changing element can use a small area mirror to The transmitting optical path and the receiving optical path are combined.
  • the light path changing element may also use a reflector with a through hole, where the through hole is used to transmit the outgoing light of the emitter 203, and the reflector is used to reflect the return light to the detector 205. In this way, it is possible to reduce the blocking of the return light by the support of the small mirror in the case of using the small mirror.
  • the optical path changing element is offset from the optical axis of the collimating element 204. In some other implementations, the optical path changing element may also be located on the optical axis of the collimating element 204.
  • the distance measuring device 200 further includes a scanning module 202.
  • the scanning module 202 is placed on the exit optical path of the distance measuring module 210.
  • the scanning module 202 is used to change the transmission direction of the collimated light beam 219 emitted through the collimating element 204 and project it to the outside environment, and project the return light to the collimating element 204 .
  • the returned light is converged on the detector 205 via the collimating element 204.
  • the scanning module 202 may include at least one optical element for changing the propagation path of the light beam, wherein the optical element may change the propagation path of the light beam by reflecting, refracting, diffracting, etc. the light beam.
  • the scanning module 202 includes a lens, a mirror, a prism, a galvanometer, a grating, a liquid crystal, an optical phased array (Optical Phased Array), or any combination of the above optical elements.
  • at least part of the optical element is moving, for example, the at least part of the optical element is driven to move by a driving module, and the moving optical element can reflect, refract or diffract the light beam to different directions at different times.
  • multiple optical elements of the scanning module 202 may rotate or vibrate about a common axis 209, and each rotating or vibrating optical element is used to continuously change the direction of propagation of the incident light beam.
  • the multiple optical elements of the scanning module 202 may rotate at different rotation speeds, or vibrate at different speeds.
  • at least part of the optical elements of the scanning module 202 can rotate at substantially the same rotational speed.
  • the multiple optical elements of the scanning module may also rotate around different axes.
  • the multiple optical elements of the scanning module may also rotate in the same direction, or rotate in different directions; or vibrate in the same direction, or vibrate in different directions, which is not limited herein.
  • the scanning module 202 includes a first optical element 214 and a driver 216 connected to the first optical element 214.
  • the driver 216 is used to drive the first optical element 214 to rotate about a rotation axis 209 to change the first optical element 214 The direction of the collimated light beam 219.
  • the first optical element 214 projects the collimated light beam 219 to different directions.
  • the angle between the direction of the collimated light beam 219 after the first optical element changes and the rotation axis 209 changes as the first optical element 214 rotates.
  • the first optical element 214 includes a pair of opposed non-parallel surfaces through which the collimated light beam 219 passes.
  • the first optical element 214 includes a prism whose thickness varies along at least one radial direction.
  • the first optical element 214 includes a wedge-angle prism, aligning the straight beam 219 for refraction.
  • the scanning module 202 further includes a second optical element 215 that rotates about a rotation axis 209.
  • the rotation speed of the second optical element 215 is different from the rotation speed of the first optical element 214.
  • the second optical element 215 is used to change the direction of the light beam projected by the first optical element 214.
  • the second optical element 215 is connected to another driver 217, and the driver 217 drives the second optical element 215 to rotate.
  • the first optical element 214 and the second optical element 215 may be driven by the same or different drivers, so that the first optical element 214 and the second optical element 215 have different rotation speeds and/or rotations, thereby projecting the collimated light beam 219 to the outside space Different directions can scan a larger spatial range.
  • the controller 218 controls the drivers 216 and 217 to drive the first optical element 214 and the second optical element 215, respectively.
  • the rotation speeds of the first optical element 214 and the second optical element 215 can be determined according to the area and pattern expected to be scanned in practical applications.
  • Drives 216 and 217 may include motors or other drives.
  • the second optical element 215 includes a pair of opposed non-parallel surfaces through which the light beam passes. In one embodiment, the second optical element 215 includes a prism whose thickness varies along at least one radial direction. In one embodiment, the second optical element 215 includes a wedge angle prism.
  • the scanning module 202 further includes a third optical element (not shown) and a driver for driving the third optical element to move.
  • the third optical element includes a pair of opposed non-parallel surfaces through which the light beam passes.
  • the third optical element includes a prism whose thickness varies along at least one radial direction.
  • the third optical element includes a wedge angle prism. At least two of the first, second and third optical elements rotate at different rotational speeds and/or turns.
  • each optical element in the scanning module 202 can project light into different directions, such as the direction and direction 213 of the projected light 211, thus scanning the space around the distance measuring device 200.
  • the light 211 projected by the scanning module 202 hits the detection object 201, a part of the light is reflected by the detection object 201 to the distance measuring device 200 in a direction opposite to the projected light 211.
  • the reflected light 212 reflected by the detection object 201 passes through the scanning module 202 and enters the collimating element 204.
  • the detector 205 is placed on the same side of the collimating element 204 as the emitter 203.
  • the detector 205 is used to convert at least part of the returned light passing through the collimating element 204 into an electrical signal.
  • each optical element is coated with an antireflection coating.
  • the thickness of the antireflection film is equal to or close to the wavelength of the light beam emitted by the emitter 203, which can increase the intensity of the transmitted light beam.
  • a filter layer is plated on the surface of an element on the beam propagation path in the distance measuring device, or a filter is provided on the beam propagation path to transmit at least the wavelength band of the beam emitted by the transmitter, Reflect other bands to reduce the noise caused by ambient light to the receiver.
  • the transmitter 203 may include a laser diode through which laser pulses in the order of nanoseconds are emitted.
  • the laser pulse receiving time may be determined, for example, by detecting the rising edge time and/or the falling edge time of the electrical signal pulse. In this way, the distance measuring device 200 can calculate the TOF using the pulse reception time information and the pulse emission time information, thereby determining the distance between the detection object 201 and the distance measuring device 200.
  • the distance and orientation detected by the distance measuring device 200 can be used for remote sensing, obstacle avoidance, mapping, modeling, navigation, and the like.
  • the distance measuring device of the embodiment of the present invention can be applied to a mobile platform, and the distance measuring device can be installed on the platform body of the mobile platform.
  • a mobile platform with a distance measuring device can measure the external environment, for example, measuring the distance between the mobile platform and obstacles for obstacle avoidance and other purposes, and performing two-dimensional or three-dimensional mapping on the external environment.
  • the mobile platform includes at least one of an unmanned aerial vehicle, a car, a remote control car, a robot, a boat, and a camera.
  • the platform body When the distance measuring device is applied to an unmanned aerial vehicle, the platform body is the fuselage of the unmanned aerial vehicle.
  • the platform body When the distance measuring device is applied to an automobile, the platform body is the body of the automobile.
  • the car may be a self-driving car or a semi-automatic car, and no restriction is made here.
  • the platform body When the distance measuring device is applied to a remote control car, the platform body is the body of the remote control car.
  • the platform body When the distance measuring device is applied to a robot, the platform body is a robot.
  • the platform body When the distance measuring device is applied to a camera, the platform body is the camera itself.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a division of logical functions.
  • there may be other divisions for example, multiple units or components may be combined or Can be integrated into another device, or some features can be ignored, or not implemented.
  • the various component embodiments of the present invention may be implemented in hardware, or implemented in software modules running on one or more processors, or implemented in a combination thereof.
  • a microprocessor or a digital signal processor (DSP) may be used to implement some or all functions of some modules according to embodiments of the present invention.
  • DSP digital signal processor
  • the present invention can also be implemented as a device program (e.g., computer program and computer program product) for performing a part or all of the method described herein.
  • Such a program implementing the present invention may be stored on a computer-readable medium, or may have the form of one or more signals.
  • Such a signal can be downloaded from an Internet website, or provided on a carrier signal, or provided in any other form.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

提供一种测距装置及移动平台,测距装置包括发射器(203)和探测器(205),发射器(203)用于发射光脉冲序列;探测器(205)用于接收经物体反射的回光的至少部分并转换为电信号,以及根据电信号确定物体与测距装置的距离和/或方位;其中,在光脉冲序列的发射光路和回光的接收光路之外的至少部分非工作面上设置有减反射材料和/或设置有具有预设倾斜角度的反射面,以反射杂散光至探测器之外,其中,非工作面为光脉冲序列和回光没有经过的面。通过在非工作面上设置减反射材料和/或设置具有预设倾斜角度的反射面,减少或消除串扰噪声,提高测距装置的性能。

Description

一种测距装置及移动平台
说明书
技术领域
本发明总地涉及测距装置技术领域,更具体地涉及一种测距装置统及移动平台。
背景技术
例如激光雷达的测距装置是对外界的感知系统。以基于飞行时间(Time of flight,TOF)原理的激光雷达为例,激光雷达向外发射脉冲,接收外界物体反射产生的回波。通过测量回波的延时,能够计算出在该发射方向上物体与激光雷达的距离。通过动态的调整激光的出射方向,能够测量不同方位的物体与激光雷达的距离信息,从而实现对三维空间的建模。
目前测距装置例如发射和接收共轴的激光雷达在应用时,很容易出现以下问题:
1、发射光会有部分直接或者经过光学元件工作面反射后打到结构件或者光学元件非工作面上,形成杂散光,经过一次或多次反射后,可能被接收探测器接收到,形成激光雷达内部T0回波贡献的重要来源。T0回波会对激光雷达探测近处物体产生干扰,影响系统整体性能。
2、当激光雷达的使用环境中存在其他光源时,其他光源的光经过侧壁散射等路径被探测器接收探测,造成本底噪声增大,降低系统的信噪比,恶化系统的测距性能;或者虚警噪点增大。
3、当多个激光雷达同时使用时,不同的雷达之间会发生串扰:一个激光雷达接收到另一个激光雷达发射的光脉冲,产生串扰噪声。
因此,鉴于上述问题的存在,有必要对测距装置进行改进。
发明内容
为了解决上述问题中的至少一个而提出了本发明。具体地,本发明一方面提供一种测距装置,所述测距装置包括:
发射器,用于发射光脉冲序列;
探测器,用于接收经物体反射的回光的至少部分并转换为电信号,以及根据所述电信号确定所述物体与所述测距装置的距离和/或方位;
其中,在所述光脉冲序列的发射光路和所述回光的接收光路之外的至少 部分非工作面上设置有减反射材料和/或设置有具有预设倾斜角度的反射面,以反射杂散光至所述探测器之外,其中,所述非工作面为所述光脉冲序列和所述回光没有经过的面。
示例性地,所述测距装置包括结构件,其中,所述非工作面包括所述结构件的至少部分面。
示例性地,所述测距装置还包括:光路改变元件,用于改变所述发射光路或所述接收光路的方向,以使所述发射光路和所述接收光路合并,所述光路改变元件设置有透光区域,所述非工作表面包括所述光路改变元件面向所述发射器的面上接收除透过所述透光区域的光脉冲序列以外的光脉冲序列的区域。
示例性地,所述非工作表面包括所述光路改变元件面向所述发射器的所述透光与其以外的全部面。
示例性地,所述光路改变元件包括中心区域设置有透光区域的反射镜,其中,所述发射器发射的所述光脉冲序列的发散角大于所述透光区域相对所述发射器的张角。
示例性地,所述非工作面包括用于支撑光路改变元件的第一结构件的至少部分面。
示例性地,所述非工作面还包括面向所述发射器并与所述透光区域相对的面。。
示例性地,所述测距装置还包括:
准直元件,所述准直元件位于所述发射器的发射光路上,用于将所述发射器发射的光脉冲序列准直后出射,并将经物体反射的回光的至少一部分汇聚至所述探测器;
第二结构件,用于支撑所述准直元件,其中,所述第二结构件的非工作面包括能够反射杂散光至所述探测器的表面。
示例性地,所述测距装置还包括扫描模块,用于将所述光脉冲序列的传播路径依次改变至不同方向出射,其中,所述扫描模块包括至少一个光学元件,用于改变所述光脉冲序列的传播路径。
示例性地,所述光学元件包括两个相对的非平行面和一个位于周缘的侧面,非工作面包括所述侧面。
示例性地,所述光学元件的至少部分非工作面包括能够反射部分所述光脉冲序列至所述探测器的面。
示例性地,所述光学元件的至少部分非工作面包括能够反射部分所述光脉冲序列的面,经该非工作面反射后的部分所述光脉冲序列经过至少一次反射和/或至少一次折射至所述探测器。
示例性地,所述光学元件的厚度从第一端向与该第一端相对的第二端逐渐增大,其中,所述光学元件的非工作面包括位于所述第二端的端面,所述减反射材料设置在所述第二端的端面。
示例性地,所述光学元件包括沿所述发射光路依次排布的第一光学元件和第二光学元件,其中,所述非工作面包括所述第二光学元件的所述第二端的端面。
示例性地,所述测距装置还包括第二结构件,用于支撑所述光学元件,其中,所述第二结构件的非工作面包括面向所述探测器反射至少部分杂散光至所述探测器的面。
示例性地,所述第一光学元件包括楔角棱镜,和/或,所述第二光学元件包括楔角棱镜。
示例性地,所述杂散光包括:
所述发射器发射的未用于探测的部分所述光脉冲序列经过至少一次反射和/或至少一次折射后可被所述探测器接收的光线,和/或,
所述光脉冲序列和所述回光之外的经过至少一次反射和/或至少一次折射后可被所述探测器接收的其他光线。
示例性地,所述减反射材料包括吸光材料和低反射率材料中的至少一种,所述减反射材料以喷涂或粘贴的方式设置在所述非工作面上。
示例性地,所述吸光材料包括消光油墨、黑色胶水和黑色泡沫中的至少一种。
示例性地,所述探测器包括:
接收电路,用于将接收到的经物体反射的所述回光转换为电信号输出;
采样电路,用于对所述接收电路输出的所述电信号进行采样,以测量所述光脉冲序列从发射到接收之间的时间差;
运算电路,用于接收所述采样电路输出的所述时间差,计算获得距离测量结果。
示例性地,所述测距装置包括激光雷达。
本发明再一方面还提供一种移动平台,所述移动平台包括前述的测距装置;和
平台本体,所述测距装置安装在所述平台本体上。
示例性地,所述移动平台包括无人机、机器人、车或船。
本发明的测距装置中在所述光脉冲序列的发射光路和所述回光的接收光路之外的至少部分非工作面上设置有减反射材料和/或设置有具有预设倾斜角度的反射面,以反射杂散光至所述接收器之外,其中,所述非工作面为所述光脉冲序列和所述回光没有经过的面。其中通过设置减反射材料能够减少杂散光,降低测距装置内部的T0回波强度,提高系统性能,以及减少多个测距装置之间的串扰噪声,并且还能减小测距装置接收到的杂散光噪声,提高系统的测距性能。
而在至少部分非工作面上设置有具有预设倾斜角度的反射面,以反射杂散光至测距装置的探测器之外,由于将其设置为具有预设倾斜角度的反射面,照射到该反射面上的杂散光能够经反射面改变方向后沿着特定的方向出射,因此能够很好的控制杂散光的方向,并将其反射杂散光至测距装置的探测器之外,从而减小或者消除噪声,提高测距装置的测距性能。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1示出了本发明一个实施例中的测距装置的局部示意图;
图2A示出了第一种情况下不同测距装置之间发生串扰的示意图;
图2B示出了第二种情况下不同测距装置之间发生串扰的示意图;
图2C示出了第三种情况下不同测距装置之间发生串扰的示意图;
图3示出了本发明又一个实施例中的测距装置的局部示意图;
图4示出了本发明另一个实施例中的测距装置的局部示意图;
图5示出了本发明再一个实施例中的测距装置的局部示意图;
图6示出了本发明一实施例中的测距装置的架构示意图;
图7示出了本发明一个实施例中的测距装置的示意图。
具体实施方式
为了使得本发明的目的、技术方案和优点更为明显,下面将参照附图详 细描述根据本发明的示例实施例。显然,所描述的实施例仅仅是本发明的一部分实施例,而不是本发明的全部实施例,应理解,本发明不受这里描述的示例实施例的限制。基于本发明中描述的本发明实施例,本领域技术人员在没有付出创造性劳动的情况下所得到的所有其它实施例都应落入本发明的保护范围之内。
在下文的描述中,给出了大量具体的细节以便提供对本发明更为彻底的理解。然而,对于本领域技术人员而言显而易见的是,本发明可以无需一个或多个这些细节而得以实施。在其他的例子中,为了避免与本发明发生混淆,对于本领域公知的一些技术特征未进行描述。
应当理解的是,本发明能够以不同形式实施,而不应当解释为局限于这里提出的实施例。相反地,提供这些实施例将使公开彻底和完全,并且将本发明的范围完全地传递给本领域技术人员。
在此使用的术语的目的仅在于描述具体实施例并且不作为本发明的限制。在此使用时,单数形式的“一”、“一个”和“所述/该”也意图包括复数形式,除非上下文清楚指出另外的方式。还应明白术语“组成”和/或“包括”,当在该说明书中使用时,确定所述特征、整数、步骤、操作、元件和/或部件的存在,但不排除一个或更多其它的特征、整数、步骤、操作、元件、部件和/或组的存在或添加。在此使用时,术语“和/或”包括相关所列项目的任何及所有组合。
发射和接收共轴的测距装置,例如激光雷达,这种结构可以降低系统复杂度,有利于降低成本。在光路中需要加入反射镜来将接收和光路分开,以实现对接收回波的测量,如图1所示的测距装置为一种典型的发射和接收共轴的测距装置,在该结构中,发射器203发射的光脉冲序列221透过光路改变元件206的透光区域,准直元件104设置于光源的出射光路上,用于准直从光源103发出的光束,将发射器203发出的光束准直为平行光,该平行光投射至物体上后,被物体反射后的回光212再经过准直元件204会聚后照射至光路改变元件206的透光区域的外侧被反射后被探测器205接收,从而实现测距。
然而,当前发射和接收共轴的测距装置存在以下问题:
1、发射光会有部分直接或者经过光学器件工作面反射后打到结构件或者光学器件非工作面上,形成杂散光,经过一次或多次反射后,可能被探测器接收到,形成激光雷达内部T0回波贡献的重要来源。T0回波会对激光雷达 探测近处物体产生干扰,影响系统整体性能。
2、当激光雷达的使用环境中存在其他光源时,其他光源的光经过侧壁散射等路径被探测器接收探测,造成本底噪声增大,降低系统的信噪比,恶化系统的测距性能;或者虚警噪点增大。
3、当多个例如激光雷达的测距装置同时使用时,不同的测距装置之间会发生串扰:一个测距装置接收到另一个测距装置发射的光脉冲,产生串扰噪声。
下面结合附图2A至图2C对多个例如激光雷达的测距装置之间的串扰问题进行解释和说明。比如,一辆车上安装多台测距装置,或者环境中多个移动平台上分别安装有一个或多个测距装置。上述设置方式会导致多台测距装置之间出现串扰,也即一台测距装置发射的光信号被其他测距装置接收,产生噪点。
在如图2A所示的第一种情况下,激光雷达A发射的光脉冲照射到激光雷达B上,不在激光雷达B的接收视场内,但激光雷达A发射的脉冲经过激光雷达B内部各种结构的反射等最终被其内部的探测器接收到(激光雷达B接收的光信号为结构散射等产生的,以下简称‘杂散光’),形成噪声。
在如图2B所示的第二种情况下,激光雷达A发射光脉冲照射到物体上的位置不在激光雷达B的接收视场中,激光雷达A发射的光脉冲经物体反射后照射到激光雷达B处,以杂散光的方式被激光雷达B的探测器接收到,形成噪声。
在如图2C所示的第三种情况下,激光雷达A发射光脉冲照射到物体上后,经多次反射后,照射到激光雷达B,以杂散光的方式被激光雷达B接收,形成噪声(也称噪点)。
在上述三种情况中,激光雷达A发射的光脉冲或者物体反射的激光雷达A发射的光脉冲不在激光雷达B的接收视场内,但是能够照射到激光雷达B,并在激光雷达B的内部发射反射/散射等,最终被激光雷达B接收到,形成噪点。
作为示例,一个测距系统可以包括至少两个测距装置,所述至少两个测距装置的数量可以是2个、3个、4个、5个或者更多个测距装置,所述至少两个测距装置可以设置在不同的移动平台上,或者也可以设置在同一个移动平台上,移动平台可以包括空中移动平台或者底面移动平台,例如可以包括无人机、机器人、车或船。
在一个示例中,所述至少两个测距装置包括设置在同一个移动平台上相邻的两个测距装置,由于两个测距装置相邻,距离较近,使得其中一个测距装置发射的激光脉冲序列被另一个测距装置所接收,从而容易产生串扰。
在另一个示例中,所述至少两个测距装置包括设置在同一个移动平台上视场(FOV)具有重叠部分的两个测距装置,该两个测距装置可以是相邻的测距装置,也可以是间隔的测距装置,其中由于测距装置的视场具有重叠部分,因此,也容易产生串扰问题。
在又一个示例中,所述至少两个测距装置包括设置在同一个移动平台上具有相同的探测方向的两个测距装置,或者,所述至少两个测距装置包括设置在同一个移动平台上同一侧的两个测距装置,按照上述方式设置的测距装置之间也容易产生串扰问题。
针对以上问题,本发明对测距装置进行了改进,以减小或避免串扰。本发明提供一种测距装置,所述测距装置包括发射器和探测器,发射器用于发射光脉冲序列;探测器用于接收经物体反射的回光的至少部分并转换为电信号,以及根据所述电信号确定所述物体与所述测距装置的距离和/或方位;其中,在所述光脉冲序列的发射光路和所述回光的接收光路之外的至少部分非工作面上设置有减反射材料和/或设置有具有预设倾斜角度的反射面,以反射杂散光至所述探测器之外,其中,所述非工作面为所述光脉冲序列和所述回光没有经过的面。本发明实施例的方案中通过在非工作面上设置减反射材料能够减少杂散光,降低测距装置内部的T0回波强度,提高系统性能,以及减少多个测距装置之间的串扰噪声,并且还能减小测距装置接收到的杂散光噪声,提高系统的测距性能。
而本发明实施例的方案中通过在至少部分非工作面上设置有具有预设倾斜角度的反射面,以反射杂散光至测距装置的探测器之外,由于将其设置为具有预设倾斜角度的反射面,照射到该反射面上的杂散光能够经反射面改变方向后沿着特定的方向出射,因此能够很好的控制杂散光的方向,并将其反射杂散光至测距装置的探测器之外,从而减小或者消除噪声,提高测距装置的测距性能。
为了彻底理解本发明,将在下列的描述中提出详细的结构,以便阐释本发明提出的技术方案。本发明的可选实施例详细描述如下,然而除了这些详细描述外,本发明还可以具有其他实施方式。下面结合附图,对本申请的测距装置进行详细说明。在不冲突的情况下,下述的实施例及实施方式中的特 征可以相互组合。
在一个实施例中,如图3所示,所述测距装置包括发射器203,发射器203用于发射光脉冲序列221,例如激光脉冲序列。测距装置还包括探测器205,探测器205用于接收经物体反射的回光的至少部分并转换为电信号,以及根据所述电信号确定所述物体与所述测距装置的距离和/或方位。
在如图3所示实施例中,所述测距装置还包括光路改变元件206,通过光路改变元件206来将测距装置内的发射光路和接收光路在准直元件之前合并,用于改变所述发射光路或所述接收光路的方向,以使所述发射光路和所述接收光路合并,从而使得发射光路和接收光路可以共用同一个准直元件,使得光路更加紧凑。在其他的一些实现方式中,也可以发射器203和探测器205分别使用各自的准直元件,将光路改变元件206设置在准直元件之后。
在图3所示实施例中,所述光路改变元件206设置有透光区域,该透光区域可以设置在光路改变元件206的中心区域,或者偏离中心的区域,可选地,光路改变元件206也可以包括中心区域设置有透光区域的反射镜,例如带通孔的反射镜,其中该通孔用于透射发射器203发射的光脉冲序列221,反射镜用于将回光反射至探测器205。这样可以减小采用小反射镜的情况中小反射镜的支架会对回光的遮挡的情况。由于光源103出射的光束的光束发散角较小,测距装置所接收到的回光的光束发散角较大,所以光路改变元件206可以采用小面积的反射镜来将发射光路和接收光路合并。
在一个实施例中,所述测距装置包括结构件,其中,非工作面包括结构件的部分面,结构件可以包括测距装置的外壳,该外壳具有容纳腔,其中发射器和探测器设置在该容纳腔内,结构件还包括支撑件,该支撑件例如用于支撑测距装置所包括的光学器件,所述光学器件包括但不限于光路改变元件、准直元件、扫描模块的光学元件等,非工作面包括结构件的部分表面,例如外壳的至少部分内表面,该部分内表面可以包括面向发射器和/或探测器的面。在其他实施例中,非工作面还包括测距装置包括的光学器件的面向发射器和/或探测器的部分面。
具体地,所述发射器203发射的所述光脉冲序列221的发散角大于光路改变元件206的透光区域相对所述发射器203的张角,例如光路改变元件206为带通孔的反射镜,该通孔设置在反射镜的中心区域,发射器203发射的所述光脉冲序列221的发散角大于光路改变元件206的通孔相对所述发射器203的张角,所述发射器203发射的所述光脉冲序列221的至少一部分透过所述 透光区域,部分光脉冲序列221会照射到面向发射器203并与透光区域相对的面(也即非工作面)上,例如光路改变元件206面向发射器203的至少部分面,或者,结构件面向发射器203的至少部分面,在图3所示的实施例中,发射器203发射的光脉冲序列部分照射至第一结构件220面向所述发射器203的面,如果不对该表面做任何处理,在该面发生漫反射后,产生杂散光(如图3中虚线所示),第一结构件220反射该杂散光穿过光路改变元件206的透光区域,而被探测器205接收到,形成T0回波。因此,所述非工作面包括上述面,在该些面的至少部分区域设置有减反射材料和/或设置有具有预设倾斜角度的反射面,以反射杂散光至所述探测器之外。
在一个具体示例中,非工作面包括光路改变元件206面向所述发射器203的面上接收除透过所述透光区域的光脉冲序列以外的光脉冲序列的区域,更进一步,非工作面包括光路改变元件206面向所述发射器203的除透光区域以外的全部面。
在另一个具体示例中,如图3所示,所述非工作面包括用于支撑光路改变元件的第一结构件220的至少部分面,该至少部分面面向所述发射器203并接收除透过所述透光区域的光脉冲序列以外的光脉冲序列,更进一步,所述非工作面还可以包括在第一结构件220面向发射器203的全部面。
在另一个实施例中,如图4所示,测距装置还包括准直元件204,所述准直元件204位于所述发射器203的发射光路上,用于将所述发射器203发射的光脉冲序列准直后出射,并将经物体反射的回光的至少一部分汇聚至所述探测器205。准直元件204包括但不限于透镜或其他适合的准直元件。
如图4所示,测距装置还包括扫描模块202,扫描模块202用于将所述光脉冲序列的传播路径依次改变至不同方向出射,其中,所述扫描模块202包括至少一个光学元件,用于改变所述光脉冲序列的传播路径。所述光学元件包括两个相对的非平行面和一个位于周缘的侧面,非工作面包括光学元件位于周缘的侧面。可选地,所述光学元件的至少部分非工作面包括能够反射部分所述光脉冲序列至所述探测器的面,例如光学元件位于周缘的侧面。
所述光学元件的厚度从第一端向与该第一端相对的第二端逐渐增大,其中,所述光学元件的非工作面包括位于所述第二端的端面。更进一步,所述减反射材料设置在所述第二端的端面(也可称为侧面)。例如,如图4所示,所述光学元件包括沿发射器的发射光路依次排布的第一光学元件214和第二光学元件215,其中,所述非工作面包括所述第二光学元件215的所述第二 端的端面2151。
在一个示例中,所述光学元件的至少部分非工作面包括能够反射部分所述光脉冲序列的面,经该非工作面反射后的部分所述光脉冲序列经过至少一次反射和/或至少一次折射至所述探测器。例如图4所示,发射器203的出射光线穿过光路改变元件206的开孔,由准直元件204准直,经过第一光学元件214发生偏折,被第二光学元件215工作平面反射一部分,反射光线2152会照射到第二光学元件215的非工作面上(例如端面2151上),被端面2151反射后经过多次反射和折射最终被探测器205接收到,形成T0回波。而通过在所述第二光学元件215的非工作面上(例如端面2151上)设置减反射材料,可以大大降低其反射率,使得反射光线2152强度大大减弱,减小T0回波,或者,在所述第二光学元件215的非工作面上(例如端面2151上)设置具有预设倾斜角度的反射面,将该反射光反射到探测器之外,控制其反射方向使该反射光线最终不会被探测器205接收,从而减小T0回波。
值得一提的是,在本文中,杂散光可以包括:所述发射器发射的未用于探测的部分所述光脉冲序列经过至少一次反射和/或至少一次折射后可被所述探测器接收的光线,和/或,所述光脉冲序列和所述回光之外的经过至少一次反射和/或至少一次折射后可被所述探测器接收的其他光线。
在其他实施例中,如图5所示,所述测距装置还包括第二结构件222,该第二结构件222可以用于支撑准直元件204,以及扫描模块的光学元件,例如用于支撑第一光学元件214和第二光学元件215,其中,该第二结构件222可以是一体结构即用于支撑准直元件204,也用于支撑和准直元件204间隔设置的光学元件,或者,准直元件204和扫描模块的光学元件各自使用不同的第二结构件222。
当其他测距装置发射的光脉冲或者直接照射或者经过物体反射后作为杂散光进入测距装置,这些杂散光在测距装置内壁经过单次或者多次反射后被探测器接收,形成串扰噪声。例如,如图5所示,其他测距装置发射的光线或者空间中其他光源辐射的光线2221经过第二结构件222面向探测器205的表面,以及第一光学元件214和/或第二光学元件215和/或准直元件204的侧壁(非工作面)反射或折射后,被探测器205接收形成串扰噪声。因此,所述第二结构件222的非工作面包括能够反射杂散光至所述探测器的表面。更具体地,所述第二结构件的非工作面包括面向所述探测器反射至少部分杂散光至所述探测器的面。在除了光学工作面之外的其他光学元件表面或者结构件表 面设置减反射材料和/或设置具有预设倾斜角度的反射面,能够减小探测器接收到的杂散光能量,从而有效的减小串扰的产生。
在一个示例中,为了减少或消除串扰,在所述光脉冲序列的发射光路和所述回光的接收光路之外的至少部分非工作面上设置有减反射材料(未示出),其中,所述非工作面为所述光脉冲序列和所述回光没有经过的面。该非工作面包括前文中所示例的面,以及其他可能产生串扰的非工作面,通过上述设置可以显著降低非工作面的反射率,使经非工作面反射的杂散光强度大大减弱,进而降低测距装置内部T0回波强度,以及减小串扰和环境中杂散光产生的噪声,提高系统性能。
减反射材料包括吸光材料和低反射率材料中的至少一种,其中低反射率材料可以包括反射率低于20%的低反射率材料,更进一步,低反射率材料可以包括反射率低于10%的低反射率材料,其中反射率越低越佳。低反射率材料可以包括低反射率涂层或者表面具有低反射率材料的粘贴膜等,或者其他任意适合的低反射率材料,可以通过喷涂或粘贴的方式将减反射材料设置在非工作面上。
吸光材料包括消光油墨、黑色胶水和黑色泡沫中的至少一种,或者其他适合的吸光材料,可以通过喷涂或粘贴的方式将吸光材料设置在非工作面上,例如,可以通过涂覆或者喷涂等方式将例如消光油墨和黑色胶水的吸光材料设置在非工作面上,例如通过粘贴的方式将例如黑色泡沫的吸光材料设置在非工作面上。
在另一个示例中,为了减少或消除串扰,在所述光脉冲序列的发射光路和所述回光的接收光路之外的至少部分非工作面上设置有具有预设倾斜角度的反射面,以反射杂散光至所述探测器之外,其中,所述非工作面为所述光脉冲序列和所述回光没有经过的面。该非工作面包括前文中所示例的面,以及其他可能产生串扰的非工作面,由于将至少部分工作面设置具有预设倾斜角度的反射面,因此,照射至该反射面的杂散光经该反射面反射后的方向变的更加可控,而通过合理的设置该预设倾斜角度,从而控制反射杂散光至探测器之外,从而减少或消除串扰,包括减小或消除T0回波,以及减小串扰和环境中杂散光产生的噪声,提高系统性能。
上述预设倾斜角度的反射面的倾斜角度具体根据其反射的杂散光的方向以及探测器的位置进行合理,只要是能够将杂散光反射至探测器之外的任意适合的预设倾斜角度均可以适用。该反射面可以是将部分非工作面设置为具 有预设倾斜角度的倾斜面,并将该倾斜面设置为镜面作为反射面,或者其他适合的方式在所述光脉冲序列的发射光路和所述回光的接收光路之外的至少部分非工作面上设置具有预设倾斜角度的反射面,以反射杂散光至所述探测器之外。
综上,在本发明实施例的方案能够减少或消除T0回波,从而避免T0回波对测距装置探测近处物体产生干扰,提高系统整体性能,并且,当多个测距装置同时使用时,本发明的方案还能减少或消除不同的测距装置之间的串扰。另外,在测距装置的使用环境中存在其他光源时,本发明的方案还能够避免其他光源的光线被探测器接收到,从而减弱或者消除本底噪声,提高系统的信噪比,优化系统的测距性能,以及减弱或消除虚警噪点。
下面,参考图6和图7对本发明实施例中的一种测距装置的结构做更详细的示例性地描述,测距装置包括激光雷达,该测距装置仅作为示例,对于其他适合的测距装置也可以应用于本申请。
本发明各个实施例提供的上述在测距装置的非工作面设置减反射材料和/或设置具有预设倾斜角度的反射面的方案可以应用于测距装置,该测距装置可以是激光雷达、激光测距设备等电子设备。在一种实施方式中,测距装置用于感测外部环境信息,例如,环境目标的距离信息、方位信息、反射强度信息、速度信息等。一种实现方式中,测距装置可以通过测量测距装置和探测物之间光传播的时间,即光飞行时间(Time-of-Flight,TOF),来探测探测物到测距装置的距离。或者,测距装置也可以通过其他技术来探测探测物到测距装置的距离,例如基于相位移动(phase shift)测量的测距方法,或者基于频率移动(frequency shift)测量的测距方法,在此不做限制。
为了便于理解,以下将结合图6所示的测距装置100对测距的工作流程进行举例描述。
如图6所示,测距装置100可以包括发射电路110、接收电路120、采样电路130和运算电路140。
发射电路110可以发射光脉冲序列(例如激光脉冲序列)。接收电路120可以接收经过被探测物反射的光脉冲序列,并对该光脉冲序列进行光电转换,以得到电信号,再对电信号进行处理之后可以输出给采样电路130。采样电路130可以对电信号进行采样,以获取采样结果。运算电路140可以基于采样电路130的采样结果,以确定测距装置100与被探测物之间的距离。
可选地,该测距装置100还可以包括控制电路150,该控制电路150可 以实现对其他电路的控制,例如,可以控制各个电路的工作时间和/或对各个电路进行参数设置等。
应理解,虽然图6示出的测距装置中包括一个发射电路、一个接收电路、一个采样电路和一个运算电路,用于出射一路光束进行探测,但是本申请实施例并不限于此,发射电路、接收电路、采样电路、运算电路中的任一种电路的数量也可以是至少两个,用于沿相同方向或分别沿不同方向出射至少两路光束;其中,该至少两束光路可以是同时出射,也可以是分别在不同时刻出射。一个示例中,该至少两个发射电路中的发光芯片封装在同一个模块中。例如,每个发射电路包括一个激光发射芯片,该至少两个发射电路中的激光发射芯片中的die封装到一起,容置在同一个封装空间中。
一些实现方式中,除了图6所示的电路,测距装置100还可以包括扫描模块,用于将发射电路出射的至少一路激光脉冲序列改变传播方向出射。
其中,可以将包括发射电路110、接收电路120、采样电路130和运算电路140的模块,或者,包括发射电路110、接收电路120、采样电路130、运算电路140和控制电路150的模块称为测距模块,该测距模块可以独立于其他模块,例如,扫描模块。
测距装置中可以采用同轴光路,也即测距装置出射的光束和经反射回来的光束在测距装置内共用至少部分光路。例如,发射电路出射的至少一路激光脉冲序列经扫描模块改变传播方向出射后,经探测物反射回来的激光脉冲序列经过扫描模块后入射至接收电路。或者,测距装置也可以采用异轴光路,也即测距装置出射的光束和经反射回来的光束在测距装置内分别沿不同的光路传输。图7示出了本发明的测距装置采用同轴光路的一种实施例的示意图。
测距装置200包括测距模块210,测距模块210包括发射器203(可以包括上述的发射电路)、准直元件204、探测器205(可以包括上述的接收电路、采样电路和运算电路)和光路改变元件206。测距模块210用于发射光束,且接收回光,将回光转换为电信号。其中,发射器203可以用于发射光脉冲序列。在一个实施例中,发射器203可以发射激光脉冲序列。可选的,发射器203发射出的激光束为波长在可见光范围之外的窄带宽光束。准直元件204设置于发射器的出射光路上,用于准直从发射器203发出的光束,将发射器203发出的光束准直为平行光出射至扫描模块。准直元件还用于会聚经探测物反射的回光的至少一部分。该准直元件204可以是准直透镜或者是其他能够准直光束的元件。
在图7所示实施例中,通过光路改变元件206来将测距装置内的发射光路和接收光路在准直元件204之前合并,使得发射光路和接收光路可以共用同一个准直元件,使得光路更加紧凑。在其他的一些实现方式中,也可以是发射器203和探测器205分别使用各自的准直元件,将光路改变元件206设置在准直元件之后的光路上。
在图7所示实施例中,由于发射器203出射的光束的光束孔径较小,测距装置所接收到的回光的光束孔径较大,所以光路改变元件可以采用小面积的反射镜来将发射光路和接收光路合并。在其他的一些实现方式中,光路改变元件也可以采用带通孔的反射镜,其中该通孔用于透射发射器203的出射光,反射镜用于将回光反射至探测器205。这样可以减小采用小反射镜的情况中小反射镜的支架会对回光的遮挡。
在图7所示实施例中,光路改变元件偏离了准直元件204的光轴。在其他的一些实现方式中,光路改变元件也可以位于准直元件204的光轴上。
测距装置200还包括扫描模块202。扫描模块202放置于测距模块210的出射光路上,扫描模块202用于改变经准直元件204出射的准直光束219的传输方向并投射至外界环境,并将回光投射至准直元件204。回光经准直元件204汇聚到探测器205上。
在一个实施例中,扫描模块202可以包括至少一个光学元件,用于改变光束的传播路径,其中,该光学元件可以通过对光束进行反射、折射、衍射等等方式来改变光束传播路径。例如,扫描模块202包括透镜、反射镜、棱镜、振镜、光栅、液晶、光学相控阵(Optical Phased Array)或上述光学元件的任意组合。一个示例中,至少部分光学元件是运动的,例如通过驱动模块来驱动该至少部分光学元件进行运动,该运动的光学元件可以在不同时刻将光束反射、折射或衍射至不同的方向。在一些实施例中,扫描模块202的多个光学元件可以绕共同的轴209旋转或振动,每个旋转或振动的光学元件用于不断改变入射光束的传播方向。在一个实施例中,扫描模块202的多个光学元件可以以不同的转速旋转,或以不同的速度振动。在另一个实施例中,扫描模块202的至少部分光学元件可以以基本相同的转速旋转。在一些实施例中,扫描模块的多个光学元件也可以是绕不同的轴旋转。在一些实施例中,扫描模块的多个光学元件也可以是以相同的方向旋转,或以不同的方向旋转;或者沿相同的方向振动,或者沿不同的方向振动,在此不作限制。
在一个实施例中,扫描模块202包括第一光学元件214和与第一光学元 件214连接的驱动器216,驱动器216用于驱动第一光学元件214绕转动轴209转动,使第一光学元件214改变准直光束219的方向。第一光学元件214将准直光束219投射至不同的方向。在一个实施例中,准直光束219经第一光学元件改变后的方向与转动轴209的夹角随着第一光学元件214的转动而变化。在一个实施例中,第一光学元件214包括相对的非平行的一对表面,准直光束219穿过该对表面。在一个实施例中,第一光学元件214包括厚度沿至少一个径向变化的棱镜。在一个实施例中,第一光学元件214包括楔角棱镜,对准直光束219进行折射。
在一个实施例中,扫描模块202还包括第二光学元件215,第二光学元件215绕转动轴209转动,第二光学元件215的转动速度与第一光学元件214的转动速度不同。第二光学元件215用于改变第一光学元件214投射的光束的方向。在一个实施例中,第二光学元件215与另一驱动器217连接,驱动器217驱动第二光学元件215转动。第一光学元件214和第二光学元件215可以由相同或不同的驱动器驱动,使第一光学元件214和第二光学元件215的转速和/或转向不同,从而将准直光束219投射至外界空间不同的方向,可以扫描较大的空间范围。在一个实施例中,控制器218控制驱动器216和217,分别驱动第一光学元件214和第二光学元件215。第一光学元件214和第二光学元件215的转速可以根据实际应用中预期扫描的区域和样式确定。驱动器216和217可以包括电机或其他驱动器。
在一个实施例中,第二光学元件215包括相对的非平行的一对表面,光束穿过该对表面。在一个实施例中,第二光学元件215包括厚度沿至少一个径向变化的棱镜。在一个实施例中,第二光学元件215包括楔角棱镜。
一个实施例中,扫描模块202还包括第三光学元件(图未示)和用于驱动第三光学元件运动的驱动器。可选地,该第三光学元件包括相对的非平行的一对表面,光束穿过该对表面。在一个实施例中,第三光学元件包括厚度沿至少一个径向变化的棱镜。在一个实施例中,第三光学元件包括楔角棱镜。第一、第二和第三光学元件中的至少两个光学元件以不同的转速和/或转向转动。
扫描模块202中的各光学元件旋转可以将光投射至不同的方向,例如投射的光211的方向和方向213,如此对测距装置200周围的空间进行扫描。当扫描模块202投射出的光211打到探测物201时,一部分光被探测物201沿与投射的光211相反的方向反射至测距装置200。探测物201反射的回光 212经过扫描模块202后入射至准直元件204。
探测器205与发射器203放置于准直元件204的同一侧,探测器205用于将穿过准直元件204的至少部分回光转换为电信号。
一个实施例中,各光学元件上镀有增透膜。可选的,增透膜的厚度与发射器203发射出的光束的波长相等或接近,能够增加透射光束的强度。
一个实施例中,测距装置中位于光束传播路径上的一个元件表面上镀有滤光层,或者在光束传播路径上设置有滤光器,用于至少透射发射器所出射的光束所在波段,反射其他波段,以减少环境光给接收器带来的噪音。
在一些实施例中,发射器203可以包括激光二极管,通过激光二极管发射纳秒级别的激光脉冲。进一步地,可以确定激光脉冲接收时间,例如,通过探测电信号脉冲的上升沿时间和/或下降沿时间确定激光脉冲接收时间。如此,测距装置200可以利用脉冲接收时间信息和脉冲发出时间信息计算TOF,从而确定探测物201到测距装置200的距离。
测距装置200探测到的距离和方位可以用于遥感、避障、测绘、建模、导航等。在一种实施方式中,本发明实施方式的测距装置可应用于移动平台,测距装置可安装在移动平台的平台本体。具有测距装置的移动平台可对外部环境进行测量,例如,测量移动平台与障碍物的距离用于避障等用途,和对外部环境进行二维或三维的测绘。在某些实施方式中,移动平台包括无人飞行器、汽车、遥控车、机器人、船、相机中的至少一种。当测距装置应用于无人飞行器时,平台本体为无人飞行器的机身。当测距装置应用于汽车时,平台本体为汽车的车身。该汽车可以是自动驾驶汽车或者半自动驾驶汽车,在此不做限制。当测距装置应用于遥控车时,平台本体为遥控车的车身。当测距装置应用于机器人时,平台本体为机器人。当测距装置应用于相机时,平台本体为相机本身。
尽管这里已经参考附图描述了示例实施例,应理解上述示例实施例仅仅是示例性的,并且不意图将本发明的范围限制于此。本领域普通技术人员可以在其中进行各种改变和修改,而不偏离本发明的范围和精神。所有这些改变和修改意在被包括在所附权利要求所要求的本发明的范围之内。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特 定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个设备,或一些特征可以忽略,或不执行。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本发明的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
类似地,应当理解,为了精简本发明并帮助理解各个发明方面中的一个或多个,在对本发明的示例性实施例的描述中,本发明的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该本发明的方法解释成反映如下意图:即所要求保护的本发明要求比在每个权利要求中所明确记载的特征更多的特征。更确切地说,如相应的权利要求书所反映的那样,其发明点在于可以用少于某个公开的单个实施例的所有特征的特征来解决相应的技术问题。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本发明的单独实施例。
本领域的技术人员可以理解,除了特征之间相互排斥之外,可以采用任何组合对本说明书(包括伴随的权利要求、摘要和附图)中公开的所有特征以及如此公开的任何方法或者设备的所有过程或单元进行组合。除非另外明确陈述,本说明书(包括伴随的权利要求、摘要和附图)中公开的每个特征可以由提供相同、等同或相似目的替代特征来代替。
此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本发明的范围之内并且形成不同的实施例。例如,在权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
本发明的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本发明实施例的一些模块的一些或者全部功能。本发明还可以实现为用于执行这里所描述的方法的一部分或者全部的装置程序(例如,计算机程序和计 算机程序产品)。这样的实现本发明的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。
应该注意的是上述实施例对本发明进行说明而不是对本发明进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。本发明可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。

Claims (23)

  1. 一种测距装置,其特征在于,所述测距装置包括:
    发射器,用于发射光脉冲序列;
    探测器,用于接收经物体反射的回光的至少部分并转换为电信号,以及根据所述电信号确定所述物体与所述测距装置的距离和/或方位;
    其中,在所述光脉冲序列的发射光路和所述回光的接收光路之外的至少部分非工作面上设置有减反射材料和/或设置有具有预设倾斜角度的反射面,以反射杂散光至所述探测器之外,其中,所述非工作面为所述光脉冲序列和所述回光没有经过的面。
  2. 如权利要求1所述的测距装置,其特征在于,所述测距装置包括结构件,其中,所述非工作面包括所述结构件的至少部分面。
  3. 如权利要求1所述的测距装置,其特征在于,所述测距装置还包括:光路改变元件,用于改变所述发射光路或所述接收光路的方向,以使所述发射光路和所述接收光路合并,所述光路改变元件设置有透光区域,所述非工作表面包括所述光路改变元件面向所述发射器的面上接收除透过所述透光区域的光脉冲序列以外的光脉冲序列的区域。
  4. 如权利要求3所述的测距装置,其特征在于,所述非工作表面包括所述光路改变元件面向所述发射器的所述透光与其以外的全部面。
  5. 如权利要求3所述的测距装置,其特征在于,所述光路改变元件包括中心区域设置有透光区域的反射镜,其中,所述发射器发射的所述光脉冲序列的发散角大于所述透光区域相对所述发射器的张角。
  6. 如权利要求1所述的测距装置,其特征在于,
    所述非工作面包括用于支撑光路改变元件的第一结构件的至少部分面。
  7. 如权利要求3所述的测距装置,其特征在于,所述非工作面还包括面向所述发射器并与所述透光区域相对的面。。
  8. 如权利要求1所述的测距装置,其特征在于,所述测距装置还包括:
    准直元件,所述准直元件位于所述发射器的发射光路上,用于将所述发射器发射的光脉冲序列准直后出射,并将经物体反射的回光的至少一部分汇聚至所述探测器;
    第二结构件,用于支撑所述准直元件,其中,所述第二结构件的非工作面包括能够反射杂散光至所述探测器的表面。
  9. 如权利要求1所述的测距装置,其特征在于,所述测距装置还包括扫 描模块,用于将所述光脉冲序列的传播路径依次改变至不同方向出射,其中,所述扫描模块包括至少一个光学元件,用于改变所述光脉冲序列的传播路径。
  10. 如权利要求9所述的测距装置,其特征在于,所述光学元件包括两个相对的非平行面和一个位于周缘的侧面,非工作面包括所述侧面。
  11. 如权利要求10所述的测距装置,其特征在于,所述光学元件的至少部分非工作面包括能够反射部分所述光脉冲序列至所述探测器的面。
  12. 如权利要求10所述的测距装置,其特征在于,所述光学元件的至少部分非工作面包括能够反射部分所述光脉冲序列的面,经该非工作面反射后的部分所述光脉冲序列经过至少一次反射和/或至少一次折射至所述探测器。
  13. 如权利要求9所述的测距装置,其特征在于,所述光学元件的厚度从第一端向与该第一端相对的第二端逐渐增大,其中,所述光学元件的非工作面包括位于所述第二端的端面,所述减反射材料设置在所述第二端的端面。
  14. 如权利要求13所述的测距装置,其特征在于,所述光学元件包括沿所述发射光路依次排布的第一光学元件和第二光学元件,其中,所述非工作面包括所述第二光学元件的所述第二端的端面。
  15. 如权利要求9所述的测距装置,其特征在于,所述测距装置还包括第二结构件,用于支撑所述光学元件,其中,所述第二结构件的非工作面包括面向所述探测器反射至少部分杂散光至所述探测器的面。
  16. 如权利要求14所述的测距装置,其特征在于,所述第一光学元件包括楔角棱镜,和/或,所述第二光学元件包括楔角棱镜。
  17. 如权利要求1所述的测距装置,其特征在于,所述杂散光包括:
    所述发射器发射的未用于探测的部分所述光脉冲序列经过至少一次反射和/或至少一次折射后可被所述探测器接收的光线,和/或,
    所述光脉冲序列和所述回光之外的经过至少一次反射和/或至少一次折射后可被所述探测器接收的其他光线。
  18. 如权利要求1至17任一项所述的测距装置,其特征在于,所述减反射材料包括吸光材料和低反射率材料中的至少一种,所述减反射材料以喷涂或粘贴的方式设置在所述非工作面上。
  19. 如权利要求18所述的测距装置,其特征在于,所述吸光材料包括消光油墨、黑色胶水和黑色泡沫中的至少一种。
  20. 如权利要求1至17任一项所述的测距装置,其特征在于,所述探测器包括:
    接收电路,用于将接收到的经物体反射的所述回光转换为电信号输出;
    采样电路,用于对所述接收电路输出的所述电信号进行采样,以测量所述光脉冲序列从发射到接收之间的时间差;
    运算电路,用于接收所述采样电路输出的所述时间差,计算获得距离测量结果。
  21. 如权利要求1至17任一项所述的测距装置,其特征在于,所述测距装置包括激光雷达。
  22. 一种移动平台,其特征在于,所述移动平台包括:
    权利要求1至21任一项所述的测距装置;和
    平台本体,所述测距装置安装在所述平台本体上。
  23. 如权利要求22所述的移动平台,其特征在于,所述移动平台包括无人机、机器人、车或船。
PCT/CN2019/070955 2019-01-09 2019-01-09 一种测距装置及移动平台 WO2020142919A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980005646.XA CN111670375A (zh) 2019-01-09 2019-01-09 一种测距装置及移动平台
PCT/CN2019/070955 WO2020142919A1 (zh) 2019-01-09 2019-01-09 一种测距装置及移动平台
US17/371,927 US20210333374A1 (en) 2019-01-09 2021-07-09 Ranging apparatus and mobile platform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/070955 WO2020142919A1 (zh) 2019-01-09 2019-01-09 一种测距装置及移动平台

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/371,927 Continuation US20210333374A1 (en) 2019-01-09 2021-07-09 Ranging apparatus and mobile platform

Publications (1)

Publication Number Publication Date
WO2020142919A1 true WO2020142919A1 (zh) 2020-07-16

Family

ID=71521806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/070955 WO2020142919A1 (zh) 2019-01-09 2019-01-09 一种测距装置及移动平台

Country Status (3)

Country Link
US (1) US20210333374A1 (zh)
CN (1) CN111670375A (zh)
WO (1) WO2020142919A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114152194B (zh) * 2021-11-16 2022-10-04 华中科技大学 一种基于反射光栅的微位移测量装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN87210363U (zh) * 1987-07-25 1988-09-28 北京大学 新型光束偏转器
JP2001183444A (ja) * 1999-12-27 2001-07-06 Minolta Co Ltd 測距装置
CN106911068A (zh) * 2017-02-24 2017-06-30 成都光创联科技有限公司 消除影响激光器稳定工作杂散光束的方法
CN206411260U (zh) * 2016-10-28 2017-08-15 深圳市镭神智能系统有限公司 一种基于时间飞行法的激光雷达系统
CN107561716A (zh) * 2017-08-30 2018-01-09 南京理工大学 一种环形复合透镜小型化激光收发共孔径装置
CN207114760U (zh) * 2017-08-21 2018-03-16 北京因泰立科技有限公司 一种收发一体式扫描激光测距雷达

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101331419A (zh) * 2005-12-15 2008-12-24 皇家飞利浦电子股份有限公司 Mems扫描仪系统和方法
CN104330843A (zh) * 2014-07-22 2015-02-04 凯迈(洛阳)环测有限公司 一种激光测云仪光学系统及其分光反射镜
DE102015112295A1 (de) * 2015-07-28 2017-02-02 Valeo Schalter Und Sensoren Gmbh Sendeeinrichtung für eine optische Detektionsvorrichtung eines Kraftfahrzeugs, optische Detektionsvorrichtung, Kraftfahrzeug sowie Verfahren
CN110199204A (zh) * 2017-03-29 2019-09-03 深圳市大疆创新科技有限公司 具有小形状因子的激光雷达传感器系统
CN108594263A (zh) * 2018-01-30 2018-09-28 北醒(北京)光子科技有限公司 一种激光雷达及无人驾驶系统
CN109116322B (zh) * 2018-08-30 2023-03-28 挚感(苏州)光子科技有限公司 一种位移和距离激光雷达系统的回光消除方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN87210363U (zh) * 1987-07-25 1988-09-28 北京大学 新型光束偏转器
JP2001183444A (ja) * 1999-12-27 2001-07-06 Minolta Co Ltd 測距装置
CN206411260U (zh) * 2016-10-28 2017-08-15 深圳市镭神智能系统有限公司 一种基于时间飞行法的激光雷达系统
CN106911068A (zh) * 2017-02-24 2017-06-30 成都光创联科技有限公司 消除影响激光器稳定工作杂散光束的方法
CN207114760U (zh) * 2017-08-21 2018-03-16 北京因泰立科技有限公司 一种收发一体式扫描激光测距雷达
CN107561716A (zh) * 2017-08-30 2018-01-09 南京理工大学 一种环形复合透镜小型化激光收发共孔径装置

Also Published As

Publication number Publication date
US20210333374A1 (en) 2021-10-28
CN111670375A (zh) 2020-09-15

Similar Documents

Publication Publication Date Title
CN210015229U (zh) 一种距离探测装置
US20210293928A1 (en) Ranging apparatus, balance method of scan field thereof, and mobile platform
US20210333370A1 (en) Light emission method, device, and scanning system
WO2020147116A1 (zh) 异常检测方法、报警方法、测距装置及可移动平台
US20210341610A1 (en) Ranging device
CN209979845U (zh) 一种测距装置及移动平台
WO2020113559A1 (zh) 一种测距系统及移动平台
CN210199305U (zh) 一种扫描模组、测距装置及可移动平台
WO2020154980A1 (zh) 一种探测装置外参数标定方法、数据处理装置和探测系统
WO2020223879A1 (zh) 一种测距装置及移动平台
WO2020142919A1 (zh) 一种测距装置及移动平台
WO2020133384A1 (zh) 一种激光测距装置及移动平台
US20210341588A1 (en) Ranging device and mobile platform
US20220082665A1 (en) Ranging apparatus and method for controlling scanning field of view thereof
WO2020177076A1 (zh) 一种探测装置初始状态标定方法及装置
US20210341580A1 (en) Ranging device and mobile platform
WO2022170535A1 (zh) 测距方法、测距装置、系统及计算机可读存储介质
WO2020142909A1 (zh) 数据同步方法、分布式雷达系统及可移动平台
WO2021026766A1 (zh) 扫描模块的电机转速控制方法、装置和测距装置
WO2020147121A1 (zh) 雨量测量方法、探测装置、可读存储介质
WO2020143003A1 (zh) 一种测距系统及移动平台
WO2022226984A1 (zh) 扫描视场的控制方法、测距装置和可移动平台
WO2022040937A1 (zh) 激光扫描装置和激光扫描系统
WO2020142893A1 (zh) 雷达接入检测方法、电路及可移动平台
WO2022141347A1 (zh) 激光测量装置及可移动平台

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19909086

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19909086

Country of ref document: EP

Kind code of ref document: A1