WO2021026766A1 - 扫描模块的电机转速控制方法、装置和测距装置 - Google Patents

扫描模块的电机转速控制方法、装置和测距装置 Download PDF

Info

Publication number
WO2021026766A1
WO2021026766A1 PCT/CN2019/100379 CN2019100379W WO2021026766A1 WO 2021026766 A1 WO2021026766 A1 WO 2021026766A1 CN 2019100379 W CN2019100379 W CN 2019100379W WO 2021026766 A1 WO2021026766 A1 WO 2021026766A1
Authority
WO
WIPO (PCT)
Prior art keywords
target speed
motor
optical element
speed
distance measuring
Prior art date
Application number
PCT/CN2019/100379
Other languages
English (en)
French (fr)
Inventor
陈亚林
董帅
洪小平
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2019/100379 priority Critical patent/WO2021026766A1/zh
Priority to CN201980031290.7A priority patent/CN112654893A/zh
Publication of WO2021026766A1 publication Critical patent/WO2021026766A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements

Definitions

  • the present invention generally relates to the technical field of distance measuring devices, and more specifically to a method, device and distance measuring device for controlling the motor speed of a scanning module.
  • a mechanical rotary laser radar ranging device usually includes a scanning module to change the direction of the light emitted by the light source.
  • the scanning module usually includes two double prisms, which are driven by two rotating motors. The prism rotates to change the direction of light propagation.
  • the speed of the two motors fluctuates, which will cause the gap of the point cloud output by the distance measuring device to change, which makes the uniformity of the point cloud point distribution worse.
  • the cloud gap exceeds the tolerance range, which affects the accuracy of the distance measuring device to measure the probe.
  • the present invention proposes a motor speed control method, device and distance measuring device of a scanning module.
  • the present invention is proposed to solve at least one of the above-mentioned problems.
  • one aspect of the present invention provides a method for controlling the rotation speed of a motor of a scanning module.
  • the scanning module includes a first optical element and a first motor connected to the first optical element.
  • the first optical element rotates, and the second optical element and a second motor connected to the second optical element, the second motor is used to drive the second optical element to rotate, and the control method includes:
  • the rotation speed of the second motor is controlled to change to a second target speed according to the first target speed, wherein a predetermined functional relationship is satisfied between the first target speed and the second target speed.
  • control method further includes:
  • the second target speed is controlled to vary with the first target speed according to the predetermined functional relationship, so that the maximum gap of the point cloud pattern is at the threshold Within range.
  • the predetermined functional relationship includes a linear functional relationship.
  • linear function relationship satisfies the following relationship:
  • the second target speed is generally a speed obtained by adding a product of the first target speed and a proportional coefficient to a constant factor.
  • the scale factor is a negative number, wherein the scale factor includes a negative number greater than -1, and/or,
  • the constant factor ranges from 180 rpm to 210 rpm.
  • the scale factor includes -2/3.
  • the scanning module is used to sequentially change the light beams emitted by the light source to different propagation directions to exit to form a scanning field of view, wherein the maximum gap includes the gap in the point cloud pattern projected on the imaging surface
  • the imaging surface is a surface perpendicular to the optical axis of the light source and spaced a predetermined distance from the light source.
  • the scanning module includes a first optical element and a first motor connected to the first optical element.
  • the first motor is used to drive the first optical element.
  • An optical element rotates, a second optical element and a second motor connected to the second optical element, the second motor is used to drive the second optical element to rotate,
  • the motor speed control device includes a control module, Used for:
  • the rotation speed of the second motor is controlled to change to a second target speed according to the first target speed, wherein a predetermined functional relationship is satisfied between the first target speed and the second target speed.
  • Another aspect of the present invention provides a distance measuring device, which includes:
  • Light source used to emit light beam
  • the scanning module is used to sequentially change the light beams emitted by the light source to different propagation directions to form a scanning field of view.
  • the scanning module includes a first optical element and a first optical element connected to the first optical element.
  • a motor the first motor is used to drive the first optical element to rotate, and a second optical element and a second motor connected to the second optical element, the second motor is used to drive the second optical element Component rotation
  • a detector for receiving at least a part of the light beam emitted by the light source reflected back by the object, and obtaining the distance between the distance detection device and the object according to the received light beam;
  • Control module for:
  • the rotation speed of the second motor is controlled to change to a second target speed according to the first target speed, wherein a predetermined functional relationship is satisfied between the first target speed and the second target speed.
  • the control method, device and distance measuring device of the embodiment of the present invention control the rotation speed of the first motor to change the value of the first target speed, and control the rotation speed of the second electrode to follow the change value of the first target speed and the second target speed.
  • the adjustment of the target speed always maintains the predetermined functional relationship between the first target speed and the second target speed, thereby effectively controlling the maximum gap of the point cloud in a smaller range, and improving the uniformity of the point cloud distribution.
  • the scanning density of the scanning field of view is improved, and the accuracy of the measurement of the detection object by the ranging device is improved.
  • FIG. 1 shows a schematic structural diagram of a distance measuring device in an embodiment of the present invention
  • Figure 2 shows a schematic diagram of a distance measuring device in an embodiment of the present invention
  • FIG. 3 shows a schematic flowchart of a method for controlling a motor speed of a scanning module in an embodiment of the present invention
  • FIG. 4 shows a schematic diagram of the distribution of the maximum gap of the point cloud scanned by different motor combinations in the scanning module in an embodiment of the present invention
  • FIG. 5 shows a point cloud diagram obtained when the first target speed fluctuates randomly and the second target speed follows in an embodiment of the present invention
  • FIG. 6 shows a point cloud diagram obtained when the first target speed fluctuates randomly and the second target speed fluctuates randomly in an embodiment of the present invention.
  • the distance measuring device of the laser distance measuring system is a perception system that uses laser to scan and measure distances to obtain three-dimensional information in the surrounding scene.
  • the basic principle is to actively emit laser pulses to the detected object, capture the laser echo signal and calculate the distance of the measured object according to the time difference between laser emission and reception; obtain the angle of the measured object based on the known emission direction of the laser Information:
  • point cloud Through high-frequency transmission and reception, a large amount of distance and angle information of detection points can be obtained, which is called point cloud. Based on the point cloud, the 3D information of the surrounding scene can be reconstructed.
  • the distance measuring device includes a laser radar.
  • the distance measuring device is only used as an example.
  • Distance devices can also be applied to this application.
  • the distance measuring device may be electronic equipment such as lidar and laser distance measuring equipment.
  • the distance measuring device is used to sense external environmental information, for example, distance information, orientation information, reflection intensity information, speed information, etc. of environmental targets.
  • the distance measuring device can detect the distance from the probe to the distance measuring device by measuring the time of light propagation between the distance measuring device and the probe, that is, the time-of-flight (TOF).
  • the ranging device can also detect the distance from the detected object to the ranging device through other technologies, such as a ranging method based on phase shift measurement, or a ranging method based on frequency shift measurement. There is no restriction.
  • the distance measuring device may include a transmitting module, a receiving module, and a temperature control system.
  • the transmitting module is used to emit light pulses;
  • the receiving module is used to receive at least part of the light pulses reflected by the object, and according to The received at least part of the light pulse determines the distance of the object relative to the distance measuring device.
  • the transmitting module includes a transmitting circuit 110; the receiving module includes a receiving circuit 120, a sampling circuit 130 and an arithmetic circuit 140.
  • the transmitting circuit 110 may emit a light pulse sequence (for example, a laser pulse sequence).
  • the receiving circuit 120 may receive the light pulse sequence reflected by the object to be detected, and perform photoelectric conversion on the light pulse sequence to obtain an electrical signal. After processing the electrical signal, it may be output to the sampling circuit 130.
  • the sampling circuit 130 may sample the electrical signal to obtain the sampling result.
  • the arithmetic circuit 140 may determine the distance between the distance measuring device 100 and the detected object based on the sampling result of the sampling circuit 130.
  • the distance measuring device 100 may further include a control circuit 150, which can control other circuits, for example, can control the working time of each circuit and/or set parameters for each circuit.
  • a control circuit 150 can control other circuits, for example, can control the working time of each circuit and/or set parameters for each circuit.
  • the distance measuring device shown in FIG. 1 includes a transmitting circuit, a receiving circuit, a sampling circuit, and an arithmetic circuit for emitting a beam for detection
  • the embodiment of the present application is not limited to this, the transmitting circuit
  • the number of any one of the receiving circuit, the sampling circuit, and the arithmetic circuit can also be at least two, which are used to emit at least two light beams in the same direction or in different directions; wherein, the at least two light paths can be simultaneous Shooting can also be shooting at different times.
  • the light-emitting chips in the at least two transmitting circuits are packaged in the same module.
  • each emitting circuit includes a laser emitting chip, and the dies in the laser emitting chips in the at least two emitting circuits are packaged together and housed in the same packaging space.
  • the distance measuring device 100 may also include a scanning module for changing the propagation direction of at least one light pulse sequence (for example, a laser pulse sequence) emitted by the transmitting circuit, so as to control the field of view.
  • a scanning module for changing the propagation direction of at least one light pulse sequence (for example, a laser pulse sequence) emitted by the transmitting circuit, so as to control the field of view.
  • the scanning area of the scanning module in the field of view of the distance measuring device increases with the accumulation of time.
  • the module including the transmitting circuit 110, the receiving circuit 120, the sampling circuit 130, and the arithmetic circuit 140, or the module including the transmitting circuit 110, the receiving circuit 120, the sampling circuit 130, the arithmetic circuit 140, and the control circuit 150 may be referred to as the measuring circuit.
  • Distance module the distance measurement module can be independent of other modules, for example, scanning module.
  • a coaxial optical path can be used in the distance measuring device, that is, the light beam emitted from the distance measuring device and the reflected light beam share at least part of the optical path in the distance measuring device.
  • the distance measuring device may also adopt an off-axis optical path, that is, the light beam emitted by the distance measuring device and the reflected light beam are respectively transmitted along different optical paths in the distance measuring device.
  • Fig. 2 shows a schematic diagram of an embodiment in which the distance measuring device of the present invention adopts a coaxial optical path.
  • the ranging device 200 includes a ranging module 210, which includes a light source, that is, a transmitter 203 (which may include the above-mentioned transmitting circuit), a collimating element 204, and a detector 205 (which may include the above-mentioned receiving circuit, sampling circuit, and Arithmetic circuit) and optical path changing element 206.
  • the ranging module 210 is used to emit a light beam, receive the return light, and convert the return light into an electrical signal.
  • the transmitter 203 can be used to emit a light pulse sequence.
  • the transmitter 203 may emit a sequence of laser pulses.
  • the laser beam emitted by the transmitter 203 is a narrow-bandwidth beam with a wavelength outside the visible light range.
  • the collimating element 204 is arranged on the exit light path of the emitter, and is used to collimate the light beam emitted from the emitter 203, and collimate the light beam emitted from the emitter 203 into parallel light and output to the scanning module.
  • the collimating element is also used to condense at least a part of the return light reflected by the probe.
  • the collimating element 204 may be a collimating lens or other elements capable of collimating light beams.
  • the transmitting light path and the receiving light path in the distance measuring device are combined before the collimating element 204 through the light path changing element 206, so that the transmitting light path and the receiving light path can share the same collimating element, so that the light path More compact.
  • the transmitter 203 and the detector 205 may respectively use their own collimating elements, and the optical path changing element 206 is arranged on the optical path behind the collimating element.
  • the optical path changing element can use a small area mirror to The transmitting light path and the receiving light path are combined.
  • the light path changing element may also use a reflector with a through hole, where the through hole is used to transmit the emitted light of the emitter 203 and the reflector is used to reflect the return light to the detector 205. In this way, the shielding of the back light by the bracket of the small mirror in the case of using the small mirror can be reduced.
  • the optical path changing element deviates from the optical axis of the collimating element 204.
  • the optical path changing element may also be located on the optical axis of the collimating element 204.
  • the distance measuring device 200 also includes a scanning module 202, which is used to sequentially change the light beams emitted by the light source to different propagation directions to exit, forming a scanning field of view.
  • the scanning module 202 is placed on the exit light path of the distance measuring module 210.
  • the scanning module 202 is used to change the transmission direction of the collimated beam 219 emitted by the collimating element 204 and project it to the external environment, and project the return light to the collimating element 204 .
  • the returned light is collected on the detector 205 via the collimating element 204.
  • the scanning module 202 may include at least one optical element for changing the propagation path of the light beam, wherein the optical element may change the propagation path of the light beam by reflecting, refracting, or diffracting the light beam, for example,
  • the optical element includes at least one light refraction element having a non-parallel exit surface and an entrance surface.
  • the scanning module 202 includes a lens, a mirror, a prism, a galvanometer, a grating, a liquid crystal, an optical phased array (Optical Phased Array), or any combination of the foregoing optical elements.
  • at least part of the optical elements are moving.
  • a driving module is used to drive the at least part of the optical elements to move.
  • the moving optical elements can reflect, refract, or diffract the light beam to different directions at different times.
  • the multiple optical elements of the scanning module 202 may rotate or vibrate around a common axis 209, and each rotating or vibrating optical element is used to continuously change the propagation direction of the incident light beam.
  • the multiple optical elements of the scanning module 202 may rotate at different speeds or vibrate at different speeds.
  • at least part of the optical elements of the scanning module 202 may rotate at substantially the same rotation speed.
  • the multiple optical elements of the scanning module may also be rotated around different axes.
  • the multiple optical elements of the scanning module may also rotate in the same direction or in different directions; or vibrate in the same direction, or vibrate in different directions, which is not limited herein.
  • the scanning module 202 includes a first optical element 214 and a driver 216 connected to the first optical element 214, such as a first motor.
  • the driver 216 is used to drive the first optical element 214 to rotate around the rotation axis 209 to make the first optical element 214 rotate.
  • An optical element 214 changes the direction of the collimated beam 219.
  • the first optical element 214 projects the collimated light beam 219 to different directions.
  • the angle between the direction of the collimated beam 219 changed by the first optical element and the rotation axis 209 changes as the first optical element 214 rotates.
  • the first optical element 214 includes a pair of opposed non-parallel surfaces through which the collimated light beam 219 passes.
  • the first optical element 214 includes a prism whose thickness varies in at least one radial direction.
  • the first optical element 214 includes a wedge prism, and the collimated beam 219 is refracted.
  • the scanning module 202 further includes a second optical element 215, the second optical element 215 rotates around the rotation axis 209, and the rotation speed of the second optical element 215 is different from the rotation speed of the first optical element 214.
  • the second optical element 215 is used to change the direction of the light beam projected by the first optical element 214.
  • the second optical element 215 is connected to another driver 217 (for example, a second motor), and the driver 217 drives the second optical element 215 to rotate.
  • the first optical element 214 and the second optical element 215 can be driven by the same or different drivers, so that the rotation speed and/or rotation of the first optical element 214 and the second optical element 215 are different, so as to project the collimated light beam 219 to the outside space.
  • the controller 218 controls the drivers 216 and 217 to drive the first optical element 214 and the second optical element 215, respectively.
  • the rotational speeds of the first optical element 214 and the second optical element 215 may be determined according to the area and pattern expected to be scanned in actual applications.
  • the drivers 216 and 217 may include motors or other drivers.
  • the driver 216 and the driver 217 may have opposite rotation directions, so that the first optical element 214 and the second optical element 215 are respectively driven to rotate in the opposite rotation directions, or the driver 216 and the driver 217 may have the same rotation Direction, and respectively drive the first optical element 214 and the second optical element 215 to rotate in the same rotation direction, which is set reasonably according to actual needs.
  • the second optical element 215 includes a pair of opposite non-parallel surfaces through which the light beam passes. In one embodiment, the second optical element 215 includes a prism whose thickness varies in at least one radial direction. In one embodiment, the second optical element 215 includes a wedge prism.
  • the scanning module 202 further includes a third optical element (not shown) and a driver for driving the third optical element to move.
  • the third optical element includes a pair of opposite non-parallel surfaces, and the light beam passes through the pair of surfaces.
  • the third optical element includes a prism whose thickness varies in at least one radial direction.
  • the third optical element includes a wedge prism. At least two of the first, second, and third optical elements rotate at different rotation speeds and/or rotation directions.
  • the scanning module includes two or three light refraction elements arranged in sequence on the exit light path of the light pulse sequence.
  • at least two of the light refraction elements in the scanning module rotate during the scanning process to change the direction of the light pulse sequence.
  • the scanning module has different scanning paths at at least some different moments.
  • the rotation of each optical element in the scanning module 202 can project light to different directions, for example, the direction of the projected light 211 and the direction 213, so that the distance measuring device 200 is Space to scan.
  • the light 211 projected by the scanning module 202 hits the detection object 201, a part of the light is reflected by the detection object 201 to the distance measuring device 200 in a direction opposite to the projected light 211.
  • the return light 212 reflected by the probe 201 is incident on the collimating element 204 after passing through the scanning module 202.
  • the detector 205 and the transmitter 203 are placed on the same side of the collimating element 204, and the detector 205 is used to convert at least part of the return light passing through the collimating element 204 into an electrical signal.
  • an anti-reflection film is plated on each optical element.
  • the thickness of the antireflection coating is equal to or close to the wavelength of the light beam emitted by the emitter 203, which can increase the intensity of the transmitted light beam.
  • a filter layer is plated on the surface of an element located on the beam propagation path in the distance measuring device, or a filter is provided on the beam propagation path for transmitting at least the wavelength band of the beam emitted by the transmitter, Reflect other bands to reduce the noise caused by ambient light to the receiver.
  • the transmitter 203 may include a laser diode through which nanosecond laser pulses are emitted.
  • the laser pulse receiving time can be determined, for example, the laser pulse receiving time can be determined by detecting the rising edge time and/or the falling edge time of the electrical signal pulse.
  • the distance measuring device 200 can calculate the TOF using the pulse receiving time information and the pulse sending time information, so as to determine the distance between the probe 201 and the distance measuring device 200.
  • the distance and orientation detected by the distance measuring device 200 can be used for remote sensing, obstacle avoidance, surveying and mapping, modeling, navigation, etc.
  • an embodiment of the present invention provides a motor speed control method of a scanning module.
  • the control method includes: controlling the speed of the first motor to change to a first target speed ; Control the rotation speed of the second motor to a second target speed according to the first target speed, wherein the first target speed and the second target speed satisfy a predetermined functional relationship.
  • the rotation speed of the first motor is controlled to change to the first target speed
  • the rotation speed of the second electrode is controlled to follow the first target speed change value to the second target speed
  • the adjustment of the second target speed is always maintained
  • the first target speed and the second target speed satisfy a predetermined functional relationship, so as to effectively control the maximum gap of the point cloud in a smaller range, improve the uniformity of the point cloud distribution, and improve the scanning field of view
  • the scanning density of the distance measuring device can improve the accuracy of the detection object.
  • the motor speed control method according to the embodiment of the present invention includes the following steps:
  • step S301 the rotation speed of the first motor is controlled to change to a first target speed.
  • the first target speed can be set reasonably according to the needs of the user.
  • the first target speed V1 can be set between [7054rpm, 7534rpm], or other suitable target speeds.
  • step S302 the rotation speed of the second motor is controlled to change to a second target speed according to the first target speed, wherein a predetermined functional relationship is satisfied between the first target speed and the second target speed . That is, according to the predetermined functional relationship, the rotation speed of the second motor is adjusted to the second target speed V2, so that the predetermined functional relationship is always maintained between the first target speed V1 and the second target speed, thereby effectively controlling the point cloud
  • the maximum gap is within a smaller range.
  • the predetermined functional relationship can be any suitable functional relationship that can control the maximum gap of the point cloud within a reasonable threshold range.
  • the predetermined functional relationship includes a linear functional relationship, that is, the first target velocity V1 and the second target velocity V2. Meet the linear function relationship between.
  • the first target rotation speed of the rotation speed of the first motor is set to V1
  • the second target rotation speed is set to V2.
  • the maximum gaps of the point clouds scanned by different motor rotation speed combinations are also different.
  • the abscissa represents V1
  • the ordinate represents V2
  • the frame time is roughly 1.3s. Different colors in the figure indicate different gap sizes, and the color gradually increases from dark to light. If V1 is set at [7054rpm,7534rpm] and V2 is set at [-4904rpm,-4424rpm] as an example, it can be seen that the motor speed satisfies a linear function relationship, making the point cloud gap size the same.
  • the first motor and the second motor have opposite rotation directions, one rotates counterclockwise and the other rotates clockwise.
  • the rotation speed of the second motor is controlled to change to the second target Speed V2, for example, V2 is -4550rpm, "-" means that the second motor and the first motor have opposite rotation directions.
  • the maximum gap of the point cloud is roughly 0.6845m, or when the first target speed V1 is 7123rpm , The rotation speed of the second motor is controlled to change to the second target speed V2, for example, V2 is -4559rpm.
  • the maximum gap of the point cloud is roughly 0.6991m, or when the first target speed V1 is 7141rpm, the second The rotation speed of the motor changes to the second target speed V2, for example, V2 is -4559 rpm.
  • the maximum gap of the point cloud is roughly 0.6998 m; or, when the first target speed V1 is 7294 rpm, the rotation speed of the second motor is controlled to change to The second target speed V2, for example, V2 is -4664 rpm, at this time, the maximum gap of the point cloud is roughly 0.6764 m; or, when the first target speed V1 is 7333 rpm, the rotation speed of the second motor is controlled to change to the second target speed V2
  • V2 is -4682 rpm, at this time, the maximum gap of the point cloud is approximately 0.6955m; or, when the first target speed V1 is 7315 rpm, the rotation speed of the second motor is controlled to change to the second target speed V2, for example, V2 is
  • the first target speed and the second target speed meet the linear function relationship, which can make the maximum gap of the point cloud within a reasonable threshold range.
  • the reasonable threshold range of the maximum gap can be reasonable according to the actual speed combination.
  • the threshold range of the maximum gap of the point cloud may also increase. For example, set V1 at [7054rpm, 7534rpm], V2 is set at [-4904rpm,-4424rpm] as an example, the maximum gap threshold range can be roughly between [0.65m, 1m].
  • the linear function relationship satisfies the following relationship: the second target speed is generally a speed obtained by adding a product of the first target speed and a proportional coefficient to a constant factor.
  • the scale factor is a negative number or an integer, for example, the scale factor includes a negative number greater than -1, and the range of the constant factor can be set reasonably according to actual conditions, for example, the range of the constant factor can be 180 rpm to 210 rpm .
  • V2 -2/3 ⁇ (V1-1)+198, also That is, the scale factor is -2/3, and the constant factor is roughly 198.7. It is worth mentioning that this linear relationship is only used as an example, and the relationship between V1 and V2 is not limited to these numerical ranges and relationship expressions.
  • the rotation speed of the first motor is changed to the first target speed
  • the rotation speed of the second electrode is adjusted to the second target speed according to a predetermined function relationship, because the rotation speed of the first motor will fluctuate around the first target speed in practical applications If the second target velocity remains unchanged at this time, it is likely that the maximum gap of the point cloud will be too large and exceed the reasonable threshold range.
  • the control method of the embodiment of the present invention further includes the following steps:
  • the second target speed is controlled to vary with the first target speed according to the predetermined functional relationship, so that the maximum gap of the point cloud pattern is within the threshold range
  • the first target speed V1 is generally set to 7141 rpm
  • the corresponding second target speed V2 is -4559 rpm
  • the first target speed V1 fluctuates, for example, within the first target speed threshold interval Fluctuations, such as fluctuations in the range of ⁇ 10rpm, ⁇ 20rpm, ⁇ 30rpm, etc.
  • the second target speed is controlled to vary with the first target speed according to the aforementioned predetermined function relationship (for example, linear function relationship), so that the point cloud pattern The maximum gap is within the threshold range.
  • the maximum gap includes the gap between the point clouds in the point cloud pattern projected on the imaging surface, the imaging surface being perpendicular to the optical axis of the light source and spaced apart from the light source The face of the predetermined distance.
  • the predetermined separation distance between the imaging surface and the light source is roughly 100m, the point cloud image The maximum gap at 100m is roughly 0.8727m.
  • the point cloud image obtained when the integration time is also 1s is shown in FIG. 6, and the imaging surface where the point cloud image is located is
  • the predetermined separation distance between the light sources is generally 100 m
  • the maximum gap at 100 m in the point cloud diagram is generally 1.5708 m, which is significantly larger than the maximum gap shown in FIG. 5.
  • control method of the embodiment of the present invention controls the rotation speed of the first motor to change to the first target speed, and controls the rotation speed of the second electrode to follow the first target speed change value and the second target speed.
  • the speed adjustment always keeps the predetermined functional relationship between the first target speed and the second target speed, so as to effectively control the maximum gap of the point cloud within a smaller range, improve the uniformity of the point cloud point distribution, and thereby Improve the scanning density of the scanning field of view, thereby improving the accuracy of the distance measuring device for measuring the probe.
  • the present invention also provides a motor speed control device of a scanning module. Based on the control device, the aforementioned control method can be implemented.
  • the scanning module includes a first optical element and a first optical element. A first motor connected to the element, the first motor is used to drive the first optical element to rotate, and a second optical element and a second motor connected to the second optical element, the second motor is used to drive When the second optical element rotates, the description of the scanning module can refer to the previous description, which will not be repeated here.
  • the motor speed control device includes a control module for: controlling the speed of the first motor to change to a first target speed; controlling the speed of the second motor to change to a second target according to the first target speed Speed, wherein a predetermined functional relationship is satisfied between the first target speed and the second target speed.
  • the motor speed control device of the embodiment of the present invention controls the speed of the first motor to change to the first target speed, and controls the speed of the second electrode to follow the first target speed change value, the second target speed, and the adjustment of the second target speed Always maintain a predetermined functional relationship between the first target speed and the second target speed, so as to effectively control the maximum gap of the point cloud within a smaller range, improve the uniformity of the point cloud point distribution, and improve scanning The scanning density of the field of view, thereby improving the accuracy of the measurement of the probe by the ranging device.
  • control module may be implemented by the controller 218 shown in FIG. 2, or may also be implemented by other control circuits with control functions, which are not specifically limited herein.
  • control module is further configured to: when the first target speed fluctuates within a first target speed threshold interval, control the second target speed to follow the first target speed according to the predetermined functional relationship. The speed is changed so that the maximum gap of the point cloud pattern is within the threshold range.
  • the predetermined functional relationship includes a linear functional relationship.
  • the linear function relationship satisfies the following relationship: the second target speed is generally a speed obtained by adding a product of the first target speed and a proportional coefficient to a constant factor.
  • the proportional coefficient may be a negative number, wherein the proportional coefficient includes a negative number greater than -1, and optionally, the proportional coefficient includes -2/3.
  • the constant factor ranges from 180 rpm to 210 rpm.
  • the scanning module is used to sequentially change the light beams emitted by the light source to different propagation directions to exit to form a scanning field of view, wherein the maximum gap includes the gap in the point cloud pattern projected on the imaging surface
  • the imaging surface is a surface perpendicular to the optical axis of the light source and spaced a predetermined distance from the light source.
  • control device of the embodiment of the present invention includes a control module, through which the rotation speed of the first motor is controlled to change at the first target speed, and the rotation speed of the second electrode is controlled to follow the first target speed and the second target.
  • Speed the adjustment of the second target speed always keeps the predetermined function relationship between the first target speed and the second target speed, so as to effectively control the maximum gap of the point cloud in a smaller range and improve the point cloud Distribution uniformity, thereby increasing the scanning density of the scanning field of view, thereby improving the accuracy of the distance measuring device for measuring the probe.
  • the distance measuring device 200 shown in FIG. 2 may further include the aforementioned motor speed control device, based on which the distance measuring device 200 can implement the aforementioned motor speed control method. Related steps.
  • the specific structure of the distance measuring device 200 can refer to the description of the embodiment in FIG. 2, which may include a light source for emitting a light beam, and the light source is implemented as the emitter 203 in FIG. 2, for example.
  • the distance measuring device 200 further includes a scanning module 202, which is used to sequentially change the light beams emitted by the light source to different propagation directions to form a scanning field of view, wherein the scanning module It includes a first optical element 214 and a driver 216 connected to the first optical element 214, such as a first motor.
  • the first motor is used to drive the first optical element 214 to rotate
  • the second optical element 215 is connected to the Another driver 217 connected to the second optical element 215, such as a second motor, is used to drive the second optical element 215 to rotate.
  • the distance measuring device 200 further includes a detector 205 for receiving at least part of the light beam emitted by the light source reflected back by the object, and obtaining the distance detection device and the distance detection device according to the received light beam. The distance of the object.
  • control module is configured to: control the rotation speed of the first motor to change to a first target speed; control the rotation speed of the second motor to change to a second target speed according to the first target speed , Wherein the first target speed and the second target speed satisfy a predetermined functional relationship.
  • control module may include a controller 218, or other control circuits capable of controlling the first motor and the second motor separately.
  • control module is further configured to: when the first target speed fluctuates within a first target speed threshold interval, control the second target speed to follow the first target speed according to the predetermined functional relationship. The speed is changed so that the maximum gap of the point cloud pattern is within the threshold range.
  • the predetermined functional relationship includes a linear functional relationship.
  • the linear function relationship satisfies the following relationship: the second target speed is generally a speed obtained by adding a product of the first target speed and a proportional coefficient to a constant factor.
  • the scale factor includes a negative number greater than -1, the scale factor is a negative number, for example, the scale factor includes -2/3, and/or the constant factor ranges from 180 rpm to 210 rpm.
  • the maximum gap includes a gap in a point cloud pattern projected on an imaging surface, the imaging surface being a surface perpendicular to the optical axis of the light source and spaced a predetermined distance from the light source.
  • the distance measuring device of the embodiment of the present invention includes the aforementioned control device and can be used to implement the aforementioned control method, it also has the advantages of the aforementioned control device and control method.
  • the distance measuring device of the embodiment of the present invention can be applied to a mobile platform, and the distance measuring device can be installed on the platform body of the mobile platform.
  • a mobile platform with a distance measuring device can measure the external environment, for example, measuring the distance between the mobile platform and obstacles for obstacle avoidance and other purposes, and for two-dimensional or three-dimensional mapping of the external environment.
  • the mobile platform includes at least one of an unmanned aerial vehicle, a car, a remote control car, a robot, a boat, and a camera.
  • the ranging device is applied to an unmanned aerial vehicle
  • the platform body is the fuselage of the unmanned aerial vehicle.
  • the distance measuring device is applied to a car
  • the platform body is the body of the car.
  • the car can be a self-driving car or a semi-automatic driving car, and there is no restriction here.
  • the platform body is the body of the remote control car.
  • the platform body is a robot.
  • the distance measuring device is applied to a camera, the platform body is the camera itself.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another device, or some features can be ignored or not implemented.
  • the various component embodiments of the present invention may be implemented by hardware, or by software modules running on one or more processors, or by their combination.
  • a microprocessor or a digital signal processor (DSP) may be used in practice to implement some or all of the functions of some modules according to the embodiments of the present invention.
  • DSP digital signal processor
  • the present invention can also be implemented as a device program (for example, a computer program and a computer program product) for executing part or all of the methods described herein.
  • Such a program for realizing the present invention may be stored on a computer-readable medium, or may have the form of one or more signals. Such signals can be downloaded from Internet websites, or provided on carrier signals, or provided in any other form.

Abstract

一种扫描模块(202)的电机转速控制方法、装置和测距装置(200),所述扫描模块(202)包括第一光学元件(214)和与所述第一光学元件(214)连接的第一电机(216),所述第一电机(216)用于驱动所述第一光学元件(214)旋转,以及第二光学元件(215)和与所述第二光学元件(215)连接的第二电机(217),所述第二电机(217)用于驱动所述第二光学元件(215)旋转,所述控制方法包括:控制所述第一电机(216)的转速变化至第一目标速度(S301);根据所述第一目标速度控制所述第二电机(217)的转速变化至第二目标速度(S302),其中,所述第一目标速度和所述第二目标速度之间满足预定函数关系。该方法和装置能够有效控制点云的最大空隙在较小的范围内,改善点云点的分布均匀性,从而提升对扫描视场的扫描密度。

Description

扫描模块的电机转速控制方法、装置和测距装置
说明书
技术领域
本发明总地涉及测距装置技术领域,更具体地涉及一种扫描模块的电机转速控制方法、装置和测距装置。
背景技术
例如机械旋转式激光雷达的测距装置,其通常包括扫描模块,用于将光源发射的光改变方向初始,该扫描模块中通常包括两个双棱镜,通过两个转动的电机分别带动两个双棱镜进行旋转,从而改变光的传播方向,在实际应用中两个电机的转速均存在波动,会导致测距装置输出的点云空隙产生变化,使得点云点的分布均匀性变差,部分点云空隙超出容忍范围,从而影响测距装置对探测物测量的准确性。
因此,鉴于上述问题的存在,本发明提出一种扫描模块的电机转速控制方法、装置和测距装置。
发明内容
为了解决上述问题中的至少一个而提出了本发明。具体地,本发明一方面提供一种扫描模块的电机转速控制方法,所述扫描模块包括第一光学元件和与所述第一光学元件连接的第一电机,所述第一电机用于驱动所述第一光学元件旋转,以及第二光学元件和与所述第二光学元件连接的第二电机,所述第二电机用于驱动所述第二光学元件旋转,所述控制方法包括:
控制所述第一电机的转速变化至第一目标速度;
根据所述第一目标速度控制所述第二电机的转速变化至第二目标速度,其中,所述第一目标速度和所述第二目标速度之间满足预定函数关系。
在一个示例中,所述控制方法还包括:
当所述第一目标速度在第一目标速度阈值区间内波动时,根据所述预定函数关系控制所述第二目标速度随所述第一目标速度变化,以使点云图案的最大空隙在阈值范围内。
在一个示例中,所述预定函数关系包括线性函数关系。
在一个示例中,所述线性函数关系满足以下关系:
所述第二目标速度大体为所述第一目标速度与比例系数的乘积再与常数因子相加后的速度。
在一个示例中,所述比例系数为负数,其中,所述比例系数包括大于-1的负数,和/或,
所述常数因子的范围为180rpm~210rpm。
在一个示例中,所述比例系数包括-2/3。
在一个示例中,所述扫描模块用于将光源发射的光束依次改变至不同的传播方向出射,形成一个扫描视场,其中,所述最大空隙包括投影在成像面上的点云图案中的空隙,所述成像面为与所述光源的光轴垂直且与所述光源间隔预定距离的面。
本发明另一方面提供一种扫描模块的电机转速控制装置,所述扫描模块包括第一光学元件和与所述第一光学元件连接的第一电机,所述第一电机用于驱动所述第一光学元件旋转,以及第二光学元件和与所述第二光学元件连接的第二电机,所述第二电机用于驱动所述第二光学元件旋转,所述电机转速控制装置包括控制模块,用于:
控制所述第一电机的转速变化至第一目标速度;
根据所述第一目标速度控制所述第二电机的转速变化至第二目标速度,其中,所述第一目标速度和所述第二目标速度之间满足预定函数关系。
本发明再一方面提供一种测距装置,所述测距装置包括:
光源,用于发射光束;
扫描模块,用于将所述光源发射的光束依次改变至不同的传播方向出射,形成一个扫描视场,其中,所述扫描模块包括第一光学元件和与所述第一光学元件连接的第一电机,所述第一电机用于驱动所述第一光学元件旋转,以及第二光学元件和与所述第二光学元件连接的第二电机,所述第二电机用于驱动所述第二光学元件旋转;
探测器,用于接收所述光源发射的光束经物体反射回的至少部分,以及根据接收到的光束获取所述距离探测装置与所述物体的距离;
控制模块,用于:
控制所述第一电机的转速变化至第一目标速度;
根据所述第一目标速度控制所述第二电机的转速变化至第二目标速度,其中,所述第一目标速度和所述第二目标速度之间满足预定函数关系。
本发明实施例的控制方法、装置和测距装置,通过控制第一电机的转速在变化值第一目标速度,并控制第二电极的转速跟随第一目标速度变化值第二目标速度,第二目标速度的调整始终保持所述第一目标速度和所述第二目标速度之间满足预定函数关系,从而有效控制点云的最大空隙在较小的范围内,改善点云点的分布均匀性,从而提升对扫描视场的扫描密度,进而提高测距装置对探测物测量的准确性。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1示出了本发明一实施例中的测距装置的架构示意图;
图2示出了本发明一个实施例中的测距装置的示意图;
图3示出了本发明一实施例中的扫描模块的电机转速控制方法的示意性流程图;
图4示出了本发明一实施例中的扫描模块中的不同电机组合扫描出来的点云的最大空隙的分布示意图;
图5示出了本发明一实施例中的第一目标转速随机波动而第二目标转速跟随时所获得的点云图;
图6示出了本发明一实施例中的第一目标转速随机波动而第二目标转速随机波动时所获得的点云图。
具体实施方式
为了使得本发明的目的、技术方案和优点更为明显,下面将参照附图详细描述根据本发明的示例实施例。显然,所描述的实施例仅仅是本发明的一部分实施例,而不是本发明的全部实施例,应理解,本发明不受这里描述的示例实施例的限制。基于本发明中描述的本发明实施例,本领域技术人员在没有付出创造性劳动的情况下所得到的所有其它实施例都应落入本发明的保护范围之内。
在下文的描述中,给出了大量具体的细节以便提供对本发明更为彻底的理解。然而,对于本领域技术人员而言显而易见的是,本发明可以无需一个 或多个这些细节而得以实施。在其他的例子中,为了避免与本发明发生混淆,对于本领域公知的一些技术特征未进行描述。
应当理解的是,本发明能够以不同形式实施,而不应当解释为局限于这里提出的实施例。相反地,提供这些实施例将使公开彻底和完全,并且将本发明的范围完全地传递给本领域技术人员。
在此使用的术语的目的仅在于描述具体实施例并且不作为本发明的限制。在此使用时,单数形式的“一”、“一个”和“所述/该”也意图包括复数形式,除非上下文清楚指出另外的方式。还应明白术语“组成”和/或“包括”,当在该说明书中使用时,确定所述特征、整数、步骤、操作、元件和/或部件的存在,但不排除一个或更多其它的特征、整数、步骤、操作、元件、部件和/或组的存在或添加。在此使用时,术语“和/或”包括相关所列项目的任何及所有组合。
为了彻底理解本发明,将在下列的描述中提出详细的结构,以便阐释本发明提出的技术方案。本发明的可选实施例详细描述如下,然而除了这些详细描述外,本发明还可以具有其他实施方式。
例如激光测距系统的测距装置是一种利用激光进行扫描和距离测量从而获取周围场景中三维信息的感知系统。其基本原理为主动对被探测物体发射激光脉冲,捕捉激光回波信号并根据激光发射和接收之间的时间差计算出被测对象的距离;基于激光的已知发射方向,获得被测对象的角度信息;通过高频率的发射和接收,可以获取海量的探测点的距离及角度信息,称为点云。基于点云即可以重建周围场景的三维信息。
下面,参考图1和图2对本发明实施例中的一种测距装置的结构做更详细的示例性地描述,测距装置包括激光雷达,该测距装置仅作为示例,对于其他适合的测距装置也可以应用于本申请。
本发明各个实施例提供的方案可以应用于测距装置,该测距装置可以是激光雷达、激光测距设备等电子设备。在一种实施方式中,测距装置用于感测外部环境信息,例如,环境目标的距离信息、方位信息、反射强度信息、速度信息等。一种实现方式中,测距装置可以通过测量测距装置和探测物之间光传播的时间,即光飞行时间(Time-of-Flight,TOF),来探测探测物到测距装置的距离。或者,测距装置也可以通过其他技术来探测探测物到测距装置的距离,例如基于相位移动(phase shift)测量的测距方法,或者基于频率移动(frequency shift)测量的测距方法,在此不做限制。
为了便于理解,以下将结合图1所示的测距装置100对测距的工作流程 进行举例描述。
示例性地,所述测距装置可以包括发射模块、接收模块和温度控制系统,所述发射模块用于出射光脉冲;所述接收模块用于接收经物体反射回的至少部分光脉冲,以及根据所述接收的至少部分光脉冲确定所述物体相对所述测距装置的距离。
具体地,如图1所示,所述发射模块包括发射电路110;所述接收模块包括接收电路120、采样电路130和运算电路140。
发射电路110可以出射光脉冲序列(例如激光脉冲序列)。接收电路120可以接收经过被探测物反射的光脉冲序列,并对该光脉冲序列进行光电转换,以得到电信号,再对电信号进行处理之后可以输出给采样电路130。采样电路130可以对电信号进行采样,以获取采样结果。运算电路140可以基于采样电路130的采样结果,以确定测距装置100与被探测物之间的距离。
可选地,该测距装置100还可以包括控制电路150,该控制电路150可以实现对其他电路的控制,例如,可以控制各个电路的工作时间和/或对各个电路进行参数设置等。
应理解,虽然图1示出的测距装置中包括一个发射电路、一个接收电路、一个采样电路和一个运算电路,用于出射一路光束进行探测,但是本申请实施例并不限于此,发射电路、接收电路、采样电路、运算电路中的任一种电路的数量也可以是至少两个,用于沿相同方向或分别沿不同方向出射至少两路光束;其中,该至少两束光路可以是同时出射,也可以是分别在不同时刻出射。一个示例中,该至少两个发射电路中的发光芯片封装在同一个模块中。例如,每个发射电路包括一个激光发射芯片,该至少两个发射电路中的激光发射芯片中的die封装到一起,容置在同一个封装空间中。
一些实现方式中,除了图1所示的电路,测距装置100还可以包括扫描模块,用于将发射电路出射的至少一路光脉冲序列(例如激光脉冲序列)改变传播方向出射,以对视场进行扫描。示例性地,所述扫描模块在测距装置的视场内的扫描区域随着时间的累积而增加。
其中,可以将包括发射电路110、接收电路120、采样电路130和运算电路140的模块,或者,包括发射电路110、接收电路120、采样电路130、运算电路140和控制电路150的模块称为测距模块,该测距模块可以独立于其他模块,例如,扫描模块。
测距装置中可以采用同轴光路,也即测距装置出射的光束和经反射回来的光束在测距装置内共用至少部分光路。例如,发射电路出射的至少一路激光脉冲序列经扫描模块改变传播方向出射后,经探测物反射回来的激光脉冲序列经过扫描模块后入射至接收电路。或者,测距装置也可以采用异轴光路,也即测距装置出射的光束和经反射回来的光束在测距装置内分别沿不同的光路传输。图2示出了本发明的测距装置采用同轴光路的一种实施例的示意图。
测距装置200包括测距模块210,测距模块210包括光源,也即发射器203(可以包括上述的发射电路)、准直元件204、探测器205(可以包括上述的接收电路、采样电路和运算电路)和光路改变元件206。测距模块210用于发射光束,且接收回光,将回光转换为电信号。其中,发射器203可以用于发射光脉冲序列。在一个实施例中,发射器203可以发射激光脉冲序列。可选的,发射器203发射出的激光束为波长在可见光范围之外的窄带宽光束。准直元件204设置于发射器的出射光路上,用于准直从发射器203发出的光束,将发射器203发出的光束准直为平行光出射至扫描模块。准直元件还用于会聚经探测物反射的回光的至少一部分。该准直元件204可以是准直透镜或者是其他能够准直光束的元件。
在图2所示实施例中,通过光路改变元件206来将测距装置内的发射光路和接收光路在准直元件204之前合并,使得发射光路和接收光路可以共用同一个准直元件,使得光路更加紧凑。在其他的一些实现方式中,也可以是发射器203和探测器205分别使用各自的准直元件,将光路改变元件206设置在准直元件之后的光路上。
在图2所示实施例中,由于发射器203出射的光束的光束孔径较小,测距装置所接收到的回光的光束孔径较大,所以光路改变元件可以采用小面积的反射镜来将发射光路和接收光路合并。在其他的一些实现方式中,光路改变元件也可以采用带通孔的反射镜,其中该通孔用于透射发射器203的出射光,反射镜用于将回光反射至探测器205。这样可以减小采用小反射镜的情况中小反射镜的支架会对回光的遮挡。
在图2所示实施例中,光路改变元件偏离了准直元件204的光轴。在其他的一些实现方式中,光路改变元件也可以位于准直元件204的光轴上。
测距装置200还包括扫描模块202,用于将所述光源发射的光束依次改变至不同的传播方向出射,形成一个扫描视场。扫描模块202放置于测距模块210的出射光路上,扫描模块202用于改变经准直元件204出射的准直光 束219的传输方向并投射至外界环境,并将回光投射至准直元件204。回光经准直元件204汇聚到探测器205上。
在一个实施例中,扫描模块202可以包括至少一个光学元件,用于改变光束的传播路径,其中,该光学元件可以通过对光束进行反射、折射、衍射等等方式来改变光束传播路径,例如所述光学元件包括至少一个具有非平行的出射面和入射面的光折射元件。例如,扫描模块202包括透镜、反射镜、棱镜、振镜、光栅、液晶、光学相控阵(Optical Phased Array)或上述光学元件的任意组合。一个示例中,至少部分光学元件是运动的,例如通过驱动模块来驱动该至少部分光学元件进行运动,该运动的光学元件可以在不同时刻将光束反射、折射或衍射至不同的方向。在一些实施例中,扫描模块202的多个光学元件可以绕共同的轴209旋转或振动,每个旋转或振动的光学元件用于不断改变入射光束的传播方向。在一个实施例中,扫描模块202的多个光学元件可以以不同的转速旋转,或以不同的速度振动。在另一个实施例中,扫描模块202的至少部分光学元件可以以基本相同的转速旋转。在一些实施例中,扫描模块的多个光学元件也可以是绕不同的轴旋转。在一些实施例中,扫描模块的多个光学元件也可以是以相同的方向旋转,或以不同的方向旋转;或者沿相同的方向振动,或者沿不同的方向振动,在此不作限制。
在一个实施例中,扫描模块202包括第一光学元件214和与第一光学元件214连接的驱动器216,例如第一电机,驱动器216用于驱动第一光学元件214绕转动轴209转动,使第一光学元件214改变准直光束219的方向。第一光学元件214将准直光束219投射至不同的方向。在一个实施例中,准直光束219经第一光学元件改变后的方向与转动轴209的夹角随着第一光学元件214的转动而变化。在一个实施例中,第一光学元件214包括相对的非平行的一对表面,准直光束219穿过该对表面。在一个实施例中,第一光学元件214包括厚度沿至少一个径向变化的棱镜。在一个实施例中,第一光学元件214包括楔角棱镜,对准直光束219进行折射。
在一个实施例中,扫描模块202还包括第二光学元件215,第二光学元件215绕转动轴209转动,第二光学元件215的转动速度与第一光学元件214的转动速度不同。第二光学元件215用于改变第一光学元件214投射的光束的方向。在一个实施例中,第二光学元件215与另一驱动器217(例如第二电机)连接,驱动器217驱动第二光学元件215转动。第一光学元件214和第二光学元件215可以由相同或不同的驱动器驱动,使第一光学元件214和 第二光学元件215的转速和/或转向不同,从而将准直光束219投射至外界空间不同的方向,可以扫描较大的空间范围。在一个实施例中,控制器218控制驱动器216和217,分别驱动第一光学元件214和第二光学元件215。第一光学元件214和第二光学元件215的转速可以根据实际应用中预期扫描的区域和样式确定。驱动器216和217可以包括电机或其他驱动器。
在一个示例中,驱动器216和驱动器217可以具有相反的转动方向,从而分别驱动第一光学元件214和第二光学元件215按照相反的转动方向转动,或者,驱动器216和驱动器217可以具有相同的转动方向,而分别驱动第一光学元件214和第二光学元件215按照相同的转动方向转动,具体根据实际需要合理设定。
在一个实施例中,第二光学元件215包括相对的非平行的一对表面,光束穿过该对表面。在一个实施例中,第二光学元件215包括厚度沿至少一个径向变化的棱镜。在一个实施例中,第二光学元件215包括楔角棱镜。
一个实施例中,扫描模块202还包括第三光学元件(图未示)和用于驱动第三光学元件运动的驱动器。可选地,该第三光学元件包括相对的非平行的一对表面,光束穿过该对表面。在一个实施例中,第三光学元件包括厚度沿至少一个径向变化的棱镜。在一个实施例中,第三光学元件包括楔角棱镜。第一、第二和第三光学元件中的至少两个光学元件以不同的转速和/或转向转动。
在一个实施例中,所述扫描模块包括在所述光脉冲序列的出射光路上依次排布的2个或3个所述光折射元件。可选地,所述扫描模块中的至少2个所述光折射元件在扫描过程中旋转,以改变所述光脉冲序列的方向。
所述扫描模块在至少部分不同时刻的扫描路径不同,扫描模块202中的各光学元件旋转可以将光投射至不同的方向,例如投射的光211的方向和方向213,如此对测距装置200周围的空间进行扫描。当扫描模块202投射出的光211打到探测物201时,一部分光被探测物201沿与投射的光211相反的方向反射至测距装置200。探测物201反射的回光212经过扫描模块202后入射至准直元件204。
探测器205与发射器203放置于准直元件204的同一侧,探测器205用于将穿过准直元件204的至少部分回光转换为电信号。
一个实施例中,各光学元件上镀有增透膜。可选的,增透膜的厚度与发射器203发射出的光束的波长相等或接近,能够增加透射光束的强度。
一个实施例中,测距装置中位于光束传播路径上的一个元件表面上镀有滤光层,或者在光束传播路径上设置有滤光器,用于至少透射发射器所出射的光束所在波段,反射其他波段,以减少环境光给接收器带来的噪音。
在一些实施例中,发射器203可以包括激光二极管,通过激光二极管发射纳秒级别的激光脉冲。进一步地,可以确定激光脉冲接收时间,例如,通过探测电信号脉冲的上升沿时间和/或下降沿时间确定激光脉冲接收时间。如此,测距装置200可以利用脉冲接收时间信息和脉冲发出时间信息计算TOF,从而确定探测物201到测距装置200的距离。测距装置200探测到的距离和方位可以用于遥感、避障、测绘、建模、导航等。
基于前述应用场景,在实际应用中由于两个电机的转速均存在波动,会导致测距装置输出的点云空隙产生变化,使得点云点的分布均匀性变差,部分点云空隙超出容忍范围,从而影响测距装置对探测物的测量的准确性,本发明实施例提供一种扫描模块的电机转速控制方法,所述控制方法包括:控制所述第一电机的转速变化至第一目标速度;根据所述第一目标速度控制所述第二电机的转速变化至第二目标速度,其中,所述第一目标速度和所述第二目标速度之间满足预定函数关系。本发明实施例的控制方法,通过控制第一电机的转速在变化值第一目标速度,并控制第二电极的转速跟随第一目标速度变化值第二目标速度,第二目标速度的调整始终保持所述第一目标速度和所述第二目标速度之间满足预定函数关系,从而有效控制点云的最大空隙在较小的范围内,改善点云点的分布均匀性,从而提升对扫描视场的扫描密度,进而提高测距装置对探测物测量的准确性。
下面,参考附图对本发明实施例的扫描模块的电机转速控制方法做详细描述,在不冲突的情况下,本文的实施例及实施方式中的特征可以相互组合。
如图3所示,本发明实施例的电机转速控制方法,包括以下步骤:
首先,在步骤S301中,控制所述第一电机的转速变化至第一目标速度。该第一目标速度可以根据用户的需要进行合理的设定,例如,第一目标速度V1可以设置在[7054rpm,7534rpm]之间,或者其他适合的目标转速。
接着,在步骤S302中,根据所述第一目标速度控制所述第二电机的转速变化至第二目标速度,其中,所述第一目标速度和所述第二目标速度之间满足预定函数关系。也即,按照该预定函数关系,调整第二电机的转速变化至第二目标速度V2,以使得第一目标速度V1和第二目标速度之间始终保持该预定函数关系,从而有效控制点云的最大空隙在较小的范围内。
该预定函数关系可以是能够使点云的最大空隙控制在合理的阈值范围内的任意适合的函数关系,例如预定函数关系包括线性函数关系,也即第一目标速度V1和第二目标速度V2之间满足线性函数关系。
第一电机的转速的第一目标转速设为V1,第二目标转速设为V2,不同的电机转速组合扫描出来的点云的最大空隙也不相同。例如,如图4所示,横坐标表示V1,纵坐标表示V2,帧时间(frame time)大体为1.3s,图中不同颜色所表示的空隙大小不同,颜色从深到浅点云空隙逐渐增大,以V1设置在[7054rpm,7534rpm],V2设置在[-4904rpm,-4424rpm]为例,可以看出电机转速满足一种线性函数关系,使得点云空隙大小相同。
例如,第一电机和第二电机具有相反的转动方向,一个逆时针转动,另一个则顺时针转动,例如,第一目标速度V1为7123rpm时,则控制第二电机的转速变化至第二目标速度V2,例如V2为-4550rpm,“-”表示第二电机和第一电机的具有相反的转动方向,此时,点云的最大空隙大体为0.6845m,或者,第一目标速度V1为7123rpm时,则控制第二电机的转速变化至第二目标速度V2,例如V2为-4559rpm,此时,点云的最大空隙大体为0.6991m,或者,第一目标速度V1为7141rpm时,则控制第二电机的转速变化至第二目标速度V2,例如V2为-4559rpm,此时,点云的最大空隙大体为0.6998m;或者,第一目标速度V1为7294rpm时,则控制第二电机的转速变化至第二目标速度V2,例如V2为-4664rpm,此时,点云的最大空隙大体为0.6764m;或者,第一目标速度V1为7333rpm时,则控制第二电机的转速变化至第二目标速度V2,例如V2为-4682rpm,此时,点云的最大空隙大体为0.6955m;或者,第一目标速度V1为7315rpm时,则控制第二电机的转速变化至第二目标速度V2,例如V2为-4682rpm,此时,点云的最大空隙大体为0.6889m。由此可以看出,第一目标速度和第二目标速度满足线性函数关系,可以使得点云的最大空隙在合理的阈值范围内,其中,最大空隙的合理的阈值范围可以根据实际的转速组合合理设定,例如可以随着第一目标转速V1和/或第二目标转速V2的增大,该点云的最大空隙的阈值范围也可能会增大,示例性地,以V1设置在[7054rpm,7534rpm],V2设置在[-4904rpm,-4424rpm]为例,最大空隙的阈值范围可以大体在[0.65m,1m]之间。
在一个示例中,所述线性函数关系满足以下关系:所述第二目标速度大体为所述第一目标速度与比例系数的乘积再与常数因子相加后的速度。可选地,所述比例系数为负数或者整数,例如,所述比例系数包括大于-1的负数, 所述常数因子的范围可以根据实际情况合理设定,例如常数因子的范围可以为180rpm~210rpm。
以图4中箭头所指的白色线为例,可以计算出第一目标速度V1和第二目标速度V2之间满足以下线性关系:V2=-2/3×(V1-1)+198,也即比例系数为-2/3,常数因子大体为198.7。值得一提的是,该线性关系仅作为示例,V1和V2的关系并不限于这些数字范围和关系式。
尽管第一电机的转速变化至第一目标速度后,按照预定函数关系调整第二电极的转速变化至第二目标速度,由于在实际应用中第一电机的转速还会在第一目标速度附近波动,如果此时仍然保持第二目标速度不变的话,很可能会使得点云的最大空隙过大而超出合理的阈值范围,因此,本发明实施例的控制方法还进一步包括以下步骤:当所述第一目标速度在第一目标速度阈值区间内波动时,根据所述预定函数关系控制所述第二目标速度随所述第一目标速度变化,以使点云图案的最大空隙在阈值范围内,例如,第一目标速度V1大体设定为7141rpm,而对应的第二目标速度V2则为-4559rpm,但由于某些原因,第一目标速度V1发生了波动,例如在第一目标速度阈值区间内波动,例如在±10rpm、±20rpm、±30rpm等范围内波动,则根据前述预定函数关系(例如线性函数关系)控制所述第二目标速度随所述第一目标速度变化,以使点云图案的最大空隙在阈值范围内。
值得一提的是,在本文中,最大空隙包括投影在成像面上的点云图案中的点云之间的空隙,所述成像面为与所述光源的光轴垂直且与所述光源间隔预定距离的面。
在一个具体示例中,第一电机的第一目标转速V1随机波动,而按照预定函数关系,第二电机的第二目标转速V2跟随V1波动,使得V2和V1之间满足以下关系:V2=-2/3×(V1-1)+198时,当积分时间为1s时的点云图如图5所示,该点云图所在的成像面与光源之间的预定间隔距离大体为100m,该点云图中的100m处最大空隙大体为0.8727m。
在其他示例中,第一目标转速V1随机波动而第二目标转速V2也随机波动时,当同样为积分时间为1s时所获得的点云图如图6所示,该点云图所在的成像面与光源之间的预定间隔距离大体为100m,该点云图中的100m处最大空隙大体为1.5708m,该最大空隙明显大于图5中所示的最大空隙。
因此,由图5和图6对比分析可知,通过控制第二电机的转速跟随第一电机的转速波动,可以有效控制点云最大空隙在较小的范围内,保证扫描模 块的扫描密度的均匀性和对探测物的覆盖率,提高探测的准确性。
综上所述,本发明实施例的控制方法,通过控制第一电机的转速在变化值第一目标速度,并控制第二电极的转速跟随第一目标速度变化值第二目标速度,第二目标速度的调整始终保持所述第一目标速度和所述第二目标速度之间满足预定函数关系,从而有效控制点云的最大空隙在较小的范围内,改善点云点的分布均匀性,从而提升对扫描视场的扫描密度,进而提高测距装置对探测物测量的准确性。
在另一个实施例中,本发明还提供一种扫描模块的电机转速控制装置,基于该控制装置可以实现前文所述的控制方法,所述扫描模块包括第一光学元件和与所述第一光学元件连接的第一电机,所述第一电机用于驱动所述第一光学元件旋转,以及第二光学元件和与所述第二光学元件连接的第二电机,所述第二电机用于驱动所述第二光学元件旋转,该扫描模块的描述可以参考前文中的描述,在此不再赘述。
进一步,所述电机转速控制装置包括控制模块,用于:控制所述第一电机的转速变化至第一目标速度;根据所述第一目标速度控制所述第二电机的转速变化至第二目标速度,其中,所述第一目标速度和所述第二目标速度之间满足预定函数关系。本发明实施例的电机转速控制装置,通过控制第一电机的转速在变化值第一目标速度,并控制第二电极的转速跟随第一目标速度变化值第二目标速度,第二目标速度的调整始终保持所述第一目标速度和所述第二目标速度之间满足预定函数关系,从而有效控制点云的最大空隙在较小的范围内,改善点云点的分布均匀性,从而提升对扫描视场的扫描密度,进而提高测距装置对探测物测量的准确性。
可选地,控制模块可以由图2中所示的控制器218实现,或者还可以由其他的具有控制功能的控制电路实现,在此不对其进行具体限定。
在一个示例中,所述控制模块还用于:当所述第一目标速度在第一目标速度阈值区间内波动时,根据所述预定函数关系控制所述第二目标速度随所述第一目标速度变化,以使点云图案的最大空隙在阈值范围内。
在一个示例中,所述预定函数关系包括线性函数关系。可选地,所述线性函数关系满足以下关系:所述第二目标速度大体为所述第一目标速度与比例系数的乘积再与常数因子相加后的速度。所述比例系数可以为负数,其中,所述比例系数包括大于-1的负数,可选地,所述比例系数包括-2/3。
在一个示例中,所述常数因子的范围为180rpm~210rpm。
在一个示例中,所述扫描模块用于将光源发射的光束依次改变至不同的传播方向出射,形成一个扫描视场,其中,所述最大空隙包括投影在成像面上的点云图案中的空隙,所述成像面为与所述光源的光轴垂直且与所述光源间隔预定距离的面。
综上所述,本发明实施例的控制装置包括控制模块,通过控制模块控制第一电机的转速在变化值第一目标速度,并控制第二电极的转速跟随第一目标速度变化值第二目标速度,第二目标速度的调整始终保持所述第一目标速度和所述第二目标速度之间满足预定函数关系,从而有效控制点云的最大空隙在较小的范围内,改善点云点的分布均匀性,从而提升对扫描视场的扫描密度,进而提高测距装置对探测物测量的准确性。
在本发明的再一个实施例中,如图2所示的测距装置200还可以包括前文所述的电机转速控制装置,基于该测距装置200可以实现前文所述的电机转速控制方法中的相关步骤。
具体地,该测距装置200的具体结构可以参考对图2实施例的描述,其可以包括光源,该光源用于发射光束,光源例如实现为图2中的发射器203。
进一步地,如图2所示,该测距装置200还包括扫描模块202,用于将所述光源发射的光束依次改变至不同的传播方向出射,形成一个扫描视场,其中,所述扫描模块包括第一光学元件214和与所述第一光学元件214连接的驱动器216例如第一电机,所述第一电机用于驱动所述第一光学元件214旋转,以及第二光学元件215和与所述第二光学元件215连接的另一个驱动器217,例如第二电机,所述第二电机用于驱动所述第二光学元件215旋转。
进一步地,如图2所示,该测距装置200还包括探测器205,用于接收所述光源发射的光束经物体反射回的至少部分,以及根据接收到的光束获取所述距离探测装置与所述物体的距离。
进一步地,如图2所示,控制模块用于:控制所述第一电机的转速变化至第一目标速度;根据所述第一目标速度控制所述第二电机的转速变化至第二目标速度,其中,所述第一目标速度和所述第二目标速度之间满足预定函数关系。其中,控制模块可以包括控制器218,或者其他能够实现对第一电机和第二电机分别控制的控制电路。
在一个示例中,所述控制模块还用于:当所述第一目标速度在第一目标速度阈值区间内波动时,根据所述预定函数关系控制所述第二目标速度随所 述第一目标速度变化,以使点云图案的最大空隙在阈值范围内。
在一个示例中,所述预定函数关系包括线性函数关系。可选地,所述线性函数关系满足以下关系:所述第二目标速度大体为所述第一目标速度与比例系数的乘积再与常数因子相加后的速度。可选地,所述比例系数包括大于-1的负数,所述比例系数为负数例如,所述比例系数包括-2/3,和/或,所述常数因子的范围为180rpm~210rpm。
在一个示例中,所述最大空隙包括投影在成像面上的点云图案中的空隙,所述成像面为与所述光源的光轴垂直且与所述光源间隔预定距离的面。
综上所述,本发明实施例的测距装置由于包括前述的控制装置,并能够用于实现前文描述的控制方法,因此,其同样具有前文描述的控制装置和控制方法的优点。
在一种实施方式中,本发明实施方式的测距装置可应用于移动平台,测距装置可安装在移动平台的平台本体。具有测距装置的移动平台可对外部环境进行测量,例如,测量移动平台与障碍物的距离用于避障等用途,和对外部环境进行二维或三维的测绘。在某些实施方式中,移动平台包括无人飞行器、汽车、遥控车、机器人、船、相机中的至少一种。当测距装置应用于无人飞行器时,平台本体为无人飞行器的机身。当测距装置应用于汽车时,平台本体为汽车的车身。该汽车可以是自动驾驶汽车或者半自动驾驶汽车,在此不做限制。当测距装置应用于遥控车时,平台本体为遥控车的车身。当测距装置应用于机器人时,平台本体为机器人。当测距装置应用于相机时,平台本体为相机本身。
尽管这里已经参考附图描述了示例实施例,应理解上述示例实施例仅仅是示例性的,并且不意图将本发明的范围限制于此。本领域普通技术人员可以在其中进行各种改变和修改,而不偏离本发明的范围和精神。所有这些改变和修改意在被包括在所附权利要求所要求的本发明的范围之内。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的, 例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个设备,或一些特征可以忽略,或不执行。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本发明的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
类似地,应当理解,为了精简本发明并帮助理解各个发明方面中的一个或多个,在对本发明的示例性实施例的描述中,本发明的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该本发明的方法解释成反映如下意图:即所要求保护的本发明要求比在每个权利要求中所明确记载的特征更多的特征。更确切地说,如相应的权利要求书所反映的那样,其发明点在于可以用少于某个公开的单个实施例的所有特征的特征来解决相应的技术问题。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本发明的单独实施例。
本领域的技术人员可以理解,除了特征之间相互排斥之外,可以采用任何组合对本说明书(包括伴随的权利要求、摘要和附图)中公开的所有特征以及如此公开的任何方法或者设备的所有过程或单元进行组合。除非另外明确陈述,本说明书(包括伴随的权利要求、摘要和附图)中公开的每个特征可以由提供相同、等同或相似目的替代特征来代替。
此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本发明的范围之内并且形成不同的实施例。例如,在权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
本发明的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本发明实施例的一些模块的一些或者全部功能。本发明还可以实现为用于执行这里所描述的方法的一部分或者全部的装置程序(例如,计算机程序和计算机程序产品)。这样的实现本发明的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。
应该注意的是上述实施例对本发明进行说明而不是对本发明进行限制, 并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。本发明可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。

Claims (21)

  1. 一种扫描模块的电机转速控制方法,其特征在于,所述扫描模块包括第一光学元件和与所述第一光学元件连接的第一电机,所述第一电机用于驱动所述第一光学元件旋转,以及第二光学元件和与所述第二光学元件连接的第二电机,所述第二电机用于驱动所述第二光学元件旋转,所述控制方法包括:
    控制所述第一电机的转速变化至第一目标速度;
    根据所述第一目标速度控制所述第二电机的转速变化至第二目标速度,其中,所述第一目标速度和所述第二目标速度之间满足预定函数关系。
  2. 如权利要求1所述的电机转速控制方法,其特征在于,所述控制方法还包括:
    当所述第一目标速度在第一目标速度阈值区间内波动时,根据所述预定函数关系控制所述第二目标速度随所述第一目标速度变化,以使点云图案的最大空隙在阈值范围内。
  3. 如权利要求1或2所述的电机转速控制方法,其特征在于,所述预定函数关系包括线性函数关系。
  4. 如权利要求3所述的电机转速控制方法,其特征在于,所述线性函数关系满足以下关系:
    所述第二目标速度大体为所述第一目标速度与比例系数的乘积再与常数因子相加后的速度。
  5. 如权利要求4所述的电机转速控制方法,其特征在于,
    所述比例系数为负数,其中,所述比例系数包括大于-1的负数,和/或,
    所述常数因子的范围为180rpm~210rpm。
  6. 如权利要求4所述的电机转速控制方法,其特征在于,所述比例系数包括-2/3。
  7. 如权利要求2所述的电机转速控制方法,其特征在于,所述扫描模块用于将光源发射的光束依次改变至不同的传播方向出射,形成一个扫描视场,其中,所述最大空隙包括投影在成像面上的点云图案中的空隙,所述成像面为与所述光源的光轴垂直且与所述光源间隔预定距离的面。
  8. 一种扫描模块的电机转速控制装置,其特征在于,所述扫描模块包括第一光学元件和与所述第一光学元件连接的第一电机,所述第一电机用于驱动所述第一光学元件旋转,以及第二光学元件和与所述第二光学元件连接的 第二电机,所述第二电机用于驱动所述第二光学元件旋转,所述电机转速控制装置包括控制模块,用于:
    控制所述第一电机的转速变化至第一目标速度;
    根据所述第一目标速度控制所述第二电机的转速变化至第二目标速度,其中,所述第一目标速度和所述第二目标速度之间满足预定函数关系。
  9. 如权利要求8所述的电机转速控制装置,其特征在于,所述控制模块还用于:
    当所述第一目标速度在第一目标速度阈值区间内波动时,根据所述预定函数关系控制所述第二目标速度随所述第一目标速度变化,以使点云图案的最大空隙在阈值范围内。
  10. 如权利要求8或9所述的电机转速控制装置,其特征在于,所述预定函数关系包括线性函数关系。
  11. 如权利要求10所述的电机转速控制装置,其特征在于,所述线性函数关系满足以下关系:
    所述第二目标速度大体为所述第一目标速度与比例系数的乘积再与常数因子相加后的速度。
  12. 如权利要求11所述的电机转速控制装置,其特征在于,
    所述比例系数为负数,其中,所述比例系数包括大于-1的负数,和/或,
    所述常数因子的范围为180rpm~210rpm。
  13. 如权利要求11所述的电机转速控制装置,其特征在于,所述比例系数包括-2/3。
  14. 如权利要求9所述的电机转速控制装置,其特征在于,所述扫描模块用于将光源发射的光束依次改变至不同的传播方向出射,形成一个扫描视场,其中,所述最大空隙包括投影在成像面上的点云图案中的空隙,所述成像面为与所述光源的光轴垂直且与所述光源间隔预定距离的面。
  15. 一种测距装置,其特征在于,所述测距装置包括:
    光源,用于发射光束;
    扫描模块,用于将所述光源发射的光束依次改变至不同的传播方向出射,形成一个扫描视场,其中,所述扫描模块包括第一光学元件和与所述第一光学元件连接的第一电机,所述第一电机用于驱动所述第一光学元件旋转,以及第二光学元件和与所述第二光学元件连接的第二电机,所述第二电机用于驱动所述第二光学元件旋转;
    探测器,用于接收所述光源发射的光束经物体反射回的至少部分,以及根据接收到的光束获取所述距离探测装置与所述物体的距离;
    控制模块,用于:
    控制所述第一电机的转速变化至第一目标速度;
    根据所述第一目标速度控制所述第二电机的转速变化至第二目标速度,其中,所述第一目标速度和所述第二目标速度之间满足预定函数关系。
  16. 如权利要求15所述的测距装置,其特征在于,所述控制模块还用于:
    当所述第一目标速度在第一目标速度阈值区间内波动时,根据所述预定函数关系控制所述第二目标速度随所述第一目标速度变化,以使点云图案的最大空隙在阈值范围内。
  17. 如权利要求15或16所述的测距装置,其特征在于,所述预定函数关系包括线性函数关系。
  18. 如权利要求17所述的测距装置,其特征在于,所述线性函数关系满足以下关系:
    所述第二目标速度大体为所述第一目标速度与比例系数的乘积再与常数因子相加后的速度。
  19. 如权利要求18所述的测距装置,其特征在于,
    所述比例系数为负数,其中,所述比例系数包括大于-1的负数,和/或,
    所述常数因子的范围为180rpm~210rpm。
  20. 如权利要求18所述的测距装置,其特征在于,所述比例系数包括-2/3。
  21. 如权利要求15所述的测距装置,其特征在于,所述最大空隙包括投影在成像面上的点云图案中的空隙,所述成像面为与所述光源的光轴垂直且与所述光源间隔预定距离的面。
PCT/CN2019/100379 2019-08-13 2019-08-13 扫描模块的电机转速控制方法、装置和测距装置 WO2021026766A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/100379 WO2021026766A1 (zh) 2019-08-13 2019-08-13 扫描模块的电机转速控制方法、装置和测距装置
CN201980031290.7A CN112654893A (zh) 2019-08-13 2019-08-13 扫描模块的电机转速控制方法、装置和测距装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/100379 WO2021026766A1 (zh) 2019-08-13 2019-08-13 扫描模块的电机转速控制方法、装置和测距装置

Publications (1)

Publication Number Publication Date
WO2021026766A1 true WO2021026766A1 (zh) 2021-02-18

Family

ID=74570842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/100379 WO2021026766A1 (zh) 2019-08-13 2019-08-13 扫描模块的电机转速控制方法、装置和测距装置

Country Status (2)

Country Link
CN (1) CN112654893A (zh)
WO (1) WO2021026766A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022252035A1 (zh) * 2021-05-31 2022-12-08 深圳市大疆创新科技有限公司 一种探测装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101226276A (zh) * 2008-01-22 2008-07-23 长春理工大学 激光通信跟踪系统中的精跟踪子系统
JP2008298520A (ja) * 2007-05-30 2008-12-11 Nec Corp 走査型距離計測装置
CN102354053A (zh) * 2011-10-31 2012-02-15 四川九洲电器集团有限责任公司 消除图像模糊的回扫光学系统及方法
CN204044359U (zh) * 2014-07-11 2014-12-24 武汉万集信息技术有限公司 一种二维扫描式激光测距装置
CN104536134A (zh) * 2014-12-30 2015-04-22 黄真理 一种探测光平行扫描设备
CN106019296A (zh) * 2016-07-26 2016-10-12 北醒(北京)光子科技有限公司 一种混合固态多线光学扫描测距装置
CN107643525A (zh) * 2017-08-24 2018-01-30 南京理工大学 基于45°转镜的线阵激光雷达周向无像旋成像系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008298520A (ja) * 2007-05-30 2008-12-11 Nec Corp 走査型距離計測装置
CN101226276A (zh) * 2008-01-22 2008-07-23 长春理工大学 激光通信跟踪系统中的精跟踪子系统
CN102354053A (zh) * 2011-10-31 2012-02-15 四川九洲电器集团有限责任公司 消除图像模糊的回扫光学系统及方法
CN204044359U (zh) * 2014-07-11 2014-12-24 武汉万集信息技术有限公司 一种二维扫描式激光测距装置
CN104536134A (zh) * 2014-12-30 2015-04-22 黄真理 一种探测光平行扫描设备
CN106019296A (zh) * 2016-07-26 2016-10-12 北醒(北京)光子科技有限公司 一种混合固态多线光学扫描测距装置
CN107643525A (zh) * 2017-08-24 2018-01-30 南京理工大学 基于45°转镜的线阵激光雷达周向无像旋成像系统

Also Published As

Publication number Publication date
CN112654893A (zh) 2021-04-13

Similar Documents

Publication Publication Date Title
CN210142187U (zh) 一种距离探测装置
US20210293928A1 (en) Ranging apparatus, balance method of scan field thereof, and mobile platform
WO2022126427A1 (zh) 点云处理方法、点云处理装置、可移动平台和计算机存储介质
WO2020124318A1 (zh) 调整扫描元件运动速度的方法及测距装置、移动平台
WO2020177077A1 (zh) 一种标定板、深度参数标定方法、探测装置及标定系统
US20210293929A1 (en) Ranging system and mobile platform
WO2020154980A1 (zh) 一种探测装置外参数标定方法、数据处理装置和探测系统
WO2020215252A1 (zh) 测距装置点云滤噪的方法、测距装置和移动平台
CN209979845U (zh) 一种测距装置及移动平台
CN210199305U (zh) 一种扫描模组、测距装置及可移动平台
WO2020062256A1 (zh) 一种光束扫描系统、距离探测装置及电子设备
WO2021026766A1 (zh) 扫描模块的电机转速控制方法、装置和测距装置
WO2020237663A1 (zh) 一种多通道激光雷达点云插值的方法和测距装置
WO2020133384A1 (zh) 一种激光测距装置及移动平台
US20220082665A1 (en) Ranging apparatus and method for controlling scanning field of view thereof
WO2020177076A1 (zh) 一种探测装置初始状态标定方法及装置
WO2021056470A1 (zh) 电机模组、扫描模块、测距装置及控制方法
US20210333374A1 (en) Ranging apparatus and mobile platform
WO2020142909A1 (zh) 数据同步方法、分布式雷达系统及可移动平台
WO2020142878A1 (zh) 一种测距装置及移动平台
WO2020107379A1 (zh) 应用于测距装置的反射率校正方法、测距装置
WO2022226984A1 (zh) 扫描视场的控制方法、测距装置和可移动平台
WO2020147090A1 (zh) 一种测距装置及移动平台
US20210333369A1 (en) Ranging system and mobile platform
CN112236687A (zh) 一种探测电路、探测方法及测距装置、移动平台

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19941242

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19941242

Country of ref document: EP

Kind code of ref document: A1