WO2020177077A1 - 一种标定板、深度参数标定方法、探测装置及标定系统 - Google Patents

一种标定板、深度参数标定方法、探测装置及标定系统 Download PDF

Info

Publication number
WO2020177077A1
WO2020177077A1 PCT/CN2019/076996 CN2019076996W WO2020177077A1 WO 2020177077 A1 WO2020177077 A1 WO 2020177077A1 CN 2019076996 W CN2019076996 W CN 2019076996W WO 2020177077 A1 WO2020177077 A1 WO 2020177077A1
Authority
WO
WIPO (PCT)
Prior art keywords
calibration
detection device
echo signals
depth
different
Prior art date
Application number
PCT/CN2019/076996
Other languages
English (en)
French (fr)
Inventor
吴特思
陈涵
李涛
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2019/076996 priority Critical patent/WO2020177077A1/zh
Priority to CN201980005498.1A priority patent/CN111902730B/zh
Publication of WO2020177077A1 publication Critical patent/WO2020177077A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating

Definitions

  • the invention relates to the field of detection technology, in particular to a calibration board, a depth parameter calibration method, a detection device and a calibration system.
  • Detection devices such as lidar can emit detection signals in different directions, so as to obtain depth information and reflectivity information of objects based on echoes in different directions. In order to achieve the purpose of accurate detection, it is necessary to calibrate detection devices such as lidar before use. Related technology In the calibration process of detection devices such as lidar, a certain number of calibration boards are generally set at different distances in front of the detection device to collect echo signals with different signal strengths. Therefore, the requirements for the calibration location are relatively high. High, the operation is not simple and convenient.
  • the embodiment of the present invention provides a calibration board, a depth parameter calibration method, a detection device and a calibration system, which can reduce the requirements for the calibration site, and the calibration process is simple and convenient.
  • an embodiment of the present invention provides a calibration plate, which includes a reflector plate, and at least two reflector areas are provided on the surface of the reflector plate: a first reflector area and a second reflector area;
  • the first reflection area is a total reflection area, and the first reflection area is used to reflect light waves irradiated on the first reflection area to provide an echo in the first signal intensity interval for calibration;
  • the second reflection area is a diffuse reflection area and includes a plurality of sub-reflection areas.
  • the sub-reflection areas have different reflectivities.
  • the second reflection area is used to perform light waves irradiated on the second reflection area. Reflect to provide the echoes of the remaining signal strength intervals outside the first signal strength interval used for calibration.
  • an embodiment of the present invention provides a depth parameter calibration method, which is applied to a detection device, and the detection device emits light waves to the calibration plate as described in the first aspect, and the method includes:
  • the relationship between the strength of the echo signals of the detection device and the depth compensation value is obtained.
  • an embodiment of the present invention provides a detection device.
  • the detection device at least includes a memory and a processor; the memory is connected to the processor through a communication bus and is used to store a computer executable by the processor. Instructions; the processor is used to read computer instructions from the memory to implement the steps of the method described in the second aspect.
  • an embodiment of the present invention provides a calibration system, comprising: the detection device according to the third aspect and the calibration board according to the first aspect, the calibration board is arranged in front of the detection device, The detection device is used to emit light waves to the calibration plate, and receive echo signals with different signal strengths reflected by different reflection areas on the calibration plate, and calculate the different signal strengths according to the echo signals.
  • the depth values corresponding to the echo signals of the different signal strengths and the actual distance values between the calibration plate and the detection device are calculated to obtain the different signal strengths
  • the depth compensation value corresponding to the echo signal of the echo signal; according to the depth compensation value corresponding to the echo signal of different signal strength and the signal strength of the echo signal, the strength and depth of the echo signal of the detection device are obtained The relationship of compensation value.
  • the light wave signal irradiated on the reflector is reflected to different degrees. Generates echo signals with different signal strengths; and then, when performing depth parameter calibration on detection devices such as lidars, you can obtain echoes with different signal strengths by setting a calibration board, which is simpler and more convenient than the prior art. effect.
  • FIG. 1 is a schematic structural diagram of a reflector provided by an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of another reflector provided by an embodiment of the present invention.
  • Figure 3 is a schematic structural diagram of a calibration plate provided by an embodiment of the present invention.
  • Figure 4 is a block diagram of a detection device provided by an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a detection device using a coaxial optical path provided by an embodiment of the present invention.
  • Figure 6 is a schematic diagram of transmitting and receiving echoes provided by an embodiment of the present invention.
  • FIG. 7 is a schematic flowchart of a depth parameter calibration method provided by an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a relationship curve between signal strength and depth compensation value provided by an embodiment of the present invention.
  • Figure 9 is a block diagram of a detection device provided by an embodiment of the present invention.
  • Figure 10 is a schematic diagram of a calibration system provided by an embodiment of the present invention.
  • Fig. 11 is a perspective view of a movable platform provided by an embodiment of the present invention.
  • Detection devices such as lidar can emit detection signals in different directions, so as to obtain data such as depth information and reflectivity information of objects according to echo signals in different directions.
  • the calibration includes depth parameter calibration.
  • depth parameter calibration when performing depth parameter calibration, in order to improve the accuracy of the calibration, it is necessary to collect echo signals with different signal strengths, and the echo signals with different signal strengths are evenly distributed in the entire signal strength interval.
  • calibration boards are generally set at different distances from the detection device to achieve the purpose of collecting echoes with different signal strengths. This method needs to occupy a larger space, and the calibration site Higher requirements and lower efficiency.
  • an embodiment of the present invention provides a calibration plate, the calibration plate includes: a reflective plate, the surface of the reflective plate is provided with at least two reflective areas with different reflectivity: a first reflective area and a second reflective area
  • the first reflection area is a total reflection area, which is used to reflect the light waves irradiated by the detection device in the first reflection area to provide an echo in the first signal strength interval for calibration; the first signal strength The interval includes the maximum signal strength that can be received by the detection device, and the maximum signal strength that can be received is determined by the internal circuit structure of the detection device itself, which is not specifically limited in the embodiment of the present invention.
  • the above-mentioned second reflection area is a diffuse reflection area, including a plurality of sub-reflection areas, each sub-reflection area has a different reflectivity; the second reflection area is used to reflect the light wave irradiated on the second reflection area to provide calibration The used echoes in the rest signal strength interval outside the first signal strength interval.
  • the echo signal whose signal strength is uniformly distributed over the entire signal strength range that can be collected by the detection device can be obtained through the above-mentioned calibration board.
  • the above-mentioned first reflection area may be provided with a total reflection patch, or may be directly sprayed with a total reflection material.
  • the above-mentioned second reflection area is used as a diffuse reflection area, which can be formed by spraying diffuse reflection materials with different reflectivities to form different sub-reflection areas; or it may be pasted on the second reflection area with a diffuse reflection material film with different reflectance, etc.
  • the second reflective area may be provided with cardboard of different colors, and the cardboard of different colors has different reflectivity.
  • FIG. 1 is a schematic structural diagram of a reflector provided by an embodiment of the present invention.
  • the second reflection area 100 of the reflector in this embodiment includes four sub-reflection areas, namely: a first sub-reflection area 101, a second sub-reflection area 102, and a third sub-reflection area.
  • the first sub-reflection area 101 in order to ensure that during the depth parameter calibration, the signal strength of the echo signal received by the detection device is distributed as evenly as possible in the entire signal strength range, the first sub-reflection area 101 , The second sub-reflection area 102, the third sub-reflection area 103, and the fourth sub-reflection area 104 have different reflectivities; and in this embodiment, the first reflection area 105 is disposed at the center of the second reflection area.
  • the detection device receives the echo reflected by the light spot hitting the reflector as the echo of the small signal strength, but the echo of the small signal strength collected by this method will be relatively small in number, in order to be in the calibration process
  • the above-mentioned reflector is further provided with a third reflection area, and the third reflection area is used to irradiate the third reflection area. Reflected light waves to supplement the echoes that provide the tiny signal strength used for depth parameter calibration.
  • the above-mentioned echoes with small signal strength refer to echoes with signal strength distributed near the minimum signal strength that can be detected by the detection device.
  • first, second, and third reflective areas on the reflector of the present invention and the number of sub-reflection areas included in the second reflector are not considered limited.
  • the above-mentioned third reflection area may be provided with blind holes uniformly arranged, and the shape of the blind holes may be any shape such as a circle or a square.
  • the light wave irradiates the blind hole distribution area of the third reflection area and then is reflected, so as to provide the echo of the tiny signal intensity used for the depth parameter calibration.
  • the above-mentioned third reflection area may also be provided with a grid formed by interweaving a plurality of linear objects with different reflectivities; or the surface of the reflection plate may be made into a grid shape as the third reflection area .
  • FIG. 2 is a schematic structural diagram of a reflective plate provided in an embodiment of the present invention.
  • the linear objects 107 are evenly arranged on the above-mentioned third reflective area 106.
  • the linear objects 107 are arranged horizontally, but it is not limited to this.
  • the linear objects 107 are also It may be arranged vertically or obliquely, and the thread 107 may also be arranged in a ring; furthermore, the number and arrangement of the thread 107 are not limited here.
  • each of the two adjacent linear objects 107 of the third reflective area 106 has different reflectivity, so the linear objects 107 of the third reflective area 106 have at least two different reflectivities. .
  • the distance between adjacent linear objects 107 is greater than the maximum size of the light spot irradiated on the reflector; the maximum size of the light spot refers to the dimension with the largest value among all the external dimension parameters of the light spot.
  • the maximum size of the light spot refers to the dimension with the largest value among all the external dimension parameters of the light spot.
  • all the dimensions of the light spot include: long axis and short axis, and the maximum size of the light spot refers to the long axis of the light spot; for another example, when the shape of the light spot is circular,
  • the maximum size of the light spot refers to the diameter of the light spot.
  • the above-mentioned thread 107 may be formed by spraying materials with different reflectivities on the surface of the reflector; it may also be made of materials with different reflectance, and the thread 107 is fixed on the reflector. On the board. For example, wrapping films with different reflectivities on metal wires with a certain diameter and fixing the metal wires on the reflector; or directly using lines with different colors, which have different reflectivities .
  • the difference between the maximum depth value and the minimum depth value corresponding to the reflector is smaller than a preset parameter.
  • the difference between the maximum depth and the minimum depth corresponding to the reflector is related to the distance between the detection device and the reflector and the size of the reflector.
  • the depth of the center of the reflector will be smaller than the depth of the edge of the reflector.
  • the preset parameter may be 1 cm.
  • the size of the reflector should be such that the difference between the maximum depth and the minimum depth of the reflector is smaller than the preset parameter. At this time, it can be approximated as Different positions have the same depth value. It should be noted that those skilled in the art can set the preset parameter value according to actual needs, and the embodiment of the present invention does not specifically limit this.
  • the reflector is set at a position ten meters in front of the detection device, and the shape of the reflector is square, the size of the reflector is 50 cm in length, and the reflector corresponds to When the difference between the maximum depth value and the minimum depth value is less than 1 cm, it can be considered that different positions on the reflector have the same depth value.
  • the second reflection area 100 on the reflector includes eight sub-reflection areas.
  • the eight sub-reflection areas may be spliced by eight types of cardboard with different reflectivities, or may be directly composed of eight sub-reflection areas.
  • a variety of diffuse reflective materials with different reflectivities are sprayed onto the surface of the reflector.
  • the number of sub-reflection areas with different reflectivities included in the second reflection area 100 is not fixed, to ensure that echo signals with a wide and uniform distribution of signal strength can be obtained when the depth parameter is calibrated. , Without affecting the data volume of the received echo signal, the number of sub-reflection areas in the diffuse reflection area can be increased appropriately.
  • FIG. 3 is a schematic structural diagram of a calibration board provided in an embodiment of the present invention.
  • the calibration board provided in this embodiment further includes a supporting mechanism 108, and the above-mentioned reflecting plate is mounted on the supporting mechanism 108 Above.
  • the aforementioned supporting mechanism 108 includes a supporting rod and a base, the supporting rod is installed above the base, and the reflecting plate is installed above the supporting rod.
  • a moving assembly 109 is installed below the aforementioned supporting mechanism 108 for moving the supporting mechanism.
  • the moving component 109 may be a roller or a sliding rail.
  • the height of the above-mentioned support mechanism 108 is adjustable; for example, when the support mechanism 108 includes a support rod and a base, the support rod may be set as a telescopic structure, and the height of the support mechanism can be adjusted by extending and retracting the support rod. ; And then you can adjust the height of the reflector from the ground.
  • the installation position of the reflector on the support mechanism 108 can be adjusted, and the height of the reflector from the ground can be adjusted by adjusting the position of the reflector on the support mechanism, and the reflector relative to the support mechanism can be adjusted The left and right offset position.
  • the shape of the reflector can be square or round, or other shapes, which is not limited here.
  • the calibration board provided by the embodiment of the present invention can be used to perform depth parameter calibration and initial state calibration of the detection device.
  • the detection device can be electronic equipment such as laser radar and laser ranging equipment.
  • the detection device is used to sense external environmental information, for example, distance information, orientation information, reflection intensity information, speed information, etc. of environmental targets.
  • the detection device can detect the distance between the detection device and the detection device by measuring the time of light propagation between the detection device and the detection object, that is, Time-of-Flight (TOF).
  • TOF Time-of-Flight
  • the detection device can also use other technologies to detect the distance between the detection object and the detection device, such as a ranging method based on phase shift measurement or a ranging method based on frequency shift measurement. Do restrictions.
  • the detection device 400 may include a transmitting circuit 110, a receiving circuit 120, a sampling circuit 130, and an arithmetic circuit 140.
  • the transmitting circuit 110 may emit a light pulse sequence (for example, a laser pulse sequence).
  • the receiving circuit 120 may receive the light pulse sequence reflected by the object to be detected, and perform photoelectric conversion on the light pulse sequence to obtain an electrical signal. After processing the electrical signal, it may be output to the sampling circuit 130.
  • the sampling circuit 130 may sample the electrical signal to obtain the sampling result.
  • the arithmetic circuit 140 can determine the distance between the detection device 400 and the detected object based on the sampling result of the sampling circuit 130.
  • the detection device 400 may further include a control circuit 150, which can control other circuits, for example, can control the working time of each circuit and/or set parameters for each circuit.
  • a control circuit 150 can control other circuits, for example, can control the working time of each circuit and/or set parameters for each circuit.
  • the detection device shown in FIG. 4 includes a transmitting circuit, a receiving circuit, a sampling circuit, and an arithmetic circuit for emitting a beam for detection
  • the transmitting circuit, The number of any one of the receiving circuit, the sampling circuit, and the arithmetic circuit can also be at least two, which are used to emit at least two beams in the same direction or in different directions; wherein, the at least two beams can be emitted simultaneously , It can also be launched at different times.
  • the light-emitting chips in the at least two transmitting circuits are packaged in the same module.
  • each emitting circuit includes a laser emitting chip, and the dies in the laser emitting chips in the at least two emitting circuits are packaged together and housed in the same packaging space.
  • the detection device 400 may further include a scanning module 160 for changing the propagation direction of at least one laser pulse sequence emitted by the transmitting circuit.
  • the module including the transmitting circuit 110, the receiving circuit 120, the sampling circuit 130, and the arithmetic circuit 140, or the module including the transmitting circuit 110, the receiving circuit 120, the sampling circuit 130, the arithmetic circuit 140, and the control circuit 150 may be referred to as the measuring circuit.
  • the distance measurement module 150 can be independent of other modules, for example, the scanning module 160.
  • a coaxial optical path can be used in the detection device, that is, the beam emitted by the detection device and the reflected beam share at least part of the optical path in the detection device.
  • the detection device can also adopt an off-axis optical path, that is, the light beam emitted by the detection device and the reflected light beam are respectively transmitted along different optical paths in the detection device.
  • Fig. 5 shows a schematic diagram of an embodiment in which the detection device of the present invention adopts a coaxial optical path.
  • the detection device 500 includes a ranging module 210.
  • the ranging module 210 includes a transmitter 203 (which may include the above-mentioned transmitting circuit), a collimating element 204, a detector 205 (which may include the above-mentioned receiving circuit, sampling circuit, and arithmetic circuit), and an optical path. Change element 206.
  • the ranging module 210 is used to emit a light beam, receive the return light, and convert the return light into an electrical signal.
  • the transmitter 203 can be used to emit a light pulse sequence.
  • the transmitter 203 may emit a sequence of laser pulses.
  • the laser beam emitted by the transmitter 203 is a narrow-bandwidth beam with a wavelength outside the visible light range.
  • the collimating element 204 is arranged on the exit light path of the emitter, and is used to collimate the light beam emitted from the emitter 203, and collimate the light beam emitted from the emitter 203 into parallel light and output to the scanning module.
  • the collimating element is also used to condense at least a part of the return light reflected by the probe.
  • the collimating element 204 may be a collimating lens or other elements capable of collimating light beams.
  • the light path changing element 206 is used to combine the transmitting light path and the receiving light path in the detection device before the collimating element 204, so that the transmitting light path and the receiving light path can share the same collimating element, making the light path more compact.
  • the transmitter 203 and the detector 205 may respectively use their own collimating elements, and the optical path changing element 206 is arranged on the optical path behind the collimating element.
  • the light path changing element can use a small-area mirror to transmit The light path and the receiving light path are merged.
  • the light path changing element may also use a reflector with a through hole, where the through hole is used to transmit the emitted light of the emitter 203 and the reflector is used to reflect the return light to the detector 205. In this way, the shielding of the back light by the bracket of the small mirror in the case of using the small mirror can be reduced.
  • the optical path changing element deviates from the optical axis of the collimating element 204.
  • the optical path changing element may also be located on the optical axis of the collimating element 204.
  • the detection device 500 further includes a scanning module 202.
  • the scanning module 202 is placed on the exit light path of the distance measuring module 201.
  • the scanning module 202 is used to change the transmission direction of the collimated beam 219 emitted by the collimating element 204 and project it to the external environment, and project the return light to the collimating element 204 .
  • the returned light is collected on the detector 205 via the collimating element 204.
  • the scanning module 202 may include at least one optical element for changing the propagation path of the light beam, wherein the optical element may change the propagation path of the light beam by reflecting, refracting, or diffracting the light beam.
  • the scanning module 202 includes a lens, a mirror, a prism, a galvanometer, a grating, a liquid crystal, an optical phased array (Optical Phased Array), or any combination of the foregoing optical elements.
  • at least part of the optical elements are moving.
  • a driving module is used to drive the at least part of the optical elements to move.
  • the moving optical elements can reflect, refract, or diffract the light beam to different directions at different times.
  • the multiple optical elements of the scanning module 202 may rotate or vibrate around a common axis 209, and each rotating or vibrating optical element is used to continuously change the propagation direction of the incident light beam.
  • the multiple optical elements of the scanning module 202 may rotate at different speeds or vibrate at different speeds.
  • at least part of the optical elements of the scanning module 202 may rotate at substantially the same rotation speed.
  • the multiple optical elements of the scanning module may also be rotated around different axes.
  • the multiple optical elements of the scanning module may also rotate in the same direction or in different directions; or vibrate in the same direction, or vibrate in different directions, which is not limited herein.
  • the scanning module 202 includes a first optical element 214 and a driver 216 connected to the first optical element 214.
  • the driver 216 is used to drive the first optical element 214 to rotate around the rotation axis 209 to change the first optical element 214.
  • the direction of the beam 219 is collimated.
  • the first optical element 214 projects the collimated light beam 219 to different directions.
  • the angle between the direction of the collimated beam 219 changed by the first optical element and the rotation axis 209 changes as the first optical element 214 rotates.
  • the first optical element 214 includes a pair of opposed non-parallel surfaces through which the collimated light beam 219 passes.
  • the first optical element 214 includes a prism whose thickness varies in at least one radial direction.
  • the first optical element 214 includes a wedge prism, and the collimated beam 219 is refracted.
  • the scanning module 202 further includes a second optical element 215, the second optical element 215 rotates around the rotation axis 209, and the rotation speed of the second optical element 215 is different from the rotation speed of the first optical element 214.
  • the second optical element 215 is used to change the direction of the light beam projected by the first optical element 214.
  • the second optical element 115 is connected to another driver 217, and the driver 217 drives the second optical element 215 to rotate.
  • the first optical element 214 and the second optical element 215 can be driven by the same or different drivers, so that the rotation speed and/or rotation of the first optical element 214 and the second optical element 215 are different, so as to project the collimated light beam 219 to the outside space.
  • the controller 218 controls the drivers 216 and 217 to drive the first optical element 214 and the second optical element 215, respectively.
  • the rotational speeds of the first optical element 214 and the second optical element 215 may be determined according to the area and pattern expected to be scanned in actual applications.
  • the drivers 216 and 217 may include motors or other drivers.
  • the second optical element 215 includes a pair of opposite non-parallel surfaces through which the light beam passes. In one embodiment, the second optical element 215 includes a prism whose thickness varies in at least one radial direction. In one embodiment, the second optical element 215 includes a wedge prism.
  • the scanning module 202 further includes a third optical element (not shown) and a driver for driving the third optical element to move.
  • the third optical element includes a pair of opposite non-parallel surfaces, and the light beam passes through the pair of surfaces.
  • the third optical element includes a prism whose thickness varies in at least one radial direction.
  • the third optical element includes a wedge prism. At least two of the first, second, and third optical elements rotate at different rotation speeds and/or rotation directions.
  • each optical element in the scanning module 202 can project light to different directions, such as directions 211 and 213, so that the space around the detection device 200 is scanned.
  • directions 211 and 213 the directions that the space around the detection device 200 is scanned.
  • the return light 212 reflected by the detection object 201 is incident on the collimating element 204 after passing through the scanning module 202.
  • the detector 205 and the transmitter 203 are placed on the same side of the collimating element 204, and the detector 205 is used to convert at least part of the return light passing through the collimating element 204 into an electrical signal.
  • an anti-reflection film is plated on each optical element.
  • the thickness of the antireflection coating is equal to or close to the wavelength of the light beam emitted by the emitter 203, which can increase the intensity of the transmitted light beam.
  • a filter layer is plated on the surface of an element located on the beam propagation path in the detection device, or a filter is provided on the beam propagation path for transmitting at least the wavelength band of the beam emitted by the transmitter and reflecting Other bands to reduce the noise caused by ambient light to the receiver.
  • the transmitter 203 may include a laser diode through which nanosecond laser pulses are emitted.
  • the laser pulse receiving time can be determined, for example, the laser pulse receiving time can be determined by detecting the rising edge time and/or the falling edge time of the electrical signal pulse. In this way, the detection device 500 can calculate the TOF using the pulse receiving time information and the pulse sending time information, so as to determine the distance between the detection object 201 and the detection device 500.
  • the distance and orientation detected by the detection device 500 can be used for remote sensing, obstacle avoidance, surveying and mapping, modeling, navigation, and the like.
  • the detection device of the embodiment of the present invention can be applied to a mobile platform, and the detection device can be installed on the platform body of the mobile platform.
  • a mobile platform with a detection device can measure the external environment, for example, measuring the distance between the mobile platform and an obstacle for obstacle avoidance and other purposes, and for two-dimensional or three-dimensional mapping of the external environment.
  • the mobile platform includes at least one of an unmanned aerial vehicle, a car, a remote control car, a robot, and a camera.
  • the detection device is applied to an unmanned aerial vehicle, the platform body is the fuselage of the unmanned aerial vehicle.
  • the platform body When the detection device is applied to a car, the platform body is the body of the car.
  • the car can be a self-driving car or a semi-automatic driving car, and there is no restriction here.
  • the platform body When the detection device is applied to a remote control car, the platform body is the body of the remote control car.
  • the platform body When the detection device is applied to a robot, the platform body is a robot.
  • the detection device is applied to a camera, the platform body is the camera itself.
  • the calibration board provided by the embodiment of the present invention can be used to calibrate the initial state of the lidar.
  • the lidar collects the echoes reflected by the calibration plate, and uses the point cloud imaging in the total reflection area to calibrate the lidar in the initial state.
  • the laser radar includes a scanning module 202, and a driver 216 and a driver 217 respectively drive the first optical element 214 and the second optical element 215 to rotate, so as to change the direction of laser emission.
  • the first optical element 214 and the second optical element 215 will introduce a zero deviation during the installation process, assuming that they are ⁇ 1 and ⁇ 2 respectively . This deviation will cause errors in scene imaging. Therefore, it is necessary to perform an initial state before the lidar is used. Calibration.
  • the purpose of the calibration is to obtain the zero deviation of the first optical element 214 and the second optical element 215.
  • the laser radar After the laser radar emits light waves to the calibration plate, it will receive the echo signal reflected by the calibration plate; when the zero deviation of the first optical element 214 and the second optical element 215 is quite different, the total reflection patch (with the total The reflection area includes the total reflection patch for example) imaging will be separated, and two sets of total reflection patch point cloud images will be obtained.
  • is found to minimize the distance between the center points of the two sets of total reflection patch point cloud imaging
  • c 1 and c 2 respectively represent the coordinates of the imaging center points of the two groups of total reflection patch point clouds
  • d(c 1 , c 2 ) represents the distance between the two groups of total reflection patch point cloud imaging center points.
  • the two sets of point clouds of the total reflection patch can be first projected on a two-dimensional plane, which can be, for example, a two-dimensional plane perpendicular to the center axis of the lidar.
  • the two sets of total reflection patch point clouds will converge together without separation; however, the pose of the total reflection patch is relative to the real position.
  • the angle between the direction vector projected on the plane of the calibration plate and the vertical direction is ⁇ .
  • the number of total reflection patches in the first reflection area of the reflector is multiple to further improve the calibration accuracy.
  • n is the number of total reflection patches
  • c i1 and c i2 respectively represent the coordinates of the center points of the two groups of point cloud imaging of the i-th total reflection patch
  • d(c i1 , c i2 ) represents the i-th total reflection patch The distance between the center points of the two sets of point cloud imaging.
  • the calibration board provided by the embodiment of the present invention can be used to calibrate the depth parameter of the detection device.
  • the detection device includes: laser radar, laser ranging equipment, etc.
  • Lidar actively emits laser pulse signals to the detected object during use, and receives the reflected pulse signals.
  • the optical path distance is calculated by TOF.
  • the time difference between the pulse signals and the propagation speed of the laser pulse signal calculate the depth of the measured object.
  • the reflected laser pulse signal has a difference in signal intensity.
  • a laser pulse signal with a high signal intensity corresponds to a large pulse width
  • a laser pulse signal with a weak signal intensity corresponds to a small pulse width.
  • the depth value calculated by using TOF is different and is different from the actual value. There are differences in depth values, so depth compensation is required; the principle of depth compensation is to add a corresponding depth compensation value to calculated depth values corresponding to echo signals of different signal strengths to obtain accurate depth.
  • the embodiment of the present invention also provides a depth parameter calibration method, which is applied to a detection device that emits light waves to the calibration plate described in the above embodiment. As shown in FIG. 7, the method includes the following steps S700-S702:
  • Step S700 Receive echo signals with different signal strengths reflected by different reflection areas on the calibration plate, and calculate depth values corresponding to the echo signals with different signal strengths respectively according to the echo signals.
  • the detection device emits light waves to the calibration board, the detection device receives the echo signals of different signal strengths reflected by the different reflection areas of the calibration board, and the detection device calculates the echo signals of different signal strengths according to the received echo signals of different signal strengths The corresponding depth value (depth measurement value).
  • Step S701 According to the depth values corresponding to the echo signals of different signal strengths and the actual distance value between the calibration plate and the detection device, the depth compensation values corresponding to the echo signals of different signal strengths are calculated. .
  • the actual distance value between the calibration plate and the detection device is taken as the actual depth value of the calibration plate.
  • the detection device can calculate the depth compensation values corresponding to the echo signals of different signal strengths according to the calculated depth values respectively corresponding to the echo signals of different signal strengths and the actual distance value between the calibration plate and the detection device.
  • Step S702 Obtain the relationship between the strength of the echo signal of the detection device and the depth compensation value according to the depth compensation value and the signal strength of the echo signal respectively corresponding to the echo signals of different signal strengths.
  • the function image may be drawn according to the depth compensation value and the strength of the echo signal respectively corresponding to the echo signals of different signal strengths to obtain the strength and compensation value of the echo signal of the detection device.
  • Functional relation graph may be drawn according to the depth compensation value and the strength of the echo signal respectively corresponding to the echo signals of different signal strengths to obtain the strength and compensation value of the echo signal of the detection device.
  • a comparison table of different echo signal strengths and depth compensation values is constructed according to the depth compensation values corresponding to the echo signals of different signal strengths and the strength of the echo signals, and then different echo signal strengths and depth compensation values can be obtained by querying the comparison table.
  • the depth compensation value corresponding to the strength of the echo signal is constructed according to the depth compensation values corresponding to the echo signals of different signal strengths and the strength of the echo signals, and then different echo signal strengths and depth compensation values can be obtained by querying the comparison table.
  • the depth compensation value corresponding to the strength of the echo signal is constructed according to the depth compensation values corresponding to the echo signals of different signal strengths and the strength of the echo signals.
  • the depth compensation value and the signal strength of the echo signal respectively corresponding to the obtained echo signals are fitted by the least square method to obtain the echo signal strength and depth compensation value of the detector.
  • Fig. 8 is a schematic diagram of the relationship curve between the signal strength of the echo and the depth compensation value.
  • the echo of different signal strength calculated by the detection device and the corresponding ⁇ d appear as multiple discrete points in the above figure. Based on these discrete points, a curve can be fitted to obtain an analytical expression of this curve, which is the functional relationship between the echo signal intensity and the depth compensation value of the detector, for example, a high-order polynomial.
  • the relationship between the strength of the output echo signal and the depth compensation value is the output echo signal strength and ⁇ d The corresponding relationship.
  • the corresponding depth measurement value d' can be calculated based on the received echo signal, and the corresponding relationship between the echo signal strength and ⁇ d obtained after the above-mentioned depth parameter calibration can be obtained ⁇ d, and d 'And ⁇ d can be added to get the actual depth value (d'+ ⁇ d).
  • An embodiment of the present invention also provides a detection device. As shown in FIG. 9, it includes at least a memory 1002 and a processor 1001; the memory 1002 is connected to the processor 1001 through a communication bus 1003, and is used to store the The processor 1001 can execute computer instructions; the processor 1001 is used to read computer instructions from the memory 1002 to implement: the steps of the method shown in FIG. 7.
  • the aforementioned detection device includes laser radar, millimeter wave radar, and ultrasonic radar.
  • the technician can make a selection according to a specific scenario, which is not limited in this embodiment.
  • FIG. 10 is a schematic diagram of a calibration system provided by an embodiment of the present invention.
  • the system includes a detection device 80 as described in the embodiment shown in Figure 9 above and a calibration plate 90 as described in the embodiment shown in Figures 1 to 3 above.
  • the calibration plate 90 is set on the In front of the detection device, the detection device 80 is used to emit light waves to the calibration plate 90 and receive echo signals with different signal strengths reflected by different reflection areas on the calibration plate, and calculate different signal strengths according to the echo signals.
  • FIG. 11 is a perspective view of a movable platform provided by an embodiment of the present invention.
  • the movable platform 1100 includes at least a body 1110, a power supply battery 1120 provided on the body 1110, a power system 1130, and the detection device 1140 described in the embodiment shown in FIG. 9, and the detection device 1140 is used for The target scene is detected, the power supply battery 1120 can supply power to the power system 1130, and the power system 1130 provides power to the movable platform 1100.
  • the movable platform may include, but is not limited to: air vehicles such as unmanned aerial vehicles, land vehicles such as automobiles, water vehicles such as ships, and other types of motor vehicles.
  • air vehicles such as unmanned aerial vehicles
  • land vehicles such as automobiles
  • water vehicles such as ships
  • the technician can make a selection according to a specific scenario, which is not limited in this embodiment.
  • the relevant part can refer to the part of the description of the method embodiment.
  • the device embodiments described above are merely illustrative.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network units.
  • Some or all of the modules may be selected according to actual needs to achieve the objectives of the solutions of the embodiments. Those of ordinary skill in the art can understand and implement it without creative work.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

本发明实施例提供了一种标定板、深度参数标定方法、探测装置及标定系统;其中,标定板包括:反射板,所述反射板的表面上设置有至少两个反射区:第一反射区和第二反射区;所述第一反射区为全反射区,所述第一反射区用于将照射在所述第一反射区的光波进行反射,以提供标定所用的处于第一信号强度区间的回波;所述第二反射区为漫反射区,包含多个子反射区,所述多个子反射区分别具有不同的反射率,所述第二反射区用于将照射在所述第二反射区的光波进行反射,以提供标定所用的位于第一信号强度区间以外的其余信号强度区间的回波。如此,可以提高标定的便利性。

Description

一种标定板、深度参数标定方法、探测装置及标定系统 技术领域
本发明涉及探测技术领域,尤其涉及一种标定板、深度参数标定方法、探测装置及标定系统。
背景技术
激光雷达等探测装置可以向不同方向发射探测信号,从而根据不同方向的回波获取物体的深度信息、反射率信息等。为达到准确探测的目的,需要在使用前对激光雷达等探测装置进行标定。相关技术在激光雷达等探测装置的标定过程中,一般是通过在探测装置前方不同距离处设置一定数量的标定板,以此实现采集不同信号强度的回波信号,如此,对标定场所的要求较高,操作不够简单便利。
发明内容
本发明实施例提供一种标定板、深度参数标定的方法、探测装置及标定系统,可以降低对标定场所的要求,标定过程简单、便利。
第一方面,本发明实施例提供一种标定板,包括:反射板,所述反射板的表面上设置有至少两个反射区:第一反射区和第二反射区;
所述第一反射区为全反射区,所述第一反射区用于将照射在所述第一反射区的光波进行反射,以提供标定所用的处于第一信号强度区间的回波;
所述第二反射区为漫反射区,包含多个子反射区,所述多个子反射区分别具有不同的反射率,所述第二反射区用于将照射在所述第二反射区的光波进行反射,以提供标定所用的位于第一信号强度区间以外的其余信号强度区间的回波。
第二方面,本发明实施例提供了一种深度参数标定的方法,应用于探 测装置,所述探测装置向如第一方面所述的标定板发射光波,所述方法包括:
接收所述标定板上的不同反射区所反射的不同信号强度的回波信号,根据所述回波信号分别计算得到所述不同信号强度的回波信号分别对应的深度值;
根据所述不同信号强度的回波信号分别对应的深度值和所述标定板与所述探测装置之间的实际距离值,计算得到不同信号强度的回波信号分别对应的深度补偿值;
根据所述不同信号强度的回波信号分别对应的深度补偿值和所述回波信号的信号强度,得到所述探测装置的回波信号的强度与深度补偿值的关系。
第三方面,本发明实施例提供了一种探测装置,所述探测装置至少包括存储器和处理器;所述存储器通过通信总线和所述处理器连接,用于存储所述处理器可执行的计算机指令;所述处理器用于从所述存储器读取计算机指令以实现第二方面所述方法的步骤。
第四方面,本发明实施例提供了一种标定系统,包括:如第三方面所述的探测装置和如第一方面所述的标定板,所述标定板设置于所述探测装置的前方,所述探测装置用于向所述标定板发射光波,并接收所述标定板上的不同反射区所反射的不同信号强度的回波信号,根据所述回波信号分别计算得到所述不同信号强度的回波信号分别对应的深度值;以及根据所述不同信号强度的回波信号分别对应的深度值和所述标定板与所述探测装置之间的实际距离值,计算得到所述不同信号强度的回波信号分别对应的深度补偿值;根据所述不同信号强度的回波信号分别对应的深度补偿值和所述回波信号的信号强度,得到所述探测装置的回波信号的强度与深度补偿值的关系。
本发明实施例中,通过在标定板的反射板上设置不同的反射区,并且该不同的反射区分别具有不同的反射率,进而使照射到该反射板上的光波 信号被不同程度的反射,产生不同信号强度的回波信号;进而激光雷达等探测装置,在进行深度参数标定时可以通过设置一个标定板就可以获取不同信号强度的回波,相对于现有技术具有更简单、便利的积极效果。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例所提供的一种反射板的结构示意图;
图2是本发明实施例所提供的另一种反射板的结构示意图;
图3是本发明实施例所提供的一种标定板的结构示意图;
图4是本发明实施例所提供的一种探测装置的框图;
图5是本发明实施例提供的采用同轴光路的探测装置的结构示意图;
图6是本发明实施例提供的发射和接收回波的示意图;
图7是本发明实施例提供的一种深度参数标定方法的流程示意图;
图8是本发明实施例提供的一种信号强度与深度补偿值的关系曲线示意图;
图9是本发明实施例提供的一种探测装置的框图;
图10本发明实施例提供的一种标定系统的示意图;
图11是本发明实施例提供的一种可移动平台的立体图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
激光雷达等探测装置可以向不同方向发射探测信号,从而根据不同方向的回波信号获取物体的深度信息、反射率信息等数据。为保证激光雷达等探测装置的测距的准确性,激光雷达等探测装置在使用前需要进行标定;该标定包括深度参数标定。其中,在进行深度参数标定时,为提高标定的准确性,需要采集具有不同的信号强度的回波信号,不同信号强度的回波信号均匀分布于整个信号强度区间内;相关技术中在采集具有不同信号强度的回波信号时,一般都是在相距探测装置的不同距离处分别设置标定板,以达到采集不同信号强度的回波的目的,该方法需要占据较大的空间,对标定场所的要求较高,效率较低。
为此,本发明实施例中提供了一种标定板,该标定板包括:反射板,该反射板的表面上设置有至少两个具有不同反射率的反射区:第一反射区和第二反射区;其中,第一反射区为全反射区,用于将探测装置照射在该第一反射区的光波进行反射,以提供标定所用的处于第一信号强度区间的回波;该第一信号强度区间内包括该探测装置所能够接收到的最大信号强度,其所能接收到的最大信号强度是由探测装置的内部电路结构本身所决定的,本发明实施例不对此做具体限制。
上述的第二反射区为漫反射区,包含多个子反射区,每个子反射区分别具有不同的反射率;第二反射区用于将照射在该第二反射区的光波进行反射,以提供标定所用的处于第一信号强度段区间以外的其余信号强度区间的回波。探测装置在进行深度参数标定时,可以通过上述标定板获取到信号强度均匀分布于探测装置所能采集到的整个信号强度区间的回波信号。
上述的第一反射区可以是设置有全反射贴片,也可以是直接喷涂有全反射材料。上述第二反射区作为漫反射区,可以是通过喷涂具有不同反射 率的漫反射材料,构成不同的子反射区;也可以是在第二反射区粘贴有具有不同反射率的漫反射材料薄膜等。可选的,该第二反射区可以是设置有不同颜色的卡纸,该不同颜色的卡纸具有不同的反射率。
图1是本发明实施例提供的一种反射板的结构示意图。参照图1所示的实施例,该实施例中的反射板的第二反射区100包含有四个子反射区,分别为:第一子反射区101、第二子反射区102、第三子反射区103和第四子反射区104;为保证在深度参数标定的过程中,探测装置接收到的回波信号的信号强度尽可能的均匀分布于整个信号强度区间,上述的第一子反射区101、第二子反射区102、第三子反射区103和第四子反射区104分别具有不同的反射率;并且本实施例中,第一反射区105设置于第二反射区的中心位置。
探测装置通过接收光斑部分打到反射板上所反射的回波作为微小信号强度的回波,但是通过该方式所收集到的微小信号强度的回波在数量上会比较少,为了在标定过程中保证能够采集到足够数量的微小信号强度的回波,一可选的实施例中,上述的反射板上还设置有第三反射区,该第三反射区用于将照射在该第三反射区的光波进行反射,以补充提供深度参数标定所用的微小信号强度的回波。
上述微小信号强度的回波,是指信号强度分布于探测装置所能够探测到的最小信号强度附近的回波。
需要说明的是,本发明中反射板上的第一反射区、第二反射区和第三反射区的排布位置、数量、面积,以及第二反射区所包含的子反射区的数量均不作限定。
上述第三反射区可以是设置均匀布置有盲孔,该盲孔的形状可以是圆形、方形等任意形状。光波照射至该第三反射区的盲孔分布区以后发生反射,以提供深度参数标定所用的微小信号强度的回波。
上述的第三反射区也可以是设置有栅格,该栅格由多条具有不同反射率的线状物交织形成;也可以是将反射板的表面制作成栅格形状,作为第三反射区。
图2为本发明一实施例中提供的一种反射板的结构示意图。参照图2所示,本实施例中,上述的第三反射区106上均匀布置线状物107,该线状物107是水平排布的,但并不局限于此,该线状物107也可以是垂直排布,或者是是斜向排布,该线状物107也可以是呈环形排布;进而线状物107的数量和排布方式在此不作限定。
可选的,上述的第三反射区106的每相邻的两个线状物107之间具有不同的反射率,因此该第三反射区106的线状物107至少具有两种不同的反射率。
可选的,相邻线状物107之间的距离大于照射在反射板上的光斑的最大尺寸;该光斑的最大尺寸是指该光斑的所有外形尺寸参数中数值最大的尺寸。比如,该光斑的形状为椭圆时,该光斑的所有外形尺寸参数包括:长轴和短轴,该光斑的最大尺寸是指该光斑的长轴;又如,该光斑的形状为圆形时,该光斑的最大尺寸是指该光斑的直径。如此可以保证每次只有一个线状物被一个光斑照射到,相对于多个线状物同时被一个光斑照射的情况可以简化探测装置对接收到的回波信号的处理过程。
可选的,上述的线状物107可以是通过将具有不同反射率的材料喷涂至反射板表面形成的;也可以是由具有不同反射率的材料制作而成的,该线状物固定在反射板上。比如将具有不同反射率的薄膜分别包覆在直径一定的金属丝上,将该金属丝固定在反射板上;也可以是直接使用具有不同颜色的线条,该不同颜色的线条具有不同的反射率。
本发明一实施例中,上述反射板对应的最大深度值与最小深度值之间的差小于预设参数。反射板对应的最大深度与最小深度之间的差与探测装 置与反射板之间的距离和反射板的尺寸有关,反射板的中心位置的深度会小于反射板边缘的深度。本实施例中,上述反射板设置于探测装置前方的十米位置处时,上述的预设参数可以为1厘米。进而在反射板与探测装置之间的距离固定以后,反射板的尺寸应当满足使反射板的最大深度值与最小深度值之间的差小于预设参数,此时可以近似认为该反射板上的不同位置具有相同的深度值。需要说明的是,本领域技术人员可根据实际需求设置所述预设参数值,本发明实施例不对此做具体限制。
以上述实施例中的反射板为例,该反射板设置于探测装置前方的十米位置处,并且该反射板的形状为正方形,该反射板的尺寸为边长为50厘米,反射板对应的最大深度值与最小深度值之差小于1厘米时,可以认为该反射板上的不同位置具有相同的深度值。
图2所示的实施例中,反射板上的第二反射区100包括八个子反射区,该八个子反射区可以是由八种反射率不同的卡纸拼接而成,也可以是直接由八种具有不同反射率的漫反射材料喷涂至反射板的表面生成的。
需要说明的是,第二反射区100中所包含的具有不同反射率的子反射区的数量并不是固定的,为保证在进行深度参数标定时能够获得信号强度分布广泛且分布均匀的回波信号,在不影响所接收到的回波信号的数据量时,漫反射区的子反射区的数量可以适度增加。
图3是本发明一实施例中提供的一种标定板的结构示意图,参照图3所示,本实施例中提供的标定板还包括:支撑机构108,上述的反射板安装于该支撑机构108上方。
可选的,上述的支撑机构108包括:支撑杆和底座,该支撑杆安装于底座上方,该反射板安装于支撑杆上方。
可选的,上述的支撑机构108的下方安装有移动组件109,用于移动支撑机构。该移动组件109可以是滚轮或者滑轨等。
可选的,上述支撑机构108的高度可调;例如,当该支撑机构108包括支撑杆和底座时,可以是设置该支撑杆为可伸缩结构,通过伸缩该支撑杆的方式调节支撑机构的高度;进而可以调节反射板距离地面的高度。
或者,也可以是设置该反射板在支撑机构108上的安装位置可调,进而可以通过调节该反射板在支撑机构上的位置来调节反射板距离地面的高度,以及调节反射板相对于支撑机构的左右偏移位置。
反射板的形状可以是正方形或者圆形,也可以是其他形状,在此不作限定。
本发明实施例提供的标定板可以应用于对探测装置进行深度参数标定和初始状态的标定。该探测装置可以是激光雷达、激光测距设备等电子设备。在一种实施方式中,探测装置用于感测外部环境信息,例如,环境目标的距离信息、方位信息、反射强度信息、速度信息等。一种实现方式中,探测装置可以通过测量探测装置和探测物之间光传播的时间,即光飞行时间(Time-of-Flight,TOF),来探测探测物到探测装置的距离。或者,探测装置也可以通过其他技术来探测探测物到探测装置的距离,例如基于相位移动(phase shift)测量的测距方法,或者基于频率移动(frequency shift)测量的测距方法,在此不做限制。
为了便于理解,以下将结合图4所示的探测装置400对测距的工作流程进行举例描述。
如图4所示,探测装置400可以包括发射电路110、接收电路120、采样电路130和运算电路140。
发射电路110可以发射光脉冲序列(例如激光脉冲序列)。接收电路120可以接收经过被探测物反射的光脉冲序列,并对该光脉冲序列进行光电转换,以得到电信号,再对电信号进行处理之后可以输出给采样电路130。采样电路130可以对电信号进行采样,以获取采样结果。运算电路140可 以基于采样电路130的采样结果,以确定探测装置400与被探测物之间的距离。
可选地,该探测装置400还可以包括控制电路150,该控制电路150可以实现对其他电路的控制,例如,可以控制各个电路的工作时间和/或对各个电路进行参数设置等。
应理解,虽然图4示出的探测装置中包括一个发射电路、一个接收电路、一个采样电路和一个运算电路,用于出射一路光束进行探测,但是本申请实施例并不限于此,发射电路、接收电路、采样电路、运算电路中的任一种电路的数量也可以是至少两个,用于沿相同方向或分别沿不同方向出射至少两路光束;其中,该至少两束光路可以是同时出射,也可以是分别在不同时刻出射。一个示例中,该至少两个发射电路中的发光芯片封装在同一个模块中。例如,每个发射电路包括一个激光发射芯片,该至少两个发射电路中的激光发射芯片中的die封装到一起,容置在同一个封装空间中。
一些实现方式中,除了图4所示的电路,探测装置400还可以包括扫描模块160,用于将发射电路出射的至少一路激光脉冲序列改变传播方向出射。
其中,可以将包括发射电路110、接收电路120、采样电路130和运算电路140的模块,或者,包括发射电路110、接收电路120、采样电路130、运算电路140和控制电路150的模块称为测距模块,该测距模块150可以独立于其他模块,例如,扫描模块160。
探测装置中可以采用同轴光路,也即探测装置出射的光束和经反射回来的光束在探测装置内共用至少部分光路。例如,发射电路出射的至少一路激光脉冲序列经扫描模块改变传播方向出射后,经探测物反射回来的激光脉冲序列经过扫描模块后入射至接收电路。或者,探测装置也可以采用 异轴光路,也即探测装置出射的光束和经反射回来的光束在探测装置内分别沿不同的光路传输。图5示出了本发明的探测装置采用同轴光路的一种实施例的示意图。
探测装置500包括测距模块210,测距模块210包括发射器203(可以包括上述的发射电路)、准直元件204、探测器205(可以包括上述的接收电路、采样电路和运算电路)和光路改变元件206。测距模块210用于发射光束,且接收回光,将回光转换为电信号。其中,发射器203可以用于发射光脉冲序列。在一个实施例中,发射器203可以发射激光脉冲序列。可选的,发射器203发射出的激光束为波长在可见光范围之外的窄带宽光束。准直元件204设置于发射器的出射光路上,用于准直从发射器203发出的光束,将发射器203发出的光束准直为平行光出射至扫描模块。准直元件还用于会聚经探测物反射的回光的至少一部分。该准直元件204可以是准直透镜或者是其他能够准直光束的元件。
在图5所示实施例中,通过光路改变元件206来将探测装置内的发射光路和接收光路在准直元件204之前合并,使得发射光路和接收光路可以共用同一个准直元件,使得光路更加紧凑。在其他的一些实现方式中,也可以是发射器203和探测器205分别使用各自的准直元件,将光路改变元件206设置在准直元件之后的光路上。
在图5所示实施例中,由于发射器203出射的光束的光束孔径较小,探测装置所接收到的回光的光束孔径较大,所以光路改变元件可以采用小面积的反射镜来将发射光路和接收光路合并。在其他的一些实现方式中,光路改变元件也可以采用带通孔的反射镜,其中该通孔用于透射发射器203的出射光,反射镜用于将回光反射至探测器205。这样可以减小采用小反射镜的情况中小反射镜的支架会对回光的遮挡。
在图5所示实施例中,光路改变元件偏离了准直元件204的光轴。在其他的一些实现方式中,光路改变元件也可以位于准直元件204的光轴上。
探测装置500还包括扫描模块202。扫描模块202放置于测距模块201的出射光路上,扫描模块202用于改变经准直元件204出射的准直光束219的传输方向并投射至外界环境,并将回光投射至准直元件204。回光经准直元件204汇聚到探测器205上。
在一个实施例中,扫描模块202可以包括至少一个光学元件,用于改变光束的传播路径,其中,该光学元件可以通过对光束进行反射、折射、衍射等等方式来改变光束传播路径。例如,扫描模块202包括透镜、反射镜、棱镜、振镜、光栅、液晶、光学相控阵(Optical Phased Array)或上述光学元件的任意组合。一个示例中,至少部分光学元件是运动的,例如通过驱动模块来驱动该至少部分光学元件进行运动,该运动的光学元件可以在不同时刻将光束反射、折射或衍射至不同的方向。在一些实施例中,扫描模块202的多个光学元件可以绕共同的轴209旋转或振动,每个旋转或振动的光学元件用于不断改变入射光束的传播方向。在一个实施例中,扫描模块202的多个光学元件可以以不同的转速旋转,或以不同的速度振动。在另一个实施例中,扫描模块202的至少部分光学元件可以以基本相同的转速旋转。在一些实施例中,扫描模块的多个光学元件也可以是绕不同的轴旋转。在一些实施例中,扫描模块的多个光学元件也可以是以相同的方向旋转,或以不同的方向旋转;或者沿相同的方向振动,或者沿不同的方向振动,在此不作限制。
在一个实施例中,扫描模块202包括第一光学元件214和与第一光学元件214连接的驱动器216,驱动器216用于驱动第一光学元件214绕转动轴209转动,使第一光学元件214改变准直光束219的方向。第一光学元件214将准直光束219投射至不同的方向。在一个实施例中,准直光束219经第一光学元件改变后的方向与转动轴209的夹角随着第一光学元件214的转动而变化。在一个实施例中,第一光学元件214包括相对的非平行的一对表面,准直光束219穿过该对表面。在一个实施例中,第一光学 元件214包括厚度沿至少一个径向变化的棱镜。在一个实施例中,第一光学元件214包括楔角棱镜,对准直光束219进行折射。
在一个实施例中,扫描模块202还包括第二光学元件215,第二光学元件215绕转动轴209转动,第二光学元件215的转动速度与第一光学元件214的转动速度不同。第二光学元件215用于改变第一光学元件214投射的光束的方向。在一个实施例中,第二光学元件115与另一驱动器217连接,驱动器217驱动第二光学元件215转动。第一光学元件214和第二光学元件215可以由相同或不同的驱动器驱动,使第一光学元件214和第二光学元件215的转速和/或转向不同,从而将准直光束219投射至外界空间不同的方向,可以扫描较大的空间范围。在一个实施例中,控制器218控制驱动器216和217,分别驱动第一光学元件214和第二光学元件215。第一光学元件214和第二光学元件215的转速可以根据实际应用中预期扫描的区域和样式确定。驱动器216和217可以包括电机或其他驱动器。
在一个实施例中,第二光学元件215包括相对的非平行的一对表面,光束穿过该对表面。在一个实施例中,第二光学元件215包括厚度沿至少一个径向变化的棱镜。在一个实施例中,第二光学元件215包括楔角棱镜。
一个实施例中,扫描模块202还包括第三光学元件(图未示)和用于驱动第三光学元件运动的驱动器。可选地,该第三光学元件包括相对的非平行的一对表面,光束穿过该对表面。在一个实施例中,第三光学元件包括厚度沿至少一个径向变化的棱镜。在一个实施例中,第三光学元件包括楔角棱镜。第一、第二和第三光学元件中的至少两个光学元件以不同的转速和/或转向转动。
扫描模块202中的各光学元件旋转可以将光投射至不同的方向,例如方向211和213,如此对探测装置200周围的空间进行扫描。当扫描模块202投射出的光211打到探测物201时,一部分光被探测物201沿与投射的光211相反的方向反射至探测装置200。探测物201反射的回光212经 过扫描模块202后入射至准直元件204。
探测器205与发射器203放置于准直元件204的同一侧,探测器205用于将穿过准直元件204的至少部分回光转换为电信号。
一个实施例中,各光学元件上镀有增透膜。可选的,增透膜的厚度与发射器203发射出的光束的波长相等或接近,能够增加透射光束的强度。
一个实施例中,探测装置中位于光束传播路径上的一个元件表面上镀有滤光层,或者在光束传播路径上设置有滤光器,用于至少透射发射器所出射的光束所在波段,反射其他波段,以减少环境光给接收器带来的噪音。
在一些实施例中,发射器203可以包括激光二极管,通过激光二极管发射纳秒级别的激光脉冲。进一步地,可以确定激光脉冲接收时间,例如,通过探测电信号脉冲的上升沿时间和/或下降沿时间确定激光脉冲接收时间。如此,探测装置500可以利用脉冲接收时间信息和脉冲发出时间信息计算TOF,从而确定探测物201到探测装置500的距离。
探测装置500探测到的距离和方位可以用于遥感、避障、测绘、建模、导航等。在一种实施方式中,本发明实施方式的探测装置可应用于移动平台,探测装置可安装在移动平台的平台本体。具有探测装置的移动平台可对外部环境进行测量,例如,测量移动平台与障碍物的距离用于避障等用途,和对外部环境进行二维或三维的测绘。在某些实施方式中,移动平台包括无人飞行器、汽车、遥控车、机器人、相机中的至少一种。当探测装置应用于无人飞行器时,平台本体为无人飞行器的机身。当探测装置应用于汽车时,平台本体为汽车的车身。该汽车可以是自动驾驶汽车或者半自动驾驶汽车,在此不做限制。当探测装置应用于遥控车时,平台本体为遥控车的车身。当探测装置应用于机器人时,平台本体为机器人。当探测装置应用于相机时,平台本体为相机本身。
本发明实施例所提供的标定板,可用于对激光雷达的初始状态进行标 定。激光雷达采集该标定板所反射的回波,并利用全反射区的点云成像对激光雷达进行初始状态的标定。
请参考图5,激光雷达包括扫描模块202,驱动器216和驱动器217分别驱动第一光学元件214和第二光学元件215转动,以改变激光出射的方向。第一光学元件214和第二光学元件215在安装过程中会引入零位偏差,假设分别为ε 1和ε 2,该偏差会导致场景成像出现误差,因此需要在激光雷达使用前进行初始状态的标定,该标定的目的就是得到第一光学元件214和第二光学元件215的零位偏差。
具体的,激光雷达发射光波至标定板后,会接收标定板反射的回波信号;当第一光学元件214和第二光学元件215的零位偏差相差较大时,全反射贴片(以全反射区包括全反射贴片为例)的成像会分离,会得到两组全反射贴片点云成像。首先定义第一光学元件214和第二光学元件215的零位偏差的差值Δε,如下公式(1):
Δε=ε 21       (1)
通过求解如下公式(2),找到Δε使得两组全反射贴片点云成像的中心点的距离最小,
Figure PCTCN2019076996-appb-000001
其中,c 1、c 2分别表示两组全反射贴片点云成像中心点的坐标,d(c 1,c 2)表示两组全反射贴片点云成像中心点的距离。
可选的,可以将全反射贴片的两组点云先投影在一个二维平面上,该二维平面例如可以是垂直于激光雷达中心轴的一个二维平面。
在根据两组点云拟合得到Δε以后,通过Δε进行修正以后,两组全反射贴片点云会汇聚在一起,不会出现分离的情况;但是全反射贴片的位姿相对于真实位姿会可能存在一整体偏置,第一光学元件214和第二光学 元件215需要同时叠加一个角度θ,以纠正这一整体偏置。例如,获取地面成像的法向量,法向量投影到标定板所在平面上的方向向量与竖直方向的夹角即为θ。
基于此,可得到两个棱镜的零位偏差:ε 1=θ,ε 2=θ+Δε
可选的,反射板的第一反射区的全反射贴片的数量为多个,以进一步提高标定精度。
可以理解的,当全反射贴片的数量为多个时,首先使得每个全反射贴片的两组点云成像汇聚在一起按照如下公式(3)计算得到零位偏差的差值Δε’,
Figure PCTCN2019076996-appb-000002
其中,n为全反射贴片的数量,c i1,c i2分别表示第i个全反射贴片两组点云成像中心点的坐标,d(c i1,c i2)表示第i个全反射贴片两组点云成像中心点的距离。
同样按照上述的方法得到纠正第一光学元件和第二光学元件的整体偏差所对应的角度θ’,最终可得到两个棱镜的零位偏差:ε 1=θ’,ε 2=θ’+Δε’。
本发明实施例提供的一种标定板,可用于对探测装置进行深度参数标定。该探测装置包括:激光雷达、激光测距设备等。
以激光雷达为例,激光雷达在使用过程中主动对被探测对象发射激光脉冲信号,并接收其反射回来的脉冲信号,通过TOF计算得到光路距离,具体的,根据发射信号和接收的反射回来的脉冲信号之间的时间差和激光脉冲信号的传播速度计算被测对象的深度。但是,如图6所示,由于反射回来的激光脉冲信号在信号强度上存在差异,信号强度大的激光脉冲信号对应的脉冲宽度大,信号强度弱的激光脉冲信号对应的脉冲宽度小,因此在计算接收到反射回来的脉冲信号的时间时,信号强度大的激光脉冲信号 与信号强度小的激光脉冲信号之间会存在差异△t,因此通过使用TOF计算出的深度值存在差异,并且与实际深度值存在差异,因此需要进行深度补偿;该深度补偿的原理是,针对计算的不同信号强度的回波信号所对应的深度值,分别加上一个对应的深度补偿值,以得到准确的深度。
本发明实施例还提供了一种深度参数标定方法,应用于探测装置,该探测装置向上述实施例中所述的标定板发射光波,参照图7所示,该方法包括如下步骤S700-S702:
步骤S700、接收所述标定板上的不同反射区所反射的不同信号强度的回波信号,根据所述回波信号分别计算得到所述不同信号强度的回波信号分别对应的深度值。
探测装置向标定板发射光波,探测装置接收标定板的不同反射区所反射的不同信号强度的回波信号,探测装置根据接收到的不同信号强度的回波信号计算得到不同信号强度的回波信号分别对应的深度值(深度测量值)。
步骤S701、根据所述不同信号强度的回波信号分别对应的深度值和所述标定板与所述探测装置之间的实际距离值,计算得到不同信号强度的回波信号分别对应的深度补偿值。
本实施例中,将标定板与探测装置之间的实际距离值作为标定板的实际深度值。进而探测装置可以根据计算得到的不同信号强度的回波信号分别对应的深度值和标定板与探测装置之间的实际距离值,计算得到不同信号强度的回波分别对应的深度补偿值。
步骤S702、根据所述不同信号强度的回波信号分别对应的深度补偿值和所述回波信号的信号强度,得到所述探测装置的回波信号的强度与深度补偿值的关系。
可选的,本实施例中,可以是根据不同信号强度的回波信号分别对应的深度补偿值和回波信号的强度进行绘制函数图像,得到该探测装置的回 波信号的强度与补偿值的函数关系图像。
可选的,根据不同信号强度的回波信号分别对应的深度补偿值和该回波信号的强度构建不同回波信号强度和深度补偿值的对照表,进而可以通过查询该对照表的方式获取不同回波信号强度所对应的深度补偿值。
可选的,对上述得到的不同信号强度的回波信号分别对应的深度补偿值和回波信号的信号强度进行拟合,得到探测装置的回波信号强度与深度补偿值的关系。例如,通过最小二乘法对所述不同信号强度的回波信号分别对应的深度补偿值和所述回波信号的信号强度进行拟合,得到该探测器的回波信号强度和深度补偿值所属的函数关系式或者函数图像等。
现给出一具体的实例,假设深度测量值为d’,实际深度值为d,二者之间存在的偏差为Δd(深度补偿值),并且Δd是随着回波信号强度变化的。深度参数标定过程中,探测装置接收到了不同强度的回波信号,基于不同强度的回波信号可以计算出不同强度的回波信号所对应的深度测量值d’,同时实际深度值d(标定板与探测装置之间的距离,例如10m)是已知的,进而可以计算出不同信号强度的回波对应的Δd(Δd=d-d’)。图8为回波的信号强度与深度补偿值的关系曲线示意图,参照图8所示,探测装置计算得到的不同信号强度的回波及其对应的Δd呈现在上图中为多个离散的点,基于这些离散点可以拟合出一条曲线,从而得到这条曲线的解析式,即为该探测器的回波信号强度和深度补偿值所属的函数关系式,例如可以是高阶多项式。
可选的,上述深度参数标定方法中,在得到探测装置的回波信号的强度与深度补偿值的关系以后,输出回波信号的强度与深度补偿值的关系,即输出回波信号强度和Δd的对应关系。
在探测装置的实际使用过程中,基于接收到的回波信号可以计算出对应的深度测量值d’,通过上述经过深度参数标定后得到的回波信号强度 和Δd对应关系可以得到Δd,将d’和Δd相加即可得到实际深度值(d’+Δd)。
本发明一实施例中还提供了一种探测装置,参照图9所示,至少包括存储器1002和处理器1001;所述存储器1002通过通信总线1003和所述处理器1001连接,用于存储所述处理器1001可执行的计算机指令;所述处理器1001用于从所述存储器1002读取计算机指令以实现:图7所示所述方法的步骤。
在一实施例中,上述探测装置包括激光雷达、毫米波雷达、超声波雷达。技术人员可以根据具体场景进行选择,本实施例不作限定。
本发明一实施例中还提供了一种标定系统,图10是本发明实施例提供的一种标定系统的示意图。参照图10所示,该系统包括如上面的图9所示实施例所述的探测装置80和如上面图1-图3所示实施例所述的标定板90,标定板90设置于所述探测装置的前方,探测装置80用于向标定板90发射光波,并接收标定板上的不同反射区所反射的具有不同信号强度的回波信号,根据所述回波信号分别计算得到不同信号强度的回波信号分别对应的深度值;以及根据所述不同信号强度的回波信号分别对应的深度值和所述标定板与所述探测装置之间的实际距离值,计算得到不同信号强度的回波信号分别对应的深度补偿值;根据所述不同信号强度的回波信号分别对应的深度补偿值和所述回波信号的信号强度,得到所述探测装置的回波信号强度与深度补偿值的关系。
本发明实施例还提供了一种可移动平台,图11是本发明实施例提供的一种可移动平台的立体图。参见图11,可移动平台1100至少包括机体1110、设于所述机体1110上的供电电池1120、动力系统1130以及图9所示实施例所述的探测装置1140,所述探测装置1140用于对目标场景进行探测,所述供电电池1120能够为所述动力系统1130供电,所述动力系统1130为所述可移动平台1100提供动力。
在一实施例中,该可移动平台可以包括但不限于:无人飞行器等空中交通工具、汽车等陆地交通工具、船舶等水中交通工具,及其他类型的机动载运工具。技术人员可以根据具体场景进行选择,本实施例不作限定。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本发明实施例所提供的方法和装置进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (24)

  1. 一种标定板,其特征在于,包括:反射板,所述反射板的表面上设置有至少两个反射区:第一反射区和第二反射区;
    所述第一反射区为全反射区,所述第一反射区用于将照射在所述第一反射区的光波进行反射,以提供标定所用的处于第一信号强度区间的回波;
    所述第二反射区为漫反射区,包含多个子反射区,所述多个子反射区分别具有不同的反射率,所述第二反射区用于将照射在所述第二反射区的光波进行反射,以提供标定所用的位于第一信号强度区间以外的其余信号强度区间的回波。
  2. 根据权利要求1所述的标定板,其特征在于,所述反射板,还包括:第三反射区;所述第三反射区用于将照射在所述第三反射区的光波进行反射,以补充提供标定所用的微小信号强度的回波。
  3. 根据权利要求2所述的方法,其特征在于,所述第三反射区上均匀布置有:盲孔或者栅格。
  4. 根据权利要求2所述的标定板,其特征在于,所述第三反射区上均匀布置有线状物。
  5. 根据权利要求4所述的标定板,其特征在于,相邻的线状物之间的距离大于照射在所述反射板上的光斑的最大尺寸;其中,所述最大尺寸为所述光斑的所有外形尺寸参数中数值最大的尺寸。
  6. 根据权利要求4所述的标定板,其特征在于,所述线状物是通过将具有不同反射率的材料喷涂至所述反射板上形成的。
  7. 根据权利要求4所述的标定板,其特征在于,所述线状物是由具有一定反射率的材料制作而成的,所述线状物固定在所述反射板上。
  8. 根据权利要求1所述的标定板,其特征在于,所述第一反射区设置有全反射贴片或者喷涂有全反射材料。
  9. 根据权利要求1所述的标定板,其特征在于,所述第二反射区设置有不同颜色的卡纸,所述不同颜色的卡纸的反射率不同。
  10. 根据权利要求1所述的标定板,其特征在于,所述反射板对应的最大深度值与最小深度值之间的差小于预设参数。
  11. 根据权利要求1所述的标定板,其特征在于,还包括:支撑机构,所述反射板设置于所述支撑机构上方。
  12. 根据权利要求11所述的标定板,其特征在于,所述支撑机构下方安装有移动组件,用于移动所述支撑机构。
  13. 根据权利要求11所述的标定板,其特征在于,所述支撑机构的高度可调。
  14. 根据权利要求11所述的标定板,其特征在于,所述反射板在所述支撑机构上的安装位置可调。
  15. 根据权利要求1所述标定板,其特征在于,所述反射板的形状为方形或者圆形。
  16. 根据权利要求1所述的标定板,其特征在于,所述标定板用于对激光雷达进行深度参数标定。
  17. 根据权利要求1所述的标定板,其特征在于,所述标定板用于对激光雷达进行初始状态的标定。
  18. 一种深度参数标定的方法,其特征在于,应用于探测装置,所述探测装置向如权利要求1-17任一所述的标定板发射光波,所述方法包括:
    接收所述标定板上的不同反射区所反射的不同信号强度的回波信号,根据所述回波信号分别计算得到所述不同信号强度的回波信号分别对应的深度值;
    根据所述不同信号强度的回波信号分别对应的深度值和所述标定板与所述探测装置之间的实际距离值,计算得到不同信号强度的回波信号分别对应的深度补偿值;
    根据所述不同信号强度的回波信号分别对应的深度补偿值和所述回波信号的信号强度,得到所述探测装置的回波信号的强度与深度补偿值的关 系。
  19. 根据权利要求18所述的方法,其特征在于,根据所述不同信号强度的回波信号分别对应的深度补偿值和所述回波信号的信号强度,得到所述探测装置的回波信号的强度与深度补偿值的关系,包括:
    对所述不同信号强度的回波信号分别对应的深度补偿值和所述回波信号的信号强度进行拟合,得到所述探测装置的回波信号的强度与深度补偿值的关系。
  20. 根据权利要求19所述的方法,其特征在于,所述对所述不同信号强度的回波信号分别对应的深度补偿值和所述回波信号的信号强度进行拟合,包括:
    通过最小二乘法对所述不同信号强度的回波信号分别对应的深度补偿值和所述回波信号的信号强度进行拟合。
  21. 根据权利要求根据权利要求18所述的方法,其特征在于,所述回波信号的强度与深度补偿值的关系的表现形式为以下形式中的任意一种:表格、函数关系式和图像。
  22. 一种探测装置,其特征在于,至少包括存储器和处理器;所述存储器通过通信总线和所述处理器连接,用于存储所述处理器可执行的计算机指令;所述处理器用于从所述存储器读取计算机指令以实现:权利要求18~21任一项所述方法的步骤。
  23. 根据权利要求22所述的探测装置,其特征在于,所述探测装置包括以下至少一种:激光雷达、毫米波雷达、超声波雷达。
  24. 一种标定系统,其特征在于,包括:如权利要求22所述的探测装置和如权利要求1-17任一所述的标定板,所述标定板设置于所述探测装置的前方,所述探测装置用于向所述标定板发射光波,并接收所述标定板上的不同反射区所反射的不同信号强度的回波信号,根据所述回波信号分别计算得到所述不同信号强度的回波信号分别对应的深度值;以及根据所述不同信号强度的回波信号分别对应的深度值和所述标定板与所述探测装置 之间的实际距离值,计算得到不同信号强度的回波信号分别对应的深度补偿值;根据所述不同信号强度的回波信号分别对应的深度补偿值和所述回波信号的信号强度,得到所述探测装置的回波信号的强度与深度补偿值的关系。
PCT/CN2019/076996 2019-03-05 2019-03-05 一种标定板、深度参数标定方法、探测装置及标定系统 WO2020177077A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/076996 WO2020177077A1 (zh) 2019-03-05 2019-03-05 一种标定板、深度参数标定方法、探测装置及标定系统
CN201980005498.1A CN111902730B (zh) 2019-03-05 2019-03-05 一种标定板、深度参数标定方法、探测装置及标定系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/076996 WO2020177077A1 (zh) 2019-03-05 2019-03-05 一种标定板、深度参数标定方法、探测装置及标定系统

Publications (1)

Publication Number Publication Date
WO2020177077A1 true WO2020177077A1 (zh) 2020-09-10

Family

ID=72337427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/076996 WO2020177077A1 (zh) 2019-03-05 2019-03-05 一种标定板、深度参数标定方法、探测装置及标定系统

Country Status (2)

Country Link
CN (1) CN111902730B (zh)
WO (1) WO2020177077A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113189568A (zh) * 2021-04-30 2021-07-30 深圳市安思疆科技有限公司 一种激光雷达标定的装置和方法
CN113805161A (zh) * 2021-09-14 2021-12-17 广州文远知行科技有限公司 超声波传感器标定方法、系统、控制设备及存储介质

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113064144A (zh) * 2021-03-17 2021-07-02 Oppo广东移动通信有限公司 iTOF相机的深度补偿方法及装置、终端及可读存储介质
CN113671461B (zh) * 2021-07-30 2024-03-08 苏州玖物智能科技股份有限公司 检测激光雷达发射光束指向的方法、系统及激光雷达装置
CN113666305B (zh) * 2021-08-31 2023-02-21 杭州派珞特智能技术有限公司 基于运动补偿与反射板优化排序的智能叉车激光定位方法
CN114509742B (zh) * 2021-12-29 2023-07-21 珠海视熙科技有限公司 一种激光雷达测试方法及装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0494698A2 (en) * 1991-08-30 1992-07-15 Kaman Aerospace Corporation Optical buoys for oceanographic measurements by imaging lidar
CN106501793A (zh) * 2016-10-26 2017-03-15 上海无线电设备研究所 校准平板定标体与太赫兹光束夹角的装置和方法
CN106952309A (zh) * 2016-01-07 2017-07-14 宁波舜宇光电信息有限公司 快速标定tof深度相机多种参数的设备及方法
CN107656259A (zh) * 2017-09-14 2018-02-02 同济大学 外场环境标定的联合标定系统与方法
CN107678013A (zh) * 2017-09-14 2018-02-09 同济大学 远程激光雷达标定系统与方法
CN108415003A (zh) * 2018-06-08 2018-08-17 武汉煜炜光学科技有限公司 一种激光测距校准装置及其校准方法
CN108627849A (zh) * 2018-07-25 2018-10-09 南京富锐光电科技有限公司 一种应用于高速相机校准的测距激光雷达系统
CN109031253A (zh) * 2018-08-27 2018-12-18 森思泰克河北科技有限公司 激光雷达标定系统及标定方法
CN109405788A (zh) * 2018-12-29 2019-03-01 北京旷视科技有限公司 获取深度传感器标定数据的方法、装置及标定系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7518544B2 (en) * 2006-07-13 2009-04-14 Colorado State University Research Foundation Retrieval of parameters in networked radar environments
CN102650691B (zh) * 2011-02-24 2014-01-22 原相科技股份有限公司 具校正功能的测距系统与方法
CN106154279B (zh) * 2016-07-22 2019-03-01 武汉海达数云技术有限公司 一种激光测距仪校正方法
CN206523630U (zh) * 2017-02-13 2017-09-26 杨华军 一种激光雷达标定装置
CN208225111U (zh) * 2018-06-20 2018-12-11 首都师范大学 标校板及飞行器
CN109001713B (zh) * 2018-10-16 2020-09-22 森思泰克河北科技有限公司 测距精度校准系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0494698A2 (en) * 1991-08-30 1992-07-15 Kaman Aerospace Corporation Optical buoys for oceanographic measurements by imaging lidar
CN106952309A (zh) * 2016-01-07 2017-07-14 宁波舜宇光电信息有限公司 快速标定tof深度相机多种参数的设备及方法
CN106501793A (zh) * 2016-10-26 2017-03-15 上海无线电设备研究所 校准平板定标体与太赫兹光束夹角的装置和方法
CN107656259A (zh) * 2017-09-14 2018-02-02 同济大学 外场环境标定的联合标定系统与方法
CN107678013A (zh) * 2017-09-14 2018-02-09 同济大学 远程激光雷达标定系统与方法
CN108415003A (zh) * 2018-06-08 2018-08-17 武汉煜炜光学科技有限公司 一种激光测距校准装置及其校准方法
CN108627849A (zh) * 2018-07-25 2018-10-09 南京富锐光电科技有限公司 一种应用于高速相机校准的测距激光雷达系统
CN109031253A (zh) * 2018-08-27 2018-12-18 森思泰克河北科技有限公司 激光雷达标定系统及标定方法
CN109405788A (zh) * 2018-12-29 2019-03-01 北京旷视科技有限公司 获取深度传感器标定数据的方法、装置及标定系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113189568A (zh) * 2021-04-30 2021-07-30 深圳市安思疆科技有限公司 一种激光雷达标定的装置和方法
CN113189568B (zh) * 2021-04-30 2024-03-05 深圳市安思疆科技有限公司 一种激光雷达标定的装置和方法
CN113805161A (zh) * 2021-09-14 2021-12-17 广州文远知行科技有限公司 超声波传感器标定方法、系统、控制设备及存储介质
CN113805161B (zh) * 2021-09-14 2024-05-03 广州文远知行科技有限公司 超声波传感器标定方法、系统、控制设备及存储介质

Also Published As

Publication number Publication date
CN111902730A (zh) 2020-11-06
CN111902730B (zh) 2021-10-29

Similar Documents

Publication Publication Date Title
WO2020177077A1 (zh) 一种标定板、深度参数标定方法、探测装置及标定系统
GB2437384A (en) Multiple fanned laser beam metrology system
CN210142187U (zh) 一种距离探测装置
CN210038146U (zh) 测距模组、测距装置及可移动平台
WO2020168489A1 (zh) 一种测距装置、测距方法以及移动平台
CN104991255A (zh) 一种基于目视原理的多点激光测距雷达
US20220120899A1 (en) Ranging device and mobile platform
CN111771136A (zh) 异常检测方法、报警方法、测距装置及可移动平台
WO2021195831A1 (zh) 反射率的实时测量方法、装置、可移动平台和计算机可读存储介质
CN108732577B (zh) 一种激光探测装置
WO2020154980A1 (zh) 一种探测装置外参数标定方法、数据处理装置和探测系统
CN209979845U (zh) 一种测距装置及移动平台
WO2020177076A1 (zh) 一种探测装置初始状态标定方法及装置
WO2020237663A1 (zh) 一种多通道激光雷达点云插值的方法和测距装置
US20220082665A1 (en) Ranging apparatus and method for controlling scanning field of view thereof
CN111712734A (zh) 一种激光测距装置及移动平台
US20210341588A1 (en) Ranging device and mobile platform
WO2020147121A1 (zh) 雨量测量方法、探测装置、可读存储介质
WO2020107379A1 (zh) 应用于测距装置的反射率校正方法、测距装置
WO2021026766A1 (zh) 扫描模块的电机转速控制方法、装置和测距装置
CN113820721A (zh) 一种收发分离的激光雷达系统
WO2020220275A1 (zh) 一种探测电路、探测方法及测距装置、移动平台
WO2020142919A1 (zh) 一种测距装置及移动平台
WO2020142909A1 (zh) 数据同步方法、分布式雷达系统及可移动平台
WO2021138765A1 (zh) 测绘方法、测绘装置、存储介质及可移动平台

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19918113

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19918113

Country of ref document: EP

Kind code of ref document: A1