CN108415003A - 一种激光测距校准装置及其校准方法 - Google Patents

一种激光测距校准装置及其校准方法 Download PDF

Info

Publication number
CN108415003A
CN108415003A CN201810589745.4A CN201810589745A CN108415003A CN 108415003 A CN108415003 A CN 108415003A CN 201810589745 A CN201810589745 A CN 201810589745A CN 108415003 A CN108415003 A CN 108415003A
Authority
CN
China
Prior art keywords
reflecting plate
laser
controller
fan
calibrating installation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810589745.4A
Other languages
English (en)
Other versions
CN108415003B (zh
Inventor
张石
李亚锋
鲁佶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Yu Wei Optical Technology Co Ltd
Original Assignee
Wuhan Yu Wei Optical Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Yu Wei Optical Technology Co Ltd filed Critical Wuhan Yu Wei Optical Technology Co Ltd
Priority to CN201810589745.4A priority Critical patent/CN108415003B/zh
Publication of CN108415003A publication Critical patent/CN108415003A/zh
Application granted granted Critical
Publication of CN108415003B publication Critical patent/CN108415003B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating

Abstract

本发明属于测量校准技术领域,公开了一种激光测距校准装置,包括实验台,所述实验台上设有激光发射器、激光接收器、数据处理器及反射板控制器,所述数据处理器用于计算激光发射器发射激光信号和激光接收器接收到反射的激光信号之间的时间差并计算测量距离和校准值再保存对应的校准值;还公开了利用本发明的激光测距校准装置进行校准的方法,可利用本发明的激光测距校准装置可根据不同的反射率和不同的入射角,计算各自对应的校准值并保存,可得到多组校准数据,在实际测量中,多组保存的校准数据均可用于校准。

Description

一种激光测距校准装置及其校准方法
技术领域
本发明属于测量校准技术领域,具体涉及一种激光测距校准装置及其校准方法。
背景技术
激光测距中测距精度是一项非常重要的指标,同一距离下的不同反射率的目标物测量的距离值有很大的差别,在高精度的测量中,这种差别会导致激光测距系统的可适用性降低。两个反射物处在同一位置,只是反射率不同,用相同强度的激光信号分别照射在两个反射物上时,会反射激光信号,图1是相同强度的激光信号照射在同一位置的不同反射率的物体上的激光反射信号图,图中反射信号1是反射率较大的物体反射的激光信号,反射信号2是反射率较小的物体反射的激光信号。如果以某一激光信号强度v1作为时间测量的基准点,那么反射信号1和反射信号2在时间轴上的差为Δt,Δt通常在纳秒级。1纳秒的时间里,激光运动的距离是0.3米,在高精度的测量中,测量精度通常要求在厘米甚至毫米级,0.3米的误差是不能接受的。因此,校准的目的就是为了消除由Δt引起的误差。为此,我们提出一种激光测距校准装置及其校准方法。
发明内容
为了解决现有技术存在的上述问题,本发明目的在于提供一种激光测距校准装置及其校准方法。
本发明所采用的技术方案为:
一种激光测距校准装置包括实验台,所述实验台上设有激光发射器、激光接收器、数据处理器及反射板控制器,所述实验台的一侧设有轨道及反射板底座,所述反射板底座滑动地安装在所述轨道内,所述反射板底座的中心轴上设有反射板;
所述激光发射器的输入端口与所述数据处理器连接,用于接收所述数据处理器传送的电激励控制信号,所述激光发射器的输出端口正对所述反射板设置;
所述激光接收器设置于所述反射板的反射激光覆盖的区域内,所述激光接收器与所述数据处理器连接,所述激光接收器用于接收来自所述反射板的激光信号并将接收的激光信号传送至所述数据处理器;
所述数据处理器用于计算激光发射器发射激光信号和激光接收器接收到反射的激光信号之间的时间差并计算测量距离和校准值再保存对应的校准值;
所述反射板控制器包括控制所述反射板以反射板的中心线为中心旋转的第一控制器、控制所述反射板底座的中心轴旋转的第二控制器以及控制所述反射板底座沿所述轨道往复位移的第三控制器;
所述轨道均与所述激光发射器及所述激光接收器的光轴平行;
所述反射板上设有多种不同反射率的涂层,多种涂层均为以所述反射板的中心点为圆心的扇形涂层。
进一步地,所述第一控制器包括第一电机及控制所述第一电机启动的第一控制钮,在所述第一电机的传动轴上设置所述反射板,所述第一控制钮设置在所述实验台上。
进一步地,所述第二控制器包括第二电机及控制所述第二电机启动的第二控制钮,所述第二电机传动连接所述反射板底座的中心轴,所述第二控制钮设置在所述实验台上。
进一步地,所述第三控制器包括第三电机及控制所述第三电机启动的第三控制钮,所述第三电机的传动轴上设置丝杆,所述丝杆匹配穿过套筒与所述反射板底座固定连接,所述套筒固定设置,所述第三控制钮设置在所述实验台上。
进一步地,所述反射板上设有四个以反射板中心点为圆心的扇形涂层,四个扇形涂层的反射率分别为2%、10%、50%及100%。
进一步地,所述激光接收器为光电二极管。
利用上述的激光测距校准装置进行校准的方法,包括以下步骤:
步骤1:将激光接收器、激光发射器、数据处理器和反射板控制器的所有控制钮固定在实验台上,将激光发射器、激光接收器、数据处理器及反射板控制器相对应的数据线及控制线连接,所述轨道均与所述激光发射器及所述激光接收器的光轴平行;
步骤2:设定反射板和激光发射器之间的实际距离d,由反射板控制器控制反射板底座沿轨道运动到距离激光发射器d的位置;
步骤3:在反射板上涂上多个不同反射率的扇形涂层,多个扇形涂层均为以反射板中心点为圆心的扇形涂层;
步骤4:调整反射板至使第一扇形涂层处于激光照射区域;
步骤5:进行校准,校准过程包括发射激光信号,接收激光信号,计算发射信号和接收信号的时间差,并由该时间差计算出测量距离d1,再计算测量距离d1与实际距离d之间的校准值c1,记录c1;
步骤6:由反射板控制器控制反射板底座的中心轴旋转,多次改变激光发射信号照射在反射板上的入射角度,再进行多次校准;
步骤7:由反射板控制器控制反射板底座的中心轴旋转使入射角度为90°;
步骤8:控制所述反射板以反射板的中心线为中心旋转使第二扇形涂层处于激光照射区域,对应重复步骤5-7;
步骤9:控制所述反射板以反射板的中心线为中心旋转使第三扇形涂层处于激光照射区域,对应重复步骤5-7;
步骤10:控制所述反射板以反射板的中心线为中心旋转使第四扇形涂层处于激光照射区域,对应重复步骤5-7;
步骤11:可得到实际距离d处的多组校准数据,并保存多组校准数据。
本发明的有益效果为:
可利用本发明的激光测距校准装置可根据不同的反射率和不同的入射角,计算各自对应的校准值并保存,可得到多组校准数据,在实际测量中,多组保存的校准数据均可用于校准,本发明的激光测距校准装置具有成本低、操作简单、精度满足实用要求等优点。
附图说明
图1是相同强度的激光信号照射在同一位置的不同反射率的物体上反射的激光信号强度图。
图2是本发明的结构示意图。
图3是本发明的反射板底座和反射板的主视图。
图4是本发明的反射板底座和反射板的侧视图。
图5是本发明的激光信号呈不同角度照射在反射板上的示意图。
图中:1-实验台;2-激光发射器;3-激光接收器;4-数据处理器;5-反射板控制器;6-反射板底座;61-反射板;611-第一扇形涂层;612-第二扇形涂层;613-第三扇形涂层;614-第四扇形涂层;62-中心轴;7-轨道。
具体实施方式
下面结合附图及具体实施例对本发明做进一步阐释。
实施例1:
如图1-4所示,本实施例提供一种激光测距校准装置包括实验台1,先在实验台1上固定安装激光发射器2、激光接收器3、数据处理器4及反射板控制器5,然后在实验台的一侧设置轨道7及反射板底座6。在反射板底座6的中心轴62上安装有反射板61。
所述激光发射器的输入端口与所述数据处理器连接,用于接收所述数据处理器传送的电激励控制信号,所述激光发射器的输出端口正对所述反射板设置;激光发射器2用于发射激光信号至所述反射板61。具体地,激光发射器包括控制电路、光路和激光器。
所述激光接收器设置于与所述反射板的反射激光覆盖的区域内,所述激光接收器与所述数据处理器连接,所述激光接收器3用于接收来自所述反射板61的激光信号,并将接收的激光信号传送至所述数据处理器。具体地,所述激光接收器为光电二极管。
所述数据处理器4用于计算激光发射器发射激光信号和激光接收器接收到反射的激光信号之间的时间差并计算测量距离和校准值再保存对应的校准值;数据处理器用于根据激光发射器发射激光信号和激光接收器接收到反射的激光信号之间的时间差ΔT,再由公式d1=(ΔT×c)/2计算测量距离d1,其中c为激光在空气中的传播速度;最后根据实际距离d和测量距离d1得出校准值c1。
所述反射板控制器5包括控制所述反射板以反射板的中心线为中心旋转的第一控制器、控制所述反射板底座的中心轴旋转的第二控制器以及控制所述反射板底座沿所述轨道往复位移的第三控制器;具体地,第一控制器包括第一电机及控制所述第一电机启动的第一控制钮,在所述第一电机的传动轴上设置所述反射板,这样,启动第一电机,就可带动反射板以反射板的中心线为中心旋转,由于所述反射板上设有多种不同反射率的涂层,多种涂层均为以所述反射板的中心点为圆心的扇形涂层。反射板以其中心线为中心旋转过程中,不同反射率的涂层分别对准激光信号的照射区域,可根据不同的反射率计算对应的校准值并保存。如反射板上设有四个以反射板中心点为圆心的扇形涂层,四个扇形涂层的反射率分别为2%,10%,50%,100%。第一电机带动反射板旋转过程中,可使激光信号能够照射在反射板的不同反射率区域,可使激光信号分别对准反射率为2%,10%,50%,100%的反射率区域。
第二控制器具体包括第二电机及控制所述第二电机启动的第二控制钮,所述第二电机传动连接所述反射板底座的中心轴。启动第二电机可带动反射板底座的中心轴旋转,使得激光照射在反射板的入射角度发生变化。可根据不同的入射角度计算对应的校准值并保存。
所述第三控制器包括第三电机及控制所述第三电机启动的第三控制钮,所述第三电机的传动轴上设置丝杆,所述丝杆匹配穿过套筒与所述反射板底座固定连接,所述套筒固定设置。由于反射板底座滑动地安装在所述轨道内,第三电机启动后,可带动丝杆旋转的同时带动丝杆位移,从而带动反射板底座沿轨道位移,使得反射板底座和实验台之间的距离可以准确定位。
保持轨道与所述激光发射器及所述激光接收器的光轴平行;方便校正。
因此,可利用本发明的激光测距校准装置可根据不同的反射率和不同的入射角,计算各自对应的校准值并保存,保存的数据在实际测量中用于校准。
利用本发明的激光测距校准装置的进行校正的过程如下:
步骤1:将激光接收器、激光发射器、数据处理器和反射板控制器的所有控制钮固定安装在实验台上,连接相应的数据线及控制线等使得本发明的激光测距校准装置能够正常工作;保持激光发射器和激光接收器的光轴平行,并且激光发射器和激光接收器的光轴均与轨道平行。
步骤2:设定反射板和激光发射器之间的实际距离d,由反射板控制器(由第三电机)控制反射板底座沿轨道运动到距离激光发射器d的位置;
步骤3:在反射板上涂上多个不同反射率的扇形涂层,多个扇形涂层均为以反射板中心点为圆心的扇形涂层;如在反射板上涂上四个以反射板中心点为圆心的扇形涂层,四个扇形涂层的反射率分别为2%、10%、50%及100%(以此为例,不限于这几种反射率),每种反射率的材料在反射板上占据不同的区域,如图3所示。
步骤4:调整反射板至使第一扇形涂层处于激光照射区域,如初始位置为反射率为100%的扇形涂层,即该第一扇形涂层611处于激光照射区域(图3中的虚线区域为激光照射区域),反射板与激光信号的光轴垂直,也就是激光信号呈90°照射在反射板所在平面,如图5(a)所示。
步骤5:进行校准。(校准所包含的过程是:发射激光信号、接收激光信号、计算发射信号和接收信号的时间差,并由该时间差计算出测量距离d1,再计算测量距离d1与实际距离d之间的差值即校准值c1,记录c1)
步骤6:由反射板控制器控制反射板底座的中心轴旋转(由第二电机控制反射板底座的中心轴旋转)即控制反射板轴向旋转,多次改变激光发射信号照射在反射板上的入射角度,再进行多次校准。
如每次使反射板轴向旋转一定的角度,比如每次旋转2°(或5°),直到入射角度接近0°,可多次改变激光发射信号照射在反射板上的入射角度,对应进行多次校准,这样可根据不同的入射角度计算对应的校准值并保存。
步骤7:由反射板控制器控制反射板轴向旋转,回到入射角度为90°,再进行下一个扇形涂层所在位置上的校准。
步骤8:控制所述反射板以反射板的中心线为中心旋转使第二扇形涂层612处于激光照射区域,其中第二扇形涂层的反射率可为50%,对应重复步骤5-7;在第二扇形涂层所在位置上进行多次校准。
步骤9:控制所述反射板以反射板的中心线为中心旋转使第三扇形涂层613处于激光照射区域,其中第三扇形涂层的反射率可为10%,对应重复步骤5-7;在第三扇形涂层所在位置上进行多次校准。
步骤10:控制所述反射板以反射板的中心线为中心旋转使第四扇形涂层614处于激光照射区域,其中第四扇形涂层的反射率可为2%,对应重复步骤5-7;在第四扇形涂层所在位置上进行多次校准。
步骤11:如果有多个扇形涂层的情况,则依次类推,可得到实际距离d处的多组校准数据,在实际测量中,多组校准数据均可用于校准。
如需对不同型号或不同量程的激光测距装置进行校准时,可以改变距离d,再重复以上的步骤2-12。
综上所述,可利用本发明的激光测距校准装置可根据不同的反射率和不同的入射角,计算各自对应的校准值并保存,可得到多组校准数据,在实际测量中,多组保存的校准数据均可用于校准,本发明的激光测距校准装置具有成本低、操作简单、精度满足实用要求等优点。
本发明不局限于上述可选的实施方式,任何人在本发明的启示下都可得出其他各种形式的产品。上述具体实施方式不应理解成对本发明的保护范围的限制,本发明的保护范围应当以权利要求书中界定的为准,并且说明书可以用于解释权利要求书。

Claims (7)

1.一种激光测距校准装置,其特征在于:包括实验台,所述实验台上设有激光发射器、激光接收器、数据处理器及反射板控制器,所述实验台的一侧设有轨道及反射板底座,所述反射板底座滑动地安装在所述轨道内,所述反射板底座的中心轴上设有反射板;
所述激光发射器的输入端口与所述数据处理器连接,用于接收所述数据处理器传送的电激励控制信号,所述激光发射器的输出端口正对所述反射板设置;
所述激光接收器设置于所述反射板的反射激光覆盖的区域内,所述激光接收器与所述数据处理器连接,所述激光接收器用于接收来自所述反射板的激光信号并将接收的激光信号传送至所述数据处理器;
所述数据处理器用于计算激光发射器发射激光信号和激光接收器接收到反射的激光信号之间的时间差并计算测量距离和校准值再保存对应的校准值;
所述反射板控制器包括控制所述反射板以反射板的中心线为中心旋转的第一控制器、控制所述反射板底座的中心轴旋转的第二控制器以及控制所述反射板底座沿所述轨道往复位移的第三控制器;
所述轨道均与所述激光发射器及所述激光接收器的光轴平行;
所述反射板上设有多种不同反射率的涂层,多种涂层均为以所述反射板的中心点为圆心的扇形涂层。
2.根据权利要求1所述的激光测距校准装置,其特征在于:所述第一控制器包括第一电机及控制所述第一电机启动的第一控制钮,在所述第一电机的传动轴上设置所述反射板,所述第一控制钮设置在所述实验台上。
3.根据权利要求1所述的激光测距校准装置,其特征在于:所述第二控制器包括第二电机及控制所述第二电机启动的第二控制钮,所述第二电机传动连接所述反射板底座的中心轴,所述第二控制钮设置在所述实验台上。
4.根据权利要求1所述的激光测距校准装置,其特征在于:所述第三控制器包括第三电机及控制所述第三电机启动的第三控制钮,所述第三电机的传动轴上设置丝杆,所述丝杆匹配穿过套筒与所述反射板底座固定连接,所述套筒固定设置,所述第三控制钮设置在所述实验台上。
5.根据权利要求4所述的激光测距校准装置,其特征在于:所述反射板上设有四个以反射板中心点为圆心的扇形涂层,四个扇形涂层的反射率分别为2%、10%、50%及100%。
6.根据权利要求5所述的激光测距校准装置,其特征在于:所述激光接收器为光电二极管。
7.利用权利要求1-6任一项权利要求所述的激光测距校准装置进行校准的方法,其特征在于,包括以下步骤:
步骤1:将激光接收器、激光发射器、数据处理器和反射板控制器的所有控制钮固定在实验台上,将激光发射器、激光接收器、数据处理器及反射板控制器相对应的数据线及控制线连接,所述轨道均与所述激光发射器及所述激光接收器的光轴平行;
步骤2:设定反射板和激光发射器之间的实际距离d,由反射板控制器控制反射板底座沿轨道运动到距离激光发射器d的位置;
步骤3:在反射板上涂上多个不同反射率的扇形涂层,多个扇形涂层均为以反射板中心点为圆心的扇形涂层;
步骤4:调整反射板至使第一扇形涂层处于激光照射区域;
步骤5:进行校准,校准过程包括发射激光信号,接收激光信号,计算发射信号和接收信号的时间差,并由该时间差计算出测量距离d1,再计算测量距离d1与实际距离d之间的校准值c1,记录c1;
步骤6:由反射板控制器控制反射板底座的中心轴旋转,多次改变激光发射信号照射在反射板上的入射角度,再进行多次校准;
步骤7:由反射板控制器控制反射板底座的中心轴旋转使入射角度为90°;
步骤8:控制所述反射板以反射板的中心线为中心旋转使第二扇形涂层处于激光照射区域,对应重复步骤5-7;
步骤9:控制所述反射板以反射板的中心线为中心旋转使第三扇形涂层处于激光照射区域,对应重复步骤5-7;
步骤10:控制所述反射板以反射板的中心线为中心旋转使第四扇形涂层处于激光照射区域,对应重复步骤5-7;
步骤11:可得到实际距离d处的多组校准数据,并保存多组校准数据。
CN201810589745.4A 2018-06-08 2018-06-08 一种激光测距校准装置及其校准方法 Active CN108415003B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810589745.4A CN108415003B (zh) 2018-06-08 2018-06-08 一种激光测距校准装置及其校准方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810589745.4A CN108415003B (zh) 2018-06-08 2018-06-08 一种激光测距校准装置及其校准方法

Publications (2)

Publication Number Publication Date
CN108415003A true CN108415003A (zh) 2018-08-17
CN108415003B CN108415003B (zh) 2019-12-27

Family

ID=63141550

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810589745.4A Active CN108415003B (zh) 2018-06-08 2018-06-08 一种激光测距校准装置及其校准方法

Country Status (1)

Country Link
CN (1) CN108415003B (zh)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109001713A (zh) * 2018-10-16 2018-12-14 森思泰克河北科技有限公司 测距精度校准系统
CN109031253A (zh) * 2018-08-27 2018-12-18 森思泰克河北科技有限公司 激光雷达标定系统及标定方法
CN109143206A (zh) * 2018-08-27 2019-01-04 森思泰克河北科技有限公司 激光雷达标定装置及标定方法
CN109883291A (zh) * 2019-03-18 2019-06-14 东南大学 一种桥梁梁体竖向位移的测量装置
CN110361714A (zh) * 2019-08-07 2019-10-22 武汉灵途传感科技有限公司 激光雷达的测距补偿系统及方法
CN110864774A (zh) * 2019-12-25 2020-03-06 三门核电有限公司 一种超声波物位计自动校准装置及其使用方法
CN111381223A (zh) * 2018-12-27 2020-07-07 沈阳新松机器人自动化股份有限公司 一种激光测距传感器性能的检测方法及其系统和装置
CN111487649A (zh) * 2019-01-25 2020-08-04 北京石头世纪科技股份有限公司 测距装置及自主机器人
CN111587383A (zh) * 2018-11-30 2020-08-25 深圳市大疆创新科技有限公司 应用于测距装置的反射率校正方法、测距装置
WO2020177077A1 (zh) * 2019-03-05 2020-09-10 深圳市大疆创新科技有限公司 一种标定板、深度参数标定方法、探测装置及标定系统
WO2020180503A1 (en) 2019-03-05 2020-09-10 Waymo Llc Range calibration of light detectors
WO2020215718A1 (zh) * 2019-04-25 2020-10-29 苏州玖物互通智能科技有限公司 一种激光二维测距传感器的标定方法
CN111856434A (zh) * 2019-04-29 2020-10-30 深圳市速腾聚创科技有限公司 激光雷达标定方法、装置、计算机设备和存储介质
CN111896965A (zh) * 2020-06-09 2020-11-06 深圳职业技术学院 一种激光测距校准方法及可自动校准的激光测距仪
CN112230072A (zh) * 2020-09-28 2021-01-15 杭州永谐科技有限公司 一种远场天线测试系统及对准方法
CN112558047A (zh) * 2020-12-22 2021-03-26 中国第一汽车股份有限公司 一种反射率标定系统、数据处理方法、设备和存储介质
CN112711005A (zh) * 2020-12-29 2021-04-27 深圳市利拓光电有限公司 基于激光器的测距装置及控制方法
CN112904320A (zh) * 2021-05-07 2021-06-04 深圳阜时科技有限公司 光学模组测试方法和系统
CN113156410A (zh) * 2021-04-29 2021-07-23 深圳煜炜光学科技有限公司 一种激光雷达自动测试装置与方法
CN113670515A (zh) * 2021-07-20 2021-11-19 中车青岛四方机车车辆股份有限公司 载荷传感器校准装置及校准方法
CN114111583A (zh) * 2020-08-27 2022-03-01 神华神东煤炭集团有限责任公司 一种基于激光测距的采动裂缝监测装置及方法
CN114324837A (zh) * 2021-12-30 2022-04-12 山东大学 基于激光测距的接触法混凝土膨胀收缩检测装置及方法
WO2022141100A1 (zh) * 2020-12-29 2022-07-07 迅达(中国)电梯有限公司 分段式激光测距方法和系统
US11747453B1 (en) 2019-11-04 2023-09-05 Waymo Llc Calibration system for light detection and ranging (lidar) devices

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0231050A2 (en) * 1986-01-29 1987-08-05 Consiglio Nazionale Delle Ricerche Unstable laser resonator with output coupler having radially variable reflectivity
CN101788669A (zh) * 2010-01-25 2010-07-28 华北电力大学(保定) 具有修正功能的脉冲激光测距装置及使用该装置的激光测距方法
CN103674898A (zh) * 2013-12-13 2014-03-26 中国电子科技集团公司第四十一研究所 一种基于激光测距的反射率测试自动校正方法
CN106019300A (zh) * 2016-08-05 2016-10-12 上海思岚科技有限公司 一种激光测距装置及其激光测距方法
CN106154279A (zh) * 2016-07-22 2016-11-23 武汉海达数云技术有限公司 一种激光测距仪校正方法
CN107688185A (zh) * 2017-06-05 2018-02-13 罗印龙 一种激光测距装置及其测距方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0231050A2 (en) * 1986-01-29 1987-08-05 Consiglio Nazionale Delle Ricerche Unstable laser resonator with output coupler having radially variable reflectivity
CN101788669A (zh) * 2010-01-25 2010-07-28 华北电力大学(保定) 具有修正功能的脉冲激光测距装置及使用该装置的激光测距方法
CN103674898A (zh) * 2013-12-13 2014-03-26 中国电子科技集团公司第四十一研究所 一种基于激光测距的反射率测试自动校正方法
CN106154279A (zh) * 2016-07-22 2016-11-23 武汉海达数云技术有限公司 一种激光测距仪校正方法
CN106019300A (zh) * 2016-08-05 2016-10-12 上海思岚科技有限公司 一种激光测距装置及其激光测距方法
CN107688185A (zh) * 2017-06-05 2018-02-13 罗印龙 一种激光测距装置及其测距方法

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109031253A (zh) * 2018-08-27 2018-12-18 森思泰克河北科技有限公司 激光雷达标定系统及标定方法
CN109143206A (zh) * 2018-08-27 2019-01-04 森思泰克河北科技有限公司 激光雷达标定装置及标定方法
CN109143206B (zh) * 2018-08-27 2021-06-01 森思泰克河北科技有限公司 激光雷达标定装置及标定方法
CN109001713A (zh) * 2018-10-16 2018-12-14 森思泰克河北科技有限公司 测距精度校准系统
CN109001713B (zh) * 2018-10-16 2020-09-22 森思泰克河北科技有限公司 测距精度校准系统
CN111587383A (zh) * 2018-11-30 2020-08-25 深圳市大疆创新科技有限公司 应用于测距装置的反射率校正方法、测距装置
CN111381223A (zh) * 2018-12-27 2020-07-07 沈阳新松机器人自动化股份有限公司 一种激光测距传感器性能的检测方法及其系统和装置
CN111487649A (zh) * 2019-01-25 2020-08-04 北京石头世纪科技股份有限公司 测距装置及自主机器人
JP2022522665A (ja) * 2019-03-05 2022-04-20 ウェイモ エルエルシー 光検出器の範囲キャリブレーション
US11681030B2 (en) 2019-03-05 2023-06-20 Waymo Llc Range calibration of light detectors
WO2020177077A1 (zh) * 2019-03-05 2020-09-10 深圳市大疆创新科技有限公司 一种标定板、深度参数标定方法、探测装置及标定系统
WO2020180503A1 (en) 2019-03-05 2020-09-10 Waymo Llc Range calibration of light detectors
EP3914930A4 (en) * 2019-03-05 2022-11-02 Waymo LLC RANGE CALIBRATION OF LIGHT DETECTORS
CN111902730A (zh) * 2019-03-05 2020-11-06 深圳市大疆创新科技有限公司 一种标定板、深度参数标定方法、探测装置及标定系统
CN109883291A (zh) * 2019-03-18 2019-06-14 东南大学 一种桥梁梁体竖向位移的测量装置
CN109883291B (zh) * 2019-03-18 2020-06-05 东南大学 一种桥梁梁体竖向位移的测量装置
WO2020215718A1 (zh) * 2019-04-25 2020-10-29 苏州玖物互通智能科技有限公司 一种激光二维测距传感器的标定方法
CN111856434B (zh) * 2019-04-29 2023-08-04 深圳市速腾聚创科技有限公司 激光雷达标定方法、装置、计算机设备和存储介质
CN111856434A (zh) * 2019-04-29 2020-10-30 深圳市速腾聚创科技有限公司 激光雷达标定方法、装置、计算机设备和存储介质
CN110361714B (zh) * 2019-08-07 2021-11-19 武汉灵途传感科技有限公司 激光雷达的测距补偿系统及方法
CN110361714A (zh) * 2019-08-07 2019-10-22 武汉灵途传感科技有限公司 激光雷达的测距补偿系统及方法
US11747453B1 (en) 2019-11-04 2023-09-05 Waymo Llc Calibration system for light detection and ranging (lidar) devices
CN110864774A (zh) * 2019-12-25 2020-03-06 三门核电有限公司 一种超声波物位计自动校准装置及其使用方法
CN111896965A (zh) * 2020-06-09 2020-11-06 深圳职业技术学院 一种激光测距校准方法及可自动校准的激光测距仪
CN114111583A (zh) * 2020-08-27 2022-03-01 神华神东煤炭集团有限责任公司 一种基于激光测距的采动裂缝监测装置及方法
CN114111583B (zh) * 2020-08-27 2023-10-20 神华神东煤炭集团有限责任公司 一种基于激光测距的采动裂缝监测装置及方法
CN112230072A (zh) * 2020-09-28 2021-01-15 杭州永谐科技有限公司 一种远场天线测试系统及对准方法
CN112230072B (zh) * 2020-09-28 2023-09-05 杭州永谐科技有限公司 一种远场天线测试系统及对准方法
CN112558047A (zh) * 2020-12-22 2021-03-26 中国第一汽车股份有限公司 一种反射率标定系统、数据处理方法、设备和存储介质
WO2022141100A1 (zh) * 2020-12-29 2022-07-07 迅达(中国)电梯有限公司 分段式激光测距方法和系统
CN112711005A (zh) * 2020-12-29 2021-04-27 深圳市利拓光电有限公司 基于激光器的测距装置及控制方法
CN113156410A (zh) * 2021-04-29 2021-07-23 深圳煜炜光学科技有限公司 一种激光雷达自动测试装置与方法
CN113156410B (zh) * 2021-04-29 2024-02-02 深圳煜炜光学科技有限公司 一种激光雷达自动测试装置与方法
CN112904320A (zh) * 2021-05-07 2021-06-04 深圳阜时科技有限公司 光学模组测试方法和系统
CN113670515A (zh) * 2021-07-20 2021-11-19 中车青岛四方机车车辆股份有限公司 载荷传感器校准装置及校准方法
CN114324837A (zh) * 2021-12-30 2022-04-12 山东大学 基于激光测距的接触法混凝土膨胀收缩检测装置及方法

Also Published As

Publication number Publication date
CN108415003B (zh) 2019-12-27

Similar Documents

Publication Publication Date Title
CN108415003A (zh) 一种激光测距校准装置及其校准方法
CN109143206B (zh) 激光雷达标定装置及标定方法
US8422035B2 (en) Distance-measuring method for a device projecting a reference line, and such a device
CN102941410B (zh) 一种点扫描三维测量系统振镜标定方法
EP0148138B1 (en) Method and apparatus for calibrating a positioning system
CN101319898B (zh) 测量系统
CN107490375B (zh) 定点悬停精度测量装置、方法及无人飞行器
US20130265639A1 (en) Accurate Telescope Tracking System with a Calibrated Rotary Encoder
WO2018040531A1 (zh) 一种激光干涉仪的角度测量校准装置及系统
CN104931011A (zh) 一种红外热像仪的被动式测距方法
CN107102315B (zh) 一种激光测距仪校准方法
CN107430193A (zh) 距离测量仪器
CN104697489A (zh) 一种平面法线方位角测量装置、方法及应用
US4600301A (en) Spinning disk calibration method and apparatus for laser Doppler velocimeter
CN109471111A (zh) 一种可抗声波干扰的超声波传感器组及目标定位方法
CN109186501A (zh) 高精度光电传感器角度检测系统、标定方法及检测方法
CN206573133U (zh) 测试靶标及激光器性能检测设备
CN205027666U (zh) 介质折射率的测量装置
US2913700A (en) Supersonic deviation-measuring apparatus
CN110186399B (zh) 驱动器定位精度检测装置和方法
US2467319A (en) Unitary range, azimuth, and elevation alignment indicator for radar systems
CN111596085A (zh) 激光感测装置和测量方法
TW581870B (en) Laser velocimeter calibration apparatus and method thereof
CN105758332B (zh) 一种三维激光扫描设备
CN108169755A (zh) 一种高精度远程激光测距机及测距方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 518000 Building 901, C1, Nanshan Zhiyuan, 1001 Xueyuan Avenue, Changyuan Community, Taoyuan Street, Nanshan District, Shenzhen City, Guangdong Province

Applicant after: Shenzhen Yuwei Optical Technology Co., Ltd.

Address before: 430000 two E 2256 and 2266-61 rooms of building two, Dongxin Road, Hubei New Technology Development Zone, Wuhan, East Lake

Applicant before: Wuhan Yu Wei Optical Technology Co., Ltd.

GR01 Patent grant
GR01 Patent grant