WO2024088086A1 - 清洁装置及其应用的透光罩、自移动装置 - Google Patents

清洁装置及其应用的透光罩、自移动装置 Download PDF

Info

Publication number
WO2024088086A1
WO2024088086A1 PCT/CN2023/124614 CN2023124614W WO2024088086A1 WO 2024088086 A1 WO2024088086 A1 WO 2024088086A1 CN 2023124614 W CN2023124614 W CN 2023124614W WO 2024088086 A1 WO2024088086 A1 WO 2024088086A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
laser
transmitting portion
transmitting
reflective
Prior art date
Application number
PCT/CN2023/124614
Other languages
English (en)
French (fr)
Inventor
韩巍
黄红林
刘峰
郭士意
Original Assignee
科沃斯机器人股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202211306034.4A external-priority patent/CN117970287A/zh
Priority claimed from CN202222902009.4U external-priority patent/CN218978799U/zh
Priority claimed from CN202211372400.6A external-priority patent/CN118033594A/zh
Priority claimed from CN202222904346.7U external-priority patent/CN219085153U/zh
Priority claimed from CN202321652392.0U external-priority patent/CN220212836U/zh
Priority claimed from CN202321657418.0U external-priority patent/CN220525995U/zh
Application filed by 科沃斯机器人股份有限公司 filed Critical 科沃斯机器人股份有限公司
Publication of WO2024088086A1 publication Critical patent/WO2024088086A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/24Floor-sweeping machines, motor-driven
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/28Floor-scrubbing machines, motor-driven
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes

Definitions

  • the present application relates to the technical field of cleaning equipment, and in particular to a cleaning device and a light-transmitting cover and a self-moving device used therein.
  • Cleaning robots with cleaning functions such as washing, sweeping, and mopping can replace users to clean the floor and other cleaning tasks, bringing many conveniences to users, and are therefore widely used.
  • Cleaning robots usually use lidar sensors to achieve navigation and obstacle avoidance functions to ensure that the cleaning robots can perform cleaning tasks normally.
  • the cleaning robot is provided with a light-transmitting cover.
  • the laser output by the LiDAR sensor is emitted to the external environment through the light-transmitting cover, and the laser reflected back by the external environment is incident on the LiDAR sensor through the light-transmitting cover. Due to the limitation of the light-transmitting cover material, the laser cannot be completely transmitted when passing through the light-transmitting cover. A part of the laser will be reflected on the surface of the light-transmitting cover. The partially reflected laser may pass through the light-transmitting cover again after multiple reflections, which is easy to interfere with the laser signal required by the sensor to detect the external environment, resulting in the low detection accuracy of the current LiDAR sensor.
  • the present application provides a cleaning device, comprising:
  • the device body is capable of moving on the surface to be cleaned to clean the surface to be cleaned;
  • a laser radar module disposed in the device body
  • a light-transmitting cover is provided on the device body, wherein the light-transmitting cover defines a first direction and a reference plane perpendicular to each other, the light-transmitting cover and the laser radar module are arranged opposite to each other along the first direction, the light-transmitting cover also has a light-transmitting portion, the light-transmitting portion includes a first light-transmitting portion and a second light-transmitting portion, the laser output by the laser radar module is emitted to the external environment through the first light-transmitting portion, and the laser reflected back by the external environment is incident on the laser radar module through the second light-transmitting portion;
  • the first light-transmitting portion is arranged to be inclined relative to the reference plane
  • the second light-transmitting portion is arranged to be inclined relative to the reference plane.
  • the second light-transmitting portion is parallel to the reference plane.
  • the light-transmitting cover further defines a second direction perpendicular to the first direction, the first light-transmitting portion and the second light-transmitting portion are sequentially distributed along the second direction, and the second light-transmitting portion is arranged obliquely relative to the reference plane;
  • the laser radar module includes:
  • a laser element used to output laser light or receive laser light reflected from an external environment
  • the angle between the light-transmitting portion and the reference plane is ⁇
  • the length of the shortest laser propagation path between the laser element and the corresponding light-transmitting portion is L
  • the length of the laser element in the second direction is D
  • tan2 ⁇ D/L is tan2 ⁇ D/L
  • an angle between the light-transmitting portion and the reference plane is 5° to 25°.
  • the laser radar module includes:
  • a laser transmitter used for outputting laser
  • a laser receiver used for receiving laser light reflected back from an external environment
  • the second light reflecting part, the laser reflected back from the external environment is incident on the second light reflecting part through the second light transmitting part, and is reflected to the laser receiver through the second light reflecting part.
  • a height of the first light reflecting portion is smaller than a height of the first light transmitting portion, and a height of the second light reflecting portion is smaller than a height of the second light transmitting portion.
  • the height of the first reflective portion is 5 mm to 10 mm; the height of the second reflective portion is 10 mm to 20 mm; the height of the first light-transmitting portion and the height of the second light-transmitting portion are both 10 mm to 20 mm.
  • the cleaning device further includes a partition, which is disposed between the first light-transmitting portion and the second light-transmitting portion; wherein the distance between the first light-transmitting portion and the second light-transmitting portion is greater than the thickness of the partition.
  • the distance between the first light-transmitting portion and the second light-transmitting portion is 2 mm to 4 mm; and the thickness of the partition is 1.5 mm to 3 mm.
  • the laser radar module includes:
  • a laser transceiver assembly including a laser transmitter and a transmitting lens
  • a reflective element wherein the laser light output by the laser emitter is emitted to the reflective element through the emission lens and is reflected to the external environment by the reflective element;
  • the laser transceiver assembly has a maximum field angle ⁇ max , the output beam diameter of the transmitting lens is d 1 , and the length of the reflective element is H, satisfying: Where 0 ⁇ k ⁇ 1.
  • the laser transceiver assembly further includes a laser receiver and a receiving lens
  • the reflective element comprises:
  • a second reflective portion wherein the laser reflected back from the external environment is reflected to the receiving lens through the second reflective portion, and is incident to the laser receiver through the receiving lens;
  • the height of the first reflecting part is greater than the diameter of the emitting lens, and the height of the second reflecting part is greater than the diameter of the receiving lens; the height of the first reflecting part is less than the height of the first transparent part, and the height of the second reflecting part is less than the height of the second transparent part.
  • the laser radar module includes:
  • a laser transceiver assembly used to output laser light and receive laser light reflected from an external environment
  • a reflective component wherein a reflective surface is defined by a second direction and a first preset direction that are perpendicular to each other, wherein the reflective component comprises:
  • a first reflective portion used to reflect the laser output by the laser transceiver assembly to the external environment
  • a second light reflecting portion stacked with the first light reflecting portion along the second direction, and used to reflect laser light from the external environment to the laser transceiver assembly;
  • a light-isolating structure disposed between the first light-reflecting portion and the second light-reflecting portion;
  • the length of the light isolation structure in the first preset direction is less than or equal to the length of the first light reflecting portion in the first preset direction and the length of the second light reflecting portion in the first preset direction.
  • the length of the light isolation structure in the first preset direction is 55% to 65% of the length of the first light reflecting portion in the first preset direction and the length of the second light reflecting portion in the first preset direction.
  • the reflective assembly further includes:
  • first light reflecting portion and the second light reflecting portion are spaced apart from each other and connected by the connecting structure
  • the light isolation structure comprises:
  • a second light-isolating member capable of docking with the first light-isolating member to form a receiving groove
  • the first light-isolating member and the second light-isolating member are butted against each other from opposite sides of the connecting structure, so that the connecting structure is accommodated in the accommodating groove.
  • the laser radar module includes:
  • the module housing has a receiving cavity and a mounting seat received in the receiving cavity, wherein the mounting seat comprises a seat body and a first cover body, the first cover body is detachably assembled on the seat body, and the first cover body cooperates with the seat body to form a first mounting hole;
  • a laser transceiver assembly is accommodated in the accommodation cavity
  • a reflective component is mounted in the first mounting hole, and the laser output by the laser transceiver component is reflected to the external environment via the reflective component, and the laser from the external environment is reflected to the laser transceiver component via the reflective component.
  • the reflective component includes:
  • a reflective element is rotatably mounted in the first mounting hole, wherein the number of groups of the laser transceiver components is at least two, and in response to the rotation of the reflective element, each group of the laser transceiver components alternately interacts with the external environment with lasers;
  • a code disk used to detect the rotation angle of the reflective element, so as to control each group of the laser transceiver components to alternately interact with the external environment with lasers based on the rotation angle of the reflective element;
  • the laser radar module also includes:
  • a driving member is transmission-connected to the reflective element through the code disc, and is used for driving the code disc and the reflective element to rotate synchronously.
  • one of the code disc and the driving member is provided with a transmission column, and the other is provided with a transmission hole, and the transmission column is inserted into the transmission hole, so that the code disc and the driving member are transmission connected, and the transmission hole is an arc-shaped waist hole extending along the circumference of the code disc.
  • the light-transmitting cover further defines a second direction perpendicular to the first direction, and the reflective element, the code disk and the driving element are sequentially arranged along the second direction;
  • the transmission hole comprises:
  • a guiding sub-hole connected to the transmission sub-hole and arranged in sequence with the transmission sub-hole along the second direction;
  • the hole wall of the guide sub-hole has a guide slope facing away from the transmission sub-hole, the guide slope extends obliquely along the circumference of the code disk to the transmission sub-hole, and the transmission column moves along the guide slope and is inserted into the transmission sub-hole.
  • the laser radar module further includes:
  • An elastic connecting member through which the driving member is transmission-connected to the code disc.
  • the present application also provides a self-moving device, comprising:
  • the device body is movable on the moving surface
  • a laser radar module disposed in the device body
  • a light-transmitting cover is provided on the device body, wherein the light-transmitting cover defines a first direction and a reference plane perpendicular to each other, the light-transmitting cover and the laser radar module are arranged opposite to each other along the first direction, the light-transmitting cover also has a light-transmitting portion, the light-transmitting portion includes a first light-transmitting portion and a second light-transmitting portion, the laser output by the laser radar module is emitted to the external environment through the first light-transmitting portion, and the laser reflected back by the external environment is incident on the laser radar module through the second light-transmitting portion;
  • the first light-transmitting portion is arranged obliquely relative to the reference plane
  • the second light-transmitting portion is arranged obliquely relative to the reference plane
  • the second light-transmitting portion is parallel to the reference plane.
  • the present application also provides a light-transmitting cover for use in a cleaning device, wherein the cleaning device includes a laser radar module;
  • the light-transmitting cover defines a first direction and a reference plane perpendicular to each other, the light-transmitting cover can be arranged relative to the laser radar module along the first direction, the light-transmitting cover also has a light-transmitting portion, the light-transmitting portion includes a first light-transmitting portion and a second light-transmitting portion, the laser output by the laser radar module is emitted to the external environment through the first light-transmitting portion, and the laser reflected back by the external environment is incident on the laser radar module through the second light-transmitting portion;
  • the first light-transmitting portion is arranged obliquely relative to the reference plane
  • the second light-transmitting portion is arranged obliquely relative to the reference plane
  • the second light-transmitting portion is parallel to the reference plane.
  • 1a-1b are schematic structural diagrams of an embodiment of a laser radar module of the present application.
  • FIG2 is a schematic diagram of an exploded structure of an embodiment of a reflective element, a drive assembly and a code disc of the present application;
  • 3a-3b are schematic structural diagrams of a first embodiment of a light-transmitting cover applied to a cleaning device of the present application;
  • FIG4 is a schematic structural diagram of a second embodiment of a light-transmitting cover applied to a cleaning device of the present application
  • FIG5 is a schematic structural diagram of a third embodiment of the light-transmitting cover applied to a cleaning device of the present application.
  • FIG6 is a schematic structural diagram of an embodiment of a code disk of the present application.
  • FIG7 is a schematic diagram of an embodiment of the maximum field of view of a laser transceiver assembly of the present application.
  • FIG8 is a schematic diagram of an exploded structure of an embodiment of a reflective assembly of the present application.
  • FIG9 is a schematic structural diagram of another embodiment of the reflective assembly of the present application.
  • FIG10 is a schematic structural diagram of an embodiment of a sensor of the present application.
  • FIG11 is a schematic structural diagram of another embodiment of the laser radar module of the present application.
  • FIG12 is a schematic structural diagram of an embodiment of a reflective assembly and a driving member of the present application.
  • 13a-13b are schematic structural diagrams of another embodiment of the code disk of the present application.
  • FIG14 is a structural diagram of an embodiment of a connection method between a code disk and a driving member of the present application
  • FIG15 is a schematic structural diagram of another embodiment of the connection method between the code disk and the driving member of the present application.
  • FIG. 16 is a flow chart of an embodiment of an assembly method of a laser radar module of the present application.
  • the present application provides a cleaning device and a light-transmitting cover and a self-moving device used therein, which are described in detail below. It should be noted that the description order of the following embodiments does not limit the preferred order of the embodiments of the present application. In the following embodiments, the description of each embodiment has its own emphasis. For parts that are not described in detail in a certain embodiment, please refer to the relevant description of other embodiments.
  • the laser radar sensor converts the measured physical quantity into an electrical signal and processes the electrical signal to realize the detection function.
  • the laser radar sensor is mainly composed of a sensitive unit, a conversion unit, a conversion circuit and an auxiliary power supply. According to the form of action, it can be divided into active and passive types.
  • the active sensor actively sends a detection signal to the object being measured, and realizes the measurement of the physical quantity by detecting the change of the detection signal.
  • Active LiDAR sensors consist of a transmitter and a receiver.
  • the transmitter sends out a laser signal, which is emitted through the transparent cover in front of the robot.
  • the laser hits the detection object and is reflected back. After passing through the light-transmitting cover, it is received by the receiver and generates a corresponding electrical signal.
  • the traditional light-transmitting cover is set vertically.
  • the laser radar sensor emits a laser, which passes through a series of reflectors and other structures and then exits through the light-transmitting cover.
  • part of the laser is refracted and part of the laser is reflected.
  • the angle between the reflected light and the incident light is small.
  • the refracted laser passes through the light-transmitting cover and exits directly, while the reflected laser is reflected to other structures inside and is specularly reflected or diffusely reflected again.
  • the laser reflected again may hit the light-transmitting cover again, at which point part of the laser is refracted and exits again.
  • part of the laser is refracted by the light-transmitting cover and then enters the laser radar sensor; while part of the laser is reflected by the light-transmitting cover, and the reflected laser may be received by the light-transmitting cover again after being reflected by objects in the external environment.
  • the laser cannot be fully transmitted when passing through the light-transmitting cover. Part of the laser will be reflected on the surface of the light-transmitting cover. This part of the reflected laser may pass through the light-transmitting cover again after multiple reflections, which can easily interfere with the laser signal required by the sensor to detect the external environment, resulting in the current lidar sensor's low detection accuracy.
  • the embodiments of the present application provide a cleaning device and a light-transmitting cover and a self-moving device used therein, which can solve the technical problem of low detection accuracy of laser radar sensors in the prior art, and are elaborated in detail below.
  • Figures 1a-1b are structural schematic diagrams of an embodiment of a laser radar module of the present application.
  • the cleaning device may be a cleaning robot with cleaning functions such as washing, sweeping, and mopping.
  • the cleaning device includes a device body.
  • the device body is the main part of the cleaning device, and the device body can move on the surface to be cleaned to clean the surface to be cleaned.
  • the device body may be provided with cleaning elements such as a roller brush, a side brush, and a rag, which are used to move synchronously with the device body on the surface to be cleaned to clean the area where the device body passes.
  • the cleaning device also includes a laser radar module 30, which is arranged in the device body.
  • the laser radar module 30 is used to realize the path planning, navigation and obstacle avoidance functions of the cleaning device.
  • the laser radar module 30 includes a laser element, which is used to output laser or receive laser reflected back through the external environment.
  • the laser radar module 30 includes a laser transceiver component 31.
  • the laser transceiver component 31 can output laser to the external environment and receive laser reflected back through the external environment.
  • the laser transceiver component 31 can interact with the external environment by laser to realize the path planning, navigation and obstacle avoidance functions of the cleaning robot.
  • the principle that the laser transceiver component 31 interacts with the external environment by laser to realize path planning, navigation and obstacle avoidance belongs to the understanding of those skilled in the art, and will not be repeated here.
  • the laser radar module 30 includes at least two groups of laser transceiver components 31, which are arranged inside the main body of the device to prevent the laser transceiver components 31 from affecting the overall height of the cleaning device.
  • the laser radar module 30 also includes a reflective component 10, which includes a reflective element 10a. The laser output by the laser transceiver component 31 is reflected to the external environment via the reflective element 10a, and the laser reflected back from the external environment is reflected to the laser transceiver component 31 via the reflective element 10a.
  • the at least two groups of laser transceiver components 31 are distributed in sequence around the reflective element 10a, making the overall structure of the laser radar module 30 more reasonable and beautiful, while reducing the risk of blocking the scanning field of view of the laser radar module 30, thereby maximizing the scanning field of view.
  • the reflective element 10a is designed to be rotatable. As the reflective element 10a rotates, each group of laser transceiver components 31 alternately interacts with the external environment through the reflective element 10a.
  • the present embodiment can realize a larger spatial scanning range and obtain a larger field of view by splicing point clouds, and can minimize the blind area of the field of view.
  • the laser radar module 30 of the present embodiment has a compact structure, is easy to assemble, and has a low cost.
  • the laser radar module 30 of an embodiment of the present application is described below.
  • the laser transceiver assembly 31 includes a laser emitter 311 and an emission lens 312.
  • the laser emitter 311 is used to output laser light. Specifically, the laser light output by the laser emitter 311 is emitted through the emission lens 312 and further reflected to the external environment through the reflective element 10a.
  • the emission lens 312 can be a double-sided coated optical lens, etc.
  • the laser transceiver assembly 31 further includes a laser receiver 313 and a receiving lens 314.
  • the laser receiver 313 is used to receive the laser reflected back from the external environment. Specifically, the laser reflected back from the external environment is reflected to the receiving lens 314 by the reflective element 10a, and further incident to the laser receiver 313 through the receiving lens 314.
  • the laser receiver 313 can be a PD (Photon Diode), an APD (Avalanche Photon Diode), a SPAD (Single Photon Avalanche Diode), etc.
  • the receiving lens 314 can also be a double-sided coated optical lens, etc.
  • FIG. 2 is a schematic diagram of the exploded structure of an embodiment of the reflective element, the driving assembly and the code disk of the present application.
  • the reflective element 10a may be a dielectric film reflector, a metal reflector, a prism, etc.
  • the reflective element 10a may also be a device having a beam deflection function, such as a grating, a nano-optical device, etc., which is not limited here.
  • the reflective element 10a includes a first reflective portion 11 and a second reflective portion 12.
  • the laser emitter 311 and the laser receiver 313 are arranged in layers along the second direction of the laser radar module 30 (as shown by the arrow Z in FIG. 2, the same below).
  • the second direction is specifically the height direction of the laser radar module 30, that is, the laser emitter 311 and the transmitting lens 312 are stacked on one side of the laser receiver 313 and the receiving lens 314 in the second direction.
  • the first reflective portion 11 and the second reflective portion 12 are arranged in layers along the second direction.
  • the laser output by the laser emitter 311 is reflected to the external environment through the first reflective portion 11, and the laser reflected back from the external environment is reflected to the receiving lens 314 through the second reflective portion 12, and is incident to the laser receiver 313 through the receiving lens 314.
  • the reflective element 10a can realize laser interaction between the at least two groups of laser transceiver components 31 and the external environment.
  • the at least two groups of laser transceiver components 31 share the same group of reflective elements 10a, which can simplify the structure of the laser radar module 30, thereby helping to improve the structural compactness and integration of the laser radar module 30, and can effectively reduce the cost of the laser radar module 30.
  • FIG. 3a-3b are schematic structural diagrams of a first embodiment of a light-transmitting cover applied to a cleaning device of the present application.
  • the cleaning device further includes a light-transmitting cover 40.
  • the laser radar module 30 interacts with the external environment through the light-transmitting cover 40.
  • the laser output by the laser transceiver assembly 31 is reflected to the light-transmitting cover 40 via the reflective element 10a, and further emitted to the external environment via the light-transmitting cover 40; the laser reflected back from the external environment is incident to the reflective element 10a via the light-transmitting cover 40, and further reflected to the laser transceiver assembly 31 via the reflective element 10a.
  • the light-transmitting cover 40 also has a light-transmitting portion, which includes a first light-transmitting portion 41 and a second light-transmitting portion 42. Part 42 , the laser output by the laser radar module 30 is emitted to the external environment through the first light-transmitting part 41 , and the laser reflected back by the external environment is incident on the laser radar module 30 through the second light-transmitting part 42 .
  • the light-transmitting cover 40 defines a first direction (as shown by arrow X in Fig. 3a-3b, the same below), the first direction is perpendicular to the second direction, and the light-transmitting cover 40 and the laser radar module 30 are arranged relative to each other along the first direction.
  • the light-transmitting cover 40 also defines a reference plane (as shown by plane ⁇ in Fig. 3a-3b, the same below), and the reference plane is perpendicular to the first direction.
  • the first light-transmitting portion 41 is tilted relative to the reference plane
  • the second light-transmitting portion 42 is tilted relative to the reference plane or the second light-transmitting portion 42 is parallel to the reference plane.
  • the laser reflected by the tilted light-transmitting portion will deviate from the laser that normally passes through the light-transmitting portion (the laser that normally passes through the light-transmitting portion is the laser signal required by the laser radar module 30 to detect the external environment). Even if the reflected laser passes through the light-transmitting portion again after multiple reflections, it will not cause significant interference to the laser that normally passes through the light-transmitting portion, thereby improving the system signal-to-noise ratio of the laser radar module 30 and improving the detection accuracy of the laser radar module 30 in the cleaning device.
  • the end of the first light-transmitting portion 41 away from the second light-transmitting portion 42 can be tilted toward the laser radar module 30, which is beneficial to reduce the overall volume of the cleaning robot using the light-transmitting cover 40 and is beneficial to improve the appearance of the cleaning robot.
  • the end of the first light-transmitting portion 41 away from the second light-transmitting portion 42 can also be tilted in the direction away from the laser radar module 30.
  • the end of the second light-transmitting portion 42 away from the first light-transmitting portion 41 can be tilted toward the laser radar module 30, as shown in Figure 3a; or tilted in the direction away from the laser radar module 30; or the second light-transmitting portion 42 is parallel to the reference plane, that is, the second light-transmitting portion 42 is not tilted relative to the reference plane, as shown in Figure 3b.
  • the embodiment of the present application is described by taking the first light-transmitting portion 41 and the second light-transmitting portion 42 as an example in which both are tilted relative to the reference plane, which is only for the purpose of discussion and does not cause limitation.
  • the first light-transmitting portion 41 and the second light-transmitting portion 42 are sequentially distributed along the second direction. Specifically, the laser reflected by the first light-reflecting portion 11 of the light-reflecting element 10a is emitted to the external environment through the first light-transmitting portion 41, and the laser reflected back by the external environment is incident on the second light-reflecting portion 12 through the second light-transmitting portion 42.
  • first light-transmitting portion 41 and the second light-transmitting portion 42 there is a gap between the first light-transmitting portion 41 and the second light-transmitting portion 42 and the gap may be in the form of a slit, or a baffle is provided in the gap between the first light-transmitting portion 41 and the second light-transmitting portion 42, which is not limited here.
  • the angle between the light-transmitting portion (the first light-transmitting portion 41 in FIG. 3a is taken as an example) and the reference plane is ⁇ . Since the two surfaces of the first light-transmitting portion 41 facing and away from the laser element (the laser emitter 311 in FIG. 3a is taken as an example) are parallel to each other, the laser output by the laser emitter 311 is transmitted to the first light-transmitting portion 41 along the first direction. Through geometric relationships, it can be deduced that the angle between the reflected light and the incident light at the position of the first light-transmitting portion 41 is 2 ⁇ .
  • the length of the laser element in the second direction is D, that is, the length of the laser emitter 311 in the second direction is D.
  • the length of the shortest laser propagation path between the laser element and the corresponding light-transmitting portion is L, that is, the length of the shortest laser propagation path between the laser emitter 311 and the first light-transmitting portion 41 is L.
  • the shortest laser propagation path refers to the propagation path of the laser whose propagation direction is always perpendicular to the second direction.
  • the angle ⁇ between the light-transmitting portion and the reference plane, the length L of the shortest laser propagation path between the laser element and the corresponding light-transmitting portion, and the length D of the laser element in the second direction satisfy the following relationship: tan2 ⁇ D/L. That is, the angle ⁇ between the first light-transmitting portion 41 and the reference plane, the length L of the laser element in the second direction, and the length D of the laser element in the second direction satisfy the following relationship: tan2 ⁇ D/L.
  • the length L of the shortest laser propagation path between the light emitter 311 and the first light-transmitting portion 41 and the length D of the laser emitter 311 in the second direction satisfy the following relationship: tan2 ⁇ D/L.
  • the reflected light at the position of the first light-transmitting portion 41 will deviate from the incident light at this position, and at the same time, the reflected light will deviate from the laser emitter 311, thereby preventing the reflected light from being directly reflected to the laser emitter 311, and further preventing the reflected light at the position of the first light-transmitting portion 41 from interfering with the laser signal required for the laser radar module 30 to detect the external environment, thereby further improving the detection accuracy of the laser radar module 30.
  • the angle ⁇ between the light-transmitting portion and the reference plane can be 5° to 25°, such as 5°, 10°, 15°, 20°, 25°, etc.
  • the light-transmitting portion has a sufficient inclination relative to the reference plane, which can greatly reduce the interference of reflected light on the laser signal required by the laser radar module 30 to detect the external environment.
  • the angle between the light-transmitting portion and the reference plane is not too large, avoiding a significant impact on the transmittance of the light-transmitting portion, and further improving the detection accuracy of the laser radar module 30.
  • the cleaning device further includes a partition 50, which is disposed between the first light-transmitting portion 41 and the second light-transmitting portion 42.
  • a partition 50 which is disposed between the first light-transmitting portion 41 and the second light-transmitting portion 42.
  • the height of the first reflecting portion 11 of the reflecting element 10a is smaller than the height of the first light-transmitting portion 41 of the light-transmitting cover 40, so that the laser reflected by the first reflecting portion 11 can be completely received by the first light-transmitting portion 41, and further emitted to the external environment through the first light-transmitting portion 41, thereby improving the sensing accuracy of the laser radar module 30 to ensure that the laser radar module 30 can reliably realize the path planning navigation and obstacle avoidance functions of the cleaning device.
  • the height of the second reflective portion 12 is less than the height of the second light-transmitting portion 42, which means that the second light-transmitting portion 42 has a relatively high height and can receive the laser reflected back from the external environment as completely as possible.
  • the laser can pass through the second light-transmitting portion 42 and enter the laser receiver 313, which can also improve the sensing accuracy of the laser radar module 30 to ensure that the laser radar module 30 can reliably realize the path planning navigation and obstacle avoidance functions of the cleaning device.
  • the height H1 of the first reflective portion 11 can be 5mm to 10mm, for example, 5mm, 6mm, 7mm, 8mm, 9mm, 10mm, etc.
  • the height H2 of the second reflective portion 12 can be 10mm to 20mm, for example, 10mm, 15mm, 20mm, etc.
  • the height h1 of the first light-transmitting portion 41 can be 10mm to 20mm, for example, 10mm, 15mm, 20mm, etc.
  • the height h2 of the second light-transmitting portion 42 can be 10mm to 20mm, for example, 10mm, 15mm, 20mm, etc.
  • the distance between the first light-transmitting portion 41 and the second light-transmitting portion 42 is greater than the thickness of the partition 50, so that the partition 50 can be easily assembled into the gap between the first light-transmitting portion 41 and the second light-transmitting portion 42, and further enables the light-transmitting cover 40 and the partition 50 to be connected. good.
  • the spacing d between the first light-transmitting portion 41 and the second light-transmitting portion 42 may be 2 mm to 4 mm, such as 2 mm, 3 mm, 4 mm, etc.; the thickness w of the partition 50 may be 1.5 mm to 3 mm, such as 1.5 mm, 2 mm, 2.5 mm, 3 mm, etc.
  • this embodiment makes the difference between the spacing between the first light-transmitting portion 41 and the second light-transmitting portion 42 and the thickness of the partition 50 within a reasonable range, so that the partition 50 can be conveniently assembled into the gap between the first light-transmitting portion 41 and the second light-transmitting portion 42, and the light-transmitting cover 40 and the partition 50 can be well connected.
  • the self-moving device includes a device body, and the device body can move on a moving surface.
  • the self-moving device also includes a laser radar module 30, which is arranged on the device body.
  • the self-moving device also includes a light-transmitting cover 40, which is arranged on the device body.
  • the light-transmitting cover 40 defines a first direction and a reference plane that are perpendicular to each other.
  • the light-transmitting cover 40 and the laser radar module 30 are arranged relative to each other along the first direction.
  • the light-transmitting cover 40 also has a light-transmitting portion, which includes a first light-transmitting portion 41 and a second light-transmitting portion 42.
  • the laser output by the laser radar module 30 is emitted to the external environment through the first light-transmitting portion 41, and the laser reflected back from the external environment is incident on the laser radar module 30 through the second light-transmitting portion 42.
  • the first light-transmitting portion 41 is tilted relative to the reference plane
  • the second light-transmitting portion 42 is tilted relative to the reference plane or the second light-transmitting portion 42 is parallel to the reference plane.
  • the self-moving device can be applied to the field of cleaning equipment, that is, the self-moving device can be a cleaning device such as a cleaning robot, and the moving surface is the corresponding surface to be cleaned.
  • the self-moving device can also be applied to other fields, such as logistics and other fields.
  • the laser radar module 30 has been described in detail in the above embodiment, and will not be repeated here.
  • LiDAR sensors are essential equipment for 3D depth perception fusion algorithms. They have the characteristics of long detection distance, high resolution, and little interference from ambient light.
  • the working principle of a LiDAR sensor is as follows: the transmitter of the LiDAR sensor emits a laser beam, which is emitted through a beam scanning device to perform spatial scanning within a certain range. After encountering an obstacle, the laser beam is diffusely reflected and returned to the laser receiver.
  • the sensor module can calculate the distance between the sensor and the object based on the time interval between sending and receiving the laser.
  • LiDAR sensors can also obtain information other than distance, such as direction, speed, size, shape, reflectivity, etc.
  • Semi-solid-state lidar sensors usually use galvanometer mirrors, wedge mirrors, polygonal rotating mirrors, etc. Due to the influence of the laser incident and receiving positions and the limitation of motor speed, the scanning range of the sensor is limited, resulting in the sensor being unable to achieve a sufficient field of view. In addition, the sensor has a complex structure and a high cost.
  • an embodiment of the present application provides a laser radar module that can solve the technical problems existing in the above-mentioned prior art.
  • the laser radar module 30 further includes a driving assembly 32, which is in transmission connection with the reflective element 10a, and is used to drive the reflective element 10a to rotate, so that each group of laser transceiver assemblies 31 interacts with the external environment through the reflective element 10a.
  • the laser radar module 30 further includes a code disk 33, which can rotate synchronously with the reflective element 10a.
  • the laser radar module 30 further includes a sensor, which can sense the rotation angle of the reflective element 10a through the code disk 33, so as to control each group of laser transceiver assemblies 31 to alternately interact with the external environment through the laser based on the rotation angle of the reflective element 10a.
  • the driving assembly 32 includes a driving member, which is in transmission connection with the reflective element 10a and the code disc 33 to drive the reflective element 10a and the code disc 33 to rotate synchronously.
  • the driving member may be a power element such as a motor, which is not limited here.
  • the code disc 33 includes a code disc body 331 and at least two teeth (including the first tooth portion 332 and the second tooth portion 333 described below).
  • the code disc body 331 is transmission-connected to the reflective element 10a, and the code disc body 331 can rotate synchronously with the reflective element 10a.
  • the at least two teeth are spaced in sequence along the circumference of the code disc body 331. As the code disc body 331 rotates, each tooth passes through the sensor in sequence. Among the at least two teeth, there is a first tooth portion 332, and the remaining teeth are second teeth portions 333.
  • the first tooth portion 332 is different from the second tooth portion 333.
  • This embodiment measures the rotation angle of the reflective element 10a by counting the number of second teeth portions 333 that pass through the sensor after the first tooth portion 332.
  • the sensor may be an optical coupler or the like, and each tooth portion can sequentially block the optical signal of the sensor as the code disc body 331 rotates, so that the sensor generates a corresponding pulse signal, which indicates that the sensor detects the movement of each tooth portion passing through the sensor.
  • the above-mentioned at least two tooth portions are evenly spaced along the circumference of the code disc body 331, and the central angle corresponding to each tooth portion is the same.
  • the tooth width of the first tooth portion 332 is different from the tooth width of the second tooth portion 333.
  • FIG. 6 exemplarily shows the case where the tooth width of the first tooth portion 332 is smaller than the tooth width of the second tooth portion 333.
  • the degree of blocking of the optical signal of the sensor by the first tooth portion 332 is different from the degree of blocking of the optical signal of the sensor by the second tooth portion 333, so that the sensor generates different pulse signals corresponding to the first tooth portion 332 and the second tooth portion 333, thereby being able to judge that the sensor detects the first tooth portion 332, and then the rotation angle of the reflective element 10a is measured by counting the number of second tooth portions 333 passing through the sensor after the first tooth portion 332.
  • the laser radar module 30 including two groups of laser transceiver components 31 as an example, when the reflective element 10a rotates within a certain angle range, one group of laser transceiver components 31 works, and the field of view angle of the laser transceiver component 31 is ⁇ 1 ; and when the reflective element 10a rotates within other angle ranges, the other group of laser transceiver components 31 works, and the field of view angle of the laser transceiver component 31 is ⁇ 2 .
  • each group of laser transceiver components 31 has a maximum field angle ⁇ max .
  • the laser transceiver component 31 has a maximum scanning field, and the corresponding field angle is the maximum field angle ⁇ max .
  • the diameter of the output beam of the emitting lens 312 is d 1
  • the length of the reflective element 10a is H. It should be noted that, in this embodiment, the first reflecting portion 11 and the second reflecting portion 12 of the reflecting element 10a preferably have the same length and thickness.
  • the present embodiment can ensure that the reflective element 10a can completely receive the laser emitted by the emitting lens 312, and avoid the reflective element 10a from blocking the emitted laser, thereby improving the sensing accuracy of the laser radar module 30, so as to ensure that the laser radar module 30 can reliably realize the path planning navigation and obstacle avoidance functions of the cleaning device.
  • the value of k is related to the energy distribution of the light beam. For example, when the energy of the light beam is uniformly distributed, k takes a value of 1, and when the energy distribution of the light beam conforms to the Gaussian distribution, k takes a value of 0.85, etc.
  • the maximum field of view angle ⁇ max of the laser transceiver assembly 31 can be 50° to 180°, for example, 50°, 70°, 90°, 110°, 130°, 150°, 180°, etc.;
  • the output beam diameter d1 of the emitting lens 312 can be 2mm to 10mm, for example, 2mm, 3mm, 4mm, 5mm, 6mm, 7mm, 8mm, 9mm, 10mm, etc.;
  • the length H of the reflective element 10a can be 15mm to 40mm, for example, 15mm, 20mm, 25mm, 30mm, 35mm, 40mm, etc.;
  • the thickness W of the reflective element 10a can be 0.5mm to 3mm, for example, 0.5mm, 1mm, 1.5mm, 2mm, 2.5mm, 3mm, etc.
  • the height of the first reflecting portion 11 is greater than the diameter of the emitting lens 312, so that the laser emitted through the emitting lens 312 can be completely received by the first reflecting portion 11, and further reflected to the external environment through the first reflecting portion 11, which can improve the sensing accuracy of the laser radar module 30 to ensure that the laser radar module 30 can reliably realize the path planning navigation and obstacle avoidance functions of the cleaning device.
  • the height of the second reflecting portion 12 is greater than the diameter of the receiving lens 314, which means that the second reflecting portion 12 has a relatively high height and can receive the laser reflected back from the external environment as completely as possible, and reflect the laser to the receiving lens 314 to be incident on the laser receiver 313. This can also improve the sensing accuracy of the laser radar module 30 to ensure that the laser radar module 30 can reliably realize the path planning navigation and obstacle avoidance functions of the cleaning device.
  • the diameter d2 of the receiving lens 314 can be 10mm to 20mm, for example, 10mm, 15mm, 20mm, etc.
  • the height H1 of the first reflecting portion 11 can be 5mm to 10mm, for example, 5mm, 6mm, 7mm, 8mm, 9mm, 10mm, etc.
  • the height H2 of the second reflecting portion 12 can be 10mm to 20mm, for example, 10mm, 15mm, 20mm, etc.
  • the self-moving device includes a device body, and the device body can move on a moving surface.
  • the self-moving device also includes a laser radar module 30, which is arranged on the device body.
  • the laser radar module 30 includes a laser transceiver component 31, and the laser transceiver component 31 includes a laser emitter 311 and a transmitting lens 312.
  • the laser radar module 30 also includes a reflective element 10a, and the laser output by the laser emitter 311 is emitted to the reflective element 10a through the transmitting lens 312, and is reflected to the external environment by the reflective element 10a.
  • the laser transceiver assembly 31 has a maximum viewing angle ⁇ max , the diameter of the outgoing beam of the emitting lens 312 is d 1 , and the length of the reflective element 10 a is H, satisfying: Where 0 ⁇ k ⁇ 1.
  • the self-moving device can be applied to the field of cleaning equipment, that is, the self-moving device can be a cleaning device such as a cleaning robot, and the moving surface is the corresponding surface to be cleaned.
  • the self-moving device can also be applied to other fields, such as logistics.
  • the laser radar module 30 has been described in detail in the above embodiments and will not be described again here.
  • the reflective surface of the reflective assembly 10 is defined by a second direction and a first preset direction that are perpendicular to each other (as shown by arrow A in FIG. 2 , and the same below), that is, the reflective surface of the first reflective portion 11 and the reflective surface of the second reflective portion 12 are both defined by the second direction and the first preset direction that are perpendicular to each other.
  • the reflective assembly 10 further includes a light-isolating structure 20.
  • the light-isolating structure 20 is disposed between the first reflective portion 11 and the second reflective portion 12.
  • the light-isolating structure 20 is used to prevent the laser output by the laser radar module 30 from being directly directed toward the laser radar module 30 after being reflected by the reflective element 10a, thereby reducing the risk of an erroneous response of the laser radar module 30.
  • the laser output by the laser transmitter 311 is blocked by the light-isolating structure 20 after being reflected by the reflective element 10a, so as to prevent the reflected laser from being received by the laser receiver 313 and causing an erroneous response of the laser receiver 313.
  • the length of the light-isolating structure 20 in the first preset direction is less than or equal to the length of the first light-reflecting portion 11 in the first preset direction and the length of the second light-reflecting portion 12 in the first preset direction.
  • the light-isolating structure 20 in this embodiment has a smaller length in the first preset direction, which means that the light-isolating structure 20 has better balance during the rotation of the light-reflecting component 10, thereby improving the stability of the light-reflecting component 10, and further facilitating the stability of the laser radar module 30 in the process of scanning the external environment.
  • the length of the light-isolating structure 20 in the first preset direction is 55% to 65% of the length of the first light-reflecting portion 11 in the first preset direction and the length of the second light-reflecting portion 12 in the first preset direction.
  • the length of the light-isolating structure 20 in the first preset direction can be made smaller, thereby making the light-isolating structure 20 have better balance during the rotation process with the reflective component 10, and the length of the light-isolating structure 20 in the first preset direction can be prevented from being too small, resulting in the light-isolating structure 20 failing to play a good light-isolating role, thereby minimizing the risk of erroneous response of the laser radar module 30.
  • FIG. 8 is a schematic diagram of the exploded structure of an embodiment of a reflective assembly of the present application.
  • the reflective assembly 10 further includes a connecting structure 13, and the first reflective portion 11 and the second reflective portion 12 are spaced apart from each other. Specifically, the first reflective portion 11 and the second reflective portion 12 are spaced apart from each other along the second direction mentioned above, and the first reflective portion 11 and the second reflective portion 12 are connected by the connecting structure 13.
  • the light-isolating structure 20 includes a first light-isolating member 21 and a second light-isolating member 22.
  • the first light-isolating member 21 and the second light-isolating member 22 are connected to form a receiving groove 23.
  • the first light-isolating member 21 and the second light-isolating member 22 can be connected from opposite sides of the connecting structure 13, respectively, so that the first light-isolating member 21 and the second light-isolating member 22 can cooperate to form a complete receiving groove 23, and the connecting structure 13 is accommodated in the receiving groove 23, so that the light-isolating structure 20 is assembled on the reflective element 10a.
  • the length of the connecting structure 13 in the first preset direction is smaller than the length of the first light reflecting portion 11 in the first preset direction and the length of the second light reflecting portion 12 in the first preset direction, that is, the two side edges of the reflective element 10a in the first preset direction are concave to form the first light reflecting portion 11, the second light reflecting portion 12 and the connecting structure 13.
  • the spacing between the first light reflecting portion 11 and the second light reflecting portion 12 in the second direction is larger than the length of the first light partition 21 in the second direction and the length of the second light partition 22 in the second direction, so that the first light partition 21 and the second light partition 22 can both be embedded in the gap between the first light reflecting portion 11 and the second light reflecting portion 12 for docking.
  • the receiving groove 23 extends along the first preset direction. In this way, the light isolation structure 20 can be reliably positioned and matched with the connecting structure 13 of the reflective element 10a through the receiving groove 23, which is conducive to ensuring the positioning effect, that is, the light isolation structure 20 and the reflective element 10a can be reliably assembled with high positioning accuracy.
  • the reflective assembly 10 further defines a second preset direction (as shown by arrow B in FIG. 8 , the same below), and the second direction, the first preset direction, and the second preset direction are perpendicular to each other, that is, the second preset direction is perpendicular to the reflective surface of the reflective assembly 10.
  • At least a portion of the accommodating groove 23 is located in the middle position of the first light isolation member 21 in the second preset direction.
  • the first light isolation member 21 and the second light isolation member 22 are butted together along the first preset direction, that is, the contact surface between the first light isolation member 21 and the second light isolation member 22 is perpendicular to the first preset direction.
  • the present embodiment allows the first light-isolating member 21 to be assembled with the reflective element 10a first, that is, the first light-isolating member 21 is first embedded in the gap between the first reflective portion 11 and the second reflective portion 12, so that the connection structure 13 is accommodated in the receiving groove 23 on the first light-isolating member 21.
  • the light-isolating structure 20 is mainly positioned with the reflective element 10a through the first light-isolating member 21.
  • the second light-isolating member 22 is assembled separately, so that the first light-isolating member 21 and the second light-isolating member 22 are docked to form a complete receiving groove 23.
  • the second light-isolating member 22 plays an auxiliary positioning role.
  • the method of assembling the first light-isolating member 21 and the second light-isolating member 22 in sequence in the present embodiment can improve the convenience of the assembly process of the light-isolating structure 20.
  • the light-isolating structure 20 can be positioned with the reflective element 10a through the first light-isolating member 21, and the positioning accuracy of the light-isolating structure 20 can be well guaranteed.
  • the receiving groove 23 is located in the middle of the first light partition 21 and the second light partition 22 in the first preset direction, the contact surface between the first light partition 21 and the second light partition 22 after they are connected is perpendicular to the second preset direction. Since the length of the reflective element 10a in the first preset direction is much greater than the length of the reflective element 10a in the second preset direction, the above method will make it difficult to position the first light partition 21 or the second light partition 22 with the reflective element 10a alone. The first light partition 21 and the second light partition 22 need to be positioned with the reflective element 10a at the same time, making the assembly process of the light partition structure 20 more difficult. At this time, the positioning accuracy between the light partition structure 20 and the reflective element 10a is guaranteed by the first light partition 21 and the second light partition 22, and there is an obvious positioning error.
  • the first light-isolating member 21 includes a first light-isolating portion 211 and a first fixing portion 212, and the first light-isolating portion 211 and the first fixing portion 212 are stacked along the second direction.
  • the first light-isolating portion 211 is a portion of the first light-isolating member 21 that plays a major light-isolating role.
  • the first fixing portion 212 is used to improve the stability of the positioning and matching between the first light-isolating member 21 and the reflective element 10a on the basis of the first light-isolating portion 211, which is beneficial to improving the positioning accuracy between the light-isolating structure 20 and the reflective element 10a.
  • FIG8 exemplarily shows the situation where the entire accommodating groove 23 is located on the first light-isolating member 21.
  • the accommodating groove 23 penetrates the first light-isolating portion 211 and the first fixing portion 212 along the second direction. After the first light-isolating portion 211 and the first fixing portion 212 are embedded in the gap between the first light-reflecting portion 11 and the second light-reflecting portion 12, the connecting structure 13 is accommodated in the accommodating groove 23, and the groove wall of the accommodating groove 23 cooperates with the connecting structure 13 for positioning.
  • the first fixing portion 212 increases the matching area between the groove wall of the accommodating groove 23 and the connecting structure 13 on the basis of the first light-isolating portion 211, thereby improving the stability of the positioning and matching between the first light-isolating member 21 and the reflective element 10a.
  • the second light-isolating member 22 includes a second light-isolating portion 221 and a second fixing portion 222, and the second light-isolating portion 221 and the second fixing portion 222 are stacked along the second direction.
  • the second light-isolating portion 221 is the portion of the second light-isolating member 22 that plays a major light-isolating role.
  • the second light-isolating member 22 is docked with the first light-isolating member 21 through the second fixing portion 222, specifically, the first light-isolating portion 211 is docked with the second light-isolating portion 221, and the first fixing portion 212 is docked with the second fixing portion 222.
  • the light-isolating structure 20 further includes a fixing column 241, which is disposed at one of the first fixing portion 212 and the second fixing portion 222.
  • the light-isolating structure 20 further includes a fixing hole 242, which is disposed at the other of the first fixing portion 212 and the second fixing portion 222.
  • the fixing column 241 is configured to be embedded in the fixing hole 242 after the first fixing portion 212 and the second fixing portion 222 are docked, so as to fix the relative position between the first light-isolating member 21 and the second light-isolating member 22, and realize the fastening fit between the first light-isolating member 21 and the second light-isolating member 22.
  • Fig. 8 exemplarily shows that the first fixing portion 212 of the first light-isolating member 21 is provided with a fixing hole 242, and the second fixing portion 222 of the second light-isolating member 22 is provided with a fixing column 241.
  • the spacing between the first light-reflecting portion 11 and the second light-reflecting portion 12 in the second direction is greater than the sum of the lengths of the first light-isolating portion 211 and the first fixing portion 212 in the second direction and the sum of the lengths of the second light-isolating portion 221 and the second fixing portion 222 in the second direction, so that the first light-isolating portion 211 and the first fixing portion 212 can be embedded in the gap between the first light-reflecting portion 11 and the second light-reflecting portion 12, and the second light-isolating portion 221 and the second fixing portion 222 can be embedded in the gap between the first light-reflecting portion 11 and the second light-reflecting portion 12, so as to be docked.
  • the first light isolation member 21 may only include the first light isolation portion 211
  • the second light isolation member 22 may only include the second light isolation portion 221 , which is not limited herein.
  • FIG. 9 is a schematic structural diagram of another embodiment of the reflective assembly of the present application.
  • the first light isolation member 21 has a first step portion 213, and the first step portion 213 is located at an edge of the first light isolation member 21 facing the second light isolation member 22. Specifically, the first step portion 213 is located at an edge of the first light isolation portion 211 facing the second light isolation member 22, and the length of the first step portion 213 in the second direction is less than the length of the first light isolation portion 211 in the second direction, thereby forming a step structure at the edge of the first light isolation portion 211.
  • the second light isolation member 22 has a second step portion 223, and the second step portion 223 is located at the edge of the second light isolation member 22 facing the first light isolation member 21. Specifically, the second step portion 223 is located at the edge of the second light isolation portion 221 facing the first light isolation member 21, and the length of the second step portion 223 in the second direction is less than the length of the second light isolation portion 221 in the second direction, thereby forming a step structure at the edge of the second light isolation portion 221.
  • the first step portion 213 and the second step portion 223 overlap each other in the second direction, as shown in FIG9 , so that the contact surface between the first light isolation member 21 and the second light isolation member 22 extends in a winding manner along the second direction.
  • the laser propagated to the light isolation structure 20 propagates in a straight line, and it is difficult for it to pass between the first light isolation member 21 and the second light isolation member 22, which can prevent the laser output by the laser radar module 30 from being directly hit by the laser radar module 30 after being reflected by the reflective element 10a, and further reduce the risk of erroneous response of the laser radar module 30.
  • the contact area between the first light isolation member 21 and the second light isolation member 22 is increased, which has This helps to improve the assembly reliability between the first light isolation member 21 and the second light isolation member 22 .
  • the light-isolating structure 20 further includes a glue dispensing groove 25 , which is disposed in the first light-isolating member 21 and/or the second light-isolating member 22 , so that the adhesive colloid is applied to the contact surface between the first light-isolating member 21 and the second light-isolating member 22 through the glue dispensing groove 25 .
  • the first light isolation member 21 and the second light isolation member 22 can be fastened and assembled by glue dispensing, so the light isolation structure 20 is provided with a glue dispensing groove 25.
  • a part of the glue dispensing groove 25 is located on the first light isolation portion 211 of the first light isolation member 21, and another part of the glue dispensing groove 25 is located on the second step portion 223 of the second light isolation member 22.
  • the contact surface between the first light isolation member 21 and the second light isolation member 22 extends in a winding manner along the second direction, the contact area between the first light isolation member 21 and the second light isolation member 22 is increased, which means that there is a larger glue dispensing area between the first light isolation member 21 and the second light isolation member 22, which is beneficial to improve the connection strength between the first light isolation member 21 and the second light isolation member 22.
  • a portion of the glue dispensing groove 25 may also be located on the first step portion 213 of the first light isolation member 21, and another portion of the glue dispensing groove 25 may be located on the second light isolation portion 221 of the second light isolation member 22; or the glue dispensing groove 25 may be only provided on the first light isolation member 21 or the second light isolation member 22, which is not limited here.
  • the self-moving device includes a device body, and the device body can move on a moving surface.
  • the self-moving device also includes a laser radar module 30, which is arranged on the device body.
  • the laser radar module 30 includes a laser transceiver assembly 31, which is used to output laser and receive laser reflected back by the external environment.
  • the laser radar module 30 also includes a reflective assembly 10, whose reflective surface is defined by a second direction and a first preset direction that are perpendicular to each other.
  • the reflective assembly 10 includes a first reflective portion 11, and the first reflective portion 11 is used to reflect the laser output by the laser transceiver assembly 31 to the external environment.
  • the reflective assembly 10 also includes a second reflective portion 12, which is stacked with the first reflective portion 11 along the second direction and is used to reflect the laser from the external environment to the laser transceiver assembly 31.
  • the reflective assembly 10 also includes a light isolation structure 20, which is arranged between the first reflective portion 11 and the second reflective portion 12. The length of the light-isolating structure 20 in the first preset direction is less than or equal to the length of the first light-reflecting portion 11 in the first preset direction and the length of the second light-reflecting portion 12 in the first preset direction.
  • the self-moving device can be applied to the field of cleaning equipment, that is, the self-moving device can be a cleaning device such as a cleaning robot, and the moving surface is the corresponding surface to be cleaned.
  • the self-moving device can also be applied to other fields, such as logistics and other fields.
  • the laser radar module 30 has been described in detail in the above embodiment, and will not be repeated here.
  • Cleaning devices such as sweeping robots can move on the ground by themselves to clean the ground.
  • the path planning, navigation and obstacle avoidance of the cleaning device require the use of a lidar sensor.
  • the sensor is driven to rotate by a motor to meet the field of view requirements of navigation and obstacle avoidance.
  • the sensor usually protrudes from the top of the cleaning device, resulting in a body that is too high.
  • the sensor in order to lower the height of the body to improve the ability of the cleaning device to pass through low areas and to improve the stability and reliability of the sensor system, the sensor is built into the body, and then the various components of the sensor are difficult to assemble in this case.
  • the motor 954 is in an exploded view state.
  • the specific assembly process of the sensor is as follows: the fixed seat 951 of the module is an integrated structure; the reflector 952 is removed from the bearing of the fixed seat 951.
  • the module 952 is installed downward from the top of the bearing hole, and the code disc 953 is installed upward from the bottom of the bearing hole, and the bearing is placed into the bearing hole from the top of the bearing hole and pressed into the code disc 953, and then the shaft is clamped into the retaining ring groove on the code disc 953 from the side, and finally the motor 954 is installed upward from the bottom of the module to dock with the code disc 953.
  • the reflector 952 and the code disc 953 need to be assembled separately from the upper and lower sides of the fixing seat 951, the assembly process of the sensor is relatively cumbersome and complicated.
  • Fig. 11 is a schematic diagram of the structure of another embodiment of the laser radar module of the present application.
  • the driving member 912 is in an exploded view state.
  • the laser radar module 910 is applied to path planning navigation and obstacle avoidance of cleaning devices such as sweeping robots.
  • the laser radar module 910 includes a module housing 911, which is the basic carrier of the laser radar module 910 and plays a role in bearing and protecting other components of the laser radar module 910.
  • the module housing 911 has a receiving cavity 9111 and a mounting seat 9112 accommodated in the receiving cavity 9111.
  • the mounting seat 9112 includes a seat body 9113 and a first cover body 9114, the first cover body 9114 is detachably assembled to the seat body 9113, and the first cover body 9114 cooperates with the seat body 9113 to form a first mounting hole 9115.
  • the seat body 9113 and the first cover body 9114 can be detachably assembled by fasteners such as screws.
  • the laser radar module 910 also includes a laser transceiver assembly 920.
  • the laser transceiver assembly 920 is accommodated in the accommodating cavity 9111, and the laser transceiver assembly 920 is used to perform laser interaction with the external environment to achieve path planning navigation and obstacle avoidance of the cleaning device.
  • the laser radar module 910 also includes a reflective assembly 930.
  • the laser interaction process between the laser transceiver assembly 920 and the external environment is specifically: the laser output by the laser transceiver assembly 920 is reflected to the external environment via the reflective assembly 930, and the laser from the external environment is reflected to the laser transceiver assembly 920 via the reflective assembly 930.
  • the principles of path planning navigation and obstacle avoidance belong to the understanding of those skilled in the art, and will not be repeated here.
  • the reflective assembly 930 is assembled in the first mounting hole 9115 of the mounting seat 9112. Since the first cover 9114 is detachably assembled on the seat body 9113, the first cover 9114 is firstly disassembled from the seat body 9113 before assembling the reflective assembly 930, and then the reflective assembly 930 is assembled to the seat body 9113 as a whole, and then the first cover 9114 and the seat body 9113 are assembled after the reflective assembly 930 is assembled in place, thereby fixing the reflective assembly 930. In this way, the detachable design between the first cover 9114 and the seat body 9113 in this embodiment can facilitate the assembly of the reflective assembly 930, thereby improving the convenience of assembling the laser radar module 910.
  • FIG. 12 is a schematic structural diagram of an embodiment of a reflective component and a driving member of the present application.
  • the reflective assembly 930 includes a reflective element 931.
  • the reflective element 931 is rotatably mounted in the first mounting hole 9115.
  • the number of groups of laser transceiver assemblies 920 needs to be set to at least two groups, and at least two groups of laser transceiver assemblies 920 are used to meet the requirements of the field of view angle for path planning navigation and obstacle avoidance.
  • each group of laser transceiver assemblies 920 alternately interacts with the external environment with lasers.
  • the reflective element 931 may be a dielectric film reflector, a metal reflector, a prism, etc., or may be a device with a beam deflection function such as a grating, a nano-optical device, etc., which is not limited here.
  • the reflective assembly 930 further includes a code disc 934.
  • the code disc 934 is used to detect the rotation angle of the reflective element 931, and to
  • the laser radar module 910 further includes a driving member 912, which is connected to the reflective element 931 through a code disk 934 and is used to drive the code disk 934 and the reflective element 931 to rotate synchronously.
  • the driving member 912 may be a power element such as a motor, which is not limited here.
  • the first cover 9114 and the seat body 9113 are detachably designed in this embodiment. After the first cover 9114 is removed from the seat body 9113, the reflective element 931 and the code disc 934 can be assembled to the seat body 9113 as a whole. After the reflective element 931 and the code disc 934 are assembled in place, the first cover 9114 and the seat body 9113 are assembled. This is different from the above-mentioned embodiment in which the reflector and the code disc need to be assembled separately from the upper and lower sides of the fixed seat. This embodiment can facilitate the assembly of the reflective component 930 and improve the convenience of assembling the laser radar module 910.
  • the gap between the code disc and the motor is very small (usually only about 91 mm) due to the module height of the sensor, which also makes the assembly process between the code disc and the motor more difficult.
  • the first cover body 9114 and the seat body 9113 are designed to be detachable.
  • the reflective assembly 930 is adjustable, which can facilitate the docking of the code disc 934 and the driver 912. That is, this embodiment can also facilitate the assembly process between the code disc 934 and the driver 912, and further improve the convenience of assembling the laser radar module 910.
  • the reflective assembly 930 is assembled in place, which means that the code disc 934 of the reflective assembly 930 is correctly docked with the driver 912.
  • the reflective component 930 also includes a sensor.
  • the code disc 934 includes a code disc body 9341 and at least two teeth (including the first tooth portion 9343 and the second tooth portion 9344 described below).
  • the code disc body 9341 is transmission-connected to the reflective element 931, and the code disc body 9341 can rotate synchronously with the reflective element 931.
  • the at least two teeth are sequentially spaced and distributed along the circumference of the code disc body 9341. As the code disc body 9341 rotates, each tooth passes through the sensor in sequence.
  • the first tooth portion 9343 is different from the second tooth portion 9344.
  • This embodiment measures the rotation angle of the reflective element 931 by counting the number of second teeth portions 9344 that pass through the sensor after the first tooth portion 9343.
  • the senor can be an optical coupler, etc., and each tooth portion can sequentially block the optical signal of the sensor as the code disc body 9341 rotates, so that the sensor generates a corresponding pulse signal, which indicates that the sensor detects the movement of each tooth portion passing through the sensor.
  • the above-mentioned at least two teeth are evenly spaced along the circumference of the code disc body 9341, and the central angle corresponding to each tooth portion is the same.
  • the tooth width of the first tooth portion 9343 is different from the tooth width of the second tooth portion 9344.
  • Figure 13b exemplarily shows the situation where the tooth width of the first tooth portion 9343 is smaller than the tooth width of the second tooth portion 9344.
  • the degree of shielding of the optical signal of the sensor by the first tooth portion 9343 is different from the degree of shielding of the optical signal of the sensor by the second tooth portion 9344, so that the sensor generates different pulse signals corresponding to the first tooth portion 9343 and the second tooth portion 9344, so that it can be judged that the sensor detects the first tooth portion 9343, and then the rotation angle of the reflective element 931 is measured by counting the number of second tooth portions 9344 passing through the sensor after the first tooth portion 9343.
  • the reflective assembly 930 further includes a first bearing 932.
  • the reflective element 931 is rotatably disposed on the first bearing 932, and the first bearing 932 is assembled in the first mounting hole 9115.
  • the first cover 9114 is assembled with the seat body 9113, the first cover The body 9114 cooperates with the seat body 9113 to fasten the first bearing 932 in the first mounting hole 9115, that is, to fix the reflective component 930, while allowing the reflective element 931 to rotate.
  • the code disk 934 has a connecting column 9342.
  • the connecting column 9342 is plugged into the reflective element 931, so that the reflective element 931 and the code disk 934 are in transmission cooperation, that is, the two can rotate synchronously.
  • the first bearing 932 is sleeved on the outer periphery of the connecting column 9342.
  • the outer side wall of the connecting column 9342 is provided with a convex portion, which is protruded outwardly relative to the outer side wall of the connecting column 9342, and the first bearing 932 abuts against the convex portion to fix the position of the first bearing 932 on the connecting column 9342.
  • the module housing 911 further includes a housing body 9116, and the housing body 9116 has a receiving cavity 9111.
  • the module housing 911 further includes a second cover 9117.
  • the second cover 9117 is detachably mounted on the housing body 9116, and the second cover 9117 cooperates with the housing body 9116 to form a second mounting hole 9118.
  • the reflective assembly 930 further includes a second bearing 933.
  • the reflective element 931 is also rotatably disposed on the second bearing 933, and the second bearing 933 is mounted on the second mounting hole 9118.
  • the second cover 9117 and the housing body 9116 can be detachably assembled by fasteners such as screws.
  • the specific assembly process of the laser radar module 910 of this embodiment is: first, separately assemble the reflective assembly 930 including the reflective element 931 and the code disk 934, and remove the first cover 9114 from the seat body 9113 and the second cover 9117 from the shell body 9116; then, assemble the reflective assembly 930 as a whole to the seat body 9113 and the shell body 9116, and at this time, the reflective assembly 930 is adjustable so that the code disk 934 of the reflective assembly 930 is docked with the driving member 912; after the reflective assembly 930 is assembled in place, assemble the first cover 9114 with the seat body 9113 and assemble the second cover 9117 with the shell body 9116, and then fix the reflective assembly 930. It can be seen that the assembly process of the laser radar module 910 of this embodiment is very convenient and the assembly efficiency is very high, which can avoid the difficult and time-consuming sensor assembly in the above embodiment and the high labor cost.
  • one of the code disc 934 and the driving member 912 is provided with a transmission column 941, and the other is provided with a transmission hole 942, and the transmission column 941 is inserted into the transmission hole 942, so that the code disc 934 is connected to the driving member 912 in a transmission manner, so that the driving member 912 can drive the code disc 934 to rotate through the transmission column 941 and the transmission hole 942, thereby driving the reflective element 931 to rotate.
  • FIG. 12 and FIG. 13 b exemplarily show that the driving member 912 is provided with a transmission column 941 and the code disk 934 is provided with a transmission hole 942.
  • the driving member 912 may be provided with a transmission hole 942 and the code disk 934 may be provided with a transmission column 941, which is not limited here.
  • the docking of the code disk 934 and the driving member 912 means that the transmission column 941 and the transmission hole 942 are plugged in cooperation.
  • the transmission hole 942 is an arc-shaped waist hole extending along the circumference of the code disk 934.
  • the transmission hole 942 of this embodiment is an arc-shaped waist hole, which can reduce the difficulty of docking between the transmission column 941 and the transmission hole 942, that is, it can facilitate the insertion of the transmission column 941 into the transmission hole 942, and further facilitate the assembly process between the code disk 934 and the driving member 912.
  • the laser radar module 910 defines a second direction (as shown by arrow Z in FIG. 12 , the same below).
  • the reflective element 931, the code disk 934 and the driving member 912 are sequentially arranged along the second direction.
  • the transmission hole 942 includes a transmission sub-hole 9421 and a guide sub-hole 9422.
  • the guide sub-hole 9422 is connected to the transmission sub-hole 9421, and the guide sub-hole 9422 and the transmission sub-hole 9421 are sequentially arranged along the second direction.
  • the guide sub-hole 9422 is arranged along the code disk 934.
  • the guide sub-hole 9422 extends circumferentially, so that the guide sub-hole 9422 forms a hole wall facing away from the transmission sub-hole 9421, and the hole wall has a guide inclined surface 9423 facing away from the transmission sub-hole 9421, and the guide inclined surface 9423 faces the driving member 912.
  • the guide inclined surface 9423 extends obliquely along the circumference of the code disk 934 to the transmission sub-hole 9421, that is, the guide inclined surface 9423 has a slope, and the transmission column 941 moves along the guide inclined surface 9423 and is inserted into the transmission sub-hole 9421.
  • the code disc 934 and the driving member 912 When assembling the code disc 934 and the driving member 912, the code disc 934 and the driving member 912 are brought close to each other, and the code disc 934 and the driving member 912 are appropriately operated to rotate relative to each other, so that the transmission column 941 is initially embedded in the guide sub-hole 9422 of the transmission hole 942. Further relative rotation is performed between the code disc 934 and the driving member 912, and the transmission column 941 can move along the guide inclined surface 9423 and be inserted into the transmission sub-hole 9421.
  • the guide sub-hole 9422 guides the transmission column 941 to slide into the transmission sub-hole 9421 through the guide inclined surface 9423 with a slope, so that the transmission column 941 and the transmission sub-hole 9421 are precisely aligned and matched, which greatly improves the alignment and assembly success rate between the code disc 934 and the driving member 912.
  • the transmission hole 942 is an arc-shaped waist hole, and the transmission sub-hole 9421 is located at one end of the transmission hole 942.
  • the transmission sub-hole 9421 can be located in the middle of the transmission hole 942, which is not limited here.
  • the number of transmission columns 941 and the number of transmission holes 942 are both at least two, and the at least two transmission columns 941 and the at least two transmission holes 942 are sequentially spaced and distributed along the circumference of the code disk 934.
  • the transmission columns 941 and the transmission holes 942 are clearance-matched. In this way, the present embodiment compensates for the manufacturing error and assembly error of the transmission columns 941 and the transmission holes 942 through multiple groups of transmission columns 941 and transmission holes 942, which can reduce the difficulty of alignment and assembly between the code disk 934 and the driving member 912, further facilitate the assembly process between the code disk 934 and the driving member 912, and avoid the code disk 934 from jamming during rotation.
  • Figures 12 and 13b exemplarily show the situation where the number of transmission columns 941 and the number of transmission holes 942 are both three, and each transmission column 941 and each transmission hole 942 are evenly spaced along the circumference of the code disk 934, and the transmission columns 941 and the transmission holes 942 correspond one to one.
  • FIG. 14 is a schematic structural diagram of an embodiment of a connection method between a code disk and a driving member of the present application.
  • the laser radar module 910 further includes an elastic pad 913.
  • the elastic pad 913 is coated on the outer periphery of the transmission column 941, and the transmission column 941 elastically contacts the transmission hole 942 through the elastic pad 913.
  • the transmission column 941 is inserted into the transmission hole 942, and the elastic pad 913 is synchronously embedded in the transmission hole 942 with the transmission column 941.
  • the transmission column 941 and the transmission hole 942 are elastically connected by the elastic pad 913, thereby avoiding hard contact between the code disk 934 and the driving member 912, and can effectively reduce the noise caused by the collision between the code disk 934 and the driving member 912, that is, reduce the noise generated during the operation of the laser radar module 910.
  • the elastic pad 913 includes but is not limited to materials such as silicone, which have good elasticity, wear resistance, tear strength and tensile strength.
  • Figure 14 exemplifies the case where the transmission hole 942 of this embodiment is a round hole.
  • the transmission hole 942 may also be a design including a transmission sub-hole 9421 and a guide sub-hole 9422 in the above-mentioned embodiment, which is not limited here.
  • the elastic pad 913 has three convex bulges, which correspond one-to-one to the transmission columns 941 and the transmission holes 942, and the convex bulges are coated on the outer periphery of the transmission column 941, and the transmission column 941 elastically contacts the transmission hole 942 through the convex bulges.
  • FIG. 15 is a schematic structural diagram of another embodiment of the connection method between the code disk and the driving member of the present application.
  • the laser radar module 910 further includes an elastic connector 914, and the driving member 912 is connected to the code disk 934 through the elastic connector 914.
  • Transmission connection Different from the above-mentioned embodiment in which the code disk 934 and the driving member 912 are matched through the transmission column 941 and the transmission hole 942, the code disk 934 and the driving member 912 in this embodiment are matched through the elastic connecting member 914, and the torque generated by the driving member 912 is applied to the elastic connecting member 914.
  • the elastic connecting member 914 twists in response to its own elastic restoring force, so that the torque of the driving member 912 acts on the code disk 934, thereby driving the code disk 934 to rotate.
  • the code disk 934 and the driving member 912 are elastically connected through the elastic connecting member 914, which avoids hard contact between the code disk 934 and the driving member 912, and can effectively avoid the noise caused by the collision between the code disk 934 and the driving member 912, that is, reduce the noise generated during the operation of the laser radar module 910.
  • the elastic connector 914 may be an elastic element such as a spring.
  • a boss is convexly provided on the driving member 912.
  • One end of the elastic connector 914 is sleeved on the outer periphery of the boss and fixed to the driving member 912, and the other end is fixed to the code disc 934.
  • the cleaning device includes a device body, and the device body can move on the surface to be cleaned to clean the surface to be cleaned.
  • the surface to be cleaned can be the ground, or the surface of the object to be cleaned, etc.
  • the cleaning device also includes a laser radar module 910, and the laser radar module 910 is arranged in the device body.
  • the laser radar module 910 includes a module housing 911, and the module housing 911 has a receiving cavity 9111 and a mounting seat 9112 accommodated in the receiving cavity 9111, wherein the mounting seat 9112 includes a seat body 9113 and a first cover body 9114, and the first cover body 9114 is detachably assembled on the seat body 9113, and the first cover body 9114 cooperates with the seat body 9113 to form a first mounting hole 9115.
  • the laser radar module 910 also includes a laser transceiver assembly 920, and the laser transceiver assembly 920 is accommodated in the receiving cavity 9111.
  • the laser radar module 910 also includes a reflective component 930, which is assembled in the first mounting hole 9115. The laser output by the laser transceiver component 920 is reflected to the external environment via the reflective component 930, and the laser from the external environment is reflected to the laser transceiver component 920 via the reflective component 930.
  • the self-moving device is a device that can move on the moving surface by itself, which includes but is not limited to the cleaning device described in the above embodiment.
  • the moving surface is not limited to the surface to be cleaned described in the above embodiment.
  • the self-moving device includes a device body, and the device body can move on a moving surface.
  • the self-moving device also includes a laser radar module 910, which is arranged on the device body.
  • the laser radar module 910 includes a module housing 911, and the module housing 911 has a receiving cavity 9111 and a mounting seat 9112 accommodated in the receiving cavity 9111, wherein the mounting seat 9112 includes a seat body 9113 and a first cover body 9114, and the first cover body 9114 is detachably assembled on the seat body 9113, and the first cover body 9114 cooperates with the seat body 9113 to form a first mounting hole 9115.
  • the laser radar module 910 also includes a laser transceiver assembly 920, and the laser transceiver assembly 920 is accommodated in the receiving cavity 9111.
  • the laser radar module 910 also includes a reflective component 930, which is assembled in the first mounting hole 9115. The laser output by the laser transceiver component 920 is reflected to the external environment via the reflective component 930, and the laser from the external environment is reflected to the laser transceiver component 920 via the reflective component 930.
  • Fig. 16 is a schematic diagram of a flow chart of an embodiment of an assembly method of a laser radar module of the present application.
  • the assembly method described in this embodiment is based on the laser radar module 910 described in the above embodiment.
  • the first cover 9114 is detachably mounted on the seat body 9113.
  • the first cover 9114 needs to be removed from the seat body 9113 to allow the reflective assembly 930 to be mounted on the first mounting hole 9115.
  • the component 930 is first assembled in the portion of the first mounting hole 9115 located in the seat body 9113 .
  • the reflective assembly 930 is assembled as a whole to the seat body 9113. Different from the above-mentioned embodiment in which the reflector and the code disc need to be assembled separately from the upper and lower sides of the fixing seat, the reflective assembly 930 is assembled as a whole, which can facilitate the assembly of the reflective assembly 930 and improve the convenience of assembling the laser radar module 910.
  • S103 Re-assemble the first cover body to the seat body so that the reflective component is assembled in the first mounting hole.
  • the first cover 9114 is reassembled to the seat body 9113, so that the reflective assembly 930 is assembled in the first mounting hole 9115, thereby fixing the reflective assembly 930.
  • the detachable design between the first cover 9114 and the seat body 9113 in this embodiment can facilitate the assembly of the reflective assembly 930, thereby improving the convenience of assembling the laser radar module 910.
  • the first light-transmitting portion 41 and the second light-transmitting portion 42 of the light-transmitting cover 40 are both flat plates inclined relative to the reference plane.
  • the end of the first light-transmitting portion 41 away from the second light-transmitting portion 42 is inclined toward the laser radar module 30, and the end of the second light-transmitting portion 42 away from the first light-transmitting portion 41 is inclined toward the laser radar module 30.
  • the angle between the first light-transmitting portion 41 and the second light-transmitting portion 42 and the reference plane is 12°.
  • the first light-transmitting portion 41 and the second light-transmitting portion 42 are separated by a partition 50 to reduce the interference of the laser output by the laser transmitter 311 on the laser receiver 313 inside the laser radar module 30.
  • the laser is output from the laser transmitter 311 and emitted through the light-transmitting cover 40. At the location of the light-transmitting cover 40, part of the laser light is refracted and directly emitted through the light-transmitting cover 40.
  • the emitted light is refracted through the two surfaces of the first light-transmitting portion 41, and the propagation angle of the emitted light does not change; part of the laser light is reflected on the surface of the first light-transmitting portion 41, and the reflected light is reflected on the partition 50 between the first light-transmitting portion 41 and the second light-transmitting portion 42, and is further absorbed or reflected.
  • There is a large deviation between the reflected laser light and the laser light output by the laser emitter 311, and the reflected laser light will not cause significant interference to the laser signal required by the laser radar module 30 to detect the external environment.
  • the end of the first light-transmitting portion 41 of the light-transmitting cover 40 away from the second light-transmitting portion 42 is tilted toward the laser radar module 30, and the second light-transmitting portion 42 is parallel to the reference plane.
  • the angle between the first light-transmitting portion 41 and the reference plane is 12°.
  • the first light-transmitting portion 41 and the second light-transmitting portion 42 are separated by a partition 50 to reduce the interference of the laser output by the laser transmitter 311 on the laser receiver 313 inside the laser radar module 30.
  • the laser is output from the laser transmitter 311 and emitted through the light-transmitting cover 40.
  • part of the laser is refracted and directly emitted through the light-transmitting cover 40.
  • the emitted light is refracted through the two surfaces of the first light-transmitting portion 41, and the propagation angle of the emitted light does not change; part of the laser is reflected on the surface of the first light-transmitting portion 41, and the reflected light is reflected on the partition 50 between the first light-transmitting portion 41 and the second light-transmitting portion 42, and is further absorbed or reflected.
  • There is a large deviation between the reflected laser and the laser output by the laser transmitter 311, and the reflected laser will not cause significant interference to the laser signal required by the laser radar module 30 to detect the external environment. interference.
  • the first light-transmitting portion 41 and the second light-transmitting portion 42 of the light-transmitting cover 40 are both tilted relative to the reference plane.
  • the end of the first light-transmitting portion 41 away from the second light-transmitting portion 42 is tilted toward the laser radar module 30, and the end of the second light-transmitting portion 42 away from the first light-transmitting portion 41 is tilted toward the laser radar module 30.
  • the first light-transmitting portion 41 and the second light-transmitting portion 42 are both arc-shaped.
  • the first light-transmitting portion 41 and the second light-transmitting portion 42 are separated by a partition 50 to reduce the interference of the laser output by the laser transmitter 311 on the laser receiver 313 inside the laser radar module 30.
  • the laser is output from the laser transmitter 311 and emitted through the light-transmitting cover 40. At the location of the light-transmitting cover 40, part of the laser light is refracted and directly emitted through the light-transmitting cover 40.
  • the emitted light is refracted through the two surfaces of the first light-transmitting portion 41, and the propagation angle of the emitted light does not change; part of the laser light is reflected on the surface of the first light-transmitting portion 41, and the reflected light is reflected on the partition 50 between the first light-transmitting portion 41 and the second light-transmitting portion 42, and is further absorbed or reflected.
  • There is a large deviation between the reflected laser light and the laser light output by the laser emitter 311, and the reflected laser light will not cause significant interference to the laser signal required by the laser radar module 30 to detect the external environment.
  • the laser radar module 30 includes two groups of laser transceiver components 31. When the reflective element 10a rotates within a certain angle range, one group of laser transceiver components 31 works, and when the reflective element 10a rotates within another angle range, the other group of laser transceiver components 31 works.
  • the laser transceiver assembly 31 has a maximum viewing angle ⁇ max , the diameter of the output beam of the emitting lens 312 is d 1 , and the length of the reflective element 10 a is H, satisfying: Wherein 0 ⁇ k ⁇ 1.
  • the reflective element 10a includes a first reflective portion 11 and a second reflective portion 12. The height of the first reflective portion 11 is greater than the diameter of the emitting lens 312, and the height of the second reflective portion 12 is greater than the diameter of the receiving lens 314.
  • the maximum field of view angle ⁇ max of the laser transceiver assembly 31 can be 50° to 180°; the output light beam diameter d1 of the emitting lens 312 can be 2mm to 10mm; the length H of the reflective element 10a can be 15mm to 40mm; the thickness W of the reflective element 10a can be 0.5mm to 3mm; the diameter d2 of the receiving lens 314 can be 10mm to 20mm; the height H1 of the first reflective portion 11 can be 5mm to 10mm; the height H2 of the second reflective portion 12 can be 10mm to 20mm.
  • the cleaning robot includes a device body, which can move on the ground to clean the ground.
  • the cleaning robot also includes a laser radar module 30, which is arranged in the device body and is used to realize the path planning navigation and obstacle avoidance functions of the cleaning robot.
  • the laser radar module 30 includes two groups of laser transceiver components 31. When the reflective element 10a rotates within a certain angle range, one group of laser transceiver components 31 works, and when the reflective element 10a rotates within other angle ranges, the other group of laser transceiver components 31 works.
  • the laser transceiver assembly 31 has a maximum viewing angle ⁇ max , the diameter of the output beam of the emitting lens 312 is d 1 , and the length of the reflective element 10 a is H, satisfying: Wherein 0 ⁇ k ⁇ 1.
  • the reflective element 10a includes a first reflective portion 11 and a second reflective portion 12.
  • the height of the first reflective portion 11 is greater than the diameter of the emitting lens 312, and the height of the second reflective portion 12 is greater than the diameter of the receiving lens 314.
  • the cleaning robot also includes a light-transmitting cover 40, which includes a first light-transmitting portion 41 and a second light-transmitting portion 42 spaced apart from each other.
  • the cleaning robot also includes a partition 50, which is disposed between the first light-transmitting portion 41 and the second light-transmitting portion 42.
  • the maximum field of view angle ⁇ max of the laser transceiver assembly 31 can be 50° to 180°; the output light beam diameter d1 of the emitting lens 312 can be 2mm to 10mm; the length H of the reflective element 10a can be 15mm to 40mm; the thickness W of the reflective element 10a can be 0.5mm to 3mm; the diameter d2 of the receiving lens 314 can be 10mm to 20mm; the height H1 of the first reflective portion 11 can be 5mm to 10mm; the height H2 of the second reflective portion 12 can be 10mm to 20mm; the height h1 of the first light-transmitting portion 41 can be 10mm to 20mm; the height h2 of the second light-transmitting portion 42 can be 10mm to 20mm; the spacing d between the first light-transmitting portion 41 and the second light-transmitting portion 42 can be 2mm to 4mm; the thickness w of the partition 50 can be 1.5mm to 3mm.
  • the cleaning robot includes a device body and a laser radar module 30 disposed on the device body.
  • the laser radar module 30 is used to perform spatial scanning of the external environment of the cleaning robot to achieve the path planning navigation and obstacle avoidance functions of the cleaning robot.
  • the laser radar module 30 also includes a reflective component 10. The laser output by the laser radar module 30 is reflected to the external environment via the reflective component 10, and the laser reflected back from the external environment is reflected to the laser radar module 30 via the reflective component 10.
  • the reflective assembly 10 includes a first reflective portion 11 and a second reflective portion 12.
  • the first reflective portion 11 and the second reflective portion 12 are stacked along the second direction.
  • the laser output by the laser radar module 30 is reflected to the external environment by the first reflective portion 11, and the laser reflected back by the external environment is reflected to the laser radar module 30 by the second reflective portion 12.
  • the reflective assembly also includes a light-isolating structure 20.
  • the light-isolating structure 20 is disposed between the first reflective portion 11 and the second reflective portion 12. The light-isolating structure 20 is used to prevent the laser output by the laser radar module 30 from being directly hit by the laser radar module 30 after being reflected by the reflective element 10a, thereby reducing the risk of erroneous response of the laser radar module 30.
  • the length of the light-isolating structure 20 in the first preset direction is less than or equal to the length of the first light-reflecting portion 11 in the first preset direction and the length of the second light-reflecting portion 12 in the first preset direction.
  • the light-isolating structure 20 has a smaller length in the first preset direction, which means that the light-isolating structure 20 has a better balance during the rotation of the light-reflecting component 10, thereby improving the stability of the light-reflecting component 10, and further facilitating the stability of the laser radar module 30 in the process of scanning the external environment.
  • the self-propelled device includes a device body and a laser radar module 30 disposed on the device body.
  • the laser radar module 30 is used to perform spatial scanning of the external environment of the self-propelled device to achieve path planning navigation and obstacle avoidance functions of the self-propelled device.
  • the laser radar module 30 also includes a reflective component 10. The laser output by the laser radar module 30 is reflected to the external environment via the reflective component 10, and the laser reflected back from the external environment is reflected to the laser radar module 30 via the reflective component 10.
  • the reflective assembly 10 includes a first reflective portion 11 and a second reflective portion 12.
  • the first reflective portion 11 and the second reflective portion 12 are stacked along the second direction.
  • the laser output by the laser radar module 30 is reflected to the external environment by the first reflective portion 11, and the laser reflected back by the external environment is reflected to the laser radar module 30 by the second reflective portion 12.
  • the reflective assembly also includes a light-isolating structure 20.
  • the light-isolating structure 20 is disposed between the first reflective portion 11 and the second reflective portion 12. The light-isolating structure 20 is used to prevent the laser output by the laser radar module 30 from being directly hit by the laser radar module 30 after being reflected by the reflective element 10a, thereby reducing the risk of erroneous response of the laser radar module 30.
  • the length of the light-isolating structure 20 in the first preset direction is less than or equal to the length of the first light-reflecting portion 11 in the first preset direction and the length of the second light-reflecting portion 12 in the first preset direction.
  • the light-isolating structure 20 has a smaller length in the first preset direction, which means that the light-isolating structure 20 has a better balance during the rotation of the light-reflecting component 10, thereby improving the stability of the light-reflecting component 10, and further facilitating the stability of the laser radar module 30 in the process of scanning the external environment.
  • the laser radar module 910 is provided with a detachable first cover body 9114 and a seat body 9113 of the mounting seat 9112, which improves the assembly sequence of the components of the laser radar module 910, thereby simplifying the assembly process of the laser radar module 910 and improving the convenience of assembling the laser radar module 910.
  • the specific assembly process of the laser radar module 910 is: first, separately assemble the reflective component 930 including the reflective element 931 and the code disk 934, and remove the first cover body 9114 from the seat body 9113 and the second cover body 9117 from the shell body 9116; then, assemble the reflective component 930 as a whole to the seat body 9113 and the shell body 9116, at which time the reflective component 930 is adjustable to facilitate the docking of the code disk 934 of the reflective component 930 with the driving member 912; after the reflective component 930 is assembled in place, assemble the first cover body 9114 with the seat body 9113 and the second cover body 9117 with the shell body 9116, and then fix the reflective component 930.
  • the driving member 912 is provided with a transmission column 941
  • the code disc 934 is provided with a transmission hole 942.
  • the transmission hole 942 is an arc-shaped waist hole extending along the circumference of the code disc 934.
  • the transmission hole 942 includes a transmission sub-hole 9421 and a guide sub-hole 9422.
  • the guide sub-hole 9422 is connected to the transmission sub-hole 9421.
  • the guide sub-hole 9422 extends along the circumference of the code disc 934, so that the guide sub-hole 9422 forms a hole wall facing away from the transmission sub-hole 9421, and the hole wall has a guide slope 9423 facing away from the transmission sub-hole 9421, and the guide slope 9423 faces the driving member 912.
  • the guide slope 9423 extends obliquely along the circumference of the code disc 934 to the transmission sub-hole 9421, that is, the guide slope 9423 has a slope.
  • the code disc 934 and the driving member 912 When assembling the code disc 934 and the driving member 912, the code disc 934 and the driving member 912 are brought close to each other, and the code disc 934 and the driving member 912 are appropriately operated to rotate relative to each other, so that the transmission column 941 is initially embedded in the guide sub-hole 9422 of the transmission hole 942. Further relative rotation is performed between the code disc 934 and the driving member 912, and the transmission column 941 can move along the guide inclined surface 9423 and be inserted into the transmission sub-hole 9421.
  • the guide sub-hole 9422 guides the transmission column 941 to slide into the transmission sub-hole 9421 through the guide inclined surface 9423 with a slope, so that the transmission column 941 and the transmission sub-hole 9421 are precisely aligned and matched, which greatly improves the alignment and assembly success rate between the code disc 934 and the driving member 912.
  • the elastic pad 913 is added between the code disc 934 and the driving member 912 of the laser radar module 910.
  • the elastic pad 913 includes but is not limited to materials such as silicone, which have good elasticity, wear resistance, tear strength and tensile strength.
  • the elastic pad 913 is first sleeved on the outer periphery of the transmission column 941 on the driving member 912, and then the driving member 912 and the elastic pad 913 are assembled with the code disc 934.
  • an elastic connection is formed between the transmission column 941 and the transmission hole 942 of the code disc 934 through the elastic pad 913, which avoids hard contact between the code disc 934 and the driving member 912, and can effectively reduce the noise caused by the collision between the code disc 934 and the driving member 912, that is, reduce the noise generated during the operation of the laser radar module 910.
  • An elastic connector 914 such as a spring, is provided between the code disc 934 and the driving member 912 of the laser radar module 910.
  • the elastic connector 914 forms an elastic connection between the code disc 934 and the driving member 912, thereby avoiding hard contact between the code disc 934 and the driving member 912.
  • the code disc 934 and the driving member 912 are matched with each other through the elastic connector 914, and the torque generated by the driving member 912 is applied to the elastic connector 914.
  • the elastic connector 914 twists in response to its own elastic restoring force, thereby applying the torque of the driving member 912 to the code disc 934, thereby driving the code disc 934 to rotate, which can effectively avoid the noise caused by the collision between the code disc 934 and the driving member 912.

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Abstract

本申请公开了一种清洁装置及其应用的透光罩、自移动装置。该清洁装置的透光罩定义有相互垂直的第一方向和参考平面,透光罩与激光雷达模组沿第一方向相对设置,透光罩还具有透光部,透光部包括第一透光部以及第二透光部,激光雷达模组输出的激光通过第一透光部出射至外部环境,且经由外部环境反射回的激光通过第二透光部入射至激光雷达模组;其中,第一透光部相对参考平面倾斜设置,第二透光部相对参考平面倾斜设置或第二透光部平行于参考平面。通过上述方式,本申请能够提高清洁装置中激光雷达模组的探测精度。

Description

清洁装置及其应用的透光罩、自移动装置
本申请要求于2022年10月24日提交中国专利局、申请号为202211306034.4、申请名称为“激光雷达模组及其组装方法、装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。本申请要求于2022年11月01日提交中国专利局、申请号为202222904346.7、申请名称为“激光雷达模组、清洁装置以及自移动装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。本申请要求于2023年06月27日提交中国专利局、申请号为202321657418.0、申请名称为“激光雷达模组、清洁装置以及自移动装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。本申请要求于2022年11月01日提交中国专利局、申请号为202211372400.6、申请名称为“激光雷达模组及其应用的反光组件、装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。本申请要求于2022年11月01日提交中国专利局、申请号为202222902009.4、申请名称为“清洁装置及其应用的透光罩、自移动装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。本申请要求于2023年06月27日提交中国专利局、申请号为202321652392.0、申请名称为“清洁装置及其应用的透光罩、自移动装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及清洁设备技术领域,具体涉及一种清洁装置及其应用的透光罩、自移动装置。
背景技术
具有洗地、扫地、擦地等清洁功能的清洁机器人能够代替用户进行清洗地面等清洁工作,给用户带来诸多便利,因而得到广泛的应用。清洁机器人通常基于激光雷达传感器实现导航及避障功能,以保证清洁机器人正常进行清洁工作。
清洁机器人设置有透光罩。激光雷达传感器输出的激光通过透光罩出射至外部环境,且经由外部环境反射回的激光通过透光罩入射至激光雷达传感器。由于透光罩材料的限制,激光通过透光罩时无法完全透射,一部分激光会在透光罩表面发生反射,该部分反射的激光经多次反射后可能再次通过透光罩,容易干扰传感器探测外部环境所需的激光信号,导致目前激光雷达传感器的探测精度较低。
技术解决方案
本申请提供一种清洁装置,包括:
装置主体,能够在待清洁面上移动以对所述待清洁面进行清洁;
激光雷达模组,设于所述装置主体;以及
透光罩,设于所述装置主体,其中所述透光罩定义有相互垂直的第一方向和参考平面,所述透光罩与所述激光雷达模组沿所述第一方向相对设置,所述透光罩还具有透光部,所述透光部包括第一透光部以及第二透光部,所述激光雷达模组输出的激光通过所述第一透光部出射至外部环境,且经由外部环境反射回的激光通过所述第二透光部入射至所述激光雷达模组;
其中,所述第一透光部相对所述参考平面倾斜设置,所述第二透光部相对所述参考平面倾斜设置或 所述第二透光部平行于所述参考平面。
在本申请的一实施例中,所述透光罩还定义有垂直于所述第一方向的第二方向,所述第一透光部与所述第二透光部沿所述第二方向依次分布,且所述第二透光部相对所述参考平面倾斜设置;
所述激光雷达模组包括:
激光元件,用于输出激光或是接收经由外部环境反射回的激光;
其中,所述透光部与所述参考平面之间的夹角为α,所述激光元件与对应所述透光部之间的最短激光传播路径的长度为L,所述激光元件在所述第二方向上的长度为D,且tan2α≥D/L。
在本申请的一实施例中,所述透光部与所述参考平面之间的夹角为5°至25°。
在本申请的一实施例中,所述激光雷达模组包括:
激光发射器,用于输出激光;
激光接收器,用于接收经由外部环境反射回的激光;
第一反光部,所述激光发射器输出的激光通过所述第一反光部反射至所述第一透光部,并通过所述第一透光部出射至外部环境;以及
第二反光部,经由外部环境反射回的激光通过所述第二透光部入射至所述第二反光部,并通过所述第二反光部反射至所述激光接收器。
在本申请的一实施例中,所述第一反光部的高度小于所述第一透光部的高度,且所述第二反光部的高度小于所述第二透光部的高度。
在本申请的一实施例中,所述第一反光部的高度为5mm至10mm;所述第二反光部的高度为10mm至20mm;所述第一透光部的高度及所述第二透光部的高度均为10mm至20mm。
在本申请的一实施例中,所述清洁装置还包括隔板,所述隔板设于所述第一透光部和所述第二透光部之间;其中,所述第一透光部与所述第二透光部之间的间距大于所述隔板的厚度。
在本申请的一实施例中,所述第一透光部与所述第二透光部之间的间距为2mm至4mm;所述隔板的厚度为1.5mm至3mm。
在本申请的一实施例中,所述激光雷达模组包括:
激光收发组件,包括激光发射器和发射透镜;以及
反光元件,所述激光发射器输出的激光经所述发射透镜出射至所述反光元件,并通过所述反光元件反射至外部环境;
其中,所述激光收发组件具有最大视场角ωmax,所述发射透镜的出射光束直径为d1,所述反光元件的长度为H,满足:其中0<k≤1。
在本申请的一实施例中,所述激光收发组件还包括激光接收器和接收透镜;
所述反光元件包括:
第一反光部,所述激光发射器输出的激光通过所述第一反光部反射至外部环境;以及
第二反光部,经由外部环境反射回的激光通过所述第二反光部反射至所述接收透镜,并经所述接收透镜入射至所述激光接收器;
其中,所述第一反光部的高度大于所述发射透镜的直径,且所述第二反光部的高度大于所述接收透镜的直径;所述第一反光部的高度小于所述第一透光部的高度,且所述第二反光部的高度小于所述第二透光部的高度。
在本申请的一实施例中,所述激光雷达模组包括:
激光收发组件,用于输出激光及接收经外部环境反射回的激光;以及
反光组件,其反光面由相互垂直的第二方向和第一预设方向所定义,其中所述反光组件包括:
第一反光部,用于将所述激光收发组件输出的激光反射至外部环境;
第二反光部,与所述第一反光部沿所述第二方向层叠设置,且用于将来自外部环境的激光反射至所述激光收发组件;以及
隔光结构,设于所述第一反光部和所述第二反光部之间;
其中,所述隔光结构在所述第一预设方向上的长度小于或等于所述第一反光部在所述第一预设方向上的长度及所述第二反光部在所述第一预设方向上的长度。
在本申请的一实施例中,所述隔光结构在所述第一预设方向上的长度为所述第一反光部在所述第一预设方向上的长度及所述第二反光部在所述第一预设方向上的长度的55%至65%。
在本申请的一实施例中,所述反光组件还包括:
衔接结构,所述第一反光部和所述第二反光部彼此间隔且二者通过所述衔接结构连接;
所述隔光结构包括:
第一隔光件;以及
第二隔光件,能够与所述第一隔光件对接形成容置槽;
其中,所述第一隔光件和所述第二隔光件分别从所述衔接结构的相对两侧进行对接,使得所述衔接结构容置于所述容置槽中。
在本申请的一实施例中,所述激光雷达模组包括:
模组壳体,具有容置腔及容置于所述容置腔中的安装座,其中所述安装座包括座主体和第一盖体,所述第一盖体可拆卸地装配于所述座主体,且所述第一盖体与所述座主体配合形成第一安装孔;
激光收发组件,容置于所述容置腔中;以及
反光组件,装配于所述第一安装孔,所述激光收发组件输出的激光经由所述反光组件反射至外部环境,且来自外部环境的激光经由所述反光组件反射至所述激光收发组件。
在本申请的一实施例中,所述反光组件包括:
反光元件,可转动地装配于所述第一安装孔,其中所述激光收发组件的组数为至少两组,响应于所述反光元件的转动动作,各组所述激光收发组件交替地与外部环境进行激光交互;
码盘,用于检测所述反光元件的转动角度,以基于所述反光元件的转动角度,控制各组所述激光收发组件交替地与外部环境进行激光交互;
所述激光雷达模组还包括:
驱动件,通过所述码盘与所述反光元件传动连接,用于驱动所述码盘和所述反光元件同步转动。
在本申请的一实施例中,所述码盘和所述驱动件中的一者设有传动柱,另一者设有传动孔,所述传动柱插设于所述传动孔中,使得所述码盘与所述驱动件传动连接,所述传动孔为沿所述码盘的周向延伸的弧形腰孔。
在本申请的一实施例中,所述透光罩还定义有垂直于所述第一方向的第二方向,所述反光元件、所述码盘及所述驱动件沿所述第二方向依次设置;
所述传动孔包括:
传动子孔;以及
引导子孔,连通所述传动子孔且与所述传动子孔沿所述第二方向依次设置;
其中,所述引导子孔的孔壁具有背向所述传动子孔的引导斜面,所述引导斜面沿所述码盘的周向倾斜延伸至所述传动子孔,所述传动柱沿所述引导斜面移动而插入所述传动子孔中。
在本申请的一实施例中,所述激光雷达模组还包括:
弹性连接件,所述驱动件通过所述弹性连接件与所述码盘传动连接。
本申请还提供一种自移动装置,包括:
装置主体,能够在移动面上移动;
激光雷达模组,设于所述装置主体;以及
透光罩,设于所述装置主体,其中所述透光罩定义有相互垂直的第一方向和参考平面,所述透光罩与所述激光雷达模组沿所述第一方向相对设置,所述透光罩还具有透光部,所述透光部包括第一透光部以及第二透光部,所述激光雷达模组输出的激光通过所述第一透光部出射至外部环境,且经由外部环境反射回的激光通过所述第二透光部入射至所述激光雷达模组;
其中,所述第一透光部相对所述参考平面倾斜设置,所述第二透光部相对所述参考平面倾斜设置或所述第二透光部平行于所述参考平面。
本申请还提供一种应用于清洁装置的透光罩,所述清洁装置包括激光雷达模组;
所述透光罩定义有相互垂直的第一方向和参考平面,所述透光罩能够与所述激光雷达模组沿所述第一方向相对设置,所述透光罩还具有透光部,所述透光部包括第一透光部以及第二透光部,所述激光雷达模组输出的激光通过所述第一透光部出射至外部环境,且经由外部环境反射回的激光通过所述第二透光部入射至所述激光雷达模组;
其中,所述第一透光部相对所述参考平面倾斜设置,所述第二透光部相对所述参考平面倾斜设置或所述第二透光部平行于所述参考平面。
附图说明
下面结合附图,通过对本申请的具体实施方式详细描述,将使本申请的技术方案及其它有益效果显而易见。
图1a-1b是本申请激光雷达模组一实施例的结构示意图;
图2是本申请反光元件、驱动组件及码盘一实施例的爆炸结构示意图;
图3a-3b是本申请应用于清洁装置的透光罩第一实施例的结构示意图;
图4是本申请应用于清洁装置的透光罩第二实施例的结构示意图;
图5是本申请应用于清洁装置的透光罩第三实施例的结构示意图;
图6是本申请码盘一实施例的结构示意图;
图7是本申请激光收发组件的最大视场角一实施例的示意图;
图8是本申请反光组件一实施例的爆炸结构示意图;
图9是本申请反光组件另一实施例的结构示意图;
图10是本申请传感器一实施例的结构示意图;
图11是本申请激光雷达模组另一实施例的结构示意图;
图12是本申请反光组件和驱动件一实施例的结构示意图;
图13a-13b是本申请码盘另一实施例的结构示意图;
图14是本申请码盘和驱动件之间的连接方式一实施例的结构示意图;
图15是本申请码盘和驱动件之间的连接方式另一实施例的结构示意图;
图16是本申请激光雷达模组的组装方法一实施例的流程示意图。
本申请的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。此外,应当理解的是,此处所描述的具体实施方式仅用于说明和解释本申请,并不用于限制本申请。在本申请中,在未作相反说明的情况下,使用的方位词如“上”、“下”、“左”、“右”通常是指装置实际使用或工作状态下的上、下、左和右,具体为附图中的图面方向。
本申请提供一种清洁装置及其应用的透光罩、自移动装置,以下分别进行详细说明。需要说明的是,以下实施例的描述顺序不作为对本申请实施例优选顺序的限定。且在以下实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其它实施例的相关描述。
激光雷达传感器将测量到的物理量转换成电信号,并对该电信号进行处理,实现探测功能。激光雷达传感器主要由敏感单元、转换单元、变换电路和辅助电源组成。根据作用形式可分为主动型和被动型。主动型传感器对被测对象主动发出探测信号,通过检测探测信号的变化来实现对物理量的测量。
主动型的激光雷达传感器由发射器和接收器组成。当激光雷达传感器应用于清洁机器人时,发射器发出激光信号,经过机器人前方的透光罩出射,激光打到探测物体上后被反射回来,反射回来的激光经 过该透光罩后,被接收器接收,产生相应的电信号。
传统的透光罩竖直设置。激光雷达传感器发出激光,经过一系列反射镜等结构后通过透光罩出射。激光打到透光罩表面时,部分激光发生折射,而部分激光发生反射,此时反射光与入射光之间的夹角较小。折射的激光穿过透光罩直接出射,反射的激光被反射到内部的其他结构上,并再次发生镜面反射或漫反射,再次反射的激光可能会重新打到透光罩,此时又会有部分激光发生折射而出射。经外部环境反射回的回波激光到达透光罩时,部分激光在透光罩发生折射后入射至激光雷达传感器;而部分激光在透光罩发生反射,反射的激光经外部环境中的物体反射后可能再次通过透光罩被接收。
由于透光罩材料的限制,激光通过透光罩时无法完全透射,一部分激光会在透光罩表面发生反射,该部分反射的激光经多次反射后可能再次通过透光罩,容易干扰传感器探测外部环境所需的激光信号,导致目前激光雷达传感器的探测精度较低。
有鉴于此,本申请实施例提供一种清洁装置及其应用的透光罩、自移动装置,能够解决现有技术中激光雷达传感器的探测精度较低的技术问题,下文进行详细阐述。
请参阅图1a-1b,图1a-1b是本申请激光雷达模组一实施例的结构示意图。
在一实施例中,清洁装置可以是具有洗地、扫地、擦地等清洁功能的清洁机器人等。具体地,清洁装置包括装置主体。装置主体,顾名思义,其为清洁装置的主要部分,装置主体能够在待清洁面上移动以对待清洁面进行清洁。可选地,装置主体可以设置有滚刷、边刷、抹布等清洁元件,用于随装置主体在待清洁面上同步移动以对装置主体经过的区域进行清洁。
清洁装置还包括激光雷达模组30,激光雷达模组30设于装置主体,激光雷达模组30用于实现清洁装置的路径规划导航及避障功能。具体地,激光雷达模组30包括激光元件,激光元件用于输出激光或是接收经由外部环境反射回的激光,具体是激光雷达模组30包括激光收发组件31。激光收发组件31能够向外部环境输出激光以及接收经由外部环境反射回的激光,激光收发组件31能够与外部环境进行激光交互以实现清洁机器人的路径规划导航及避障功能。其中,激光收发组件31与外部环境进行激光交互以实现路径规划导航及避障的原理属于本领域技术人员的理解范畴,在此就不再赘述。
具体地,激光雷达模组30包括至少两组激光收发组件31,该至少两组激光收发组件31设于装置主体的内部,以避免激光收发组件31影响清洁装置的整机高度。激光雷达模组30还包括反光组件10,反光组件10包括反光元件10a,激光收发组件31输出的激光经由反光元件10a反射至外部环境,经由外部环境反射回的激光通过反光元件10a反射至激光收发组件31。该至少两组激光收发组件31围绕反光元件10a依次间隔分布,使得激光雷达模组30的整机结构更加合理且美观,同时降低了对激光雷达模组30的扫描视场造成遮挡的风险,实现扫描视场的最大化。
反光元件10a采用可转动的设计,随反光元件10a的转动动作,各组激光收发组件31交替地通过反光元件10a与外部环境进行激光交互。本实施例激光雷达模组30通过反光元件10a能够进行一定范 围内的空间扫描,本实施例通过点云拼接,可以实现较大的空间扫描范围,获得较大的视场角,能够尽可能减小视野盲区。并且,本实施例激光雷达模组30结构紧凑、组装简易、造价较低。
下文对本申请实施例的激光雷达模组30进行阐述。
在一实施例中,激光收发组件31包括激光发射器311和发射透镜312。激光发射器311用于输出激光,具体是激光发射器311输出的激光经发射透镜312出射,且进一步经由反光元件10a反射至外部环境。可选地,发射透镜312的数量为至少一个,其设于激光发射器311的出光路径上,用于准直激光发射器311输出的激光,发射透镜312可以是双面镀膜光学透镜等。
在一实施例中,激光收发组件31还包括激光接收器313和接收透镜314。激光接收器313用于接收经由外部环境反射回的激光,具体是经由外部环境反射回的激光通过反光元件10a反射至接收透镜314,且进一步经接收透镜314入射至激光接收器313。可选地,激光接收器313可以是PD(Photon Diode,光电二极管)、APD(Avalanche Photon Diode,雪崩光电二极管)、SPAD(Single Photon Avalanche Diode,单光子雪崩二极管)等。接收透镜314的数量为至少一个,其设于激光接收器313的回光路径上,用于汇聚及接收经由外部环境反射回的激光,接收透镜314也可以是双面镀膜光学透镜等。
请一并参阅图2,图2是本申请反光元件、驱动组件及码盘一实施例的爆炸结构示意图。
在一实施例中,反光元件10a可以是介质膜反光镜、金属反光镜、棱镜等。当然,反光元件10a也可以是光栅、纳米光学器件等具有光束偏转功能的器件,在此不作限定。具体地,反光元件10a包括第一反光部11和第二反光部12。激光发射器311与激光接收器313沿激光雷达模组30的第二方向(如图2中箭头Z所示,下同)分层设置,第二方向具体为激光雷达模组30的高度方向,即激光发射器311和发射透镜312层叠于激光接收器313和接收透镜314在该第二方向上的一侧。对应地,第一反光部11和第二反光部12沿该第二方向分层设置。激光发射器311输出的激光通过第一反光部11反射至外部环境,经由外部环境反射回的激光通过第二反光部12反射至接收透镜314,并经接收透镜314入射至激光接收器313。
本实施例中反光元件10a能够实现上述至少两组激光收发组件31与外部环境进行激光交互,该至少两组激光收发组件31共用同一组反光元件10a,能够简化激光雷达模组30的结构,进而有利于提高激光雷达模组30的结构紧凑度及集成度,能够有效降低激光雷达模组30的造价。
请一并参阅图3a-3b,图3a-3b是本申请应用于清洁装置的透光罩第一实施例的结构示意图。
在一实施例中,清洁装置还包括透光罩40。激光雷达模组30通过透光罩40与外部环境进行激光交互。激光收发组件31输出的激光经由反光元件10a反射至透光罩40,且进一步通过透光罩40出射至外部环境;经由外部环境反射回的激光通过透光罩40入射至反光元件10a,且进一步经反光元件10a反射至激光收发组件31。具体地,透光罩40还具有透光部,透光部包括第一透光部41以及第二透光 部42,激光雷达模组30输出的激光通过第一透光部41出射至外部环境,且经由外部环境反射回的激光通过第二透光部42入射至激光雷达模组30。
透光罩40定义有第一方向(如图3a-3b中箭头X所示,下同),第一方向垂直于第二方向,且透光罩40与激光雷达模组30沿第一方向相对设置。透光罩40还定义有参考平面(如图3a-3b中平面β所示,下同),参考平面垂直于第一方向。其中,第一透光部41相对参考平面倾斜设置,第二透光部42相对参考平面倾斜设置或第二透光部42平行于参考平面。如此一来,在倾斜的透光部反射的激光会偏离正常通过透光部的激光(该正常通过透光部的激光即为激光雷达模组30探测外部环境所需的激光信号),即便该反射的激光经多次反射后再次通过透光部,也不会对该正常通过透光部的激光造成显著的干扰,因而能够提高激光雷达模组30的系统信噪比,能够提高清洁装置中激光雷达模组30的探测精度。
需要说明的是,如图3a-3b所示,第一透光部41远离第二透光部42的端部可以朝向激光雷达模组30倾斜设置,有利于减小应用透光罩40的清洁机器人的整体体积以及有利于改善清洁机器人的外观。当然,在本申请的其它实施例中,第一透光部41远离第二透光部42的端部也可以朝远离激光雷达模组30的方向倾斜设置。同理,第二透光部42远离第一透光部41的端部可以朝向激光雷达模组30倾斜设置,如图3a所示;或是朝远离激光雷达模组30的方向倾斜设置;亦或是第二透光部42平行于参考平面,即第二透光部42相对参考平面并未倾斜,如图3b所示。本申请实施例以第一透光部41以及第二透光部42均相对参考平面倾斜设置为例进行阐述,仅为论述需要,并非因此造成限定。
在一实施例中,第一透光部41和第二透光部42沿上述的第二方向依次分布。具体地,经由反光元件10a的第一反光部11反射的激光通过第一透光部41出射至外部环境,且经由外部环境反射回的激光通过第二透光部42入射至第二反光部12。
可选地,第一透光部41和第二透光部42之间具有间隙且该间隙可以是狭缝形式,或者是第一透光部41和第二透光部42之间的间隙设置有挡板,在此不作限定。
在一实施例中,透光部(图3a中以第一透光部41为例)与参考平面之间的夹角为α。由于第一透光部41朝向及背离激光元件(图3a中以激光发射器311为例)的两个表面之间相互平行,激光发射器311输出的激光沿第一方向传输至第一透光部41,通过几何关系可以推导出第一透光部41所在位置处的反射光与入射光的夹角为2α。激光元件在第二方向上的长度为D,即激光发射器311在第二方向上的长度为D。激光元件与对应透光部之间的最短激光传播路径的长度为L,即激光发射器311与第一透光部41之间的最短激光传播路径的长度为L。其中,该最短激光传播路径指的是传播方向始终垂直于第二方向的激光的传播路径。
透光部与参考平面之间的夹角α、激光元件与对应透光部之间的最短激光传播路径的长度L及激光元件在第二方向上的长度D满足如是关系:tan2α≥D/L。即第一透光部41与参考平面之间的夹角α、激 光发射器311与第一透光部41之间的最短激光传播路径的长度L及激光发射器311在第二方向上的长度D满足如是关系:tan2α≥D/L。
通过上述方式,第一透光部41所在位置处的反射光会偏离该位置的入射光,同时该反射光会偏离激光发射器311,避免该反射光直接反射至激光发射器311,进一步能够避免第一透光部41所在位置处的反射光对激光雷达模组30探测外部环境所需的激光信号造成干扰,进一步能够提高激光雷达模组30的探测精度。
可选地,透光部与参考平面之间的夹角α可以为5°至25°,例如5°、10°、15°、20°、25°等。如此一来,透光部相对参考平面具有足够的倾斜程度,能够极大程度地降低反射光对激光雷达模组30探测外部环境所需的激光信号造成的干扰,同时透光部与参考平面之间的夹角不至于过大,避免对透光部的透光率造成明显的影响,进一步能够提高激光雷达模组30的探测精度。
需要说明的是,本实施例以激光发射器311与第一透光部41之间满足的关系为例进行阐述,可以理解的是激光接收器313与第二透光部42之间同样满足该关系,在此就不再赘述。
在一实施例中,清洁装置还包括隔板50,隔板50设于第一透光部41和第二透光部42之间。经由第一反光部11反射至第一透光部41的激光其在通过第一透光部41时,一部分激光发生折射而通过第一透光部41出射,一部分激光在第一透光部41发生反射,隔板50能够阻隔该部分反射的激光,避免该部分反射的激光入射至激光接收器313而造成干扰。
在一实施例中,反光元件10a的第一反光部11的高度小于透光罩40的第一透光部41的高度,使得经由第一反光部11反射的激光能够完整地被第一透光部41接收,并进一步通过第一透光部41出射至外部环境,能够提高激光雷达模组30的感测精度,以保证激光雷达模组30能够可靠实现清洁装置的路径规划导航及避障功能。
并且,第二反光部12的高度小于第二透光部42的高度,意味着第二透光部42具有较高的高度,能够尽可能完整地接收经由外部环境反射回的激光,该激光能够通过第二透光部42而入射至激光接收器313,同样能够提高激光雷达模组30的感测精度,以保证激光雷达模组30能够可靠实现清洁装置的路径规划导航及避障功能。
可选地,第一反光部11的高度H1可以为5mm至10mm,例如5mm、6mm、7mm、8mm、9mm、10mm等;第二反光部12的高度H2可以为10mm至20mm,例如10mm、15mm、20mm等;第一透光部41的高度h1可以为10mm至20mm,例如10mm、15mm、20mm等;第二透光部42的高度h2可以为10mm至20mm,例如10mm、15mm、20mm等。
在一实施例中,第一透光部41与第二透光部42之间的间距大于隔板50的厚度,使得隔板50能够方便地装配到第一透光部41与第二透光部42之间的间隙,并进一步能够使得透光罩40和隔板50连接 良好。
可选地,第一透光部41与第二透光部42之间的间距d可以为2mm至4mm,例如2mm、3mm、4mm等;隔板50的厚度w可以为1.5mm至3mm,例如1.5mm、2mm、2.5mm、3mm等。如此一来,本实施例通过合理设置第一透光部41与第二透光部42之间的间距以及隔板50的厚度,使得第一透光部41与第二透光部42之间的间距和隔板50的厚度之间的差值处于合理范围内,既能够使得隔板50方便地装配到第一透光部41与第二透光部42之间的间隙,又能够使得透光罩40和隔板50连接良好。
在一实施例中,自移动装置包括装置主体,装置主体能够在移动面上移动。自移动装置还包括激光雷达模组30,激光雷达模组30设于装置主体。自移动装置还包括透光罩40,透光罩40设于装置主体。其中透光罩40定义有相互垂直的第一方向和参考平面,透光罩40与激光雷达模组30沿第一方向相对设置,透光罩40还具有透光部,透光部包括第一透光部41以及第二透光部42,激光雷达模组30输出的激光通过第一透光部41出射至外部环境,且经由外部环境反射回的激光通过第二透光部42入射至激光雷达模组30。其中,第一透光部41相对参考平面倾斜设置,第二透光部42相对参考平面倾斜设置或第二透光部42平行于参考平面。
需要说明的是,自移动装置可以应用于清洁设备领域,即自移动装置可以为诸如清洁机器人等清洁装置,且移动面即为对应的待清洁面。当然,自移动装置也可以应用于其它领域,例如可以应用于物流等领域。其中,激光雷达模组30已在上述实施例中详细阐述,在此就不再赘述。
激光雷达传感器作为3D深度感知融合算法所必须的设备,其中激光雷达传感器具有探测距离远、分辨率高、受环境光干扰小等特点。激光雷达传感器的工作原理大致如下:激光雷达传感器的发射器发射出激光光束,通过光束扫描装置出射,进行一定范围内的空间扫描,激光光束遇到障碍物后,经过漫反射,返回至激光接收器,传感器模块根据发送与接收激光的时间间隔可以计算出传感器与物体的距离。除了距离信息之外,激光雷达传感器还可以获取距离以外的信息,例如方位、速度、大小、形状、反射率等。
传统的机械旋转式激光雷达传感器,一种是通过电机带动反射镜旋转,进行一定范围内的空间扫描。这往往需要将发射器和接收器与旋转部件分层错开,导致激光雷达传感器的整体高度较高,体积也会较大。另一种是通过电机带动测量头(发射器和接收器)整体旋转,此时电机的负载较大,导致较难保证测量头以较高速率旋转,致使传感器无法获得很高的角分辨率,并且传感器的结构复杂、造价较高。
半固态激光雷达传感器通常使用振镜、楔形镜、多面体转镜等,由于激光入射和接收位置的影响以及电机转速的限制,限制了传感器的扫描范围,导致传感器无法达到足够的视场角,而且传感器的结构复杂、造价较高。
有鉴于此,本申请的一实施例提供一种激光雷达模组,能够解决上述现有技术中所存在的技术问题。下文进行详细阐述。
在一实施例中,激光雷达模组30还包括驱动组件32,驱动组件32与反光元件10a传动连接,用于驱动反光元件10a转动,使得各组激光收发组件31均通过反光元件10a与外部环境进行激光交互。激光雷达模组30还包括码盘33,码盘33能够随反光元件10a同步转动。激光雷达模组30还包括传感器,传感器能够通过码盘33感测反光元件10a的转动角度,以基于反光元件10a的转动角度控制各组激光收发组件31交替地与外部环境进行激光交互。
可选地,驱动组件32包括驱动件,驱动件与反光元件10a和码盘33传动连接,以驱动反光元件10a和码盘33同步转动。其中,驱动件可以是电机等动力元件,在此不作限定。
举例而言,请一并参阅图6,码盘33包括码盘主体331及至少两个齿部(包括下文的第一齿部332和第二齿部333)。码盘主体331与反光元件10a传动连接,码盘主体331能够随反光元件10a同步转动。该至少两个齿部沿码盘主体331的周向依次间隔分布。随码盘主体331的转动,各齿部依次通过传感器。该至少两个齿部中具有一个第一齿部332,其余齿部为第二齿部333。第一齿部332不同于第二齿部333。本实施例通过统计在第一齿部332之后通过传感器的第二齿部333的数量测算反光元件10a的转动角度。
传感器可以是光耦等,各齿部能够随码盘主体331转动而依次对传感器的光信号进行遮挡,使得传感器产生对应的脉冲信号,该脉冲信号即指示传感器检测到各齿部通过传感器的动作。上述的至少两个齿部沿码盘主体331的周向均匀间隔分布,每个齿部所对应的圆心角相同。第一齿部332的齿宽不同于第二齿部333的齿宽,图6示例性地展示了第一齿部332的齿宽小于第二齿部333的齿宽的情况。第一齿部332对传感器的光信号的遮挡程度不同于第二齿部333对传感器的光信号的遮挡程度,使得传感器对应第一齿部332和第二齿部333产生不同的脉冲信号,以此能够判断出传感器检测到第一齿部332,之后通过统计在第一齿部332之后通过传感器的第二齿部333的数量测算反光元件10a的转动角度。
在一实施例中,以激光雷达模组30包括两组激光收发组件31为例,当反光元件10a转动的一定角度范围时,其中一组激光收发组件31工作,此时该组激光收发组件31的视场角为ω1;而当反光元件10a转动的其它角度范围时,另一组激光收发组件31工作,此时该组激光收发组件31的视场角为ω2。该两组激光收发组件31的视场范围存在交叠,且该两组激光收发组件31之间交叠的视场范围对应的视场角为ω3。因此,激光雷达模组30整体的视场角ω=ω123
请一并参阅图7,各组激光收发组件31均具有最大视场角ωmax。以激光发射器311输出激光为基础,当反光元件10a未对激光发射器311输出的激光进行分割及遮挡,激光收发组件31具有最大扫描视场,对应的视场角为最大视场角ωmax。发射透镜312的出射光束直径为d1,反光元件10a的长度为H。 需要说明的是,本实施例优选是反光元件10a的第一反光部11和第二反光部12具有相同的长度和厚度。
满足:其中0<k≤1。通过前述方式,本实施例能够保证反光元件10a能够完整地接收经发射透镜312出射的激光,避免反光元件10a对该出射的激光造成遮挡,因而能够提高激光雷达模组30的感测精度,以保证激光雷达模组30能够可靠实现清洁装置的路径规划导航及避障功能。需要说明的是,k的取值与光束的能量分布情况有关,例如当光束的能量均匀分布时k取值为1,当光束的能量分布符合高斯分布时k取值为0.85等。
可选地,激光收发组件31的最大视场角ωmax可以为50°至180°,例如50°、70°、90°、110°、130°、150°、180°等;发射透镜312的出射光束直径d1可以为2mm至10mm,例如2mm、3mm、4mm、5mm、6mm、7mm、8mm、9mm、10mm等;反光元件10a的长度H可以为15mm至40mm,例如15mm、20mm、25mm、30mm、35mm、40mm等;反光元件10a的厚度W可以为0.5mm至3mm,例如0.5mm、1mm、1.5mm、2mm、2.5mm、3mm等。
在一实施例中,第一反光部11的高度大于发射透镜312的直径,使得通过发射透镜312出射的激光能够完整地被第一反光部11接收,并进一步经由第一反光部11反射至外部环境,能够提高激光雷达模组30的感测精度,以保证激光雷达模组30能够可靠实现清洁装置的路径规划导航及避障功能。
并且,第二反光部12的高度大于接收透镜314的直径,意味着第二反光部12具有较高的高度,能够尽可能完整地接收经由外部环境反射回的激光,并将该激光反射至接收透镜314以入射至激光接收器313,同样能够提高激光雷达模组30的感测精度,以保证激光雷达模组30能够可靠实现清洁装置的路径规划导航及避障功能。
可选地,接收透镜314的直径d2可以为10mm至20mm,例如10mm、15mm、20mm等;第一反光部11的高度H1可以为5mm至10mm,例如5mm、6mm、7mm、8mm、9mm、10mm等;第二反光部12的高度H2可以为10mm至20mm,例如10mm、15mm、20mm等。
在一实施例中,自移动装置包括装置主体,装置主体能够在移动面上移动。自移动装置还包括激光雷达模组30,激光雷达模组30设于装置主体。其中,激光雷达模组30包括激光收发组件31,激光收发组件31包括激光发射器311和发射透镜312。激光雷达模组30还包括反光元件10a,激光发射器311输出的激光经发射透镜312出射至反光元件10a,并通过反光元件10a反射至外部环境。
其中,激光收发组件31具有最大视场角ωmax,发射透镜312的出射光束直径为d1,反光元件10a的长度为H,满足:其中0<k≤1。
需要说明的是,自移动装置可以应用于清洁设备领域,即自移动装置可以为诸如清洁机器人等清洁装置,且移动面即为对应的待清洁面。当然,自移动装置也可以应用于其它领域,例如可以应用于物流 等领域。其中,激光雷达模组30已在上述实施例中详细阐述,在此就不再赘述。
在一实施例中,反光组件10的反光面由相互垂直的第二方向和第一预设方向(如图2中箭头A所示,下同)所定义,即第一反光部11的反光面及第二反光部12的反光面均由相互垂直的第二方向和第一预设方向所定义。
反光组件10还包括隔光结构20。隔光结构20设于第一反光部11和第二反光部12之间。隔光结构20用于防止激光雷达模组30输出的激光经反光元件10a反射后直接打向激光雷达模组30,进而降低激光雷达模组30错误响应的风险,具体是激光发射器311输出的激光经反光元件10a反射后会被隔光结构20阻挡,以避免该反射的激光被激光接收器313接收而造成激光接收器313错误响应。
需要说明的是,本实施例中隔光结构20在第一预设方向上的长度小于或等于第一反光部11在第一预设方向上的长度及第二反光部12在第一预设方向上的长度。换言之,本实施例隔光结构20在第一预设方向上的长度较小,意味着隔光结构20在随反光组件10转动的过程中具有较好的平衡性,因而能够提高反光组件10的稳定性,进而有利于保证激光雷达模组30对外部环境进行扫描过程的稳定性。
可选地,隔光结构20在第一预设方向上的长度为第一反光部11在第一预设方向上的长度及第二反光部12在第一预设方向上的长度的55%至65%。如此一来,既能够使得隔光结构20在第一预设方向上的长度较小,进而使得隔光结构20在随反光组件10转动的过程中具有较好的平衡性,又能够避免隔光结构20在第一预设方向上的长度过于小而导致隔光结构20无法起到良好的隔光作用,尽可能地降低激光雷达模组30错误响应的风险。
请一并参阅图8,图8是本申请反光组件一实施例的爆炸结构示意图。
在一实施例中,反光组件10还包括衔接结构13,第一反光部11和第二反光部12彼此间隔,具体是第一反光部11和第二反光部12沿上述的第二方向彼此间隔,且第一反光部11和第二反光部12之间通过衔接结构13连接。
隔光结构20包括第一隔光件21和第二隔光件22。第一隔光件21和第二隔光件22对接形成容置槽23。第一隔光件21和第二隔光件22能够分别从衔接结构13的相对两侧进行对接,使得第一隔光件21和第二隔光件22能够配合形成完整的容置槽23,并且使得衔接结构13容置于容置槽23中,如此实现隔光结构20装配于反光元件10a。
具体地,衔接结构13在第一预设方向上的长度小于第一反光部11在第一预设方向上的长度及第二反光部12在第一预设方向上的长度,即反光元件10a在第一预设方向上的两侧边缘内凹,以形成第一反光部11、第二反光部12及衔接结构13。并且,第一反光部11和第二反光部12之间在第二方向上的间距大于第一隔光件21在第二方向上的长度及第二隔光件22在第二方向上的长度,使得第一隔光件21和第二隔光件22均能够嵌入第一反光部11和第二反光部12之间的间隙以进行对接。
进一步地,容置槽23沿第一预设方向延伸。如此一来,隔光结构20通过容置槽23能够与反光元件10a的衔接结构13可靠定位配合,有利于保证定位效果,即隔光结构20与反光元件10a之间能够可靠装配且具有较高的定位精度。
在一实施例中,反光组件10还定义有第二预设方向(如图8中箭头B所示,下同),第二方向、第一预设方向及第二预设方向两两相互垂直,即第二预设方向垂直于反光组件10的反光面。容置槽23的至少部分处于第一隔光件21在第二预设方向上的中部位置。第一隔光件21和第二隔光件22沿第一预设方向进行对接,即第一隔光件21和第二隔光件22之间的接触面垂直于第一预设方向。
通过上述方式,本实施例允许第一隔光件21先行与反光元件10a进行装配,即第一隔光件21先行嵌入第一反光部11和第二反光部12之间的间隙,使得衔接结构13容置于第一隔光件21上的容置槽23中,此时隔光结构20主要通过第一隔光件21与反光元件10a进行配合定位。之后再另行装配第二隔光件22,使得第一隔光件21和第二隔光件22对接以形成完整的容置槽23,此时第二隔光件22起到辅助定位作用。换言之,本实施例中先后装配第一隔光件21和第二隔光件22的方式,能够提高隔光结构20装配过程的便捷性,同时隔光结构20通过第一隔光件21即可与反光元件10a实现定位,隔光结构20的定位精度可以得到良好的保证。
然而,如若容置槽23处于第一隔光件21和第二隔光件22在第一预设方向上的中部位置,此时第一隔光件21和第二隔光件22对接后二者之间的接触面垂直于第二预设方向。由于反光元件10a在第一预设方向上的长度远大于反光元件10a在第二预设方向上的长度,前述方式将会导致第一隔光件21或第二隔光件22较难单独与反光元件10a进行定位,第一隔光件21和第二隔光件22需要同时与反光元件10a进行定位,致使隔光结构20的装配过程较为困难,且此时隔光结构20与反光元件10a之间的定位精度由第一隔光件21和第二隔光件22两个元件进行保证,存在明显的定位误差。
在一实施例中,第一隔光件21包括第一隔光部211以及第一固定部212,第一隔光部211与第一固定部212沿第二方向层叠设置。第一隔光部211,顾名思义,其为第一隔光件21中起到主要隔光作用的部分。第一固定部212用于在第一隔光部211的基础上,提高第一隔光件21与反光元件10a之间定位配合的稳定度,有利于提高隔光结构20与反光元件10a之间的定位精度。
具体地,容置槽23的至少部分处于第一隔光件21,图8示例性地展示了整个容置槽23处于第一隔光件21上的情况。容置槽23沿第二方向贯穿第一隔光部211和第一固定部212。在第一隔光部211和第一固定部212嵌入第一反光部11和第二反光部12之间的间隙后,衔接结构13容置于容置槽23中,且容置槽23的槽壁与衔接结构13配合进行定位。第一固定部212在第一隔光部211的基础上增加了容置槽23的槽壁与衔接结构13之间的配合面积,进而提高第一隔光件21与反光元件10a之间定位配合的稳定度。
第二隔光件22包括第二隔光部221以及第二固定部222,第二隔光部221与第二固定部222沿第二方向层叠设置。第二隔光部221,顾名思义,其为第二隔光件22中起到主要隔光作用的部分。并且,第二隔光件22通过第二固定部222与第一隔光件21进行对接,具体是第一隔光部211与第二隔光部221进行对接,第一固定部212与第二固定部222进行对接。
进一步地,隔光结构20还包括固定柱241,固定柱241设于第一固定部212和第二固定部222中的一者。隔光结构20还包括固定孔242,固定孔242设于第一固定部212和第二固定部222中的另一者。其中,固定柱241被配置为能够在第一固定部212与第二固定部222对接后嵌设于固定孔242中,以固定第一隔光件21和第二隔光件22之间的相对位置,实现第一隔光件21和第二隔光件22之间的紧固配合。
举例而言,图8示例性地展示了第一隔光件21的第一固定部212设有固定孔242,第二隔光件22的第二固定部222设有固定柱241。并且,第一反光部11和第二反光部12之间在第二方向上的间距大于第一隔光部211和第一固定部212在第二方向上的长度总和以及第二隔光部221和第二固定部222在第二方向上的长度总和,使得第一隔光部211和第一固定部212能够嵌入第一反光部11和第二反光部12之间的间隙,并且第二隔光部221和第二固定部222能够嵌入第一反光部11和第二反光部12之间的间隙,从而进行对接。
当然,在本申请的其它实施例中,第一隔光件21可以仅设置第一隔光部211,且第二隔光件22可以仅设置第二隔光部221,在此不作限定。
请一并参阅图9,图9是本申请反光组件另一实施例的结构示意图。
在一实施例中,第一隔光件21具有第一台阶部213,第一台阶部213处于第一隔光件21朝向第二隔光件22的边缘。具体地,第一台阶部213处于第一隔光部211朝向第二隔光件22的边缘,第一台阶部213在第二方向上的长度小于第一隔光部211在第二方向上的长度,从而在第一隔光部211的边缘形成台阶结构。
第二隔光件22具有第二台阶部223,第二台阶部223处于第二隔光件22朝向第一隔光件21的边缘。具体地,第二台阶部223处于第二隔光部221朝向第一隔光件21的边缘,第二台阶部223在第二方向上的长度小于第二隔光部221在第二方向上的长度,从而在第二隔光部221的边缘形成台阶结构。
在第一隔光件21和第二隔光件22对接后,第一台阶部213和第二台阶部223在第二方向上彼此叠合,如图9所示,使得第一隔光件21和第二隔光件22之间的接触面沿第二方向蜿蜒延伸。通过前述方式,传播至隔光结构20的激光沿直线传播,其较难从第一隔光件21和第二隔光件22之间通过,能够防止激光雷达模组30输出的激光经反光元件10a反射后直接打向激光雷达模组30,进一步能够降低激光雷达模组30错误响应的风险。并且,第一隔光件21和第二隔光件22之间的接触面积得到增加,有 利于提高第一隔光件21和第二隔光件22之间的装配可靠性。
在一实施例中,隔光结构20还包括点胶槽25,点胶槽25设于第一隔光件21和/或第二隔光件22,以通过点胶槽25将粘接胶体施加于第一隔光件21和第二隔光件22之间的接触面。
本实施例第一隔光件21和第二隔光件22之间可以通过点胶的方式进行紧固装配,因此隔光结构20设置有点胶槽25。举例而言,如图8所示,点胶槽25的一部分处于第一隔光件21的第一隔光部211上,点胶槽25的另一部分处于第二隔光件22的第二台阶部223上。随第一隔光件21和第二隔光件22之间对接的动作,第一隔光件21和第二隔光件22配合形成完整的点胶槽25。并且,由于第一隔光件21和第二隔光件22之间的接触面沿第二方向蜿蜒延伸,使得第一隔光件21和第二隔光件22之间的接触面积得到增加,意味着第一隔光件21和第二隔光件22之间具有较大的点胶面积,有利于提高第一隔光件21和第二隔光件22之间的连接强度。
当然,在本申请的其它实施例中,点胶槽25的一部分也可以处于第一隔光件21的第一台阶部213上,点胶槽25的另一部分处于第二隔光件22的第二隔光部221上;或是点胶槽25可以仅设于第一隔光件21或第二隔光件22,在此不作限定。
在一实施例中,自移动装置包括装置主体,装置主体能够在移动面上移动。自移动装置还包括激光雷达模组30,激光雷达模组30设于装置主体。激光雷达模组30包括激光收发组件31,激光收发组件31用于输出激光及接收经外部环境反射回的激光。激光雷达模组30还包括反光组件10,其反光面由相互垂直的第二方向和第一预设方向所定义。其中,反光组件10包括第一反光部11,第一反光部11用于将激光收发组件31输出的激光反射至外部环境。反光组件10还包括第二反光部12,第二反光部12与第一反光部11沿第二方向层叠设置,且用于将来自外部环境的激光反射至激光收发组件31。反光组件10还包括隔光结构20,隔光结构20设于第一反光部11和第二反光部12之间。其中,隔光结构20在第一预设方向上的长度小于或等于第一反光部11在第一预设方向上的长度及第二反光部12在第一预设方向上的长度。
需要说明的是,自移动装置可以应用于清洁设备领域,即自移动装置可以为诸如清洁机器人等清洁装置,且移动面即为对应的待清洁面。当然,自移动装置也可以应用于其它领域,例如可以应用于物流等领域。其中,激光雷达模组30已在上述实施例中详细阐述,在此就不再赘述。
诸如扫地机器人等清洁装置,能够自行在地面上移动,以清洁地面。清洁装置的路径规划导航及避障需要借助激光雷达传感器实现。在一种情形中,通过电机驱动传感器旋转来满足导航及避障对视场角的要求,然而该情形中传感器通常凸出于清洁装置的顶部,导致机身高度过高。在另一种情形中,为了降低机身高度以提高清洁装置通过低矮区域的能力以及改善传感器系统的稳定性和可靠性等,将传感器内置于机身内部,然后该情形中传感器的各个零部件组装困难。请参阅图10,图10中电机954处于爆炸视图状态。传感器的组装过程具体是:模组的固定座951是一体结构;将反光镜952从固定座951的轴承 孔上方往下安装,并将码盘953从轴承孔下方往上安装,再将轴承从轴承孔的上方放入轴承孔并压入码盘953,然后从侧面将轴用挡圈卡入码盘953上的卡簧槽中,最后将电机954从模组底部往上安装而与码盘953对接。该情形中,由于反光镜952和码盘953需要分别从固定座951的上下两侧单独进行组装,导致传感器的组装过程较为繁琐、复杂。
请参阅图11,图11是本申请激光雷达模组另一实施例的结构示意图。图11中驱动件912处于爆炸视图状态。
在一实施例中,激光雷达模组910应用于诸如扫地机器人等清洁装置的路径规划导航及避障。激光雷达模组910包括模组壳体911,模组壳体911为激光雷达模组910的基础载体,对激光雷达模组910的其它零部件起到承载及保护的作用。具体地,模组壳体911具有容置腔9111及容置于容置腔9111中的安装座9112。安装座9112包括座主体9113和第一盖体9114,第一盖体9114可拆卸地装配于座主体9113,且第一盖体9114与座主体9113配合形成第一安装孔9115。可选地,座主体9113和第一盖体9114之间可以通过螺钉等紧固件进行可拆卸装配。
激光雷达模组910还包括激光收发组件920。激光收发组件920容置于容置腔9111中,激光收发组件920用于与外部环境进行激光交互,以实现清洁装置的路径规划导航及避障。激光雷达模组910还包括反光组件930。激光收发组件920与外部环境之间的激光交互过程具体是:激光收发组件920输出的激光经由反光组件930反射至外部环境,且来自外部环境的激光经由反光组件930反射至激光收发组件920。其中,路径规划导航及避障的原理属于本领域技术人员的理解范畴,在此就不再赘述。
反光组件930装配于安装座9112的第一安装孔9115。由于第一盖体9114可拆卸地装配于座主体9113,在组装反光组件930之间先将第一盖体9114从座主体9113上拆卸下来,之后将反光组件930整体组装到座主体9113,此时允许反光组件930装配到位后再将第一盖体9114与座主体9113进行组装,进而固定反光组件930。如此一来,本实施例中第一盖体9114与座主体9113之间可拆卸的设计,能够方便组装反光组件930,因而能够改善组装激光雷达模组910的便捷性。
请一并参阅图12,图12是本申请反光组件和驱动件一实施例的结构示意图。
在一实施例中,反光组件930包括反光元件931。反光元件931可转动地装配于第一安装孔9115。基于激光雷达模组910内置于清洁装置机身内部的设计,激光收发组件920的组数需要设置为至少两组,通过至少两组激光收发组件920来满足路径规划导航及避障对视场角的要求。具体地,响应于反光元件931的转动动作,各组激光收发组件920交替地与外部环境进行激光交互。
可选地,反光元件931可以是介质膜反射镜、金属反射镜、棱镜等,也可以是光栅、纳米光学器件等具有光束偏转功能的器件,在此不作限定。
反光组件930还包括码盘934。码盘934用于检测反光元件931的转动角度,以基于反光元件931的转 动角度,控制各组激光收发组件920交替地与外部环境进行激光交互。激光雷达模组910还包括驱动件912,驱动件912通过码盘934与反光元件931传动连接,用于驱动码盘934和反光元件931同步转动。
可选地,驱动件912可以是电机等动力元件,在此不作限定。
需要说明的是,本实施例中第一盖体9114与座主体9113之间可拆卸的设计,在将第一盖体9114从座主体9113上拆卸下来后,可以将反光元件931和码盘934整体一起组装到座主体9113,之后待反光元件931和码盘934装配到位后再将第一盖体9114与座主体9113进行组装。这有别于上述实施例中反光镜和码盘需要分别从固定座的上下两侧单独进行组装的方式,本实施例能够方便组装反光组件930,能够改善组装激光雷达模组910的便捷性。
并且,对于上述实施例中反光镜和码盘需要分别从固定座的上下两侧单独进行组装的情况,受限于传感器的模组高度,码盘和电机之间的间隙很小(通常仅有91mm左右),这也导致了码盘和电机之间的组装过程比较困难。本实施例中第一盖体9114与座主体9113之间可拆卸的设计,在组装第一盖体9114之前反光组件930是可调整的,能够方便码盘934与驱动件912进行对接,即本实施例还能够方便码盘934与驱动件912之间的组装过程,进一步能够改善组装激光雷达模组910的便捷性。反光组件930装配到位即指反光组件930的码盘934与驱动件912正确对接。
进一步地,请一并参阅图13a-13b,反光组件930还包括传感器。码盘934包括码盘主体9341及至少两个齿部(包括下文的第一齿部9343和第二齿部9344)。码盘主体9341与反光元件931传动连接,码盘主体9341能够随反光元件931同步转动。该至少两个齿部沿码盘主体9341的周向依次间隔分布。随码盘主体9341的转动,各齿部依次通过传感器。该至少两个齿部中具有一个第一齿部9343,其余齿部为第二齿部9344。第一齿部9343不同于第二齿部9344。本实施例通过统计在第一齿部9343之后通过传感器的第二齿部9344的数量测算反光元件931的转动角度。
举例而言,传感器可以是光耦等,各齿部能够随码盘主体9341转动而依次对传感器的光信号进行遮挡,使得传感器产生对应的脉冲信号,该脉冲信号即指示传感器检测到各齿部通过传感器的动作。上述的至少两个齿部沿码盘主体9341的周向均匀间隔分布,每个齿部所对应的圆心角相同。第一齿部9343的齿宽不同于第二齿部9344的齿宽,图13b示例性地展示了第一齿部9343的齿宽小于第二齿部9344的齿宽的情况。第一齿部9343对传感器的光信号的遮挡程度不同于第二齿部9344对传感器的光信号的遮挡程度,使得传感器对应第一齿部9343和第二齿部9344产生不同的脉冲信号,以此能够判断出传感器检测到第一齿部9343,之后通过统计在第一齿部9343之后通过传感器的第二齿部9344的数量测算反光元件931的转动角度。
请继续参阅图12。在一实施例中,反光组件930还包括第一轴承932。反光元件931可转动地设置于第一轴承932,且第一轴承932装配于第一安装孔9115。第一盖体9114与座主体9113进行组装后,第一盖 体9114与座主体9113配合将第一轴承932紧固于第一安装孔9115中,即固定反光组件930,同时允许反光元件931转动。
进一步地,码盘934具有连接柱9342。连接柱9342与反光元件931相插接,使得反光元件931与码盘934之间传动配合,即二者能够同步转动。并且,第一轴承932套设于连接柱9342的外周。连接柱9342的外侧壁设有凸部,凸部相对连接柱9342的外侧壁向外凸出设置,第一轴承932抵接于该凸部,以固定第一轴承932在连接柱9342上的位置。
在一实施例中,模组壳体911还包括壳主体9116,壳主体9116具有容置腔9111。模组壳体911还包括第二盖体9117。第二盖体9117可拆卸地装配于壳主体9116,且第二盖体9117与壳主体9116配合形成第二安装孔9118。反光组件930还包括第二轴承933。反光元件931还可转动地设置于第二轴承933,且第二轴承933装配于第二安装孔9118。可选地,第二盖体9117和壳主体9116之间可以通过螺钉等紧固件进行可拆卸装配。
本实施例激光雷达模组910的组装过程具体是:先单独组装包括反光元件931和码盘934的反光组件930,并且将第一盖体9114从座主体9113上拆卸下来以及将第二盖体9117从壳主体9116上拆卸下来;之后将反光组件930整体组装到座主体9113和壳主体9116,此时反光组件930是可调整的,以便于反光组件930的码盘934与驱动件912对接;待反光组件930装配到位后再将第一盖体9114与座主体9113进行组装以及将第二盖体9117与壳主体9116进行组装,进而固定反光组件930。可见,本实施例激光雷达模组910的组装过程非常便捷,组装效率很高,能够避免上述实施例中传感器组装困难且耗时而导致较高的人力成本。
请继续参阅图12及图13a-13b。在一实施例中,码盘934和驱动件912中的一者设有传动柱941,另一者设有传动孔942,传动柱941插设于传动孔942中,使得码盘934与驱动件912传动连接,如此驱动件912通过传动柱941与传动孔942传动配合能够驱动码盘934转动,进而驱动反光元件931转动。
图12和图13b示例性地展示了驱动件912设有传动柱941,码盘934设有传动孔942的情况。当然,在本申请的其它实施例中,也可以是驱动件912设有传动孔942,码盘934设有传动柱941,在此不作限定。码盘934与驱动件912对接即指传动柱941与传动孔942配合插接。
在一实施例中,传动孔942为沿码盘934的周向延伸的弧形腰孔。相较于传动孔942为圆孔的情况,本实施例传动孔942为弧形腰孔,能够降低传动柱941与传动孔942之间对接的难度,即能够方便传动柱941插入传动孔942中,进一步能够方便码盘934与驱动件912之间的组装过程。
进一步地,激光雷达模组910定义有第二方向(如图12中箭头Z所示,下同)。反光元件931、码盘934及驱动件912沿第二方向依次设置。传动孔942包括传动子孔9421以及引导子孔9422。引导子孔9422连通传动子孔9421,且引导子孔9422与传动子孔9421沿第二方向依次设置。引导子孔9422沿码盘934的 周向延伸,使得引导子孔9422形成背向传动子孔9421的孔壁,该孔壁具有背向传动子孔9421的引导斜面9423,引导斜面9423朝向驱动件912。引导斜面9423沿码盘934的周向倾斜延伸至传动子孔9421,即引导斜面9423具有坡度,传动柱941沿引导斜面9423移动而插入传动子孔9421中。
在组装码盘934和驱动件912时,将码盘934和驱动件912相互靠近,并适当操作码盘934和驱动件912之间相对转动,使得传动柱941初步嵌入传动孔942的引导子孔9422中。进一步操作码盘934和驱动件912之间相对转动,传动柱941能够沿引导斜面9423移动而插入传动子孔9421中,引导子孔9422通过具有坡度的引导斜面9423引导传动柱941滑动到传动子孔9421中,实现传动柱941与传动子孔9421精确对位配合,大大提高了码盘934和驱动件912之间的对准组装成功率。
需要说明的是,在各传动孔942中,传动孔942为弧形腰孔,传动子孔9421位于传动孔942的一端。当然,在本申请的其它实施例中,传动子孔9421可以位于传动孔942的中部位置,在此不作限定。
在一实施例中,传动柱941的数量及传动孔942的数量均为至少两个,该至少两个传动柱941及该至少两个传动孔942均沿码盘934的周向依次间隔分布。传动柱941与传动孔942之间间隙配合。如此一来,本实施例通过多组传动柱941和传动孔942弥补传动柱941和传动孔942的制造误差及装配误差,能够降低码盘934和驱动件912之间的对准组装难度,进一步能够方便码盘934与驱动件912之间的组装过程,同时能够避免码盘934在转动过程中发生卡顿现象。
举例而言,图12和图13b示例性地展示了传动柱941的数量及传动孔942的数量均为三个的情况,且各个传动柱941及各个传动孔942均沿码盘934的周向均匀间隔分布,传动柱941与传动孔942一一对应。
请一并参阅图14,图14是本申请码盘和驱动件之间的连接方式一实施例的结构示意图。
在一实施例中,激光雷达模组910还包括弹性垫913。弹性垫913包覆于传动柱941的外周,且传动柱941通过弹性垫913弹性接触传动孔942。传动柱941插设于传动孔942中,弹性垫913随传动柱941同步嵌入传动孔942,传动柱941和传动孔942之间通过弹性垫913形成弹性连接,避免了码盘934和驱动件912之间硬接触,能够有效减小码盘934和驱动件912碰撞而造成的噪音,即减小激光雷达模组910工作过程中产生的噪音。
弹性垫913包括但不局限于硅胶等材料,其具有良好的弹性、耐磨性、撕裂强度以及拉伸强度。图14示例性展示了本实施例传动孔942为圆孔的情况。当然,在本申请的其它实施例中,传动孔942也可以是上述实施例中包括传动子孔9421以及引导子孔9422的设计,在此不作限定。并且,对应图14所示传动柱941的数量及传动孔942的数量均为三个的情况,弹性垫913具有三个凸包,凸包与传动柱941、传动孔942一一对应,该凸包包覆于传动柱941的外周,且传动柱941通过该凸包弹性接触传动孔942。
请一并参阅图15,图15是本申请码盘和驱动件之间的连接方式另一实施例的结构示意图。
在一实施例中,激光雷达模组910还包括弹性连接件914,驱动件912通过弹性连接件914与码盘934 传动连接。有别于上述实施例中码盘934和驱动件912之间通过传动柱941和传动孔942传动配合的情况,本实施例码盘934和驱动件912之间通过弹性连接件914传动配合,驱动件912产生的转矩施加于弹性连接件914,弹性连接件914响应于自身的弹性回复力而发生扭动,从而将驱动件912的转矩作用于码盘934,进而驱动码盘934转动。本实施例码盘934和驱动件912之间通过弹性连接件914形成弹性连接,避免了码盘934和驱动件912之间硬接触,能够有效避免码盘934和驱动件912碰撞而造成的噪音,即减小激光雷达模组910工作过程中产生的噪音。
可选地,弹性连接件914可以是弹簧等弹性元件。并且,驱动件912上凸设有凸台。弹性连接件914的一端套设于凸台的外周且固定于驱动件912,另一端固定于码盘934。
在一实施例中,清洁装置包括装置主体,装置主体能够在待清洁面上移动以对待清洁面进行清洁。待清洁面可以是地面,或是待清洁物品的表面等。清洁装置还包括激光雷达模组910,激光雷达模组910设于装置主体。激光雷达模组910包括模组壳体911,模组壳体911具有容置腔9111及容置于容置腔9111中的安装座9112,其中安装座9112包括座主体9113和第一盖体9114,第一盖体9114可拆卸地装配于座主体9113,且第一盖体9114与座主体9113配合形成第一安装孔9115。激光雷达模组910还包括激光收发组件920,激光收发组件920容置于容置腔9111中。激光雷达模组910还包括反光组件930,反光组件930装配于第一安装孔9115,激光收发组件920输出的激光经由反光组件930反射至外部环境,且来自外部环境的激光经由反光组件930反射至激光收发组件920。
在一实施例中,自移动装置为可以在移动面上自行移动的装置,其包括但不限于上述实施例阐述的清洁装置。对应地,移动面包括但不限于上述实施例阐述的待清洁面。
具体地,自移动装置包括装置主体,装置主体能够在移动面上移动。自移动装置还包括激光雷达模组910,激光雷达模组910设于装置主体。激光雷达模组910包括模组壳体911,模组壳体911具有容置腔9111及容置于容置腔9111中的安装座9112,其中安装座9112包括座主体9113和第一盖体9114,第一盖体9114可拆卸地装配于座主体9113,且第一盖体9114与座主体9113配合形成第一安装孔9115。激光雷达模组910还包括激光收发组件920,激光收发组件920容置于容置腔9111中。激光雷达模组910还包括反光组件930,反光组件930装配于第一安装孔9115,激光收发组件920输出的激光经由反光组件930反射至外部环境,且来自外部环境的激光经由反光组件930反射至激光收发组件920。
请参阅图16,图16是本申请激光雷达模组的组装方法一实施例的流程示意图。本实施例阐述的组装方法是基于上述实施例阐述的激光雷达模组910。
S101:从座主体上拆卸第一盖体。
在本实施例中,第一盖体9114可拆卸地装配于座主体9113,为将反光组件930装配于第一盖体9114与座主体9113配合形成的第一安装孔9115中,需要先从座主体9113上拆卸第一盖体9114,以允许将反光 组件930先装配于第一安装孔9115处于座主体9113的部分。
S102:将反光组件装配于座主体。
在本实施例中,将反光组件930整体一起组装到座主体9113。有别于上述实施例中反光镜和码盘需要分别从固定座的上下两侧单独进行组装的方式,反光组件930整体进行组装的方式能够方便组装反光组件930,能够改善组装激光雷达模组910的便捷性。
S103:重新将第一盖体装配于座主体,使得反光组件装配于第一安装孔。
在本实施例中,待反光组件930装配到位后,重新将第一盖体9114装配于座主体9113,使得反光组件930装配于第一安装孔9115,进而固定反光组件930。本实施例中第一盖体9114与座主体9113之间可拆卸的设计,能够方便组装反光组件930,因而能够改善组装激光雷达模组910的便捷性。
下面结合具体应用场景对本申请实施例提供的技术方案进行说明。
应用场景一:
请一并参阅图3a和图4,透光罩40的第一透光部41和第二透光部42均为相对参考平面倾斜的平板。第一透光部41远离第二透光部42的端部朝向激光雷达模组30倾斜设置,第二透光部42远离第一透光部41的端部朝向激光雷达模组30倾斜设置。第一透光部41和第二透光部42与参考平面之间的夹角为12°。第一透光部41和第二透光部42之间通过隔板50隔开,以在激光雷达模组30内部降低激光发射器311输出的激光对激光接收器313的干扰。激光从激光发射器311输出,并通过透光罩40出射。在透光罩40的所在位置处,部分激光发生折射后直接通过透光罩40出射,出射光经过第一透光部41的两个表面折射,出射光的传播角度不会发生改变;部分激光在第一透光部41的表面发生反射,反射光反射至第一透光部41和第二透光部42之间的隔板50上,并被进一步吸收或反射。反射的激光和激光发射器311输出的激光之间存在较大的偏差,该反射的激光不会对激光雷达模组30探测外部环境所需的激光信号造成显著的干扰。
应用场景二:
请一并参阅图3b,透光罩40的第一透光部41远离第二透光部42的端部朝向激光雷达模组30倾斜设置,第二透光部42平行于参考平面。第一透光部41与参考平面之间的夹角为12°。第一透光部41和第二透光部42之间通过隔板50隔开,以在激光雷达模组30内部降低激光发射器311输出的激光对激光接收器313的干扰。激光从激光发射器311输出,并通过透光罩40出射。在透光罩40的所在位置处,部分激光发生折射后直接通过透光罩40出射,出射光经过第一透光部41的两个表面折射,出射光的传播角度不会发生改变;部分激光在第一透光部41的表面发生反射,反射光反射至第一透光部41和第二透光部42之间的隔板50上,并被进一步吸收或反射。反射的激光和激光发射器311输出的激光之间存在较大的偏差,该反射的激光不会对激光雷达模组30探测外部环境所需的激光信号造成显著的 干扰。
应用场景三:
请一并参阅图5,透光罩40的第一透光部41和第二透光部42均相对参考平面倾斜设置。第一透光部41远离第二透光部42的端部朝向激光雷达模组30倾斜设置,第二透光部42远离第一透光部41的端部朝向激光雷达模组30倾斜设置。第一透光部41和第二透光部42均呈弧形。第一透光部41和第二透光部42之间通过隔板50隔开,以在激光雷达模组30内部降低激光发射器311输出的激光对激光接收器313的干扰。激光从激光发射器311输出,并通过透光罩40出射。在透光罩40的所在位置处,部分激光发生折射后直接通过透光罩40出射,出射光经过第一透光部41的两个表面折射,出射光的传播角度不会发生改变;部分激光在第一透光部41的表面发生反射,反射光反射至第一透光部41和第二透光部42之间的隔板50上,并被进一步吸收或反射。反射的激光和激光发射器311输出的激光之间存在较大的偏差,该反射的激光不会对激光雷达模组30探测外部环境所需的激光信号造成显著的干扰。
应用场景四:
激光雷达模组30包括两组激光收发组件31。当反光元件10a转动的一定角度范围时,其中一组激光收发组件31工作,而当反光元件10a转动的其它角度范围时,另一组激光收发组件31工作。
激光收发组件31具有最大视场角ωmax,发射透镜312的出射光束直径为d1,反光元件10a的长度为H,满足:其中0<k≤1。反光元件10a包括第一反光部11和第二反光部12。第一反光部11的高度大于发射透镜312的直径,第二反光部12的高度大于接收透镜314的直径。
激光收发组件31的最大视场角ωmax可以为50°至180°;发射透镜312的出射光束直径d1可以为2mm至10mm;反光元件10a的长度H可以为15mm至40mm;反光元件10a的厚度W可以为0.5mm至3mm;接收透镜314的直径d2可以为10mm至20mm;第一反光部11的高度H1可以为5mm至10mm;第二反光部12的高度H2可以为10mm至20mm。
应用场景五:
清洁机器人包括装置主体,装置主体能够在地面上移动以对地面进行清洁。清洁机器人还包括激光雷达模组30,激光雷达模组30设于装置主体,用于实现清洁机器人的路径规划导航及避障功能。激光雷达模组30包括两组激光收发组件31。当反光元件10a转动的一定角度范围时,其中一组激光收发组件31工作,而当反光元件10a转动的其它角度范围时,另一组激光收发组件31工作。
激光收发组件31具有最大视场角ωmax,发射透镜312的出射光束直径为d1,反光元件10a的长度为H,满足:其中0<k≤1。反光元件10a包括第一反光部11和第二反光部12。第一反光部11的高度大于发射透镜312的直径,第二反光部12的高度大于接收透镜314的直径。清洁机器人还包括透光罩40,透光罩40包括彼此间隔的第一透光部41和第二透光部42。清洁机器人还包括隔板50,隔板50设于第一透光部41和第二透光部42之间。
激光收发组件31的最大视场角ωmax可以为50°至180°;发射透镜312的出射光束直径d1可以为2mm至10mm;反光元件10a的长度H可以为15mm至40mm;反光元件10a的厚度W可以为0.5mm至3mm;接收透镜314的直径d2可以为10mm至20mm;第一反光部11的高度H1可以为5mm至10mm;第二反光部12的高度H2可以为10mm至20mm;第一透光部41的高度h1可以为10mm至20mm;第二透光部42的高度h2可以为10mm至20mm;第一透光部41与第二透光部42之间的间距d可以为2mm至4mm;隔板50的厚度w可以为1.5mm至3mm。
应用场景六:
清洁机器人包括装置主体及设于装置主体的激光雷达模组30,激光雷达模组30用于对清洁机器人的外部环境进行空间扫描,以实现清洁机器人的路径规划导航及避障功能。激光雷达模组30还包括反光组件10,激光雷达模组30输出的激光经由反光组件10反射至外部环境,经由外部环境反射回的激光通过反光组件10反射至激光雷达模组30。
反光组件10包括第一反光部11和第二反光部12。第一反光部11和第二反光部12沿第二方向层叠设置。激光雷达模组30输出的激光通过第一反光部11反射至外部环境,经由外部环境反射回的激光通过第二反光部12反射至激光雷达模组30。反光组件还包括隔光结构20。隔光结构20设于第一反光部11和第二反光部12之间。隔光结构20用于防止激光雷达模组30输出的激光经反光元件10a反射后直接打向激光雷达模组30,进而降低激光雷达模组30错误响应的风险。
需要说明的是,本实施例中隔光结构20在第一预设方向上的长度小于或等于第一反光部11在第一预设方向上的长度及第二反光部12在第一预设方向上的长度。换言之,隔光结构20在第一预设方向上的长度较小,意味着隔光结构20在随反光组件10转动的过程中具有较好的平衡性,因而能够提高反光组件10的稳定性,进而有利于保证激光雷达模组30对外部环境进行扫描过程的稳定性。
应用场景七:
自移动装置包括装置主体及设于装置主体的激光雷达模组30,激光雷达模组30用于对自移动装置的外部环境进行空间扫描,以实现自移动装置的路径规划导航及避障功能。激光雷达模组30还包括反光组件10,激光雷达模组30输出的激光经由反光组件10反射至外部环境,经由外部环境反射回的激光通过反光组件10反射至激光雷达模组30。
反光组件10包括第一反光部11和第二反光部12。第一反光部11和第二反光部12沿第二方向层叠设置。激光雷达模组30输出的激光通过第一反光部11反射至外部环境,经由外部环境反射回的激光通过第二反光部12反射至激光雷达模组30。反光组件还包括隔光结构20。隔光结构20设于第一反光部11和第二反光部12之间。隔光结构20用于防止激光雷达模组30输出的激光经反光元件10a反射后直接打向激光雷达模组30,进而降低激光雷达模组30错误响应的风险。
需要说明的是,本实施例中隔光结构20在第一预设方向上的长度小于或等于第一反光部11在第一预设方向上的长度及第二反光部12在第一预设方向上的长度。换言之,隔光结构20在第一预设方向上的长度较小,意味着隔光结构20在随反光组件10转动的过程中具有较好的平衡性,因而能够提高反光组件10的稳定性,进而有利于保证激光雷达模组30对外部环境进行扫描过程的稳定性。
应用场景八:
激光雷达模组910设置安装座9112的第一盖体9114和座主体9113之间可拆卸,改进了激光雷达模组910的零部件组装顺序,从而简化激光雷达模组910的组装过程,改善组装激光雷达模组910的便捷性。激光雷达模组910的组装过程具体是:先单独组装包括反光元件931和码盘934的反光组件930,并且将第一盖体9114从座主体9113上拆卸下来以及将第二盖体9117从壳主体9116上拆卸下来;之后将反光组件930整体组装到座主体9113和壳主体9116,此时反光组件930是可调整的,以便于反光组件930的码盘934与驱动件912对接;待反光组件930装配到位后再将第一盖体9114与座主体9113进行组装以及将第二盖体9117与壳主体9116进行组装,进而固定反光组件930。
应用场景九:
在激光雷达模组910中,驱动件912设有传动柱941,码盘934设有传动孔942。传动孔942为沿码盘934的周向延伸的弧形腰孔。并且,传动孔942包括传动子孔9421以及引导子孔9422。引导子孔9422连通传动子孔9421。引导子孔9422沿码盘934的周向延伸,使得引导子孔9422形成背向传动子孔9421的孔壁,该孔壁具有背向传动子孔9421的引导斜面9423,引导斜面9423朝向驱动件912。引导斜面9423沿码盘934的周向倾斜延伸至传动子孔9421,即引导斜面9423具有坡度。
在组装码盘934和驱动件912时,将码盘934和驱动件912相互靠近,并适当操作码盘934和驱动件912之间相对转动,使得传动柱941初步嵌入传动孔942的引导子孔9422中。进一步操作码盘934和驱动件912之间相对转动,传动柱941能够沿引导斜面9423移动而插入传动子孔9421中,引导子孔9422通过具有坡度的引导斜面9423引导传动柱941滑动到传动子孔9421中,实现传动柱941与传动子孔9421精确对位配合,大大提高了码盘934和驱动件912之间的对准组装成功率。
应用场景十:
在激光雷达模组910的码盘934和驱动件912之间增加弹性垫913。弹性垫913包括但不局限于硅胶等材料,其具有良好的弹性、耐磨性、撕裂强度以及拉伸强度。为方便组装,先将弹性垫913套设于驱动件912上的传动柱941的外周,之后驱动件912和弹性垫913一起与码盘934进行组装。由于弹性垫913的存在,传动柱941与码盘934的传动孔942之间通过弹性垫913形成弹性连接,避免了码盘934和驱动件912之间硬接触,能够有效减小码盘934和驱动件912碰撞而造成的噪音,即减小激光雷达模组910工作过程中产生的噪音。
应用场景十一:
在激光雷达模组910的码盘934和驱动件912之间设置弹性连接件914,例如弹簧等。码盘934和驱动件912之间通过弹性连接件914形成弹性连接,避免了码盘934和驱动件912之间硬接触。码盘934和驱动件912之间通过弹性连接件914传动配合,驱动件912产生的转矩施加于弹性连接件914,弹性连接件914响应于自身的弹性回复力而发生扭动,从而将驱动件912的转矩作用于码盘934,进而驱动码盘934转动,可以有效避免码盘934和驱动件912碰撞而造成的噪音。
以上对本申请提供的清洁装置及其应用的透光罩、自移动装置进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种清洁装置,其中,包括:
    装置主体,能够在待清洁面上移动以对所述待清洁面进行清洁;
    激光雷达模组,设于所述装置主体;以及
    透光罩,设于所述装置主体,其中所述透光罩定义有相互垂直的第一方向和参考平面,所述透光罩与所述激光雷达模组沿所述第一方向相对设置,所述透光罩还具有透光部,所述透光部包括第一透光部以及第二透光部,所述激光雷达模组输出的激光通过所述第一透光部出射至外部环境,且经由外部环境反射回的激光通过所述第二透光部入射至所述激光雷达模组;
    其中,所述第一透光部相对所述参考平面倾斜设置,所述第二透光部相对所述参考平面倾斜设置或所述第二透光部平行于所述参考平面。
  2. 根据权利要求1所述的清洁装置,其中,
    所述透光罩还定义有垂直于所述第一方向的第二方向,所述第一透光部与所述第二透光部沿所述第二方向依次分布,且所述第二透光部相对所述参考平面倾斜设置;
    所述激光雷达模组包括:
    激光元件,用于输出激光或是接收经由外部环境反射回的激光;
    其中,所述透光部与所述参考平面之间的夹角为α,所述激光元件与对应所述透光部之间的最短激光传播路径的长度为L,所述激光元件在所述第二方向上的长度为D,且tan2α≥D/L。
  3. 根据权利要求1或2所述的清洁装置,其中,
    所述透光部与所述参考平面之间的夹角为5°至25°。
  4. 根据权利要求1所述的清洁装置,其中,
    所述激光雷达模组包括:
    激光发射器,用于输出激光;
    激光接收器,用于接收经由外部环境反射回的激光;
    第一反光部,所述激光发射器输出的激光通过所述第一反光部反射至所述第一透光部,并通过所述第一透光部出射至外部环境;以及
    第二反光部,经由外部环境反射回的激光通过所述第二透光部入射至所述第二反光部,并通过所述第二反光部反射至所述激光接收器。
  5. 根据权利要求4所述的清洁装置,其中,
    所述第一反光部的高度小于所述第一透光部的高度,且所述第二反光部的高度小于所述第二透光部的高度。
  6. 根据权利要求5所述的清洁装置,其中,
    所述第一反光部的高度为5mm至10mm;
    所述第二反光部的高度为10mm至20mm;
    所述第一透光部的高度及所述第二透光部的高度均为10mm至20mm。
  7. 根据权利要求4所述的清洁装置,其中,
    所述清洁装置还包括隔板,所述隔板设于所述第一透光部和所述第二透光部之间;
    其中,所述第一透光部与所述第二透光部之间的间距大于所述隔板的厚度。
  8. 根据权利要求7所述的清洁装置,其中,
    所述第一透光部与所述第二透光部之间的间距为2mm至4mm;
    所述隔板的厚度为1.5mm至3mm。
  9. 根据权利要求1所述的清洁装置,其中,
    所述激光雷达模组包括:
    激光收发组件,包括激光发射器和发射透镜;以及
    反光元件,所述激光发射器输出的激光经所述发射透镜出射至所述反光元件,并通过所述反光元件反射至外部环境;
    其中,所述激光收发组件具有最大视场角ωmax,所述发射透镜的出射光束直径为d1,所述反光元件的长度为H,满足:其中0<k≤1。
  10. 根据权利要求9所述的清洁装置,其中,
    所述激光收发组件还包括激光接收器和接收透镜;
    所述反光元件包括:
    第一反光部,所述激光发射器输出的激光通过所述第一反光部反射至外部环境;以及
    第二反光部,经由外部环境反射回的激光通过所述第二反光部反射至所述接收透镜,并经所述接收透镜入射至所述激光接收器;
    其中,所述第一反光部的高度大于所述发射透镜的直径,且所述第二反光部的高度大于所述接收透镜的直径;所述第一反光部的高度小于所述第一透光部的高度,且所述第二反光部的高度小于所述第二透光部的高度。
  11. 根据权利要求1所述的清洁装置,其中,
    所述激光雷达模组包括:
    激光收发组件,用于输出激光及接收经外部环境反射回的激光;以及
    反光组件,其反光面由相互垂直的第二方向和第一预设方向所定义,其中所述反光组件包括:
    第一反光部,用于将所述激光收发组件输出的激光反射至外部环境;
    第二反光部,与所述第一反光部沿所述第二方向层叠设置,且用于将来自外部环境的激光反射至所述激光收发组件;以及
    隔光结构,设于所述第一反光部和所述第二反光部之间;
    其中,所述隔光结构在所述第一预设方向上的长度小于或等于所述第一反光部在所述第一预设方向上的长度及所述第二反光部在所述第一预设方向上的长度。
  12. 根据权利要求11所述的清洁装置,其中,
    所述隔光结构在所述第一预设方向上的长度为所述第一反光部在所述第一预设方向上的长度及所述第二反光部在所述第一预设方向上的长度的55%至65%。
  13. 根据权利要求11或12所述的清洁装置,其中,
    所述反光组件还包括:
    衔接结构,所述第一反光部和所述第二反光部彼此间隔且二者通过所述衔接结构连接;
    所述隔光结构包括:
    第一隔光件;以及
    第二隔光件,能够与所述第一隔光件对接形成容置槽;
    其中,所述第一隔光件和所述第二隔光件分别从所述衔接结构的相对两侧进行对接,使得所述衔接结构容置于所述容置槽中。
  14. 根据权利要求1所述的清洁装置,其中,
    所述激光雷达模组包括:
    模组壳体,具有容置腔及容置于所述容置腔中的安装座,其中所述安装座包括座主体和第一盖体,所述第一盖体可拆卸地装配于所述座主体,且所述第一盖体与所述座主体配合形成第一安装孔;
    激光收发组件,容置于所述容置腔中;以及
    反光组件,装配于所述第一安装孔,所述激光收发组件输出的激光经由所述反光组件反射至外部环境,且来自外部环境的激光经由所述反光组件反射至所述激光收发组件。
  15. 根据权利要求14所述的清洁装置,其中,
    所述反光组件包括:
    反光元件,可转动地装配于所述第一安装孔,其中所述激光收发组件的组数为至少两组,响应于所述反光元件的转动动作,各组所述激光收发组件交替地与外部环境进行激光交互;
    码盘,用于检测所述反光元件的转动角度,以基于所述反光元件的转动角度,控制各组所述激光收发组件交替地与外部环境进行激光交互;
    所述激光雷达模组还包括:
    驱动件,通过所述码盘与所述反光元件传动连接,用于驱动所述码盘和所述反光元件同步转动。
  16. 根据权利要求15所述的清洁装置,其中,
    所述码盘和所述驱动件中的一者设有传动柱,另一者设有传动孔,所述传动柱插设于所述传动孔中,使得所述码盘与所述驱动件传动连接,所述传动孔为沿所述码盘的周向延伸的弧形腰孔。
  17. 根据权利要求16所述的清洁装置,其中,
    所述透光罩还定义有垂直于所述第一方向的第二方向,所述反光元件、所述码盘及所述驱动件沿所 述第二方向依次设置;
    所述传动孔包括:
    传动子孔;以及
    引导子孔,连通所述传动子孔且与所述传动子孔沿所述第二方向依次设置;
    其中,所述引导子孔的孔壁具有背向所述传动子孔的引导斜面,所述引导斜面沿所述码盘的周向倾斜延伸至所述传动子孔,所述传动柱沿所述引导斜面移动而插入所述传动子孔中。
  18. 根据权利要求15所述的清洁装置,其中,
    所述激光雷达模组还包括:
    弹性连接件,所述驱动件通过所述弹性连接件与所述码盘传动连接。
  19. 一种自移动装置,其中,包括:
    装置主体,能够在移动面上移动;
    激光雷达模组,设于所述装置主体;以及
    透光罩,设于所述装置主体,其中所述透光罩定义有相互垂直的第一方向和参考平面,所述透光罩与所述激光雷达模组沿所述第一方向相对设置,所述透光罩还具有透光部,所述透光部包括第一透光部以及第二透光部,所述激光雷达模组输出的激光通过所述第一透光部出射至外部环境,且经由外部环境反射回的激光通过所述第二透光部入射至所述激光雷达模组;
    其中,所述第一透光部相对所述参考平面倾斜设置,所述第二透光部相对所述参考平面倾斜设置或所述第二透光部平行于所述参考平面。
  20. 一种应用于清洁装置的透光罩,其中,所述清洁装置包括激光雷达模组;
    所述透光罩定义有相互垂直的第一方向和参考平面,所述透光罩能够与所述激光雷达模组沿所述第一方向相对设置,所述透光罩还具有透光部,所述透光部包括第一透光部以及第二透光部,所述激光雷达模组输出的激光通过所述第一透光部出射至外部环境,且经由外部环境反射回的激光通过所述第二透光部入射至所述激光雷达模组;
    其中,所述第一透光部相对所述参考平面倾斜设置,所述第二透光部相对所述参考平面倾斜设置或所述第二透光部平行于所述参考平面。
PCT/CN2023/124614 2022-10-24 2023-10-13 清洁装置及其应用的透光罩、自移动装置 WO2024088086A1 (zh)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
CN202211306034.4A CN117970287A (zh) 2022-10-24 2022-10-24 激光雷达模组及其组装方法、装置
CN202211306034.4 2022-10-24
CN202222902009.4U CN218978799U (zh) 2022-11-01 2022-11-01 清洁装置及其应用的透光罩、自移动装置
CN202211372400.6A CN118033594A (zh) 2022-11-01 2022-11-01 激光雷达模组及其应用的反光组件、装置
CN202222904346.7U CN219085153U (zh) 2022-11-01 2022-11-01 激光雷达模组、清洁装置以及自移动装置
CN202222904346.7 2022-11-01
CN202222902009.4 2022-11-01
CN202211372400.6 2022-11-01
CN202321652392.0 2023-06-27
CN202321652392.0U CN220212836U (zh) 2023-06-27 2023-06-27 清洁装置及其应用的透光罩、自移动装置
CN202321657418.0U CN220525995U (zh) 2023-06-27 2023-06-27 激光雷达模组、清洁装置以及自移动装置
CN202321657418.0 2023-06-27

Publications (1)

Publication Number Publication Date
WO2024088086A1 true WO2024088086A1 (zh) 2024-05-02

Family

ID=90830025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/124614 WO2024088086A1 (zh) 2022-10-24 2023-10-13 清洁装置及其应用的透光罩、自移动装置

Country Status (1)

Country Link
WO (1) WO2024088086A1 (zh)

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011141261A (ja) * 2009-12-08 2011-07-21 Denso Wave Inc レーザレーダ装置
CN111381241A (zh) * 2020-03-31 2020-07-07 深圳市银星智能科技股份有限公司 激光雷达和清洁机器人
WO2020143542A1 (zh) * 2019-01-07 2020-07-16 上海禾赛光电科技有限公司 一种激光雷达
CN111466835A (zh) * 2020-03-31 2020-07-31 深圳市银星智能科技股份有限公司 清洁机器人
WO2020182024A1 (zh) * 2019-03-11 2020-09-17 上海禾赛光电科技有限公司 激光收发模块及激光雷达系统
CN212307723U (zh) * 2020-03-31 2021-01-08 深圳市银星智能科技股份有限公司 清洁机器人
CN213023561U (zh) * 2020-06-08 2021-04-20 科沃斯机器人股份有限公司 一种激光测距模组以及自移动机器人
WO2021184476A1 (zh) * 2020-03-18 2021-09-23 陈泽雄 一种光路系统及激光雷达
US20210311173A1 (en) * 2018-12-18 2021-10-07 SZ DJI Technology Co., Ltd. Laser measuring device and unmanned aerial vehicle
WO2021223182A1 (zh) * 2020-05-07 2021-11-11 深圳市速腾聚创科技有限公司 激光雷达及自动驾驶设备
WO2021228206A1 (zh) * 2020-05-14 2021-11-18 北京一径科技有限公司 激光雷达
CN216209860U (zh) * 2021-09-02 2022-04-05 深圳市大疆创新科技有限公司 测距模组、激光雷达及可移动平台
CN216956366U (zh) * 2021-12-31 2022-07-12 云鲸智能科技(东莞)有限公司 清洁机器人
CN218824677U (zh) * 2022-10-24 2023-04-07 科沃斯机器人股份有限公司 激光雷达模组及清洁装置、自移动装置
CN218978799U (zh) * 2022-11-01 2023-05-09 科沃斯机器人股份有限公司 清洁装置及其应用的透光罩、自移动装置
CN219085135U (zh) * 2022-11-01 2023-05-26 科沃斯机器人股份有限公司 激光雷达模组及其应用反光组件、清洁装置、自移动装置
CN219085153U (zh) * 2022-11-01 2023-05-26 科沃斯机器人股份有限公司 激光雷达模组、清洁装置以及自移动装置

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011141261A (ja) * 2009-12-08 2011-07-21 Denso Wave Inc レーザレーダ装置
US20210311173A1 (en) * 2018-12-18 2021-10-07 SZ DJI Technology Co., Ltd. Laser measuring device and unmanned aerial vehicle
WO2020143542A1 (zh) * 2019-01-07 2020-07-16 上海禾赛光电科技有限公司 一种激光雷达
WO2020182024A1 (zh) * 2019-03-11 2020-09-17 上海禾赛光电科技有限公司 激光收发模块及激光雷达系统
WO2021184476A1 (zh) * 2020-03-18 2021-09-23 陈泽雄 一种光路系统及激光雷达
US20210298556A1 (en) * 2020-03-31 2021-09-30 Shenzhen Silver Star Intelligent Technology Co., Ltd Cleaning robot
CN212307723U (zh) * 2020-03-31 2021-01-08 深圳市银星智能科技股份有限公司 清洁机器人
CN111466835A (zh) * 2020-03-31 2020-07-31 深圳市银星智能科技股份有限公司 清洁机器人
CN111381241A (zh) * 2020-03-31 2020-07-07 深圳市银星智能科技股份有限公司 激光雷达和清洁机器人
WO2021223182A1 (zh) * 2020-05-07 2021-11-11 深圳市速腾聚创科技有限公司 激光雷达及自动驾驶设备
WO2021228206A1 (zh) * 2020-05-14 2021-11-18 北京一径科技有限公司 激光雷达
CN213023561U (zh) * 2020-06-08 2021-04-20 科沃斯机器人股份有限公司 一种激光测距模组以及自移动机器人
CN216209860U (zh) * 2021-09-02 2022-04-05 深圳市大疆创新科技有限公司 测距模组、激光雷达及可移动平台
CN216956366U (zh) * 2021-12-31 2022-07-12 云鲸智能科技(东莞)有限公司 清洁机器人
CN218824677U (zh) * 2022-10-24 2023-04-07 科沃斯机器人股份有限公司 激光雷达模组及清洁装置、自移动装置
CN218978799U (zh) * 2022-11-01 2023-05-09 科沃斯机器人股份有限公司 清洁装置及其应用的透光罩、自移动装置
CN219085135U (zh) * 2022-11-01 2023-05-26 科沃斯机器人股份有限公司 激光雷达模组及其应用反光组件、清洁装置、自移动装置
CN219085153U (zh) * 2022-11-01 2023-05-26 科沃斯机器人股份有限公司 激光雷达模组、清洁装置以及自移动装置

Similar Documents

Publication Publication Date Title
CN108445467B (zh) 一种扫描激光雷达系统
WO2000031618A1 (fr) Ecran tactile a balayage optique
CN110235025B (zh) 距离探测装置
US7268857B2 (en) Optical system for laser range finder
CN220271559U (zh) 激光雷达及移动设备
CN219085135U (zh) 激光雷达模组及其应用反光组件、清洁装置、自移动装置
WO2020142870A1 (zh) 一种测距装置
WO2024088086A1 (zh) 清洁装置及其应用的透光罩、自移动装置
CN219085153U (zh) 激光雷达模组、清洁装置以及自移动装置
JP6420846B2 (ja) 光学式ロータリーエンコーダ
RU2623719C2 (ru) Стилус направленной передачи ультразвука
CN218978799U (zh) 清洁装置及其应用的透光罩、自移动装置
US11550054B2 (en) Optical triangulation sensor for distance measurement
CN218824677U (zh) 激光雷达模组及清洁装置、自移动装置
US11579300B1 (en) Dual lens receive path for LiDAR system
CN220525995U (zh) 激光雷达模组、清洁装置以及自移动装置
CN118033594A (zh) 激光雷达模组及其应用的反光组件、装置
CN210894703U (zh) 测距装置及移动平台
CN220212836U (zh) 清洁装置及其应用的透光罩、自移动装置
JP4004177B2 (ja) 光走査型タッチパネル
CN210051895U (zh) 脉冲激光雷达
CN215116779U (zh) 抗反射干扰的测距雷达和移动机器人
CN219417730U (zh) 非同轴激光雷达和终端设备
WO2022141347A1 (zh) 激光测量装置及可移动平台
US20210333393A1 (en) Scanning module, distance measuring device and mobile platform

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23881665

Country of ref document: EP

Kind code of ref document: A1