实用新型内容
鉴于上述问题,提出了本申请,以便提供一种解决上述问题的测距模组、激光雷达及可移动平台。
第一方面,本申请实施例提供了一种测距模组,用于激光雷达,包括:测距支架、第一光学组件、发光基板以及受光基板;
所述测距支架上设有第一透光通道,以及与所述第一透光通道相连通的透光孔;
所述发光基板和所述受光基板堆叠于所述测距支架上,所述发光基板上设有发射器,所述受光基板上设有接收器,所述发射器与所述接收器两者中,一者与所述第一透光通道相对,另一者与所述透光孔相对;
至少部分所述第一光学组件位于所述第一透光通道内,且至少部分所述第一光学组件伸入所述激光雷达的扫描模组内。
所述发光基板与所述受光基板分别设置于所述测距支架的两侧;
或,所述发光基板与所述受光基板设置于所述测距支架的同一侧。
可选地,所述发光基板与所述受光基板相平行或呈第一预设角度设置。
可选地,所述发光基板与所述受光基板两者中,至少一者上设有安装凹槽;
所述测距支架上设有与所述安装凹槽相对应的安装部,所述安装部至少部分伸入所述安装凹槽内。
可选地,所述安装部与所述安装凹槽之间粘接连接。
可选地,所述安装凹槽设置于所述发光基板或所述受光基板的侧边缘,且所述安装凹槽朝向所述发光基板或所述受光基板的中心凹陷。
可选地,所述安装凹槽为弧形凹槽。
可选地,所述安装部包括:定位板,以及与所述定位板呈第二预设角度相连的加强筋;
所述定位板的弯折方向与所述安装凹槽的形状相匹配。
可选地,所述安装凹槽的数量为多个,多个所述安装凹槽沿所述发光基板或所述受光基板的周向间隔设置。
可选地,多个所述安装凹槽沿所述发光基板或所述受光基板的周向两两相对。
可选地,所述发射器设置于所述发光基板与所述测距支架相对的一侧。
可选地,所述接收器设置于所述受光基板与所述测距支架相对的一侧。
可选地,所述测距模组还包括:导热板;
所述导热板设置于所述发光基板上与所述发射器相对的一侧。
可选地,所述导热板上设有多个减重孔,多个所述减重孔以预设形状分布于所述导热板上。
可选地,所述测距支架包括:安装板,以及与所述安装板相连的安装座;
所述安装座至少部分伸入所述扫描模组内;
所述发光基板和所述受光基板堆叠于所述安装板上;
所述第一透光通道沿第一方向贯穿所述安装座和所述安装板,所述第一方向为由所述安装座至所述安装板的方向;
所述透光孔设置于所述安装座靠近所述安装板的一端;
至少部分所述第一光学组件设置于所述安装座伸入所述扫描模组的一端,所述发射器与所述接收器两者中,一者设置于所述安装板的一侧与所述第一透光通道相对,另一者设置于所述安装座的一侧与所述透光孔相对。
可选地,所述安装座设置于所述安装板的中心位置。
可选地,所述发光基板与所述受光基板两者中,其中一者为环状基板;
所述环状基板沿所述安装座的周向设置于所述安装板。
可选地,沿所述第一方向,所述第一透光通道的尺寸依次递减。
可选地,所述第一透光通道内设有至少一个第一台阶结构;
所述第一台阶结构包括:第一台阶面,以及与所述第一台阶面相连的第一侧面,所述第一台阶面平行于所述安装板所在平面,所述第一侧面与所述第一台阶面呈第三预设角度。
可选地,所述第一光学组件包括:导光件和透镜;
所述透镜设置于所述安装座伸入所述扫描模组的一端,且与所述第一透光通道相对;
所述导光件至少部分地设置于所述第一透光通道内,所述导光件的一端与所述透镜相对,另一端与所述透光孔相对。
可选地,所述导光件包括:导光柱、光纤、反射镜中的至少一种。
可选地,所述安装座上还设置有安装槽;
至少部分所述导光件设置于所述安装槽内,所述导光件的一端与所述透光孔相对,另一端伸入所述第一透光通道内与所述透镜相对。
可选地,所述导光件与所述安装槽之间粘接连接。
可选地,所述导光件位于所述第一透光通道内的部分为悬空设置。
可选地,所述导光件至少部分地倾斜伸入所述第一透光通道内。
可选地,所述导光件的外侧面上覆盖有反射膜层。
可选地,所述安装槽的槽壁上设有凸台和/或凸起筋;
所述导光件位于所述安装槽内的侧面抵接于所述凸台和/或所述凸起筋。
可选地,所述凸台和/或所述凸起筋上与所述导光件相接触的侧面为弧面。
可选地,所述凸台的数量为多个,多个所述凸台交错设置。
可选地,多个所述凸台的间隙之间设有打胶孔,所述打胶孔贯穿所述安装槽的槽壁。
可选地,所述第一透光通道与所述透光孔呈第四预设角度相交。
第二方面,本申请实施例提供了一种激光雷达,包括:上述的测距模组,以及具有第二透光通道的扫描模组;
所述测距模组与所述扫描模组堆叠设置,且所述测距模组的第一光学组件至少部分伸入所述第二透光通道内。
所述扫描模组包括:扫描支架、驱动组件以及第二光学组件;
所述驱动组件通过所述扫描支架与所述第二光学组件相连,以驱动所述第二光学组件以预设速率转动;
至少部分所述第二光学组件设置于所述第二透光通道内;
所述第二透光通道沿第二方向贯穿所述扫描支架,所述第二方向为所述测距模组与所述扫描模组的堆叠方向。
可选地,其特征在于,所述驱动组件沿所述第二透光通道的周向设置于所述扫描支架上。
可选地,所述驱动组件包括:第一驱动件、电机控制板和第二驱动件;
所述第一驱动件、所述电机控制板和所述第二驱动件均沿所述第二透光通道的周向设置于所述扫描支架上,且所述第一驱动件和所述第二驱动件均与所述电机控制板电连接;
所述第二光学组件包括:第一光学元件和第二光学元件,所述第一光学元件设置于所述第二透光通道远离所述测距模组的一端,所述第二光学元件设置于所述第二透光通道内;
所述第一驱动件与所述第一光学元件相连,以驱动所述第一光学元件以第一预设速率转动;
所述第二驱动件与所述第二光学元件相连,以驱动所述第二光学元件以第二预设速率转动。
可选地,所述第一驱动件、所述电机控制板和所述第二驱动件依次堆叠设置。
可选地,所述第一驱动件和所述第二驱动件两者中,至少一者与所述电机控制板之间通过连接器电连接。
可选地,所述连接器包括:弹簧针连接器、对插式连接器、压力接触连接器中的至少一种。
可选地,所述电机控制板分别与所述第一驱动件、所述第二驱动件相对的侧面均设有所述连接器
所述第一驱动件、所述第二驱动件分别通过各自相对的所述连接器与所述电机控制板电连接。
可选地,所述扫描模组还包括:遮光件;
所述遮光件沿所述第二透光通道的周向设置于所述扫描支架上。
可选地,所述遮光件的上设有朝向所述第一光学元件方向凸起的吸光部,所述吸光部沿所述第二透光通道的周向设置。
可选地,所述吸光部远离所述第二透光通道的一侧设有至少一个第二台阶结构;
所述第二台阶结构包括第二台阶面,以及与所述第二台阶面相连的第二侧面,所述第二台阶面与所述第一光学元件相对,所述第二侧面与所述第二台阶面呈第五预设角度。
可选地,所述扫描模组还包括:调湿件;
所述调湿件设置于所述遮光件远离所述第一光学元件的一侧。
可选地,所述激光雷达还包括:壳体,以及设置于所述壳体内的主控模块;
所述壳体设有容纳腔,所述主控模块、所述测距模组和所述扫描模组在所述容纳腔内依次堆叠;
所述测距模组通过所述测距支架与所述壳体相连;
所述扫描模组的所述第一驱动件、所述第二驱动件分别与所述壳体相连。
可选地,所述主控模块包括:堆叠设置的第一控制板和第二控制板;
所述第一控制板、所述第二控制板均设置于所述容纳腔内,且所述第一控制板、所述第二控制板分别与所述壳体相连。
可选地,所述第一控制板、所述第二控制板分别与所述壳体之间粘接连接。
可选地,所述壳体上设有多个与所述容纳腔相连的第一凹槽;
所述第一控制板上靠近所述壳体的部分元器件嵌设于所述第一凹槽内。
可选地,所述第一凹槽的形状与所述第一控制板上的部分所述元器件的形状相匹配。
可选地,所述第一凹槽与第一控制板上的部分所述元器件之间的间隙内还设有第一导热介质结构。
可选地,所述激光雷达还包括:底壳,所述底壳设置于所述壳体靠近所述第二控制板的一侧,所述底壳与所述壳体相配合形成所述容纳腔。
可选地,所述壳体和所述底壳两者中,至少一者为铝合金材质。
可选地,所述第二控制板上的部分元器件朝向所述底壳方向设置。
可选地,所述底壳上设有与所述第二控制板上的部分所述元器件相匹配的第二凹槽;
在所述底壳与所述壳体相连的情况下,所述第二控制板的部分元器件嵌设于所述第二凹槽内。
可选地,所述第二凹槽与所述元器件之间的间隙内设有第二导热介质结构。
可选地,所述壳体的外表面上设有多个间隔设置的散热齿片;
所述散热齿片平行于所述第一控制板或所述第二控制板所在的平面;
或,所述散热齿片垂直于所述第一控制板或所述第二控制板所在的平面。
可选地,所述散热齿片为鳍型散热齿片。
可选地,相邻的所述散热齿片之间的间距为3mm~8mm。
可选地,所述壳体的周向侧面为斜面,所述斜面与所述第一控制板或所述第二控制板所在平面之间的夹角为第六预设角度;
所述散热齿片沿所述斜面设置。
可选地,所述散热齿片围绕所述壳体的周向设置。
可选地,所述激光雷达还包括:导风罩和散热器;
所述导风罩上设有进风口和出风口,所述导风罩套设于所述壳体外,且与所述壳体之间形成连通所述进风口和所述出风口的散热通道;
所述散热器设置于所述散热通道内,以形成由所述进风口至所述出风口方向的散热气流。
可选地,所述进风口和所述出风口设置于所述导风罩相邻的两侧面;
或,所述进风口和所述出风口设置于所述导风罩相对的两侧面。
可选地,所述散热器的数量为两个,两个所述散热器并排设置于所述散热通道内。
可选地,两个所述散热器中,其中一个靠近所述进风口设置,另一个靠近所述出风口设置。
可选地,在所述导风罩为长方体或立方体的情况下,两个所述散热器并排设置于所述长方体或所述立方体的对角面上。
可选地,所述激光雷达还包括:出光罩;
所述出光罩与所述壳体可拆卸连接,且所述出光罩与所述壳体之间形成扫描腔;
所述第一光学元件设置于所述扫描腔内且与所述出光罩可拆卸连接。
第三方面,本申请实施例提供了一种可移动平台,包括:可移动平台本体;及上述内容中所述的激光雷达,所述激光雷达安装在所述可移动平台本体上。
本申请实施例提供的技术方案,通过将发光基板和受光基板堆叠于测距支架上,从而使测距模组的结构更加紧凑、体积更小,进一步的将至少部分第一光学组件伸入激光雷达的扫描模组内,从而使具有上述测距模组的激光雷达的结构更加紧凑、空间利用率更高,因此,本申请实施例中,激光雷达整体尺寸小、重量轻、适用范围更广。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或”的关系。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的测距模组、激光雷达及可移动平台进行详细地说明。
本申请实施例提供了一种测距模组,所述测距模组可以用于激光雷达。所述激光雷达可以应用于无人机、智能小车、机器人、无人驾驶等领域,从而为无人机、智能小车、机器人、无人驾驶车辆等实现测距、避障等多种功能。本申请实施例仅以测距模组应用于小型激光雷达为例进行说明,其他类型的激光雷达参照执行即可。
参照图1,示出了本申请实施例提供的一种测距模组的剖面结构示意图。参照图2,示出了图1所示的测距模组的某一角度的结构示意图。参照图3,示出了图1所示的测距模组的某一角度的结构示意图。参照图4,示出了本申请实施例的一种测距支架的结构示意图。
在本申请的一个实施例中,提供了一种测距模组100,具体可以包括:测距支架10、第一光学组件20、发光基板30以及受光基板40;测距支架10上设有第一透光通道101,以及与第一透光通道101相连通的透光孔102;发光基板30和受光基板40堆叠于测距支架10上,发光基板30上设有发射器31,受光基板40上设有接收器41,发射器31与接收器41两者中,一者与第一透光通道101相对,另一者与透光孔102相对;至少部分第一光学组件20位于第一透光通道101内,且至少部分第一光学组件20伸入激光雷达的扫描模组内。
本申请实施例中,通过将发光基板30和受光基板40堆叠于测距支架10上,具体可以包括:发光基板30和受光基板40可以分别设置于测距支架10的两侧;或,发光基板30和受光基板40也可以设置于测距支架10的同一侧。
本申请实施例中,通过将发光基板30和受光基板40堆叠于测距支架10上,从而使测距模组100的结构更加紧凑、体积更小,进一步的将至少部分第一光学组件20伸入激光雷达的扫描模组内,从而使具有上述测距模组100的激光雷达的结构更加紧凑、空间利用率更高。
本申请实施例中,第一光学组件20、发光基板30、受光基板40均基于测距支架10进行设置,测距支架10为第一光学组件20、发光基板30、受光基板40提供支撑。在本申请的一些实施例中,测距支架10同样也可以为其他器件或光学组件提供支撑,本申请实施例对此不作赘述。
本申请实施例中,发射器31可以发射光脉冲信号,接收器41可以接收经过外部环境目标反射回的光脉冲信号;第一光学组件20可以用于改变光脉冲信号的传输角度、传输方向等。在实际应用中,发射器31发出的光脉冲信号可以经过第一光学组件20改变传输角度或传输方向后射出,射出后的光脉冲信号遇到障碍物(或者称之为环境目标)后,经障碍物反射后返回并被接收器41接收,进而,根据发射器31发出的光脉冲信号和接收器41接收到的经障碍物反射回的光脉冲信号,即可确定障碍物与测距模组100之间的距离信息、方位信息、反射强度信息、速度信息等。
具体的,发射器31可以包括但不限于脉冲激光二极管(Pulse Laser Diode,PLD),接收器41可以包括但不限于雪崩光电二极管(Avalanche Photo Diode,APD)。
本申请实施例中,发射器31可以设置于发光基板30与测距支架10相对的一侧,或者说是,发射器31设置于发光基板30靠近测距支架10的一侧;接收器41也可以设置于受光基板40与测距支架10相对的一侧。如图1所示,发射器31设置于发光基板10靠近测距支架10的一侧,且发射器31与透光孔102相对,接收器41设置于受光基板40靠近测距支架10的一侧,且与第一透光通道101相对。发射器31发出的光脉冲信号经透光孔102、第一光学组件20射出,经环境目标反射回来的光脉冲信号沿第一透光通道102被接收器41接收。需要说明的是,本申请实施例中,仅对发射器31与接收器41进行示例性说明,在实际应用中,发射器31与接收器41也可以互相调换位置,本领域技术人员可以根据实际情况设定。
在本申请实施例中,接收器41设置于受光基板40靠近测距支架10的一侧,可以缩短光脉冲信号的传输距离,减少光损失。具体的,接收器41可以设置于受光基板40的一侧,受光基板40上的其他元器件可以设置于受光基板40的另一侧,从而一方面缩短光脉冲信号的传输距离,另一方面更有利于受光基板40的其他元器件的散热。同理,本申请实施例中,发射器31与发光基板30上的其他元器件在发光基板30上的布局可以参照受光基板40的布局,本领域技术人员可以根据电路板的布板面积、元器件数量、种类等选择设置。
在本申请实施例中,第一透光通道101与透光孔102呈第四预设角度相交,其中,第四预设角度可以为0~180°范围内的任意值。也就是说,第一透光通道101的中轴线与透光孔102的中轴线以第四预设角度相交。具体的第四预设角度可以为15°、20°、35°、90°……178°等。需要说明的是,在第四预设角度为不同数值时,第一光学组件20也对应设置有不同的角度、位置、型号以及零件数量等,以使通过第一透光通道101或透光孔102的光脉冲信号可以被发射器31发射出去或被接收器41接收。本申请实施例中,以第四预设角度为90°为例进行解释说明。
在本申请实施例中,如图2所示,为了进一步提升发光基板30的散热性能,测距模组100还可以包括导热板50;导热板50设置于发光基板30上与发射器31相对的一侧,即导热板50与发射器31分别设置于发光基板30的两侧。本申请实施例中,通过导热板50的设置一方面可以对整个发光基板30进行均热处理,避免发光基板30上散热量较大的元器件造成发光基板30的局部过热问题,另一方面还可以提升发光基板30的散热能力,通过导热板50将发光基板30上的热量快速传递出去。
具体的,导热板50可以包括但不限于铝合金板、铜合金板等散热板材。
在实际应用中,由于发射器31的发热量较大,因此,导热板50可以有效降低发射器31的局部高温,延长发射器31使用寿命。在本申请实施例中,导热板50与发光基板30之间可以通过粘接连接。为了进一步提升导热板50与发光基板30之间的导热性能,还可以在导热板50与发光基板30之间设置导热凝胶等以进行充分的热传导,本申请实施例对此不作赘述。
可选的,为了降低导热板50的重量,进而降低测距模组100的整体重量,还可以在导热板50上设置多个减重孔,多个减重孔可以以预设形状分布于导热板50上。例如,多个减重孔沿导热板50的周向均匀分布,或者,在导热板50散热量较大的位置减重孔数量可以较少,在导热板50散热量较小的位置减重孔的数量可以较多。本申请实施例中,多个减重孔的孔径可以相同,或者,根据发光基板30上的散热元器件的散热量而定,以避免散热量较高的元器件相对位置设有减重孔影响散热。
本申请实施例中,发光基板30和受光基板40在测距支架10上堆叠设置的方式可以有多种。一种可实现方式是,发光基板30和受光基板40设置于测距支架10的同一侧,以降低发光基板30和受光基板40的装配以及配合难度。另一种可实现方式是,发光基板30和受光基板40分别设置于测距支架10的两侧,从而避免发光基板30和受光基板40上的发热元器件聚集,提升发光基板30和受光基板40的散热效果。
在本申请实施例中,发光基板30和受光基板40的堆叠可以包括发光基板30和受光基板40相平行或近似平行堆叠设置,还可以包括发光基板30和受光基板40呈第一预设角度设置。其中,第一预设角度可以为0~90°范围内的任意值。可以理解的是,在发光基板30和受光基板40相平行或近似平行时,发光基板30和受光基板40的面积可以较大,沿其堆叠方向的尺寸更小,空间利用率更高,进而可以使测距模组100的结构更加紧凑、体积更小。
本申请实施例中,发光基板30与受光基板40两者在测距支架10上的安装结构可以相同或不同。具体的,发光基板30、受光基板40与测距支架10之间可以为卡接、粘接、螺钉等紧固件连接多种方式中的任意一种或多种。
在本申请的一种可实现方式中,如图2所示,为了减少发光基板30、受光基板40分别与测距支架10连接时,连接结构占用基板的有效使用面积,发光基板30与受光基板40两者中,至少一者上设有安装凹槽301;测距支架10上设有与安装凹槽301相对应的安装部103,安装部103至少部分伸入安装凹槽301内。本申请实施例中,通过安装部103与安装凹槽301之间相配合,使安装部103至少部分伸入安装凹槽301内,从而使发光基板30或受光基板40与测距支架10的结构更加紧凑。
需要说明的是,基板的有效使用面积可以理解为发光基板30或受光基板40上设置元器件的面积,相对的基板的无效使用面积可以理解为发光基板30或受光基板40上无法有效利用的面积,例如,元器件在基板上设置时,元器件距离基板的边缘需满足预设距离,此处的面积可以理解为基板的无效使用面积。
进一步的,为了提升基板的有效使用面积,安装凹槽301可以设置于发光基板30或受光基板40的侧边缘,且安装凹槽301朝向发光基板30或受光基板40的中心凹陷。在实际应用中,由于基板的侧边缘距离基板上的元器件有一定距离,本申请实施例中,通过将安装凹槽301设置于基板的侧边缘,这样,就可以充分利用发光基板30或受光基板40的侧边缘处的无效使用面积,进而提升发光基板30或受光基板40的有效使用面积。可以理解的是,在发光基板30或受光基板40上设置的元器件数量不变的情况下,通过将安装凹槽301设置于基板的侧边缘,可以有效减小发光基板30或受光基板40的尺寸。
本申请实施例中,为了避免螺钉等连接件占用基板的有效使用面积,还可以设置安装部103与安装凹槽301之间粘接连接。在实际应用中,通过定位工装将发光基板30、受光基板40分别定位于测距支架10上,然后对发光基板30和受光基板40进行调焦微调,调焦结束后在安装凹槽301内打胶处理,以使安装部103粘接连接于安装凹槽301内。
本申请实施例中,安装凹槽301可以为弧形凹槽、V型凹槽、U型凹槽等多种形状的凹槽。如图1至图4所示,安装凹槽301为弧形凹槽时,一方面可以增大安装部103与安装凹槽301之间的接触面积,使安装部103与安装凹槽301之间的配合更稳,另一方面可以减少安装凹槽301占用受光基板40或发光基板30的有效使用面积,使受光基板40或发光基板30上的电路以及元器件的布局更简单。
需要说明的是,为了降低发光基板30或受光基板40在安装过程中的定位难度,发光基板30或受光基板40的侧边缘位置还可以设有夹持槽,以便于定位工装通过夹持槽对发光基板30或受光基板40进行夹持定位,具体的夹持槽的位置以及尺寸可以根据发光基板30、受光基板40的具体装配工艺而定,本申请实施例对此不作限定。
在本申请实施例中,如图2所示,安装部103具体可以包括:定位板1031,以及与定位板1031呈第二预设角度相连的加强筋1032;定位板1031的弯折方向与安装凹槽301的形状相匹配。由于定位板1031的弯折方向与安装凹槽301的形状相匹配,因此,通过定位板1031与安装凹槽301之间的配合,还可以实现受光基板40或发光基板30在测距支架10上安装时的安装定位作用,进而提升发光基板30或受光基板40的安装精度,降低发光基板30或受光基板40的装配难度。
本申请实施例中,通过加强筋1032可以有效提升定位板1031的结构稳定性,避免定位板1031发生弯曲变形等。在实际应用中,加强筋1032可以设置于定位板1031的两侧或一侧,本领域技术人员根据实际情况选择设定。本申请实施例中,加强筋1032与定位板1031之间以第二预设角度相交,第二预设角度可以为0~180°范围内的任意角度。本申请实施例中,以定位板1031与加强筋1032相垂直或近似垂直为例示意性说明。
可以理解的是,加强筋1032可以设置于定位板1031的任意位置。当加强筋1032设置于定位板1031的中心位置时,可以加强筋1032对定位板1031的结构稳定性所起的作用更好。
需要说明的是,本申请实施例中,在定位板1031的机械强度满足用户需求的情况下,安装部103也可以仅包括定位板1031,而无需设置加强筋1032,从而使安装部103的结构更加简单。
本申请实施例中,为了进一步提升发光基板30、受光基板40的安装稳定性和牢固程度,安装凹槽301的数量为多个(两个或两个以上),多个安装凹槽301沿发光基板30或受光基板40的周向间隔设置。可选的,多个安装凹槽301沿发光基板30或受光基板40的周向可以两两相对设置,从而使发光基板30或受光基板40与测距支架10的连接结构更加稳定。或者,多个安装凹槽301还可以沿发光基板30或受光基板40的周向错位设置,以使发光基板30或受光基板40上元器件的布局难度更小。
本申请实施例中,如图4所示,测距支架10具体可以包括:安装板11,以及与安装板11相连的安装座12;安装座12至少部分伸入扫描模组内;发光基板30和受光基板40堆叠于安装板11上;第一透光通道101沿第一方向贯穿安装座12和安装板11,第一方向为由安装座12至安装板11的方向;透光孔102设置于安装座12靠近安装板11的一端;至少部分第一光学组件20设置于安装座12伸入扫描模组的一端,发射器31与接收器41两者中,一者设置于安装板11的一侧与第一透光通道101相对,另一者设置于安装座12的一侧与透光孔102相对。本申请实施例中,第一光学组件20中的部分光学组件设置于安装座12伸入扫描模组的一端,从而可以有效减少测距模组100占用的体积,使具有上述测距模组100的激光雷达的结构更加紧凑,体积更小。
在本申请实施例中,发射器31与接收器41两者中,一者设置于安装板11的一侧与第一透光通道101相对,另一者设置于安装座12的一侧与透光孔102相对。也就是说,在本申请的一种可实现方式为:发射器31设置于第一透光通道101靠近安装板11的一端,接收器41设置于透光孔102远离第一透光通道101的一端。在本申请的另一种可实现方式为:接收器41设置于第一透光通道101靠近安装板11的一端,发射器31设置于透光孔102远离第一透光通道101的一端。可以理解的是,在发射器31设置于第一透光通道101靠近安装板11的一端的情况下,发光基板30与受光基板40两者可以在测距支架10的同一侧堆叠,或者,发光基板30与受光基板40可以在测距支架10的两侧分别设置。
在本申请实施例中,以发射器31设置于第一透光通道101靠近安装板11的一端,接收器41设置于透光孔102远离第一透光通道101的一端,且发光基板30与受光基板40在测距支架10的安装板11两侧分别设置为例,进行示例性说明。
在本申请实施例中,安装座12可以设置于安装板11的中心位置,这样,就相当于第一透光通道101沿安装板11的中心线贯穿安装座12和安装板11,测距模组100的光线路径位于测距支架10的中心,从而使测距模组100的精度更高,并且另一方面可以使测距支架10的结构更加简单,发光基板30和受光基板40的布局难度更低。
本申请实施例中,发光基板30与受光基板40两者中,其中一者可以为环状基板;环状基板沿安装座12的周向设置于安装板11。一种可实现方式为,发光基板30可以设置于安装板11远离安装座12的一侧,且发射器31设置于发光基板30的中心位置,即发射器31设置于第一透光通道101的中心位置,受光基板40可以为环状基板沿安装座12的周向设置,并使接收器41与安装座12上的透光孔102相对;另一种可实现方式为,如图1所示,受光基板40设置于安装板11远离安装座12的一侧,且接收器41设置于发光基板30的中心位置,即接收器41设置于第一透光通道101的中心位置,发光基板30可以为环状基板沿安装座12的周向设置,并使发射器31与安装座12上的透光孔102相对。
需要说明的是,本申请实施例中,环状基板可以是完整的连续的环状基板,也可以是半包围状的环状基板,或者是沿安装座12断续的环状基板。具体的,基板的形状可以为圆形、方形、棱形等,本申请实施例对此不作限定。
本申请实施例中,发光基板30和受光基板40可以均为圆形基板,从而可以使发光基板30和受光基板40的有效使用面积增大,降低基板上元器件的布局难度。
在本申请实施例中,如图1所示,沿第一方向,第一透光通道101的尺寸可以依次递减。具体的,第一透光通道101内可以设有至少一个第一台阶结构104;第一台阶结构104包括:第一台阶面1041以及与第一台阶面1041相连的第一侧面1042,第一台阶面1041平行于安装板11所在平面,第一侧面1042与第一台阶面1041呈第三预设角度。即沿第一方向,第一透光通道101的尺寸呈阶梯性的减小。第三预设角度可以为0~90°范围内的任意值。本申请实施例中,以第三预设角度为90°为例进行示意性说明。
本申请实施例中,通过在第一透光通道101内设置一个或多个第一台阶结构104,从而使经环境目标反射回来的光脉冲信号中的杂散光在通过第一透光通道101时,经第一台阶结构104多次反射至接收器41侧,并被接收器41接收,其他无法反射至接收器41侧的杂散光可以被第一台阶结构104上设置的吸光层吸收,这样,可以有效降低杂散光的影响。
本申请实施例中,如图1所示,第一光学组件20的一种可实现方式是,第一光学组件20包括:导光件21和透镜22;透镜22设置于安装座12伸入扫描模组的一端,且与第一透光通道101相对;导光件21至少部分地设置于第一透光通道101内,导光件21的一端与透镜22相对,另一端与透光孔102相对。
本申请实施例中,安装座12伸入扫描模组的一端可以设有安装沉台,透镜22设置于安装沉台内且与安装沉台之间粘接连接。安装沉台一方面可以给透镜22的装配起到导向固定的作用,另一方面还可以减少透镜22与安装座12之间叠设方向的尺寸,使测距模组100的整体尺寸更小。
本申请实施例中,导光件21用于传输光脉冲信号,改变光脉冲信号的传输路径以及传输角度等。例如,发射器31射出的光脉冲信号经过导光件21反射至透镜22后出射,或者,被环境目标反射回来的光脉冲信号经过透镜22、导光件21反射至接收器41。通过设置导光件21可以有效减少光损失、或者减少接收器41检测到杂散光。
本申请实施例中,导光件21具体可以包括:导光柱、光纤、反射镜中的至少一种。导光柱的材质例如是有机玻璃、聚碳酸酯、聚酯或玻璃等。光纤由于具有柔性、可弯曲的优点,因此,通过光纤传输光脉冲信号时,对第一透光通道101的尺寸、形状要求更低,并且经由光纤发出的光呈圆斑状,发散角度较小,更易经过透镜22被反射至外部环境中。反射镜即反射棱镜,也是可以起到改变光脉冲信号角度的作用,由于反射镜的应用范围更广、成本更低,因此,使用反射镜作为导光件21更容易实现、成本也相应较低。
本申请实施例中,如图4所示,导光件21可以设置于安装座12上,具体的,安装座12上可以设置有安装槽121;至少部分导光件21设置于安装槽121内;导光件21的一端与透光孔102相对,另一端伸入第一透光通道101内与透镜22相对。本申请实施例中,通过在安装座12上设置用于安装固定导光件21的安装槽121,一方面可以减少导光件21的安装固定支架,使测距模组100的零件数量减少,另一方面还可以提升导光件21的安装稳定性。
本申请实施例中,导光件21与安装槽121之间通过粘接连接,这样可以使测距模组100的内部零部件之间更加紧凑、整体体积更小。
本申请实施例中,导光件21的外侧面上还可以设有反射膜层,以减少杂散光的产生。导光件21的外侧面包括:导光件21部分反射面或全部反射面。具体的,反射膜层可以通过油墨印刷、电镀等方式覆盖于导光件21的反射面上。
本申请实施例中,导光件21设置于安装槽121内的一种可实现方式中,还可以在安装槽121的槽壁上设有凸台1211和/或凸起筋1212,导光件21位于安装槽121内的侧面抵接于凸台1211和/或凸起筋1212。本申请实施例中,通过凸台1211、凸起筋1212的设置,一方面可以减少导光件21与安装槽121之间的接触面积,另一方面还可以提高导光件21在安装槽121内的安装定位精度。
本申请实施例中,凸台1211和/或凸起筋1212上与导光件21相接触的侧面为弧面,这样,凸台1211、凸起筋1212与导光件21之间的接触即为点接触或线接触,可以有效减少凸台1211、凸起筋1212与导光件21之间的接触面积。依据全反射原理,光脉冲信号在导光件21的反射面上可以实现全反射。在导光件21的反射面与其他器件无接触时,无需覆盖反射膜层,进而减少导光件21的成本。
如图1所示,导光件21具体包括相对的第一反射面211和第二反射面212,第一反射面211与空气接触,因此,无需镀反射膜层;由于第二反射面212的一部分位于第一透光通道101内,因此,也无需镀反射膜层;第二反射面212的另一部分位于安装槽121内,无法实现全反射,因此,位于安装槽121内的第二反射面212,需要镀反射膜层以实现光脉冲信号的全反射。应当理解,在一些实施例中,为了方便加工,第二反射面212的全部都可以镀反射膜层以实现光脉冲信号的全反射。
需要说明的是,导光件21还包括分别连接第一反射面211和第二反射面212的相对的第三侧面213和第四侧面(图中未示出),其中第三侧面213分别连接第一反射面211和第二反射面212,第四侧面分别连接第一反射面211和第二反射面212,为了避免光脉冲信号由第三侧面213和第四侧面散出,第三侧面213和第四侧面上还涂覆有油墨消光层,减少光损失。
本申请实施例中,凸台1211的数量可以为多个,多个凸台1211交错设置,从而使凸台1211对导光件21的支撑更加稳定。可以理解的是,凸起筋1212的数量也可以为多个,通过多个凸起筋1212的设置可以有效提升导光件21的安装定位精度。
本申请实施例中,在多个凸台1211的间隙之间设有打胶孔122,打胶孔122贯穿安装槽121的槽壁,这样,通过一个打胶孔122即可对导光件21与安装槽121之间的间隙注入胶黏剂。
本申请实施例中,导光件21的一端与透光孔102相对,另一端伸入第一透光通道101内与透镜22相对,还可以设置导光件21位于第一透光通道101内的部分为悬空设置,这样,除了导光件21之外,第一透光通道101内没有其他零件对光路产生遮挡,从而使更多的被环境目标反射回来的光脉冲信号,可以通过第一透光通道101后被接收器41吸收,从而可以减小第一透光通道101的尺寸,以及设置于第一透光通道101一端的透镜22的口径(也可以理解为透镜22的最大外径尺寸),使测距模组100的整体尺寸更小。
本申请实施例中,导光件21至少部分地倾斜伸入第一透光通道101内,这样,一方面可以缩短光脉冲信号的路径,另一方面可以使导光件21与安装座12(或者说安装槽121)之间的接触面积更大、安装结构更加稳定。本申请实施例中,导光件21倾斜伸入第一透光通道101内,也可以理解为导光件的轴心线与第一透光通道的轴心线倾斜相交。
综上所述,本申请实施例中,测距模组内所有零部件均可以通过粘接连接(例如,导光件与安装槽之间、发光基板与测距支架之间、受光基板与测距支架之间等),减少了螺钉等紧固件,可以使测距模组的内部结构更加紧凑、体积更小。本申请实施例提供的技术方案,相比于传统的方案,本申请实施例中,通过将发光基板和受光基板堆叠于测距支架上,从而使测距模组的结构更加紧凑、体积更小,进一步的将至少部分第一光学组件伸入激光雷达的扫描模组内,从而使具有上述测距模组的激光雷达的结构更加紧凑、空间利用率更高。
参照图5,示出了本申请实施例的一种激光雷达的爆炸图。参照图6,示出了图5所述激光雷达的局部爆炸图。参照图7,示出了图5所示激光雷达的剖面结构示意图。
本申请实施例还提供了一种激光雷达,具体可以包括:测距模组100,以及具有第二透光通道的扫描模组200;测距模组100与扫描模组200堆叠设置,且测距模组100的第一光学组件20至少部分伸入第二透光通道内。
本申请实施例中,测距模组100的实现方式可参考上述各实施例中测距模组100的实现方式,此处不再赘述。
本申请实施例中,通过将测距模组100的第一光学组件20至少部分伸入第二透光通道内,从而可以有效减小测距模组100与扫描模组200之间堆叠方向的尺寸,进而有效减小激光雷达的整体尺寸,提高激光雷达内部零部件之间的紧凑性、提升空间利用率,使激光雷达实现小型化和轻量化。
本申请实施例中,如图5和图7所示,扫描模组200具体可以包括:扫描支架7、驱动组件5以及第二光学组件8;驱动组件5通过扫描支架7与第二光学组件8相连,以驱动第二光学组件8以预设速率转动;至少部分第二光学组件8设置于第二透光通道内;第二透光通道沿第二方向贯穿扫描支架7,第二方向为测距模组100与扫描模组200的堆叠方向。
本申请实施例中,测距模组100的发射器31发出的光脉冲信号经第一透光通道101进入第二透光通道,由于第二透光通道设有第二光学组件8,驱动组件5通过扫描支架7带动第二光学组件8以预设速率转动,通过第二光学组件8改变光脉冲信号的传输方向和传输角度,因此,发射器31发出的光脉冲信号经第二光学组件8改变传输方向和传输角度后以预设频率射出,即相当于扫描模组200以预设频率对环境目标(障碍物)进行扫描。预设频率与预设速率相对应。
本申请实施例中,驱动组件5沿第二透光通道的周向设置于扫描支架7上,从而有效减小扫描模组200沿第二方向的堆叠尺寸。驱动组件5具体可以包括:第一驱动件51、电机控制板53和第二驱动件52;第一驱动件51、电机控制板53和第二驱动件52均沿第二透光通道的周向设置于扫描支架7上,且第一驱动件51和第二驱动件52均与电机控制板53电连接;第二光学组件8包括:第一光学元件81和第二光学元件82,第一光学元件81设置于第二透光通道远离测距模组100的一端,第二光学元件82设置于第二透光通道内;第一驱动件51与第一光学元件81相连,以驱动第一光学元件81以第一预设速率转动;第二驱动件52通过扫描支架7与第二光学元件82相连,以驱动第二光学元件82以第二预设速率转动。
本申请实施例中,第一光学元件81包括但不限于为用于反射光线的棱镜。如,第一光学元件81可为直角棱镜,当然也包括其他类型的可反射光线的棱镜。光脉冲信号入射第一光学元件81后,经过反射从而改变光脉冲信号的传输方向。
本申请实施例中,第二光学组件8还可以包括与第一光学元件81相连的配重件,以通过配重件为第一光学元件81提供支撑。配重件的形状以及重量可以与第一光学元件81一致,以使第一光学元件81的转动轴线与第二透光通道的中心线一致。
本申请实施例中,第二光学元件82包括但不限于为用于折射光线的棱镜。如,第二光学元件82可为三角棱镜、梯形棱镜、五角棱镜中的一种,当然也包括其他类型的可折射光线的棱镜。光脉冲信号入射第二光学元件82后,经过折射从而改变光脉冲信号的传输方向。
本申请实施例中,通过电机控制板53分别检测控制第一驱动件51、第二驱动件52的转速,电机控制板53又可以称之为光电开关板。本申请实施例中,第一驱动件51、电机控制板53和第二驱动件52可以均为环状结构,并套设于扫描支架7上对应于第二透光通道位置的外侧。其中,第一驱动件51的一种可实现方式是,第一驱动件51包括第一感应线圈以及第一感应磁铁。第一感应线圈、第一感应磁铁中的一个与扫描支架7相连,另一个与第一光学元件81相连,以驱动第一光学元件81以第一预设速率转动。第一感应线圈和第一感应磁铁可以均为环形结构,对应环设在扫描支架7的周向。第一感应线圈通过线缆进行供电,第一感应线圈通电后产生旋转磁场并作用于第一感应磁铁形成磁电动力旋转扭矩,从而发生转动。在实际应用中,第一感应线圈与第一感应磁铁可以同心设置且沿扫描支架7的周向分布,从而有效减小第一感应线圈与第一感应磁铁之间的堆叠高度。
根据不同需求,可以通过多种方式布置第一驱动件51中的第一感应线圈和第一感应磁铁的相对位置。例如,第一感应线圈与第一感应磁铁两者中,其中一者可以环设在另一者的外部,以减小第一驱动件51沿第二方向的尺寸。
可以理解的是,第二驱动件52的可实现方式可以与第一驱动件51相同,具体的,第二驱动件52的第二感应线圈和第二感应磁铁的结构布局可以参照上述第一驱动件51。第二感应线圈和第二感应磁铁中的一个与第二光学元件82相连,以驱动第二光学元件82以第二预设速率转动。其中,第一预设速率与第二预设速率可以相同或不同。
需要说明的是,在实际应用中,可以利用第一驱动件51或第二驱动件52起到扫描支架7的作用,这样,就可以无需单独设置扫描支架7,可以进一步节省激光雷达内部空间,使激光雷达更加小型化。
根据不同需求,第一驱动件51与第一光学元件81之间可以通过第一轴承511可转动连接,以及第二驱动件52与第二光学元件82之间可以通过第二轴承512可转动连接。本申请实施例中,通过第一轴承511和第二轴承512的设置,可以提升第一光学元件81、第二光学元件82的转动顺滑性,避免第一驱动件51与第一光学元件81、第二驱动件52与第二光学元件82之间的硬对硬的磨损。
需要说明是,上述所描述的示例仅为是本申请实施例一部分示例,而不是全部的示例,基于不同的需求,第一驱动件51、第二驱动件52与扫描支架7以及第一光学元件81、第二光学元件82之间还可以通过其他方式实现,例如,通过转接支架等转接连接等,此处不再一一详述。
在本申请实施例中,第一驱动件51、电机控制板53和第二驱动件52依次堆叠设置,从而使驱动组件5的结构更加紧凑,堆叠高度更小。其中,电机控制板53夹设于第一驱动件51和第二驱动件52之间,这样,可以有效缩短电机控制板53与第一驱动件51、第二驱动件52之间的连接线缆的走线路径,降低走线难度。
本申请实施例中,第一驱动件51和第二驱动件52两者中,至少一者与电机控制板53之间通过连接器电连接。连接器具体可以包括:弹簧针连接器、对插式连接器、压力接触连接器中的至少一种。本申请实施例中,驱动件(第一驱动件51和/或第二驱动件52)与电机控制板53之间通过连接器电连接,不但可以避免第一驱动件51、第二驱动件52与电机控制板53装配时的焊接连接工序,提升整机的安全性能,还可以有效降低第一驱动件51、电机控制板53和第二驱动件52三者的堆叠高度,进而减小激光雷达的整体体积。
需要说明的是,连接器通常包括公插头和母插头,通过公母插头对插从而实现电连接,具体的,对于连接器的形状、尺寸可以根据实际需求设置,本申请实施例对此不作具体限定。
在本申请实施例中,电机控制板53与第一驱动件51、第二驱动件52相对的侧面均设有连接器;第一驱动件51、第二驱动件52分别通过各自相对的连接器与电机控制板53电连接。也就是说,电机控制板53与第一驱动件51通过其两者之间夹设的连接器实现电连接,电机控制板53与第二驱动件52通过其两者之间夹设的连接器实现电连接,这样,可以避免电机控制板53与驱动件之间的连接线缆占用扫描模组200的内部空间或对第二透光通道造成遮挡。第一驱动件51、第二驱动件53与电机控制板53之间的位置以及电连接关系,可以有效解决传统的驱动件走线遮挡出射光路的问题。
本申请实施例中,如图6所示,激光雷达还包括:壳体1,以及设置于壳体1内的主控模块300;壳体1设有容纳腔,主控模块300、测距模组100和扫描模组200在容纳腔内依次堆叠;测距模组100通过测距支架10与壳体1相连;扫描模组200的第一驱动件51、第二驱动件52分别与壳体1相连。本申请实施例中,通过主控模块300、测距模组100和扫描模组200依次堆叠设置,可以降低激光雷达的装配难度,减小激光雷达沿第一方向或第二方向的堆叠高度,使激光雷达的结构尺寸更小。
本申请实施例中,第一驱动件51、第二驱动件52以及测距支架10分别与壳体1相连,从而可以将激光雷达内部的热量通过壳体1散发出去,使激光雷达具备高效散热能力。
需要说明的是,在实际应用中,如图5所示,测距模组100的导热板50还可以通过导热块6与壳体1接触连接,以便于可以快速将导热板50上的热量通过导热块6传导至壳体1上。导热块6可以与导热板50使用相同材质的导热材料制作而成,或与导热板50使用不同的导热材料制作而成。例如,导热板50和导热块6均可以为高导热系数的铝合金材质、铜合金材质等,本申请实施例对此不再赘述。
本申请实施例中,激光雷达还包括:出光罩2;出光罩2与壳体1可拆卸连接,且出光罩2与壳体1之间形成扫描腔;第一光学元件81设置于扫描腔内且与出光罩2可拆卸连接。本申请实施例中,第一光学元件81可以通过配重块与出光罩2实现可拆卸连接。具体的,出光罩2与配重块之间还可以通过第三轴承513进行转接,以提升第一光学件的转动灵活性。本申请实施例中,可以通过出光罩2对扫描模组200中的第一驱动件51、第二驱动件52以及配重块之间进行整体的预紧。
本申请实施例中,出光罩2可以包括但不限于塑料、玻璃等材质制作而成。
本申请实施例中,出光罩2可以通过光罩锁环4与壳体1可拆卸连接,光罩锁环4可以使出光罩2与壳体1之间的密封性更好,连接可靠性更高。
本申请实施例中,扫描模组200还包括:遮光件91;遮光件91沿第二透光通道的周向设置于扫描支架7上。遮光件91用于吸收经环境目标或出光罩2等反射回激光雷达内部的杂散光。
在实际应用中,发射器31发出的光脉冲信号可以依次经导光件21、透镜22、第二光学元件82、第一光学元件81、出光罩2后出射,然而有一部分发射器31发出的光脉冲信号会在出光罩2上产生反射,进而反射回扫描腔内。本申请实施例中,激光雷达可以实现水平360°、竖直45°角度范围内的无遮挡扫描测距。当然,也可以通过改变第一光学元件81、第二光学元件82的型号、尺寸,以实现其他角度范围内的无遮挡扫描测距,本申请实施例对此不作限定。
在本申请实施例中,如图5和图7所示,为了避免上述反射回来的光脉冲信号对扫描模组200、测距模组100的测距精度等产生影响,以及避免上述反射回来的光脉冲信号产生点汇聚效应,可以通过在扫描模组200设置遮光件91,以对上述杂散光进行分散吸收。点汇聚效应即光脉冲信号汇聚于某一点,使此点的光强度较强。遮光件91沿第二透光通道的周向设置有扫描支架7上,可以对沿第二透光通道360°范围内产生的杂散光进行吸收。
需要说明的是,遮光件91上与出光罩2相对的侧面上均设有吸光层,吸光层包括但不限于吸光油墨层。
本申请实施例中,遮光件91上设有朝向第一光学元件81方向凸起的吸光部,吸光部沿第二透光通道的周向设置。本申请实施例中,吸光部可以简单理解为环状凸起。通过吸光部的设置,可以增大遮光件91的吸光面积,使反射至遮光件91上的点光线分散至面光线,有效减少杂散光在遮光件91上的点汇聚效应。
在本申请实施例中,为了进一步增大遮光件91的吸光面积,减少沿原路返回至接收器41的杂散光,吸光部远离第二透光通道的一侧设有至少一个第二台阶结构;第二台阶结构包括第二台阶面,以及与第二台阶面相连的第二侧面,第二台阶面与第一光学元件81相对,第二侧面与第二台阶面呈第五预设角度。本申请实施例中,第五预设角度可以为90°~180°范围内的任意角度。本申请实施例中,通过设置第二台阶结构,可以有效降低反射至接收器41侧的杂散光,从而进一步提升激光雷达的精度。
本申请实施例中,为了提升激光雷达内部的湿度调节能力,避免出光罩2出现起雾现象,扫描模组200还包括:调湿件92;调湿件92设置于遮光件91远离第一光学元件81的一侧。调湿件92由具备自动调节空气湿度功能的调湿材料制作而成,当激光雷达内部的湿度较高时,调湿件92会通过吸附水蒸气的方式使湿度降低,当激光雷达内部湿度较低时,调湿件92又可以放出之前吸收的水分,从而增加空气湿度。调湿件92的形状、尺寸可以依据具体需求设置,本申请实施例对此不作限定。
本申请实施例中,如图7所示,主控模块300可以包括:堆叠设置的第一控制板301和第二控制板302;第一控制板301、第二控制板302均设置于容纳腔内,且第一控制板301、第二控制板302分别与壳体1相连。本申请实施例中,通过第一控制板301和第二控制板302堆叠设置,可以有效降低主控模块300的堆叠高度,使主控模块300各部件之间的结构更加紧凑。
本申请实施例中,第一控制板301、第二控制板302分别与壳体1可拆卸连接。具体的第一控制板301、第二控制板302分别与壳体1之间可以通过粘接、卡接以及螺钉紧固件等方式连接。
参照图8,示出了本申请实施例的一种第一控制板的结构示意图。如图8所示,第一控制板301上设有多个安装柱3011,多个安装柱3011通过螺钉连接于壳体1上。本申请实施例中,通过安装柱3011实现第一控制板301与壳体1的连接,安装精度高,且可以避免第一控制板301上部分元器件与壳体1之间干涉的问题。
同理,第二控制板302上也可以设有多个安装柱3011,通过安装柱3011与壳体1之间进行连接,具体结构以及原理可以参照第一控制板301,本申请实施例在此不再赘述。
本申请实施例中,第一控制板301、第二控制板302分别与壳体1相连还可以将第一控制板301、第二控制板302上的热量传导至壳体1,再通过壳体1散发,这样可以进一步提升主控模块300的散热能力。
需要说明的是,本申请实施例中,第一控制板301与第二控制板302之间还夹设有盖板303;盖板303一方面可以实现对第一控制板301和第二控制板302之间的物理隔离,另一方面第一控制板301、第二控制板302还可以通过盖板303与壳体1相连,以进一步提升第一控制板301、第二控制板302的散热性能。
可以理解的是,本申请实施例中,电机控制板53可以通过线缆等连接于第一控制板301或第二控制板302,以通过第一控制板301或第二控制板302对电机控制板53实现供电控制等。第一控制板301与第二控制板302之间也可以通过线缆连接,对此本申请实施例不再赘述。
本申请实施例中,壳体1上设有多个与容纳腔相连的第一凹槽;第一控制板301上靠近壳体1的部分元器件嵌设于第一凹槽内。第一凹槽的形状与第一控制板301上的元器件的形状相匹配。本申请实施例中,通过第一凹槽的设置,一方面可以在第一控制板301与壳体1之间装配时起到定位的作用,另一方面还可以提升第一控制板301的散热能力。
本申请实施例中,为了进一步提升第一控制板301的散热,第一凹槽与第一控制板301上的部分元器件之间的间隙内还可以设有第一导热介质结构。具体的,第一导热介质结构可以为导热凝胶、导热颗粒物等。
本申请实施例中,激光雷达还可以包括底壳3,底壳3设置于壳体1靠近第二控制板302的一侧,底壳3与壳体1相配合形成容纳腔。底壳3具体与壳体1之间可拆卸连接。
可以理解的是,本申请实施例中,通过出光罩2、壳体1以及底壳3三者之间的配合,从而可以使激光雷达内部的容纳腔、扫描腔形成封闭的腔体结构,进而提升激光雷达的密封性能。
本申请实施例中,如图7所示,第二控制板302上的部分元器件可以朝向底壳3方向设置。进一步的,底壳3上还可以设有与第二控制板302上的部分元器件相匹配的第二凹槽;在底壳3与壳体1相连的情况下,第二控制板302的部分元器件嵌设于第二凹槽内。本申请实施例中,通过第二凹槽的设置,一方面可以对底壳3的安装起到定位导向的作用,另一方面,通过第二凹槽与第二控制板302上元器件之间的配合,使第二控制板302上元器件的热量快速传导至底壳3上,通过底壳3散发出去,进而提升主控模块300的散热能力。
同理,第二凹槽与第二控制板302上的部分元器件之间的间隙内也可以设有第二导热介质结构。具体的,第二导热介质结构可以与第一导热介质结构相同,第二导热介质结构也可以为导热凝胶、导热颗粒物等。
本申请实施例中,底壳3和壳体1两者中,至少一者可以为铝合金材质。具体的,底壳3和壳体1可以由高导热系数的铝合金材料制作而成。由于铝合金具有质量轻、散热好的优点,因此,铝合金材质的底壳3和壳体1也具有质量轻、散热好的优异性能。
本申请实施例中,第一驱动件51、第二驱动件52、电机控制板53、第一控制板301、第二控制板302等散热量较高的器件均通过壳体1或底壳3进行散热,从而可以使激光雷达的整体温差较小、散热性能更好。
本申请实施例中,通过扫描模组200、测距模组100以及主控模块300在壳体1内依次堆叠,可以使激光雷达的装配更加简单、内部空间利用率更高、结构更加紧凑,进而使得激光雷达体积更小、重量更轻。
需要说明的是,本申请实施例中,如图6所示,测距模组100还可以通过测距锁环1001结构固定连接于壳体1,以进一步提升测距模组100的结构稳定性。
在本申请实施例中,如图9和图10所示,为了进一步提升壳体1的散热能力,还可以在壳体1的外表面上设有多个间隔设置的散热齿片111;散热齿片111平行于第一控制板301或第二控制板302所在的平面;或,散热齿片111垂直于第一控制板301或第二控制板302所在的平面。本申请实施例中,通过在壳体1的外表面设置散热齿片111可以有效增大壳体1与外界空气之间的接触面积,提升壳体1的散热能力。
需要说明的是,散热齿片111平行于第一控制板301或第二控制板302所在的平面可以称散热齿片111为纵向散热齿片或纵向延伸的散热齿片,相对应的外壳可以称之为纵向散热齿外壳。散热齿片111垂直于第一控制板301或第二控制板302所在的平面可以称散热齿片111为横向散热齿片或横向延伸的散热齿片,相对应的外壳可以称之为横向散热齿外壳。
参照图9,示出了本申请实施例的一种激光雷达的结构示意图。参照图10,示出了图9所示激光雷达的散热气流的流向示意图。
本申请实施例中,散热齿片111包括但不限于为鳍型散热齿片。鳍型散热齿形状更便于空气向上流动,增大散热齿表面气流的流速。
具体的,相邻的散热齿片111之间的间距为3mm~8mm范围内的任意值。例如,相邻的散热齿片111之间的间距可以为3mm、4mm、6mm、8mm等。本申请通过大量实验以及仿真优化设计,相邻的散热齿片111之间的间距设置为6mm,一方面避免散热齿片111之间间距较小导致空气流通受阻的情况,另一方面可以兼顾壳体1上散热齿片111的数量,提升壳体1的散热性能。
本申请实施例中,壳体1的周向侧面为斜面,斜面与第一控制板301或第二控制板302所在平面之间的夹角为第六预设角度;散热齿片111沿斜面设置。第六预设角度可以为0~90°范围内的任意角度。例如,第六预设角度为15°、30°、45°、60°、90°等角度。本申请实施例中,通过大量实验以及仿真优化设计,设置第六预设角度为45°,即斜面为45°斜面,以便于更多的空气流向散热齿片111的间隙之间进行自然散热。同时由于第一控制板301、第二控制板302均与壳体1相连,因此,第一控制板301、第二控制板302上的热量可以快速传导至壳体1上通过与壳体1之间进行接触散热。如图10所示,散热气流沿斜面向上流动,从而可以快速带走壳体1表面的热量。
本申请实施例中,无论是纵向散热齿片还是横向散热齿片,均可以在壳体1的全部外表面上分布或仅在壳体1外表面的局部位置设置。本申请实施例中,散热齿片111可以围绕壳体1的周向设置。例如,横向散热齿片可以绕壳体1的横向周向呈完整的环形设置,或纵向散热齿片可以沿壳体1的纵向呈半包围的环形设置。可以理解的是,上述的环形包括但不限于完整的封闭环形、断续的环形、半环形等。
本申请实施例中,仅通过壳体1与环境空气进行热交换,可以称之为自然散热或被动散热。为了进一步提升激光雷达的散热性能,本申请实施例中还可以通过散热器500对激光雷达进行主动散热。散热器500包括但不限于风扇等散热器件。
参照图11,示出了本申请实施例的另一种激光雷达的结构示意图。参照图12,示出了图11所示的激光雷达的另一角度的结构示意图。参照图13,示出了图11所示的激光雷达的散热气流流向示意图。
如图11至图13,激光雷达还可以包括:导风罩400和散热器500;导风罩400上设有进风口401和出风口402,导风罩400套设于壳体1外,且与壳体1之间形成连通进风口401和出风口402的散热通道;散热器500设置于散热通道内,以形成由进风口401至出风口402方向的散热气流。本申请实施例中,通过散热器500可以加速壳体1表面的气流流动,进而提升壳体1的散热能力,使激光雷达的散热效果更好。
在本申请实施例中,为了兼顾散热通道的尺寸、散热通道内气流的流速以及壳体1的散热面积,散热齿片111在壳体1上可以对称分布。例如,在进风口401与出风口402相对的位置均设有散热齿片111,或者在导风罩400未设置进风口401和出风口402的位置壳体1也可以为光面(未设置散热齿片111的表面),本领域技术人员可以根据实际需求设置,本申请实施例对此不作限定。
本申请实施例中,进风口401和出风口402设置于导风罩400相邻的两侧面;或,进风口401和出风口402设置于导风罩400相对的两侧面。可以理解的是,进风口401和出风口402设置于导风罩400相邻的两侧面上,可以使散热通道沿壳体1的周向延伸,从而延长散热通道内的散热气流与壳体1的接触时长,提升壳体1的散热能力。在进风口401和出风口402设置于导风罩400相对的两侧面时,进风口401与出风口402之间的风阻可以较小。
本申请实施例中,散热通道内散热器500的数量可以为一个或两个。两个散热器500可以并排设置于散热通道内,以提高风压。并且,两个散热器500可以提升激光雷达的散热可靠性,采用两个散热器500还可以有效提升激光雷达的散热可靠性,在其中一个散热器500失效后,另一个散热器500还可以继续进行主动散热。本申请实施例中,两个散热器500还可以依据散热通道内的温度同时开启或一个开启一个休眠,以根据激光雷达的工作状态,进行智能散热。
本申请实施例中,两个散热器500中,其中一个靠近进风口401设置,另一个靠近出风口402设置,以有效利用两个散热器500提升散热通道内风压。
需要说明的是,在导风罩400为长方体或立方体的情况下,两个散热器500并排设置于长方体或立方体的对角面上,这样,可以有效利用导风罩400内部空间,减小激光雷达的整体尺寸。
如图13所示,散热气流由进风口401进入散热通道,散热气流沿A至B的方向流向出风口402,再流出散热通道外。壳体1外的冷空气(散热气流)由进风口401进入散热通道后,在散热通道内与齿片或壳体1外表面进行热交换后,由出风口402流出。本申请实施例中,散热通道相当于绕壳体1一周设置,这样,散热气流流通的路径较长,散热气流可以与齿片或壳体1之间进行充分的热交换。
本申请实施例中,导风罩400的设置,一方面可以使导风罩400与壳体1之间形成散热通道,对散热气流形成导向,另一方面,可以提高整机的美观性,避免用户看到激光雷达的内部结构。
可以理解的是,激光雷达还可以包括:底盖;底盖与导风罩400配合以形成封闭的散热通道。在实际应用中,底盖也可以与壳体1合二为一,以减少零件的数量,简化装配工序;或者,底盖还可以作为单独的零件与导风罩400相配合,以便于激光雷达的拆卸维护更为便利。
需要说明的是,如图9所示,激光雷达还包括:对外连接器2021,对外连接器2021可以设置于第一控制板301或第二控制板302上;壳体1上设有缺口,对外连接器2021的一端通过所述缺口外露,用于与外部装置的电连接器插接。
综上所述,本申请实施例提供的技术方案,相比于传统的方案,本申请实施例中,通过将发光基板和受光基板堆叠于测距支架上,从而使测距模组的结构更加紧凑、体积更小,进一步的将至少部分第一光学组件伸入激光雷达的扫描模组内,从而使具有上述测距模组的激光雷达的结构更加紧凑、空间利用率更高,因此,本申请实施例中,激光雷达整体尺寸小、重量轻、适用范围更广。
本申请实施例还提供了一种可移动平台,包括:可移动平台本体,以及上述实施例所述的激光雷达,激光雷达安装在可移动平台本体上。
具有激光雷达的可移动平台可对外部环境进行测量,例如,测量可移动平台与障碍物的距离用于避障、对外部环境进行二维或三维的测绘等用途。
在本申请的一些实施方式中,可移动平台包括无人飞行器、汽车、遥控车、机器人、相机中的至少一种。当激光雷达应用于无人飞行器时,可移动平台本体为无人飞行器的机身,当然,激光雷达可以设于无人飞行器的机臂、脚架等位置。当激光雷达应用于汽车时,可移动平台本体为汽车的车身。该汽车可以是自动驾驶汽车或者半自动驾驶汽车,在此不做限制。当激光雷达应用于遥控车时,可移动平台本体为遥控车的车身。当激光雷达应用于机器人时,可移动平台本体为机器人。当激光雷达应用于相机时,可移动平台本体为相机本身。
综上所述,本申请实施例提供的技术方案,相比于传统的方案,本申请实施例中,通过将发光基板和受光基板堆叠于测距支架上,从而使测距模组的结构更加紧凑、体积更小,进一步的将至少部分第一光学组件伸入激光雷达的扫描模组内,从而使具有上述测距模组的激光雷达的结构更加紧凑、空间利用率更高,因此,本申请实施例中,激光雷达整体尺寸小、重量轻、适用范围更广。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。