WO2020182024A1 - 激光收发模块及激光雷达系统 - Google Patents

激光收发模块及激光雷达系统 Download PDF

Info

Publication number
WO2020182024A1
WO2020182024A1 PCT/CN2020/077703 CN2020077703W WO2020182024A1 WO 2020182024 A1 WO2020182024 A1 WO 2020182024A1 CN 2020077703 W CN2020077703 W CN 2020077703W WO 2020182024 A1 WO2020182024 A1 WO 2020182024A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
laser
optical component
laser transceiver
laser beam
Prior art date
Application number
PCT/CN2020/077703
Other languages
English (en)
French (fr)
Inventor
吴世祥
向少卿
Original Assignee
上海禾赛光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海禾赛光电科技有限公司 filed Critical 上海禾赛光电科技有限公司
Publication of WO2020182024A1 publication Critical patent/WO2020182024A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the invention relates to the technical field of laser detection, in particular to a laser transceiver module and a laser radar system.
  • lidar measures the distance information of the target by emitting laser beams from the light path and receiving the echo signals from the light path to detect the target.
  • the optical system plays an important role in beam emission and convergent reception in the detection process of lidar.
  • the lidar can be divided into a non-coaxial system and a coaxial system.
  • the transmitting light path and the receiving light path of the non-coaxial system are independent of each other, and they are usually realized by different mirror groups.
  • the transmitting and receiving functions of laser, and the coaxial system's transmitting optical path and receiving optical path share the same optical axis, and often share a transceiver lens group, and the transmission and reception of the beam are realized by splitting elements (such as beam splitters, small hole mirrors, etc.) Separation and intercourse.
  • the lidar Since the non-coaxial system needs to have two independent transmitting and receiving modules, the lidar is often larger and the structure is not compact. In addition, the non-coaxial system also has the problem of complicated installation and high cost. However, in the traditional splitting coaxial solution, the stray light at the splitting element is difficult to avoid, resulting in a large near-field blind zone in the lidar.
  • an embodiment of the present invention provides a laser transceiver module, including: a transmitting module, suitable for transmitting a laser beam; a transmission module, suitable for transmitting the laser beam to a three-dimensional The echo signal formed by the laser beam reflected by obstacles in the three-dimensional space and receiving and transmitting; a detection module adapted to detect the echo signal of the laser beam transmitted by the transmission module; wherein the transmitting module and the The detection module is arranged on the same side of the transmission module, and there is a preset distance between the transmission module and the detection module; the transmission module includes: a first optical component, the first optical component is suitable for Collimating the laser beam emitted by the transmitting module, and converging the echo signal formed by reflecting the laser beam on an obstacle in the three-dimensional space received by the transmission module; and a light deflecting device, which is suitable for changing The transmission direction of the laser beam collimated by the first optical component.
  • the light deflecting device is adapted to change the transmission direction of the laser beam collimated by the first optical component through refraction.
  • the aperture of the light deflecting device is smaller than the aperture of the first optical component.
  • the light deflection device and the first optical component are coaxial, and the emission module and the detection module are arranged symmetrically with respect to the axis.
  • the transmission module further includes a second optical component, which is arranged between the emission module and the first optical component, and is adapted to compress the fast axis divergence angle of the laser beam emitted by the emission module.
  • the transmitting module and the detecting module are arranged in the same plane parallel to the main plane of the first optical component.
  • the laser transceiver module further includes an isolation device arranged between the transmitting module and the detecting module.
  • the embodiment of the present invention also provides a laser radar system, including: a plurality of laser transceiver modules according to the embodiments of the present invention, and the plurality of laser transceiver modules are suitable for coaxial rotation.
  • each laser transceiver module includes one or more columns of lasers, each column of lasers includes a plurality of lasers arranged at intervals along the vertical direction of the three-dimensional space, and the plurality of lasers are arranged such that each The laser transceiver module has a preset vertical field of view range.
  • At least two of the laser transceiving modules have different preset vertical viewing angle ranges, and the preset vertical viewing angle ranges of the at least two laser transceiving modules have overlapping areas.
  • the multiple laser transceiver modules have the same preset vertical viewing angle range.
  • the transmission module further includes: a reflection element, the reflection element and the first optical component are arranged at a preset angle, and the reflection element is suitable for deflecting the first optical component and the light
  • the laser beam transmitted by the device is reflected to the three-dimensional space, and an echo signal formed by reflecting the laser beam from an obstacle in the three-dimensional space is reflected to the light deflecting device and the first optical component.
  • the transmitting optical path and the receiving optical path of the laser transceiver module in the embodiment of the present invention share the same transmission module, providing a coaxial solution.
  • the laser transceiver module of the embodiment of the present invention uses the light deflecting device to make the laser beam be deflected at an angle, so that the emitted laser light
  • the beam and the received echo signal are separated, which facilitates the realization of large optical aperture coaxial transmission and reception;
  • the laser transceiver module has a compact structure and small volume; the positional relationship between the transmitter module and the detection module is fixed, which is easier to implement
  • the installation and adjustment of the overall optical path makes optical realization difficult and low cost.
  • the laser radar system of the embodiment of the present invention adopts a plurality of laser transceiver modules of the embodiments of the present invention evenly distributed around the rotating shaft to form a distributed coaxial structure.
  • This distributed optical path layout helps meet the requirements of human eye safety;
  • the folding optical path design of the module (that is, the laser beam deflection angle is emitted) is conducive to the rational use of space to arrange the transmitting module and the detection module; in addition, the multiple laser transceiver modules are arranged in an encrypted manner along the scan line of the vertical field of view Improved the resolution of the lidar system.
  • FIG. 1 is a structural block diagram of a laser transceiver module 10 according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a laser transceiver module 20 according to another embodiment of the present invention.
  • FIG. 3 is a top view of a lidar system 30 according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of vertical field of view distribution of three laser transceiver modules A1, A2, and A3 of the lidar system 30 according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of the vertical distribution of scan lines of three laser transceiver modules A1, A2, and A3 of the laser radar system 30 of the embodiment shown in FIG. 4 of the present invention;
  • FIG. 6 is a schematic diagram of the vertical field of view angle distribution of the three laser transceiver modules A1, A2, and A3 of the lidar system 30 according to another embodiment of the present invention.
  • Fig. 1 is a structural block diagram of a laser transceiver module 10 according to an embodiment of the present invention.
  • the laser transceiver module 10 may include a transmitting module 11, a transmission module 12 and a detection module 13.
  • the transmitting module 11 is suitable for transmitting a laser beam
  • the transmitting module 12 is suitable for transmitting the laser beam to a three-dimensional space, and receiving and transmitting the echo signal formed by the laser beam reflected by the obstacle 18 in the three-dimensional space.
  • the detection module 13 is adapted to detect the echo signal of the laser beam transmitted by the transmission module 12. It should be noted that the arrows in FIG. 1 represent the transmission direction of light, and different types of lines (such as dotted lines or dashed lines) represent different light path branches.
  • the transmission module 12 includes: a first optical component 121 and a light deflecting device 122; the first optical component 121 is suitable for collimating the laser beam emitted by the transmitting module 11, and for the three-dimensional
  • the obstacle 18 in the space reflects the echo signal formed by the laser beam for convergence; the light deflecting device 122 is adapted to change the transmission direction of the laser beam collimated by the first optical component 121.
  • the light deflection device 122 is adapted to change the transmission direction of the laser beam collimated by the first optical component 121 through refraction, so that the collimated laser beam is emitted to three dimensions at a certain deflection angle. space.
  • the aperture of the light deflecting device 122 is smaller than the aperture of the first optical component 121.
  • the laser beam emitted by the transmitting module 11 is sequentially emitted to the three-dimensional space through the first optical assembly 121 and the light deflecting device 122; in the receiving optical path, the three-dimensional space
  • the echo signal formed by the obstacle 18 reflecting the laser beam is incident on the transmission module 12 and can be divided into two paths: a part of the echo signal (shown by the dotted arrow) is directly incident on the first optical Component 121, due to the angular deflection, this part of the echo signal is converged by the first optical component 121 and then incident to the detection module 13 having a different position from the transmitting module 11, thereby achieving separation of transmission and reception.
  • the other part of the echo signal (as shown by the dotted arrow) is incident on the light deflection device 122, and then returns along the original path (that is, passes through the light deflection device 122 and the first optical assembly 121 in sequence) To the transmitting module 11, this part of the echo signal cannot be incident on the detection module 13, but this part of the echo signal does not affect the transmitting module 11 to emit the laser beam.
  • the aperture of the light deflection device 122 may be much smaller than the aperture of the first optical component 121, that is, the light deflection device 122 is only used to shield the laser beam exit surface of the first optical component 121 Part of the area.
  • the receiving optical path only a small part of the echo signal formed by the obstacle 18 diffusely reflecting the laser beam is incident on the light deflecting device 122 and returns to the transmitting module 11 along the original path. Most of the remaining echo signals are directly incident on the area of the first optical component 121 that is not blocked by the light deflection device 122, and then are received by the detection module 13.
  • the lidar 10 may further include a control module (not shown) and a processing module (not shown).
  • the control module is adapted to control the transmitting module 11 to emit a laser beam and to control the detection
  • the module 13 receives the echo signal corresponding to the laser beam, and/or controls the processing module to perform corresponding data processing.
  • the processing module may be integrated in the detection module 13 or set independently of the detection module 13.
  • the control module can be integrated in the processing module or set independently of the processing module.
  • the transmitting module 11 and the transmission module 12 are arranged in the transmitting optical path
  • the transmission module 12 and the detecting module 13 are arranged in the receiving optical path, wherein the transmitting optical path and the receiving optical path are shared
  • the transmission module 12, that is, the transmission module 12 performs the functions of transmitting and receiving laser signals at the same time, and provides a coaxial solution.
  • the laser transceiver module of this embodiment uses the light deflecting device 122 to emit the emitted laser beam at a deflection angle, thereby reducing The transmitted laser beam and the received echo signal are separated, which is conducive to the realization of coaxial transceiving with large optical aperture; the laser transceiving module based on the coaxial scheme is compact and small in size; due to the combination of the transmitting module 11 and the detection module 13 The positional relationship is fixed, it is easier to realize the assembly and adjustment of the overall optical path, the optical realization is less difficult and the cost is low.
  • an embodiment of the present invention also provides a laser transceiver module.
  • FIG. 2 is a schematic structural diagram of a laser transceiver module 20 according to another embodiment of the present invention.
  • the laser transceiver module 20 may include a transmitting module 21, a transmission module 22 and a detection module 23.
  • the transmitting module 21 is suitable for transmitting a laser beam
  • the transmitting module 22 is suitable for transmitting the laser beam emitted by the transmitting module 21 to a three-dimensional space, and receiving and transmitting obstacles in the three-dimensional space reflect the laser beam.
  • the detection module 23 is adapted to detect the echo signal of the laser beam transmitted by the transmission module.
  • the transmission module 21 and the detection module 23 are arranged on the same side of the transmission module 22, and there is a preset distance between the transmission module 21 and the detection module 23.
  • the emitting module 21 may include a laser array, the laser array is adapted to emit a plurality of laser pulses according to a preset timing, the detection module 23 may include a detector array, the detector array is adapted to Receiving echo signals corresponding to the plurality of laser pulses.
  • the transmission module 22 may include a first optical component 221 and a light deflecting device 222.
  • the first optical component 221 is suitable for collimating the laser beam emitted by the transmitting module 21, and converging the echo signal formed by reflecting the laser beam from obstacles in the three-dimensional space received by the transmission module 22,
  • the echo signal received by the first optical component 221 includes two parts, one part is the echo signal from the three-dimensional space directly incident on the first optical component 221, and the other part is the echo signal from the three-dimensional space.
  • the wave signal is first incident on the light deflecting device 222 and then incident on the first optical component 221.
  • the light deflecting device 222 is adapted to change the transmission direction of the laser beam collimated by the first optical component 221.
  • the light deflection device 222 is adapted to change the transmission direction of the laser beam collimated by the first optical component 221 through refraction, so that the collimated laser beam is emitted to three dimensions at a certain deflection angle. space.
  • the first optical component 221 may include a lens group
  • the light deflecting device 222 may include a prism.
  • the light deflecting device 222 may include a wedge prism, and the tip of the wedge prism may face any direction in the three-dimensional space.
  • the required deflection angle of the laser beam can be determined according to the scanning field of view, etc., and then an appropriate prism can be selected and the spatial orientation of the prism can be set.
  • the emission module 21 and the detection module 23 The position relative to the light deflection device 222 also needs to be adjusted accordingly.
  • the transmission module 22 further includes a second optical component (not shown), the second optical component is disposed between the transmitting module 21 and the first optical component 221, and is suitable for compression.
  • the fast axis divergence angle of the laser beam emitted by the emitting module 21 makes the laser beam incident as much as possible to the area of the first optical component 221 that is blocked by the light deflecting device 222 after being collimated by the fast axis, so that The laser beam passes through the first optical component 221 and the light deflecting device 222 as much as possible and then exits into a three-dimensional space, and only a very small part of the laser energy only passes through the first optical component 221 without passing through all
  • the light deflecting device 222 emits to the three-dimensional space. It should be noted that this part of the laser energy directly emitted to the three-dimensional space without the light deflecting device 222 is invalid emission energy, and its echo signal is usually not received by the detection module 23.
  • the second optical component may be any lens that can compress a light spot, such as a cylindrical lens.
  • the aperture of the light deflection device 222 is smaller than the aperture of the first optical component 221.
  • the aperture of the light deflection device 222 is much smaller than the aperture of the first optical component 221.
  • the light deflection device 222 is only used to shield a small portion of the laser beam exit surface of the first optical component 221. In some areas, in the receiving optical path, only a small part of the echo signal formed by the laser beam diffusely reflected by obstacles in the three-dimensional space is incident on the light deflecting device 222, and returns to the transmitting module 21 along the original path.
  • the remaining echo signals are directly incident on the area of the first optical component 221 that is not blocked by the light deflecting device 222, and this part of the echo signals passes through the first optical component 221 due to the deflection of the angle. After converging, it does not return along the original path, but is incident on the detection module 23 having a different position from the transmitting module 21, thereby realizing the separation of transmission and reception. If the laser beam emitted by the emission module 21 is emitted into the three-dimensional space through the first optical component 221 without angular deflection, the echo signal will return to the emission module 21 along the original path.
  • the embodiment realizes the separation of the emitted laser beam and the received echo signal by means of the optical deflection device 222.
  • the laser transceiver module 20 further includes an isolation device (not shown) arranged between the transmitting module 21 and the detection module 23 to reduce the impact of the transmission module 21 on the detection module. 23 interference.
  • the light deflecting device 222 and the first optical component 221 may be coaxially arranged, and the transmitting module 21 and the detecting module 23 are arranged symmetrically with respect to the axis.
  • the light deflection device 222 may also be arranged offset from the optical axis of the first optical component 221.
  • the transmitting module 21 and the detecting module 23 may be located on the same side of the optical axis of the first optical assembly 221, or may be located on both sides of the optical axis of the first optical assembly 221 respectively.
  • the transmitting module 21 The positional relationship with the detection module 23 can be determined according to factors such as the angle at which the laser beam is emitted to the three-dimensional space, and the distance design of the system.
  • the transmitting module 21 and the detecting module 23 may be arranged in the same plane parallel to the main plane of the first optical component 221.
  • the transmitting optical path and the receiving optical path of the laser transceiver module 20 of this embodiment share the same transmission module 22, which provides a coaxial solution, but it is different from the traditional coaxial optical splitting element that uses a beam splitter or a small hole mirror.
  • the light deflection device 222 is used to make the emitted laser beam be deflected at a deflection angle, so that the emitted laser beam and the received echo signal are separated, which is conducive to the realization of large optical aperture coaxial transmission and reception;
  • the laser transceiver module 20 of the coaxial solution has a compact structure and a small volume; the positional relationship between the transmitter module 21 and the detection module 23 is fixed, which makes it easier to implement the overall optical path assembly and adjustment, and the optical implementation is less difficult and low in cost.
  • FIG. 3 is a top view of a lidar system 30 according to an embodiment of the present invention.
  • the lidar system 30 may include a plurality of laser transceiver modules according to the foregoing embodiments of the present invention, and the plurality of laser transceiver modules are adapted to rotate around the same rotating shaft 35.
  • FIG. 3 uses the three laser transceiver modules A1, A2, and A3 as an example to illustrate the structure and function of the laser radar system 30 in detail, but the embodiment of the present invention is not limited thereto.
  • each laser transceiver module may include a transmitting module 31, a transmission module 32, and a detection module (not shown).
  • the transmitting module 31 and the detecting module may be arranged in a longitudinal direction (that is, a direction parallel to the rotating shaft 35), and the transmitting module 31 may be arranged above the detecting module.
  • the transmission module 32 may include a first optical component 321 and a light deflecting device 322.
  • the transmission module 32 of each laser transceiver module may further include a reflective element 323, which is arranged at a preset angle with the first optical component 321, and the reflective element 323 is adapted to The laser beam transmitted by the first optical component 321 and the light deflection device 322 is reflected to the three-dimensional space, and the echo signal formed by the laser beam reflected in the three-dimensional space is reflected to the light deflection device 322 and The first optical component 321.
  • the reflective element 323 may be a plane mirror, and the predetermined included angle may be an acute angle.
  • the lidar system 30 may further include a rotor (not shown) and a stator (not shown).
  • the lidar system 30 may further include a mask 36.
  • each laser transceiver module may include one or more columns of lasers, and each column of lasers includes a plurality of lasers arranged at intervals along the vertical direction of the three-dimensional space, and the plurality of lasers are arranged. To make each laser transceiver module have a preset vertical field of view range.
  • the detection module may include an array of detectors, and each detector includes a photo sensor.
  • the photoelectric sensor is adapted to convert the light signal received by it into an electrical signal.
  • the photoelectric sensor may be a PIN photoelectric sensor, an avalanche photodiode (APD), or a Geiger-mode avalanche photodiode (GM-APD), etc.
  • the lidar system 30 may further include a control module (not shown) and a processing module (not shown), and the control module is adapted to control the three laser transceiver modules A1, A2, and A3. Transmit laser pulses, and control the three laser transceiver modules A1, A2, and A3 to receive echo signals corresponding to the laser pulses they emit.
  • the processing module is adapted to process the electrical signals detected by the detection module and pass A program such as calculation obtains information about obstacles detected by the lidar system 30.
  • the information of the obstacle may be its position, shape, or speed.
  • At least two laser transceiver modules of the multiple laser transceiver modules included in the lidar system 30 may have different preset vertical viewing angle ranges, and the at least two laser transceiver modules The preset vertical viewing angle range has overlapping areas.
  • the scan lines of the at least two laser transceiver modules may have different vertical distribution parameters, so as to realize the encryption of the scan lines in the overlap area.
  • the vertical distribution parameter includes the angle between the scan line and the horizontal plane of the lidar system 30.
  • the respective lasers of the at least two laser transceiver modules may be set to be at different heights in the vertical direction, or the optical systems of the at least two laser transceiver modules may be adjusted to have different tilts.
  • the angle (for example, the pitch angle of the optical system) makes the scan lines of the at least two laser transceiver modules have different distributions in the vertical direction, so as to realize the encryption of the scan lines in the overlapping field of view.
  • the vertical angular resolution of the lidar system 30 is smaller than the vertical angular resolution of each laser transceiver module.
  • the scan lines of the at least two laser transceiver modules may have exactly the same vertical distribution parameters, that is, in the overlap area, the at least two laser transceiver modules
  • the angles between the multiple scan lines of the module and the horizontal plane of the lidar system 30 are all the same, so that there is no encryption of scan lines in the overlapping area.
  • the vertical angular resolution of the lidar system 30 is Equal to the vertical angular resolution of each laser transceiver module.
  • Fig. 4 is a schematic diagram of the vertical field of view distribution of the three laser transceiver modules A1, A2, and A3 of the lidar system 30 according to an embodiment of the present invention.
  • the three laser transceiver modules A1, A2, and A3 may have different vertical viewing angle ranges, such as -10° to 10°, 0° to 25°, and -5°, respectively. ° to 15°, where the vertical field of view range of any two adjacent laser transceiver modules may have an overlapping area, so that the lidar system 30 has a continuous vertical field of view between -10° and 25° , The vertical field of view angle of the lidar system 30 is increased.
  • Figure 5 is a schematic diagram of the vertical distribution of the scan lines of the three laser transceiver modules A1, A2, and A3 of the lidar system 30 of the embodiment shown in Figure 4 of the present invention, where the solid line represents the laser transceiver module
  • the scan line of A1 the dotted line represents the scan line of the laser transceiver module A2
  • the dotted line represents the scan line of the laser transceiver module A3.
  • the scan lines of the three laser transceiver modules A1, A2, and A3 are not in the same vertical direction at the same time.
  • the three laser transceiver modules A1, A2, and A3 correspond to the same area of the target space at different times
  • the scanning lines of the three laser transceiver modules A1, A2, and A3 are actually put together, but there is a phase difference in the scanning timing of the three laser transceiver modules A1, A2, and A3.
  • the vertical field of view of any two of the three laser transceiver modules A1, A2, and A3 has an overlapping area.
  • the any two laser transceiver modules The scan line may have different vertical distribution parameters, and the vertical distribution parameters may include the angle between the scan line and the horizontal plane of the lidar system 30, as shown in FIG. 5, between 0° and ⁇ 2
  • the vertical field of view between there are at least three scan lines of the three laser transceiver modules A1, A2, and A3.
  • the angles between the three scan lines and the horizontal plane are ⁇ 1, ⁇ 2, and ⁇ 3, respectively.
  • the lasers of the three laser transceiver modules A1, A2, and A3 are respectively at different positions in the vertical direction perpendicular to the horizontal plane of the lidar system 30, or the three laser transceiver modules
  • the optical systems of A1, A2, and A3 (including the first optical component 321, the light deflecting device 322, or the reflective element 323) have different tilt angles, so that the three laser transceiver modules A1, A2, and A3 can overlap the viewing angle. Encryption of scan lines in the field.
  • the tilt angle of the optical system may be the pitch angle of the optical element included in the optical system with respect to the horizontal plane.
  • the multiple laser transceiver modules included in the lidar system 30 may have the same preset vertical viewing angle range.
  • FIG. 6 is a schematic diagram of the vertical field of view distribution of the three laser transceiver modules A1, A2, and A3 of the lidar system 30 according to another embodiment of the present invention.
  • the three laser transceiver modules A1, A2, and A3 may have exactly the same vertical viewing angle range, for example, -10° to 25°.
  • the vertical viewing angle of the lidar system 30 The field angle range is also -10° to 25°.
  • each laser transceiver module may include a first laser located at the top end along the vertical direction perpendicular to the horizontal plane of the lidar system 30, a second laser located at the bottom end along the vertical direction, and A plurality of third lasers located vertically between the first laser and the second laser.
  • the first lasers of the three laser transceiver modules A1, A2, and A3 may have the same height in the vertical direction, and the second lasers of the three laser transceiver modules A1, A2, and A3 are located in the The vertical direction may have the same height, so that the three laser transceiver modules A1, A2, and A3 have the same vertical field of view range; and the third laser transceiver module A1, A2, and A3 The lasers have different heights in the vertical direction, so that the laser beams emitted by the third lasers of the three laser transceiver modules A1, A2, and A3, that is, the scan lines, have different vertical distributions.
  • the vertical angular resolution of the lidar system 30 is smaller than the vertical angular resolution of each laser transceiver module.
  • the scan lines of the three laser transceiver modules A1, A2, and A3 may have exactly the same distribution in the vertical direction perpendicular to the horizontal plane of the lidar system 30, that is, the three lasers
  • the angles between the multiple scan lines of the transceiver modules A1, A2, and A3 and the horizontal plane are all the same, so that there is no encryption of scan lines within the same vertical field of view range, and the lidar system 30
  • the vertical angular resolution is equal to the vertical angular resolution of each laser transceiver module.
  • An embodiment of the present invention also provides a vehicle.
  • the vehicle includes a vehicle body and the lidar system of the foregoing embodiment of the present invention.
  • the lidar system may be installed on the top of the vehicle body to detect the surrounding area of the vehicle.
  • the obstacle information may include the distance, orientation, shape, or speed of the obstacle.
  • the transmitting optical path and the receiving optical path of the laser transceiver module according to the embodiment of the present invention share a transmission module, providing a coaxial solution.
  • the laser transceiver module of the embodiment of the present invention uses the light deflecting device to make the laser beam be deflected at an angle, so that the emitted laser light
  • the beam and the received echo signal are separated, which is conducive to the realization of large optical diameter coaxial transmission and reception;
  • the laser transceiver module is compact and small; the positional relationship between the transmitter module and the detection module is fixed, which makes it easier to realize the overall optical path
  • the installation and adjustment of the optical system is less difficult and the cost is low.
  • the laser radar system of the embodiment of the present invention adopts a plurality of laser transceiver modules of the embodiments of the present invention evenly distributed around the rotating shaft to form a distributed coaxial structure.
  • This distributed optical path layout helps meet the requirements of human eye safety;
  • the folding optical path design of the module (that is, the laser beam deflection angle is emitted) is conducive to the rational use of space to arrange the transmitting module and the detection module; in addition, the multiple laser transceiver modules are arranged in an encrypted manner along the scan line of the vertical field of view Improved the resolution of the lidar system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

提供了一种激光收发模块(20)和激光雷达系统(30)。激光收发模块(20)包括:发射模块(21),适于发射激光束;传输模块(22),适于将激光束传输至三维空间、以及接收和传输三维空间的障碍物反射激光束形成的回波信号;探测模块(23),适于探测传输模块(22)传输的激光束的回波信号;其中,发射模块(21)和探测模块(23)设置于传输模块(22)的同一侧,且发射模块(21)和探测模块(23)之间有预设距离;传输模块(22)包括:第一光学组件(221),第一光学组件(221)适于对发射模块(21)发射的激光束进行准直,以及对传输模块(22)接收的三维空间的障碍物反射激光束形成的回波信号进行会聚;以及光偏转装置(222),光偏转装置(222)适于改变经第一光学组件(221)准直的激光束的传输方向。

Description

激光收发模块及激光雷达系统
本申请要求于2019年3月11日提交中国专利局、申请号为201910182514.6、发明名称为“激光收发模块及激光雷达系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及激光探测技术领域,尤其涉及一种激光收发模块及激光雷达系统。
背景技术
激光雷达作为一种主动探测传感器,通过发射光路发射激光束、接收光路探测目标的回波信号来测量目标的距离信息,其中光学系统在激光雷达的探测过程中起到光束发射和会聚接收的重要功能。
根据发射光路与接收光路的布局方式的不同,可将激光雷达分为非同轴系统和同轴系统,非同轴系统的发射光路和接收光路相互独立,通常采用不同的镜组实现,分别承担激光的发射和接收功能,而同轴系统的发射光路和接收光路共光轴,往往共用一个收发镜组,通过分光元件(如分光镜、小孔反射镜等)来实现发射光束和接收光束的分离和交合。
非同轴系统由于需要具备两个独立的发射和接收模块,往往造成激光雷达的体积较大、结构不紧凑;此外,非同轴系统还存在装调复杂,成本较高的问题。而传统的分光式同轴方案,由于分光元件处的杂散光难以避免,导致激光雷达存在较大的近场盲区。
发明内容
为了优化激光雷达的结构设计,提高激光雷达的综合性能,本发明实施例提供一种激光收发模块,包括:发射模块,适于发射激光束;传输模块,适于将所述激光束传输至三维空间、以及接收和传输三维空间的障碍物反射所述激光束形成的回波信号;探测模块,适于探测 所述传输模块传输的激光束的回波信号;其中,所述发射模块和所述探测模块设置于所述传输模块的同一侧,且所述发射模块和所述探测模块之间有预设距离;所述传输模块包括:第一光学组件,所述第一光学组件适于对所述发射模块发射的激光束进行准直,以及对所述传输模块接收的三维空间的障碍物反射所述激光束形成的回波信号进行会聚;以及光偏转装置,所述光偏转装置适于改变经所述第一光学组件准直的激光束的传输方向。
可选地,所述光偏转装置适于通过折射改变经所述第一光学组件准直的激光束的传输方向。
可选地,所述光偏转装置与所述第一光学组件之间有预定距离。
可选地,所述光偏转装置的孔径小于所述第一光学组件的孔径。
可选地,所述光偏转装置和所述第一光学组件同轴,且所述发射模块和所述探测模块相对于所述轴对称设置。
可选地,所述传输模块还包括第二光学组件,设置于所述发射模块与所述第一光学组件之间,适于压缩所述发射模块发射的激光束的快轴发散角。
可选地,所述发射模块和所述探测模块设置于平行于所述第一光学组件的主平面的同一平面内。
可选地,所述激光收发模块还包括设置于所述发射模块和探测模块之间的隔离装置。
本发明实施例还提供一种激光雷达系统,包括:多个本发明实施例的激光收发模块,所述多个激光收发模块适于同轴转动。
可选地,每个激光收发模块的发射模块包括一列或多列激光器,每列激光器包括沿所述三维空间的竖直方向间隔排列的多个激光器,所述多个激光器被设置为使得每个激光收发模块具有预设竖直视场角范围。
可选地,至少两个所述激光收发模块具有不同的预设竖直视场角范围,且所述至少两个激光收发模块的预设竖直视场角范围具有重叠区域。
可选地,所述多个激光收发模块具有相同的预设竖直视场角范围。
可选地,所述传输模块还包括:反射元件,所述反射元件与所述第一光学组件成预设夹角设置,所述反射元件适于将所述第一光学组件和所述光偏转装置传输的激光束反射至所述三维空间、以及将所述三维空间的障碍物反射所述激光束形成的回波信号反射至所述光偏转装置和所述第一光学组件。
与现有技术相比,本发明实施例的技术方案具有以下有益效果:
本发明实施例的激光收发模块的发射光路和接收光路共用一个传输模块,提供了一种同轴式方案。然而区别于传统的采用分光镜或小孔反射镜等分光元件进行分光的同轴系统,本发明实施例的激光收发模块采用所述光偏转装置使激光束偏折角度出射,从而使发射的激光束和接收的回波信号相分离,有利于实现大光学口径的同轴收发;所述激光收发模块的结构紧凑、体积小;所述发射模块和所述探测模块的位置关系固定,较容易实现整体光路的装调,光学实现难度小、成本低。
本发明实施例的激光雷达系统采用多个本发明实施例的激光收发模块均匀分布在转轴周围构成分布式同轴结构,这种分布式光路布局有助于符合人眼安全要求;所述激光收发模块的折转式光路设计(即激光束偏折角度出射)有利于合理利用空间排布发射模块和探测模块;此外,所述多个激光收发模块沿竖直视场的扫描线的加密式布局提高了激光雷达系统的分辨率。
附图说明
图1是本发明一个实施例的激光收发模块10的结构框图;
图2是本发明另一实施例的激光收发模块20的结构示意图;
图3是本发明一个实施例的激光雷达系统30的俯视图;
图4是本发明一个实施例的所述激光雷达系统30的三个激光收发模块A1、A2和A3的竖直视场角分布示意图;
图5是本发明图4所示实施例的激光雷达系统30的三个激光收发模块A1、A2和A3的扫描线的竖直分布示意图;
图6是本发明另一实施例的所述激光雷达系统30的三个激光收发模块A1、A2和A3的竖直视场角分布示意图。
具体实施方式
为使本发明的上述目的、特征和有益效果能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同或相似部分互相参见即可。
参考图1,图1是本发明一个实施例的激光收发模块10的结构框图。
在一些实施例中,所述激光收发模块10可以包括发射模块11、传输模块12、以及探测模块13。所述发射模块11适于发射激光束,所述传输模块12适于将所述激光束传输至三维空间、以及接收和传输三维空间的障碍物18反射所述激光束形成的回波信号,所述探测模块13适于探测所述传输模块12传输的激光束的回波信号。需要说明的是,图1中的箭头代表光的传输方向,不同类型的线(如点划线或虚线)代表不同的光路分支。
其中,所述发射模块11和所述探测模块13设置于所述传输模块12的同一侧,且所述发射模块11和所述探测模块13之间有预设距离。所述传输模块12包括:第一光学组件121和光偏转装置122;所述第一光学组件121适于对所述发射模块11发射的激光束进行准 直,以及对所述传输模块12接收的三维空间的障碍物18反射所述激光束形成的回波信号进行会聚;所述光偏转装置122适于改变经所述第一光学组件121准直的激光束的传输方向。
在一些实施例中,所述光偏转装置122适于通过折射改变经所述第一光学组件121准直的激光束的传输方向,使得所述准直激光束以一定的偏折角度出射至三维空间。其中,所述光偏转装置122的孔径小于所述第一光学组件121的孔径。
如图1所示,在发射光路中,所述发射模块11发射的激光束依次经所述第一光学组件121和所述光偏转装置122出射至三维空间;在接收光路中,所述三维空间的障碍物18反射所述激光束形成的回波信号入射至所述传输模块12后可以分为两路:所述回波信号的一部分(如虚线箭头所示)直接入射至所述第一光学组件121,这部分回波信号由于角度的偏折,经所述第一光学组件121会聚后入射至与所述发射模块11具有不同位置的探测模块13处,从而实现了收发分离。所述回波信号的另一部分(如点划线箭头所示)入射至所述光偏转装置122,然后沿原路返回(即依次经过所述光偏转装置122和所述第一光学组件121)至所述发射模块11,该部分回波信号无法入射至所述探测模块13,但是这部分回波信号并不影响所述发射模块11发射激光束。
在一些实施例中,所述光偏转装置122的孔径可以远小于所述第一光学组件121的孔径,即所述光偏转装置122仅用于遮挡所述第一光学组件121的激光束出射面的一部分区域。相应地,在接收光路中,所述障碍物18漫反射所述激光束形成的回波信号中仅有一小部分入射至所述光偏转装置122,并沿原路返回至所述发射模块11,其余大部分的回波信号则直接入射至所述第一光学组件121未被所述光偏转装置122遮挡的区域,进而被所述探测模块13接收。
在一些实施例中,所述激光雷达10还可以包括控制模块(未示出)和处理模块(未示出),所述控制模块适于控制所述发射模块11 发射激光束,控制所述探测模块13接收与所述激光束对应的回波信号,和/或控制所述处理模块进行相应的数据处理。在一些实施例中,所述处理模块可以集成于所述探测模块13中,或者独立于所述探测模块13而设置。所述控制模块可以集成于所述处理模块中,或者独立于所述处理模块而设置。
本实施例中,所述发射模块11和所述传输模块12设置于发射光路中,所述传输模块12和所述探测模块13设置于接收光路中,其中所述发射光路和所述接收光路共用所述传输模块12,即所述传输模块12同时发挥了发射和接收激光信号的功能,提供了一种同轴式方案。然而,区别于传统的采用分光镜或小孔反射镜等分光元件进行分光的同轴方案,本实施例的激光收发模块采用所述光偏转装置122使发射的激光束偏折角度出射,从而将发射的激光束和接收的回波信号进行分离,有利于实现大光学口径的同轴收发;基于同轴方案的激光收发模块的结构紧凑、体积小;由于所述发射模块11和探测模块13的位置关系固定,较容易实现整体光路的装调,光学实现难度小,成本低。
为方便本领域技术人员实施本发明,本发明实施例还提供一种激光收发模块。
参考图2,图2是本发明另一实施例的激光收发模块20的结构示意图。
在一些实施例中,所述激光收发模块20可以包括发射模块21、传输模块22和探测模块23。所述发射模块21适于发射激光束,所述传输模块22适于将所述发射模块21发射的激光束传输至三维空间、以及接收和传输三维空间的障碍物反射所述激光束形成的回波信号,所述探测模块23适于探测所述传输模块传输的激光束的回波信号。
其中,所述发射模块21和所述探测模块23设置于所述传输模块22的同一侧,且所述发射模块21和所述探测模块23之间有预设距 离。
在一些实施例中,所述发射模块21可以包括激光器阵列,所述激光器阵列适于按照预设时序发射多个激光脉冲,所述探测模块23可以包括探测器阵列,所述探测器阵列适于接收与所述多个激光脉冲相对应的回波信号。
在一些实施例中,所述传输模块22可以包括第一光学组件221和光偏转装置222。所述第一光学组件221适于对所述发射模块21发射的激光束进行准直,以及对所述传输模块22接收的三维空间的障碍物反射所述激光束形成的回波信号进行会聚,此处所述第一光学组件221接收的回波信号包括两部分,一部分是来自所述三维空间的回波信号直接入射至所述第一光学组件221,另一部分是来自所述三维空间的回波信号先入射至所述光偏转装置222、然后再入射至所述第一光学组件221。所述光偏转装置222适于改变经所述第一光学组件221准直的激光束的传输方向。
在一些实施例中,所述光偏转装置222适于通过折射改变经所述第一光学组件221准直的激光束的传输方向,使得所述准直激光束以一定的偏折角度出射至三维空间。
在一些实施例中,所述第一光学组件221可以包括透镜组,所述光偏转装置222可以包括棱镜。具体地,所述光偏转装置222可以包括楔形棱镜,所述楔形棱镜的尖端可以朝向所述三维空间的任意方向。在实际应用中,可以根据扫描视场等来确定所需要的激光束出射的偏折角度,进而选择合适的棱镜、以及设置所述棱镜的空间方位,所述发射模块21和所述探测模块23相对于所述光偏转装置222的位置也要做相应的调整。
在一些实施例中,所述传输模块22还包括第二光学组件(未示出),所述第二光学组件设置于所述发射模块21与所述第一光学组件221之间,适于压缩所述发射模块21发射的激光束的快轴发散角,使得所述激光束经快轴准直后尽可能多地入射至第一光学组件221 被所述光偏转装置222遮挡的区域,使得所述激光束尽可能多地依次经所述第一光学组件221和所述光偏转装置222出射至三维空间,而仅有极少部分的激光能量仅经所述第一光学组件221而不经过所述光偏转装置222出射至所述三维空间。需要说明的是,这部分未经所述光偏转装置222直接出射至三维空间的激光能量为无效出射能量,其回波信号通常无法被所述探测模块23接收。
在一些实施例中,所述第二光学组件可以是柱透镜等任何可以压缩光斑的透镜。
在一些实施例中,所述光偏转装置222与所述第一光学组件221之间可以有预定距离,所述光偏转装置222的孔径小于所述第一光学组件221的孔径。例如,所述光偏转装置222的孔径远小于所述第一光学组件221的孔径,在发射光路中,所述光偏转装置222仅用于遮挡第一光学组件221的激光束出射面的一小部分区域,则在接收光路中,三维空间的障碍物漫反射所述激光束形成的回波信号中仅有一小部分入射至所述光偏转装置222,并沿原路返回至所述发射模块21,其余大部分的回波信号则直接入射至所述第一光学组件221未被所述光偏转装置222遮挡的区域,该部分回波信号由于角度的偏折,经所述第一光学组件221会聚后不会沿原路返回,而是入射至与所述发射模块21具有不同位置的探测模块23处,从而实现了收发分离。倘若所述发射模块21发射的激光束经所述第一光学组件221出射至所述三维空间时无角度偏折,所述回波信号会沿原路返回至所述发射模块21,因此,本实施例借助于所述光偏转装置222实现了对发射的激光束和接收的回波信号的分离。
在一些实施例中,所述激光收发模块20还包括设置于所述发射模块21和所述探测模块23之间的隔离装置(未示出),以减少所述发射模块21对所述探测模块23的干扰。
在一些实施例中,所述光偏转装置222和所述第一光学组件221可以同轴设置,且所述发射模块21和所述探测模块23相对于所述轴 对称设置。
在另一些实施例中,所述光偏转装置222也可以偏离所述第一光学组件221的光轴设置。所述发射模块21和所述探测模块23可以位于所述第一光学组件221的光轴的同一侧,也可以分别位于所述第一光学组件221的光轴的两侧,所述发射模块21和所述探测模块23之间的位置关系可以根据所述激光束出射至三维空间的角度、以及系统距离设计等因素来确定。
在一些实施例中,所述发射模块21和所述探测模块23可以设置于平行于所述第一光学组件221的主平面的同一平面内。
本实施例的激光收发模块20的发射光路和接收光路共用一个传输模块22,提供了一种同轴式方案,然而区别于传统的采用分光镜或小孔反射镜等分光元件进行分光的同轴方案,本实施例中采用所述光偏转装置222使发射的激光束偏折角度出射,从而使发射的激光束和接收的回波信号相分离,有利于实现大光学口径的同轴收发;基于同轴方案的所述激光收发模块20的结构紧凑、体积小;所述发射模块21和探测模块23的位置关系固定,较容易实现整体光路的装调,光学实现难度小,成本低。
本发明实施例还提供一种激光雷达系统。参考图3,图3是本发明一个实施例的激光雷达系统30的俯视图。
在一些实施例中,所述激光雷达系统30可以包括多个本发明前述实施例的激光收发模块,所述多个激光收发模块适于围绕同一个转轴35旋转。图3以包括三个所述激光收发模块A1、A2和A3为例,对所述激光雷达系统30的结构和功能加以详细说明,然而本发明实施例不限于此。
在一些实施例中,每个激光收发模块可以包括发射模块31、传输模块32、和探测模块(未示出)。其中,所述发射模块31和所述探测模块可以沿纵向(即平行于所述转轴35的方向)排列,所述发 射模块31可以设置于所述探测模块的上方。所述传输模块32可以包括第一光学组件321和光偏转装置322。所述激光收发模块的结构和功能可以参考前述图1至图2所示实施例,此处不再赘述。
在一些实施例中,每个激光收发模块的传输模块32还可以包括反射元件323,所述反射元件323与所述第一光学组件321成预设夹角设置,所述反射元件323适于将所述第一光学组件321和所述光偏转装置322传输的激光束反射至所述三维空间、以及将所述三维空间反射所述激光束形成的回波信号反射至所述光偏转装置322和所述第一光学组件321。在一些实施例中,所述反射元件323可以为平面反射镜,所述预设夹角可以是锐角。
在一些实施例中,所述激光雷达系统30还可以包括:转子(未示出)和定子(未示出)。
在一些实施例中,所述激光雷达系统30还可以包括光罩36。
在一些实施例中,每个激光收发模块的发射模块31可以包括一列或多列激光器,每列激光器包括沿所述三维空间的竖直方向间隔排列的多个激光器,所述多个激光器被设置为使得每个激光收发模块具有预设竖直视场角范围。
在一些实施例中,所述探测模块可以包括探测器阵列,每个探测器包括光电传感器。所述光电传感器适于将其接收的光信号转换为电信号。具体地,所述光电传感器可以是PIN光电传感器、雪崩光电二极管(Avalanche Photo Diode,APD)、或盖革模式雪崩光电二极管(Geiger-mode Avalanche Photodiode,GM-APD)等。
在一些实施例中,所述激光雷达系统30还可以包括控制模块(未示出)和处理模块(未示出),所述控制模块适于控制所述三个激光收发模块A1、A2和A3发射激光脉冲、以及控制所述三个激光收发模块A1、A2和A3接收与各自发射的激光脉冲对应的回波信号,所述处理模块适于处理所述探测模块检测到的电信号,并通过计算等程 序获取所述激光雷达系统30探测到的障碍物的信息。所述障碍物的信息可以是其位置、形状、或速度等。
在一些实施例中,所述激光雷达系统30包括的多个激光收发模块中的至少两个激光收发模块可以具有不同的预设竖直视场角范围,且所述至少两个激光收发模块的预设竖直视场角范围具有重叠区域。
在一些实施例中,在所述重叠区域内,所述至少两个激光收发模块的扫描线可以具有不同的竖直分布参数,以实现重叠区域内扫描线的加密。所述竖直分布参数包括所述扫描线与所述激光雷达系统30的水平面的夹角。通常影响所述扫描线的竖直分布参数的因素有两个:激光器在竖直方向上的高度和光学系统的倾斜角度。因此,在一些实施例中,可以设置所述至少两个激光收发模块各自的激光器在竖直方向分别处于不同的高度、或者调整所述至少两个激光收发模块各自的光学系统分别具有不同的倾斜角度(例如光学系统的俯仰角),使得所述至少两个激光收发模块的扫描线在竖直方向具有不同的分布,从而实现重叠视场内扫描线的加密。此时,所述激光雷达系统30的竖直角分辨率小于每个激光收发模块的竖直角分辨率。
在另一些实施例中,在所述重叠区域内,所述至少两个激光收发模块的扫描线可以具有完全相同的竖直分布参数,即在所述重叠区域内,所述至少两个激光收发模块的多条扫描线与所述激光雷达系统30的水平面间的夹角均相同,使得在所述重叠区域内不存在扫描线的加密,此时所述激光雷达系统30的竖直角分辨率等于每个激光收发模块的竖直角分辨率。
参考图4,图4是本发明一个实施例的所述激光雷达系统30的三个激光收发模块A1、A2和A3的竖直视场角分布示意图。在一些实施例中,所述三个激光收发模块A1、A2和A3可以具有各不相同的竖直视场角范围,例如分别为-10°至10°,0°至25°、以及-5°至15°,其中任意相邻的两个激光收发模块的竖直视场角范围可以具有重叠区域,使得所述激光雷达系统30在-10°至25°之间具有连 续的竖直视场,增大了所述激光雷达系统30的竖直视场角。
结合参考图5,图5是本发明图4所示实施例的激光雷达系统30的三个激光收发模块A1、A2和A3的扫描线的竖直分布示意图,其中实线代表所述激光收发模块A1的扫描线,点划线代表所述激光收发模块A2的扫描线,虚线代表所述激光收发模块A3的扫描线。需要说明的是,由于所述三个激光收发模块A1、A2和A3分别朝向不同的水平方向发射激光束,因此在同一时刻所述三个激光收发模块A1、A2和A3的扫描线不在同一竖直平面内,这里为了方便说明所述三个激光收发模块A1、A2和A3的扫描线的加密关系,将所述三个激光收发模块A1、A2和A3在不同时刻对应于目标空间的同一区域的扫描线放在一起,但实质上所述三个激光收发模块A1、A2和A3在扫描时序上存在相位差。
在一些实施例中,所述三个激光收发模块A1、A2和A3中任意两个激光收发模块的竖直视场均存在重叠区域,在所述重叠区域内,所述任意两个激光收发模块的扫描线可以具有不同的竖直分布参数,所述竖直分布参数可以包括所述扫描线与所述激光雷达系统30的水平面之间的夹角,如图5所示,在0°至θ2之间的竖直视场内,存在所述三个激光收发模块A1、A2和A3的至少三条扫描线,所述三条扫描线与水平面间的夹角分别是θ1,θ2和θ3,这样相比于采用所述三个激光收发模块A1、A2和A3中任意单一的收发模块,所述激光雷达系统30在同一目标空间内的竖直方向的扫描线得以加密,其竖直角分辨率大幅度降低。
在一些实施例中,所述三个激光收发模块A1、A2和A3的激光器在垂直于所述激光雷达系统30的水平面的竖直方向上分别处于不同的位置、或者所述三个激光收发模块A1、A2和A3的光学系统(包括第一光学组件321、光偏转装置322或反射元件323)分别具有不同的倾斜角度,从而实现所述三个激光收发模块A1、A2和A3在其重叠视场内扫描线的加密。在一些实施例中,所述光学系统的倾斜角 度可以是所述光学系统包括的光学元件相对于所述水平面的俯仰角度。
在一些实施例中,所述激光雷达系统30包括的多个激光收发模块可以具有相同的预设竖直视场角范围。参考图6,图6是本发明另一实施例的所述激光雷达系统30的三个激光收发模块A1、A2和A3的竖直视场角分布示意图。在一些实施例中,所述三个激光收发模块A1、A2和A3可以具有完全相同的竖直视场角范围,例如均为-10°至25°,所述激光雷达系统30的竖直视场角范围也为-10°至25°。
在一些实施例中,在所述相同的竖直视场角范围内,所述三个激光收发模块A1、A2和A3的扫描线可以具有不同的竖直分布参数,以实现竖直视场内扫描线的加密。例如,每个激光收发模块可以包括沿垂直于所述激光雷达系统30的水平面的竖直方向位于最顶端的第一激光器、沿所述竖直方向位于最底端的第二激光器、以及沿所述竖直方向位于所述第一激光器和所述第二激光器之间的多个第三激光器。其中,所述三个激光收发模块A1、A2和A3的第一激光器在所述竖直方向上可以具有相同的高度,所述三个激光收发模块A1、A2和A3的第二激光器在所述竖直方向上可以具有相同的高度,使得所述三个激光收发模块A1、A2和A3具有相同的竖直视场角范围;并且,所述三个激光收发模块A1、A2和A3的第三激光器在所述竖直方向上分别具有不同的高度,使得所述三个激光收发模块A1、A2和A3的第三激光器发射的激光束即扫描线具有不同的竖直分布,以此实现在所述相同的竖直视场角范围内所述三个激光收发模块A1、A2和A3的扫描线的加密。本实施例中,所述激光雷达系统30的竖直角分辨率小于每个激光收发模块的竖直角分辨率。
在另一些实施例中,所述三个激光收发模块A1、A2和A3的扫描线在垂直于所述激光雷达系统30的水平面的竖直方向可以具有完全相同的分布,即所述三个激光收发模块A1、A2和A3的多条扫描线与所述水平面间的夹角均相同,使得在所述相同的竖直视场角范围 内不存在扫描线的加密,所述激光雷达系统30的竖直角分辨率等于每个激光收发模块的竖直角分辨率。
本发明实施例还提供一种车辆,所述车辆包括车辆本体和本发明前述实施例的激光雷达系统,所述激光雷达系统可以安装于所述车辆本体的顶部,用于探测所述车辆周围的障碍物的信息。在一些实施例中,所述障碍物的信息可以包括障碍物的距离、方位、形状或速度等。
综上所述,本发明实施例的激光收发模块的发射光路和接收光路共用一个传输模块,提供了一种同轴式方案。然而区别于传统的采用分光镜或小孔反射镜等分光元件进行分光的同轴系统,本发明实施例的激光收发模块采用所述光偏转装置使激光束偏折角度出射,从而使发射的激光束和接收的回波信号相分离,有利于实现大光学口径的同轴收发;所述激光收发模块的结构紧凑、体积小;所述发射模块和探测模块的位置关系固定,较容易实现整体光路的装调,光学实现难度小,成本低。
本发明实施例的激光雷达系统采用多个本发明实施例的激光收发模块均匀分布在转轴周围构成分布式同轴结构,这种分布式光路布局有助于符合人眼安全要求;所述激光收发模块的折转式光路设计(即激光束偏折角度出射)有利于合理利用空间排布发射模块和探测模块;此外,所述多个激光收发模块沿竖直视场的扫描线的加密式布局提高了激光雷达系统的分辨率。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (13)

  1. 一种激光收发模块,其特征在于,包括:
    发射模块,适于发射激光束;
    传输模块,适于将所述激光束传输至三维空间、以及接收和传输三维空间的障碍物反射所述激光束形成的回波信号;
    探测模块,适于探测所述传输模块传输的激光束的回波信号;
    其中,所述发射模块和所述探测模块设置于所述传输模块的同一侧,且所述发射模块和所述探测模块之间有预设距离;
    所述传输模块包括:第一光学组件,所述第一光学组件适于对所述发射模块发射的激光束进行准直,以及对所述传输模块接收的三维空间的障碍物反射所述激光束形成的回波信号进行会聚;以及光偏转装置,所述光偏转装置适于改变经所述第一光学组件准直的激光束的传输方向。
  2. 如权利要求1所述的激光收发模块,其特征在于,所述光偏转装置适于通过折射改变经所述第一光学组件准直的激光束的传输方向。
  3. 如权利要求1所述的激光收发模块,其特征在于,所述光偏转装置与所述第一光学组件之间有预定距离。
  4. 如权利要求1所述的激光收发模块,其特征在于,所述光偏转装置的孔径小于所述第一光学组件的孔径。
  5. 如权利要求1所述的激光收发模块,其特征在于,所述光偏转装置和所述第一光学组件同轴,且所述发射模块和所述探测模块相对于所述轴对称设置。
  6. 如权利要求1所述的激光收发模块,其特征在于,所述传输模块还包括第二光学组件,设置于所述发射模块与所述第一光学组件之间,适于压缩所述发射模块发射的激光束的快轴发散角。
  7. 如权利要求1所述的激光收发模块,其特征在于,所述发射模块和所述探测模块设置于平行于所述第一光学组件的主平面的同一平面内。
  8. 如权利要求1所述的激光收发模块,其特征在于,还包括设置于所述发射模块和探测模块之间的隔离装置。
  9. 一种激光雷达系统,其特征在于,包括:
    多个如权利要求1至8任一项所述的激光收发模块,所述多个激光收发模块适于同轴转动。
  10. 如权利要求9所述的激光雷达系统,其特征在于,每个激光收发模块的发射模块包括一列或多列激光器,每列激光器包括沿所述三维空间的竖直方向间隔排列的多个激光器,所述多个激光器被设置为使得每个激光收发模块具有预设竖直视场角范围。
  11. 如权利要求10所述的激光雷达系统,其特征在于,至少两个所述激光收发模块具有不同的预设竖直视场角范围,且所述至少两个激光收发模块的预设竖直视场角范围具有重叠区域。
  12. 如权利要求10所述的激光雷达系统,其特征在于,所述多个激光收发模块具有相同的预设竖直视场角范围。
  13. 如权利要求9所述的激光雷达系统,其特征在于,所述传输模块还包括:
    反射元件,所述反射元件与所述第一光学组件成预设夹角设置,所述反射元件适于将所述第一光学组件和所述光偏转装置传输的激光束反射至所述三维空间、以及将所述三维空间的障碍物反射所述激光束形成的回波信号反射至所述光偏转装置和所述第一光学组件。
PCT/CN2020/077703 2019-03-11 2020-03-04 激光收发模块及激光雷达系统 WO2020182024A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910182514.6 2019-03-11
CN201910182514.6A CN109814087A (zh) 2019-03-11 2019-03-11 激光收发模块及激光雷达系统

Publications (1)

Publication Number Publication Date
WO2020182024A1 true WO2020182024A1 (zh) 2020-09-17

Family

ID=66608628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/077703 WO2020182024A1 (zh) 2019-03-11 2020-03-04 激光收发模块及激光雷达系统

Country Status (2)

Country Link
CN (2) CN109814087A (zh)
WO (1) WO2020182024A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112558098A (zh) * 2020-10-26 2021-03-26 新沂市锡沂高新材料产业技术研究院有限公司 用于植保无人机的高时间分辨率、广视角的线状激光雷达
WO2024032243A1 (zh) * 2022-08-12 2024-02-15 安徽蔚来智驾科技有限公司 激光雷达系统和车辆
WO2024088086A1 (zh) * 2022-10-24 2024-05-02 科沃斯机器人股份有限公司 清洁装置及其应用的透光罩、自移动装置
CN112558098B (zh) * 2020-10-26 2024-06-11 新沂市锡沂高新材料产业技术研究院有限公司 用于植保无人机的高时间分辨率、广视角的线状激光雷达

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109814087A (zh) * 2019-03-11 2019-05-28 上海禾赛光电科技有限公司 激光收发模块及激光雷达系统
CN112444791B (zh) * 2019-08-29 2023-09-15 深圳市速腾聚创科技有限公司 减小近距离盲区的激光雷达
JP7312979B2 (ja) * 2020-01-03 2023-07-24 深セン市速騰聚創科技有限公司 レーザートランシーバーモジュールおよびその光学調整方法、レーザーレーダーおよび自動運転装置
CN113075643B (zh) * 2020-01-06 2023-05-05 苏州一径科技有限公司 一种激光雷达系统及其制造方法
WO2021196194A1 (zh) * 2020-04-03 2021-10-07 深圳市速腾聚创科技有限公司 激光收发系统、激光雷达及自动驾驶设备
WO2021223183A1 (zh) * 2020-05-07 2021-11-11 深圳市速腾聚创科技有限公司 激光收发组件、激光雷达及自动驾驶设备
CN115825929B (zh) * 2021-12-14 2023-08-29 深圳市速腾聚创科技有限公司 激光接收装置及激光雷达

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1310352A (zh) * 2000-02-15 2001-08-29 高级光学技术股份有限公司 在宽视场中动态控制光方向的设备
US6411370B1 (en) * 1998-11-23 2002-06-25 Vantageport, Inc. Optical system and method for measuring distance
CN1967285A (zh) * 2006-09-14 2007-05-23 中国科学院安徽光学精密机械研究所 激光雷达透射式共焦距收发光学系统
CN101241182A (zh) * 2007-02-06 2008-08-13 电装波动株式会社 测量物体方向和距离的激光雷达设备
US20130162970A1 (en) * 2011-12-23 2013-06-27 Hilti Aktiengesellschaft Device for measuring a distance to a target object
CN205749898U (zh) * 2016-05-10 2016-11-30 深圳市速腾聚创科技有限公司 多线激光雷达
CN109387849A (zh) * 2018-12-04 2019-02-26 珠海码硕科技有限公司 一种同轴激光测距装置
CN109387822A (zh) * 2018-12-10 2019-02-26 四川经曼光电科技有限公司 一种共轴多倍频激光雷达
CN109814087A (zh) * 2019-03-11 2019-05-28 上海禾赛光电科技有限公司 激光收发模块及激光雷达系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1967284A (zh) * 2006-09-14 2007-05-23 中国科学院安徽光学精密机械研究所 激光雷达透射式双焦距收发光学系统
JP5985661B2 (ja) * 2012-02-15 2016-09-06 アップル インコーポレイテッド 走査深度エンジン
CN104898109A (zh) * 2015-05-20 2015-09-09 中国科学院合肥物质科学研究院 一种结构紧凑型收发一体式云信息测量系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6411370B1 (en) * 1998-11-23 2002-06-25 Vantageport, Inc. Optical system and method for measuring distance
CN1310352A (zh) * 2000-02-15 2001-08-29 高级光学技术股份有限公司 在宽视场中动态控制光方向的设备
CN1967285A (zh) * 2006-09-14 2007-05-23 中国科学院安徽光学精密机械研究所 激光雷达透射式共焦距收发光学系统
CN101241182A (zh) * 2007-02-06 2008-08-13 电装波动株式会社 测量物体方向和距离的激光雷达设备
US20130162970A1 (en) * 2011-12-23 2013-06-27 Hilti Aktiengesellschaft Device for measuring a distance to a target object
CN205749898U (zh) * 2016-05-10 2016-11-30 深圳市速腾聚创科技有限公司 多线激光雷达
CN109387849A (zh) * 2018-12-04 2019-02-26 珠海码硕科技有限公司 一种同轴激光测距装置
CN109387822A (zh) * 2018-12-10 2019-02-26 四川经曼光电科技有限公司 一种共轴多倍频激光雷达
CN109814087A (zh) * 2019-03-11 2019-05-28 上海禾赛光电科技有限公司 激光收发模块及激光雷达系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112558098A (zh) * 2020-10-26 2021-03-26 新沂市锡沂高新材料产业技术研究院有限公司 用于植保无人机的高时间分辨率、广视角的线状激光雷达
CN112558098B (zh) * 2020-10-26 2024-06-11 新沂市锡沂高新材料产业技术研究院有限公司 用于植保无人机的高时间分辨率、广视角的线状激光雷达
WO2024032243A1 (zh) * 2022-08-12 2024-02-15 安徽蔚来智驾科技有限公司 激光雷达系统和车辆
WO2024088086A1 (zh) * 2022-10-24 2024-05-02 科沃斯机器人股份有限公司 清洁装置及其应用的透光罩、自移动装置

Also Published As

Publication number Publication date
CN109814087A (zh) 2019-05-28
CN116299342A (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
WO2020182024A1 (zh) 激光收发模块及激光雷达系统
CN110333511B (zh) 一种收发同步激光雷达光学系统
US20220128667A1 (en) Multi-beam laser radar and self-moving vehicle
WO2019129259A1 (zh) 多线激光雷达
CN108445467A (zh) 一种扫描激光雷达系统
WO2020156372A1 (zh) 一种分布式激光雷达系统和激光测距方法
WO2018044380A1 (en) Radiation source with a small-angle scanning array
CN107356930A (zh) 一种振镜全景扫描装置及其扫描方法
WO2020114229A1 (zh) 激光雷达光学系统及扫描方法
WO2021035428A1 (zh) 激光雷达及自动驾驶设备
CN109814084B (zh) 激光雷达系统
US11644543B2 (en) LiDAR systems and methods that use a multi-facet mirror
CN108415002A (zh) 激光雷达光学系统及激光雷达
CN211236225U (zh) 一种大视场激光雷达光机系统
CN110531369B (zh) 一种固态激光雷达
CN109444850A (zh) 相控阵激光雷达
CN113030911A (zh) 一种激光雷达系统
CN217543379U (zh) 激光雷达
WO2022046432A1 (en) Hybrid two-dimensional steering lidar
CN208110034U (zh) 激光雷达光学系统及激光雷达
US11762065B2 (en) Multiple beam generation from a single source beam for use with a lidar system
CN113030913A (zh) 一种基于二维振镜的激光雷达装置及系统
CN115047428A (zh) 激光雷达
WO2022077711A1 (zh) 一种激光雷达系统及其校准方法
CN212569117U (zh) 一种多线激光雷达及自移动车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20770161

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20770161

Country of ref document: EP

Kind code of ref document: A1