WO2021196194A1 - 激光收发系统、激光雷达及自动驾驶设备 - Google Patents

激光收发系统、激光雷达及自动驾驶设备 Download PDF

Info

Publication number
WO2021196194A1
WO2021196194A1 PCT/CN2020/083291 CN2020083291W WO2021196194A1 WO 2021196194 A1 WO2021196194 A1 WO 2021196194A1 CN 2020083291 W CN2020083291 W CN 2020083291W WO 2021196194 A1 WO2021196194 A1 WO 2021196194A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
receiving
module
view
receiving module
Prior art date
Application number
PCT/CN2020/083291
Other languages
English (en)
French (fr)
Inventor
马丁昽
Original Assignee
深圳市速腾聚创科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市速腾聚创科技有限公司 filed Critical 深圳市速腾聚创科技有限公司
Priority to PCT/CN2020/083291 priority Critical patent/WO2021196194A1/zh
Priority to CN202080005841.5A priority patent/CN113167897A/zh
Publication of WO2021196194A1 publication Critical patent/WO2021196194A1/zh
Priority to US17/951,177 priority patent/US20230014366A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/933Lidar systems specially adapted for specific applications for anti-collision purposes of aircraft or spacecraft
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4816Constructional features, e.g. arrangements of optical elements of receivers alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4818Constructional features, e.g. arrangements of optical elements using optical fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo, light or radio wave sensitive means, e.g. infrared sensors
    • B60W2420/408Radar; Laser, e.g. lidar
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks

Definitions

  • the embodiment of the present invention relates to the field of radar technology, in particular to a laser transceiver system, a laser radar, and an automatic driving device.
  • Lidar is a radar system that uses lasers to detect the position and speed of the target object. Its working principle is that the transmitting module first transmits the outgoing laser to the target for detection, and then the receiving module receives the feedback reflected from the target object. Wave laser, after processing the received echo laser, the relevant information of the target object, such as distance, azimuth, height, speed, posture, and even shape parameters, can be obtained.
  • An implementation form of the receiving module is an array detector, which is composed of a plurality of detection pixels arranged in an array to form an array detector.
  • the array detection technology generally adopts a single-shot and single-receive method, that is, a transmitter and its corresponding array detector are combined to form a ranging module, and each ranging module can achieve different detection resolutions.
  • a combination of multiple ranging modules is required, which will result in a larger product size.
  • the main purpose of the embodiments of the present invention is to provide a laser transceiver system, a laser radar, and an automatic driving device, which can provide different detection resolutions for different detection areas on the basis of reducing the product size.
  • a technical solution adopted by the embodiment of the present invention is to provide a laser transceiver system applied to a laser radar, the laser transceiver system including a transmitting module and a plurality of receiving modules corresponding to the transmitting module;
  • the emitting module is used for emitting outgoing laser
  • a plurality of the receiving modules are used for receiving echo laser light, and the echo laser light is the laser light returned after the outgoing laser light is reflected by an object in the detection area.
  • the transmitting module includes a laser transmitting unit and a transmitting optical unit
  • each of the receiving modules includes a receiving optical unit and an array detector
  • the laser emitting unit is used to emit outgoing laser
  • the emitting optical unit is used to collimate the emitted laser light, and emit the collimated emitted laser light to a detection area;
  • the receiving optical unit is used to converge the echo laser, and shoot the collected echo laser to the array detector;
  • the array detector is used to receive the echo laser.
  • the detection fields of at least two of the plurality of receiving modules overlap.
  • At least one of the plurality of receiving modules has a detection field angle different from other receiving modules.
  • At least one of the plurality of receiving modules has a detection field angle different from other receiving modules.
  • the detection fields of at least two of the plurality of receiving modules overlap.
  • the receiving optical unit is a lens module, and at least one lens module of the receiving optical unit has a focal length different from that of lens modules of other receiving optical units.
  • the pixel size of at least one of the array detectors is different from the pixel size of other array detectors.
  • the receiving module includes a first receiving module, a second receiving module, and a third receiving module;
  • the detection field of view of the third receiving module is located in the detection field of view of the second receiving module, and the detection field of view of the second receiving module is located in the detection field of view of the first receiving module.
  • the receiving module includes a first receiving module and a second receiving module; there is an offset between the detection field of view of the first receiving module and the detection field of view of the second receiving module .
  • the array detector of the first receiving module and the array detector of the second receiving module are the same, and the two array detectors have the same pixel, and the array detector of the second receiving module
  • the detection field of view is the detection field of view formed by the detection field of view of the first receiving module shifted by 0.5 pixels in a direction at an angle of 45 degrees to the horizontal direction.
  • the light spot of the emitted laser light is the first light spot covering the entire detection field of view of the receiving module; or,
  • the light spot of the outgoing laser is a second light spot covering a part of the detection field of view of the receiving module, and the second light spot is used to traversely scan the entire detection field of view of the receiving module, and the receiving module is used for When the second light spot scans a certain area of the overall detection field of view, the area is detected.
  • the second light spot is a block light spot or a line light spot.
  • An embodiment of the present invention also provides a laser radar, the laser radar includes the laser transceiver system as described above, and the laser radar further includes a transmission drive system and a control and signal processing system;
  • the emission driving system is used to drive the emission module
  • the control and signal processing system is used for controlling the emission driving system to drive the emission module, and controlling the receiving module to receive the echo laser.
  • An embodiment of the present invention also provides an automatic driving device, including a driving device body and the above-mentioned lidar, and the lidar is installed on the driving device body.
  • the beneficial effect of the embodiment of the present invention is that: in the embodiment of the present invention, a single transmitting module is provided with multiple receiving modules corresponding to it. By designing different receiving modules, different detection resolutions can be provided for different detection areas. There is no need to set multiple distance measuring modules with different resolutions, which reduces the number of components, thereby reducing the product size, improving the integration level, and facilitating post-correction.
  • Figure 1 shows a structural block diagram of a lidar provided by an embodiment of the present invention
  • FIG. 2 shows a structural block diagram of a lidar provided by another embodiment of the present invention.
  • Fig. 3a shows a schematic diagram of overlapping detection fields of two receiving modules in an embodiment of the present invention
  • 3b shows a schematic diagram of overlapping detection fields of two receiving modules in another embodiment of the present invention.
  • Fig. 3c shows a schematic diagram of overlapping detection fields of two receiving modules in another embodiment of the present invention.
  • Figure 4a shows a schematic diagram of overlapping detection fields of three receiving modules in an embodiment of the present invention
  • 4b shows a schematic diagram of overlapping detection fields of three receiving modules in another embodiment of the present invention.
  • 4c shows a schematic diagram of overlapping detection fields of three receiving modules in another embodiment of the present invention.
  • Fig. 5a shows a schematic diagram of the detection fields of two receiving modules not overlapping in an embodiment of the present invention
  • Figure 5b shows a schematic diagram of the detection fields of two receiving modules not overlapping in another embodiment of the present invention
  • FIG. 6 shows a schematic diagram of the optical path of a lidar with three receiving modules according to an embodiment of the present invention
  • Fig. 7a shows a schematic diagram of the detection field of view of the lidar in Fig. 6;
  • Fig. 7b shows another schematic diagram of the detection field of view of the lidar in Fig. 6;
  • Figure 8a shows a schematic diagram of the optical path of a lidar with two receiving modules according to an embodiment of the present invention
  • Fig. 8b shows a schematic diagram of the point cloud effect of the lidar in Fig. 8a;
  • Figure 9a shows a schematic diagram of the optical path of a lidar with two receiving modules according to another embodiment of the present invention.
  • Fig. 9b shows a schematic diagram of the point cloud effect of the lidar in Fig. 9a;
  • Figure 10a shows a schematic diagram of the optical path of a lidar with two receiving modules according to another embodiment of the present invention
  • Figure 10b shows a schematic diagram of the point cloud effect of the lidar in Figure 10a
  • Figure 11a shows a schematic diagram of the optical path of a lidar with two receiving modules according to another embodiment of the present invention
  • Fig. 11b shows a schematic diagram of the point cloud effect of the lidar in Fig. 11a;
  • Fig. 12a shows a schematic diagram of scanning a block of light spots in an embodiment of the present invention
  • Figure 12b shows a schematic diagram of scanning a line spot in an embodiment of the present invention
  • FIG. 13 shows a schematic structural diagram of an automatic driving device provided by an embodiment of the present invention.
  • FIG. 14 shows a schematic structural diagram of an automatic driving device provided by another embodiment of the present invention.
  • Lidar 100 transmitting drive system 1, laser transceiver system 2, control and signal processing system 3, transmitting module 21, receiving module 22, laser transmitting unit 211, transmitting optical unit 212, receiving optical unit 221, array detector 222 , Automatic driving equipment 200, driving equipment body 201.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. , Or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication of two components or the interaction relationship between two components.
  • installed can be a fixed connection or a detachable connection. , Or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication of two components or the interaction relationship between two components.
  • the “on” or “under” of the first feature on the second feature may be in direct contact with the first and second features, or the first and second features may be indirectly through an intermediary. touch.
  • the “above”, “above” and “above” of the first feature on the second feature may mean that the first feature is directly above or diagonally above the second feature, or it simply means that the level of the first feature is higher than that of the second feature.
  • the “below”, “below” and “below” of the second feature of the first feature may mean that the first feature is directly below or obliquely below the second feature, or it simply means that the level of the first feature is smaller than the second feature.
  • an embodiment of the present invention provides a laser radar 100, which includes a transmission drive system 1, a laser transceiver system 2, and a control and signal processing system 3.
  • the laser transceiving system 2 includes a transmitting module 21 and two receiving modules 22 corresponding to the one transmitting module 21.
  • the transmitting module 21 is used for transmitting outgoing laser light
  • the receiving module 22 is used for receiving echo laser light.
  • the emission driving system 1 is used to drive the emission module 21.
  • the control and signal processing system 3 is used for controlling the transmitting driving system 1 to drive the transmitting module 21 and controlling the receiving module 22 to receive the echo laser.
  • the echo laser is the laser light that returns after the outgoing laser light is reflected by the object in the detection area.
  • one transmitting module 21 corresponds to two receiving modules 22, that is, the two receiving modules 22 jointly detect the coverage area of the emitted laser light emitted by one transmitting module 21.
  • one transmitting module may also correspond to more receiving modules 22, such as three, four, five, etc.
  • the emission module 21 includes a laser emission unit 211 and a emission optical unit 212.
  • the laser emission unit 211 is used to emit the emitted laser light
  • the emission optical unit 212 is used to collimate the emitted laser light and collimate the collimated emitted laser light. Emitted to the detection area.
  • the laser emitting unit 211 may be various types of signal light sources, such as laser diode (LD), vertical cavity surface emitting laser (VCSEL), edge emitting laser (Edge Emitting Laser, EEL), light emitting Diode (Light Emitting Diode, LED) optical fiber and other devices.
  • the transmitting optical unit 212 may adopt an optical fiber and a ball lens group, a separate ball lens group, a cylindrical lens group, and the like.
  • the control and signal processing system 3 may adopt a Field Programmable Gate Array (FPGA), and the FPGA is connected to the emission driving system 1 to perform emission control of the emitted laser.
  • the FPGA is also connected to the clock pin, data pin, and control pin of the receiving module 22 respectively to control the receiving and controlling of the echo laser.
  • the laser transceiver system 2 will be described in detail below.
  • each receiving module 22 includes a receiving optical unit 221 and an array detector 222.
  • the receiving optical unit 221 is used to converge the echo laser, and emit the collected echo laser to the array detector 222.
  • the array detector 222 is used for receiving echo laser light.
  • the receiving optical unit 221 may adopt a ball lens, a ball lens group, a cylindrical lens group, or the like.
  • the array detector 222 can use an avalanche photodiode (APD) array, a silicon photomultiplier (SiPM), a multi-pixel photon counter (MPPC) array, and a photomultiplier tube.
  • APD avalanche photodiode
  • SiPM silicon photomultiplier
  • MPPC multi-pixel photon counter
  • PMT single-photon avalanche diode
  • SCD single-photon avalanche diode
  • CCD fast charge-coupled device
  • CMOS complementary metal oxide semiconductor
  • the detection field of view of each receiving module 22 can overlap, and the overlapping area includes the Region of Interest (ROI).
  • the angular resolution of the ROI area is greater than the angular resolution of other areas, which meets the scanning requirements for key detection areas .
  • the detection field of view of each receiving module 22 can also be non-overlapping, and two non-overlapping detection fields of view can be spliced into a whole detection field of view.
  • the receiving module 22 with a higher resolution can be aligned with the ROI area for detection, so as to meet the scanning requirements for the key detection area.
  • the detection fields of view of the two receiving modules 22 overlap.
  • 3a-3c are schematic diagrams of overlapping detection fields of two receiving modules 22.
  • the laser transceiver system 2 includes a transmitting module 21 and three receiving modules 22 corresponding to the one transmitting module 21.
  • the schematic diagram of the detection fields of the three receiving modules 22 is as shown in Fig. 4a. -4c shown.
  • the grid-filled area is the overlapped area, and the denser the grid, the higher the resolution of the overlapped area.
  • the overall horizontal field of view formed by the multiple receiving modules 22 avoids the gap between the field of view and the field of view. The existence of gaps leads to missed inspections, which affects the reliability of detection.
  • the horizontal field of view may have an overlapping area, that is, the field of view formed by a plurality of receiving modules 22 may have an overlapping area in the horizontal direction, as shown in FIG. 3a and FIG. 4a; it may also be an overlapping area of the vertical field of view.
  • the area, that is, the angle of view formed by the multiple receiving modules 22 has an overlapping area in the vertical direction, such as shown in FIGS. 3b and 4b; it may also have an overlapping area in both the horizontal and vertical directions, such as FIGS. 3c and 4c. Shown.
  • the detection fields of view of the multiple receiving modules 22 may not overlap.
  • the laser transceiver system 2 includes a transmitting module 21 and two receiving modules 22 corresponding to the one transmitting module 21.
  • the detection fields of the two receiving modules 22 do not overlap and are spliced. Form a whole detection field of view.
  • each receiving module 22 When assembling the laser transceiver system 2, adjust the position and angle of each receiving module 22 to adjust the area covered by the detection field of view of the receiving module 22 so that the detection field of view of the receiving module 22 overlaps; Pre-design the position and angle of each receiving module 22 that meets the overlap of the detection field of view of the receiving module 22, and install the receiving module 22 according to the pre-designed position and angle when installing the receiving module 22;
  • the lens module of at least one receiving optical unit 221 has a focal length different from that of the lens modules of other receiving optical units 221, so that at least one receiving module 22 has a different focal length than other receiving modules.
  • the same array detector 222 has different detection field angles, its detection angular resolution is also different. Because the same array detector 222 has the same number of pixels. When the array detector 222 has the same detection angle of view, its pixel size is also the same. However, when the array detector 222 has different detection field angles, the pixel size will increase or decrease correspondingly with the increase or decrease of the detection field angle, resulting in the angular resolution of the array detector 222 Corresponding decrease or increase.
  • the above two methods can also be used in combination to make the detection field of view of the receiving module 22 overlap.
  • the detection field angles of one or more of the receiving modules 22 can be further adjusted to further improve the resolution of the overlapping area.
  • the detection field of view angle of one or more of the receiving modules 22 can also be further adjusted to improve the resolution of the corresponding detection area.
  • the angular resolution of different detection areas can be adjusted.
  • the area covered by the detection field of view of each receiving module 22 can be adjusted so that different detection areas are covered by different numbers.
  • the array detector 222 detects together, and finally realizes the adjustment of the angular resolution of different detection areas.
  • the detection field of view angle of the receiving module 22 is adjusted, so that the area covered by the detection field of the receiving module 22 can be Adjust, and finally realize the adjustment of the angular resolution of different detection areas.
  • the laser transceiver system 2 includes a transmitting module 21 and three receiving modules 22 corresponding to the one transmitting module 21.
  • the three receiving modules 22 are respectively a first receiving module 22A and a second receiving module 22A.
  • the detection field of view of the third receiving module 22C is located in the detection field of view of the second 22B, and the detection field of view of the second receiving module 22B is located in the detection field of view of the first receiving module 22A.
  • the detection angle resolution of this area is the highest; the detection of the second receiving module 22B The detection area in the area except the detection area of the third receiving module 22C is jointly detected by the first receiving module 22A and the second receiving module 22B, so the detection angle resolution of this area is the second; the first receiving module 22A In the detection area except for the detection area of the second receiving module 22B, the detection area is only detected by the first receiving module 22A alone, so the detection angle resolution of this area is the lowest.
  • the lidar 100 includes a transmission drive system 1, a laser transmission unit 211, a transmission optical unit 212, three receiving modules 22, and control and signals shared by the three receiving modules 22 Processing system 3.
  • the emission driving system 1 is a laser drive
  • the laser emission unit 211 is an LD, a VCSEL or an LED
  • the emission optical unit 212 is an optical shaping device
  • the receiving module 22 includes an array detector and a receiving lens.
  • the array detector includes an array detector 1, an array detector 2 and an array detector 3.
  • each grid in the figure is a pixel of an array detector.
  • the divergence angle of the laser and the optical shaping device covers the entire 120*90° detection area, and three identical array detectors pass through three sets of different optical lenses (the focal length of the optical lens is basically equivalent to the relationship of 1:2:3 times), with Different detection field angles: 120*90°/80*60°/40*30°, detecting different areas: the first detection area A1, the second detection area A2 and the third detection area A3.
  • the three detection areas have the same detection distance, but due to the different detection field angles, the angular resolution in the detection area of the three array detectors ranges from the array detector 1 with the largest detection field angle to the smallest detection
  • the array detector 3 of the field of view is increased in proportion to each other in turn.
  • the overlapping detection area is not only detected by two or three array detectors, which improves the angular resolution of its detection, but also because it is detected by the array detector with higher angular resolution. Therefore, the angular resolution is further improved.
  • the coverage area of the laser spot is set to a narrow band of 120*30°
  • the detection field angle of the three array detectors is: 120*90°/80*60°/40*30°
  • the detection area is shown in Figure 7b, including the first detection area B1, the second detection area B2 and the third detection area B3.
  • Each grid in the figure is a pixel of an array detector.
  • the grid area is the area not covered by the laser spot, which is not detected.
  • the detection field angle of the first detection area B1 is reduced from 90° in the above-mentioned embodiment to only 30° in the middle of reading, and the detection field angle of the second detection area B2 is also changed from the above-mentioned embodiment.
  • the 60° is reduced to only read the middle 30°.
  • the array detector can choose different devices, and the detection distance will vary according to the selection of the device. For example, in two array detectors, when the pixel size of one array detector is twice that of the other array detector and the image surface size is the same, the angular resolution of the array detector will theoretically be higher than that of the other array detector. The array detector is doubled. When the two array detectors use the same optical lens, the array detector can reach twice the test distance of the other array detector. Through the above method, the requirements of different detection distances can be fulfilled.
  • the image plane size of all array detectors is the same, and the pixel size of at least one array detector is different from the pixel size of other array detectors, so that the detection distance of the array detector is different from other array detectors.
  • Array detector In other embodiments, the pixel size and image size of the array detector may be different. For example, in two array detectors, the pixel size of one array detector is twice that of the other array detector. , The image size is 1/2 of the other array detector, the angular resolution of this array detector will theoretically be 4 times lower than that of the other array detector. When the two array detectors use the same optical lens, the array detector can reach 4 times the test distance of the other array detector.
  • the embodiment of the present invention also provides another laser radar 100.
  • the laser transceiver system 2 in the laser radar 100 includes a transmitting module 21 and two receiving modules 22.
  • the detection field of view of each receiving module 22 has an offset.
  • the lidar 100 includes a transmission drive system 1, a laser transmission unit 211, a transmission optical unit 212, two identical receiving modules, and a control and signal processing system 3 shared by the receiving modules.
  • the emission driving system 1 is a laser drive
  • the laser emission unit 211 is an LD, a VCSEL or an LED
  • the emission optical unit 212 is an optical shaping device.
  • Each receiving module 22 includes an array detector (the array detector 1 and the array detector 2 respectively), a receiving lens, a filter and other optical auxiliary elements.
  • the array detector 1 and the array detector 2 are the same, and both have the same pixel.
  • the receiving lens and related optical accessories of each receiving module 22 are also the same.
  • the divergence angle of the laser and the optical shaping device covers the entire 60*45° detection area, and two identical receiving modules 22 have the same field of view angle and detect the same area.
  • the detection field of view of the array detector 2 is a detection field of view formed by the detection field of the array detector 1 shifted by 1/2 pixel in the horizontal direction and by 1/2 pixel in the vertical direction.
  • the two detection areas are separated by 1/2 resolution angle to form a detection point cloud effect as shown in Figure 8b, where the hollow dot is the point cloud read by the array detector 1 Data, the solid dots are the point cloud data read by the array detector 2.
  • the pixel fill factor of the array detector that is, the ratio of the photosensitive area to the entire pixel area
  • the above scheme can be used Better improve the true angular resolution.
  • the pixel filling factor of the array detector is large, the resolution capability of smaller objects can be improved when detecting at a long distance.
  • the detection field of view of the array detector 2 may also be that the detection field of the array detector 1 is offset by M+1/2 pixels in the horizontal direction and N+1/2 in the vertical direction.
  • M and N are both integers greater than or equal to zero.
  • the detection field of the array detector 2 is that the detection field of the array detector 1 is offset by 1+1/2 pixels in the horizontal direction and 1+1/2 pixels in the vertical direction.
  • the detection field of view formed by the element can form a detection point cloud effect as shown in Figure 9b.
  • the hollow dots are the point cloud data read by the array detector 1
  • the solid circles are the point cloud read by the array detector 2. data.
  • the angular resolution of the overlapping detection area of the two array detectors that is, the detection area with two photosensitive areas in a single pixel
  • the angular resolution of the overlapping detection area of the two array detectors can be improved.
  • the detection field of view of the array detector 2 may also be that the detection field of view of the array detector 1 is offset by M+1/2 pixels in the horizontal direction. Where M is an integer greater than or equal to zero.
  • the detection field of view of the array detector 2 is the detection field of view formed when the detection field of the array detector 1 is offset by 2+1/2 pixels in the horizontal direction, which can be formed as shown in Figure 10b
  • the hollow dots are the point cloud data read by the array detector 1
  • the solid circles are the point cloud data read by the array detector 2.
  • the angular resolution of the overlapping detection area of the two array detectors that is, the detection area with two photosensitive areas in a single pixel
  • the detection field of view of the array detector 2 may also be that the detection field of view of the array detector 1 is offset by N+1/2 pixels in the vertical direction. Where N is an integer greater than or equal to zero.
  • the detection field of the array detector 2 is formed by the vertical offset of the detection field of the array detector 1 by 0+1/2 pixels (that is, 1/2 pixels).
  • the detection field of view can form a detection point cloud effect as shown in FIG. 11b, where the hollow dots are the point cloud data read by the array detector 1, and the solid circles are the point cloud data read by the array detector 2.
  • the angular resolution of the overlapping detection area of the two array detectors that is, the detection area with two photosensitive areas in a single pixel
  • the light spot of the outgoing laser it may be the first light spot covering the entire detection field of view of the receiving module 22, the first light spot has a large diffusion angle and is the overall light spot; or, it is the part of the detection field covering the receiving module 22
  • the second light spot, the second light spot is used to traverse the entire detection field of view of the scanning receiving module 22, and at this time, the receiving module 22 is used to detect the area when the second light spot scans a certain area of the overall detection field of view.
  • the second light spot may be a block light spot (small area light spot) with a small diffusion angle; as shown in FIG. 12b, the second light spot may also be a linear light spot.
  • the block light spot or the line light spot covers the entire detection area by means of traversal scanning, and the receiving module 22 respectively turns on the corresponding areas for detection.
  • the traversal scanning of the block spot or the line spot can reduce the emission energy, thereby reducing the power of the laser emission unit 211.
  • one transmitting module and at least two corresponding receiving modules work at the same time, sharing the back-end processing and control circuit, and the requirements for different detection resolutions in different areas can be realized in the same ranging period. Since there is no need to set multiple distance measuring modules with different resolutions, the devices are reduced, thereby reducing the product size, improving the integration level, and facilitating post-correction.
  • the laser transceiver system 2 may also include multiple transmitting modules 21.
  • Each emitting module 21 includes a laser emitting unit 211 and a emitting optical unit 212.
  • the number of receiving modules 22 is greater than the number of transmitting modules 21.
  • the laser transceiver system 2 includes two transmitting modules 21 and four receiving modules 22, and each transmitting module 21 corresponds to two receiving modules 22.
  • the laser transceiver system 2 includes two transmitting modules 21 and six receiving modules 22, and each transmitting module 21 corresponds to three receiving modules 22.
  • the laser transceiver system 2 includes three transmitting modules 21 and eight receiving modules 22, wherein two transmitting modules 21 correspond to two receiving modules 22, and the other transmitting module 21 corresponds to three receiving modules.
  • an embodiment of the present invention proposes an automatic driving device 200 that includes the lidar 100 in the above-mentioned embodiment.
  • the automatic driving device 200 can be a car, an airplane, a boat, or other related to the use of lidar for intelligence.
  • the automatic driving device 200 includes a driving device body 201 and the lidar 100 in the above embodiment, and the lidar 100 is installed on the driving device body 201.
  • the automatic driving device 200 is an unmanned vehicle, and the lidar 100 is installed on the side of the vehicle body. As shown in FIG. 14, the automatic driving device 200 is also an unmanned car, and the lidar 100 is installed on the roof of the car.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

涉及雷达技术领域,提供了一种激光收发系统(2)、激光雷达(100)及自动驾驶设备(200),激光收发系统(2)应用于激光雷达(100),包括发射模组(21)和与发射模组(21)对应的多个接收模组(22);发射模组(21)用于发射出射激光;接收模组(22)用于接收回波激光,回波激光为出射激光被探测区域内的物体反射后返回的激光。实施例为不同的探测区域提供不同的探测分辨率,且尺寸较小。

Description

激光收发系统、激光雷达及自动驾驶设备 技术领域
本发明实施例涉及雷达技术领域,特别是涉及一种激光收发系统、激光雷达及自动驾驶设备。
背景技术
激光雷达是使用激光来探测目标物体的位置、速度等特征量的雷达系统,其工作原理是发射模组先向目标发射用于探测的出射激光,然后接收模组接收从目标物体反射回来的回波激光,处理接收到的回波激光后可获得目标物体的有关信息,例如距离、方位、高度、速度、姿态、甚至形状等参数。
接收模组的一种实现形式为阵列探测器,由多个探测像素以阵列的方式排布组成阵列探测器。现有技术中,阵列探测技术一般采用单发单收方式,也即一个发射器和与其对应的阵列探测器组合形成一个测距模块,每个测距模块可以实现不同的探测分辨率。如需为不同的探测区域提供不同的探测分辨率,需要采用多个测距模块的组合,这将导致产品尺寸较大。
发明内容
针对现有技术的上述缺陷,本发明实施例的主要目的在于提供一种激光收发系统、激光雷达及自动驾驶设备,可以在降低产品尺寸的基础上为不同的探测区域提供不同的探测分辨率。
本发明实施例采用的一个技术方案是:提供一种激光收发系统,应用于激光雷达,所述激光收发系统包括发射模组和与所述发射模组对应的多个接收模组;
所述发射模组用于发射出射激光;
多个所述接收模组用于接收回波激光,所述回波激光为所述出射激光被探测区域内的物体反射后返回的激光。
可选的,所述发射模组包括激光发射单元和发射光学单元,每个所述接收模组包括接收光学单元和阵列探测器;
所述激光发射单元用于发射出射激光;
所述发射光学单元用于准直所述出射激光,并将准直后的所述出射激光出射到探测区域;
所述接收光学单元用于会聚回波激光,并将会聚后的所述回波激光射向所述阵列探测器;
所述阵列探测器用于接收所述回波激光。
可选的,多个所述接收模组中至少两个接收模组的探测视场重叠。
进一步的,多个所述接收模组中至少一个所述接收模组具有不同于其他接收模组的探测视场角。
可选的,多个所述接收模组中至少一个所述接收模组具有不同于其他接收模组的探测视场角。
进一步的,多个所述接收模组中至少两个接收模组的探测视场重叠。
可选的,所述接收光学单元为透镜模块,至少一个所述接收光学单元的透镜模块具有不同于其他接收光学单元的透镜模块的焦距。
可选的,至少一个所述阵列探测器的像元尺寸不同于其他的阵列探测器的像元尺寸。
可选的,所述接收模组包括第一接收模组、第二接收模组和第三接收模组;
所述第三接收模组的探测视场位于所述第二接收模组的探测视场内,所述第二接收模组的探测视场位于所述第一接收模组的探测视场内。
可选的,所述接收模组包括第一接收模组和第二接收模组;所述第一接收模组的探测视场与所述第二接收模组的探测视场之间具有偏移。
可选的,所述第一接收模组的阵列探测器和所述第二接收模组的阵列探测器相同,两个所述阵列探测器具有相同的像元,所述第二接收模组的探测视场为所述第一接收模组的探测视场朝与水平方向呈45度角的方向偏移0.5个像元所形成的探测视场。
可选的,所述出射激光的光斑为覆盖所述接收模组的整体探测视场的第一光斑;或者,
所述出射激光的光斑为覆盖所述接收模组的部分探测视场的第二光斑,所述第二光斑用于遍历扫描所述接收模组的整体探测视场,所述接收模组用于在所述第二光斑扫描整体探测视场的某一区域时对所述区域进行探测。
可选的,所述第二光斑为块光斑或线光斑。
本发明实施例还提供了一种激光雷达,所述激光雷达包括如上所述的激光收发系统,所述激光雷达还包括发射驱动系统和控制与信号处理系统;
所述发射驱动系统用于驱动所述发射模组;
所述控制与信号处理系统用于控制所述发射驱动系统驱动所述发射模组,以及控制所述接收模组接收所述回波激光。
本发明实施例还提供了一种自动驾驶设备,包括驾驶设备本体以及如上所述的激光雷达,所述激光雷达安装于所述驾驶设备本体。
本发明实施例的有益效果是:本发明实施例为单个发射模组设置与其对应的多个接收模组,,通过设计不同的接收模组,可以为不同的探测区域提供不同的探测分辨率,无需设置多个不同的分辨率的测距模块,减少了器件,从而减小了产品尺寸,提高了集成度,也便于后期校正。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1示出了本发明实施例提供的激光雷达的结构框图;
图2示出了本发明另一实施例提供的激光雷达的结构框图;
图3a示出了本发明一实施例中两个接收模组的探测视场重叠示意图;
图3b示出了本发明另一实施例中两个接收模组的探测视场重叠示意图;
图3c示出了本发明又一实施例中两个接收模组的探测视场重叠示意图;
图4a示出了本发明一实施例中三个接收模组的探测视场重叠示意图;
图4b示出了本发明另一实施例中三个接收模组的探测视场重叠示意图;
图4c示出了本发明又一实施例中三个接收模组的探测视场重叠示意图;
图5a示出了本发明一实施例中两个接收模组的探测视场不重叠的示意图;
图5b示出了本发明另一实施例中两个接收模组的探测视场不重叠的示意图;
图6示出了本发明一实施例提供的具有三个接收模组的激光雷达的光路示意图;
图7a示出了图6中激光雷达的探测视场示意图;
图7b示出了图6中激光雷达的另一种探测视场示意图;
图8a示出了本发明一实施例提供的具有两个接收模组的激光雷达的光路示意图;
图8b示出了图8a中激光雷达的点云效果示意图;
图9a示出了本发明另一实施例提供的具有两个接收模组的激光雷达的光路示意图;
图9b示出了图9a中激光雷达的点云效果示意图;
图10a示出了本发明又一实施例提供的具有两个接收模组的激光雷达的光路示意图;
图10b示出了图10a中激光雷达的点云效果示意图;
图11a示出了本发明再一实施例提供的具有两个接收模组的激光雷达的光路示意图;
图11b示出了图11a中激光雷达的点云效果示意图;
图12a示出了本发明实施例中块光斑的扫描示意图;
图12b示出了本发明实施例中线光斑的扫描示意图;
图13示出了本发明实施例提供的自动驾驶设备的结构示意图;
图14示出了本发明另一实施例提供的自动驾驶设备的结构示意图。
具体实施方式中的附图标号如下:
激光雷达100,发射驱动系统1,激光收发系统2,控制与信号处理系统3,发射模组21,接收模组22,激光发射单元211,发射光学单元212,接收光学单元221,阵列探测器222,自动驾驶设备200,驾驶设备本体201。
具体实施方式
下面将结合附图对本发明技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本发明的技术方案,因此只作为示例,而不能以此来限制本发明的保护范围。
需要注意的是,除非另有说明,本发明使用的技术术语或者科学术语应当为本发明所属领域技术人员所理解的通常意义。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“垂直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。在本发明的描述中,“多个”、“若干”的含义是两个以上(含两个),除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第 二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
如图1所示,本发明实施例提供了一种激光雷达100,其包括发射驱动系统1、激光收发系统2和控制与信号处理系统3。其中,激光收发系统2包括一个发射模组21和与该一个发射模组21对应的两个接收模组22,发射模组21用于发射出射激光,接收模组22用于接收回波激光。发射驱动系统1用于驱动发射模组21。控制与信号处理系统3用于控制发射驱动系统1驱动发射模组21,以及控制接收模组22接收回波激光。回波激光为出射激光被探测区域内的物体反射后返回的激光。
本发明实施例中,一个发射模组21对应两个接收模组22,也即由两个接收模组22共同探测一个发射模组21发出的出射激光的覆盖区域。在其他实施例中,一个发射模组还可以对应更多个接收模组22,例如三个,四个,五个等。
如图2所示,发射模组21包括激光发射单元211和发射光学单元212,激光发射单元211用于发射出射激光,发射光学单元212用于准直出射激光,并将准直后的出射激光出射到探测区域。激光发射单元211可以为各种类型的信号光源,例如激光二极管(Laser Diode,LD)、垂直腔面发射激光器(Vertical Cavity Surface Emitting Laser,VCSEL)、边发射激光器(Edge Emitting Laser,EEL)、发光二极管(Light Emitting Diode,LED)光纤等器件。发射光学单元212可以采用光纤和球透镜组、单独的球透镜组、柱面透镜组等方式。
控制与信号处理系统3可采用现场可编程门阵列(Field Programmable Gate Array,FPGA),FPGA与发射驱动系统1连接,进行出射激光的发射控制。FPGA还分别与接收模组22的时钟引脚、数据引脚和控制引脚连接,进行回波激光的接收控制。
下面对激光收发系统2进行详细说明。
请继续参考图2所示,激光收发系统2中,每个接收模组22包括接收光学单元221和阵列探测器222。接收光学单元221用于会聚回波激光,并将会聚后的回波激光射向阵列探测器222。阵列探测器222用于接收回波激光。接收光学单元221可以采用球透镜、球透镜组或柱透镜组等。阵列探测器222可以采用雪崩光电二极管(Avalanche Photo Diode,APD)阵列、硅光电倍增管(Silicon photomultiplier,SiPM)、多像素光子计数器(Multi-Pixel Photon Counter,MPPC)阵列、光电倍增管(photomultiplier tube,PMT)阵列、单光子雪崩二极管(single-photon avalanche diode,SPAD)阵列、快速电荷耦合元件(Charge-coupled Device,CCD)和互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)等可以组成阵列接收的器件。
每个接收模组22的探测视场可以重叠,重叠区域中包括感兴趣区域(Region of Interest,ROI),ROI区域的角分辨率大于其他区域的角分辨率,满足对重点探测区域的扫描需求。每个接收模组22的探测视场也可以不重叠,不重叠的两个探测视场可以拼接成一个整体探测视场。接收模组22的探测视场不重叠时,可以将分辨率较高的接收模组22对准ROI区域进行探测,满足对重点探测区域的扫描需求。本发明实施例中,两个接收模组22的探测视场重叠。如图3a-3c所示,为两个接收模组22的探测视场重叠的示意图。在另一实施例中,激光收发系统2包括一 个发射模组21和与该一个发射模组21对应的三个接收模组22,三个接收模组22的探测视场重叠的示意图如图4a-4c所示。在上述视场重叠的示意图中,网格填充区域为重叠区域,网格越密集,重叠区域的分辨率越高。在这些探测市场重叠的实施例中,由于多个接收模组22形成的视场角具有重叠区域,因此由多个接收模组22形成的整体水平视场角避免了视场与视场之间存在缝隙导致漏检,影响探测可靠性。其中,可以是水平视场角具有重叠区域,也即多个接收模组22形成的视场角在水平方向具有重叠区域,例如图3a和图4a所示;也可以是垂直视场角具有重叠区域,也即多个接收模组22形成的视场角在垂直方向具有重叠区域,例如图3b和图4b所示;还可以是水平方向和垂直方向均具有重叠区域,例如图3c和图4c所示。
在其他实施例中,多个接收模组22的探测视场也可以不重叠。如图5a-5b所示,激光收发系统2包括一个发射模组21和与该一个发射模组21对应的两个接收模组22,两个接收模组22的探测视场不重叠,且拼接形成一个整体的探测视场。关于如何使接收模组22的探测视场重叠,有如下几种方式:
1.在组装激光收发系统2时,通过调整每个接收模组22的位置和角度,从而调整接收模组22的探测视场所覆盖的区域,使接收模组22的探测视场重叠;也可以预先设计好满足接收模组22的探测视场重叠的每个接收模组22的位置和角度,安装接收模组22时按照该预先设计好的位置和角度进行安装;
2.使接收模组22中至少一个接收模组22具有不同于其他接收模组22的探测视场角。探测视场角不同时,接收模组22的探测视场所覆盖的区域不同,从而使接收模组22的探测视场重叠。
具体的,当接收光学单元221为透镜模块时,至少一个接收光学单元221的透镜模块具有不同于其他接收光学单元221的透镜模块的焦距,使至少一个接收模组22具有不同于其他接收模组22的探测视场角,从而使接收模组22的探测视场重叠。
相同的阵列探测器222在其探测视场角不同时,其探测的角分辨率也不同。因为相同的阵列探测器222,其像元个数相同。在阵列探测器222具有相同的探测视场角时,其像元尺寸也是相同的。但是,当阵列探测器222具有不同的探测视场角时,像元尺寸将会随着探测视场角的增大或减小而相应的增加或减小,导致阵列探测器222的角分辨率相应的降低或提高。
以上两种方式也可以组合使用,使接收模组22的探测视场重叠。而且,在接收模组22的探测视场重叠的基础上,还可以进一步调整其中某个或多个接收模组22的探测视场角,从而进一步提高重叠区域的分辨率。此外,当接收模组22的探测视场不重叠时,也可以进一步调整其中某个或多个接收模组22的探测视场角,从而提高相应探测区域的分辨率。
本发明实施例中,不同的探测区域的角分辨率均可调整。例如根据对探测区域的角分辨率的要求,通过调整每个接收模组22的位置和角度,从而调整每个接收模组22的探测视场所覆盖的区域,使不同的探测区域被不同数量的阵列探测器222共同探测,最终实现对不同的探测区域的角分辨率的调整。再例如根据对探测区域的角分辨率的要求,通过调整接收光学单元221的透镜模块的焦距,从而调整接收模组22的探测视场角,使接收模组22的探测视场所覆盖的区域得以调整,最终实现对不同的探测区域的角分辨率的调整。
在一些实施例中,激光收发系统2包括一个发射模组21和与该一个发射模组21对应的三 个接收模组22,三个接收模组22分别为第一接收模组22A、第二接收模组22B和第三接收模组22C。第三接收模组22C的探测视场位于第二22B的探测视场内,第二接收模组22B的探测视场位于第一接收模组22A的探测视场内。由于第三接收模组22C的探测视场所在的区域被第一接收模组22A、第二22B和第三22C共同探测,因此该区域的探测角分辨率最高;第二接收模组22B的探测区域中除第三接收模组22C的探测区域以外的探测区域被第一接收模组22A和第二接收模组22B共同探测,因此该区域的探测角分辨率次之;第一接收模组22A的探测区域中除第二接收模组22B的探测区域以外的探测区域仅被第一接收模组22A单独探测,因此该区域的探测角分辨率最低。
在一实施例中,如图6所示,该激光雷达100包括发射驱动系统1、激光发射单元211、发射光学单元212、三个接收模组22、三个接收模组22共用的控制与信号处理系统3。其中,发射驱动系统1为激光器驱动,激光发射单元211为LD、VCSEL或者LED,发射光学单元212为光学整形器件,接收模组22包括阵列探测器和接收镜头。阵列探测器包括阵列探测器1、阵列探测器2和阵列探测器3。
具体的,如图7a所示,图中每个网格为一个阵列探测器的像元。激光器与光学整形器件的发散角覆盖整个120*90°的探测区域,三个相同的阵列探测器通过三套不同的光学镜头(光学镜头的焦距基本等同于1:2:3倍关系),具有不同的探测视场角:120*90°/80*60°/40*30°,探测不同的区域:第一探测区域A1、第二探测区域A2和第三探测区域A3。三个探测区域具有相同的探测距离,但是由于探测视场角的不同,三个阵列探测器的探测区域内的角分辨率从具有最大的探测视场角的阵列探测器1到具有最小的探测视场角的阵列探测器3,依次按比例提高。
在本实施例中,重叠的探测区域不仅由于其被两个或三个阵列探测器共同探测,提高了其探测的角分辨率,而且还由于其被角分辨率更高的阵列探测器探测,因此更进一步的提高了其角分辨率。
此外,对于大视场角的区域,可以进行选择性读取处理,从而降低系统计算能力需求。例如,通过调整激光器和光学整形器件,将激光光斑的覆盖区域设置为窄带120*30°,三个阵列探测器的探测视场角为:120*90°/80*60°/40*30°,其探测区域如图7b所示,包括第一探测区域B1、第二探测区域B2和第三探测区域B3,图中每个网格为一个阵列探测器的像元,图中浅颜色的网格的区域为激光光斑未覆盖的区域,该区域没有被探测。在竖直方向,第一探测区域B1的探测视场角从上述实施例中的90°减小为仅读取中间的30°,第二探测区域B2的探测视场角也从上述实施例中的60°减小为仅读取中间的30°。
此外,阵列探测器可以选择不同的器件,探测距离会根据器件的选择而有所变化。例如,在两个阵列探测器中,当其中一个阵列探测器的像元尺寸为另一个阵列探测器的2倍、像面尺寸一致时,该阵列探测器的角分辨率理论上将比另一阵列探测器降低一倍。在这两个阵列探测器使用相同的光学镜头时,该阵列探测器可以达到另一阵列探测器2倍的测试距离。通过上述方式,可以完成不同探测距离的需求。因此,在一些实施例中,所有阵列探测器的像面尺寸相同,至少一个阵列探测器的像元尺寸不同于其他的阵列探测器的像元尺寸,使得该阵列探测器的探测距离不同于其他阵列探测器。在其他实施例中,阵列探测器的像元尺寸和像面尺寸可以均不相同,例如,在两个阵列探测器中,其中一个阵列探测器的像元尺寸为另一个阵列探测器 的2倍、像面尺寸为另一个阵列探测器的1/2,该阵列探测器的角分辨率理论上将比另一阵列探测器降低4倍。在这两个阵列探测器使用相同的光学镜头时,该阵列探测器可以达到另一阵列探测器4倍的测试距离。
本发明实施例还提供了另一种激光雷达100,该激光雷达100中的激光收发系统2包括一个发射模组21和两个接收模组22。每个接收模组22的探测视场之间具有偏移。
具体的,如图8a所示,该激光雷达100包括发射驱动系统1、激光发射单元211、发射光学单元212、两个相同的接收模组、接收模组共用的控制与信号处理系统3。其中,发射驱动系统1为激光器驱动,激光发射单元211为LD、VCSEL或者LED,发射光学单元212为光学整形器件。
每个接收模组22均包含阵列探测器(分别为阵列探测器1和阵列探测器2)、接收镜头以及滤光片等光学辅助元件。阵列探测器1和阵列探测器2相同,均具有相同的像元。每个接收模组22的接收镜头以及相关的滤光片等光学辅件也相同。激光器与光学整形器件的发散角覆盖整个60*45°探测区域,两个相同的接收模组22拥有相同的视场角,探测相同的区域。阵列探测器2的探测视场为阵列探测器1的探测视场朝水平方向偏移1/2个像元以及朝竖直方向偏移1/2个像元所形成的探测视场。也即,在安装调试时,将两个探测区域分开1/2个分辨率角度,就可以形成如图8b所示的探测点云效果,其中空心圆点为阵列探测器1读取的点云数据,实心圆点为阵列探测器2读取的点云数据。
当阵列探测器的像素填充因子(即感光区占整个像素面积的比值)不高的情况下,请参考图8b所示,由于在单个像元内增加了另一个感光区,因此通过上述方案可以更好地提高真实的角分辨率。当阵列探测器的像素填充因子很大的情况下,在远距离探测时,可以提高较小物体的分辨能力。
在其他实施例中,阵列探测器2的探测视场还可以为阵列探测器1的探测视场朝水平方向偏移M+1/2个像元以及朝竖直方向偏移N+1/2个像元所形成的探测视场。其中M和N均为大于或等于零的整数。如图9a所示,阵列探测器2的探测视场为阵列探测器1的探测视场朝水平方向偏移1+1/2个像元以及朝竖直方向偏移1+1/2个像元所形成的探测视场,可形成如图9b所示的探测点云效果,其中空心圆点为阵列探测器1读取的点云数据,实心圆点为阵列探测器2读取的点云数据。此时,可以提高两个阵列探测器重叠探测区域(也即单个像元内有两个感光区的探测区域)的角分辨率。
在其他实施例中,阵列探测器2的探测视场还可以为阵列探测器1的探测视场朝水平方向偏移M+1/2个像元。其中M为大于或等于零的整数。如图10a所示,阵列探测器2的探测视场为阵列探测器1的探测视场朝水平方向偏移2+1/2个像元所形成的探测视场,可形成如图10b所示的探测点云效果,其中空心圆点为阵列探测器1读取的点云数据,实心圆点为阵列探测器2读取的点云数据。此时,也可以提高两个阵列探测器重叠探测区域(也即单个像元内有两个感光区的探测区域)的角分辨率。
在其他实施例中,阵列探测器2的探测视场还可以为阵列探测器1的探测视场朝竖直方向偏移N+1/2个像元。其中N为大于或等于零的整数。如图11a所示,阵列探测器2的探测视场为阵列探测器1的探测视场朝竖直方向偏移0+1/2个像元(也即1/2个像元)所形成的探测视场, 可形成如图11b所示的探测点云效果,其中空心圆点为阵列探测器1读取的点云数据,实心圆点为阵列探测器2读取的点云数据。此时,也可以提高两个阵列探测器重叠探测区域(也即单个像元内有两个感光区的探测区域)的角分辨率。
关于出射激光的光斑,其可以为覆盖接收模组22的整体探测视场的第一光斑,第一光斑具有大扩散角,为整体光斑;或者,为覆盖接收模组22的部分探测视场的第二光斑,第二光斑用于遍历扫描接收模组22的整体探测视场,此时接收模组22用于在第二光斑扫描整体探测视场的某一区域时对区域进行探测。如图12a所示,第二光斑可以为小扩散角的块光斑(小区域光斑);如图12b所示,第二光斑还可以为线光斑。块光斑或者线光斑通过遍历扫描的方式覆盖整个探测区域,接收模组22分别开启对应区域进行探测。采用块光斑或者线光斑遍历扫描的方式可以降低发射能量,从而降低激光发射单元211的功率。
本发明实施例通过一个发射模组以及与其对应的至少两个接收模组同时工作,共用后端处理和控制电路,在同一个测距周期内可以实现对不同区域不同探测分辨率的需求。由于无需设置多个不同的分辨率的测距模块,减少了器件,从而减小了产品尺寸,提高了集成度,也便于后期校正。
需要说明的是,在其他一些实施例中,激光收发系统2还可以包括多个发射模组21。每个发射模组21均包括一个激光发射单元211和一个发射光学单元212。接收模组22的数量大于发射模组21的数量。例如,激光收发系统2包括两个发射模组21和四个接收模组22,每个发射模组21对应有两个接收模组22。或者,激光收发系统2包括两个发射模组21和六个接收模组22,每个发射模组21对应有三个接收模组22。或者,激光收发系统2包括三个发射模组21和八个接收模组22,其中两个发射模组21分别对应有两个接收模组22,另一个发射模组21对应有三个接收模组22。通过上述单发多收(单个发射模组21对应多个接收模组22)的方式,使得在一个激光收发系统2中,无需为每一个发射模组单独设置与其对应的接收模组22,从而减小了产品尺寸。
基于上述激光雷达100,本发明实施例提出了一种包含上述实施例中的激光雷达100的自动驾驶设备200,该自动驾驶设备200可以是汽车、飞机、船以及其他涉及到使用激光雷达进行智能感应和探测的设备,该自动驾驶设备200包括驾驶设备本体201以及如上实施例的激光雷达100,激光雷达100安装于驾驶设备本体201。
如图13所示,该自动驾驶设备200为无人驾驶汽车,激光雷达100安装于汽车的车身侧面。如图14所示,该自动驾驶设备200同样为无人驾驶汽车,激光雷达100安装于汽车的车顶。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围,其均应涵盖在本发明的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本发明并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (15)

  1. 一种激光收发系统(2),应用于激光雷达,其特征在于,所述激光收发系统(2)包括发射模组(21)和与所述发射模组(21)对应的多个接收模组(22);
    所述发射模组(21)用于发射出射激光;
    多个所述接收模组(22)用于接收回波激光,所述回波激光为所述出射激光被探测区域内的物体反射后返回的激光。
  2. 如权利要求1所述的激光收发系统(2),其特征在于,所述发射模组(21)包括激光发射单元(211)和发射光学单元(212),每个所述接收模组(22)包括接收光学单元(221)和阵列探测器(222);
    所述激光发射单元(211)用于发射出射激光;
    所述发射光学单元(212)用于准直所述出射激光,并将准直后的所述出射激光出射到探测区域;
    所述接收光学单元(221)用于会聚回波激光,并将会聚后的所述回波激光射向所述阵列探测器(222);
    所述阵列探测器(222)用于接收所述回波激光。
  3. 如权利要求1所述的激光收发系统(2),其特征在于,多个所述接收模组(22)中至少两个接收模组(22)的探测视场重叠。
  4. 如权利要求3所述的激光收发系统(2),其特征在于,多个所述接收模组(22)中至少一个所述接收模组(22)具有不同于其他接收模组(22)的探测视场角。
  5. 如权利要求1所述的激光收发系统(2),其特征在于,多个所述接收模组(22)中至少一个所述接收模组(22)具有不同于其他接收模组(22)的探测视场角。
  6. 如权利要求5所述的激光收发系统(2),其特征在于,多个所述接收模组(22)中至少两个接收模组(22)的探测视场重叠。
  7. 如权利要求4或5所述的激光收发系统(2),其特征在于,所述接收光学单元(221)为透镜模块,至少一个所述接收光学单元(221)的透镜模块具有不同于其他接收光学单元(221)的透镜模块的焦距。
  8. 如权利要求2所述的激光收发系统(2),其特征在于,至少一个所述阵列探测器(222)的像元尺寸不同于其他的阵列探测器(222)的像元尺寸。
  9. 如权利要求1所述的激光收发系统(2),其特征在于,所述接收模组(22)包括第一接收模组(22A)、第二接收模组(22B)和第三接收模组(22C);
    所述第三接收模组(22C)的探测视场位于所述第二接收模组(22B)的探测视场内,所述第二接收模组(22B)的探测视场位于所述第一接收模组(22A)的探测视场内。
  10. 如权利要求1所述的激光收发系统(2),其特征在于,所述接收模组(22)包括第一接收模组(22A)和第二接收模组(22B);所述第一接收模组(22A)的探测视场与所述第二接收模组(22B)的探测视场之间具有偏移。
  11. 如权利要求10所述的激光收发系统(2),其特征在于,所述第一接收模组(22A)的阵列探测器(222)和所述第二接收模组(22B)的阵列探测器(222)相同,两个所述阵列探测 器(222)具有相同的像元,所述第二接收模组(22B)的探测视场为所述第一接收模组(22A)的探测视场朝水平方向偏移M+1/2个像元和/或朝竖直方向偏移N+1/2个像元所形成的探测视场,其中M和N均为大于或等于零的整数。
  12. 如权利要求1-11任一项所述的激光收发系统(2),其特征在于,所述出射激光的光斑为覆盖所述接收模组(22)的整体探测视场的第一光斑;或者,
    所述出射激光的光斑为覆盖所述接收模组(22)的部分探测视场的第二光斑,所述第二光斑用于遍历扫描所述接收模组(22)的整体探测视场,所述接收模组(22)用于在所述第二光斑扫描整体探测视场的某一区域时对所述区域进行探测。
  13. 如权利要求12所述的激光收发系统(2),其特征在于,所述第二光斑为块光斑或线光斑。
  14. 一种激光雷达(100),其特征在于,所述激光雷达(100)包括如权利要求1-13任一项所述的激光收发系统(2),所述激光雷达(100)还包括发射驱动系统(1)和控制与信号处理系统(3);
    所述发射驱动系统(1)用于驱动所述发射模组(21);
    所述控制与信号处理系统(3)用于控制所述发射驱动系统(1)驱动所述发射模组(21),以及控制所述接收模组(22)接收所述回波激光。
  15. 一种自动驾驶设备(200),其特征在于,包括驾驶设备本体(201)以及如权利要求14所述的激光雷达(100),所述激光雷达(100)安装于所述驾驶设备本体(201)。
PCT/CN2020/083291 2020-04-03 2020-04-03 激光收发系统、激光雷达及自动驾驶设备 WO2021196194A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2020/083291 WO2021196194A1 (zh) 2020-04-03 2020-04-03 激光收发系统、激光雷达及自动驾驶设备
CN202080005841.5A CN113167897A (zh) 2020-04-03 2020-04-03 激光收发系统、激光雷达及自动驾驶设备
US17/951,177 US20230014366A1 (en) 2020-04-03 2022-09-23 Laser transceiver system, lidar, and autonomous driving apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/083291 WO2021196194A1 (zh) 2020-04-03 2020-04-03 激光收发系统、激光雷达及自动驾驶设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/951,177 Continuation US20230014366A1 (en) 2020-04-03 2022-09-23 Laser transceiver system, lidar, and autonomous driving apparatus

Publications (1)

Publication Number Publication Date
WO2021196194A1 true WO2021196194A1 (zh) 2021-10-07

Family

ID=76879205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/083291 WO2021196194A1 (zh) 2020-04-03 2020-04-03 激光收发系统、激光雷达及自动驾驶设备

Country Status (3)

Country Link
US (1) US20230014366A1 (zh)
CN (1) CN113167897A (zh)
WO (1) WO2021196194A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114325741A (zh) * 2021-12-31 2022-04-12 探维科技(北京)有限公司 探测模组及激光测距系统
CN115685147A (zh) * 2022-12-14 2023-02-03 深圳市速腾聚创科技有限公司 调频连续波激光雷达及自动驾驶设备

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023141782A1 (zh) * 2022-01-25 2023-08-03 华为技术有限公司 激光雷达和激光雷达的控制方法
WO2023155048A1 (zh) * 2022-02-15 2023-08-24 华为技术有限公司 一种探测装置、终端设备及分辨率的调控方法
CN117616303A (zh) * 2022-02-25 2024-02-27 华为技术有限公司 一种控制方法和激光雷达
WO2023164906A1 (zh) * 2022-03-03 2023-09-07 华为技术有限公司 一种扫描方法及装置
CN116755065B (zh) * 2023-08-23 2023-11-10 深圳玩智商科技有限公司 一种固态激光雷达结构及其扫描建图方法
CN117233787B (zh) * 2023-11-09 2024-01-26 北京亮道智能汽车技术有限公司 点云图像获取方法、装置和激光雷达
CN117872322A (zh) * 2024-03-12 2024-04-12 北醒(北京)光子科技有限公司 一种调频连续波激光雷达和雷达导航系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110234453A1 (en) * 2010-03-25 2011-09-29 Mizutani Fumihiko Weather radar apparatus and weather observation method
CN103954955A (zh) * 2014-04-25 2014-07-30 南京先进激光技术研究院 合成孔径激光成像雷达收发同轴光学天线
CN108445468A (zh) * 2018-04-03 2018-08-24 上海禾赛光电科技有限公司 一种分布式激光雷达
CN110297228A (zh) * 2019-03-30 2019-10-01 岭纬科技(厦门)有限公司 一种激光雷达接收镜头
CN110456324A (zh) * 2019-07-11 2019-11-15 中国电子科技集团公司信息科学研究院 集成相控阵激光雷达系统
CN110780283A (zh) * 2019-11-22 2020-02-11 上海禾赛光电科技有限公司 接收系统、包括其的激光雷达以及回波接收的方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101540822A (zh) * 2009-04-28 2009-09-23 南京航空航天大学 高分辨率大视场航空成像装置及其方法
CN102636259B (zh) * 2012-04-25 2014-11-26 清华大学 多孔径的光信号探测系统及方法
US11226401B2 (en) * 2016-01-22 2022-01-18 Denso Corporation Optical distance measuring apparatus
US10267899B2 (en) * 2017-03-28 2019-04-23 Luminar Technologies, Inc. Pulse timing based on angle of view
CN108267746A (zh) * 2018-01-17 2018-07-10 上海禾赛光电科技有限公司 激光雷达系统、激光雷达点云数据的处理方法、可读介质
CN108226948A (zh) * 2018-03-09 2018-06-29 北京理工大学 一种三维固态面阵激光雷达及其测距方法
CN110940990A (zh) * 2018-09-21 2020-03-31 宁波舜宇车载光学技术有限公司 激光雷达系统及其探测方法和应用
CN109814087A (zh) * 2019-03-11 2019-05-28 上海禾赛光电科技有限公司 激光收发模块及激光雷达系统
CN110632618B (zh) * 2019-11-22 2020-11-27 深圳市速腾聚创科技有限公司 激光雷达及其控制方法以及自动驾驶装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110234453A1 (en) * 2010-03-25 2011-09-29 Mizutani Fumihiko Weather radar apparatus and weather observation method
CN103954955A (zh) * 2014-04-25 2014-07-30 南京先进激光技术研究院 合成孔径激光成像雷达收发同轴光学天线
CN108445468A (zh) * 2018-04-03 2018-08-24 上海禾赛光电科技有限公司 一种分布式激光雷达
CN110297228A (zh) * 2019-03-30 2019-10-01 岭纬科技(厦门)有限公司 一种激光雷达接收镜头
CN110456324A (zh) * 2019-07-11 2019-11-15 中国电子科技集团公司信息科学研究院 集成相控阵激光雷达系统
CN110780283A (zh) * 2019-11-22 2020-02-11 上海禾赛光电科技有限公司 接收系统、包括其的激光雷达以及回波接收的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114325741A (zh) * 2021-12-31 2022-04-12 探维科技(北京)有限公司 探测模组及激光测距系统
CN115685147A (zh) * 2022-12-14 2023-02-03 深圳市速腾聚创科技有限公司 调频连续波激光雷达及自动驾驶设备

Also Published As

Publication number Publication date
CN113167897A (zh) 2021-07-23
US20230014366A1 (en) 2023-01-19

Similar Documents

Publication Publication Date Title
WO2021196194A1 (zh) 激光收发系统、激光雷达及自动驾驶设备
US20220128667A1 (en) Multi-beam laser radar and self-moving vehicle
JP2022516854A (ja) 増加したチャネル用のハイサイド及びローサイドスイッチを備えた固体電子走査レーザアレイ
WO2020187103A1 (zh) 一种棱镜及多线激光雷达系统
US20220171071A1 (en) Lidar and automated driving device
WO2021196193A1 (zh) 激光雷达及自动驾驶设备
CN110333516B (zh) 一种多线激光雷达
WO2021196192A1 (zh) 激光收发系统、激光雷达及自动驾驶设备
US20230035528A1 (en) Lidar and automated driving device
WO2022016380A1 (zh) 激光雷达及自动驾驶设备
WO2022227733A1 (zh) 光探测装置及行驶载具、激光雷达及探测方法
CN113640819A (zh) 激光雷达
CN211718520U (zh) 一种多线激光雷达
CN114200426A (zh) 光接收模块、光接收方法、激光雷达系统以及车辆
CN212008925U (zh) 一种多线激光雷达
US11668801B2 (en) LIDAR system
US20240069162A1 (en) Solid-state lidar and method for detection using same
WO2021035427A1 (zh) 激光雷达及自动驾驶设备
WO2022116534A1 (zh) 一种激光雷达
WO2022227609A1 (zh) 激光雷达
WO2023123984A1 (zh) 光收发模组及激光雷达
CN219302670U (zh) 激光雷达的收发组件及激光雷达
CN218630192U (zh) 一种激光雷达系统及移动设备
CN219302660U (zh) 一种扫描式激光雷达
US11994618B2 (en) Rotating compact light ranging system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20929464

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/01/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20929464

Country of ref document: EP

Kind code of ref document: A1