WO2020187103A1 - 一种棱镜及多线激光雷达系统 - Google Patents

一种棱镜及多线激光雷达系统 Download PDF

Info

Publication number
WO2020187103A1
WO2020187103A1 PCT/CN2020/078715 CN2020078715W WO2020187103A1 WO 2020187103 A1 WO2020187103 A1 WO 2020187103A1 CN 2020078715 W CN2020078715 W CN 2020078715W WO 2020187103 A1 WO2020187103 A1 WO 2020187103A1
Authority
WO
WIPO (PCT)
Prior art keywords
prism
angle
area
reflecting
lidar system
Prior art date
Application number
PCT/CN2020/078715
Other languages
English (en)
French (fr)
Inventor
胡小波
白芳
Original Assignee
深圳市镭神智能系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市镭神智能系统有限公司 filed Critical 深圳市镭神智能系统有限公司
Priority to EP20773363.5A priority Critical patent/EP3958012A4/en
Publication of WO2020187103A1 publication Critical patent/WO2020187103A1/zh
Priority to US17/384,799 priority patent/US20210349187A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4813Housing arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/108Scanning systems having one or more prisms as scanning elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target

Definitions

  • the embodiments of the present application relate to lidar technology, in particular to a prism and a multi-line lidar system.
  • Lidar is a radar system that uses lasers to detect the target's position, speed and other characteristic quantities. Its working principle is to first launch a detection laser beam to the target, and then compare the received signal reflected from the target with the transmitted signal, and make appropriate After processing, the target's distance, azimuth, height, speed, posture, and even shape can be obtained.
  • lidars include single-line lidar optical systems and multi-line lidar optical systems.
  • single-line lidar uses a single beam to scan, and the scanning area is small; multi-line lidar scans the surrounding environment through motor rotation.
  • the telephoto large target surface receiving optical system focuses the light returned by the illuminated object on the corresponding photoelectric sensor, which can emit and receive multiple arrays of light beams, and scan a certain area of the surrounding ring mirror.
  • the disadvantage is that too many laser transmitters are required, and the receiver needs to have a larger photosensitive surface to receive the laser beam reflected by the target, and the processing circuit is more complicated and the cost is higher.
  • a prism and a multi-line lidar system are provided.
  • an embodiment of the present application provides a prism used in a multi-line lidar, including:
  • At least three side surfaces located between the top surface and the bottom surface; wherein at least two of the side surfaces include a transmitting area and a receiving area; the receiving area is located between the transmitting area and the top surface;
  • the emission area includes at least two reflecting surfaces arranged in sequence, and the included angles between the at least two reflecting surfaces and the bottom surface are different.
  • an embodiment of the present application provides a multi-line lidar system, including:
  • the prism includes a top surface, a bottom surface, and at least three side surfaces between the top surface and the bottom surface; wherein at least two of the side surfaces include a transmitting area and a receiving area; the receiving area is located in the transmitting area.
  • the emission area includes at least two reflecting surfaces arranged in sequence, and at least two of the reflecting surfaces and the bottom surface are clamped Different angles;
  • a rotating mechanism the prism is located on the rotating mechanism, and the rotating mechanism drives the prism to rotate around the rotation axis of the rotating mechanism;
  • the transmitting and receiving components include a transmitting unit and a receiving unit; the transmitting unit is located on one side of the prism and is used for transmitting a laser beam, and the transmitting unit passes the emitted laser beam through the prism The emitting area of the light emitting area is reflected and irradiated to the target; the receiving unit is located on the same side of the prism as the emitting unit in the same group of the transmitting and receiving assembly, and the receiving unit is used to receive the reflected light from the target The laser beam reflected by the receiving area of the prism.
  • FIG. 1 is a schematic diagram of a three-dimensional structure of a prism provided by an embodiment of the present application.
  • Fig. 2 is a schematic front view of the prism shown in Fig. 1.
  • Fig. 3 is a schematic diagram of a side reflection light path of a prism provided.
  • Fig. 4 is another schematic front view of the prism shown in Fig. 1.
  • FIG. 5 is another schematic front view of the prism shown in FIG. 1.
  • Fig. 6 is another front schematic view of the prism shown in Fig. 1.
  • Fig. 7 is a schematic structural diagram of a multi-line lidar system provided by an embodiment of the present application.
  • Fig. 8 is a schematic structural diagram of another lidar system provided by an embodiment of the present application.
  • FIG. 1 is a schematic diagram of a three-dimensional structure of a prism provided by an embodiment of the application
  • FIG. 2 is a schematic front view of the prism shown in FIG. 1.
  • the prism provided by the embodiment of the present application can be applied to multi-line lidar. Referring to FIG.
  • the prism includes a top surface 10, a bottom surface 20, and at least three side surfaces 30 between the top surface 10 and the bottom surface 20, of which at least two Each side surface 30 includes a transmitting area 301 and a receiving area 302; the receiving area 302 is located between the transmitting area 301 and the top surface 10; along the top surface 10 pointing to the bottom surface 20, the transmitting area 301 includes at least two reflective surfaces arranged in sequence, at least The included angles between the two reflecting surfaces and the bottom surface 20 are different.
  • Fig. 2 is a schematic front view of Fig. 1, showing the shape of the right side side.
  • the right side shown in FIG. 2 includes a receiving area 302 located above and a transmitting area 301 located below.
  • the transmitting area 301 includes at least two reflective surfaces (in FIG.
  • the included angles between at least two reflective surfaces and the bottom surface 20 are different.
  • the included angles between the reflective surface 301a and the reflective surface 301c and the bottom surface in FIG. 2 are the same, and the included angles between the reflective surface 301a and the reflective surface 301b and the bottom surface are different.
  • each side surface is regarded as a whole, and the included angles between at least two side surfaces and the bottom surface are different.
  • the short dashed line on the right side of FIG. 2 is to schematically show the angle between each reflecting surface and the bottom surface, not the actual outline of the prism.
  • the beam can scan the target object.
  • the emission area of each side includes three reflective surfaces.
  • the vertical distance of the reflected light can be adjusted by adjusting the inclination angles of the three reflecting surfaces (for example, dense in the middle and sparse on both sides), then the prism rotates once, and the laser beams emitted by a row of lasers can form four scanning beams with different resolutions.
  • four-line multi-resolution scanning can be realized through one array of lasers, which greatly reduces the complexity and cost of the multi-line lidar.
  • FIG. 3 is a schematic diagram of a side reflection light path of a prism provided by an embodiment of the application.
  • the upper part of FIG. 3 is the receiving area 302, and the lower part is the transmitting area 301.
  • the receiving area 302 and the transmitting area 301 are shown as a reflecting surface closest to the receiving area 302, the transmitting area 301.
  • the laser beam (emitted from the light source) incident from the right is reflected to the left, and the propagation direction of the laser beam reflected by the emitting area 301 is from right to left; the receiving area 302 reflects the laser beam (reflected from the object) incident on the right To the right, the propagation direction of the laser beam reflected by the receiving area 302 is from left to right.
  • the beam reflected by the target can be reflected and converged on the receiver, effectively reducing the requirement for the field of view of the receiving lens, reducing the area of the receiver's photosensitive surface, and reducing the cost of the multi-line lidar system .
  • the light beams irradiated on different reflecting surfaces when the prism rotates are changed into multiple light beams.
  • the different changing trends of the angle can change the scanning resolution of the reflected light; it can realize multi-line scanning when used in lidar and rotating, which can reduce the number of transmitters and receivers.
  • the laser beam reflected by the emitting area on the side to the target can be received by the receiving area on the side after being reflected by the target, and then reflected to the receiver.
  • a receiver with a large photosensitive surface is set to receive the laser beam reflected by the target, so as to achieve the effect of reducing the manufacturing cost and difficulty of the multi-line lidar system.
  • the angles between the reflection surfaces and the bottom surface in the same emission area are in an arithmetic series.
  • FIG. 4 shows another schematic front view of the prism shown in FIG. 1. 4, along the direction from top to bottom, the angles between the reflective surfaces and the bottom surface of the emission area 301 are distributed equally, that is, the angles between the reflective surfaces and the bottom surface are distributed in a gradient, for example, from top to bottom.
  • the angles between the reflective surfaces 301a, 301b, and 301c and the bottom surface are 88°, 88.5°, 89° or 89°, 88.5°, 88° (not shown in Figure 4). This setting can make the reflection of each reflective surface
  • the light is distributed at equal intervals in the vertical direction to realize spatially equal resolution scanning.
  • each side surface includes at least four reflecting surfaces; in the same emitting area, the angle difference between two adjacent reflecting surfaces close to the center of the emitting area and the bottom surface is the smallest.
  • FIG. 5 shows another schematic front view of the prism shown in FIG. 1.
  • the difference between the angles between the reflective surfaces of the emitting area 301 and the bottom surface increases from the middle to the two sides, for example, the reflective surfaces 301a, 301b from top to bottom
  • the angles between 301c and 301d and the bottom surface are 88°, 88.4°, 88.6°, 89° or 89°, 88.6°, 88.4°, 88° in sequence.
  • This setting can make the reflected light of each reflecting surface in the vertical direction
  • the middle area is closer (high resolution), the detection distance is longer, and the two side areas are farther (low resolution), and the detection distance is closer.
  • the difference between the angles between the middle reflective surface and the two adjacent reflective surfaces and the bottom surface can be set to be the same, and both are minimum.
  • angles between the reflective surfaces and the bottom surface of the same reflective area are only illustrative.
  • the angles between the reflective surfaces and the bottom surface of the same reflective area can be set according to actual needs.
  • the corresponding positions of the reflective areas on different sides The included angles between the reflective surfaces and the bottom surface may be the same or different, which is not limited in the embodiment of the present application.
  • the angle between the side surface of the receiving area and the bottom surface is ⁇ 1
  • the angle between a reflective surface of the transmitting area and the bottom surface is ⁇ 2
  • ⁇ 1 ⁇ 2
  • the angle between the receiving area and the bottom surface and the angle between the reflection surfaces of the emitting area and the bottom surface are in an arithmetic series.
  • the angle between the receiving area 302 and the bottom surface may be in a gradient distribution with the angle between each reflecting surface and the bottom surface of the transmitting area, for example, it may be 87.5°, or with any one of the reflecting surfaces and
  • the included angle of the bottom surface is the same (for example, 88° or 88.5° or 89°), or not the same.
  • the included angle between the receiving area and the bottom surface can also be designed according to the angle of light to be reflected.
  • the maximum value of the angle between the reflecting surface and the bottom surface is ⁇ 3
  • the minimum value of the angle between the reflecting surface and the bottom surface is ⁇ 4 , 0° ⁇
  • the advantage of this arrangement is to ensure that all the reflecting surfaces are not inclined too large, and that the multi-line radar system has good resolution. It should be noted that in other embodiments, the difference between ⁇ 3 and ⁇ 4 may also be greater than or equal to 2°.
  • the prism includes n pairs of oppositely arranged side surfaces, where n is a positive integer greater than or equal to 2; among the two opposite side surfaces, the angle between the reflective surface closest to the bottom surface and the bottom surface is both greater than or less than both sides. At least one of the side surfaces is the angle between the reflective surface and the bottom surface closest to the bottom surface.
  • FIG. 6 shows another schematic front view of the prism shown in FIG. 1.
  • the angles between the lowermost reflective surface 301c' on the left side and the lowermost reflective surface 301c on the right side and the bottom surface are all larger or smaller than at least the front side and the back side.
  • the included angle of the bottom surface of the lowermost reflective surface for example, the included angle between the reflective surface 301c' and the bottom surface is 89°, the included angle between the reflective surface 301c and the bottom surface is 88°, and the included angle between the bottom reflective surface of the front side and the bottom surface Is 87°.
  • This setting prevents the angle between the reflecting surface and the bottom surface from increasing or decreasing gradually around the circumference of the prism, thereby avoiding the occurrence of serious uneven moments of the multiple reflecting surfaces of the prism and helping to realize the prism
  • the moments of the multiple reflecting surfaces are balanced during rotation.
  • the angle between the reflection surface closest to the bottom surface and the bottom surface is equal.
  • the angle between the bottom reflecting surface and the bottom surface is equal, so that the two opposite reflecting surfaces have the same degree of inclination.
  • the prism rotates, the two opposite reflecting surfaces There is no torque unevenness, and the torque balance of the multiple reflecting surfaces of the prism is further realized.
  • the emitting area on one side of the prism 100 is divided into a plurality of reflecting surfaces; at least two reflecting surfaces are arranged in sequence along the central axis of the prism (that is, the rotation axis of the prism), that is, along the top surface to The direction of the bottom surface is set in sequence.
  • the angle between the reflective surface and the bottom surface in the middle of the emitting area is greater than the angle between the reflective surface and the bottom surface on both sides, so that the laser beam passes through the reflective surface.
  • the middle vertical resolution is small (that is, the vertical resolution angle is small)
  • the detection distance is relatively long
  • the vertical resolution on both sides is relatively large.
  • the angle between the reflection surface on both sides and the ground is greater than the angle between the reflection surface in the middle and the ground, thereby forming a sparse distribution effect on both sides of the middle.
  • the angles between the reflecting surfaces on both sides and the ground can be the same, and the angles between the reflecting surfaces in the middle and the ground can be the same, and the angles between the reflecting surfaces and the ground can also be the same. The angles are different from each other.
  • the emission area 30 on one side of the prism includes three reflecting surfaces 301a, 301b, and 301c. Among them, the reflecting surfaces 301a and 301c on both sides and the bottom surface 20 are sandwiched between The angles are the same, and both are smaller than the included angle between the reflective surface 301b and the bottom surface 20.
  • the emitting area on the other side of the prism has only one reflecting surface, that is, no partitioning is performed.
  • the emitting area on at least two sides of the prism is divided into a plurality of reflecting surfaces.
  • the emitting area in each side surface can have the same structure arrangement, and the two side surfaces having the same structure can be arranged symmetrically about the central axis of the prism.
  • the emission area on each side of the prism includes multiple reflective surfaces, that is, the emission area of the prism is divided into multiple layers.
  • the reflective surface 301a is located on the first layer
  • the reflective surface 301b is located on the second layer
  • the reflective surface 301c is located on the third layer
  • the reflective surface 301d is located on the fourth layer, that is, the reflective surfaces at the same horizontal position belong to the same Floor.
  • the included angle between the reflective surface and the bottom surface of the same layer may be the same, or not exactly the same, or all different, so as to maximize the number of lidar lines .
  • the included angle between each reflective surface and the bottom surface is greater or both smaller than the included angle between two adjacent reflective surfaces of the same layer and the bottom surface, thereby avoiding The occurrence of severely uneven moments of the multiple reflecting surfaces of the prism helps to achieve the moment balance of the multiple reflecting surfaces when the prism rotates.
  • FIG. 7 is a schematic structural diagram of a multi-line lidar system provided by an embodiment of this application.
  • the lidar system provided in this embodiment includes any one of the prisms 100 provided in the above embodiments, and also includes a rotating mechanism 200.
  • the prism 100 is positioned to rotate.
  • the rotating mechanism 200 drives the prism 100 to rotate around the rotation axis of the rotating mechanism 200; at least one set of transmitting and receiving assemblies 310, which include a transmitting unit 300 and a receiving unit 400; the transmitting unit 300 is located on one side of the prism 100, Used to emit a laser beam, the emitting unit 300 reflects the emitted laser beam through the emitting area of the prism 100 and then irradiates the target; the receiving unit 400 is located on the same side of the prism 100 as the emitting unit 300 in the same group of the emitting and receiving components 310 The receiving unit 400 is configured to receive the laser beam reflected from the target object and then reflected by the receiving area of the prism 100.
  • transmitting unit 300 is located on one side of the prism 100, Used to emit a laser beam, the emitting unit 300 reflects the emitted laser beam through the emitting area of the prism 100 and then irradiates the target; the receiving unit 400 is located on the same side of the prism 100 as the emitting unit 300 in the
  • the rotating mechanism 200 may include a stepping motor, and the rotating axis of the rotating mechanism 200 coincides with the rotating axis of the prism 100;
  • FIG. 7 uses a group of transmitting and receiving components 310 as an example, when the transmitting and receiving components 310 are multiple groups , Can respectively correspond to one side of the prism 100.
  • the transmitting unit 300 may include a pulsed laser for emitting pulsed beams;
  • the receiving unit 400 may include a photoelectric converter, which converts optical signals into electrical signals, and processes the electrical signals to obtain information such as the distance and shape of the target.
  • the light beams irradiated on different reflecting surfaces when the prism rotates are changed into multiple light beams.
  • the different changing trends of the angle can change the scanning resolution of the reflected light; when the rotating mechanism drives the prism to rotate, multi-line scanning can be realized, thereby reducing the number of transmitting units and receiving units.
  • the laser beam reflected by the emitting area on the side to the target can be received by the receiving area on the side after being reflected by the target, and then reflected to the receiver.
  • a receiver with a large photosensitive surface is set to receive the laser beam reflected by the target, so as to achieve the effect of reducing the manufacturing cost and difficulty of the multi-line lidar system.
  • the use of a rotating mechanism to drive the prism to rotate without rotating the whole machine to achieve horizontal scanning improves the mechanical performance of the product (vibration resistance, impact resistance, and heat dissipation, etc.), and the entire radar does not require wireless power transmission and big data wireless transmission , Simplify the system structure.
  • FIG. 8 shows a schematic structural diagram of another lidar system provided by an embodiment of the application.
  • the laser radar system provided by this embodiment further includes: an emission mirror group 500, located between the emission unit 300 and the prism 100, for collimating the laser beam emitted by the emission unit 300 to the emission area of the prism 100 On; the receiving lens group 600, located between the receiving unit 400 and the prism 100, is used to focus the laser beam reflected by the receiving area of the prism 100 onto the receiving unit 400.
  • the same lens group can be selected for the transmitting lens group 500 and the receiving lens group 600, which can be designed according to the actual optical path during specific implementation, which is not limited in the embodiment of the present application.
  • the transmitting unit includes a laser light source
  • the receiving unit includes a photoelectric converter
  • the number of the laser light source is the same as the number of the photoelectric converter
  • the transmitting unit may use a semiconductor laser to emit laser pulses, and the receiving unit may use a photoelectric converter formed by an avalanche diode (APD).
  • the transmitting unit may also use fiber lasers, semiconductor lasers, solid-state lasers, gas laser tubes, and the like.
  • the receiving unit can also use PIN photodiodes or silicon photomultipliers.
  • multiple lasers and photoelectric converters can be arranged. Multiple lasers and photoelectric converters can be arranged in one row or multiple rows, and the number and arrangement of lasers and photoelectric converters are the same.
  • the lidar system further includes a filter 700, which is located between the receiving lens group 600 and the receiving unit 400 and is used to filter out ambient light.
  • the multi-line lidar system provided by the embodiment of the present application further includes a 16-channel transimpedance amplifier (not shown in FIG. 8), which is electrically connected to the receiving unit for amplifying and transforming the photocurrent signal output by the receiving unit Is a voltage signal.
  • a 16-channel transimpedance amplifier (not shown in FIG. 8), which is electrically connected to the receiving unit for amplifying and transforming the photocurrent signal output by the receiving unit Is a voltage signal.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optics & Photonics (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种棱镜用于多线激光雷达中,包括顶面(10)、底面(20)和位于顶面(10)与底面(20)之间的至少三个侧面(30),其中至少两个侧面(30)包括发射区域(301)和接收区域(302);接收区域(302)位于发射区域(301)与顶面(10)之间;沿顶面(10)指向底面(20)的方向,发射区域(301)包括依次排列的至少两个反射面(301a,301b),至少两个反射面(301a,301b)与底面(20)之间的夹角不同。

Description

一种棱镜及多线激光雷达系统
相关申请的交叉引用
本申请要求于2019年3月19日提交中国专利局、申请号为CN201910208364.1、申请名称为“一种棱镜及多线激光雷达系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及激光雷达技术,尤其涉及一种棱镜及多线激光雷达系统。
背景技术
随着激光技术的发展,激光扫描技术越来越广泛地应用于测量、交通、驾驶辅助和移动机器人等领域。激光雷达是一种通过激光来探测目标的位置、速度等特征量的雷达系统,其工作原理是先向目标发射探测激光光束,然后将接收从目标反射回来的信号与发射信号进行比较,作适当处理后,就可获得目标的距离、方位、高度、速度、姿态、甚至形状等信息。
目前,最常用的激光雷达包括单线激光雷达光学系统和多线激光雷达光学系统,其中,单线激光雷达利用单光束扫描,扫描区域小;多线激光雷达通过电机旋转对周围环境进行扫瞄,通过长焦大靶面接收光学系统将被照射物返回来的光线聚焦在相对应的光电感应器上,能将多个阵列的光束发射出去和接收回来,对周围环镜一定区域进行扫瞄,其缺陷是所需激光发射器太多,接收器需要具有较大的光敏面来接收被目标物反射的激光光束,而且处理电路比较复 杂,成本较高。
发明内容
根据本申请的各种实施例,提供一种棱镜及多线激光雷达系统。
第一方面,本申请实施例提供一种棱镜,用于多线激光雷达中,包括:
顶面;
底面;和
位于所述顶面与所述底面之间的至少三个侧面;其中至少两个所述侧面包括发射区域和接收区域;所述接收区域位于所述发射区域与所述顶面之间;
沿所述顶面指向所述底面的方向,所述发射区域包括依次排列的至少两个反射面,至少两个所述反射面与所述底面之间的夹角不同。
第二方面,本申请实施例提供一种多线激光雷达系统,包括:
棱镜,所述棱镜包括顶面、底面和位于所述顶面与所述底面之间的至少三个侧面;其中至少两个所述侧面包括发射区域和接收区域;所述接收区域位于所述发射区域与所述顶面之间;沿所述顶面指向所述底面的方向,所述发射区域包括依次排列的至少两个反射面,至少两个所述反射面与所述底面之间的夹角不同;
旋转机构,所述棱镜位于所述旋转机构上,所述旋转机构带动所述棱镜绕旋转机构的旋转轴旋转;
至少一组发射接收组件,所述发射接收组件包括发射单元和接收单元;所述发射单元位于所述棱镜的一侧,用于发射激光光束,所述发射单元将发射的激光光束经所述棱镜的发射区域反射后照射到目标物;所述接收单元与同一组 所述发射接收组件中的所述发射单元位于所述棱镜的同一侧,所述接收单元用于接收从所述目标物反射后经所述棱镜的接收区域反射的激光光束。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其它特征和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他实施例的附图。
图1是本申请实施例提供的一种棱镜的立体结构示意图。
图2是图1所示的棱镜的一种主视示意图。
图3是提供的一种棱镜的侧面反射光路示意图。
图4是图1所示的棱镜的另一种主视示意图。
图5是图1所示的棱镜的又一种主视示意图。
图6是图1所示的棱镜的又一种主视示意图。
图7是本申请实施例提供的一种多线激光雷达系统的结构示意图。
图8是本申请实施例提供的另一种激光雷达系统的结构示意图。
具体实施方式
下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本申请,而非对本申请的限定。另外还需 要说明的是,为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。
在本申请实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。需要注意的是,本申请实施例所描述的“上”、“下”、“左”、“右”等方位词是以附图所示的角度来进行描述的,不应理解为对本申请实施例的限定。此外在上下文中,还需要理解的是,当提到一个元件被形成在另一个元件“上”或“下”时,其不仅能够直接形成在另一个元件“上”或者“下”,也可以通过中间元件间接形成在另一元件“上”或者“下”。术语“第一”、“第二”等仅用于描述目的,并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请的中的具体含义。
图1所示为本申请实施例提供的一种棱镜的立体结构示意图,图2为图1所示的棱镜的一种主视示意图。本申请实施例提供的棱镜,可适用于多线激光雷达中,参考图1,该棱镜包括顶面10、底面20和位于顶面10与底面20之间的至少三个侧面30,其中至少两个侧面30包括发射区域301和接收区域302;接收区域302位于发射区域301与顶面10之间;沿顶面10指向底面20的方向,发射区域301包括依次排列的至少两个反射面,至少两个反射面与底面20之间的夹角不同。
需要说明的是,图1所示的棱镜的形状为四棱柱只是示意性的,并不是对本申请的限定,具体实施时,侧面30的数量可以根据实际需要设置。顶面10和底面20之间的至少两个侧面30设置为反射面,例如可以是图1中后表面和 右表面。反射面可以通过在侧面的表面镀反射膜形成。示例性的,图2为图1的一种主视示意图,示出了右侧侧面的形状。图2示出的右侧侧面包括位于上方的接收区域302和位于下方的发射区域301,发射区域301包括至少两个反射面(图2中示例性的示出3个反射面301a、301b和301c),至少两个反射面与底面20之间的夹角不同,例如图2中反射面301a和反射面301c与底面的夹角相同,反射面301a和反射面301b与底面的夹角不同。可以理解的是,将各侧面看作一个整体,至少两个侧面与底面的夹角不同。需要说明的是,图2中右侧短虚线是为了示意性示出各反射面与底面的夹角,并不是棱镜实际轮廓。
可以理解的是,当激光器发射的激光光束发射到棱镜的发射区域时,由于不同反射面与底面的夹角不同,会在空间的垂直方向(垂直于顶面和底面)上形成不同的反射光束,当棱镜旋转时,光束可以对目标物体进行扫描,例如对于图1所示的四个侧面的棱镜,如果四个侧面都设置为反射面,每个侧面的发射区域都包括三个反射面,可以通过调节三个反射面的倾斜角度调整反射光线在垂直方向的距离(例如中间密集,两边稀疏),则棱镜旋转一周,一列激光器发出的激光光束可以形成四束不同分辨率的扫描光束,用于激光雷达中时通过一列激光器就可以实现四线多分辨率扫描,大大降低了多线激光雷达的复杂度和成本。
图3所示为本申请实施例提供的一种棱镜的侧面反射光路示意图。参考图3,图3中上方为接收区域302,下方为发射区域301,为了便于描述,图3中仅示出了接收区域302和发射区域301最靠近接收区域302的一个反射面,发射区域301将从右侧入射的激光光束(光源发出)反射到左侧,发射区域301反射的激光光束的传播方向为从右到左;接收区域302将从右侧入射的激光光 束(目标物反射)反射到右侧,接收区域302反射的激光光束的传播方向为从左到右。通过在棱镜侧面设置接收区域,可以将目标物反射的光束反射和汇聚到接收器上,有效降低对接收镜头视场角的要求,减少接收器光敏面的面积,降低多线激光雷达系统的成本。
本实施例的技术方案,通过将至少两个侧面设置为倾斜角度不同的反射面,从而使棱镜旋转时照射在不同反射面上的光束变为多条光束,通过设置同一侧面的反射面的倾斜角的不同变化趋势,可以改变反射光线的扫描分辨率;用于激光雷达并旋转时可以实现多线扫描,进而可以减少发射器和接收器的数量。通过设置发射区域和接收区域,发射区域可以将激光光束反射到目标物上,接收区域可以接收目标物反射的激光光束并将其反射到接收器。由于同一侧面上既包括发射区域又包括接收区域,该侧面的发射区域反射到目标物上的激光光束,经过目标物反射后可以经该侧面的接收区域接收,然后反射到接收器,从而无需专门设置一个大光敏面的接收器来接收目标物反射回来的激光光束,以实现降低多线激光雷达系统的制作成本和制作难度的效果。
在上述技术方案的基础上,可选的,沿顶面指向底面的方向,位于同一发射区域的各反射面与底面之间的夹角呈等差数列。
示例性的,图4所示为图1所示的棱镜的另一种主视示意图。参考图4,沿从上到下的方向,发射区域301的各反射面与底面之间的夹角呈等差分布,即各反射面与底面的夹角呈梯度分布,例如从上到下各反射面301a、301b和301c与底面夹角依次为88°、88.5°、89°或者依次为89°、88.5°、88°(图4中未示出),这样设置可以使各反射面的反射光线在垂直方向上等间距分布, 实现空间上的等分辨率扫描。
可选的,每个侧面包括至少四个反射面;在同一发射区域中,靠近发射区域的中心的相邻两个反射面与底面之间的夹角差值最小。
示例性的,图5所示为图1所示的棱镜的又一种主视示意图。参考图5,沿从上到下的方向,发射区域301的各反射面与底面之间的夹角之差呈从中间向两侧增大的趋势,例如从上到下各反射面301a、301b、301c和301d与底面夹角依次为88°、88.4°、88.6°、89°或者依次为89°、88.6°、88.4°、88°,这样设置可以使各反射面的反射光线在垂直方向上中间区域距离较近(分辨率高),探测距离较远,两边区域距离较远(分辨率低),探测距离较近的效果。可以理解的是,当反射面的数量为奇数时,可以设置最中间的反射面和与之相邻的两个反射面与底面的夹角之差相同,都为最小值。
需要说明的是,以上发射区域反射面数量设置及夹角大小的举例只是示意性的,同一反射区域的各反射面与底面的夹角可以根据实际需求设定,不同侧面的反射区域对应位置处各反射面与底面的夹角可以相同也可以不同,本申请实施例不作限定。
可选的,接收区域所在侧面与底面的夹角为α 1,发射区域的一反射面与底面的夹角为α 2,α 1=α 2。可选的,在同一侧面,沿顶面指向底面的方向,接收区域与底面的夹角和发射区域的各反射面与底面之间的夹角呈等差数列。
示例性的,继续参考图4,接收区域302与底面的夹角可以和发射区域的各反射面与底面之间的夹角呈梯度分布,例如可以为87.5°,或者与其中任意一个反射面与底面的夹角相同(例如88°或88.5°或89°),或者都不相同,在其他实施例中,也可以根据要反射光线的角度,设计接收区域与底面的夹角。
可选的,反射面与底面之间夹角的最大值为α 3,反射面与底面之间夹角的最小值为α 4,0°<|α 34|<2°。
可以理解的是,这样设置的优点在于,保证了所有的反射面不至于倾斜过大,保证了多线雷达系统具有良好的分辨率。需要说明的是,在其他实施方式中,α 3与α 4的差值还可以大于或者等于2°。
可选的,棱镜包括n对相对设置的侧面,n为大于或者等于2的正整数;相对的两个侧面中,最邻近底面的反射面与底面的夹角均大于或者均小于,两个侧面之间的至少一个侧面最邻近底面的反射面与底面的夹角。
示例性地,图6所示为图1所示的棱镜的又一种主视示意图。参考图6,以n=2为例,相对的左侧面最下面的反射面301c′、右侧面最下面的反射面301c与底面的夹角均大于或者均小于前侧面与后侧面中至少一个的最下面的反射面底面的夹角,例如反射面301c′与底面的夹角为89°,反射面301c与底面的夹角为88°,前侧面最下面的反射面与底面的夹角为87°。这样设置使反射面与底面的夹角不会存在绕棱镜一周方向逐渐增加或者逐渐减小的情况,从而避免了棱镜的多个反射面的力矩严重不均情况的发生,有助于实现棱镜在旋转时的多个反射面的力矩平衡。
可选的,相对的两个侧面中,最邻近底面的反射面与底面的夹角相等。
可以理解的是,通过设置相对的两个侧面中,最下面的反射面与底面的夹角相等,使相对的两个反射面具有相同的倾斜程度,在棱镜转动时,相对的两个反射面不会产生力矩不均,进一步地实现棱镜的多个反射面的力矩平衡。
在一实施例中,棱镜100的一个侧面中的发射区域被划分为多个反射面;至少两个反射面沿棱镜的中心轴(也即棱镜的旋转轴)依次设置,也即沿顶面 至底面的方向依次设置。位于同一个侧面的发射区域内的多个反射面中,位于发射区域中间的反射面与底面的夹角大于位于两侧的反射面与底面的夹角,从而使得激光光束在经过该反射面的反射后能够形成中间密集两侧稀疏的反射光束分布情况,也即实现中间垂直分辨率较小(也即垂直分辨角度角度较小),探测距离较远,而两边垂直分辨率相对较大,探测距离较近的效果。在其他的实施例中,也可以相反设置,也即两侧的反射面与地面之间的夹角大于中间的反射面与地面之间的夹角,从而形成中间稀疏两边密集的分布效果。在另一实施例中,位于两侧的反射面与地面之间的夹角可以相同,位于中间的反射面与地面之间的夹角可以相同,也设置为多个反射面与地面之间的夹角互不相同。
如图2所示,在本实施例中,棱镜的其中一个侧面的发射区域30包括三个反射面301a、301b和301c,其中,位于两侧的反射面301a和301c与底面20之间的夹角相同,均小于反射面301b与底面20之间的夹角。
在一实施例中,棱镜的其他侧面的发射区域均只有一个反射面,也即不进行分区设置。在其他的实施例中,棱镜中至少两个侧面的发射区域被划分为多个反射面。每个侧面中的发射区域可以具有相同的结构设置,具有相同结构的两个侧面可以关于棱镜的中心轴对称设置。
在另一实施例中,棱镜的各个侧面的发射区域均包括多个反射面,也即棱镜的发射区域被划分为多个层。以图5为例,反射面301a位于第一层,反射面301b位于第二层,反射面301c位于第三层,反射面301d则位于第四层,也即位于同一水平位置的反射面属于同一层。此时,棱镜上各侧面上的反射面中,位于同一层的反射面与底面之间的夹角可以相同,也可以不完全相同,或者均不相同,从而可以实现激光雷达线数的最大化。可选的,位于同一层的反射面 而言,每一个反射面与底面之间的夹角均大于或者均小于,同一层相邻的两个反射面与底面之间的夹角,从而避免了棱镜的多个反射面的力矩严重不均情况的发生,有助于实现棱镜在旋转时的多个反射面的力矩平衡。
图7为本申请实施例提供的一种多线激光雷达系统的结构示意图,本实施例提供的激光雷达系统包括上述实施例提供的任意一种棱镜100,还包括旋转机构200,棱镜100位于旋转机构200上,旋转机构200带动棱镜100绕旋转机构200的旋转轴旋转;至少一组发射接收组件310,发射接收组件310包括发射单元300和接收单元400;发射单元300位于棱镜100的一侧,用于发射激光光束,发射单元300将发射的激光光束经棱镜100的发射区域反射后照射到目标物;接收单元400与同一组所述发射接收组件310中的发射单元300位于棱镜100的同一侧,接收单元400用于接收从目标物反射后经棱镜100的接收区域反射的激光光束。
可以理解的是,旋转机构200可以包括步进电机,旋转机构200的旋转轴与棱镜100的旋转轴重合;图7以包括一组发射接收组件310为例,当发射接收组件310为多组时,可以分别对应棱镜100的一个侧面。发射单元300可以包括脉冲激光器,用于发出脉冲光束;接收单元400可以包括光电转换器,将光信号转换成电信号,通过处理电信号,以获取目标物的距离、形状等信息。
本实施例的技术方案,通过将至少两个侧面设置为倾斜角度不同的反射面,从而使棱镜旋转时照射在不同反射面上的光束变为多条光束,通过设置同一侧面的反射面的倾斜角的不同变化趋势,可以改变反射光线的扫描分辨率;当旋转机构带动棱镜旋转时可以实现多线扫描,进而可以减少发射单元和接收单元的数量。通过在棱镜侧面设置发射区域和接收区域,发射区域可以将激光光束 反射到目标物上,接收区域可以接收目标物反射的激光光束并将其反射到接收器。由于同一侧面上既包括发射区域又包括接收区域,该侧面的发射区域反射到目标物上的激光光束,经过目标物反射后可以经该侧面的接收区域接收,然后反射到接收器,从而无需专门设置一个大光敏面的接收器来接收目标物反射回来的激光光束,以实现降低多线激光雷达系统的制作成本和制作难度的效果。此外,使用旋转机构带动棱镜旋转而不用转动整机实现水平方向上的扫瞄,提高了产品的机械性能(抗震,抗冲击,及散热等),同时整个雷达无需无线传电及大数据无线传输,简化了系统结构。
在上述实施例的基础上,可选的,图8所示为本申请实施例提供的另一种激光雷达系统的结构示意图。参考图8,本实施例提供的激光雷达系统还包括:发射镜组500,位于发射单元300与棱镜100之间,用于将发射单元300发射的激光光束进行准直照射到棱镜100的发射区域上;接收镜组600,位于接收单元400与棱镜100之间,用于将棱镜100的接收区域反射的激光光束进行聚焦照射到接收单元400上。
可以理解的是,发射镜组500和接收镜组600可以选用相同的透镜组,具体实施时根据可以根据实际光路设计,本申请实施例对此不作限定。
可选的,发射单元包括激光光源,接收单元包括光电转换器,激光光源的数量与光电转换器的数量相同。
可以理解的是,在具体实施时,发射单元可以利用半导体激光器发射激光脉冲,接收单元可以利用雪崩二极管(APD)形成的光电转换器。在其他的实施例中,发射单元也可以利用光纤激光器、半导体激光器、固体激光器和气体激光管器等。接收单元还可以利用PIN光电二极管或者硅光电倍增管等。为了 进一步提高激光雷达的精度,可以设置多个激光器和光电转换器,多个激光器和光电转换器可以一列排布,也可以多列排布,且激光器和光电转换器的数量和排列方式相同。
可选的,继续参考图8,该激光雷达系统还包括滤光镜700,滤光镜700位于接收镜组600与接收单元400之间,用于滤除环境光。
可以理解的是,由于环境中可能存在太阳光、各种灯光等环境光对接收单元400接收的信号引起干扰,通过设置滤光镜700,可以滤除环境光,提高多线激光雷达系统测量准确性。
可选的,本申请实施例提供的多线激光雷达系统还包括16通道互阻放大器(图8中未示出),与接收单元电连接,用于将接收单元输出的光电流信号放大并转化为电压信号。从而提高测量精度。
注意,上述仅为本申请的较佳实施例及所运用技术原理。本领域技术人员会理解,本申请不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本申请的保护范围。因此,虽然通过以上实施例对本申请进行了较为详细的说明,但是本申请不仅仅限于以上实施例,在不脱离本申请构思的情况下,还可以包括更多其他等效实施例,而本申请的范围由所附的权利要求范围决定。

Claims (30)

  1. 一种棱镜,用于多线激光雷达中,包括:
    顶面;
    底面;和
    位于所述顶面与所述底面之间的至少三个侧面;其中至少两个所述侧面包括发射区域和接收区域;所述接收区域位于所述发射区域与所述顶面之间;
    沿所述顶面指向所述底面的方向,所述发射区域包括依次排列的至少两个反射面,至少两个所述反射面与所述底面之间的夹角不同。
  2. 根据权利要求1所述的棱镜,其特征在于,沿所述顶面指向所述底面的方向,位于同一所述发射区域的各所述反射面与所述底面之间的夹角呈等差数列。
  3. 根据权利要求1所述的棱镜,其特征在于,每个所述侧面包括至少四个反射面;
    在同一所述发射区域中,靠近所述发射区域的中心的相邻两个所述反射面与所述底面之间的夹角差值最小。
  4. 根据权利要求1所述的棱镜,其特征在于,所述接收区域所在侧面与所述底面的夹角为α 1,所述发射区域的一所述反射面与所述底面的夹角为α 2,α 1=α 2
  5. 根据权利要求1所述的棱镜,其特征在于,所述反射面与所述底面之间夹角的最大值为α 3,所述反射面与所述底面之间夹角的最小值为α 4,0°<|α 34|<2°。
  6. 根据权利要求2所述的棱镜,其特征在于,在同一所述侧面,沿所述顶面指向所述底面的方向,所述接收区域与底面的夹角和所述发射区域的各所述反射面与所述底面之间的夹角呈等差数列。
  7. 根据权利要求1所述的棱镜,其特征在于,所述棱镜包括n对相对设置的侧面,n为大于或者等于2的正整数;
    相对的两个所述侧面中,最邻近所述底面的反射面与所述底面的夹角均大于或者均小于,两个所述侧面之间的至少一个侧面最邻近所述底面的反射面与所述底面的夹角。
  8. 根据权利要求7所述的棱镜,其特征在于,相对的两个所述侧面中,最邻近所述底面的反射面与所述底面的夹角相等。
  9. 根据权利要求1所述的棱镜,其特征在于,至少一个侧面的发射区域包括多个反射面,且位于中间的反射面与底面之间的夹角大于位于两侧的反射面与底面之间的夹角。
  10. 根据权利要求9所述的棱镜,其特征在于,至少一个侧面的发射区域中,位于两侧的反射面与底面之间的夹角相同。
  11. 根据权利要求1所述的棱镜,其特征在于,至少两个侧面具有相同的结构且相对设置于所述棱镜上。
  12. 根据权利要求1所述的棱镜,其特征在于,所述棱镜的各侧面的发射区域均包括依次排列的至少两个反射面,其中,位于同一水平层的各反射面与所述底面之间的夹角不完全相同。
  13. 根据权利要求12所述的棱镜,其特征在于,位于同一水平层的各发射面中,任一反射面与底面之间的夹角均大于或者均小于相邻两个反射面与底面之间的夹角。
  14. 一种多线激光雷达系统,包括:
    棱镜,所述棱镜包括顶面、底面和位于所述顶面与所述底面之间的至少三 个侧面;其中至少两个所述侧面包括发射区域和接收区域;所述接收区域位于所述发射区域与所述顶面之间;沿所述顶面指向所述底面的方向,所述发射区域包括依次排列的至少两个反射面,至少两个所述反射面与所述底面之间的夹角不同;
    旋转机构,所述棱镜位于所述旋转机构上,所述旋转机构带动所述棱镜绕旋转机构的旋转轴旋转;
    至少一组发射接收组件,所述发射接收组件包括发射单元和接收单元;所述发射单元位于所述棱镜的一侧,用于发射激光光束,所述发射单元将发射的激光光束经所述棱镜的发射区域反射后照射到目标物;所述接收单元与同一组所述发射接收组件中的所述发射单元位于所述棱镜的同一侧,所述接收单元用于接收从所述目标物反射后经所述棱镜的接收区域反射的激光光束。
  15. 根据权利要求14所述的多线激光雷达系统,其特征在于,还包括:
    发射镜组,位于所述发射单元与所述棱镜之间,用于将所述发射单元发射的激光光束进行准直照射到所述棱镜的发射区域上;
    接收镜组,位于所述接收单元与所述棱镜之间,用于将所述棱镜的接收区域反射的激光光束进行聚焦照射到所述接收单元上。
  16. 根据权利要求14所述的多线激光雷达系统,其特征在于,所述发射单元包括激光光源,所述接收单元包括光电转换器,所述激光光源的数量与所述光电转换器的数量相同。
  17. 根据权利要求15所述的多线激光雷达系统,其特征在于,还包括滤光镜,所述滤光镜位于所述接收镜组与所述接收单元之间,用于滤除环境光。
  18. 根据权利要求14所述的多线激光雷达系统,其特征在于,还包括16 通道互阻放大器,与所述接收单元电连接,用于将所述接收单元输出的光电流信号放大并转化为电压信号。
  19. 根据权利要求14所述的多线激光雷达系统,其特征在于,沿所述顶面指向所述底面的方向,位于同一所述发射区域的各所述反射面与所述底面之间的夹角呈等差数列。
  20. 根据权利要求14所述的多线激光雷达系统,其特征在于,每个所述侧面包括至少四个反射面;
    在同一所述发射区域中,靠近所述发射区域的中心的相邻两个所述反射面与所述底面之间的夹角差值最小。
  21. 根据权利要求14所述的多线激光雷达系统,其特征在于,所述接收区域所在侧面与所述底面的夹角为α 1,所述发射区域的一所述反射面与所述底面的夹角为α 2,α 1=α 2
  22. 根据权利要求14所述的多线激光雷达系统,其特征在于,所述反射面与所述底面之间夹角的最大值为α 3,所述反射面与所述底面之间夹角的最小值为α 4,0°<|α 34|<2°。
  23. 根据权利要求14所述的多线激光雷达系统,其特征在于,在同一所述侧面,沿所述顶面指向所述底面的方向,所述接收区域与底面的夹角和所述发射区域的各所述反射面与所述底面之间的夹角呈等差数列。
  24. 根据权利要求14所述的多线激光雷达系统,其特征在于,所述棱镜包括n对相对设置的侧面,n为大于或者等于2的正整数;
    相对的两个所述侧面中,最邻近所述底面的反射面与所述底面的夹角均大于或者均小于,两个所述侧面之间的至少一个侧面最邻近所述底面的反射面与 所述底面的夹角。
  25. 根据权利要求24所述的多线激光雷达系统,其特征在于,相对的两个所述侧面中,最邻近所述底面的反射面与所述底面的夹角相等。
  26. 根据权利要求14所述的多线激光雷达系统,其特征在于,至少一个侧面的发射区域包括多个反射面,且位于中间的反射面与底面之间的夹角大于位于两侧的反射面与底面之间的夹角。
  27. 根据权利要求14所述的多线激光雷达系统,其特征在于,至少一个侧面的发射区域中,位于两侧的反射面与底面之间的夹角相同。
  28. 根据权利要求14所述的多线激光雷达系统,其特征在于,至少两个侧面具有相同的结构且相对设置于所述棱镜上。
  29. 根据权利要求14所述的多线激光雷达系统,其特征在于,所述棱镜的各侧面的发射区域均包括依次排列的至少两个反射面,其中,位于同一水平层的各反射面与所述底面之间的夹角不完全相同。
  30. 根据权利要求14所述的多线激光雷达系统,其特征在于,位于同一水平层的各发射面中,任一反射面与底面之间的夹角均大于或者均小于相邻两个反射面与底面之间的夹角。
PCT/CN2020/078715 2019-03-19 2020-03-11 一种棱镜及多线激光雷达系统 WO2020187103A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20773363.5A EP3958012A4 (en) 2019-03-19 2020-03-11 PRISM AND MULTI-BEAM LIDAR SYSTEM
US17/384,799 US20210349187A1 (en) 2019-03-19 2021-07-25 Prism and multi-beam lidar system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910208364.1A CN109752704A (zh) 2019-03-19 2019-03-19 一种棱镜及多线激光雷达系统
CN201910208364.1 2019-03-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/384,799 Continuation US20210349187A1 (en) 2019-03-19 2021-07-25 Prism and multi-beam lidar system

Publications (1)

Publication Number Publication Date
WO2020187103A1 true WO2020187103A1 (zh) 2020-09-24

Family

ID=66408959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/078715 WO2020187103A1 (zh) 2019-03-19 2020-03-11 一种棱镜及多线激光雷达系统

Country Status (4)

Country Link
US (1) US20210349187A1 (zh)
EP (1) EP3958012A4 (zh)
CN (1) CN109752704A (zh)
WO (1) WO2020187103A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115356747A (zh) * 2022-10-19 2022-11-18 成都朴为科技有限公司 一种多线激光雷达障碍物识别方法和装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109752704A (zh) * 2019-03-19 2019-05-14 深圳市镭神智能系统有限公司 一种棱镜及多线激光雷达系统
CN110208773A (zh) * 2019-06-11 2019-09-06 深圳市镭神智能系统有限公司 多线激光雷达
CN110286386A (zh) * 2019-07-18 2019-09-27 深圳市镭神智能系统有限公司 一种多线激光雷达系统
CN111025266B (zh) * 2020-01-14 2021-07-06 深圳市镭神智能系统有限公司 一种棱镜及多线激光雷达
CN111157975A (zh) * 2020-03-05 2020-05-15 深圳市镭神智能系统有限公司 一种多线激光雷达及自移动车辆
CN111308444A (zh) * 2020-04-15 2020-06-19 深圳市镭神智能系统有限公司 一种激光雷达系统
CN113906310A (zh) * 2020-05-07 2022-01-07 深圳市速腾聚创科技有限公司 激光雷达及自动驾驶设备
CN112711007A (zh) * 2021-01-20 2021-04-27 杭州欧镭激光技术有限公司 一种激光雷达及一种无人机
CN115825929B (zh) * 2021-12-14 2023-08-29 深圳市速腾聚创科技有限公司 激光接收装置及激光雷达

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103038568A (zh) * 2010-04-16 2013-04-10 弗莱克斯照明第二有限责任公司 包括膜基光导的前照明装置
US20180067195A1 (en) * 2016-09-08 2018-03-08 Qualcomm Incorporated Multi-tier light-based ranging systems and methods
CN207318710U (zh) * 2017-11-02 2018-05-04 厦门市和奕华光电科技有限公司 一种单激光器多线束混合激光雷达
CN108398696A (zh) * 2018-02-09 2018-08-14 深圳市砝石激光雷达有限公司 多线旋转式激光雷达装置
CN108490419A (zh) * 2018-06-04 2018-09-04 电子科技大学 一种自动驾驶车载多线激光雷达系统
CN109752704A (zh) * 2019-03-19 2019-05-14 深圳市镭神智能系统有限公司 一种棱镜及多线激光雷达系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10141363B4 (de) * 2001-08-23 2004-03-04 Automotive Distance Control Systems Gmbh Vorrichtung zur Abtastung einer Szene
JP6025014B2 (ja) * 2012-02-22 2016-11-16 株式会社リコー 距離測定装置
KR102235710B1 (ko) * 2016-05-31 2021-04-02 한국전자기술연구원 송수광 단일렌즈 광학계 구조를 가지는 스캐닝 라이다
CN207817196U (zh) * 2017-10-31 2018-09-04 北京北科天绘科技有限公司 一种激光扫描装置以及激光雷达装置
CN108627813B (zh) * 2018-08-13 2021-10-15 北京经纬恒润科技股份有限公司 一种激光雷达
CN210142188U (zh) * 2019-03-19 2020-03-13 深圳市镭神智能系统有限公司 一种棱镜及多线激光雷达系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103038568A (zh) * 2010-04-16 2013-04-10 弗莱克斯照明第二有限责任公司 包括膜基光导的前照明装置
US20180067195A1 (en) * 2016-09-08 2018-03-08 Qualcomm Incorporated Multi-tier light-based ranging systems and methods
CN207318710U (zh) * 2017-11-02 2018-05-04 厦门市和奕华光电科技有限公司 一种单激光器多线束混合激光雷达
CN108398696A (zh) * 2018-02-09 2018-08-14 深圳市砝石激光雷达有限公司 多线旋转式激光雷达装置
CN108490419A (zh) * 2018-06-04 2018-09-04 电子科技大学 一种自动驾驶车载多线激光雷达系统
CN109752704A (zh) * 2019-03-19 2019-05-14 深圳市镭神智能系统有限公司 一种棱镜及多线激光雷达系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115356747A (zh) * 2022-10-19 2022-11-18 成都朴为科技有限公司 一种多线激光雷达障碍物识别方法和装置
CN115356747B (zh) * 2022-10-19 2023-01-24 成都朴为科技有限公司 一种多线激光雷达障碍物识别方法和装置

Also Published As

Publication number Publication date
EP3958012A4 (en) 2022-11-23
US20210349187A1 (en) 2021-11-11
CN109752704A (zh) 2019-05-14
EP3958012A1 (en) 2022-02-23

Similar Documents

Publication Publication Date Title
WO2020187103A1 (zh) 一种棱镜及多线激光雷达系统
US20220128667A1 (en) Multi-beam laser radar and self-moving vehicle
WO2020156372A1 (zh) 一种分布式激光雷达系统和激光测距方法
WO2021196194A1 (zh) 激光收发系统、激光雷达及自动驾驶设备
US20220171071A1 (en) Lidar and automated driving device
WO2020248336A1 (zh) 多线激光雷达
WO2021196193A1 (zh) 激光雷达及自动驾驶设备
CN113030909B (zh) 一种基于微镜阵列的激光雷达系统
CN210142187U (zh) 一种距离探测装置
WO2021143665A1 (zh) 一种棱镜及多线激光雷达
WO2023040376A1 (zh) 激光雷达
US20230035528A1 (en) Lidar and automated driving device
WO2022227733A1 (zh) 光探测装置及行驶载具、激光雷达及探测方法
WO2023143078A1 (zh) 激光雷达及终端设备
CN110531369B (zh) 一种固态激光雷达
CN212275968U (zh) 一种激光雷达系统
CN113050102A (zh) 一种激光雷达系统
CN112946666A (zh) 一种激光雷达系统
CN210376672U (zh) 多线激光雷达
WO2021035427A1 (zh) 激光雷达及自动驾驶设备
CN210142188U (zh) 一种棱镜及多线激光雷达系统
CN209894964U (zh) 一种旋转棱镜和多线激光雷达测距系统
CN113945904A (zh) 光接收装置及激光雷达系统
CN111308444A (zh) 一种激光雷达系统
KR20180052379A (ko) 광출력 모듈 및 이를 포함하는 라이다 모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20773363

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020773363

Country of ref document: EP

Effective date: 20211019