WO2021143665A1 - 一种棱镜及多线激光雷达 - Google Patents

一种棱镜及多线激光雷达 Download PDF

Info

Publication number
WO2021143665A1
WO2021143665A1 PCT/CN2021/071231 CN2021071231W WO2021143665A1 WO 2021143665 A1 WO2021143665 A1 WO 2021143665A1 CN 2021071231 W CN2021071231 W CN 2021071231W WO 2021143665 A1 WO2021143665 A1 WO 2021143665A1
Authority
WO
WIPO (PCT)
Prior art keywords
central axis
prism
transmitting
reflecting
receiving
Prior art date
Application number
PCT/CN2021/071231
Other languages
English (en)
French (fr)
Inventor
胡小波
刘颖
Original Assignee
深圳市镭神智能系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市镭神智能系统有限公司 filed Critical 深圳市镭神智能系统有限公司
Publication of WO2021143665A1 publication Critical patent/WO2021143665A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements

Definitions

  • the embodiments of the present application relate to the field of laser radar technology, and in particular to a prism and a multi-line laser radar.
  • Lidar is a radar system that uses lasers to detect the target's position and speed. Its working principle is to first launch a detection laser beam to the target, and then compare the received signal reflected from the target with the transmitted signal, and make appropriate After processing, the target's distance, azimuth, height, speed, posture, and even shape can be obtained.
  • the standards for various performance parameters of lidar are quite high, such as the detection field of view, detection accuracy, detection density, volume, and service life.
  • the existing multi-line lidar usually increases the number of scanning light beams by adding laser light sources, thereby increasing the detection field of view and increasing the detection density.
  • increasing the number of laser light sources not only increases the cost and volume of the product, and debugs The difficulty also increases correspondingly, making the debugging work arduous.
  • a prism and a multi-line lidar are provided.
  • an embodiment of the present application provides a prism, including a reflective portion, the reflective portion includes at least two reflectors arranged in sequence along the central axis of the prism, and the at least two reflectors include a first reflector.
  • the first reflector includes a plurality of first reflecting surfaces arranged around the central axis
  • the second reflector includes a plurality of second reflecting surfaces arranged around the central axis, and the number of the first reflecting surfaces Greater than the number of the second reflecting surfaces, the maximum value of the absolute value of the angle between each of the first reflecting surfaces and the central axis is smaller than the angle between each of the second reflecting surfaces and the central axis The maximum value of the absolute value of the angle.
  • an embodiment of the present application also provides a multi-line lidar, including:
  • a rotating mechanism connected to the prism, for driving the prism to rotate around the rotation axis of the prism; the rotation axis is coaxial with the central axis;
  • At least one set of transmitting and receiving components including a transmitting unit and a receiving unit
  • the transmitting unit is used to emit a laser beam
  • the laser beam emitted by the transmitting unit is reflected by the reflecting part of the prism and then irradiated to the target
  • the detection area the receiving unit is used to receive the laser beam reflected from the target detection area.
  • an embodiment of the present application also provides a multi-line lidar, including:
  • the prism includes at least two of the reflecting parts; at least two of the reflecting parts include a first reflecting part and a second reflecting part that are sequentially arranged along the central axis,
  • the first reflecting part and the second reflecting part have the same structure
  • a rotating mechanism connected to the prism, for driving the prism to rotate around the rotation axis of the prism; the rotation axis is coaxial with the central axis;
  • the transmitting and receiving components include a transmitting unit and a receiving unit; the transmitting unit is located on one side of the prism and is used to emit a laser beam; the laser beam emitted by the transmitting unit passes through the prism The reflection of the first reflecting part illuminates the target detection area; the receiving unit is located on the same side of the prism as the transmitting unit in the same group of the transmitting and receiving assembly, and is used to receive the reflection from the target detection area. The laser beam reflected by the second reflection part of the prism.
  • FIG. 1 is a schematic diagram of the structure of a prism provided by an embodiment of the application
  • Fig. 2 is a schematic front view of the prism shown in Fig. 1;
  • Fig. 3 is a partial enlarged schematic diagram of Fig. 2;
  • FIG. 4 is a schematic structural diagram of another prism provided by an embodiment of the application.
  • FIG. 5 is a schematic structural diagram of another prism provided by an embodiment of the application.
  • FIG. 6 is a schematic structural diagram of a multi-line lidar provided by an embodiment of the application.
  • Fig. 7 is a partial structural diagram of Fig. 6;
  • FIG. 8 is a schematic diagram of a partial cross-sectional structure of another multi-line lidar provided by an embodiment of the application.
  • FIG. 9 is a schematic structural diagram of yet another multi-line lidar provided by an embodiment of the application.
  • Figure 10 is a cross-sectional view at HH-HH in Figure 9;
  • Figure 11 is a cross-sectional view at GG-GG in Figure 9;
  • FIG. 12 is a schematic diagram of the principle of a multi-line lidar provided by an embodiment of this application.
  • FIG. 1 is a schematic structural diagram of a prism provided by an embodiment of the application
  • FIG. 2 is a schematic front view of the prism shown in FIG. 1.
  • the prism provided by an embodiment of the application includes a reflecting portion 10
  • the reflecting portion 10 includes at least two reflectors arranged in sequence along the central axis 21, the at least two reflectors include a first reflector 111 and a second reflector 112, and the first reflector 111 includes a plurality of reflectors arranged around the central axis 21.
  • the first reflecting surface 31 and the second reflecting body 112 include a plurality of second reflecting surfaces 32 arranged around the central axis 21.
  • the number of the first reflecting surfaces 31 is greater than the number of the second reflecting surfaces 32.
  • Each first reflecting surface 31 is connected to the center
  • the maximum value of the absolute value of the included angle between the shafts 21 is smaller than the maximum value of the absolute value of the included angle between each second reflecting surface 32 and the central axis 21. That is, the inclination angle of each first reflecting surface 31 of the first reflector 111 with respect to the central axis 21 is small, and the inclination angle of each second reflecting surface 32 of the second reflector 112 with respect to the central axis is relatively large.
  • the prism provided by the embodiment of the present application can be used in a multi-line lidar.
  • the light emitted by the laser light source in the multi-line lidar is reflected to the target detection area by the reflecting part 10 of the prism, and the laser beam reflected back from the target detection area passes through the reflecting part. 10
  • the receiver inside the multi-line lidar can obtain the distance, azimuth, height, speed, attitude and other information of the target after proper processing of the reflected laser beam.
  • the light emitted by the laser light source in the multi-line lidar is reflected to the target detection area by the reflecting part 10 of the prism, and the laser beam reflected back from the target detection area can be reflected by other optical devices or directly reflected inside the multi-line lidar
  • the receiver can obtain the target's distance, azimuth, height, speed, attitude and other information.
  • the reflecting part 10 includes at least a first reflector 111 and a second reflector 112 arranged in sequence along the central axis 21.
  • the first reflector 111 includes a plurality of first reflecting surfaces 31 arranged around the central axis 21, and the second reflecting
  • the body 112 includes a plurality of second reflecting surfaces 32 arranged around the central axis 21. Therefore, when the prism is used as the rotating reflection part of the multi-line laser radar, when the laser beam emitted by the multi-line laser light source is projected to the reflecting part 10, there will be some The laser beam emitted by the laser is projected onto the first reflecting surface 31, and part of the laser beam emitted by the laser is projected onto the second reflecting surface 32.
  • the maximum value of the absolute value of the included angle between 21, that is, the inclination of each first reflection surface 31 is small, so that after the laser beam is reflected by the first reflection surface 31 of the first reflector 111 of the rotating prism, A relatively dense light distribution can be formed in the corresponding area along the direction of the central axis 21, and after being reflected by the second reflecting surface 32 of the second reflector 112, a relatively sparse light distribution will be formed in the corresponding area along the direction of the central axis 21, thereby Sparse and dense distribution is formed in the entire field of view to meet the needs of use.
  • the angle range between the second reflecting surface 32 and the central axis 21 is large, it can ensure a large field of view in the direction along the central axis 21, and at the same time, because the number of the second reflecting surface 32 is small, it can be Ensure that there is a wide field of view in the direction perpendicular to the central axis 21. That is, through the above prism, the number of scanning light beams can be increased. This solution does not need to increase the number of laser light sources and receivers, reduces the production cost and difficulty of multi-line lidar, and reduces the volume and debugging work of multi-line lidar. quantity.
  • first reflector 111 and the second reflector 112 may be arranged in order from top to bottom along the direction of the central axis 21, or may be arranged in order from bottom to top along the direction of the central axis 21. Since the laser beam is reflected by the first reflecting surface 31 of the first reflector 111 of the rotating prism, a relatively dense light distribution can be formed in the corresponding area along the direction of the central axis 21, passing through the second reflecting surface of the second reflector 112 32 after reflection, a relatively sparse light distribution will be formed in the corresponding area along the central axis 21.
  • the prism is arranged in a vertical and horizontal direction, that is, its central axis 21 is parallel to the vertical direction.
  • the first reflector 111 is an octahedral prism, which includes eight first reflecting surfaces 31, and the second reflector 112 is a tetrahedral prism, which includes four second reflecting surfaces 32, and the eight first reflecting surfaces of the octahedral prism
  • the included angles between 31 and the central axis 21 are different, and the included angles between the four second reflective surfaces 32 of the tetrahedral prism and the central axis 21 are also different, and the first reflective surface 31 in the octahedral prism is relative to the central axis.
  • the inclination angle of 21 is relatively small, and the inclination angle of the second reflecting surface 32 of the tetrahedral prism with respect to the central axis 21 is relatively large.
  • the multi-line laser beams emitted by the laser light source of the multi-line lidar are respectively projected on the first reflective surface 31 of the octahedral prism and the second reflective surface 32 of the tetrahedral prism.
  • the laser beams emitted by the same laser After being reflected by the rotating prism, when the prism rotates once, the laser beams emitted by the same laser are incident on the eight first reflecting surfaces 31 of the octahedral prism in turn, and after being reflected by the eight first reflecting surfaces 31 of the octahedral prism, they are expanded into 8 laser beams in the vertical direction. Similarly, the laser beams emitted by the same laser are incident on the four second reflecting surfaces 32 of the tetrahedral prism in sequence, and are reflected by the four second reflecting surfaces 32 of the tetrahedral prism and then expanded to form four laser beams in the vertical direction. .
  • the specific number of laser radar lines can be determined according to the number of lasers set.
  • a total of 32 lasers are provided in a multi-line lidar, of which 21 lasers have laser beams incident on an octahedral prism, and 11 lasers incident on a tetrahedral prism, the laser line of the lidar
  • the reflection of the above-mentioned prism can make the multi-line laser beams sparsely and densely distribute in the direction along the central axis 21, that is, realize the sparse and dense distribution of the vertical field of view, thereby ensuring that the areas that require strict attention have higher resolution. It can ensure that the lidar has a large field of view in the vertical direction (that is, along the central axis 21 direction). Among them, the angle of the field of view of the lidar in the vertical direction and its resolution need to be set according to the emission angle of each laser and the inclination angle of the two reflectors.
  • the octahedral prism can achieve 60-degree horizontal scanning for each group of transceiver units, and the tetrahedral prism can achieve 120-degree horizontal scanning.
  • the prism formed by the combination of the octahedral prism and the tetrahedral prism rotates to achieve a vertical field of view.
  • the scanning beams are distributed densely, and the horizontal scanning range of the octahedral prism and the horizontal scanning range of the tetrahedral prism at least partially overlap, so that the horizontal scanning angle range of the middle dense area is between 60 degrees and 70 degrees, and the total horizontal scanning angle is Between 130 degrees and 150 degrees, or even larger, to ensure that the lidar has a larger scanning field of view.
  • FIG. 3 is a partial enlarged schematic diagram of FIG. 2. As shown in FIG. 3, along the direction of the central axis 21, the maximum value a2 of the absolute value of the included angle between each first reflecting surface 31 and the central axis 21 is smaller than that of each second reflecting surface The maximum value a1 of the absolute value of the included angle between 32 and the central axis 21.
  • the laser beam rotates through the prism to form multiple reflected beams.
  • the maximum value a2 of the absolute value of the included angle between the first reflective surface 31 and the central axis 21 is set to be smaller, so that the first reflector 111
  • the multiple reflected beams formed by reflection are concentrated in the corresponding area of the scanning detection area of the lidar, which increases the scanning density of the corresponding area of the scanning detection area and improves the vertical angular resolution in the area.
  • the multi-line lidar using this prism is applied in the field of autonomous driving or other self-moving devices, it usually pays more attention to the situation in the area directly in front, and the use of this prism can ensure the scanning density of the area directly in front.
  • the included angle between the first reflective surface 31 and the central axis 21 is between -0.2° and +0.2°
  • the included angle between the second reflective surface 32 and the central axis 21 is between -2° and +2.
  • the prism provided by the embodiment of the present application includes at least a first reflector 111 and a second reflector 112 arranged in sequence along the central axis 21 by setting the reflector 10, and the first reflector 111 includes a plurality of first reflectors arranged around the central axis 21.
  • the second reflector 112 includes a plurality of second reflecting surfaces 32 arranged around the central axis 21, and the number of the first reflecting surfaces 31 is greater than the number of the second reflecting surfaces 32, and each first reflecting surface 31 is connected to the center
  • the maximum value a2 of the absolute value of the included angle between the axes 21 is smaller than the maximum value a1 of the absolute value of the included angle between each second reflecting surface 32 and the central axis 21, which can ensure that the laser beam passes through the prism along the central axis 21.
  • lidar While some areas in the direction have higher scanning density, it also increases the angle of view in the direction of the central axis 21, which can realize the dense scanning of the reflected beam in the detection field; and the above-mentioned prism also reduces the multi-line
  • the production cost and difficulty of lidar can reduce the volume and debugging workload of multi-line lidar.
  • the number of first reflective surfaces 31 is D1
  • D1 can also be set to be greater than D2.
  • the first reflector 111 is a hexahedral prism
  • the second reflector 112 is a trihedral prism
  • the first reflector 111 is an octahedral prism
  • the second reflector 112 is a tetrahedral prism or a trihedral prism.
  • the first reflector 111 and the second reflector 112 may also adopt other combinations, and are not limited to the above examples.
  • first reflective surfaces 31 and second reflective surfaces 32 in the first reflector 111 in a one-to-one correspondence, and the first reflective surface 31 and the second reflective surface 32 are in one-to-one correspondence. At least part of the boundary coincides between them.
  • the first reflector 111 there are four first reflecting surfaces 31 and second reflecting surfaces 32 in one-to-one correspondence, and the first reflecting surface 31 and the second reflecting surface 32 are in one-to-one correspondence. It has a partially overlapping boundary, which further ensures the accuracy of the joint between the first reflector 111 and the second reflector 112, and at the same time makes the laser beam incident on the joint between the first emitter 311 and the second emitter 312. Energy will not be lost much.
  • the first reflector 111 and the second reflector 112 may be integrated, that is, they are polished by a prism, and the light energy loss is less at this time.
  • the first reflector 111 and the second emitter 112 can also be seamlessly spliced by bonding and other processes. Since the part of the reflective mask of the first reflector 111 coincides with the edges of the second reflective surfaces 32 on the second reflector 112, it is easy to achieve precise alignment of the two, so as to ensure high accuracy at the joints to ensure the There will not be a large energy loss.
  • the included angles between any two first reflecting surfaces 31 and the central axis 21 are equal, the scanned beams obtained by their reflection overlap; when the included angles between any two second reflecting surfaces 32 and the central axis 21 are equal, The scanning beams obtained by the reflection coincide.
  • each first reflecting surface 31 and the central axis 21 it is possible to set the angle between each first reflecting surface 31 and the central axis 21 to have at least two angle values.
  • the surface 32 has at least two second reflection surfaces 32 with different degrees of inclination relative to the central axis 21.
  • the laser beams emitted by one laser transmitter are sequentially reflected by each first reflecting surface 31 to form at least two laser beams in the vertical direction
  • the laser beams emitted by one laser transmitter are sequentially reflected by each second reflecting surface 32.
  • at least two laser beams are formed in the vertical direction.
  • the included angles between each first reflective surface 31 and the central axis 21 are not equal, and/or the included angles between each second reflective surface 32 and the central axis 21 are not equal.
  • the distribution of the inclination angle of each first reflecting surface 31 and the distribution of the inclination angle of each second reflecting surface 32 can be set according to the required density distribution in the vertical direction, and is not limited to a specific situation.
  • the included angles of the first reflective surfaces 31 and the second reflective surfaces 32 are not the same, it can ensure that the laser radar generates the maximum number of laser lines, thereby facilitating the realization of the miniaturization and low cost of the laser radar.
  • the included angles between any two first reflecting surfaces 31 and the central axis 21 are not equal.
  • the first reflector 111 includes 8 first reflecting surfaces 31.
  • the laser beam emitted by the laser light source can form 8 scanning beams with different exit angles in the vertical direction.
  • the second reflector 112 includes four second reflecting surfaces 32.
  • the laser beam emitted by the laser light source can form four scanning beams with different exit angles in the vertical direction, thereby improving the edge area of the target detection area. While detecting density, it reduces the complexity and cost of multi-line lidar. If along the direction of the central axis 21, the included angles between any two first reflective surfaces 31 and the central axis 21 are not equal, then the included angle range between each first reflective surface 31 and the central axis 21 includes The included angle value for the same number of faces 31. If along the direction of the central axis 21, the included angles between any two second reflective surfaces 32 and the central axis 21 are not equal, then the included angle range between each second reflective surface 32 and the central axis 21 includes The included angle value with the same number of faces 32.
  • the maximum value a2 of the absolute value of the included angle between each first reflective surface 31 and the central axis 21 is smaller than the maximum value a1 of the absolute value of the included angle between each second reflective surface 32 and the central axis 21 includes:
  • Case 1 The angle range between each first reflecting surface 31 and the central axis 21 does not coincide with the angle range between each second reflecting surface 32 and the central axis 21, and each first reflecting surface 31 and the central axis 21
  • the larger value a2 of the absolute value of the end point of the included angle range between each second reflecting surface 32 and the central axis 21 is smaller than the larger value a1 of the end point absolute value of the included angle range between each second reflecting surface 32 and the central axis 21.
  • Case 2 The angle range between each first reflecting surface 31 and the central axis 21 intersects the angle range between each second reflecting surface 32 and the central axis 21, and the angle between each first reflecting surface 31 and the central axis 21
  • the greater value a2 of the absolute value of the end point of the included angle range between each second reflecting surface 32 and the central axis 21 is smaller than the greater value a1 of the end point absolute value of the included angle range between each second reflecting surface 32 and the central axis 21.
  • the greater value a2 of the absolute value of the end point of the included angle range between each first reflecting surface 31 and the central axis 21 is smaller than the absolute value of the end point of the included angle range between each second reflecting surface 32 and the central axis 21
  • the larger value a1 of the value includes: sorting the angle between each first reflecting surface 31 and the central axis 21 from small to large, and the angle range between each first reflecting surface 31 and the central axis 21 includes the first End point and second end point; sort the angles between each second reflecting surface 32 and the central axis 21 from small to large, and the angle range between each second reflecting surface 32 and the central axis 21 includes the third end point and The fourth end point; wherein the larger value of the absolute value of the first end point and the second end point is smaller than the larger value of the absolute value of the third end point and the fourth end point.
  • the projection angle of the reflected beam in the direction of the central axis 21 (that is, the angle relative to the central axis) can be adjusted. Angle), so as to realize the dense and dense distribution of the reflected light beam in the field of view along the central axis 21 direction.
  • the included angle between the first reflective surface 31 and the central axis 21 is arranged in an arithmetic series between -0.2° and +0.2°, and the included angle between the second reflective surface 32 and the central axis 21 is- Arranged in an arithmetic sequence between 2° and +2°, so that the reflected beams are distributed in a partially dense and partially sparsely distributed structure in the detection field of view, and can ensure that the multi-line lidar has a relatively high value in the direction perpendicular to the central axis 21. With a large field of view, it can measure the farther field of view and smaller obstacles directly in front of the vehicle.
  • angles between the first reflecting surface 31 and the central axis 21 are arranged in an arithmetic series, and/or the angles between the second reflecting surface 32 and the central axis 21 are arranged in an arithmetic series.
  • the angle between the first reflecting surface 31 and the central axis 21 is arranged in an arithmetic series, and/or the angle between the second reflecting surface 32 and the central axis 21 is arranged in an arithmetic series, including: When the angle between a reflecting surface 31 and the central axis 21 is not equal, and the angle between each second reflecting surface 32 and the central axis 21 is not equal, the angle between the first reflecting surface 31 and the central axis 21 The included angles are arranged in an arithmetic series, and the included angles between the second reflecting surface 32 and the central axis 21 are arranged in an arithmetic series; when the included angles between the first reflecting surfaces 31 and the central axis 21 are not equal, The angles between the first reflecting surface 31 and the central axis 21 are arranged in an arithmetic sequence; when the angles between the second reflecting surfaces 32 and the central axis 21 are not equal, the second reflecting surface 32 and the central axis 21 The angles between them are arranged in arithmetic series, when
  • the angle between the first reflecting surface 31 and the central axis 21 is arranged in an arithmetic series, and the angle between the second reflecting surface 32 and the central axis 21 is arranged in an arithmetic series, adjacent
  • the absolute value of the difference between the angles between the two first reflecting surfaces 31 and the central axis 21 and the absolute value of the difference between the angles between the two adjacent second reflecting surfaces 32 and the central axis 21 may be equal or Not waiting.
  • the angle between the eight first reflecting surfaces 31 of the first reflector 111 and the central axis 21 is 0.1
  • the angles between the four first reflecting surfaces 32 of the second reflector 112 and the central axis 21 are arranged in an arithmetic series between ° and 0.8°
  • the angles between the four first reflecting surfaces 32 of the second reflector 112 and the central axis 21 are arranged in an arithmetic series between 1° and 1.3°
  • the maximum value of the absolute value of the included angle between the first reflecting surface 31 and the central axis 21 is 0.8°, which is smaller than the maximum value of the absolute value of the included angle between the four first reflecting surfaces 32 and the central axis 21, which is 1.3°.
  • the absolute value of the difference between the angles between the two adjacent first reflecting surfaces 31 and the central axis 21 is 0.1° equal to the absolute value of the difference between the angles between the two adjacent second reflecting surfaces 32 and the central axis 21 0.1°.
  • the angles between the eight first reflective surfaces 31 of the first reflector 111 and the central axis 21 are arranged in an arithmetic sequence between 0.1° and 1.5°, and the four first reflectors 112 of the second reflector 112 are arranged in an arithmetic series.
  • the angle between the reflecting surface 32 and the central axis 21 is arranged in an arithmetic sequence between 2° and 2.3°, and the maximum value of the absolute value of the angle between the eight first reflecting surfaces 31 and the central axis 21 is 1.5° Less than the maximum value of 2.3° among the absolute values of the included angles between the four first reflecting surfaces 32 and the central axis 21, then the absolute value of the difference in the included angles between the two adjacent first reflecting surfaces 31 and the central axis 21 The value of 0.2° is greater than the absolute value of 0.1° of the difference between the angles between two adjacent second reflecting surfaces 32 and the central axis 21.
  • angles between the eight first reflective surfaces 31 of the first reflector 111 and the central axis 21 are arranged in an arithmetic sequence between 0.1° and 0.8°, and the four first reflectors 112 of the second reflector 112 are arranged in an arithmetic series.
  • the angle between the reflecting surface 32 and the central axis 21 is arranged in an arithmetic sequence between 1° and 1.6°, and the maximum value of the absolute value of the angle between the eight first reflecting surfaces 31 and the central axis 21 is 0.8° Less than the maximum value of 1.6° among the absolute values of the included angles between the four first reflecting surfaces 32 and the central axis 21, the absolute value of the difference between the included angles between the two adjacent first reflecting surfaces 31 and the central axis 21 The value of 0.1° is less than the absolute value of 0.2° of the difference between the angles between the two adjacent second reflecting surfaces 32 and the central axis 21.
  • Fig. 4 is a schematic structural diagram of another prism provided by an embodiment of the application. As shown in Fig.
  • the reflecting part 10 further includes a third reflector 113; along the central axis 21, the first reflector 111 and the second reflector 111
  • the second reflector 112 and the third reflector 113 are arranged in sequence.
  • the third reflector 113 includes a plurality of third reflecting surfaces 33 arranged around the central axis 21.
  • the number of the third reflecting surfaces 33 is greater than the number of the second reflecting surfaces 32, and
  • the maximum value a3 of the absolute value of the included angle between each third reflective surface 33 and the central axis 21 is smaller than the maximum value a1 of the absolute value of the included angle between each second reflective surface 32 and the central axis 21.
  • the third reflector 113 by adding the third reflector 113, a plurality of third reflecting surfaces 33 arranged around the central axis 21 are added, and the number of the third reflecting surfaces 33 is greater than the number of the second reflecting surfaces 32, which further increases the number of lidar lines.
  • the maximum value a3 of the absolute value of the included angle between each third reflective surface 33 and the central axis 21 by setting the maximum value a3 of the absolute value of the included angle between each third reflective surface 33 and the central axis 21 to be smaller than the maximum value a2 of the absolute value of the included angle between each second reflective surface 32 and the central axis 21,
  • the reflected beam can be distributed in three different densities in the detection field of view, which improves the design flexibility of the multi-line lidar.
  • the third reflector 113 and the first reflector 111 have the same structure, and are symmetrically arranged on both sides of the second reflector 112.
  • a third reflector 113 with the same structure as the first reflector 111 by adding a third reflector 113 with the same structure as the first reflector 111, it is possible to achieve a light distribution along the central axis 21 with a sparse middle and two dense sides, so as to meet the use requirements in specific scenarios. For example, when you need to pay high attention to the areas on both sides, you can use this distribution.
  • the third reflector 113 and the first reflector 111 have the same structure, along the central axis 21 direction, the distribution of the laser beam in the vertical direction formed by the third reflector 113 and the first reflector 111 is consistent.
  • FIG. 5 is a schematic structural diagram of another prism provided by an embodiment of this application.
  • the prism also includes a third reflector 113.
  • the third reflector 113 also includes a plurality of third reflecting surfaces 33 arranged around the central axis 21. At this time, along the direction of the central axis 21, the third reflector 113, the first reflector 111, and the second reflector 112 are sequentially arranged.
  • the number of third reflecting surfaces 33 of the third reflector 113 is less than the number of first reflecting surfaces 31, and the maximum value a3 of the absolute value of the included angle between each third reflecting surface 33 and the central axis 21 is greater than that of each first reflecting surface.
  • both the third reflector 113 and the second reflector 112 can reflect the laser beam to form a relatively sparse light distribution, while the first reflector 111 can reflect the laser beam to form a relatively dense light distribution.
  • a dense distribution in the middle and sparse on both sides is formed in the direction of the central axis 21, so as to meet the use requirements of a specific scene. For example, when it is necessary to pay high attention to the middle area, this kind of distribution can be used.
  • the third reflector 113 and the second reflector 112 have the same structure, and are symmetrically disposed on both sides of the first reflector 111, so that the center of gravity of the entire prism is relatively stable. When the third reflector 113 and the second reflector 112 have the same structure, along the central axis 21 direction, the distribution of the laser beam in the vertical direction formed by the third reflector 113 and the second reflector 112 is consistent.
  • the shape of the prism shown in the drawings of the present application is only schematic and is not a limitation of the present application.
  • the number of reflectors in the reflector and the number of reflectors in each reflector can be based on actual needs.
  • the reflecting part includes two reflecting bodies, a first reflecting body 111 and a second reflecting body 112, the first reflecting body 111 includes six first reflecting surfaces 31, and the second reflecting body 112 includes three second reflecting bodies. ⁇ 32.
  • the scanning angle range of the middle dense area of the target detection area can be between 60° and 70°; by setting the second reflector 112 in the second The number of reflectors 112 makes the total scanning angle of the target detection area between 130° and 150°.
  • the two reflecting parts 10 respectively include a first reflecting part 41 and a second reflecting part 42 arranged in sequence along the central axis 21.
  • the first reflecting part 41 and the second reflecting part 42 respectively serve as reflecting parts for emitting laser beams and echoing laser beams.
  • the light emitted by the laser light source in the multi-line lidar is reflected to the target detection area by the first reflection part 41 of the prism, and the laser beam reflected back from the target detection area is reflected by the second reflection part 42 to the receiver inside the multi-line lidar
  • the distance, orientation, height, speed, attitude and other information of the target can be obtained.
  • the second reflector 42 By arranging the second reflector 42 on the prism, the laser beam reflected from the target detection area can be reflected to the receiver, which effectively reduces the requirement for the field of view of the receiving lens, reduces the area of the photosensitive surface of the receiver, and reduces the multi-line lidar The cost of the system.
  • the second reflecting part 42 and the first reflecting part 41 have the same structure, for example, as shown in FIGS. 1 and 2, the second reflecting part 42 includes a third reflecting body 113 And the fourth reflector 114, the third reflector 113 includes a plurality of third reflecting surfaces 33 arranged around the central axis 21, the fourth reflector 114 includes a plurality of fourth reflecting surfaces 34 arranged around the central axis 21, the third reflecting
  • the body 113 and the first reflector 111 have the same structure, and the fourth reflector 114 and the second reflector 112 have the same structure.
  • the scanning beam formed by the reflection of the first reflector 111 is reflected to the third reflector 113 by the object in the target detection area, and then is reflected to the receiving lens, and the scanning beam formed by the reflection of the second reflector 112 is reflected to the object in the target detection area.
  • the fourth reflector 114 is further reflected to the receiving lens, so as to achieve a one-to-one correspondence between the receiving and transmitting of the light beam.
  • the first reflective surface 31 and the second reflective surface 32 have a partially overlapping boundary, which ensures the accuracy of the joint between the first reflector 111 and the second reflector 112, and makes the laser beam
  • the light energy loss when incident on the joint between the first emitter 311 and the second emitter 312 is small.
  • the laser beam is reflected by the prism It can form multiple reflected beams at different angles along the central axis 21, further increasing the scanning resolution of the multi-line lidar in the central axis 21 direction, without increasing the number of laser light sources and receivers, and increasing the detection density at the same time , To reduce the volume of multi-line lidar and the workload of debugging.
  • the reflection and reception of the laser beam are completed, without the need to specially set a large photosensitive surface for receiving
  • the device receives the laser beam reflected from the object in the target detection area to achieve the effect of reducing the manufacturing cost and difficulty of the multi-line lidar system.
  • An embodiment of the present application also provides a multi-line lidar, which includes the prism 51, a rotating mechanism, and at least one set of transmitting and receiving components as described in any of the above embodiments.
  • the rotating mechanism is connected with the prism and is used to drive the prism to rotate around the rotation axis of the prism, and the rotation axis is coaxial with the central axis.
  • the transmitting and receiving assembly includes a transmitting unit and a receiving unit.
  • the transmitting unit is used to emit a laser beam.
  • the laser beam emitted by the transmitting unit is reflected by the reflecting part of the prism and irradiates the target detection area.
  • the receiving unit is used to receive the reflected light from the target detection area. Laser beam.
  • the laser beam emitted by the emitting unit is reflected by the rotating reflector, wherein the beam with an upper angle is incident on the first reflector 111, and the beam with a lower angle is incident on the second reflector 112, thereby increasing the reflection.
  • the number of beams increases the scanning resolution. After the scanning beam is diffusely reflected by the target surface in the target detection area, it can be reflected by other optical devices or directly reflected by the receiving unit.
  • the multi-line lidar provided in the embodiment of the present application includes the prism 51 described in any of the above embodiments. Therefore, the multi-line lidar provided in the embodiment of the present application has the technical solutions in any of the above embodiments.
  • the control method of the multi-line lidar includes: controlling the rotating mechanism to drive the prism to rotate according to a preset frequency; controlling the transmitting unit in the transmitting and receiving assembly to reflect according to the preset transmitting parameters
  • the reflecting surface of the part emits a laser beam, and the laser beam emitted by the emitting unit is reflected by the reflecting part of the prism and irradiated to the target detection area, so that the corresponding receiving unit in the emitting and receiving assembly receives the laser beam reflected from the target detection area.
  • FIG. 6 is a schematic structural diagram of a multi-line lidar provided by an embodiment of the application.
  • the multi-line lidar 50 includes the prism 51 described in any embodiment of the present application. Therefore, the multi-line lidar 50 provided in the embodiment of the present application has the technical effect of the technical solution in any of the foregoing embodiments, which is the same as or corresponding to the foregoing embodiment The structure and the explanation of terms will not be repeated here. As shown in FIG.
  • the multi-line lidar further includes a rotation mechanism 52 connected to the prism 51 for driving the prism 51 to rotate around a rotation axis 81 of the prism 51, and the rotation axis 81 is coaxial with the central axis 21.
  • At least one set of transmitting and receiving components 53 includes a transmitting unit 531 and a receiving unit 532.
  • the transmitting unit 531 is located on one side of the prism 51 and is used to emit a laser beam.
  • the laser beam emitted by the transmitting unit 531 passes through the first part of the prism 51.
  • the reflecting part 41 irradiates the target detection area after being reflected.
  • the receiving unit 532 is located on the same side of the prism 51 as the transmitting unit 531 in the same group of transmitting and receiving components 53 and is used to receive the second reflecting part reflected from the target detection area by the prism 51 42 reflected laser beam.
  • FIG. 7 is a partial structural diagram of FIG. 6.
  • the laser beam emitted by the emitting unit 531 is reflected by the rotating first reflecting part 41, and the beam with an upper angle is incident on the first reflecting part 41.
  • the body 111 On the body 111, light beams at a lower angle are incident on the second reflector 112, thereby increasing the number of reflected light beams and increasing the scanning resolution.
  • the scanning beam is diffusely reflected by the target surface in the target detection area, it is reflected by the second reflecting part 42 and received by the receiving unit 532.
  • the transmitting unit 531 includes a transmitting board 61 and multiple transmitters 62, the multiple transmitters 62 are located on the transmitting board 61; the receiving unit 532 includes a receiving board 63 and multiple receivers 64, multiple The receiver 64 is located on the receiving board 63.
  • 32 transmitters 62 are integrated on the transmitter board 61 for emitting multiple laser beams (hereinafter referred to as detection signals).
  • the number of integrated transmitters 62 on the transmitter board 61 can be set according to implementation needs, and there is no limitation here.
  • the transmitters 62 can be fiber lasers, laser diodes (LD), gas lasers or solid lasers.
  • 32 receivers 64 are integrated on the receiving board 63, and the receivers 64 and the transmitter 62 are arranged in a one-to-one correspondence for receiving multiple laser beams (hereinafter referred to as echo signals).
  • echo signals multiple laser beams
  • the number of integrated receivers 64 on the receiving board 63 can be set according to implementation needs, and there is no limitation here.
  • the receivers 64 can use multiple avalanche diodes (Avalanche Photo Diodes, APDs) arranged in arrays.
  • APDs avalanche diodes
  • each transmitting unit 531 can be integrated on a transmitting board 61, and the receiver 64 in each receiving unit 532 is also integrated on a receiving board 63, so that the transmitting angle and the receiving angle can be performed at one time. It is easy to debug, and it is not necessary to debug each transmitter 62 or each receiving board 63 separately, which reduces the difficulty of debugging and simplifies the debugging process. It should be noted that the number of transmitters 62 and receivers 64 can be set arbitrarily according to actual requirements.
  • the multi-line lidar provided by the embodiment of the present application further includes a filter 54, a transmitting lens 55, and a receiving lens 56.
  • the transmitting lens 55 is located on the propagation path of the light emitted by the transmitter 62
  • the transmitting lens 55 includes one or more spherical lenses for collimating the light emitted by the transmitter 62;
  • the receiving lens 56 is located on the propagation path of the laser beam reflected by the second reflecting part 42 of the prism 51, and the receiving lens 56 includes One or more spherical lenses are used to focus the laser beam reflected by the second reflection part 42 of the prism 51 on the receiver 64.
  • the spherical lenses of the transmitting lens 55 and the receiving lens 56 can be replaced by aspheric lenses, thereby reducing The number of lenses further reduces the volume of the multi-line lidar.
  • the filter 54 is located between the transmitting lens 55 and the transmitter 62, and/or the filter 54 is located between the receiving lens 56 and the receiver 64, for filtering out ambient light. It is understandable that because there may be ambient light in the environment, such as sunlight, various lights, etc., which may interfere with the signal received by the receiving unit 532, by setting the filter 54, the ambient light can be filtered out and the measurement accuracy of the multi-line lidar system can be improved. sex.
  • the arrangement direction of the multiple emitters 62 is parallel to the rotation axis 81 of the prism 51.
  • the transmitters 62 provided on each transmitter plate 61 are distributed in a plane in the vertical direction, and the angle between the direction in which each transmitter 62 emits laser light and the horizontal direction are different ,
  • the laser beam emitted by each transmitter 62 hits each reflecting surface of the first reflecting part 41 in turn.
  • the angle between each reflecting surface and the rotation axis 81 of the prism 51 is different, so that In the vertical direction, the laser beam is expanded into multiple laser beams; as the prism 51 rotates, the laser beam scans in the horizontal direction.
  • the positions and angles of the receivers 64 on the receiving board 63 are in one-to-one correspondence with the transmitter 62, and detection signals of different angles can only be received by the corresponding receiver 64.
  • the rotation of multiple laser beams through the prism 51 can realize the expansion of the number of laser beams in the vertical direction and the scanning of the field of view in the horizontal direction, which expands the number of laser beams without increasing the laser light source, and reduces the cost.
  • the control method of the multi-line lidar includes: controlling the rotating mechanism to drive the prism to rotate according to a preset frequency; controlling the transmitting unit in the transmitting and receiving assembly according to The preset emission parameters emit a laser beam to the reflecting surface of the first reflecting part, and the laser beam emitted by the emitting unit is reflected by the first reflecting part of the prism and irradiated to the target detection area, so that the corresponding receiving unit in the transmitting and receiving assembly can receive from The laser beam reflected by the second reflection part of the prism after being reflected by the target detection area.
  • FIG. 8 is a schematic partial cross-sectional structure diagram of another multi-line lidar provided by an embodiment of the application.
  • the central axis 21 of the prism 51 is a hollow shaft
  • the rotation mechanism 52 is arranged in the hollow shaft.
  • the rotating mechanism 52 may be a motor. As shown in FIG. 8, the rotating mechanism 52 is arranged in the hollow shaft of the prism 51 to drive the prism 51 to rotate, which can make full use of space and reduce the volume.
  • Fig. 9 is a schematic structural diagram of another multi-line lidar provided by an embodiment of the application
  • Fig. 10 is a cross-sectional view of HH-HH in Fig. 9
  • Fig. 11 is a cross-sectional view of GG-GG in Fig. 9, as shown in Fig. 9-
  • at least one set of transmitting and receiving components includes a first transmitting and receiving component 71 and a second transmitting and receiving component 72, and the first transmitting and receiving component 71 and the second transmitting and receiving component 72 are respectively arranged on the rotating shaft 21
  • the scanning and detecting area of the first transmitting and receiving component 71 and the scanning and detecting area of the second transmitting and receiving component 72 at least partially overlap.
  • the first transmitting and receiving component 71 includes multiple transmitters and multiple receivers
  • the second transmitting and receiving component 72 also includes multiple transmitters and multiple receivers.
  • the first transmitting and receiving component The multiple laser beams emitted by 71 and the second transmitting and receiving component 72 are at different angles in the vertical direction.
  • the multiple laser beams are reflected by the rotating prism 51. When the laser beam is incident on the prism 51, the light is expanded to the vertical direction.
  • the scanning area of the first transmitting and receiving component 71 and the second transmitting and receiving component 72 may have an overlapping area of 90°, so that the overlapping area has a higher angular resolution.
  • the first transmitting and receiving component 71 and the second transmitting and receiving component 72 are symmetrically arranged with respect to the prism 51, so that the mass distribution of the entire system structure is uniform and the rotation is more stable.
  • the laser beams emitted by the first transmitting and receiving component 71 and the second transmitting and receiving component 72 are diffusely reflected on the target surface in the detection target area, and are reflected again by the prism 51, and are respectively by the first transmitting and receiving component 71 and the second transmitting and receiving component 72
  • the laser beams of different angles can only be received by the corresponding receiver. According to the angle information output by the photoelectric code disc in the multi-line lidar and the distance information measured by the multi-line lidar, the target's information can be obtained. Three-dimensional coordinate information.
  • first transmitting and receiving component 71 and the second reflecting and receiving component 72 can also be arranged on different sides of the rotation axis, such as on the adjacent two sides of the prism, so that the horizontal scanning field of view can exceed 180 degrees. , Even close to 270 degrees.
  • the first transmitting and receiving assembly 71 includes a first transmitting unit 711, a first transmitting support plate 712, a first transmitting conversion plate 713, a first transmitting mirror 714 and a first transmitting lens 715.
  • the first launch unit 711 includes a launch board and a plurality of launchers integrated on the launch board, and the launch board and the first launch conversion board 713 are arranged on the first launch support board 712.
  • An emission driving circuit is provided on the first emission conversion board 713 for driving the transmitter to emit the laser beam.
  • the first transmitting mirror 714 includes two mirrors for changing the optical direction of the emitted laser beam, so that the structure of the entire first transmitting and receiving assembly 71 is more compact. Among them, the mirror is not a necessary component, and the mirror can also be used. Instead of a prism or a galvanometer, those skilled in the art can set it according to actual needs.
  • the first transmitting and receiving assembly 71 further includes a first receiving unit 716, a first receiving support plate 717, a first receiving conversion board 718, a first receiving mirror 719, and a first receiving unit 716.
  • the first receiving unit 716 includes a receiving board and a plurality of receivers integrated on the receiving board, and the receiving board and the first receiving conversion board 718 are arranged on the first receiving support board 717.
  • An operational amplifier circuit is provided on the first receiving and converting board 718 to realize the amplification of the echo signal.
  • the first receiving reflector 719 includes two reflectors for changing the optical direction of the received laser beam, making the structure of the entire first transmitting and receiving assembly 71 more compact. Among them, the reflector is not a necessary component, and the reflector can also be used. For prism replacement, those skilled in the art can set it according to actual needs.
  • the second transmitting and receiving component 72 has the same structure as the first transmitting and receiving component 71, so the second transmitting and receiving component 72 can refer to the description of the first transmitting and receiving component 71, which will not be repeated here.
  • the multi-line lidar further includes a photoelectric code disc 73 which is arranged on the prism 51 and is used to detect and output the angle information of the prism 51 and/or the speed information of the rotation mechanism 52.
  • the photoelectric encoder 73 can output the angle information of the prism 51 and feed back the speed information of the rotating mechanism 52 in real time to control the rotation speed of the rotating mechanism 52.
  • FIG. 11 is a schematic diagram of the principle of a multi-line lidar provided by an embodiment of the application.
  • the multi-line lidar provided by an embodiment of the present application includes a first transmitting and receiving component 71 and a second transmitting
  • the main control board 57 is connected to the first transmitter and receiver respectively.
  • the component 71, the second transmitting and receiving component 72, the motor and the photoelectric code disc are electrically connected.
  • the main control board 57 includes a power supply, a field programmable gate array (Field Programmable Gate Array, FPGA), a network port chip, and an analog-to-digital converter (ADC).
  • the first transmitting and receiving component 71 includes a transmitting lens, an LD, a transmitting drive circuit, a receiving lens, an APD, and an operational amplifier
  • the second transmitting and receiving component 72 has the same structure as the first transmitting and receiving component 71.
  • the power supply is used to supply power to all modules that need electricity in the multi-line lidar, such as the transmission drive circuit, FPGA, and motor.
  • the FPGA controls the transmitting and driving circuit to drive the LD on the first transmitting and receiving component 71 and the second transmitting and receiving component 72 to emit laser beams in a preset order.
  • the laser beams are emitted through the transmitting lens as a detection signal to reach the target detection area, and the target in the target detection area
  • the echo signal reflected by the object reaches the APD through the receiving lens to achieve photoelectric conversion, and then through the operational amplifier to achieve primary and secondary amplification, and then through the ADC to achieve analog-to-digital conversion into the FPGA, the FPGA will treat the processed echo
  • the signal is processed, analyzed and calculated to obtain the result data (such as one or more parameters of the distance, azimuth, height, speed, posture, and shape of the target object), and the result data is output in the form of point cloud data through the network port chip.
  • the FPGA can also control the frequency and power of the laser beam emitted by the LD according to the information fed back by the photoelectric code disc.
  • the multi-line lidar may further include a Microcontroller Unit (MCU), and the MCU and FPGA together control each module of the multi-line lidar.
  • the multi-line lidar provided by the embodiment of the present application includes a prism 51 and at least one set of transmitting and receiving components 53. The laser beam emitted by the transmitting and receiving component 53 is reflected by the first reflecting part 41 of the prism 51 and irradiated to the target detection area.
  • the objects in the detection area are reflected by the second reflection part 42 of the prism 51 and then return to the transmitting and receiving assembly 53, thereby completing the detection function.
  • the central axis 21 of the prism 51 as a hollow shaft, and setting the rotating mechanism 52 in the hollow shaft, the space can be fully utilized and the volume of the multi-line lidar can be reduced.
  • the line number of the lidar is further increased, and the scanning range is increased while the detection density can be increased.
  • the scanning area of the two transmitting and receiving components By setting the scanning area of the two transmitting and receiving components to include an overlapping area, the overlapping area has a higher angular resolution. Note that the above are only the preferred embodiments of the present application and the technical principles used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种棱镜(51)及多线激光雷达(50),棱镜(51)包括反射部(10),反射部(10)包括沿中心轴(21)依次设置的至少两个反射体,至少两个反射体包括第一反射体(111)和第二反射体(112),第一反射体(111)包括多个绕中心轴(21)设置的第一反射面(31),第二反射体(112)包括多个绕中心轴(21)设置的第二反射面(32),第一反射面(31)的数量大于第二反射面(32)的数量,各第一反射面(31)与中心轴(21)之间的夹角绝对值中的最大值小于各第二反射面(32)与中心轴(21)之间的夹角绝对值中的最大值。

Description

一种棱镜及多线激光雷达
本申请要求于2020年01月14日提交中国专利局,申请号为202010037115.3,发明名称为“一种棱镜及多线激光雷达”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及激光雷达技术领域,尤其涉及一种棱镜及多线激光雷达。
背景技术
随着激光技术的发展,激光扫描技术越来越广泛地应用于测量、交通、驾驶辅助和移动机器人等领域。激光雷达是一种通过激光来探测目标的位置、速度等特征量的雷达系统,其工作原理是先向目标发射探测激光光束,然后将接收从目标反射回来的信号与发射信号进行比较,作适当处理后,就可获得目标的距离、方位、高度、速度、姿态、甚至形状等信息。
在一些特殊应用场所,对激光雷达各方面性能参数标准相当高,比如探测视场角,探测精度,探测密度、体积、使用寿命等。然而,现有的多线激光雷达通常通过增加激光光源来增加扫描光线束的数量,从而增大探测视场角,提高探测密度,但增加激光光源的数量不但增加了产品的成本和体积,调试的难度也相应增加,使得调试工作也变得繁重。
发明内容
根据本申请的各种实施例,提供一种棱镜及多线激光雷达。
第一方面,本申请实施例提供了一种棱镜,包括反射部,所述反射部包括沿所述棱镜的中心轴依次设置的至少两个反射体,所述至少两个反射体包括第一反射体和第二反射体;
所述第一反射体包括多个绕所述中心轴设置的第一反射面,所述第二反射体包括多个绕所述中心轴设置的第二反射面,所述第一反射面的数量大于所述第二反射面的数量,各所述第一反射面与所述中心轴之间的夹角绝对值中的最大值小于各所述第二反射面与所述中心轴之间的夹角绝对值中的最大值。
第二方面,本申请实施例还提供了一种多线激光雷达,包括:
如第一方面实施例所述的棱镜;
旋转机构,与所述棱镜连接,用于带动所述棱镜绕所述棱镜的旋转轴旋转;所述旋转轴 与所述中心轴同轴;
至少一组发射接收组件,所述发射接收组件包括发射单元和接收单元,所述发射单元用于发射激光光束,所述发射单元发射的激光光束经所述棱镜的反射部的反射后照射到目标探测区域,所述接收单元用于接收从所述目标探测区域反射后的激光光束。
第三方面,本申请实施例还提供了一种多线激光雷达,包括:
第一方面实施例所述的棱镜,其中,所述棱镜包括至少两个所述反射部;至少两个所述反射部包括沿所述中心轴依次设置的第一反射部和第二反射部,所述第一反射部和所述第二反射部结构相同
旋转机构,与所述棱镜连接,用于带动所述棱镜绕所述棱镜的旋转轴旋转;所述旋转轴与所述中心轴同轴;
至少一组发射接收组件,所述发射接收组件包括发射单元和接收单元;所述发射单元位于所述棱镜的一侧,用于发射激光光束;所述发射单元发射的激光光束经所述棱镜的第一反射部的反射后照射到目标探测区域;所述接收单元与同一组所述发射接收组件中的所述发射单元位于所述棱镜的同一侧,用于接收从所述目标探测区域反射后经所述棱镜的第二反射部反射的激光光束。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其它特征和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他实施例的附图。
图1为本申请实施例提供的一种棱镜的结构示意图;
图2为图1所示的棱镜的主视示意图;
图3为图2的局部放大示意图;
图4为本申请实施例提供的另一种棱镜的结构示意图;
图5为本申请实施例提供的又一种棱镜的结构示意图;
图6为本申请实施例提供的一种多线激光雷达的结构示意图;
图7为图6的局部结构示意图;
图8为本申请实施例提供的另一种多线激光雷达的局部剖面结构示意图;
图9为本申请实施例提供的又一种多线激光雷达的结构示意图;
图10为图9中HH-HH处截面图;
图11为图9中GG-GG处截面图;
图12为本申请实施例提供的一种多线激光雷达的原理示意图。
具体实施方式
下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本申请,而非对本申请的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。
图1为本申请实施例提供的一种棱镜的结构示意图,图2为图1所示的棱镜的主视示意图,如图1和图2所示,本申请实施例提供的棱镜包括反射部10,反射部10包括沿中心轴21依次设置的至少两个反射体,至少两个反射体包括第一反射体111和第二反射体112,第一反射体111包括多个绕中心轴21设置的第一反射面31,第二反射体112包括多个绕中心轴21设置的第二反射面32,第一反射面31的数量大于第二反射面32的数量,各第一反射面31与中心轴21之间的夹角绝对值中的最大值小于各第二反射面32与中心轴21之间的夹角绝对值中的最大值。也即,第一反射体111的各第一反射面31相对于中心轴21的倾斜度较小,而第二反射体112的各第二反射面32相对于中心轴的倾斜角度较大。其中,本申请实施例提供的棱镜可用在多线激光雷达中,多线激光雷达中激光光源发出的光线经棱镜的反射部10反射至目标探测区域,目标探测区域反射回的激光光束经反射部10反射至多线激光雷达内部的接收器,对反射回的激光光束作适当处理后,可获得目标的距离、方位、高度、速度、姿态等信息。在一些实施例中,多线激光雷达中激光光源发出的光线经棱镜的反射部10反射至目标探测区域,目标探测区域反射回的激光光束可经其他光学器件反射或者直接反射至多线激光雷达内部的接收器,对反射回的激光光束作适当处理后,可获得目标的距离、方位、高度、速度、姿态等信息。
上述棱镜中,反射部10至少包括沿中心轴21依次设置第一反射体111和第二反射体112,第一反射体111包括多个绕中心轴21设置的第一反射面31,第二反射体112包括多个绕中心轴21设置的第二反射面32,因此,当棱镜作为多线激光雷达的旋转反射部件时,多线激光光源发出的激光光束投射到反射部10时,会存在部分激光器发射的激光光束投射到第一反射面31上,部分激光器发射的激光光束投射到第二反射面32上。由于设置第一反射面31的数量大于第二反射面32的数量,且各第一反射面31与中心轴21之间的夹角绝对值中的最大值小于各第二反射面32与中心轴21之间的夹角绝对值中的最大值,也即各第一反射面 31的倾斜度较小,从而使得激光光束被旋转的棱镜的第一反射体111的第一反射面31反射后,能够在沿中心轴21方向的对应区域形成较为密集的光线分布,而经过第二反射体112的第二反射面32反射后,会沿中心轴21方向的对应区域形成较为稀疏的光线分布,从而在整个视场上形成疏密分布,满足使用需求。并且由于第二反射面32与中心轴21的夹角范围较大,能够确保在沿中心轴21的方向上具有较大的视场角,同时由于第二反射面32的数量较少,从而能够确保在垂直于中心轴21的方向上具有较宽的视场角。也即,通过上述棱镜,能够增加扫描光线束的数量,该方案无需增加激光光源和接收器的数量,降低多线激光雷达的制作成本和制作难度,减小多线激光雷达的体积以及调试工作量。
可以理解,第一反射体111和第二反射体112可以沿中心轴21方向从上至下依次设置,也可以沿中心轴21方向从下至上依次设置。由于激光光束被旋转的棱镜的第一反射体111的第一反射面31反射后,能够在沿中心轴21方向的对应区域形成较为密集的光线分布,经过第二反射体112的第二反射面32反射后,会沿中心轴21方向的对应区域形成较为稀疏的光线分布,所以当第一反射体111和第二反射体112沿中心轴21设置的次序不同时,相应的,沿中心轴21方向对应视场区域的扫描线的疏密分布情况也不同。
示例性的,如图1所示,棱镜垂直水平方向设置,也即其中心轴21与垂直方向平行。第一反射体111为八面体棱镜,其包括8个第一反射面31,第二反射体112为四面体棱镜,其包括4个第二反射面32,八面体棱镜的8个第一反射面31与中心轴21的夹角各不相同,四面体棱镜的4个第二反射面32与中心轴21的夹角也各不相同,且八面体棱镜中的第一反射面31相对于中心轴21的倾斜角度较小,四面体棱镜的第二反射面32相对于中心轴21的倾斜角度较大。多线激光雷达的激光光源发出的多线激光光束会分别投射至八面体棱镜的第一反射面31上以及四面体棱镜的第二反射面32上。经过旋转的棱镜反射,当棱镜旋转一周,同一激光器发射的激光光束依次入射在八面体棱镜的8个第一反射面31上,经过八面体棱镜的8个第一反射面31反射后被扩展为垂直方向上的8束激光光束。同样的,同一激光器发射的激光光束依次入射到四面体棱镜的4个第二反射面32后,经过四面体棱镜的4个第二反射面32反射后被扩展形成垂直方向上的4束激光光束。
可以理解,激光雷达的具体线数可以根据设置的激光器的数量进行确定。比如在上述实施例的基础上,多线激光雷达中共设置有32个激光器,其中有21个激光器的激光光束入射至八面体棱镜,有11个激光器入射到四面体棱镜,则激光雷达的激光线数为:21*8+11*4=212线,从而可以利用较少的激光器实现较高的激光雷达线数,有利于降低激光雷达的复杂度,实现激光雷达的小型化和低成本。同时,经过上述棱镜的反射,能够使得多线激光光束在沿 中心轴21的方向上呈疏密分布,也即实现垂直视场的疏密分布,从而确保需要严格关注的区域具有较高的分辨率且能够确保激光雷达在垂直方向上(也即沿中心轴21方向)具有较大的视场角。其中,激光雷达在垂直方向上的视场角度及其分辨率大小需要根据各激光器的出射角度的设置以及两个反射体的倾斜角度的设置。
在本实施例中,八面体棱镜能够实现每组收发单元60度水平扫描,四面体棱镜则能够实现120度水平扫描,通过八面体棱镜与四面体棱镜组合形成的棱镜旋转,实现垂直视场的扫描光束疏密分布,八面体棱镜的水平扫描范围与四面体棱镜的水平扫描范围至少部分重合,从而使得中间密集区域的水平扫描角度范围在60度至70度之间,总的水平扫描角度在130度至150度之间,甚至更大,从而确保激光雷达具有较大的扫描视场。
图3为图2的局部放大示意图,如图3所示,沿中心轴21方向,各第一反射面31与中心轴21之间的夹角绝对值中的最大值a2小于各第二反射面32与中心轴21之间的夹角绝对值中的最大值a1。激光光束通过棱镜转动形成多束反射光束,沿中心轴21方向,通过设置第一反射面31与中心轴21之间的夹角绝对值中的最大值a2较小,使得经第一反射体111反射形成的多束反射光束集中在激光雷达的扫描探测区域的对应区域,增大对扫描探测区域的对应区域的扫描密度,提高了该区域内的垂直角度分辨率。比如,以使用该棱镜的多线激光雷达应用在自动驾驶领域或者其他的自移动设备上时,通常会更加关注正前方的区域内的情况,而采用该棱镜后能够确保正前方区域的扫描密度较密集,具有极高的分辨率,有助于快速准确是被该区域内的障碍物,降低障碍物被漏检的概率,有助于防止车辆撞上前方障碍物,提高自动驾驶过程的安全性。示例性的,第一反射面31与中心轴21之间的夹角在-0.2°至+0.2°之间,第二反射面32与中心轴21之间的夹角在-2°至+2°之间,从而实现反射光束对目标探测区域的疏密扫描,其中,“+”和“-”代表反射面指向中心轴21的方向为相反的方向,例如,“+”指反射面指向中心轴21的方向为逆时针方向,“-”指反射面指向中心轴21的方向为顺时针方向。本申请实施例提供的棱镜,通过设置反射部10至少包括沿中心轴21依次设置第一反射体111和第二反射体112,第一反射体111包括多个绕中心轴21设置的第一反射面31,第二反射体112包括多个绕中心轴21设置的第二反射面32,并设置第一反射面31的数量大于第二反射面32的数量,且各第一反射面31与中心轴21之间的夹角绝对值中的最大值a2小于各第二反射面32与中心轴21之间的夹角绝对值中的最大值a1,能够确保激光光束经过该棱镜在沿中心轴21方向上的部分区域具有较高的扫描密度的同时,还增大了中心轴21方向上的视场角,能够实现反射光束在探测视场上的疏密扫描;并且上述棱镜还降低了多线激光雷达的制作成本和制作难度,减小多线激光雷达的体积以及调试工作量。
继续参考图1所示,可选的,第一反射面31的数量为D1,第二反射面32的数量为D2,D1=N*D2,其中,N为大于或者等于2的正整数;D2为大于或者等于3的正整数。在其他的实施例中,D1也可以设置为大于D2即可。
示例性的,如图1所示,D1=8,D2=4,N=2,其中,通过第一反射面31的数量D1与第二反射面32的数量D2成倍数关系,从而使得两个反射体之间存在部分反射面的边缘重合,进而使得第一发射体311和第二发射体312接缝处的精度更容易保证。比如,第一反射体111为六面体棱镜,第二反射体112为三面体棱镜,或者第一反射体111为八面体棱镜,第二反射体112为四面体棱镜或者三面体棱镜。当然第一反射体111和第二反射体112也可以采用其他的组合方式,而并不限于上述举例。
继续参考图1所示,可选的,第一反射体111中存在D2个第一反射面31与第二反射面32一一对应,一一对应的第一反射面31与第二反射面32之间至少部分边界重合。
示例性的,如图1所示,第一反射体111中有4个第一反射面31与第二反射面32一一对应,且一一对应的第一反射面31与第二反射面32具有部分重合的边界,进一步保证第一反射体111和第二反射体112接缝处的精度的同时,使得激光光束入射在第一发射体311和第二发射体312的接缝处时的光能量不会损失较多。在一实施例中,第一反射体111和第二反射体112可以为一体式,也即通过一个棱镜打磨而成,此时的光能量损失较少。在另一实施例中,第一反射体111和第二发射体112也可以采用粘接等工艺进行无缝拼接。由于第一反射体111的部分反射面具与第二反射体112上的各个第二反射面32的边缘重合,从而容易实现二者的精准对位,从而确保接缝处精度较高,以确保该处不会带来较大的能量损失。当任意两个第一反射面31与中心轴21之间的夹角相等时,其反射得到的扫描光束重合;当任意两个第二反射面32与中心轴21之间的夹角相等时,其反射得到的扫描光束重合。因此,为在不增加激光光源和接收器的情况下增加数量增加扫描光线束的数量,可设置各第一反射面31与中心轴21之间的夹角存在至少两个夹角值,各第二反射面32与中心轴21之间的夹角存在至少两个夹角值,即各第一反射面31相对中心轴21存在至少两个第一反射面31的倾斜程度不同,各第二反射面32相对中心轴21存在至少两个第二反射面32的倾斜程度不同。相应的,一个激光发射器发射的激光光束依次经过各第一反射面31反射后,在垂直方向上形成至少两个激光光束,一个激光发射器发射的激光光束依次经过各第二反射面32反射后,在垂直方向上形成至少两个激光光束。其中,各第一反射面31与中心轴21之间的夹角存在至少两个夹角值对应形成各第一反射面31与中心轴21之间的夹角范围,各第二反射面32与中心轴21之间的夹角存在至少两个夹角值对应形成各第二反射面32与中心轴21之 间的夹角范围。
可选的,各第一反射面31与中心轴21之间的夹角均不相等,和/或各第二反射面32与中心轴21之间的夹角均不相等。各第一反射面31的倾斜角度分布情况以及各第二反射面32的倾斜角度分布情况,可以根据需要实现的在垂直方向上的疏密分布情况来设置,而并不限于某一个特定情况。当各第一反射面31和各第二反射面32的夹角均不相同时,能够确保激光雷达产生最大数量的激光线数,从而有利于实现激光雷达的小型化和低成本。其中,沿中心轴21方向,任意两个第一反射面31与中心轴21之间的夹角均不相等,当激光光源发出的激光光束发射到第一反射体111时,由于不同第一反射面31与中心轴21之间的夹角不同,会在中心轴21方向上形成不同方向的反射光束,当棱镜旋转时,反射光束可以实现对目标物体在垂直于中心轴21的方向上进行扫描,示例性的,如图1所示,第一反射体111包括8个第一反射面31,当棱镜旋转一周,激光光源发出的激光光束可以形成8束在垂直方向上不同出射角度的扫描光束,由于第一反射面31相对中心轴21的倾斜角度小,使得中心轴21方向上的角度分辨率更小,提高目标探测区域的中心区域的探测密度,同时无需增加激光光源和接收器的数量,降低多线激光雷达的复杂度和成本。同理,沿中心轴21方向,任意两个第二反射面32与中心轴21之间的夹角均不相等,会在中心轴21方向上形成不同的反射光束,例如,如图1所示,第二反射体112包括4个第二反射面32,当棱镜旋转一周,激光光源发出的激光光束可以形成4束在垂直方向上不同出射角度的扫描光束,从而提高目标探测区域的边缘区域的探测密度的同时,降低多线激光雷达的复杂度和成本。若沿中心轴21方向,任意两个第一反射面31与中心轴21之间的夹角均不相等,则各第一反射面31与中心轴21之间的夹角范围包括与第一反射面31数量一致的夹角值。若沿中心轴21方向,任意两个第二反射面32与中心轴21之间的夹角均不相等,则各第二反射面32与中心轴21之间的夹角范围包括与第二反射面32数量一致的夹角值。
相应的,各第一反射面31与中心轴21之间的夹角绝对值中的最大值a2小于各第二反射面32与中心轴21之间的夹角绝对值中的最大值a1包括:
情况一、各第一反射面31与中心轴21之间的夹角范围与各第二反射面32与中心轴21之间的夹角范围不重合,且各第一反射面31与中心轴21之间的夹角范围的端点绝对值的较大值a2小于各第二反射面32与中心轴21之间的夹角范围的端点绝对值的较大值a1。
情况二、各第一反射面31与中心轴21之间的夹角范围与各第二反射面32与中心轴21之间的夹角范围相交,且各第一反射面31与中心轴21之间的夹角范围的端点绝对值的较大值a2小于各第二反射面32与中心轴21之间的夹角范围的端点绝对值的较大值a1。
情况三、各第一反射面31与中心轴21之间的夹角范围与各第二反射面32与中心轴21之间的夹角范围部分重合,且各第一反射面31与中心轴21之间的夹角范围的端点绝对值的较大值a2小于各第二反射面32与中心轴21之间的夹角范围的端点绝对值的较大值a1。
可选的,判断各第一反射面31与中心轴21之间的夹角范围的端点绝对值的较大值a2小于各第二反射面32与中心轴21之间的夹角范围的端点绝对值的较大值a1,包括:对各第一反射面31与中心轴21之间的夹角从小到大进行排序,各第一反射面31与中心轴21之间的夹角范围包括第一端点和第二端点;对各第二反射面32与中心轴21之间的夹角从小到大进行排序,各第二反射面32与中心轴21之间的夹角范围包括第三端点和第四端点;其中,第一端点和第二端点的绝对值的较大值小于第三端点和第四端点的绝对值的较大值。
值得注意的是,通过调节每个第一反射面31或第二反射面32与中心轴21之间的夹角能够调整反射光束在中心轴21方向的投射角度(也即相对于中心轴的夹角),从而实现反射光束在沿中心轴21方向视场上的疏密分布。示例性的,第一反射面31与中心轴21之间的夹角在-0.2°至+0.2°之间呈等差数列排列,第二反射面32与中心轴21之间的夹角在-2°至+2°之间呈等差数列排列,从而实现反射光束在探测视场上呈部分密集部分稀疏的分布结构,且能够保证多线激光雷达在垂直于中心轴21的方向上具有较大的视场角的同时,能够测量车辆正前方视场更远处以及更小的障碍物。
可选的,第一反射面31与中心轴21之间的夹角呈等差数列排列,和/或第二反射面32与中心轴21之间的夹角呈等差数列排列。
其中,第一反射面31与中心轴21之间的夹角呈等差数列排列,和/或第二反射面32与中心轴21之间的夹角呈等差数列排列,包括:当各第一反射面31与中心轴21之间的夹角均不相等,和各第二反射面32与中心轴21之间的夹角均不相等时,第一反射面31与中心轴21之间的夹角呈等差数列排列,和第二反射面32与中心轴21之间的夹角呈等差数列排列;当各第一反射面31与中心轴21之间的夹角均不相等时,第一反射面31与中心轴21之间的夹角呈等差数列排列;当各第二反射面32与中心轴21之间的夹角均不相等时,第二反射面32与中心轴21之间的夹角呈等差数列排列。
进一步的,在第一反射面31与中心轴21之间的夹角呈等差数列排列,和第二反射面32与中心轴21之间的夹角呈等差数列排列的情况下,相邻两个第一反射面31与中心轴21之间的夹角的差值的绝对值与相邻两个第二反射面32与中心轴21之间的夹角的差值的绝对值可以相等或者不等。
以第一反射体111为八面体棱镜,第二反射体112为四面体棱镜为例,例如,假设第一 反射体111的8个第一反射面31与中心轴21之间的夹角在0.1°至0.8°之间呈等差数列排列,第二反射体112的4个第一反射面32与中心轴21之间的夹角在1°至1.3°之间呈等差数列排列,8个第一反射面31与中心轴21之间的夹角绝对值中的最大值0.8°小于4个第一反射面32与中心轴21之间的夹角绝对值中的最大值1.3°,则相邻两个第一反射面31与中心轴21之间的夹角的差值的绝对值0.1°等于相邻两个第二反射面32与中心轴21之间的夹角的差值的绝对值0.1°。还例如,假设第一反射体111的8个第一反射面31与中心轴21之间的夹角在0.1°至1.5°之间呈等差数列排列,第二反射体112的4个第一反射面32与中心轴21之间的夹角在2°至2.3°之间呈等差数列排列,8个第一反射面31与中心轴21之间的夹角绝对值中的最大值1.5°小于4个第一反射面32与中心轴21之间的夹角绝对值中的最大值2.3°,则相邻两个第一反射面31与中心轴21之间的夹角的差值的绝对值0.2°大于相邻两个第二反射面32与中心轴21之间的夹角的差值的绝对值0.1°。又例如,假设第一反射体111的8个第一反射面31与中心轴21之间的夹角在0.1°至0.8°之间呈等差数列排列,第二反射体112的4个第一反射面32与中心轴21之间的夹角在1°至1.6°之间呈等差数列排列,8个第一反射面31与中心轴21之间的夹角绝对值中的最大值0.8°小于4个第一反射面32与中心轴21之间的夹角绝对值中的最大值1.6°,则相邻两个第一反射面31与中心轴21之间的夹角的差值的绝对值0.1°小于相邻两个第二反射面32与中心轴21之间的夹角的差值的绝对值0.2°。图4为本申请实施例提供的另一种棱镜的结构示意图,如图4所示,可选的,反射部10还包括第三反射体113;沿中心轴21,第一反射体111、第二反射体112和第三反射体113依次设置,第三反射体113包括多个绕中心轴21设置的第三反射面33,第三反射面33的数量大于第二反射面32的数量,且各第三反射面33与中心轴21之间的夹角绝对值中的最大值a3小于各第二反射面32与中心轴21之间的夹角绝对值中的最大值a1。
其中,通过增加第三反射体113,增加多个绕中心轴21设置的第三反射面33,并使得第三反射面33的数量大于第二反射面32的数量,进一步增加激光雷达线数。同时,通过设置各第三反射面33与中心轴21之间的夹角绝对值中的最大值a3小于各第二反射面32与中心轴21之间的夹角绝对值中的最大值a2,可以实现反射光束在探测视场上呈三种不同密度的分布,提高了多线激光雷达的设计灵活度。
继续参考图4所示,可选的,第三反射体113和第一反射体111的结构相同,且对称设置于第二反射体112的两侧。
本申请实施例通过增加与第一反射体111结构相同的第三反射体113,能够实现沿中心轴21方向上,光线呈中间疏两边密的分布,从而满足特定场景下的使用需求。比如当需要 对两侧的区域进行高度关注时,可以采用这种分布情况。当第三反射体113和第一反射体111的结构相同时,沿中心轴21方向,第三反射体113和第一反射体111形成的在垂直方向的激光光束的分布一致。
图5为本申请实施例提供的又一种棱镜的结构示意图,在另一实施例中,如图5所示,该棱镜同样包括第三反射体113。第三反射体113同样包括多个绕中心轴21设置的多个第三反射面33。此时,沿中心轴21的方向,第三反射体113、第一反射体111和第二反射体112依次设置。并且,第三反射体113的第三反射面33的数量小于第一反射面31的数量,其各第三反射面33与中心轴21的夹角绝对值中的最大值a3大于各第一反射面31与中心轴21的夹角绝对值的最大值a2。
此时,第三反射体113和第二反射体112均能够对激光光束进行反射形成相对较为稀疏的光线分布,而第一反射体111则能够对激光光束进行反射形成相对较为密集的光线分布,进而在中心轴21方向上形成中间密集两边稀疏的分布,从而满足特定场景的使用需求。比如当需要对中间区域进行高度关注时,则可以采用该种分布情况。在一实施例中,第三反射体113与第二反射体112具有相同的结构,且分别对称设置于第一反射体111的两侧,从而使得整个棱镜的重心较为稳定。当第三反射体113与第二反射体112的结构相同时,沿中心轴21方向,第三反射体113与第二反射体112形成的在垂直方向的激光光束的分布一致。
需要说明的是,本申请附图中所示的棱镜的形状只是示意性的,并不是对本申请的限定,反射部中反射体的数量以及每个反射体中反射面的数量均可根据实际需求进行设置,例如,反射部包括第一反射体111和第二反射体112这两个反射体,第一反射体111包括6个第一反射面31,第二反射体112包括3个第二反射面32。其中,可通过设置第一反射体111中第一反射面31的数量,使目标探测区域的中间密集区域的扫描角度范围在60°至70°之间;通过设置第二反射体112中第二反射体112的数量,使得目标探测区域总的扫描角度在130°至150°之间。
继续参考图1,可选的,棱镜中的反射部10至少为两个,两个反射部10分别包括沿中心轴21依次设置的第一反射部41和第二反射部42。当该棱镜应用于激光雷达中时,第一反射部41和第二反射部42分别作为发射激光光束以及回波激光光束的反射部。
示例性的,多线激光雷达中激光光源发出的光线经棱镜的第一反射部41反射至目标探测区域,目标探测区域反射回的激光光束经第二反射部42反射至多线激光雷达内部的接收器,从而对反射回的激光光束作适当处理后,获得目标的距离、方位、高度、速度、姿态等信息。通过在棱镜上设置第二反射部42,可以将目标探测区域反射的激光光束反射到接收器 上,有效降低对接收镜头视场角的要求,减少接收器光敏面的面积,降低多线激光雷达系统的成本。
继续参考图1和图2,可选的,第二反射部42与第一反射部41具有相同的结构,例如,如图1和图2所示,第二反射部42包括第三反射体113和第四反射体114,第三反射体113包括多个绕中心轴21设置的第三反射面33,第四反射体114包括多个绕中心轴21设置的第四反射面34,第三反射体113与第一反射体111具有相同的结构,第四反射体114与第二反射体112具有相同的结构。第一反射体111反射形成的扫描光束经目标探测区域内的物体反射至第三反射体113,进而反射至接收镜头,第二反射体112反射形成的扫描光束经目标探测区域内的物体反射至第四反射体114,进而反射至接收镜头,从而达到光束的接收与发射之间的一一对应。
本申请实施例提供的棱镜,通过设置第一反射面31与第二反射面32具有部分重合的边界,保证第一反射体111和第二反射体112接缝处的精度的同时,使得激光光束入射在第一发射体311和第二发射体312的接缝处时的光能量损失较少。通过设置各第一反射面31与中心轴21之间的夹角均不相等,和/或各第二反射面32与中心轴21之间的夹角均不相等,使激光光束经棱镜反射后能够形成多条沿中心轴21方向上呈不同角度的反射光束,进一步增大多线激光雷达在中心轴21方向上的扫描分辨率,而无需增加激光光源和接收器的数量,提高探测密度的同时,减小多线激光雷达的体积以及调试工作量。
通过设置第一反射部41和第二反射部42,并令第一反射部41和第二反射部42上具有相反的光路,完成激光光束的反射和接收,无需专门设置一个大光敏面的接收器来接收目标探测区域内的物体反射回来的激光光束,以实现降低多线激光雷达系统的制作成本和制作难度的效果。
本申请实施例还提供了一种多线激光雷达,包括:如上任一实施例所述的棱镜51、旋转机构以及至少一组发射接收组件。其中,旋转机构与棱镜连接,用于带动棱镜绕棱镜的旋转轴旋转,旋转轴与中心轴同轴。发射接收组件包括发射单元和接收单元,发射单元用于发射激光光束,发射单元发射的激光光束经棱镜的反射部的反射后照射到目标探测区域,接收单元用于接收从目标探测区域反射后的激光光束。
具体的,发射单元发射的激光光束经旋转中的反射部反射,其中,偏上角度的光束入射在第一反射体111上,偏下角度的光束入射在第二反射体112上,从而增加反射光束的数量,增大扫描分辨率。扫描光束在目标探测区域中经目标表面漫反射后,经过可经其他光学器件反射或者直接反射被接收单元接收。需要说明的是,本申请实施例提供的多线激光雷达包括 如上任一实施例所述的棱镜51,因此,本申请实施例提供的多线激光雷达具有上述任一实施例中的技术方案所具有的技术效果,与上述实施例相同或相应的结构以及术语的解释在此不再赘述。综上,当所述棱镜包括一个反射部时,所述多线激光雷达的控制方法包括:控制旋转机构按照预设频率驱动棱镜旋转;控制发射接收组件中的发射单元按照预设发射参数向反射部的反射面发射激光光束,发射单元发射的激光光束经棱镜的反射部的反射后照射到目标探测区域,以使发射接收组件中对应的接收单元接收从目标探测区域反射后的激光光束。
基于同样的发明构思,本申请实施例还提供了一种多线激光雷达,图6为本申请实施例提供的一种多线激光雷达的结构示意图,如图6所示,该多线激光雷达50包括本申请任意实施例所述的棱镜51,因此,本申请实施例提供的多线激光雷达50具有上述任一实施例中的技术方案所具有的技术效果,与上述实施例相同或相应的结构以及术语的解释在此不再赘述。如图6所示,该多线激光雷达还包括旋转机构52,与棱镜51连接,用于带动棱镜51绕棱镜51的旋转轴81旋转,旋转轴81与中心轴21同轴。至少一组发射接收组件53,发射接收组件53包括发射单元531和接收单元532,发射单元531位于棱镜51的一侧,用于发射激光光束,发射单元531发射的激光光束经棱镜51的第一反射部41反射后照射到目标探测区域,接收单元532与同一组发射接收组件53中的发射单元531位于棱镜51的同一侧,用于接收从目标探测区域反射后经棱镜51的第二反射部42反射的激光光束。
示例性的,图7为图6的局部结构示意图,如图7所示,发射单元531发射的激光光束经旋转中的第一反射部41反射,其中,偏上角度的光束入射在第一反射体111上,偏下角度的光束入射在第二反射体112上,从而增加反射光束的数量,增大扫描分辨率。扫描光束在目标探测区域中经目标表面漫反射后,经过第二反射部42反射,被接收单元532接收到。由于第一反射部41与第二反射部42具有相同的结构,不同角度的扫描光束经过第二反射部42反射后,均会聚焦在接收单元532上,从而获得目标的距离、方位、高度、速度、姿态、甚至形状等信息。继续参考图7,可选的,发射单元531包括发射板61和多个发射器62,多个发射器62位于发射板61上;接收单元532包括接收板63和多个接收器64,多个接收器64位于接收板63上。示例性的,如图7所示,发射板61上集成有32个发射器62,用于发射多束激光光束(以下称探测信号)。在其他的实施例中,发射板61上集成发射器62的数量可以根据实现需要设定,这里不作任何限定,发射器62可以采用光纤激光器、激光二极管(LD)、气体激光器或者固体激光器等。接收板63上对应地集成有32个接收器64,接收器64与发射器62一一对应设置,用于接收多束激光光束(以下称回波信号)。可以理解,在其他实施例中,接收板63上集成接收器64的数量可以根据实现需要设定,这里不作任何限定, 接收器64可以采用多个阵列排布的雪崩二极管(Avalanche Photo Diode,APD),也可以为单个大面元APD、焦平面阵列探测器、单点设置或阵列设置的硅光电倍增管(multi-pixel photon counter,MPPC)探测器或本领域技术人员可知的其他类型的阵列探测器。通过设置每个发射单元531中的发射器62都集成在一个发射板61上,每个接收单元532中的接收器64也都集成在一个接收板63上,使得发射角度和接收角度可以进行一次性调试,而不需要对每一个发射器62或每一个接收板63进行单独地调试,降低调试难度,简化了调试过程。需要注意的是,发射器62和接收器64的数量可以根据实际需求任意设置。
继续参考图6和图7,可选的,本申请实施例提供的多线激光雷达还包括滤光镜54、发射镜头55和接收镜头56,发射镜头55位于发射器62出射光线的传播路径上,发射镜头55包括一片或多片球面透镜,用于将发射器62发出的光线进行准直;接收镜头56位于棱镜51的第二反射部42反射的激光光束的传播路径上,接收镜头56包括一片或多片球面透镜,用于将棱镜51的第二反射部42反射的激光光束聚焦在接收器64上,其中,发射镜头55和接收镜头56的球面透镜可以用非球面透镜替代,从而减少透镜数量,进一步减小多线激光雷达的体积。滤光镜54位于发射镜头55和发射器62之间,和/或,滤光镜54位于接收镜头56与接收器64之间,用于滤除环境光。可以理解的是,由于环境中可能存在太阳光、各种灯光等环境光对接收单元532接收的信号引起干扰,通过设置滤光镜54,可以滤除环境光,提高多线激光雷达系统测量准确性。
可选的,多个发射器62的排列方向与棱镜51的旋转轴81平行。
示例性的,如图7所示,每一个发射板61上设置的发射器62都分布在垂直方向的一个平面内,且每一个发射器62发射激光的方向与水平方向的夹角都不相同,每一个发射器62发射出来的激光光束依次打在第一反射部41的每个反射面上,沿垂直方向,设置每个反射面与棱镜51的旋转轴81的夹角都不相同,使得在垂直方向,激光光束被扩展为多束激光光束;随着棱镜51的转动,激光光束沿水平方向进行扫描。接收板63上的接收器64设置的位置和角度均与发射器62一一对应,不同角度的探测信号只有对应的接收器64可以接收到。这样多束激光光束通过棱镜51转动能够实现垂直方向激光光束的数量扩展以及实现水平方向的视场扫描,在不增加激光光源的前提下扩展了激光光束的线数,降低了成本。
综上,当所述棱镜包括第一反射部和第二反射部时,所述多线激光雷达的控制方法包括:控制旋转机构按照预设频率驱动棱镜旋转;控制发射接收组件中的发射单元按照预设发射参数向第一反射部的反射面发射激光光束,发射单元发射的激光光束经棱镜的第一反射部的反射后照射到目标探测区域,以使发射接收组件中对应的接收单元接收从目标探测区域反射后 经棱镜的第二反射部反射的激光光束。图8为本申请实施例提供的另一种多线激光雷达的局部剖面结构示意图,可选的,棱镜51的中心轴21为空心轴,旋转机构52设置在空心轴内。
其中,旋转机构52可以为电机,如图8所示,将旋转机构52设置在棱镜51的空心轴中,驱动棱镜51转动,可以充分利用空间,缩小体积。
图9为本申请实施例提供的又一种多线激光雷达的结构示意图,图10为图9中HH-HH处截面图,图11为图9中GG-GG处截面图,如图9-图11所示,可选的,至少一组发射接收组件包括第一发射接收组件71和第二发射接收组件72,第一发射接收组件71和第二发射接收组件72分别设置于旋转轴21的不同侧,第一发射接收组件71的扫描探测区域与第二发射接收组件72的扫描探测区域至少部分重叠。
示例性的,如图9所示,第一发射接收组件71包括多个发射器和多个接收器,第二发射接收组件72同样包括多个发射器和多个接收器,第一发射接收组件71和第二发射接收组件72发出的多束激光光束在垂直方向上呈不同角度,多束激光光束经过旋转的棱镜51反射,当激光光束入射在棱镜51上,这束光被扩展为垂直方向上的多束激光光束。在本实施例中,第一发射接收组件71和第二发射接收组件72的扫描区域可以有90°的重叠区域,从而使得重叠区域具有更高的角度分辨率。第一发射接收组件71和第二发射接收组件72相对于棱镜51对称设置,使整个系统结构质量分布均匀,转动更平稳。第一发射接收组件71和第二发射接收组件72出射的激光光束在探测目标区域中的目标表面漫反射后,再次经过棱镜51反射,分别被第一发射接收组件71和第二发射接收组件72中多个不同接收器收到,不同角度的激光光束只有对应的接收器可以接收到,可根据多线激光雷达中光电码盘输出的角度信息以及多线激光雷达测量的距离信息,得到目标的三维坐标信息。在其他的实施例中,第一发射接收组件71和第二反射接收组件72也可以设置在旋转轴的不同侧,比如设置在棱镜的相邻两侧,从而使得水平扫描视场能够超过180度,甚至接近270度。
继续参考图9-图11,可选的,第一发射接收组件71包括第一发射单元711,第一发射支架板712,第一发射转换板713,第一发射反射镜714和第一发射镜头715。第一发射单元711包括发射板和集成于发射板上的多个发射器,发射板和第一发射转换板713设置在第一发射支架板712上。第一发射转换板713上面设置有发射驱动电路,用于驱动发射器发射激光光束。第一发射反射镜714包括两个反射镜,用于改变发射的激光光束的光学方向,使得整个第一发射接收组件71的结构更紧凑,其中,反射镜不是必要的组件,反射镜也可以用棱镜或者振镜替代,本领域技术人员可根据实际需求进行设置。
继续参考图9-图11,可选的,第一发射接收组件71还包括第一接收单元716,第一接 收支架板717、第一接收转换板718、第一接收反射镜719、第一接收镜头710。第一接收单元716包括接收板和集成于接收板上的多个接收器,接收板和第一接收转换板718设置在第一接收支架板717上。第一接收转换板718上面设置有运放电路,用于实现回波信号的放大。第一接收反射镜719包括两个反射镜,用于改变接收的激光光束的光学方向,使得整个第一发射接收组件71的结构更紧凑,其中,反射镜不是必要的组件,反射镜也可以用棱镜替代,本领域技术人员可根据实际需求进行设置。
第二发射接收组件72与第一发射接收组件71结构一致,因此第二发射接收组件72可参照第一发射接收组件71的描述,这里不再赘述。
在其他实施例中,多线激光雷达还包括光电码盘73,光电码盘73设置在棱镜51上,用于检测并输出棱镜51的角度信息和/或旋转机构52的速度信息。例如,光电码盘73可实时输出棱镜51的角度信息以及反馈旋转机构52的速度信息应用于控制旋转机构52的转速。
图11为本申请实施例提供的一种多线激光雷达的原理示意图,如图11所示,示例性的,本申请实施例提供的多线激光雷达包括第一发射接收组件71、第二发射接收组件72、棱镜(图中未示出)、电机、光电码盘和主控板57(图9和图10中也有示出主控板的位置),主控板57分别与第一发射接收组件71、第二发射接收组件72、电机以及光电码盘电连接。其中,主控板57上包括了电源、现场可编程门阵列(Field Programmable Gate Array,FPGA)、网口芯片和模数转换器(ADC)。其中,第一发射接收组件71包括发射镜头、LD、发射驱动电路、接收镜头、APD、运算放大器,第二发射接收组件72具有与第一发射接收组件71相同的结构。具体地,电源用于给多线激光雷达中所有需要用电的模块进行供电,如发射驱动电路、FPGA、电机等。FPGA控制发射驱动电路驱动第一发射接收组件71和第二发射接收组件72上的LD按照预设顺序发射激光光束,激光光束经发射镜头出射作为探测信号到达目标探测区域,目标探测区域中的目标物体反射回来的回波信号经接收镜头到达APD上,实现光电转换,然后再经运算放大器实现一级放大和二极放大,再通过ADC实现模数转换进入FPGA,FPGA会对处理后的回波信号进行处理分析和计算以获取结果数据(如目标物体的距离、方位、高度、速度、姿态、形状中的一种或多种参数),结果数据通过网口芯片以点云数据的方式输出,同时,FPGA还可以根据光电码盘反馈的信息控制LD发射激光光束的频率和功率等。可选的,多线激光雷达还可以包括微控制单元(Microcontroller Unit;MCU),MCU和FPGA一同对多线激光雷达的各个模块进行控制。本申请实施例提供的多线激光雷达,包括棱镜51和至少一组发射接收组件53,发射接收组件53发射的激光光束经棱镜51的第一反射部41反射后照射到目标探测区域,从目标探测区域内的物体反射后经棱镜51的第二反射部42反 射后回到发射接收组件53,从而完成探测功能。通过设置棱镜51的中心轴21为空心轴,并将旋转机构52设置在空心轴内,可以充分利用空间,缩小多线激光雷达的体积。通过设置两个发射接收组件,进一步提高了激光雷达的线数,增大扫描范围的同时,还能够提高探测密度。通过设置两个发射接收组件的扫描区域包括重叠区域,使得重叠区域具有更高的角度分辨率。注意,上述仅为本申请的较佳实施例及所运用技术原理。本领域技术人员会理解,本申请不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本申请的保护范围。因此,虽然通过以上实施例对本申请进行了较为详细的说明,但是本申请不仅仅限于以上实施例,在不脱离本申请构思的情况下,还可以包括更多其他等效实施例,而本申请的范围由所附的权利要求范围决定。

Claims (24)

  1. 一种棱镜,包括反射部,所述反射部包括沿所述棱镜的中心轴依次设置的至少两个反射体,所述至少两个反射体包括第一反射体和第二反射体;
    所述第一反射体包括多个绕所述中心轴设置的第一反射面,所述第二反射体包括多个绕所述中心轴设置的第二反射面,所述第一反射面的数量大于所述第二反射面的数量,各所述第一反射面与所述中心轴之间的夹角绝对值中的最大值小于各所述第二反射面与所述中心轴之间的夹角绝对值中的最大值。
  2. 根据权利要求1所述的棱镜,其特征在于,所述第一反射面的数量为D1,所述第二反射面的数量为D2;
    D1=N*D2,其中,N为大于或者等于2的正整数;D2为大于或者等于3的正整数。
  3. 根据权利要求2所述的棱镜,其特征在于,所述第一反射体中存在D2个所述第一反射面与所述第二反射面一一对应,一一对应的所述第一反射面与所述第二反射面之间至少部分边界重合。
  4. 根据权利要求1所述的棱镜,其特征在于,各所述第一反射面与所述中心轴之间的夹角存在至少两个夹角值,各所述第二反射面与所述中心轴之间的夹角存在至少两个夹角值。
  5. 根据权利要求4所述的棱镜,其特征在于,各所述第一反射面与所述中心轴之间的夹角均不相等,和/或各所述第二反射面与所述中心轴之间的夹角均不相等。
  6. 根据权利要求5所述的棱镜,其特征在于,各所述第一反射面与所述中心轴之间的夹角呈等差数列排列,和/或各所述第二反射面与所述中心轴之间的夹角呈等差数列排列。
  7. 根据权利要求4所述的棱镜,其特征在于,所述各所述第一反射面与所述中心轴之间的夹角绝对值中的最大值小于各所述第二反射面与所述中心轴之间的夹角绝对值中的最大值包括:
    各所述第一反射面与所述中心轴之间的夹角范围与各所述第二反射面与所述中心轴之间的夹角范围不重合,且各所述第一反射面与所述中心轴之间的夹角范围的端点绝对值的较大值小于各所述第二反射面与所述中心轴之间的夹角范围的端点绝对值的较大值;或者各所述第一反射面与所述中心轴之间的夹角范围与各所述第二反射面与所述中心轴之间的夹角范围相交,且各所述第一反射面与所述中心轴之间的夹角范围的端点绝对值的较大值小于各所述第二反射面与所述中心轴之间的夹角范围的端点绝对值的较大值;或者
    各所述第一反射面与所述中心轴之间的夹角范围与各所述第二反射面与所述中心轴之间的夹角范围部分重合,且各所述第一反射面与所述中心轴之间的夹角范围的端点绝对值的较大值小于各所述第二反射面与所述中心轴之间的夹角范围的端点绝对值的较大值。
  8. 根据权利要求1所述的棱镜,其特征在于,所述反射部还包括第三反射体;沿所述中心轴,所述第一反射体、所述第二反射体和所述第三反射体依次设置;所述第三反射体包括多个绕所述中心轴设置的第三反射面;所述第三反射面的数量大于所述第二反射面的数量,且各所述第三反射面与所述中心轴之间的夹角绝对值中的最大值小于各所述第二反射面与所述中心轴之间的夹角绝对值中的最大值。
  9. 根据权利要求8所述的棱镜,其特征在于,所述第三反射体和所述第一反射体结构相同,且对称设置于所述第二反射体的两侧。
  10. 根据权利要求1所述的棱镜,其特征在于,所述反射部还包括第三反射体;沿所述中心轴,所述第三反射体、所述第一反射体和所述第二反射体依次设置;所述第三反射体包括多个绕所述中心轴设置的第三反射面;所述第三反射面的数量小于所述第一反射面的数量,且各所述第三反射面与所述中心轴之间的夹角绝对值中的最大值大于各所述第一反射面与所述中心轴之间的夹角绝对值中的最大值。
  11. 根据权利要求10所述的棱镜,其特征在于,所述第三反射体和所述第二反射体结构相同,且对称设置于所述第一反射体的两侧。
  12. 根据权利要求1至11任一项所述的棱镜,其特征在于,所述棱镜包括至少两个所述反射部;至少两个所述反射部包括沿所述中心轴依次设置的第一反射部和第二反射部。
  13. 根据权利要求12所述的棱镜,其特征在于,所述第一反射部和所述第二反射部结构相同。
  14. 一种多线激光雷达,包括:
    如权利要求1所述的棱镜;
    旋转机构,与所述棱镜连接,用于带动所述棱镜绕所述棱镜的旋转轴旋转;所述旋转轴与所述中心轴同轴;
    至少一组发射接收组件,所述发射接收组件包括发射单元和接收单元,所述发射单元用于发射激光光束,所述发射单元发射的激光光束经所述棱镜的反射部的反射后照射到目标探测区域,所述接收单元用于接收从所述目标探测区域反射后的激光光束。
  15. 一种多线激光雷达,其特征在于,包括:
    权利要求13所述的棱镜:
    旋转机构,与所述棱镜连接,用于带动所述棱镜绕所述棱镜的旋转轴旋转;所述旋转轴与所述中心轴同轴;
    至少一组发射接收组件,所述发射接收组件包括发射单元和接收单元;所述发射单元位于所述棱镜的一侧,用于发射激光光束;所述发射单元发射的激光光束经所述棱镜的第一反射部的反射后照射到目标探测区域;所述接收单元与同一组所述发射接收组件中的所述发射单元位于所述棱镜的同一侧,用于接收从所述目标探测区域反射后经所述棱镜的第二反射部反射的激光光束。
  16. 根据权利要求15所述的多线激光雷达,其特征在于,所述棱镜的中心轴为空心轴;所述旋转机构设置在所述空心轴内。
  17. 根据权利要求15所述的多线激光雷达,其特征在于,所述至少一组发射接收组件包括第一发射接收组件和第二发射接收组件,所述第一发射接收组件和所述第二发射接收组件分别设置于所述旋转轴的不同侧;
    所述第一发射接收组件的扫描探测区域与所述第二发射接收组件的扫描探测区域至少部分重叠。
  18. 根据权利要求17所述的多线激光雷达,其特征在于,所述多线激光雷达还包括光电码盘,所述光电码盘用于检测并输出所述棱镜的角度信息和/或所述旋转机构的速度信息。
  19. 根据权利要求18所述的多线激光雷达,其特征在于,所述多线激光雷达还包括主控板,所述主控板分别与所述第一发射接收组件、所述第二发射接收组件、所述旋转机构以及所述光电码盘电连接;所述主控板包括:
    电源,分别与所述第一发射接收组件、所述第二发射接收组件、所述旋转机构以及所述光电码盘电连接,用于为所述第一发射接收组件、所述第二发射接收组件、所述旋转机构以及所述光电码盘提供电源;
    现场可编程门阵列,分别与所述第一发射接收组件、所述第二发射接收组件、所述旋转机构以及所述光电码盘电连接,用于控制所述第一发射接收组件和所述第二发射接收组件的发射器按照预设发射参数向通过所述旋转机构旋转的所述第一反射部发射激光光束,以及根据所述光电码盘的检测数据,控制所述第一发射接收组件和所述第二发射接收组件的发射器发射激光光束的发射参数;
    模数转换器,与所述第一发射接收组件、所述第二发射接收组件以及所述现场可编程门阵列电连接,用于对从所述目标探测区域反射后经所述棱镜的第二反射部反射至所述第一发射接收组件和所述第二发射接收组件对应的接收器的激光回波信号经放大处理后进行模数转换,并发送至所述现场可编程门阵列,以使所述现场可编程门阵列根据经模数转换后所述激光回波信号,获取探测数据;
    网口芯片,与所述现场可编程门阵列电连接,用于将所述探测数据以点云数据的形式输出。
  20. 根据权利要求15所述的多线激光雷达,其特征在于,所述发射单元包括至少一个发射板和多个发射器,每一个所述发射板上设置多个所述发射器;
    所述接收单元包括至少一个接收板和多个接收器,每一个所述接收板上设置多个所述接收器,所述接收器与所述发射器一一对应。
  21. 根据权利要求20所述的多线激光雷达,其特征在于,每一个所述发射板上设置的多个所述发射器的排列方向与所述棱镜的旋转轴平行,且每一个所述发射器发射的激光光束与水平方向的夹角均不同。
  22. 根据权利要求15-21任一项所述的多线激光雷达,其特征在于,所述多线激光雷达还包括:
    发射镜头,位于所述发射单元发射激光光束的传播路径上,用于将所述发射单元发射的激光光束进行准直处理;
    接收镜头,位于所述棱镜的第二反射部反射的激光光束的传播路径上,用于将所述棱镜的第二反射部反射的激光光束聚焦到所述接收单元;
    滤光镜,位于所述发射镜头与所述发射单元之间和/或位于所述接收镜头与所述接收单元之间,用于滤除环境光。
  23. 根据权利要求17-19任一项所述的多线激光雷达,其特征在于,所述第一发射接收组件包括:
    第一发射单元,包括至少一个发射板和多个发射器,每一个所述发射板上设置多个所述发射器;
    第一发射转换板,设置有驱动电路,所述驱动电路用于驱动所述发射器发射激光光束;
    第一发射支架板,用于支撑所述发射板和所述第一发射转换板;
    第一发射镜头,用于出射所述发射器发射的激光光束至所述棱镜的第一反射部;
    第一接收单元,包括至少一个接收板和多个接收器,每一个所述接收板上设置多个所述接收器,所述接收器与所述发射器一一对应;
    第一接收转换板,设置有运放电路,所述运放电路用于对所述接收器接收的激光回波信号进行放大处理;
    第一接收支架板,用于支撑所述接收板和所述第一接收转换板;
    第一接收镜头,用于入射从所述目标探测区域反射后经所述棱镜的第二反射部反射的激光光束。
  24. 根据权利要求23所述的多线激光雷达,其特征在于,所述第一发射接收组件还包括:
    第一发射反射镜,用于改变所述发射器发射激光光束的传播方向,以使所述发射器发射的激光光束从所述第一发射镜头出射至所述棱镜的第一反射部;
    第一接收反射镜,用于改变所述激光回波信号的传播方向,以使从所述目标探测区域反射后经所述棱镜的第二反射部反射的激光光束从所述第一接收镜头入射后聚焦到对应的所述接收器上。
PCT/CN2021/071231 2020-01-14 2021-01-12 一种棱镜及多线激光雷达 WO2021143665A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010037115.3 2020-01-14
CN202010037115.3A CN111025266B (zh) 2020-01-14 2020-01-14 一种棱镜及多线激光雷达

Publications (1)

Publication Number Publication Date
WO2021143665A1 true WO2021143665A1 (zh) 2021-07-22

Family

ID=70198954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/071231 WO2021143665A1 (zh) 2020-01-14 2021-01-12 一种棱镜及多线激光雷达

Country Status (2)

Country Link
CN (1) CN111025266B (zh)
WO (1) WO2021143665A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11774586B2 (en) 2017-07-10 2023-10-03 3D at Depth, Inc. Underwater optical metrology system
US12019159B2 (en) 2017-05-04 2024-06-25 3D at Depth, Inc. Systems and methods for monitoring underwater structures

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111025266B (zh) * 2020-01-14 2021-07-06 深圳市镭神智能系统有限公司 一种棱镜及多线激光雷达
CN113050102A (zh) * 2021-04-15 2021-06-29 深圳市镭神智能系统有限公司 一种激光雷达系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2585265Y (zh) * 2002-12-12 2003-11-05 中国科学院长春光学精密机械与物理研究所 一种用于激光视频显示中的扫描式面光源
US20150124238A1 (en) * 2013-11-05 2015-05-07 Kohji Sakai Object detecting apparatus
CN207817196U (zh) * 2017-10-31 2018-09-04 北京北科天绘科技有限公司 一种激光扫描装置以及激光雷达装置
CN109752704A (zh) * 2019-03-19 2019-05-14 深圳市镭神智能系统有限公司 一种棱镜及多线激光雷达系统
CN110208773A (zh) * 2019-06-11 2019-09-06 深圳市镭神智能系统有限公司 多线激光雷达
CN111025266A (zh) * 2020-01-14 2020-04-17 深圳市镭神智能系统有限公司 一种棱镜及多线激光雷达

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7499166B2 (en) * 2004-05-20 2009-03-03 The Regents Of The University Of California Wide field imager for quantitative analysis of microarrays
CN108957424B (zh) * 2018-09-30 2023-12-29 深圳市速腾聚创科技有限公司 一种多线激光雷达系统
CN109254286B (zh) * 2018-11-13 2024-05-28 武汉海达数云技术有限公司 机载激光雷达光学扫描装置
CN209894964U (zh) * 2019-03-05 2020-01-03 深圳市镭神智能系统有限公司 一种旋转棱镜和多线激光雷达测距系统
CN110286386A (zh) * 2019-07-18 2019-09-27 深圳市镭神智能系统有限公司 一种多线激光雷达系统
CN110568612A (zh) * 2019-09-26 2019-12-13 威海北洋电气集团股份有限公司北京分公司 一种旋转反射头、激光扫描装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2585265Y (zh) * 2002-12-12 2003-11-05 中国科学院长春光学精密机械与物理研究所 一种用于激光视频显示中的扫描式面光源
US20150124238A1 (en) * 2013-11-05 2015-05-07 Kohji Sakai Object detecting apparatus
CN207817196U (zh) * 2017-10-31 2018-09-04 北京北科天绘科技有限公司 一种激光扫描装置以及激光雷达装置
CN109752704A (zh) * 2019-03-19 2019-05-14 深圳市镭神智能系统有限公司 一种棱镜及多线激光雷达系统
CN110208773A (zh) * 2019-06-11 2019-09-06 深圳市镭神智能系统有限公司 多线激光雷达
CN111025266A (zh) * 2020-01-14 2020-04-17 深圳市镭神智能系统有限公司 一种棱镜及多线激光雷达

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12019159B2 (en) 2017-05-04 2024-06-25 3D at Depth, Inc. Systems and methods for monitoring underwater structures
US11774586B2 (en) 2017-07-10 2023-10-03 3D at Depth, Inc. Underwater optical metrology system

Also Published As

Publication number Publication date
CN111025266A (zh) 2020-04-17
CN111025266B (zh) 2021-07-06

Similar Documents

Publication Publication Date Title
WO2021143665A1 (zh) 一种棱镜及多线激光雷达
WO2021175141A1 (zh) 一种棱镜及多线激光雷达
CN107356930B (zh) 一种振镜全景扫描装置及其扫描方法
WO2020187103A1 (zh) 一种棱镜及多线激光雷达系统
CN111722237B (zh) 基于透镜和集成光束收发器的激光雷达探测装置
WO2020156372A1 (zh) 一种分布式激光雷达系统和激光测距方法
WO2020248336A1 (zh) 多线激光雷达
WO2021035428A1 (zh) 激光雷达及自动驾驶设备
US20210341610A1 (en) Ranging device
CN109738880A (zh) 一种激光雷达系统及激光测距装置
CN108872965A (zh) 一种激光雷达
WO2020164221A1 (zh) 一种收发装置及激光雷达
US20220120899A1 (en) Ranging device and mobile platform
CN211718520U (zh) 一种多线激光雷达
CN110531369B (zh) 一种固态激光雷达
CN212275968U (zh) 一种激光雷达系统
CN209979845U (zh) 一种测距装置及移动平台
CN212008925U (zh) 一种多线激光雷达
CN112639514B (zh) 激光接收装置、激光雷达及智能感应设备
CN209894964U (zh) 一种旋转棱镜和多线激光雷达测距系统
CN210376672U (zh) 多线激光雷达
CN211554313U (zh) 一种多线激光雷达
CN112946666A (zh) 一种激光雷达系统
CN209746129U (zh) 一种分布式激光雷达系统
CN111308444A (zh) 一种激光雷达系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21741401

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21741401

Country of ref document: EP

Kind code of ref document: A1