WO2020164221A1 - 一种收发装置及激光雷达 - Google Patents

一种收发装置及激光雷达 Download PDF

Info

Publication number
WO2020164221A1
WO2020164221A1 PCT/CN2019/094820 CN2019094820W WO2020164221A1 WO 2020164221 A1 WO2020164221 A1 WO 2020164221A1 CN 2019094820 W CN2019094820 W CN 2019094820W WO 2020164221 A1 WO2020164221 A1 WO 2020164221A1
Authority
WO
WIPO (PCT)
Prior art keywords
circulator
transceiver device
laser light
input
laser
Prior art date
Application number
PCT/CN2019/094820
Other languages
English (en)
French (fr)
Inventor
虞爱华
华一敏
任建峰
Original Assignee
昂纳信息技术(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昂纳信息技术(深圳)有限公司 filed Critical 昂纳信息技术(深圳)有限公司
Publication of WO2020164221A1 publication Critical patent/WO2020164221A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements

Definitions

  • the invention relates to the field of laser radar, in particular to a transceiver and laser radar.
  • Lidar is a radar system that emits laser beams to detect the position and speed of the target. Its working principle is to transmit a detection signal (laser beam) to the target, and then compare the received signal (target echo) from the target with the transmitted signal. After proper processing, the relevant information of the target can be obtained, such as Target distance, azimuth, height, speed, attitude, and even shape and other parameters.
  • lidar One of the important supporting sensors, lidar, has emerged in various types of solutions in order to meet various specific needs.
  • the multi-line lidar usually adopts the form of one cluster of transmitting LD corresponding to a shaping lens, and another cluster of receiving detectors corresponding to another converging lens.
  • this system setting method improves the system integration to a certain extent and reduces the overall volume, there is also a one-to-one correspondence between the LDs and detectors distributed in the two clusters of devices during the production and debugging process.
  • the alignment operation is very difficult and the production cost is high.
  • the technical problem to be solved by the present invention is to provide a transceiver and lidar in view of the above-mentioned defects of the prior art, which solves the problems of complicated and difficult alignment operations of the existing lidar, and the high cost of production, maintenance, and debugging.
  • the problem is to provide a transceiver and lidar in view of the above-mentioned defects of the prior art, which solves the problems of complicated and difficult alignment operations of the existing lidar, and the high cost of production, maintenance, and debugging.
  • the technical solution adopted by the present invention to solve its technical problem is to provide a transceiver device, including: at least one circulator, including an input end, an output end, and a common end, the common end forming an input and output end surface; A laser light source and a detector, wherein the laser light source communicates with the input end of the circulator and emits a laser beam to the circulator, and the detector communicates with the output end of the circulator and receives the optical signal emitted from the circulator; wherein, The input and output ends face outward to emit laser beams and receive optical signals emitted back from the outside.
  • the lidar includes a scanning mirror assembly and the transceiver device
  • the scanning mirror assembly includes a rotating mechanism and a scanning mirror
  • the scanning mirror is driven by the rotating mechanism. Rotate downwards to change the optical path of the laser beam emitted by the transceiver to scan outwards and guide the optical signal reflected back from the target to the transceiver.
  • the beneficial effect of the present invention is that compared with the prior art, the present invention improves system integration and reduces the difficulty of system debugging and alignment by designing a transceiver and lidar, and is easy to assemble; Connect the right laser light source and the detector, and use the characteristics of the circulator to realize the automatic pairing of the emitted laser and the detector, without the need for alignment testing, which eliminates difficult alignment operations compared to traditional multi-line lidar; and, The common end of the circulator is arranged on the focal plane of the lens, so that a single lens is shared by the light-receiving and light-emitting paths. Compared with the traditional multi-line lidar, one lens is reduced, and the system volume is further reduced.
  • Figure 1 is a schematic diagram of the structure of the transceiver device of the present invention.
  • FIG. 2 is a schematic diagram of the structure of the circulator of the present invention.
  • Figure 3 is a schematic structural diagram of a transceiver device based on multiple circulators of the present invention.
  • Figure 4 is a schematic diagram of the lens-based structure of Figure 3;
  • Fig. 5 is a schematic structural diagram of a transceiver device of the present invention based on multiple laser light sources communicating with a circulator through a recombiner;
  • Fig. 6 is a schematic diagram of the lens-based structure of Fig. 5;
  • FIG. 7 is a schematic diagram of the structure of FIG. 5 adding a light splitting prism
  • FIG. 8 is a schematic structural diagram of a transceiver device of the present invention based on a plurality of laser light sources communicating with a circulator through a coupler;
  • Fig. 9 is a schematic diagram of the lens-based structure of Fig. 8.
  • Embodiment 1 of the scanning track of the present invention is a schematic structural diagram of Embodiment 1 of the scanning track of the present invention.
  • FIG. 11 is a schematic structural diagram of Embodiment 2 of the scanning track of the present invention.
  • the present invention provides a preferred embodiment of a transceiver device.
  • a transceiver device includes at least one circulator 13, a laser light source 11 and a detector 12 that are matched with each other, wherein the circulator 13 includes an input terminal 131, an output terminal 132 and a common terminal 133, and the common terminal 133 forms An input and output end surface; the laser light source 11 communicates with the input end 131 of the circulator 13 and emits a laser beam to the circulator 13, and the detector 12 communicates with the output end 132 of the circulator 13 and receives from the circulator 13 The emitted optical signal; wherein the input and output end faces outward to emit a laser beam, and receives the optical signal emitted back from the outside.
  • the transceiver device further includes an optical lens 20 which is arranged in alignment with the input and output end faces, receives the laser beam emitted from the circulator 13 and emits it outward, and receives external optical signals and enters the circulator 13.
  • an optical lens 20 which is arranged in alignment with the input and output end faces, receives the laser beam emitted from the circulator 13 and emits it outward, and receives external optical signals and enters the circulator 13.
  • the laser light source 11 emits a laser beam and enters the circulator 13 through the input end 131, then enters the optical lens 20 through the common end 133, and emits it out to the external scanning mirror assembly 30.
  • the scanning The mirror assembly 30 deflects and scans the emitted laser beam to the outside space.
  • the emitted light signal after the laser beam irradiates the target is received by the scanning mirror group 30 and passes through the common end 133 of the optical lens 20 and the circulator 13, and then enters the circulator 13. Pass through the output terminal 132 to the detector 12.
  • the circulator 13 is a multi-port device in which the transmission of electromagnetic waves can only circulate in a single direction. Through the circulator 13, the output laser beam and optical signal have an optical path.
  • the laser light source 11 includes one or more of an LD semiconductor laser light source, a fiber laser light source, and a solid laser light source.
  • LD semiconductor laser light source also known as laser diode
  • fiber laser light source refers to a laser that uses rare-earth-doped glass fiber as a gain medium
  • solid-state laser light source refers to a solid laser material as the working material
  • the working medium is uniformly doped with a small amount of activated ions in the crystal or glass as the matrix material.
  • the lidar includes a scanning mirror assembly 30 and a transceiver device.
  • the scanning mirror assembly 30 includes a rotating mechanism and a scanning mirror. Drive downward rotation, change the optical path of the laser beam emitted by the transceiver to scan outwards, and guide the optical signal reflected back from the target to the transceiver. Through the cooperation of the rotating mechanism and the scanning mirror, the emission area of the smaller scanning mirror assembly 30 realizes a detection area of a larger range of angles.
  • the maximum field of view of the laser beam of the transceiver device is smaller than the scanning field of view of the mirror.
  • the vertical field of view distance of the laser beam is determined by the initial launch angle and the launch distance of the laser beam. The larger the initial launch angle, the greater the vertical view distance, the greater the launch distance, the greater the vertical view distance. When it is incident on the reflector, it is the maximum vertical field of view distance. At this time, the maximum vertical field of view distance is smaller than the vertical distance of the reflector, so that all laser beams can be reflected by the reflector.
  • the scanning mirror includes one of a reflector and a refractor.
  • a reflector preferably a reflector
  • the laser beam emitted by the transceiver device is emitted outward to achieve outward scanning and reflect
  • the return light signal is emitted and re-transmitted device; such as through a refractor, preferably a refractor, to achieve refraction of the laser beam to achieve outward scanning.
  • the transceiver device further includes an optical fiber communicating with the circulator 13, and the other end of the optical fiber serves as the common end 133 of the circulator 13.
  • the arrangement of the common end 133 of the circulator 13 through optical fibers improves the compactness of the overall system, facilitates the dense arrangement of the common end 13, and avoids light leakage and light reflection.
  • the present invention provides a preferred embodiment of a transceiver device based on multiple circulators.
  • a transceiver device includes a plurality of circulators 13, a plurality of laser light sources 11, and a plurality of detectors 12, wherein the common end 133 forms an input and output end surface, that is, is integrated to form an end surface; the multiple laser light sources 11 are connected to The input terminal 131 of the circulator 13 is connected and emits a laser beam to the circulator 13; the multiple detectors 12 are respectively connected with the output terminals 132 of the circulator 13 to receive optical signals emitted from the circulator 13; the input and output terminals The laser beam is emitted from the outside and the light signal emitted from the outside is received.
  • the laser light source 11 emits a laser beam and enters the circulator 13 through the input end 131, then enters the optical lens 20 through the common end 133, and emits it out to the external scanning mirror assembly 30.
  • the scanning The mirror assembly 30 deflects and scans the emitted laser beam to the outside space.
  • the emitted light signal after the laser beam irradiates the target is received by the scanning mirror group 30 and passes through the common end 133 of the optical lens 20 and the circulator 13, and then enters the circulator 13. Pass through the output terminal 132 to the detector 12.
  • the optical lens 20 includes at least one lens 21, and the common ends 133 of a plurality of the circulators 13 are arranged on the focal plane 201 of the lens 21.
  • the focal plane 201 also called focal plane, passes through the first focal point (front focal point or object focal point) and perpendicular to the main optical axis of the system is called the first focal plane, also called front focal plane 201 or object focal point ⁇ 201 ⁇ Face 201.
  • the focal plane 201 may be a flat surface or a curved surface, that is, a focal plane or a focal curved surface.
  • the lens 21 is preferably a focusing lens 21 or a collimating lens 21.
  • the optical lens 20 may also include other lenses or lens groups for incident multiple scattered laser beams to the mirror of the scanning mirror assembly 30, so that the maximum field of view of the laser beam is smaller than that of the mirror.
  • the scanning field of view may also include other lenses or lens groups for incident multiple scattered laser beams to the mirror of the scanning mirror assembly 30, so that the maximum field of view of the laser beam is smaller than that of the mirror. The scanning field of view.
  • Solution 1 The common ends 133 of the plurality of circulators 13 are vertically arranged on the focal plane 201 of the lens 21, that is, the common ends 133 are arranged in a straight line and form a linear input and output end surface.
  • the detection range in the vertical direction is formed, and the detection position in the vertical direction is scanned to different horizontal angles through the scanning mirror assembly 30 to realize comprehensive detection.
  • Solution 2 The common ends 133 of the plurality of circulators 13 are arranged in an array on the focal plane 201 of the lens 21, that is, the common ends 133 are arranged in an array to form an array of input and output end faces. On the basis of Option 1, increase the detection area in the horizontal direction to improve detection accuracy.
  • Each outgoing laser from the laser light source 11 is output through the circulator 13, and after the optical lens 21 is shaped, collimated laser light is irradiated on the scanning mirror (scanning mirror assembly 30).
  • the rotation of the scanning mirror drives the rotation of the laser beam to achieve a horizontal field of view Scan within range.
  • n common ends 133 from the circulator 13 are arranged on the focal plane 201 of the lens 21, and n independent laser beams emitted from the common end 133 are shaped by the lens 21 Then, cover a certain angle of view in the vertical direction (or a direction with a certain inclination angle); under the deflection of the scanning mirror assembly 30, n laser beams will scan and cover in the horizontal direction (or a direction with a certain inclination angle) A certain field of view; after m-step scanning is performed horizontally, a scanning track with n ⁇ m laser points is formed in the field of view of the lidar.
  • the present invention provides a preferred embodiment of a transceiver device based on a plurality of laser light sources communicating with a circulator through a multiplexer.
  • the transceiver device includes a plurality of laser light sources 11 emitting laser beams of different wavelengths, and also includes a recombiner 14 arranged at the input end 131 of the circulator 13, and the laser light sources 11 pass through the inputs of the recombiner 14 and the circulator 13
  • the terminal 131 is connected.
  • the multiple laser light sources 11 emit laser beams of different wavelengths, which can be emitted simultaneously, partially or individually, and the received laser beams are combined to the input end 131 of the circulator 13 through the combiner 14, and then through the circulator The input and output terminal 133 of 13 is ejected.
  • the optical lens 20 includes at least one lens 21, and the related description is consistent with the above description, and will not be described one by one here.
  • the transceiver device further includes a beam splitter 15 arranged at the output end 132 of the circulator 13, and the detectors 12 pass through the beam splitter 15 and the circulator. 13
  • the output terminal 132 is connected, and the optical splitter 15 couples optical signals of different wavelengths to the corresponding detector 12. In order to realize the one-to-one pairing of optical signals of different wavelengths with the detector 12.
  • the beam splitter 15 may be, but not limited to, a form of prism beam splitting.
  • the transceiver device further includes a dichroic prism 40 arranged in alignment with the input and output end faces.
  • the dichroic prism 40 is arranged between the lens 21 and the scanning mirror assembly 30 to refract and disperse the laser beam into laser beams with different deflection angles and emit them; wherein, the deflection angle is determined according to the wavelength, that is, according to different wavelengths. Laser beams of different wavelengths are refracted at different deflection angles.
  • n laser beams from the laser light source 11 are split to form n independent laser beams in the vertical direction (or a direction with a certain tilt angle) Cover a certain field of view; under the deflection of the scanning mirror assembly 30, n laser beams will scan in the horizontal direction (or a direction with a certain inclination angle) to cover a certain field of view; when the horizontal scanning is performed in m steps, Within the field of view of the lidar, a scanning track with n ⁇ m laser points is formed.
  • the present invention provides a preferred embodiment of a transceiver device based on a plurality of laser light sources communicating with a circulator through a coupler.
  • the transceiver device includes a plurality of laser light sources 11 emitting laser beams of different wavelengths, and also includes a coupler 16 arranged at the input end 131 of the circulator 13, and the laser light sources pass through the coupler 16 and the input end of the circulator 13 131 is connected, and the coupler 16 couples laser beams of different wavelengths to the input end 131 of the circulator 13.
  • multiple laser light sources 11 emit laser beams of different wavelengths, which can be emitted simultaneously, partially or individually, and each received laser beam is coupled to the input end 131 of the circulator 13 through the coupler 16, and then passes through the circulator.
  • the input and output terminal 133 of 13 is emitted.
  • the optical lens 20 includes at least one lens 21, and the related description is consistent with the above description, and will not be described one by one here.
  • different laser light sources 11 can be set to emit different time to achieve parallel/serial/pipeline type measurement without mutual interference, thereby achieving the purpose of increasing the measurement point frequency, so that the measurement frequency is not limited to the speed of light and the measurement range.
  • the coupler 16 may be, but not limited to, a form of prism light splitting.
  • the transceiver device further includes a beam splitter 17 arranged at the output end 132 of the circulator 13, and the detectors 12 pass through the beam splitter 17 and the circulator. 13
  • the output terminal 132 is connected, and the optical splitter 17 couples optical signals of different wavelengths to the corresponding detector 12.
  • the beam splitter 17 may be, but not limited to, a form of prism beam splitting.
  • the laser beam will be scanned in a horizontal direction (or a direction with a certain inclination angle) to cover a certain field of view under the deflection of the scanning mirror assembly 30; when m-step scanning is performed horizontally Then, in the field of view of the lidar, a scanning track with 1 ⁇ m laser spot is formed.
  • the present invention provides a preferred embodiment of the scanning trajectory of the scanning mirror assembly.
  • the rotation mechanism By controlling the scanning mirror assembly, such as adding a moving mechanism that drives the rotation mechanism to move, or adding a deflection mechanism that drives the rotation mechanism to deflection, the rotation mechanism can also be moved or deflected in another direction when it rotates.
  • One-dimensional scanning based on the original scanning trajectory, performs q scanning to form a scanning trajectory of n*m*q, or a scanning trajectory of 1*m*q.
  • q scans of m steps are realized by movement or deflection. Or, when scanning each step of the rotating mechanism, a movement or deflection is performed first to realize q movement or deflection in m steps.
  • the direction of rotation of the rotating mechanism is a horizontal direction or a direction parallel to the horizontal direction, and the direction of movement and deflection is a vertical direction.
  • the scan trajectory obtained based on the two-dimensional scanning of the scanning mirror assembly is as shown in FIG. 10 The scan trace.
  • the transceiver and the corresponding lidar system are mainly used in the fields of unmanned driving sensing, 3-D surveying and mapping, and AGV navigation.
  • the lidar system When applied to unmanned driving and AGV, the lidar system is generally installed on the top or side of the vehicle to detect targets in the corresponding direction.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

提供了一种收发装置及激光雷达。收发装置,包括:至少一环形器(13),包括输入端(131)、输出端(132)和共用端(133),共用端(133)形成一输入输出端面;相互匹配设置的激光光源(11)和探测器(12),激光光源(11)与环形器(13)的输入端(131)连通,并向环形器(13)发射出激光光束,探测器(12)与环形器(13)的输出端(132)连通,接收从环形器(13)射出的光信号。通过设计一种收发装置及激光雷达,提高系统集成度并降低系统调试对准难度,易装配;进一步的,通过环形器将每一对的激光光源和探测器连接起来,利用环形器的特性实现发射激光和探测器的自动配对,不必进行对准测试,相比于传统多线激光雷达省去了困难的对准操作。

Description

一种收发装置及激光雷达 技术领域
本发明涉及激光雷达领域,具体涉及一种收发装置及激光雷达。
背景技术
激光雷达,是以发射激光束探测目标的位置、速度等特征量的雷达系统。其工作原理是向目标发射探测信号(激光束),然后将接收到的从目标反射回来的信号(目标回波)与发射信号进行比较,作适当处理后,就可获得目标的有关信息,如目标距离、方位、高度、速度、姿态、甚至形状等参数。
特别是在自动驾驶领域,自动驾驶等技术高速发展,其中一项重要配套传感器激光雷达,为了满足各种特定需求,涌现出各种类型的方案。
目前多线激光雷达多采用一簇发射LD对应一个整形透镜,另一簇接收探测器对应另一个会聚透镜的形式。虽然,这种系统设置方式,在一定程度上提高了系统集成度、减小了总体体积,但是,也存在生产调试过程中需要分别对分布在两簇器件中的LD和探测器做一一对应的对准操作,对准非常困难,生产成本高。
技术问题
本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供一种收发装置及激光雷达,解决现有激光雷达对准操作复杂、困难的问题,以及生产、维护、调试对准成本高的问题。
技术解决方案
本发明解决其技术问题所采用的技术方案是:提供一种收发装置,包括:至少一环形器,包括输入端、输出端和共用端,所述共用端形成一输入输出端面;相互匹配设置的激光光源和探测器,所述激光光源与环形器的输入端连通,并向环形器发射出激光光束,所述探测器与环形器的输出端连通,接收从环形器射出的光信号;其中,所述输入输出端面向外射出激光光束,且接收外部发射回的光信号。
本发明解决其技术问题所采用的技术方案是:提供所述激光雷达包括扫描镜组件和所述的收发装置,所述扫描镜组件包括转动机构和扫描镜,所述扫描镜在转动机构的带动下转动,改变收发装置发射的激光光束的光学路径,以向外扫描,并将目标物反射回的光信号导入收发装置。
有益效果
本发明的有益效果在于,与现有技术相比,本发明通过设计一种收发装置及激光雷达,提高系统集成度并降低系统调试对准难度,易装配;进一步的,通过环形器将每一对的激光光源和探测器连接起来,利用环形器的特性实现发射激光和探测器的自动配对,不必进行对准测试,相比于传统多线激光雷达省去了困难的对准操作;以及,所述环形器的共用端排布设置在透镜的焦面上,实现收发光路共用一个透镜,相比于传统多线激光雷达减少了一个透镜,进一步减小了系统体积。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明收发装置的结构示意图;
图2是本发明环形器的结构示意图;
图3是本发明基于多个环形器的收发装置的结构示意图;
图4是图3基于透镜的结构示意图;
图5是本发明基于多个激光光源通过复合器与环形器连通的收发装置的结构示意图;
图6是图5基于透镜的结构示意图;
图7是图5增加分光棱镜的结构示意图;
图8是本发明基于多个激光光源通过耦合器与环形器连通的收发装置的结构示意图;
图9是图8基于透镜的结构示意图;
图10是本发明扫描轨迹实施例一的结构示意图;
图11是本发明扫描轨迹实施例二的结构示意图。
本发明的最佳实施方式
现结合附图,对本发明的较佳实施例作详细说明。
如图1和图2所示,本发明提供一种收发装置的优选实施例。
一种收发装置,包括至少一环形器13、相互匹配设置的激光光源11和探测器12,其中,所述环形器13包括输入端131、输出端132和共用端133,所述共用端133形成一输入输出端面;所述激光光源11与环形器13的输入端131连通,并向环形器13发射出激光光束,所述探测器12与环形器13的输出端132连通,接收从环形器13射出的光信号;其中,所述输入输出端面向外射出激光光束,且接收外部发射回的光信号。
进一步地,所述收发装置还包括光学镜片20,其与输入输出端面对齐设置,接收从环形器13射出激光光束并向外发射,以及接收外部的光信号并入射至环形器13。
具体是:所述激光光源11发射激光光束并通过输入端131入射至环形器13中,再经过共用端133入射至光学镜片20,向外发射出并至外部的扫描镜组件30,所述扫描镜组件30将发射的激光光束偏转扫描至外部空间,激光光束照射到目标之后的发射光信号经扫描镜组30接收并经过光学镜片20、环形器13的共用端133,入射环形器13,在经过输出端132至探测器12。
其中,环形器13是一个多端口器件,其中电磁波的传输只能沿单方向环行,通过环形器13,实现输出的激光光束和光信号均有一光路路径。
在本实施例中,所述激光光源11包括LD半导体激光光源、光纤激光器光源、固体激光器光源中的一种或多种。其中,LD半导体激光光源又称激光二极管,是用半导体材料作为工作物质的激光器;光纤激光器光源是指用掺稀土元素玻璃光纤作为增益介质的激光器;固体激光器光源是指用固体激光材料作为工作物质的激光器,工作介质是在作为基质材料的晶体或玻璃中均匀掺入少量激活离子。
在本实施例中,提供一种激光雷达的较佳方案,所述激光雷达包括扫描镜组件30和收发装置,所述扫描镜组件30包括转动机构和扫描镜,所述扫描镜在转动机构的带动下转动,改变收发装置发射的激光光束的光学路径,以向外扫描,并将目标物反射回的光信号导入收发装置。通过转动机构和扫描镜的配合,使较小的扫描镜组件30的发射面积实现较大范围角度的探测面积。
进一步地,所述收发装置的激光光束的最大视场小于所述反射镜的扫描视场。所述激光光束的垂直视场距离会随着激光光束的初始发射角度和发射距离而决定,初始发射角度越大,垂直视场距离越大,发射距离越大,垂直视场距离越大。当入射至反射镜时为最大垂直视场距离,此时,最大垂直视场距离的小于所述反射镜的垂直距离,实现所有的激光光束均可被反射镜反射。
在本实施例中,所述扫描镜包括反射器、折射器中的一种,如通过反射器,优选为反射镜,将收发装置发射的激光光束向外发射,实现向外扫描,并将反射回的光信号发射回收发装置;如通过折射器,优选为折射镜,实现激光光束的折射,以实现向外扫描。
在本实施例中,并参考图2,所述收发装置还包括与环形器13连通的光纤,所述光纤的另一端作为环形器13的共用端133。通过光纤进行环形器13的共用端133的排布,提高整体系统的紧凑性,便于实现共用端13的密集性排布,避免漏光、反光现象。
如图3和图4所示,本发明提供一种基于多个环形器的收发装置的较佳实施例。 
一种收发装置,包括多个环形器13、多个激光光源11、多个探测器12,其中,所述共用端133形成一输入输出端面,即集成设置形成端面;多个激光光源11分别与环形器13的输入端131连通,并向环形器13发射出激光光束;多个探测器12分别与环形器13的输出端132连通,接收从环形器13射出的光信号;所述输入输出端面向外射出激光光束,且接收外部发射回的光信号。
具体是:所述激光光源11发射激光光束并通过输入端131入射至环形器13中,再经过共用端133入射至光学镜片20,向外发射出并至外部的扫描镜组件30,所述扫描镜组件30将发射的激光光束偏转扫描至外部空间,激光光束照射到目标之后的发射光信号经扫描镜组30接收并经过光学镜片20、环形器13的共用端133,入射环形器13,在经过输出端132至探测器12。
在本实施例中,所述光学镜片20至少包括一透镜21,多个所述环形器13的共用端133排布设置在透镜21的焦面201上。其中,所述焦面201,又称焦平面,过第一焦点(前焦点或物方焦点)且垂直于系统主光轴的平面称第一焦平面,又称前焦面201或物方焦面201。根据光学系统设计,所述焦面201可以是平面,也可以是曲面,即焦平面或焦曲面。以及,所述透镜21优选为聚焦透镜21,或者准直透镜21。
当然,所述光学镜片20还可以包括其他镜片或镜片组,用于将多个分散的激光光束入射至扫描镜组件30的反光镜即可,以达到激光光束的最大视场小于所述反射镜的扫描视场。
在本实施例中,提供两种较佳方案。
方案一、多个所述环形器13的共用端133垂直排布设置在透镜21的焦面201上,即多个所述共用端133直线设置并形成一直线输入输出端面。形成垂直方向的探测范围,并通过扫描镜组件30,将垂直方向的探测位置扫描到不同水平角度上,实现全面探测。
方案二、多个所述环形器13的共用端133阵列排布设置在透镜21的焦面201上,即多个所述共用端133阵列设置并形成一阵列输入输出端面。在方案一基础上,增加水平方向的探测面积,提高探测精准度。
每一个来自激光光源11的出射激光经过环形器13输出,并在光学透镜21整形后形成准直激光照射到扫描镜(扫描镜组件30)上,扫描镜旋转带动激光束旋转从而实现水平视场范围内的扫描。
在本实施例中,并参考图10,由n根来自环形器13的共用端133排布于透镜21的焦面201上,从共用端133射出的n束独立的激光光束,经过透镜21整形后,在垂直方向(或具有一定倾斜角度的方向)上覆盖一定视场角度;n束激光光束在扫描镜组件30的偏转作用下,在水平方向(或具有一定倾斜角度的方向)将扫描覆盖一定视场范围;当水平进行m步的扫描后,在激光雷达视场范围内,形成具有n×m激光点的扫描轨迹。
如图5至图7所示,本发明提供一种基于多个激光光源通过复合器与环形器连通的收发装置的较佳实施例。 
所述收发装置包括多个发射不同波长激光光束的激光光源11,以及还包括设置在环形器13输入端131处的复合器14,所述激光光源11均通过复合器14与环形器13的输入端131连通。
具体地,多个激光光源11发射不同波长的激光光束,可同时发射、部分发射或单个发射,经过复合器14将接收到的各激光光束复合至环形器13的输入端131,再经环形器13的输  入输出端133射出。当然,所述光学镜片20至少包括一透镜21,相关描述与上述阐述一致,在此不再一一描述。
在本实施例中,所述探测器12设置有多个,以及所述收发装置还包括设置在环形器13输出端132处的分光器15,所述探测器12均通过分光器15与环形器13输出端132连通,所述分光器15将不同波长的光信号耦合至对应的探测器12中。以实现不同波长的光信号与探测器12的一一配对。
其中,所述分光器15可为但不限于是棱镜分光的形式。
在本实施例中,所述收发装置还包括与输入输出端面对齐设置的分光棱镜40。优选地,分光棱镜40设置在透镜21与扫描镜组件30之间,将所述激光光束折射分散成呈不同偏角的激光束并出射;其中,所述偏角是根据波长而定即根据不同波长的激光光束,呈不同偏角折射。
在本实施例中,并参考图10,通过分光棱镜40,将由n个来自激光光源11的激光光束进行分光,形成n束独立的激光光束,在垂直方向(或具有一定倾斜角度的方向)上覆盖一定视场角度;n束激光光束在扫描镜组件30的偏转作用下,在水平方向(或具有一定倾斜角度的方向)将扫描覆盖一定视场范围;当水平进行m步的扫描后,在激光雷达视场范围内,形成具有n×m激光点的扫描轨迹。
如图8和图9所示,本发明提供一种基于多个激光光源通过耦合器与环形器连通的收发装置的较佳实施例。 
所述收发装置包括多个发射不同波长激光光束的激光光源11,以及还包括设置在环形器13输入端131处的耦合器16,所述激光光源均通过耦合器16与环形器13的输入端131连通,所述耦合器16将不同波长的激光光束耦合至环形器13的输入端131中。
具体地,多个激光光源11发射不同波长的激光光束,可同时发射、部分发射或单个发射,经过耦合器16将接收到的各激光光束耦合至环形器13的输入端131,再经环形器13的输入输出端133射出。当然,所述光学镜片20至少包括一透镜21,相关描述与上述阐述一致,在此不再一一描述。
其中,可以通过设置不同激光光源11发射时刻不同,实现互不干扰的并行/串行/流水线类型的测量,从而实现提高测量点频的目的,使测量频率不限制于光速和测量范围。以及,所述耦合器16可为但不限于是棱镜分光的形式。
在本实施例中,所述探测器12设置有多个,以及所述收发装置还包括设置在环形器13输出端132处的分光器17,所述探测器12均通过分光器17与环形器13输出端132连通,所述分光器17将不同波长的光信号耦合至对应的探测器12中。以实现不同波长的光信号与探测器12的一一配对。其中,所述分光器17可为但不限于是棱镜分光的形式。
在本实施例中,并参考图10,激光光束在扫描镜组件30的偏转作用下,在水平方向(或具有一定倾斜角度的方向)将扫描覆盖一定视场范围;当水平进行m步的扫描后,在激光雷达视场范围内,形成具有1×m激光点的扫描轨迹。
如图10和11所示,本发明提供扫描镜组件的扫描轨迹的较佳实施例。
通过对扫描镜组件进行控制,如增加一带动转动机构移动的移动机构,或者增加一带动转动机构偏转的偏转机构,实现转动机构在转动时,还能在另一方向上进行移动或偏转,实现二维扫描,在原有扫描轨迹的基础上,进行q次扫描,形成n*m*q的扫描轨迹,或者形成1*m*q的扫描轨迹。
具体地,所述q次扫描时通过移动或偏转实现q次m步扫描。或者,在转动机构每一步扫描时,先进行一次移动或偏转,实现m步的q次移动或偏转。
优选地,转动机构的转动方向为水平方向或平行与水平方向的方向,而其移动和偏转方向为垂直方向。
其中,在基于多个激光光源通过耦合器与环形器连通的收发装置的较佳实施例中,若q为n,其基于扫描镜组件的二维扫描所获得的扫描轨迹为如图10所示的扫描轨迹。
在本发明中,所述收发装置以及对应的激光雷达系统,主要应用于无人驾驶传感、3-D测绘、AGV导航等领域。当应用于无人驾驶和AGV时,一般将激光雷达系统安装在车辆的顶端或者侧面,用于检测对应方向的目标。
 以上所述者,仅为本发明最佳实施例而已,并非用于限制本发明的范围,凡依本发明申请专利范围所作的等效变化或修饰,皆为本发明所涵盖。

Claims (18)

  1. 一种收发装置,其特征在于,包括:
    至少一环形器,包括输入端、输出端和共用端,所述共用端形成一输入输出端面;
    相互匹配设置的激光光源和探测器,所述激光光源与环形器的输入端连通,并向环形器发射出激光光束,所述探测器与环形器的输出端连通,接收从环形器射出的光信号;
    其中,所述输入输出端面向外射出激光光束,且接收外部发射回的光信号。
  2. 根据权利要求1所述的收发装置,其特征在于:所述环形器设置有多个,每一所述环形器均设置一相互匹配设置的激光光源和探测器。
  3. 根据权利要求1所述的收发装置,其特征在于:所述收发装置包括多个发射不同波长激光光束的激光光源,以及还包括设置在环形器输入端处的复合器,所述激光光源均通过复合器与环形器的输入端连通。
  4. 根据权利要求3所述的收发装置,其特征在于:所述探测器设置有多个,以及所述收发装置还包括设置在环形器输出端处的分光器,所述探测器均通过分光器与环形器输出端连通,所述分光器将不同波长的光信号耦合至对应的探测器中。
  5. 根据权利要求3所述的收发装置,其特征在于:所述收发装置还包括与输入输出端面对齐设置的分光棱镜。
  6. 根据权利要求1所述的收发装置,其特征在于:所述收发装置包括多个发射不同波长激光光束的激光光源,以及还包括设置在环形器输入端处的耦合器,所述激光光源均通过耦合器与环形器的输入端连通,所述耦合器将不同波长的激光光束耦合至环形器的输入端中。
  7. 根据权利要求1至6任一所述的收发装置,其特征在于:所述收发装置还包括与输入输出端面对齐设置的光学镜片。
  8. 根据权利要求7所述的收发装置,其特征在于:所述光学镜片包括一透镜,所述输入输出端面设置在透镜的焦面上。
  9. 根据权利要求8所述的收发装置,其特征在于:所述焦面为焦平面或焦曲面。
  10. 根据权利要求1至6任一所述的收发装置,其特征在于:多个所述共用端直线设置并形成一直线输入输出端面。
  11. 根据权利要求1至6任一所述的收发装置,其特征在于:多个所述共用端阵列设置并形成一阵列输入输出端面。
  12. 根据权利要求1至6任一所述的收发装置,其特征在于:所述收发装置还包括与环形器连通的光纤,所述光纤的另一端作为环形器的共用端。
  13. 根据权利要求1至6任一所述的收发装置,其特征在于:所述激光光源包括LD半导体激光光源、光纤激光光源、固体激光光源中的一种。
  14. 一种激光雷达,其特征在于:所述激光雷达包括扫描镜组件和如权利要求1-13任一所述的收发装置,所述扫描镜组件包括转动机构和扫描镜,所述扫描镜在转动机构的带动下转动,改变收发装置发射的激光光束的光学路径,以向外扫描,并将目标物反射回的光信号导入收发装置。
  15. 根据权利要求14所述的激光雷达,其特征在于:所述收发装置的激光光束的最大视场小于所述反射镜的扫描视场。
  16. 根据权利要求14所述的激光雷达,其特征在于:所述扫描镜包括反射器、折射器中的一种。
  17. 根据权利要求14所述的激光雷达,其特征在于:所述扫描镜组件还包括一带动转动机构移动的移动机构。
  18. 根据权利要求14所述的激光雷达,其特征在于:所述扫描镜组件还包括一带动转动机构偏转的偏转机构。
PCT/CN2019/094820 2019-02-14 2019-07-05 一种收发装置及激光雷达 WO2020164221A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910115135.5A CN109828258A (zh) 2019-02-14 2019-02-14 一种收发装置及激光雷达
CN201910115135.5 2019-02-14

Publications (1)

Publication Number Publication Date
WO2020164221A1 true WO2020164221A1 (zh) 2020-08-20

Family

ID=66863555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/094820 WO2020164221A1 (zh) 2019-02-14 2019-07-05 一种收发装置及激光雷达

Country Status (2)

Country Link
CN (1) CN109828258A (zh)
WO (1) WO2020164221A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112099024A (zh) * 2020-09-16 2020-12-18 森思泰克河北科技有限公司 单轴旋转的二维扫描系统和多线激光雷达
CN112099023A (zh) * 2020-09-15 2020-12-18 森思泰克河北科技有限公司 多线激光雷达
CN113655465A (zh) * 2021-08-12 2021-11-16 重庆理工大学 一种基于多波长连续扫描的抗干扰激光雷达
CN113777581A (zh) * 2021-08-30 2021-12-10 厦门大学 一种水下收发的分离式水体探测激光雷达

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109828258A (zh) * 2019-02-14 2019-05-31 昂纳信息技术(深圳)有限公司 一种收发装置及激光雷达
CN110261844A (zh) * 2019-07-22 2019-09-20 北京因泰立科技有限公司 一种收发同轴的多线激光雷达
CN116559900A (zh) * 2022-01-30 2023-08-08 睿镞科技(北京)有限责任公司 激光系统及激光测量方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103744145A (zh) * 2013-12-31 2014-04-23 武汉电信器件有限公司 单光口波分复用/解复用光电收发器件
US20180088235A1 (en) * 2012-12-18 2018-03-29 Uber Technologies, Inc. Multi-clad fiber-based light detection and ranging sensor
CN108627812A (zh) * 2018-05-28 2018-10-09 成都信息工程大学 一种激光雷达大气能见度测量方法及装置
CN108646230A (zh) * 2018-05-16 2018-10-12 北京观详光电技术有限公司 一种混合式多普勒激光雷达及其使用方法
CN109164431A (zh) * 2018-08-24 2019-01-08 福建海创光电有限公司 激光雷达收发共轴光学引擎结构
CN109828258A (zh) * 2019-02-14 2019-05-31 昂纳信息技术(深圳)有限公司 一种收发装置及激光雷达

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2787588B1 (fr) * 1998-12-18 2001-03-16 Thomson Csf Systeme lidar et application a un systeme radar
CN101424626A (zh) * 2008-11-12 2009-05-06 西安金和光学科技有限公司 一种光纤光栅传感器
CN104991338A (zh) * 2015-07-31 2015-10-21 苏州微清医疗器械有限公司 一种共焦眼底扫描显微镜
CN206321794U (zh) * 2016-12-30 2017-07-11 深圳市速腾聚创科技有限公司 多线激光雷达
CN208013431U (zh) * 2018-03-01 2018-10-26 深圳市镭神智能系统有限公司 一种激光雷达

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180088235A1 (en) * 2012-12-18 2018-03-29 Uber Technologies, Inc. Multi-clad fiber-based light detection and ranging sensor
CN103744145A (zh) * 2013-12-31 2014-04-23 武汉电信器件有限公司 单光口波分复用/解复用光电收发器件
CN108646230A (zh) * 2018-05-16 2018-10-12 北京观详光电技术有限公司 一种混合式多普勒激光雷达及其使用方法
CN108627812A (zh) * 2018-05-28 2018-10-09 成都信息工程大学 一种激光雷达大气能见度测量方法及装置
CN109164431A (zh) * 2018-08-24 2019-01-08 福建海创光电有限公司 激光雷达收发共轴光学引擎结构
CN109828258A (zh) * 2019-02-14 2019-05-31 昂纳信息技术(深圳)有限公司 一种收发装置及激光雷达

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112099023A (zh) * 2020-09-15 2020-12-18 森思泰克河北科技有限公司 多线激光雷达
CN112099023B (zh) * 2020-09-15 2023-10-13 森思泰克河北科技有限公司 多线激光雷达
CN112099024A (zh) * 2020-09-16 2020-12-18 森思泰克河北科技有限公司 单轴旋转的二维扫描系统和多线激光雷达
CN112099024B (zh) * 2020-09-16 2023-10-13 森思泰克河北科技有限公司 单轴旋转的二维扫描系统和多线激光雷达
CN113655465A (zh) * 2021-08-12 2021-11-16 重庆理工大学 一种基于多波长连续扫描的抗干扰激光雷达
CN113655465B (zh) * 2021-08-12 2024-05-24 重庆理工大学 一种基于多波长连续扫描的抗干扰激光雷达
CN113777581A (zh) * 2021-08-30 2021-12-10 厦门大学 一种水下收发的分离式水体探测激光雷达

Also Published As

Publication number Publication date
CN109828258A (zh) 2019-05-31

Similar Documents

Publication Publication Date Title
WO2020164221A1 (zh) 一种收发装置及激光雷达
CN110333511B (zh) 一种收发同步激光雷达光学系统
CN108445467B (zh) 一种扫描激光雷达系统
CN111722237B (zh) 基于透镜和集成光束收发器的激光雷达探测装置
WO2020156372A1 (zh) 一种分布式激光雷达系统和激光测距方法
JP2019512710A (ja) Lidarに基づく3次元撮像のための統合された照射及び検出
WO2020114229A1 (zh) 激光雷达光学系统及扫描方法
CN109597050A (zh) 一种激光雷达
CN110389354B (zh) 一种多线激光雷达及其驱动方法
WO2020248336A1 (zh) 多线激光雷达
WO2021196193A1 (zh) 激光雷达及自动驾驶设备
CN110389355B (zh) 一种多线激光雷达
WO2021143665A1 (zh) 一种棱镜及多线激光雷达
CN116224298B (zh) 激光雷达和可移动设备
CN110531369B (zh) 一种固态激光雷达
US20230035528A1 (en) Lidar and automated driving device
CN109444850A (zh) 相控阵激光雷达
CN109444851A (zh) 激光发射机构及相控阵激光雷达
CN211718520U (zh) 一种多线激光雷达
CN103630337A (zh) 透镜前端焦距测量装置和方法
CN210835218U (zh) 一种二维mems扫描振镜激光雷达
WO2023035326A1 (zh) 一种混合固态激光雷达及其扫描方法
CN112888957B (zh) 激光发射装置、激光雷达和智能感应设备
CN111366907B (zh) 一种mems三维激光雷达系统
CN209746129U (zh) 一种分布式激光雷达系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19914782

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19914782

Country of ref document: EP

Kind code of ref document: A1