WO2023143078A1 - 激光雷达及终端设备 - Google Patents

激光雷达及终端设备 Download PDF

Info

Publication number
WO2023143078A1
WO2023143078A1 PCT/CN2023/071712 CN2023071712W WO2023143078A1 WO 2023143078 A1 WO2023143078 A1 WO 2023143078A1 CN 2023071712 W CN2023071712 W CN 2023071712W WO 2023143078 A1 WO2023143078 A1 WO 2023143078A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
mirror
station
lasers
view
Prior art date
Application number
PCT/CN2023/071712
Other languages
English (en)
French (fr)
Inventor
郭利德
杨川
徐运强
高帅文
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023143078A1 publication Critical patent/WO2023143078A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/4802Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the present application relates to the field of using laser scanning to detect the external environment, in particular to a laser radar and a terminal device.
  • Lidar is a device that detects the characteristic quantity of a target by emitting laser light to scan and detect the return light reflected by the target.
  • the basic principle of lidar is: the transmitting component emits a certain power of laser, which is reflected by the optical component and transmitted through the atmosphere to transmit the radiation to the target object. The return light reflected by the target object is received by the detection component, and then the signal processing unit extracts the returned light. useful information. Therefore, a complete lidar should include emission components, optical components, detection components and signal processing systems.
  • the lidar can emit a Gaussian pulse waveform, and after the beam is expanded, the two-dimensional optical scanning system points to the target, and the return light reflected from the target is detected by a high-sensitivity avalanche diode The output of the avalanche diode detector is sent to the computer by the high-speed data acquisition card for processing.
  • lidar especially two-dimensional scanning lidar, field of view angle, measurement distance and point cloud density are important parameters of lidar.
  • the MEMS vibrating mirror is used to realize laser two-dimensional scanning and receive the reflected return light, the field of view angle and measurement distance of the laser radar will be small.
  • the point cloud density is increased by increasing the laser of the emitting component and the detector of the detecting component, it will have a very large negative impact on the size, cost and power consumption of the lidar. Therefore, in the actual application process of two-dimensional scanning lidar, it is necessary to take into account the field of view angle, measurement distance and point The performance of cloud density three.
  • a lidar which can take into account the field of view angle, measurement distance and point Cloud density three.
  • a terminal device including the above-mentioned laser radar, which has the same effect.
  • an embodiment of the present application provides a laser radar, which includes:
  • An emitting component which is used to emit multiple laser beams, the optical axes of the multiple laser beams are located in the same plane, and the multiple laser beams are symmetrically distributed relative to the reference line in the plane, and the laser beams distributed on the outside relative to the reference line
  • the angle between the optical axis of the laser and the reference line is greater than the angle between the optical axis of the laser on the inner side and the reference line;
  • An optical assembly which includes a mirror, a first optical device, and a second optical device, and the multi-path laser light is sequentially incident on the first optical device and the second optical device through the through holes in the mirror , the first optical device is used to scan the multiple lasers in the vertical direction, the second optical device is a multi-faceted scanning mirror capable of non-uniform rotation, and is used to scan the multiple lasers in the horizontal direction, The second optical device is also used to receive the return light reflected by the target from the multi-path laser light and enter the detection assembly through the first optical device; and
  • the detecting component is used for detecting the returning light.
  • the multi-faceted scanning rotating mirror to receive the return light, it is beneficial to ensure that the mirror surface receiving the return light has a sufficient area, thereby increasing the field of view angle and measurement distance of the laser radar.
  • the angle between the laser near the reference line and the reference line smaller in the multiple laser beams of the emitting component, it is beneficial to change the number density of the laser radar in the vertical field of view with a simple layout.
  • the acquisition points in the predetermined area of the vertical field of view in a single point cloud image will The density is the highest, so that the point cloud density in the predetermined area of the vertical field of view can be increased; by making the multi-faceted scanning rotating mirror that scans in the horizontal direction adaptively change the rotation speed during the scanning laser, the point cloud density of the horizontal field of view in the predetermined area can be increased. Point cloud density.
  • the lidar without increasing the size, cost, and power consumption of the lidar and without reducing the frame rate of the lidar, it is possible to take into account the field of view angle of the lidar, the measurement distance, and the point cloud density of a predetermined area in the field of view .
  • the emitting component includes a plurality of lasers, each of the lasers can emit one path of the laser light, and the plurality of lasers emit the multiple paths of laser light; or
  • the emitting component includes a laser and a beam splitting system, and the laser beam emitted by the one laser is divided into the multiple laser beams through the beam splitting system.
  • the emitting assembly when the emitting assembly includes a plurality of lasers, the emitting assembly includes a middle laser and two side lasers, and the two side lasers are located on both sides of the middle laser
  • the lasers emitted by a plurality of the middle lasers are scanned in the vertical direction to obtain a first vertical field of view angle
  • the lasers emitted by each of the lasers on both sides are scanned in a vertical direction to obtain a second vertical field of view angle respectively
  • the first vertical field of view is obtained by scanning in a vertical direction.
  • the angles of the angle of view and the second vertical angle of view are the same.
  • the first vertical viewing angle and the second vertical viewing angle are both 10 degrees
  • the number of the middle lasers is three, the angle between the lasers emitted by adjacent middle lasers is 2 degrees, and the number of the lasers on both sides for 2 pcs.
  • the number of the middle lasers is 8, the angle between the lasers emitted by the adjacent middle lasers is 0.28 degrees, and the number of the lasers on both sides for 2 pcs.
  • a preferred example of the angle between the number of lasers and the laser light emitted by the intermediate laser is defined, which is conducive to realizing the predetermined area with a relatively cost-effective solution.
  • a lidar with a sufficiently dense point cloud is defined, which is conducive to realizing the predetermined area with a relatively cost-effective solution.
  • the angular resolution of the vertical field of view of the middle laser is 0.03125 degrees, and the angular resolution of the vertical field of view of the lasers on both sides is 0.25 degrees.
  • the angular resolution corresponding to the vertical field of view of the middle laser can achieve very high precision.
  • each mirror of the multi-faceted scanning rotor scans the multi-path laser
  • the mirror for scanning when the mirror for scanning is located in the first rotational area, the The rotational speed of the multi-faceted scanning rotating mirror is the smallest, wherein the first rotating area is scanned to obtain the central area of the horizontal field of view of the lidar.
  • the rotation speed of each mirror surface of the multi-faceted scanning rotating mirror that scans in the horizontal direction can be minimized in the first rotation area during the laser scanning process, so that when the number of acquisition frames and other parameters remain unchanged,
  • the collection point density is the largest in a predetermined area of the horizontal field of view corresponding to the first rotational speed area, thereby increasing the point cloud density of the predetermined area of the horizontal field of view.
  • the rotational speed of the multi-faceted scanning rotating mirror first decreases and then increases when each mirror surface scans the multi-path laser.
  • the rotation speed of the laser radar is controlled by the control signal to first decrease and then increase, so that the rotation speed of the mirror surface of the multi-faceted scanning rotating mirror is at the minimum in the first rotation speed region, thereby increasing the speed of the predetermined region corresponding to the first rotation speed region of the horizontal field of view.
  • Point cloud density
  • the density of the point cloud in the predetermined area of the horizontal field of view can be maximized.
  • each mirror surface of the multi-faceted scanning rotating mirror is sequentially rotated to the first station, the second station, the third station, the fourth station, The fifth station and the sixth station, wherein the rotation area between the third station and the fourth station is the first rotation area,
  • the rotating speed of the multi-faceted scanning mirror is V1;
  • the rotating speed of the multi-faceted scanning mirror is V2, V2 ⁇ V1;
  • the rotating speed of the multi-faceted scanning mirror is V3, V3 ⁇ V2;
  • the rotating speed of the multi-faceted scanning mirror is V2;
  • the rotating speed of the multi-faceted scanning mirror is V1.
  • the motor is provided with six different stations and adopts different rotational speeds during the rotation process between adjacent stations, so that the density of acquisition points in the regions corresponding to different rotational speeds in a single point cloud image is different , that is, the point cloud density is different. Further, the smaller the rotational speed, the greater the density of the collected points in the point cloud image, and the greater the density of the point cloud. That is to say, by adopting the above-mentioned technical solution, the rotational speed is used to increase the point cloud density of the predetermined area of the horizontal field of view for each mirror surface during the rotation process of the multi-faceted rotating mirror.
  • the motor of the multi-faceted scanning rotating mirror rotates a mechanical angle of 90 degrees
  • the first station The motor is located at 0 degrees
  • the second station is the motor at 22.5 degrees
  • the third station is the motor at 37.5 degrees
  • the fourth station is the motor Located at the position of 52.5 degrees
  • the fifth station is the position of the motor at 67.5 degrees
  • the sixth station is the position of the motor at 90 degrees.
  • the first optical device is a multi-faceted scanning rotating mirror or a one-dimensional vibrating mirror.
  • the first optical device adopts a multi-faceted scanning rotating mirror
  • the field of view angle and measurement distance of the lidar can be further guaranteed.
  • the cost can be reduced compared with using a multi-faceted scanning rotating mirror.
  • the second optical device adopts a sloped trapezoidal mirror, and the second optical device is located above a side of the first optical device.
  • the flexibility of the structural layout of the laser radar of the present application is improved, so that the laser radar can be applied to different application scenarios.
  • embodiments of the present application provide a terminal device, where the terminal device includes the lidar described in any one of the above technical solutions.
  • the terminal device is a vehicle.
  • FIG. 1A is a schematic diagram showing the structure of a laser radar according to a first embodiment of the present application.
  • FIG. 1B is a diagram showing a part of scanning horizontal lines generated during the operation of the lidar in FIG. 1A .
  • FIG. 1C is a graph for explaining the point cloud density of the vertical field of view of the lidar in FIG. 1A .
  • FIG. 1D is a graph for explaining the point cloud density of the vertical field of view and the horizontal field of view of the lidar in FIG. 1A .
  • FIG. 2A is a schematic diagram showing the structure of a laser radar according to a second embodiment of the present application.
  • FIG. 2B is a diagram showing a part of scanning horizontal lines generated during the operation of the lidar in FIG. 2A .
  • FIG. 2C is a graph for explaining the point cloud density of the vertical field of view and the horizontal field of view of the lidar in FIG. 2A .
  • FIG. 3 is a schematic diagram showing the structure of a laser radar according to a third embodiment of the present application.
  • FIG. 4 is a schematic diagram showing the structure of a laser radar according to a fourth embodiment of the present application.
  • Emitting assembly 11 Laser 111 Middle laser 112 Lasers on both sides 12 Emitting optical lens
  • beam splitter 2 optical assembly 21 reflective mirror 22 one-dimensional vibrating mirror 23 multi-faceted scanning rotating mirror 3 detection assembly 31 return optical lens 32 detector.
  • number density refers to the ratio between the number of laser light scanned by the lidar in a predetermined area of its vertical field of view and the angle of view corresponding to the area.
  • the multi-path laser light emitted by the emission component refers to the multi-path laser light emitted by the laser of the emission component after passing through the necessary optical system to generate the converged multi-path laser light.
  • the angle between the two laser beams refers to the angle between the optical axes of the two laser beams.
  • a “mirror” is a reflective optical element used to deflect an incident light beam.
  • the "galvanometer” is a high-precision, high-speed servo control system composed of optical components and swing motors. After inputting a position signal, the oscillating motor will make the optical component oscillate at a certain angle according to the conversion ratio of certain voltage and angle. The whole process can be controlled by closed-loop feedback, and the position sensor, error amplifier, power amplifier, position distinguisher, current integrator and other control circuits work together.
  • One-dimensional galvanometer refers to a galvanometer that can only perform one rotational degree of freedom.
  • a “multi-faceted scanning mirror” is an optical element that uses multiple mirrors to reflect incident light beams in a specific manner and time sequence, and is used to achieve beam deflection.
  • the multi-faceted scanning mirror of the present application typically refers to a scanning mirror having a plurality of flat mirror surfaces, which has optical components and a motor.
  • the "returning light lens” is a lens for returning light, and the lens is a refractive optical element made of a transparent material with a curved surface.
  • detector refers to a photodetector or photodetector capable of converting incident light into a corresponding electrical signal.
  • the "central region" of the vertical field of view refers to a region extending from the centerline of the vertical field of view toward both sides at a predetermined angle, and the angle of this region can be set arbitrarily as required.
  • the "central area” of the horizontal field of view refers to the area extending from the centerline of the horizontal field of view to both sides at a predetermined angle, and the angle of this area can be set arbitrarily according to needs.
  • the "predetermined area” does not specifically refer to the above-mentioned central area, but a different area that can be selected within the field of view of the laser radar according to the needs of the equipment using the laser radar.
  • the position of the predetermined area within the field of view And the size can be adjusted as needed.
  • the multiple laser beams emitted by the emitting component are located in the same plane, and the multiple laser beams are distributed symmetrically with respect to the reference line in this plane, and make the relative reference line
  • the angle between the optical axis of the laser light distributed on the outside and the reference line is greater than the angle between the optical axis of the laser light on the inside and the reference line;
  • the second optical device is variable in speed so that it can rotate at a non-uniform speed
  • the multi-faceted scanning rotating mirror is used to scan the multi-path laser light in the horizontal direction and receive the return light reflected by the target object before the first optical device.
  • the multi-faceted scanning mirror to receive the return light, it is beneficial to ensure that the mirror surface receiving the return light has a sufficient area, thereby increasing the field of view angle and measurement distance of the laser radar.
  • the angle between the laser near the reference line and the reference line in the multiple laser beams of the emitting component it is beneficial to change the number density of the laser radar in the vertical field of view with a simple layout. In this way, by making the corresponding laser radar The number density of lasers in the predetermined area of the vertical field of view is the largest. When the number of acquisition frames and other parameters remain unchanged, the density of acquisition points in the predetermined area of the vertical field of view in a single point cloud image is the largest, so that the vertical field of view can be increased.
  • the point cloud density of the corresponding area of the field of view; the point cloud density of the predetermined area of the horizontal field of view can be increased by adaptively changing the rotational speed of the multi-faceted scanning rotating mirror that scans in the horizontal direction during the process of scanning the laser. Therefore, without increasing the size, cost, and power consumption of the lidar and without reducing the frame rate of the lidar, it is possible to take into account the field of view angle of the lidar, the measurement distance, and the point cloud density of a predetermined area in the field of view .
  • the laser radar according to the first embodiment of the present application is a two-dimensional scanning laser radar, which includes a transmitting assembly 1 (including five lasers 11 arranged side by side), an optical assembly 2 (including a mirror 21 , one-dimensional vibrating mirror 22, multi-faceted scanning rotating mirror 23) and detection assembly 3 (including return light lens 31 and detector 32).
  • a transmitting assembly 1 including five lasers 11 arranged side by side
  • an optical assembly 2 including a mirror 21 , one-dimensional vibrating mirror 22, multi-faceted scanning rotating mirror 23
  • detection assembly 3 including return light lens 31 and detector 32.
  • the lasers emitted by the five lasers 11 of the emitting assembly 1 are transmitted toward the optical assembly 2 in a converging manner, and these lasers are collimated in the emitting assembly 1, so that their optical paths (spots) radius) remain unchanged.
  • the multiple laser beams emitted by the emitting assembly 1 pass through the mirror 21 of the optical assembly 2 .
  • the multi-path laser is incident on the one-dimensional vibrating mirror 22 (which can be a one-dimensional MEMS vibrating mirror) of the optical assembly 2, and the multi-path laser is scanned in the vertical direction (scanning in one dimension) by the one-dimensional vibrating mirror 22;
  • the multi-faceted scanning rotating mirror 23 of the optical assembly 2 performs horizontal scanning (scanning in another dimension orthogonal to the above-mentioned one dimension) of multiple laser beams.
  • the returning light is refracted by the multi-faceted scanning rotating mirror 23, the one-dimensional galvanometer 22 and the mirror 21, and then enters the detection component
  • the return light lens 31 of 3 (other optical systems can be selected as required) performs operations such as convergence on the return light, and is finally collected by the detector 32 of the detection assembly 3 .
  • the inventors have found through research that the most important factor limiting the measurement distance of the laser radar is the size of the mirror receiving the return light.
  • the larger the mirror receiving the return light the more photons the lidar detection component can receive. Since the reliability of the MEMS oscillating mirror becomes larger, the reliability is difficult to be guaranteed and the cost is greatly increased, and the vibration frequency needs to be increased to ensure the frame rate of the lidar after the MEMS galvanizing mirror becomes larger, so in those who only use the micro Electromechanical system galvanometer to realize two-dimensional scanning laser radar generally has insufficient measurement distance.
  • the lidar mostly uses a multi-faceted scanning mirror to receive the return light
  • the multi-faceted scanning rotating mirror 23 is not only used for scanning in the horizontal direction, but also used for receiving returning light, thereby ensuring the measurement distance of the laser radar.
  • the inventors have found through research that the multi-faceted scanning mirror can quickly rotate 360 degrees, which is conducive to ensuring the field of view angle of the lidar.
  • the horizontal field of view angle is determined by the number N of faces of the multi-faceted scanning rotating mirror, specifically 2 ⁇ (360/N) degrees.
  • one-dimensional galvanometers can only pivot within a small predetermined range, making it difficult to achieve such a large field of view. Based on the above research results, the multi-faceted scanning rotating mirror 23 is not only used for scanning in the horizontal direction, thereby ensuring the field of view angle of the lidar.
  • the cost factor if the cost factor is not considered, another multi-faceted scanning mirror can be used to scan the multi-channel laser in the vertical direction.
  • the multi-faceted scanning mirror requires a high-precision encoder to detect the position of the rotating multi-faceted scanning mirror, which makes the cost of the entire multi-faceted scanning mirror relatively high.
  • the vertical field of view of lidar is generally between 10 degrees and 40 degrees, so it can be realized by a one-dimensional galvanometer. Therefore, considering the cost factor, in this embodiment, the one-dimensional vibrating mirror 22 is used to scan the vertical field of view.
  • a scheme for increasing the point cloud density of a predetermined area (for example, a central area) of the vertical field of view of the lidar is described below.
  • the one-dimensional vibrating mirror 22 is used to scan in the vertical direction in the slow axis mode
  • the multi-faceted scanning rotating mirror 23 is used to scan in the horizontal direction in the mode of the fast axis, so the laser light emitted by each laser 11 is incident on the one-dimensional After the oscillating mirror 22 and the multi-faceted scanning rotating mirror 23, a scanning horizontal line as shown in FIG. 1B will be formed.
  • the vertical field of view angle of the lidar is 30 degrees, and the five laser beams emitted by the five lasers are evenly distributed, and the laser light emitted by each laser corresponds to a vertical field of view angle of 6 degrees. That is to say, in this comparative example, since the laser light is uniformly distributed, the laser light density in each region is the same in the entire vertical field of view, and thus the point cloud density in the vertical field of view is the same. That is to say, the distribution of scanning horizontal lines is uniform (refer to FIG. 1B ), and the angular resolution is constant in each area.
  • the vertical field of view angle of the lidar is 30 degrees, but the five lasers emitted by the five lasers are not evenly distributed.
  • the three lasers 11 are uniformly distributed throughout the vertical field of view, so that the three laser beams emitted by the three lasers 11 are evenly distributed within the range of 30 degrees of vertical field of view, wherein the laser light emitted by each laser 11 corresponds to 10 degree vertical field of view angle.
  • the number of scanning horizontal lines corresponding to each laser in each point cloud image is M1
  • the angular resolution of the three lasers in the entire vertical field of view is 10/M1 degrees.
  • the two lasers 11 are arranged on both sides of the central laser 11 close to the above-mentioned three lasers 11 and close to the central laser 11, so that the gap between the laser 11 arranged behind and the optical axis of the laser light emitted by the above-mentioned central laser 11
  • the angle is small (eg 2 degrees).
  • the laser light emitted by the central laser 11 is a reference laser
  • the angular resolution within 10 degrees of the central area of the vertical field of view is (10/M1)/3 degrees.
  • the central laser 11 and the two lasers 11 arranged close to it can be regarded as the middle laser of this application, and the remaining two lasers 11 can be regarded as side lasers.
  • the optical axis of the laser light emitted by the laser 11 close to the central laser 11 and the optical axis of the laser light emitted by the central laser 11 smaller, the optical axis of the laser light emitted by the lasers 11 on both sides and the central laser 11
  • the angle between the optical axes of the emitted laser light is relatively large, and the number of laser lights corresponding to a predetermined area (such as a central area) of the vertical field of view of the laser radar is increased to increase the number density of laser light in the predetermined area, which can make the There are more laser scanning horizontal lines in the area, and finally the point cloud density in the predetermined area (central area) of the vertical field of view of the lidar as shown in FIG. 1C becomes larger.
  • a solution for increasing the point cloud density of a predetermined area (for example, a central area) of the horizontal field of view of the lidar will be described below.
  • the polygonal scanning mirror 23 is a polygonal mirror with four mirror surfaces. According to the formula for calculating the horizontal field of view angle described earlier, each mirror surface can form a maximum horizontal field of view of 180 degrees. Angle, which corresponds to the mechanical angle at which the motor of the polygon scanning mirror 23 rotates 90 degrees.
  • the multi-faceted scanning rotating mirror 23 can be controlled so that the multi-faceted scanning rotating mirror 23 can scan more than one point on each mirror surface.
  • the rotational speed of the multi-faceted scanning rotating mirror is the smallest.
  • each mirror surface of the multi-faceted scanning rotating mirror 23 can be rotated to the first station, the second station, the third station, the fourth station, the fifth station and the sixth station sequentially along the rotation direction.
  • the rotation area between the third station and the fourth station is the first rotation area.
  • the rotating speed of the multi-faceted scanning mirror is V1; when the mirror rotates from the second station to the third station, the rotating speed of the multi-faceted scanning mirror is V1 V2, V2 ⁇ V1; when the mirror rotates from the third station to the fourth station, the rotation speed of the multi-faceted scanning mirror is V3, V3 ⁇ V2; when the mirror rotates from the fourth station to the fifth station During the process, the rotating speed of the multi-faceted scanning mirror is V2; when the mirror rotates from the fifth station to the sixth station, the rotating speed of the multi-faceted scanning mirror is V1.
  • the first station is where the motor is at 0 degrees
  • the second station is where the motor is at 22.5 degrees
  • the third station is where the motor is at 37.5 degrees
  • the fourth station is where the motor is at 52.5 degrees
  • the fifth station is the position of the motor at 67.5 degrees
  • the sixth station is the position of the motor at 90 degrees.
  • the polygonal scanning mirror 23 can be in three different working states by controlling the motor of the polygonal scanning mirror 23 , and the rotating speed of the polygonal scanning mirror 23 is different in different working states.
  • the speed decreases rapidly to V2 and the motor turns to a mechanical angle of 37.5 degrees at the speed V2 corresponding to the second working state Afterwards, the speed decreases rapidly to V3 and the motor turns to 52.5 degrees at the speed V3 corresponding to the third working state, then the speed increases rapidly to V2 and after the motor turns to 67.5 degrees at the speed V2 corresponding to the second working state, the speed quickly Increase to V1 and the motor rotates from 67.5 degrees to a mechanical angle of 90 degrees at the speed V1 corresponding to the first working state, thereby completing the scanning process of one mirror surface of the multi-faceted scanning rotating mirror 23 .
  • the point cloud density of this application can be achieved taking into account the measurement distance, field of view angle and predetermined area without increasing the size, cost and power consumption of the lidar and without reducing the frame rate of the lidar scheme.
  • the principle of realizing the purpose of this application is the same between the laser radar according to the second embodiment of the present application and the laser radar according to the first embodiment of the present application, and the following mainly explains the structural differences between the two the difference.
  • the emission assembly 1 includes a plurality of lasers 11 and an emission lens 12, and the plurality of lasers 11 includes a plurality of intermediate lasers 111 arranged in the middle and a plurality of intermediate lasers 111 arranged on both sides of these intermediate lasers 111. Lasers 112 on both sides at a farther position.
  • the multiple laser beams emitted by them are converged by the emitting optical lens 12 .
  • the laser light of the intermediate laser 111 refracted by the emitting optical lens 12 has a smaller angle between the optical axes of the two adjacent laser beams.
  • the included angle between the optical axis of the laser light of the two side lasers 112 and the optical axis of the laser light of any middle laser 111 has a larger angle.
  • the laser light of the middle laser 111 corresponds to the central area where the field of view angle in the vertical direction is 10 degrees
  • the two laser beams of the lasers 112 on both sides correspond to the two areas where the field of view angle in the vertical direction is 10 degrees. side area.
  • a laser beam passes through the reflector 21 and then passes through the one-dimensional galvanometer 22 and the rotating multi-faceted scanning mirror 23 for two-dimensional scanning to obtain a scanning horizontal line.
  • the middle laser 111 uses eight lasers to emit laser light
  • the horizontal line graph on the right side of Figure 2B can be obtained from the horizontal line graph on the left side of Figure 2B
  • the point cloud density shown in Figure 2C can be obtained by combining the scheme of increasing the point cloud density in the central area of the horizontal field of view The enlarged final rendering.
  • the resolution of the central area S5 where the horizontal field of view and the vertical field of view overlap can reach 0.1 degrees ⁇ 0.03125 degrees (the former is the angular resolution of the horizontal field of view, the latter is the angular resolution of the vertical field of view Angular resolution, the same below), the angular resolution of the sparsest edge areas S1, S3, S7, S9 is 0.25 degrees ⁇ 0.25 degrees, and the angular resolution of the sub-dense areas S4, S6 on the left and right sides of the central area S5 is 0.25 degrees ⁇ 0.03125 degrees, and the angular resolution of the sub-dense areas S2 and S8 on the upper and lower sides of the central area S5 is 0.1 degrees ⁇ 0.25 degrees.
  • the above-mentioned effect of increasing the point cloud density in the central area of the vertical field of view is realized by the so-called "flower arrangement" scanning in the middle laser 111, but in order to ensure that the scanning horizontal lines of the middle laser 111 do not overlap, in In this embodiment, the angle between adjacent intermediate lasers 111 emitting laser light from the emitting assembly is 0.28 degrees.
  • the detectors 32 of the detection assembly 3 are multi-point laser detectors, and the number of detectors 32 may correspond to the number of lasers 11 .
  • the principle of realizing the purpose of this application is the same between the laser radar according to the third embodiment of the present application and the laser radar according to the first embodiment of the present application, and the following mainly explains the structural differences between the two the difference.
  • the emitting assembly 1 includes a single laser 11 and a beam splitter 13 matched with the laser 11 .
  • the laser light emitted by the laser 11 is split by the beam splitter 13, and the split laser beams are divergently transmitted to the emitting light lens 12 for convergence, and the layout of the laser beams can be carried out according to the same principle as the previous embodiment.
  • the optical splitting technology used by the optical splitter 13 may adopt the optical fiber splitting technology, or the optical splitting technology of the diffractive optical lens or array.
  • the principle of realizing the purpose of this application is the same between the laser radar according to the fourth embodiment of the present application and the laser radar according to the first embodiment of the present application, and the following mainly explains the structural differences between the two the difference.
  • the multi-faceted scanning rotating mirror 23 adopts a gradient mirror, which can be placed above the side of the one-dimensional vibrating mirror 22 when it is installed in place, and other components and functions remain unchanged.
  • the optical axes of the multiple laser beams emitted by the emitting assembly 1 are located in the same plane. Convergence is achieved during the transmission of multiple laser beams from the emitting assembly 1 toward the mirror 21 of the optical assembly 2 .
  • the optical axes of the multi-path laser light are optionally located in the same plane.
  • the multiple lasers are symmetrically distributed relative to the reference line, and the angle between the optical axis of the outer laser and the reference line is larger than the optical axis of the inner laser and the reference line angle. It can be understood that if the number of lasers emitted by the emitting assembly 1 is odd, the reference line coincides with the optical axis of the most central laser; Road to the midline between the optical axes of the lasers.
  • the angle between the optical axes of the adjacent laser beams on the inside relative to the reference line can be made smaller, and the laser beams on the outside relative to the reference line can be made smaller.
  • the angle between the optical axes of adjacent lasers is relatively large so that the number density of the multi-path lasers in the central area of the field of view is relatively large.
  • the angle between the optical axes of the laser beams emitted by the three central lasers 11 is 2 degrees, and the lasers 11 on both sides are connected to the central laser 11 .
  • the effect of increasing the point cloud density of the predetermined area can be achieved.
  • the angle between the corresponding lasers can be adjusted as needed, and the angle between each laser and the reference line can also be adjusted as needed, and horizontal lines scanned by different lasers in the same point cloud image should be avoided Do not overlap.
  • the laser 11 can be a laser 11 that emits an infrared laser of 800nm to 2000nm, can be a semiconductor laser, or can be a fiber laser.
  • the power of the laser 11 can be between 1W and 10000W.
  • a through hole needs to be formed in the middle of the mirror 21 to allow the passage of multiple laser beams, and the size and shape of the through hole can be adjusted as required. It can be understood that the reflection mirror 21 needs to fully reflect as much as possible for receiving the return light.
  • the one-dimensional vibrating mirror 22 can be driven in a sine wave manner, or in a triangular wave manner. If it is driven by a sine wave, the round trip can be used to generate point cloud images, but point cloud uniformity planning is required. If it is driven at a constant speed according to the triangular wave mode, the point cloud image can be generated in the slower speed range, and the point cloud image can be generated in the faster speed range (only for quick return). At this time, the rotation frequency of the one-dimensional vibrating mirror 22 corresponds to The scanning frame rate of the lidar.
  • the multi-point detector 32 may be a silicon photomultiplier tube laser detector or an avalanche photodiode laser detector, and these detectors may be spliced into a line, or a 1 ⁇ N line array detector may be used.
  • the number and positional relationship of the detectors 32 and the distribution of the laser light can be in one-to-one correspondence.
  • a laser radar with the following parameters can be realized, with a frame rate of 1 Hz to 50 Hz and above, a range of 300 m, and a field of view angle range of 140 degrees (horizontal field of view) ⁇ 30 degrees (vertical Angle of field of view), the angular resolution of the central field of view can be achieved at 0.1 degrees ⁇ 0.03125 degrees.
  • the angular resolution (point cloud density) of the measurement distance and the central field of view area is greatly improved.
  • the control module of the lidar can determine and generate control signals according to the point cloud density required in different areas of the horizontal field of view of the lidar, to control the multi-surface with variable speed
  • the scan mirror 23 rotates.
  • the control module can generate a corresponding control signal, and send the control signal to the execution module of the multi-faceted scanning mirror 23, and the execution module of the multi-faceted scanning mirror 23 receives the control signal, so that the execution module makes the multi-faceted scanning according to the control signal
  • the rotating mirror 23 rotates.
  • the rotational speed of the multi-faceted scanning rotating mirror 23 first decreases and then increases during each mirror scanning process, and the rotational speed is the smallest when corresponding to the central area .
  • a terminal device including the above-mentioned laser radar is also provided, and an optional solution of the terminal device is a vehicle, especially an automatic driving vehicle.
  • Lidar can be mounted on the front of the roof of an autonomous vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种激光雷达及终端设备,在该激光雷达中,通过利用多面扫描转镜(23)接收返回光,有利于保证接收返回光的镜面具有足够的面积,从而增大激光雷达的视场角度和测量距离。通过使对应激光雷达的多个激光束的夹角进行设定,能够增大垂直视场的预定区域的点云密度;通过使进行水平方向扫描的多面扫描转镜(23)在扫描激光的过程中适应性改变转速,能够增大水平视场的预定区域的点云密度。由此,在不增大激光雷达的尺寸、成本和功耗且激光雷达的帧率不减小的条件下,能够兼顾激光雷达的视场角度、测量距离和视场中预定区域的点云密度。

Description

激光雷达及终端设备
本申请要求于2022年1月29日提交中国专利局、申请号为202210112678.3、发明名称为“激光雷达及终端设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及利用激光扫描检测外部环境的领域,具体地涉及一种激光雷达及终端设备。
背景技术
激光雷达是通过发射激光进行扫描并探测目标物反射的返回光,来实现探测目标的特征量的装置。激光雷达的基本原理是:发射组件发射一定功率的激光,经过光学组件进行反射穿过大气传输辐射到目标物上,目标物反射的返回光由探测组件接收,再由信号处理单元提取返回光中的有用信息。因此,一个完整的激光雷达应当包括发射组件、光学组件、探测组件和信号处理系统。例如,在一个激光雷达的典型的示例中,激光雷达可以发射高斯型脉冲波形,经扩束后由二维光学扫描系统指向目标物,从目标物反射回的返回光由高灵敏度的雪崩二极管探测器探测,雪崩二极管探测器的输出由高速数据采集卡送入计算机进行处理。
对于激光雷达尤其是二维扫描激光雷达而言,视场角度、测量距离和点云密度是激光雷达的重要参数。在实现二维扫描的激光雷达中,如果采用微机电系统振镜实现激光二维扫描且接收反射的返回光,则导致激光雷达的视场角度和测量距离较小。如果通过大量增加发射组件的激光器和探测组件的探测器来增大点云密度,则对激光雷达的尺寸、成本和功耗造成非常大的负面影响。因此,在二维扫描激光雷达的实际应用过程中,需要在不增大激光雷达的尺寸、成本和功耗且激光雷达的帧率不减小的条件下,兼顾视场角度、测量距离和点云密度三者的性能。
发明内容
有鉴于此,提出了一种激光雷达,该激光雷达能够在不增大激光雷达的尺寸、成本和功耗且激光雷达的帧率不减小的条件下,兼顾视场角度、测量距离和点云密度三者。还提出了一种包括上述激光雷达的终端设备,该终端设备具有同样的效果。
为此,本申请采用如下的技术方案。
第一方面,本申请的实施例提供了一种激光雷达,所述激光雷达包括:
发射组件,其用于发射多路激光,所述多路激光的光轴位于同一平面内,在所述平面内所述多路激光相对于基准线对称分布,相对所述基准线靠外侧分布的激光的光轴与所述基准线的夹角大于靠内侧的激光的光轴与所述基准线的夹角;
光学组件,其包括反光镜、第一光学器件和第二光学器件,所述多路激光穿过所述反光镜中的通孔顺次入射到所述第一光学器件和所述第二光学器件,所述第一光学 器件用于对所述多路激光进行垂直方向扫描,所述第二光学器件为能够非匀速转动的多面扫描转镜,用于对所述多路激光进行水平方向扫描,所述第二光学器件还用于接收所述多路激光被目标物反射的返回光并通过所述第一光学器件射入探测组件;以及
所述探测组件,其用于探测所述返回光。
通过采用上述技术方案,一方面,通过利用多面扫描转镜接收返回光,有利于保证接收返回光的镜面具有足够的面积,从而增大激雷达的视场角度和测量距离。另一方面,通过使发射组件多路激光中靠近基准线的激光与基准线的夹角较小,有利于以简单的布局改变激光雷达的激光在垂直视场上的数量密度。这样,通过使对应激光雷达的垂直视场的预定区域的激光的数量密度最大,在采集帧数以及其它参数不变的情况下,单个点云图像中在垂直视场的预定区域中的采集点密度最大,从而能够增大垂直视场的预定区域的点云密度;通过使进行水平方向扫描的多面扫描转镜在扫描激光的过程中适应性改变转速,能够增大预定区域的水平视场的点云密度。由此,在不增大激光雷达的尺寸、成本和功耗且激光雷达的帧率不减小的条件下,能够兼顾激光雷达的视场角度、测量距离和视场中预定区域的点云密度。
在根据第一方面的一种可能的实施方式中,所述发射组件包括多个激光器,每个所述激光器能够发射一路所述激光,所述多个激光器发射所述多路激光;或者
所述发射组件包括一个激光器以及分光系统,所述一个激光器发射的激光经过所述分光系统分成所述多路激光。
通过采用上述技术方案,可以根据激光雷达应用的不同场景使用不同的发射组件。在使用多个激光器的情况下,由于对各激光器的性能要求不高,因而能够降低成本;在使用一个激光器的情况下,能够节省对应的空间并简化安装过程。
在根据第一方面的一种可能的实施方式中,当所述发射组件包括多个激光器时,所述发射组件包括中间激光器和两侧激光器,所述两侧激光器位于所述中间激光器的两侧,多个所述中间激光器发射的激光通过垂直方向扫描得到第一垂直视场角度,每一个所述两侧激光器发射的激光通过垂直方向扫描分别得到第二垂直视场角度,所述第一垂直视场角度和所述第二垂直视场角度两者的角度大小相同。
通过采用上述技术方案,提出了一种易于实施的技术方案。在采用多个激光器的情况下,由于多个中间激光器与单个两侧激光器对应的垂直视场角度相同,因而单个点云图像中在多个中间激光器对应的区域采集点密度最大,使得垂直视场中对应多个中间激光器的预定区域的点云密度较大。
在根据第一方面的一种可能的实施方式中,所述第一垂直视场角度和所述第二垂直视场角度的大小均为10度,
通过采用上述技术方案,在采用多个激光器的一个可选方案中,限定了多个中间激光器和单个两侧激光器对应的垂直视场角度的优选示例,有利于构造具有足够大垂直视场角度的激光雷达。
在根据第一方面的一种可能的实施方式中,所述中间激光器的数量为3个,相邻的所述中间激光器发射的激光之间的夹角为2度,所述两侧激光器的数量为2个。
通过采用上述技术方案,在采用多个激光器的一个可选方案中,限定了激光器的数量和中间激光器发射的激光之间夹角的优选示例,有利于以较高性价比的方案实现 激光雷达。
在根据第一方面的一种可能的实施方式中,所述中间激光器的数量为8个,相邻的所述中间激光器发射的激光之间的夹角为0.28度,所述两侧激光器的数量为2个。
通过采用上述技术方案,在采用多个激光器的另一个可选方案中,限定了激光器的数量和中间激光器发射的激光之间夹角的优选示例,有利于以较高性价比的方案实现预定区域的点云密度足够大的激光雷达。
在根据第一方面的一种可能的实施方式中,所述中间激光器的垂直视场的角分辨率为0.03125度,所述两侧激光器的垂直视场的角分辨率为0.25度。
通过采用上述技术方案,在采用多个激光器的另一个可选方案中,对应中间激光器的垂直视场的角分辨率能够达到非常高的精度。
在根据第一方面的一种可能的实施方式中,所述多面扫描转在其每个镜面扫描所述多路激光的过程中,当进行扫描的所述镜面位于第一转动区域时,所述多面扫描转镜的转速最小,其中,所述第一转动区域扫描得到所述激光雷达的水平视场的中心区域。
通过采用上述技术方案,能够使进行水平方向扫描的多面扫描转镜的各镜面在扫描激光的过程中在第一转动区域内的转速最小,由此采集帧数以及其它参数不变的情况下,单个点云图像中在水平视场的与第一转速区域对应的预定区域中的采集点密度最大,从而增大水平视场的预定区域的点云密度。
在根据第一方面的一种可能的实施方式中,所述多面扫描转镜在其每个镜面扫描所述多路激光的过程中转速先减小后增大。
通过控制信号控制激光雷达的转速先减小后增大,使得多面扫描转镜的镜面处于第一转速区域内的转速最小,从而能够增大水平视场的与第一转速区域对应的预定区域的点云密度。
在根据第一方面的一种可能的实施方式中,所述第二光学器件在其每个镜面扫描所述多路激光的过程中,当与所述激光雷达的水平视场的预定区域对应时,所述第二光学器件的转速最小。
通过控制信号控制激光雷达的转速,能够使得水平视场的预定区域的点云密度最大。
在根据第一方面的一种可能的实施方式中,所述多面扫描转镜的每个镜面沿转动方向依次转动到第一工位、第二工位、第三工位、第四工位、第五工位以及第六工位,其中,所述第三工位与所述第四工位之间的转动区域为所述第一转动区域,
当所述镜面自所述第一工位转动至所述第二工位的过程中,所述多面扫描转镜的转速为V1;
当所述镜面自所述第二工位转动至所述第三工位的过程中,所述多面扫描转镜的转速为V2,V2<V1;
当所述镜面自所述第三工位转动至所述第四工位的过程中,所述多面扫描转镜的转速为V3,V3<V2;
当所述镜面自所述第四工位转动至所述第五工位的过程中,所述多面扫描转镜的转速为V2;
当所述镜面自所述第五工位转动至所述第六工位的过程中,所述多面扫描转镜的转速为V1。
通过采用上述技术方案,电机设置六个不同的工位并且在相邻工位之间转动过程中采用不同的转速,由此单个点云图像中与不同的转速对应的区域中的采集点密度不同,也就是点云密度不同。进一步地,转速越小,点云图像中采集点的密度越大,点云密度越大。也就是说,通过采用上述技术方案,利用转速实现每个镜面在多面转镜转动过程中增大水平视场的预定区域的点云密度。
在根据第一方面的一种可能的实施方式中,在每一个所述镜面的扫描开始到扫描结束的过程中所述多面扫描转镜的电机旋转90度的机械角度,所述第一工位为所述电机位于0度的位置,第二工位为所述电机位于22.5度的位置,所述第三工位为所述电机位于37.5度的位置,所述第四工位为所述电机位于52.5度的位置,所述第五工位为所述电机位于67.5度的位置,所述第六工位为所述电机位于90度的位置。
通过设置上述技术参数,能够保证水平视场中心区域(对应电机在37.5度至52.5度的转动过程)的点云密度最大。
在根据第一方面的一种可能的实施方式中,所述第一光学器件为多面扫描转镜或者一维振镜。
通过采用上述技术方案,在第一光学器件采用多面扫描转镜的情况下,能够进一步保证激光雷达的视场角度和测量距离。而在第一光学器件采用一维振镜的情况下,与采用多面扫描转镜相比能够降低成本。
在根据第一方面的一种可能的实施方式中,所述第二光学器件采用有斜度的梯面镜,所述第二光学器件位于所述第一光学器件的侧上方。
提高了本申请的激光雷达的结构布局的灵活性,使得激光雷达可以适用于不同的应用场景。
第一方面,本申请的实施例提供了一种终端设备,所述终端设备包括以上技术方案中任意一项技术方案所述的激光雷达。
提供了激光雷达的可选应用场景。
在根据第二方面的一种可能的实施方式中,所述终端设备为车辆。
有益效果,提供了激光雷达的典型应用场景。
本申请的这些和其他方面在以下(多个)实施例的描述中会更加简明易懂。
附图说明
包含在说明书中并且构成说明书的一部分的附图与说明书一起示出了本申请的示例性实施例、特征和方面,并且用于解释本申请的原理。
图1A是示出了根据本申请的第一实施例的激光雷达的结构的示意图。
图1B是示出了图1A中的激光雷达工作过程中产生的部分扫描横线的图。
图1C是用于说明图1A中的激光雷达的垂直视场的点云密度的图。
图1D是用于说明图1A中的激光雷达的垂直视场和水平视场的点云密度的图。
图2A是示出了根据本申请的第二实施例的激光雷达的结构的示意图。
图2B是示出了图2A中的激光雷达工作过程中产生的部分扫描横线的图。
图2C是用于说明图2A中的激光雷达的垂直视场和水平视场的点云密度的图。
图3是示出了根据本申请的第三实施例的激光雷达的结构的示意图。
图4是示出了根据本申请的第四实施例的激光雷达的结构的示意图。
附图标记说明
1发射组件11激光器111中间激光器112两侧激光器12发射光透镜
13分光器2光学组件21反光镜22一维振镜23多面扫描转镜3探测组件31返回光透镜32探测器。
具体实施方式
以下将参考附图详细说明本申请的各种示例性实施例、特征和方面。附图中相同的附图标记表示功能相同或相似的元件。尽管在附图中示出了实施例的各种方面,但是除非特别指出,不必按比例绘制附图。
在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。
另外,为了更好的说明本申请,在下文的具体实施例中给出了众多的具体细节。本领域技术人员应当理解,没有某些具体细节,本申请同样可以实施。在一些实例中,对于本领域技术人员熟知的方法、手段、元件未作详细描述,以便于凸显本申请的主旨。
在本申请中,“数量密度”是指激光雷达在其垂直视场的预定区域内进行扫描的激光的数量与该区域对应的视场角度之间的比值。
在本申请中,发射组件发射的多路激光是指通过发射组件的激光器发射的激光经由必要的光学系统产生汇聚之后的多路激光。另外,两路激光之间的夹角是指这两路激光的光轴之间的夹角。
在本申请中,“反光镜”是用于使入射的光束发生偏转的反射光学元件。
在本申请中,“振镜”是由光学部件与摆动电机组成的一个高精度、高速度伺服控制系统。在输入一个位置信号之后,摆动电机就会按一定电压与角度的转换比例使光学部件摆动一定角度。整个过程可以采用闭环反馈控制,由位置传感器、误差放大器、功率放大器、位置区分器、电流积分器等控制电路共同作用。“一维振镜”是指只能进行一个转动自由度的动作的振镜。
在申请中,“多面扫描转镜”是利用多个镜面能够使入射光束按照特定的方式和时间顺序进行反射的光学元件,用于实现光束的偏转。本申请的多面扫描转镜典型地是指具有多个平面镜面的扫描转镜,其具有光学部件和电机。
在本申请中,“返回光透镜”是用于返回光的透镜,该透镜是利用透明物质制成的表面为曲面的折射光学元件。
在本申请中,“探测器”是指光探测器或光检测器,其能够将入射的光转换成相应的电信号。
在本申请中,垂直视场的“中心区域”是指包括从垂直视场的中心线朝向两侧延展预定角度的区域,该区域的角度根据需要可以任意设定。水平视场的“中心区域”是指包括从水平视场的中心线朝向两侧延展预定角度的区域,该区域的角度根据需要 可以任意设定。
在本申请中,“预定区域”并非特指上述中心区域,而是可以根据采用激光雷达的设备的需要在激光雷达的视场范围内选择的不同区域,该预定区域在视场范围内的位置以及大小均可以根据需要进行调整。
以下阐述本申请的技术构思,在本申请的激光雷达中,一方面,发射组件发射的多路激光位于同一平面内,在该平面内多路激光相对于基准线对称分布,并使得相对基准线靠外侧分布的激光的光轴与所述基准线的夹角大于靠内侧的激光的光轴与所述基准线的夹角;另一方面,第二光学器件为转速可变以能够非匀速转动的多面扫描转镜,用于对多路激光进行水平方向扫描且先于第一光学器件接收多路激光被目标物反射的返回光。这样,通过利用多面扫描转镜接收返回光,有利于保证接收返回光的镜面具有足够的面积,从而增大激雷达的视场角度和测量距离。通过使发射组件多路激光中靠近基准线的激光与基准线的夹角较小,有利于以简单的布局改变激光雷达的激光在垂直视场上的数量密度,这样,通过使对应激光雷达的垂直视场的预定区域的激光的数量密度最大,在采集帧数以及其它参数不变的情况下,单个点云图像中在垂直视场的预定区域中的采集点密度最大,从而能够增大垂直视场的对应区域的点云密度;通过使进行水平方向扫描的多面扫描转镜在扫描激光的过程中适应性改变转速,能够增大水平视场的预定区域的点云密度。由此,在不增大激光雷达的尺寸、成本和功耗且激光雷达的帧率不减小的条件下,能够兼顾激光雷达的视场角度、测量距离和视场中预定区域的点云密度。
以下结合说明书附图说明根据本申请的第一实施例的激光雷达。
(根据本申请的第一实施例的激光雷达)
如图1A所示,根据本申请的第一实施例的激光雷达为二维扫描激光雷达,该激光雷达包括发射组件1(包括并排布置的五个激光器11)、光学组件2(包括反光镜21、一维振镜22、多面扫描转镜23)以及探测组件3(包括返回光透镜31和探测器32)。
在本实施例中,发射组件1的五个激光器11发射的激光以会聚的方式朝向光学组件2传输,这些激光在发射组件1内实现准直,由此在激光传输过程中其光径(光斑半径)保持不变。发射组件1发射的多路激光穿过光学组件2的反光镜21。之后多路激光入射到光学组件2的一维振镜22(可以是一维微机电系统振镜),通过一维振镜22对多路激光进行垂直方向扫描(一个维度的扫描);之后通过光学组件2的多面扫描转镜23对多路激光进行水平方向扫描(与上述一个维度正交的另一个维度的扫描)。在多路激光传输的过程中,一旦激光遇到目标物而被目标物漫反射之后,返回光再通过多面扫描转镜23、一维振镜22和反光镜21的折射后,入射到探测组件3的返回光透镜31(可以根据需要选择其它的光学系统)中对返回光进行会聚等操作,最后被探测组件3的探测器32收集。
以下说明本申请的激光雷达保证具有足够大的测量距离和视场角度的方案。
关于激光雷达的测量距离,经过发明人研究发现,限制激光雷达的测量距离最重要的因素是接收返回光的镜面的大小。在激光发射功率和目标物反射率不变的情况下,接收返回光的镜面越大,激光雷达的探测组件所能接收到的光子数就越多。由于微机电系统振镜的镜面变大之后可靠性难以得到保证且成本大幅增加,而且微机电系统振 镜的镜面变大后需要提升振动频率来保证激光雷达的帧率,所以在那些仅采用微机电系统振镜实现二维扫描的激光雷达一般测量距离都不足。相比之下,如果激光雷达多采用多面扫描转镜接收返回光,由于多面扫描转镜的镜面比较大的优点,因而显著改善了测量距离。基于上述研究结果,在本实施例中,多面扫描转镜23不仅用于进行水平方向扫描,而且还用于接收返回光,由此保证了激光雷达的测量距离。
关于激光雷达的视场角度,经过发明人研究发现,多面扫描转镜能够进行360度快速旋转,有利于保证激光雷达的视场角度。具体地,在本申请中,水平视场角度由多面扫描转镜的面的数量N决定,具体为2×(360/N)度。进一步地,在本实施例中,当N=4时,水平视场角度能够达到180度,在实际应用中可能会稍小于这个角度。相比之下,一维振镜只能在较小的预定范围内枢转,因而难以实现这样大的视场角。基于上述研究结果,多面扫描转镜23不仅用于进行水平方向扫描,由此保证了激光雷达的视场角度。
关于激光雷达的成本,如果在不考虑成本因素的情况下,可以利用另一多面扫描转镜来对多路激光进行垂直方向扫描。但是,多面扫描转镜要求使用精度很高的编码器来作为旋转多面扫描转镜的位置检测,使得整个多面扫描转镜的成本较高。而激光雷达的垂直视场角度一般在10度至40度之间,因此能够通过一维振镜来实现。由此,考虑到成本因素,在本实施例中,利用一维振镜22来进行垂直视场扫描。
综合以上因素,利用一维振镜22实现垂直方向扫描,利用多面扫描转镜23实现水平方向扫描以及接收被目标物反射的返回光,有利于在不增大激光雷达的尺寸、成本和功耗的条件下兼顾激光雷达的测量距离和视场角度。
以下说明增大激光雷达的垂直视场的预定区域(例如中心区域)的点云密度的方案。
在本实施例中,利用一维振镜22以慢轴的方式进行垂直方向扫描,利用多面扫描转镜23以快轴的方式进行水平方向扫描,所以每一个激光器11发射的激光入射到一维振镜22和多面扫描转镜23之后,就会形成如图1B所示那样的扫描横线。
为了便于说明,提出一种多路激光在垂直视场中均匀分布的比较例。在该比较例中,激光雷达的垂直视场角度为30度,五个激光器发射的五路激光是均匀分布的,每一个激光器发射的激光对应6度的垂直视场角度。也就是说,在该比较例中,由于激光都是均匀分布的,因而在整个垂直视场中各区域的激光密度相同,由此在垂直视场上的点云密度是相同的。也就是说扫描横线的分布是均匀的(参照图1B),角分辨率在各个区域是不变的。
与上述比较例相比,在本实施例中,激光雷达的垂直视场角度为30度,但是五个激光器发射的五路激光不是均匀分布的。具体地,首先将三个激光器11在整个垂直视场角度中均匀分布,使得三个激光器11发射的三路激光均匀分布在30度垂直视场角度范围内,其中每一个激光器11发射的激光对应10度的垂直视场角度。设在每一张点云图像中每路激光对应的扫描横线的数量为M1,则这三路激光在整个垂直视场内的角分辨率即为10/M1度。另外,将两个激光器11布置在靠近上述三个激光器11的中央激光器11的两侧且靠近该中央激光器11,使得后布置的激光器11与上述中央激光器11发射的激光的光轴之间的夹角很小(例如为2度)。这样,在中央激光器11发 射的激光为基准激光的情况下,在预定范围内存在包含这路基准激光和紧挨这路基准激光的两路激光共三条激光的扫描横线,由此激光雷达的垂直视场的中心区域的10度范围内的角分辨率为(10/M1)/3度。在本实施例中,中央激光器11和靠近其布置的两个激光器11可以视为本申请的中间激光器,其余两个激光器11可以视为两侧激光器。这样,通过使靠近中央激光器11的激光器11发射的激光的光轴与中央激光器11发射的激光的光轴之间的夹角较小,而两侧激光器11发射的激光的光轴与中央激光器11发射的激光的光轴之间的夹角较大,增加了与激光雷达的垂直视场的预定区域(例如中心区域)对应的激光数量以增大该预定区域的激光数量密度,能够使得在该区域中具有更多的激光扫描横线,最终如图1C所示激光雷达的垂直视场的预定区域(中心区域)内的点云密度变大。
以下说明增大激光雷达的水平视场的预定区域(例如中心区域)的点云密度的方案。
在本实施例中,为了增大水平视场的预定区域(例如中心区域)的点云密度,需要使多面扫描转镜23的电机非匀速运转。在本实施例中,如图1A所示,多面扫描转镜23为具有四个镜面的多面镜,按照之前说明的计算水平视场角度的公式,每一个镜面可以形成最大180度的水平视场角度,这对应多面扫描转镜23的电机旋转90度的机械角度。
为了便于说明,对应每一个镜面,设期望水平视场的点云密度最大的区域为中心区域且该中心区域的视场角度为30度,该中心区域两侧点云密度次密的区域的视场角度分别为30度,而最靠外侧的点云密度最稀疏的区域的视场角度分别为45度,那么可以通过控制多面扫描转镜23,使多面扫描转23在其每个镜面扫描多路激光的过程中,当进行扫描的镜面位于与中心区域对应的第一转动区域时多面扫描转镜的转速最小。而且当进行扫描的镜面位于其它区域时转速适当改变。具体地,多面扫描转镜23的每个镜面沿转动方向能够依次转动到第一工位、第二工位、第三工位、第四工位、第五工位以及第六工位。在本实施例中,第三工位与第四工位之间的转动区域为第一转动区域。当镜面自第一工位转动至第二工位的过程中,多面扫描转镜的转速为V1;当镜面自第二工位转动至第三工位的过程中,多面扫描转镜的转速为V2,V2<V1;当镜面自第三工位转动至第四工位的过程中,多面扫描转镜的转速为V3,V3<V2;当镜面自第四工位转动至第五工位的过程中,多面扫描转镜的转速为V2;当镜面自第五工位转动至第六工位的过程中,多面扫描转镜的转速为V1。进一步地,第一工位为电机位于0度的位置,第二工位为电机位于22.5度的位置,第三工位为电机位于37.5度的位置,第四工位为电机位于52.5度的位置,第五工位为电机位于67.5度的位置,第六工位为电机位于90度的位置。也可以说,可以通过控制多面扫描转镜23的电机可以使得多面扫描转镜23处于三种不同的工作状态,在不同的工作状态多面扫描转镜23的转速不同。具体地,在电机以对应第一工作状态的转速V1从0度转到22.5度的机械角度之后,转速迅速减小到V2且电机以对应第二工作状态的转速V2转到37.5度的机械角度之后,转速迅速减小到V3且电机以对应第三工作状态的转速V3转到52.5度之后,转速迅速增大到V2且电机以对应第二工作状态的转速V2转到67.5度之后,转速迅速增大到V1且电机以对应第一工作状态的转速V1从67.5度转到90度 的机械角度,由此完成了多面扫描转镜23的一个镜面的扫描过程。通过采用这样的方案,在多面扫描转镜23的一个镜面的扫描过程中,由于电机从37.5度到52.5度这15度转动最慢,点云图像与转速最慢对应的区域内的采集点越密集,因而对应水平视场的视场角度为30度的中心区域的点云密度最大,同理该对应该中心区域的两侧各30度的区域的点云密度次之,最外侧的各45度的区域的点云密度最稀疏。这样,在本实施例中,与图1C所示的垂直视场的点云密度的图叠加,得到了图1D所示的激光雷达的点云密度的效果图。
通过采用上述方案,在不增大激光雷达的尺寸、成本和功耗且激光雷达的帧率不减小的条件下,能够实现本申请的兼顾测量距离、视场角度和预定区域的点云密度的方案。
以下结合说明书附图说明根据本申请的第二实施例的激光雷达。
(根据本申请的第二实施例的激光雷达)
如图2A所述,根据本申请的第二实施例的激光雷达与根据本申请的第一实施例的激光雷达两者实现本申请的目的的原理相同,以下主要说明两者之间在结构上的不同之处。
在本实施例中,如图2A所示,发射组件1包括多个激光器11和发射光透镜12,多个激光器11包括布置在中间的多个中间激光器111和布置在这些中间激光器111两侧的较远位置的两侧激光器112。对于这些中间激光器111,通过发射光透镜12使得它们发射的多路激光会聚。通过发射光透镜12折射后的中间激光器111的激光,相邻的两路激光的光轴彼此之间的夹角具有较小的角度。相比之下,两侧激光器112的激光的光轴与任意中间激光器111的激光的光轴之间的夹角具有较大的角度。
以下说明通过中间激光器111发射的激光来增大激光雷达的水平视场的中心区域的点云密度的方案。在如图2A所示的激光雷达中,中间激光器111的激光对应垂直方向的视场角度为10度的中心区域,两侧激光器112的两路激光对应垂直方向的视场角度为10度的两侧区域。进一步地,在本实施例中,如图2A所示,一路激光穿过反光镜21之后经过一维振镜22和旋转多面扫描转镜23进行二维扫描,能够得到一条扫描横线。为了便于说明,设多面扫描转镜23的电机按照6000转/分钟(即100转/每秒),按照扫描帧率10Hz计算,那么每一路激光在一帧点云图像内包含(100/10)×4=40条扫描横线。对于两侧激光器112,按照10度的视场角计算,每两条扫描横线之间的夹角为10/40=0.25度,即角分辨率0.25度。对于中间激光器111,中间激光器111的三路激光每一路的角分辨率也是0.25度,在这三路激光叠加之后,角分辨率就可以提升到0.25/3=0.083度。以此类推,如果中间激光器111采用八个激光器发射激光,垂直方向的中心区域的角分辨率可以提升到0.25/8=0.03125度,由此通过使更多的激光在对应垂直视场的中心区域进行扫描,能够从图2B左侧的横线图得到图2B右侧的横线图,进而结合使水平视场的中心区域的点云密度变大的方案得到如图2C所示的点云密度变大的最终效果图。在图2C所示的效果图中,水平视场和垂直视场重叠的中心区域S5的分辨率能够达到0.1度×0.03125度(前者是水平视场的角分辨率,后者是垂直视场的角分辨率,下同),边缘最稀疏的区域S1、S3、S7、S9的角分辨率为0.25度×0.25度,中心区域S5的左右两侧的次密区域S4、S6的角分辨率为0.25度× 0.03125度,中心区域S5的上下两侧的次密区域S2、S8的角分辨率为0.1度×0.25度。另外,需要说明的是,上述垂直视场中心区域的点云密度变大的效果通过在中间激光器111的所谓“插花”式扫描实现,但是为了保证中间激光器111的扫描横线不产生重叠,在本实施例中,相邻的中间激光器111从发射组件发射的激光的夹角为0.28度。
另外,在本实施例中,如图2A所示,探测组件3的探测器32为多点激光探测器,探测器32的数量可以与激光器11的数量对应。
通过采用上述技术方案,在本实施例中,能够实现与第一实施例同样的效果。
以下结合说明书附图说明根据本申请的第三实施例的激光雷达。
(根据本申请的第三实施例的激光雷达)
如图3所述,根据本申请的第三实施例的激光雷达与根据本申请的第一实施例的激光雷达两者实现本申请的目的的原理相同,以下主要说明两者之间在结构上的不同之处。
在本实施例中,如图3所示,发射组件1包括单独一个激光器11和与该激光器11配合的分光器13。该激光器11发射的激光通过分光器13进行分光处理,分光后的各路激光以发散的方式传输到发射光透镜12进行汇聚,可以根据与之前实施例同样的原理对各路激光进行布局。分光器13所使用的分光技术可以采用光纤分离技术,也可以使用衍射光学透镜或阵列的光学分光技术。
通过采用上述技术方案,在本实施例中,能够实现与第一实施例同样的效果。
以下结合说明书附图说明根据本申请的第四实施例的激光雷达。
(根据本申请的第四实施例的激光雷达)
如图4所述,根据本申请的第四实施例的激光雷达与根据本申请的第一实施例的激光雷达两者实现本申请的目的的原理相同,以下主要说明两者之间在结构上的不同之处。
在本实施例中,为了使得激光雷达的结构更加紧凑,如图4所示,提出了一种基于上下布局的结构方案。如图4所示,多面扫描转镜23采用有斜度的梯面镜,在安装到位时可以放置在一维振镜22的侧上方,其它组件及功能保持不变。
通过采用上述技术方案,在本实施例中,能够实现与第一实施例同样的效果。
以上内容对本申请的具体实施方式的示例性实施例及相关的变型例进行了阐述,以下进行补充说明。
i.可以理解,在以上各实施例的方案不存在矛盾的情况下,可以将各实施例的方案不同的特征结合在一起来构建新的技术方案,可以同样实现本申请的目的。
ii.可以理解,在以上的具体实施例中,为了在本申请中,发射组件1发射的多路激光的光轴均位于同一平面内。多路激光从发射组件1朝向光学组件2的反光镜21传输的过程中实现会聚。
另外,无论多路激光从发射组件1朝向光学组件2的发光镜传输的过程中的形式如何,多路激光的光轴可选地均位于同一平面内。在进一步可选的方案中,在多路激光所在的平面内多路激光相对于基准线对称分布,靠外侧的激光的光轴与基准线的夹角大于靠内侧的激光的光轴与基准线的夹角。可以理解,如果发射组件1发射的激光 为奇数的情况下,基准线与最中央的那路激光的光轴重合;如果发射组件1发射的激光为偶数的情况下,基准线可以为中央的两路激光的光轴之间的中线。典型地,当以垂直视场的中心区域为预定区域时,可以通过使相对于基准线靠内侧的相邻的激光的光轴之间的夹角较小,而使相对于基准线靠外侧的相邻的激光的光轴之间的夹角较大来使得多路激光在视场范围的中心区域的数量密度较大。例如,在第一实施例中,三个中央激光器11发出的激光的光轴两两之间的夹角为2度,而两侧激光器11与中央激光器11。实际上,不管是否采用上述多路激光的布局,只要实现多路激光在视场范围的预定区域中的数量密度较大,就能够实现增大预定区域的点云密度的效果,与该预定区域对应的各路激光之间的夹角可以根据需要进行调整并且各路激光与基准线之间的夹角也可以根据需要进行调整,而且应当避免在同一点云图像中不同的激光扫描的横线不重叠。
iii.可以理解,激光器11可以采用发射800nm至2000nm的红外激光的激光器11,可以是半导体式的激光器,也可以试光纤式的激光器。激光器11的功率可以在1W至10000W之间。
进一步地,反光镜21中间需要形成通孔来供多路激光的通过,该通孔的尺寸和形状可以根据需要进行调节。可以理解,反光镜21对于接收返回光需要尽量地全反射。
进一步地,一维振镜22可以按照正弦波方式驱动,也可以按照三角波方式驱动。如果按照正弦波方式驱动,来回行程都可以利用来生成点云图像,但需要做点云均匀性规划。如果按照三角波方式匀速驱动的话,可以在速度较慢区间内生成点云图像,速度较快区间内生成点云图像(只用来快速回位),此时一维振镜22的转动频率即对应激光雷达的扫描帧率。
进一步地,多点探测器32可以采用硅光电倍增管的激光探测器或者雪崩光电二极管的激光探测器,这些探测器可以拼接成线,也可以采用1×N的线阵探测器。探测器32的个数及位置关系和激光的分布可以一一对应。
iv.通过采用本申请的方案,能够实现具有如下参数的激光雷达,帧率在1Hz至50Hz及以上,测距为300m,视场角度范围在140度(水平视场角度)×30度(垂直视场角度),中心视场的角分辨率可以做到0.1度×0.03125度。在确保最高50Hz的扫描帧率情况下,大幅度提升了测量距离和中心视场的区域的角分辨率(点云密度)。
v.还提供了一种本申请的激光雷达的控制方法,激光雷达的控制模块能够根据激光雷达的水平视场的不同区域所需的点云密度确定生成控制信号,来控制转速可变的多面扫描转镜23转动。具体地,控制模块的可以生成对应的控制信号,将该控制信号发送到多面扫描转镜23的执行模块,多面扫描转镜23的执行模块接收控制信号,由此执行模块根据控制信号使得多面扫描转镜23转动。如果使激光雷达的水平视场的中心区域的点云密度最大,则该多面扫描转镜23在每个镜面扫描的过程中转速先减小后增大,并在在对应中心区域的时候转速最小。
vi.还提供了包括上述激光雷达的终端设备,该终端设备的一种可选的方案为车辆,尤其是指自动驾驶车辆。激光雷达可以安装在自动驾驶车辆的车顶前部。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看附图、公开内容、以及所附权利要求书,可理解并 实现所公开实施例的其它变化。在权利要求中,“包括”一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
以上已经描述了本申请的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术的改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。

Claims (15)

  1. 一种激光雷达,其特征在于,所述激光雷达包括:
    发射组件,其用于发射多路激光,所述多路激光的光轴位于同一平面内,在所述平面内所述多路激光相对于基准线对称分布,相对所述基准线靠外侧分布的激光的光轴与所述基准线的夹角大于靠内侧的激光的光轴与所述基准线的夹角;
    光学组件,其包括反光镜、第一光学器件和第二光学器件,所述多路激光穿过所述反光镜中的通孔顺次入射到所述第一光学器件和所述第二光学器件,所述第一光学器件用于对所述多路激光进行垂直方向扫描,所述第二光学器件为能够非匀速转动的多面扫描转镜,用于对所述多路激光进行水平方向扫描,所述第二光学器件还用于接收所述多路激光被目标物反射的返回光并通过所述第一光学器件射入探测组件;以及
    所述探测组件,其用于探测所述返回光。
  2. 根据权利要求1所述的激光雷达,其特征在于,
    所述发射组件包括多个激光器,每个所述激光器能够发射一路所述激光,所述多个激光器发射所述多路激光;或者
    所述发射组件包括一个激光器以及分光系统,所述一个激光器发射的激光经过所述分光系统分成所述多路激光。
  3. 根据权利要求2所述的激光雷达,其特征在于,当所述发射组件包括多个激光器时,所述发射组件包括中间激光器和两侧激光器,所述两侧激光器位于所述中间激光器的两侧,多个所述中间激光器发射的激光通过垂直方向扫描得到第一垂直视场角度,每一个所述两侧激光器发射的激光通过垂直方向扫描分别得到第二垂直视场角度,所述第一垂直视场角度和所述第二垂直视场角度两者的角度大小相同。
  4. 根据权利要求3所述的激光雷达,其特征在于,所述第一垂直视场角度和所述第二垂直视场角度的大小均为10度。
  5. 根据权利要求4所述的激光雷达,其特征在于,所述中间激光器的数量为3个,相邻的所述中间激光器发射的激光之间的夹角为2度,所述两侧激光器的数量为2个。
  6. 根据权利要求4所述的激光雷达,其特征在于,所述中间激光器的数量为8个,相邻的所述中间激光器发射的激光之间的夹角为0.28度,所述两侧激光器的数量为2个。
  7. 根据权利要求6所述的激光雷达,其特征在于,所述中间激光器的垂直视场的角分辨率为0.03125度,所述两侧激光器的垂直视场的角分辨率为0.25度。
  8. 根据权利要求1-7任一项所述的激光雷达,其特征在于,所述多面扫描转在其每个镜面扫描所述多路激光的过程中,当进行扫描的所述镜面位于第一转动区域时,所述多面扫描转镜的转速最小,其中,所述第一转动区域扫描得到所述激光雷达的水平视场的中心区域。
  9. 根据权利要求8所述的激光雷达,其特征在于,所述多面扫描转镜在其每个镜面扫描所述多路激光的过程中转速先减小后增大。
  10. 根据权利要求8所述的激光雷达,其特征在于,所述多面扫描转镜的每个镜面沿转动方向依次转动到第一工位、第二工位、第三工位、第四工位、第五工位以及第六工位,其中,所述第三工位与所述第四工位之间的转动区域为所述第一转动区域,
    当所述镜面自所述第一工位转动至所述第二工位的过程中,所述多面扫描转镜的转速为V1;
    当所述镜面自所述第二工位转动至所述第三工位的过程中,所述多面扫描转镜的转速为V2,V2<V1;
    当所述镜面自所述第三工位转动至所述第四工位的过程中,所述多面扫描转镜的转速为V3,V3<V2;
    当所述镜面自所述第四工位转动至所述第五工位的过程中,所述多面扫描转镜的转速为V2;
    当所述镜面自所述第五工位转动至所述第六工位的过程中,所述多面扫描转镜的转速为V1。
  11. 根据权利要求10所述的激光雷达,其特征在于,在每一个所述镜面的扫描开始到扫描结束的过程中所述多面扫描转镜的电机旋转90度的机械角度,所述第一工位为所述电机位于0度的位置,第二工位为所述电机位于22.5度的位置,所述第三工位为所述电机位于37.5度的位置,所述第四工位为所述电机位于52.5度的位置,所述第五工位为所述电机位于67.5度的位置,所述第六工位为所述电机位于90度的位置。
  12. 根据权利要求1至7中任一项所述的激光雷达,其特征在于,所述第一光学器件为多面扫描转镜或者一维振镜。
  13. 根据权利要求1至7中任一项所述的激光雷达,其特征在于,所述第二光学器件采用有斜度的梯面镜,所述第二光学器件位于所述第一光学器件的侧上方。
  14. 一种终端设备,其特征在于,所述终端设备包括权利要求1至13中任一项所述的激光雷达。
  15. 根据权利要求14所述的终端设备,其特征在于,所述终端设备为车辆。
PCT/CN2023/071712 2022-01-29 2023-01-10 激光雷达及终端设备 WO2023143078A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210112678.3A CN116559886A (zh) 2022-01-29 2022-01-29 激光雷达及终端设备
CN202210112678.3 2022-01-29

Publications (1)

Publication Number Publication Date
WO2023143078A1 true WO2023143078A1 (zh) 2023-08-03

Family

ID=87470465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/071712 WO2023143078A1 (zh) 2022-01-29 2023-01-10 激光雷达及终端设备

Country Status (2)

Country Link
CN (1) CN116559886A (zh)
WO (1) WO2023143078A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117890930A (zh) * 2024-03-14 2024-04-16 深圳阜时科技有限公司 一种转镜激光雷达、转动角度检测方法及电子设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116755064B (zh) * 2023-08-10 2023-11-21 北醒(北京)光子科技有限公司 激光雷达的控制方法和激光雷达

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110018481A (zh) * 2018-01-08 2019-07-16 Sos实验株式会社 激光雷达装置
CN111157975A (zh) * 2020-03-05 2020-05-15 深圳市镭神智能系统有限公司 一种多线激光雷达及自移动车辆
CN111505605A (zh) * 2020-05-27 2020-08-07 中科融合感知智能研究院(苏州工业园区)有限公司 一种摆镜和转镜相结合的大范围扫描激光雷达
CN213182011U (zh) * 2020-04-26 2021-05-11 上海禾赛光电科技有限公司 激光雷达的发射单元、接收单元及激光雷达
WO2021197170A1 (zh) * 2020-04-03 2021-10-07 上海禾赛科技股份有限公司 激光雷达以及使用该激光雷达进行目标物探测的方法
CN113534105A (zh) * 2020-03-31 2021-10-22 华为技术有限公司 激光扫描控制方法、装置、mems振镜和激光雷达
CN113640812A (zh) * 2020-04-26 2021-11-12 上海禾赛科技有限公司 基于一维振镜和多面转镜的同轴激光雷达系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110018481A (zh) * 2018-01-08 2019-07-16 Sos实验株式会社 激光雷达装置
CN111157975A (zh) * 2020-03-05 2020-05-15 深圳市镭神智能系统有限公司 一种多线激光雷达及自移动车辆
CN113534105A (zh) * 2020-03-31 2021-10-22 华为技术有限公司 激光扫描控制方法、装置、mems振镜和激光雷达
WO2021197170A1 (zh) * 2020-04-03 2021-10-07 上海禾赛科技股份有限公司 激光雷达以及使用该激光雷达进行目标物探测的方法
CN213182011U (zh) * 2020-04-26 2021-05-11 上海禾赛光电科技有限公司 激光雷达的发射单元、接收单元及激光雷达
CN113640812A (zh) * 2020-04-26 2021-11-12 上海禾赛科技有限公司 基于一维振镜和多面转镜的同轴激光雷达系统
CN111505605A (zh) * 2020-05-27 2020-08-07 中科融合感知智能研究院(苏州工业园区)有限公司 一种摆镜和转镜相结合的大范围扫描激光雷达

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117890930A (zh) * 2024-03-14 2024-04-16 深圳阜时科技有限公司 一种转镜激光雷达、转动角度检测方法及电子设备

Also Published As

Publication number Publication date
CN116559886A (zh) 2023-08-08

Similar Documents

Publication Publication Date Title
WO2023143078A1 (zh) 激光雷达及终端设备
WO2021175141A1 (zh) 一种棱镜及多线激光雷达
US20190257924A1 (en) Receive path for lidar system
WO2020187103A1 (zh) 一种棱镜及多线激光雷达系统
CN207336754U (zh) 激光雷达扫描系统和车辆
WO2020114229A1 (zh) 激光雷达光学系统及扫描方法
EP3982150A1 (en) Lidar apparatus having wide-viewing angle
CN109683174A (zh) 激光雷达扫描系统和方法、车辆
WO2020248336A1 (zh) 多线激光雷达
CN111308443B (zh) 一种激光雷达
US20220260688A1 (en) Lidar device
CN109581323B (zh) 一种微机电激光雷达系统
WO2022141534A1 (zh) 探测装置、扫描单元、可移动平台及探测装置的控制方法
CN108983197A (zh) 基于mems微镜的三维扫描激光雷达
US20190324145A1 (en) Lidar Apparatus and Method
CN110531369B (zh) 一种固态激光雷达
CN212008925U (zh) 一种多线激光雷达
CN108710135A (zh) 一种用于异轴配置大视场激光三维探测的视场拼接系统
CN212275968U (zh) 一种激光雷达系统
CN113640773A (zh) 一种激光雷达系统
CN210376672U (zh) 多线激光雷达
CN209746129U (zh) 一种分布式激光雷达系统
CN209590262U (zh) 相控阵激光雷达
CN212275967U (zh) 一种激光雷达
CN210142188U (zh) 一种棱镜及多线激光雷达系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23745961

Country of ref document: EP

Kind code of ref document: A1