WO2021197170A1 - 激光雷达以及使用该激光雷达进行目标物探测的方法 - Google Patents

激光雷达以及使用该激光雷达进行目标物探测的方法 Download PDF

Info

Publication number
WO2021197170A1
WO2021197170A1 PCT/CN2021/082801 CN2021082801W WO2021197170A1 WO 2021197170 A1 WO2021197170 A1 WO 2021197170A1 CN 2021082801 W CN2021082801 W CN 2021082801W WO 2021197170 A1 WO2021197170 A1 WO 2021197170A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirror
lidar
array
laser
echo
Prior art date
Application number
PCT/CN2021/082801
Other languages
English (en)
French (fr)
Inventor
毛胜平
陈杰
申士林
向少卿
Original Assignee
上海禾赛科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010260771.XA external-priority patent/CN113552578A/zh
Priority claimed from CN202010306959.3A external-priority patent/CN113552580A/zh
Application filed by 上海禾赛科技股份有限公司 filed Critical 上海禾赛科技股份有限公司
Publication of WO2021197170A1 publication Critical patent/WO2021197170A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements

Definitions

  • the present disclosure relates to the field of optoelectronic technology, and in particular to a laser radar based on a reciprocating swing mirror and a method for detecting a target object using the laser radar.
  • Lidar is a radar system that emits laser beams to detect the position and speed of the target. It is an advanced detection method that combines laser technology with photoelectric detection technology. Because of its high resolution, good concealment, strong anti-active interference ability, good low-altitude detection performance, small size and light weight, Lidar is widely used in autonomous driving, transportation and communication, unmanned aerial vehicles, intelligent robots, and resources. Exploration and other fields.
  • Lidar is usually composed of a transmitting system, a receiving system, and information processing.
  • the transmitting system usually includes various forms of lasers and transmitting optical systems.
  • the receiving system usually includes various forms of photodetectors and receiving optical systems. How to optimize the mechanical and optical path structure of the lidar, so as to improve the efficiency of receiving and sending, improve the measuring range, and make the lidar more compact, is a problem that technicians in related fields need to solve continuously.
  • the invention provides a laser radar and a method for detecting a target object by using the laser radar.
  • the lidar includes:
  • a laser emitting unit includes an array of a plurality of lasers, configured to emit a detection laser beam for detecting a target;
  • An echo detection unit including an array of multiple detectors configured to receive the echoes of the detection laser beam reflected by the target;
  • a pendulum mirror the pendulum mirror can swing back and forth around its axis of rotation, the pendulum mirror has a reflective surface, and the reflective surface is configured to receive the detection laser beam from the laser emission unit and reflect it to the outside of the lidar for detection The target object, and can receive the echo from the target object, and reflect it to the echo detection unit.
  • the pendulum mirror has a single reflective surface
  • the lidar further includes a folding mirror, a shaping lens, and a beam splitter which are sequentially arranged between the laser array and the pendulum mirror, wherein the beam splitter It is configured to receive the detection laser beam and emit it to the shaping lens, after being modulated by the shaping lens, it is reflected on the reflecting surface of the pendulum mirror through the folding mirror, and the pendulum mirror receives the echo from the target and Reflected on the folding mirror, reflected by the folding mirror to the shaping lens and emitted to the beam splitter, and then incident on the echo detection unit.
  • the pendulum mirror includes a first reflective surface and a second reflective surface that are parallel to each other, wherein the first reflective surface is used to receive and reflect the detection laser beam, and the second reflective surface
  • the lidar further includes a transmitting lens group, a receiving lens group, a first folding mirror and a second folding mirror,
  • the emitting lens group is arranged between the laser array and the pendulum mirror, and the first folding mirror is arranged downstream of the optical path of the first reflecting surface, so that the emitting lens group can be separated from the laser
  • the array receives the detection laser beam, after shaping, makes it incident on the first reflecting surface and is reflected to the first folding mirror, and then exits after being reflected by the first folding mirror;
  • the receiving lens group is arranged between the detector array and the swing mirror, and the second folding mirror is arranged upstream of the optical path of the second reflecting surface, so that the folding mirror can separate the The echo is reflected on the second reflective surface, reflected by the second reflective surface, and collected by the receiving lens group, and then incident on the detector array.
  • the pendulum mirror includes a non-parallel first reflective surface and a second reflective surface, wherein the first reflective surface is used for receiving and reflecting the detection laser beam, and the second reflective surface is used for In order to receive and reflect the echo, the lidar further includes a transmitting lens group, a receiving lens group, a first folding mirror and a second folding mirror,
  • the first folding mirror and the emitting lens group are sequentially arranged between the laser array and the swing mirror, so that the detection laser beam emitted by the laser array is reflected by the first folding mirror and passed through the emitting lens. After the lens group is reshaped, it is incident on the first reflecting surface;
  • the second folding mirror and the receiving lens group are sequentially arranged between the detector array and the swing mirror, so that the second reflecting surface can reflect the echo to the receiving lens group, After being converged by the receiving lens group and reflected by the second folding mirror, it is incident on the detector array.
  • the angle between the optical axis of the probe laser beam incident on the first reflecting surface and the optical axis of the echo reflected by the second reflecting surface is the first reflection Two times the angle between the surface and the second reflecting surface.
  • one of the upper area and the lower area of the reflective surface of the pendulum mirror is used to receive the detection laser beam from the laser emitting unit and reflect it to the outside of the lidar, and the reflective surface of the pendulum mirror
  • the other of the upper area and the lower area is used to receive the echo from the target and reflect it to the echo detection unit.
  • the laser array includes a plurality of lasers arranged along the rotation axis direction of the pendulum mirror
  • the detector array includes a plurality of detectors arranged along the rotation axis direction of the pendulum mirror .
  • the lidar further includes a swing mirror drive mechanism, which is connected to the swing mirror and can drive the swing mirror to swing around its rotation axis, and the swing mirror drive mechanism is provided In the space enclosed by the first reflecting surface and the second reflecting surface.
  • the swing mirror includes a longitudinal axis and a swing mirror main body, the reflecting surface is located on the swing mirror main body, and the swing mirror main body is mounted on the fixed shaft through a swing arm.
  • the pendulum mirror includes a frame and a pendulum mirror main body, the reflecting surface is located on the pendulum mirror main body, and the pendulum mirror main body is installed in the frame through a twist beam.
  • the array of lasers includes multiple columns of lasers distributed along a second direction perpendicular to the direction of the rotation axis, each column includes at least one laser, wherein the lasers of different columns are mutually connected along the direction of the rotation axis. stagger.
  • the array of lasers includes a plurality of columns of lasers distributed along a second direction perpendicular to the direction of the rotation axis, and the field of view corresponding to each column of lasers is separated from each other.
  • the array of lasers is driven to emit light in a manner of listing lights and intervals within a single column.
  • the swing mirror is configured such that the direction of the detection laser beam finally emitted by the lidar and the direction of the echo received by the lidar are substantially parallel.
  • the swing mirror swings back and forth around its axis of rotation at an angle of at most 60 degrees, wherein the laser array is non-uniformly distributed, and in the laser array, the laser beam is positioned along the longitudinal direction of the lidar In the middle position, the density of the laser is high, and in the two positions, the density of the laser is low.
  • the present invention also provides a method for detecting a target object using the above-mentioned lidar.
  • the lidar includes:
  • a laser emitting unit includes an array of a plurality of lasers, wherein the array of the lasers is non-uniformly distributed and configured to emit a detection laser beam;
  • An echo detection unit including an array of multiple detectors configured to receive the echoes of the detection laser beam reflected by the target;
  • a polygonal rotating mirror that can rotate around its axis of rotation and has a plurality of reflecting surfaces parallel to the axis of rotation, wherein the polygonal rotating mirror is located downstream of the optical path of the laser emitting unit and is located at the echo detection Upstream of the optical path of the unit, one of the reflective surfaces can receive the detection laser beam and reflect to the outside of the lidar, and the other reflective surface can receive the echo and reflect the echo toward the echo detection unit .
  • the density of the laser array is relatively higher at the middle position along the longitudinal direction of the lidar, and the density of the laser is relatively low at the positions on both sides
  • the The polygonal rotating mirror includes one of a double-sided mirror, a regular three-sided rotating mirror, a square rotating mirror, or a regular pentagonal rotating mirror, and the polygonal rotating mirror is configured to rotate in one direction around its axis of rotation.
  • the arrays of the plurality of lasers and the arrays of the plurality of detectors are arranged at substantially the same longitudinal position relative to the rotation axis of the polygon mirror.
  • the polygon mirror further includes a driving mechanism, and the driving mechanism is substantially located in a space enclosed by the first reflective surface and the second reflective surface.
  • the array of the plurality of lasers includes a plurality of rows of lasers along the direction of the rotation axis, and each row includes at least one laser; and the array of the plurality of detectors includes a plurality of rows along the direction of the rotation axis. Detectors, each row includes at least one detector.
  • the angle between the detection laser beam incident on the polygon mirror and the echo reflected by the polygon mirror during reception is twice the outer angle of the polygon mirror.
  • the lidar further includes:
  • the emitting pendulum mirror and the emitting lens are arranged in sequence between the array of the laser and the polygon mirror, wherein the detection laser beam is incident on the emitting pendulum mirror, is reflected to the emitting lens, and passes through the After the emitting lens is shaped, it is incident on the polygon mirror;
  • the receiving lens and the receiving pendulum mirror are arranged in sequence between the polygon mirror and the array of the detector, wherein the polygon mirror reflects the echo to the receiving lens, and after the receiving lens is shaped It is incident on the receiving pendulum mirror and then reflected to the array of the detector.
  • the array of lasers includes a plurality of columns of lasers distributed along a second direction perpendicular to the direction of the rotation axis, and each column includes at least one laser, wherein the lasers of different columns are along the direction of the rotation axis. Stagger each other.
  • the polygon mirror is configured such that the direction of the detection laser beam finally emitted by the lidar and the direction of the echo received by the lidar are substantially parallel.
  • the array of lasers is driven to emit light in a manner of listing lights at intervals within a single column.
  • the present invention also relates to a method for detecting a target object using the above-mentioned lidar.
  • a vertical array transceiver unit horizontal polygonal rotating mirror to achieve two-dimensional scanning lidar system, wherein the vertical direction is determined by the position of the array and the optical lens group to determine the field of view, the horizontal direction through the reciprocating swing mirror Vertical linear array or 1.5-dimensional array for horizontal scanning.
  • the embodiments of the present invention can realize a highly compact lidar. Compared with the laser radar in the coaxial polygonal rotating mirror mode, the solution of the embodiment of the present invention has a higher transmission and reception efficiency, thereby helping to expand the absolute measurement range. Compared with the lidar of the paraxial polygonal mirrors with the upper and lower layers, the method of the upper and lower layers results in a higher height of the lidar. The solution of the present invention can effectively reduce the height of the lidar and can be installed on the vehicle more conveniently.
  • Fig. 1 shows a schematic diagram of a lidar according to an embodiment of the present invention
  • FIGS. 2 to 4 show schematic diagrams of a lidar according to a preferred embodiment of the present invention, in which there are polygon mirrors with different shapes;
  • 5A and 5B show a polygon mirror according to a preferred embodiment of the present invention, in which a driving mechanism is provided inside;
  • FIG. 8 shows a schematic diagram of the light-emitting sequence of the laser array
  • Figures 9A and 9B show schematic diagrams of changes in the launching aperture and receiving aperture of the lidar during the rotation
  • Fig. 10 shows a schematic diagram of a lidar according to an embodiment of the present invention.
  • FIG. 11 shows a schematic diagram of a laser radar with a different axis structure according to an embodiment of the present invention
  • FIG. 12 shows a schematic diagram of a laser radar with a different axis structure according to another embodiment of the present invention.
  • Figure 13 shows a schematic diagram of a coplanar receiving lidar according to an embodiment of the present invention
  • Figure 14 shows a swing mirror according to a preferred embodiment of the present invention, in which a driving mechanism is provided inside;
  • 15A and 15B show schematic diagrams of a swing mirror installation method and a rotating electric machine according to a preferred embodiment of the present invention
  • 16A and 16B show schematic diagrams of a swing mirror installation method and a rotating electric machine according to a preferred embodiment of the present invention
  • FIGS 17 and 18 respectively show two structures of the swing mirror
  • Figures 19 and 20 show the arrangement of the laser array according to the preferred embodiment of the present invention.
  • Figure 21 shows a schematic diagram of the light-emitting timing of the laser array.
  • FIG. 22 shows a schematic diagram of the light spot of the forward sweep and the retrace merged in one frame when working with the folding mirror.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include one or more of the features. In the description of the present invention, “plurality” means two or more than two, unless otherwise specifically defined.
  • the terms “installation”, “connected”, and “connected” should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection.
  • Connected or integrally connected It can be mechanically connected, or electrically connected or can communicate with each other; it can be directly connected or indirectly connected through an intermediate medium, which can be the internal communication of two components or the interaction of two components relation.
  • an intermediate medium which can be the internal communication of two components or the interaction of two components relation.
  • the "on” or “under” of the first feature of the second feature may include the first and second features in direct contact, or may include the first and second features Not in direct contact but through other features between them.
  • the "above”, “above”, and “above” of the first feature on the second feature include the first feature directly above and diagonally above the second feature, or it simply means that the first feature is higher in level than the second feature.
  • the “below”, “below” and “below” of the first feature of the second feature include the first feature directly above and diagonally above the second feature, or it simply means that the level of the first feature is smaller than the second feature.
  • FIG. 1 shows a laser radar 10 according to an embodiment of the present invention, which will be described in detail below with reference to FIG. 1.
  • the laser radar 10 includes a laser emitting unit 11, an echo detection unit 12 and a polygon mirror 13.
  • the laser emitting unit 11 includes an array composed of a plurality of lasers 111, for example, arranged along a direction perpendicular to the paper surface in FIG. 1.
  • the laser 111 is mounted on the circuit board and is configured to emit a detection laser beam L1 for detecting a target object.
  • the array of the laser 111 may be a laser array formed by a single laser, a linear array laser or a surface array laser, and the laser includes an edge emitting laser or a vertical cavity surface emitting laser.
  • the detection laser beam L1 is diffusely reflected on the target, and part of the reflected echo L2 returns to the lidar 10.
  • the echo detection unit 12 includes an array composed of a plurality of detectors 121, which are arranged along a direction perpendicular to the paper surface in FIG. 1, for example, and are configured to receive the echo of the detection laser beam reflected by the target.
  • the detector 141 includes but is not limited to photodetectors such as photodiodes, SiPM, SPAD, etc., which can convert the echo L2 into an electric signal, and the electric signal can reflect the intensity of the echo L2.
  • the laser radar processing device can calculate the distance of the target object according to the time difference between the transmission time of the detection laser beam and the reception time of the echo, that is, the time of flight (TOF).
  • TOF time of flight
  • the lasers are non-uniformly distributed, for example, along the longitudinal direction of the lidar, the density of the lasers is higher relative to the positions on the two sides at the middle position of the array, At the positions on both sides, the arrangement density of the lasers is relatively low.
  • the detection accuracy of the lidar in the field of view approximately corresponding to the direction parallel to the driver’s eyes can be effectively improved, and the parallel field of view of the driver’s eyes is the most critical part of the field of view of the lidar, or forward radar. Very important field of view, so improving the detection accuracy of the intermediate field of view is of great significance for lidar.
  • the polygon mirror 13 can rotate around its rotation axis 135, preferably unidirectionally in one direction, as shown by the arrow R in FIG. 1.
  • the polygon mirror 13 has a plurality of reflecting surfaces parallel to the rotating shaft 135.
  • FIG. 1 shows a situation where the polygon mirror 13 is a square cross-section mirror, where the four sides of the square constitute four reflecting surfaces, which are 131, 132, 133, and 134, respectively.
  • the polygon mirror 13 is located downstream of the optical path of the laser emitting unit 11 and upstream of the optical path of the echo detection unit 12, and one of the reflective surfaces can receive the detection laser beam L1 and reflect it to the outside of the lidar , Used for detecting a target, wherein another reflecting surface can receive the echo L2 and reflect the echo toward the echo detection unit 12.
  • the detection laser beam L1 is incident on the reflective surface 131 and reflected to the outside of the lidar
  • the echo L2 is incident on the reflective surface 132 and then is reflected toward the echo detection unit 12.
  • the polygon mirror 13 rotates around its axis of rotation 135, different reflective surfaces of its multiple reflective surfaces are used to reflect and detect laser beams and reflect radar echoes, respectively. And preferably, the same reflecting surface is not used to reflect the detection laser beam and reflect the radar echo at the same time.
  • Fig. 1 shows an embodiment of a square rotating mirror.
  • the polygonal rotating mirror 13 can be a double-sided mirror, a regular triangular rotating mirror, a regular pentagonal rotating mirror, or more sides (greater than In any of the regular polygons of 5), the polygon mirror 13 is configured to rotate unidirectionally around its rotation axis.
  • Fig. 2 shows an embodiment of a double-sided rotating mirror. As shown in FIG. 2, the polygonal rotating mirror 13 is a double-sided rotating mirror including two opposite reflective surfaces 131 and 132.
  • the lidar 10 may also include a first folding mirror 136 and a second folding mirror 137, wherein the first folding mirror 136 is used to change the reflection of the polygon mirror 13
  • the second folding mirror 136 is used to change the direction of the echo L2 received by the lidar so that it is incident on the reflecting surface 132 of the polygon mirror 13.
  • the first folding mirror 136 and the second folding mirror 137 are usually fixed so as to reflect the incident light in a fixed direction.
  • the first folding mirror 136 and the second folding mirror 137 can also be set to vibrate or be rotatable, and the resolution of the point cloud can be further improved by cooperating with the polygon mirror 13.
  • Fig. 5 shows a schematic diagram of a regular pentagonal rotating mirror. As shown in the figure, the reflecting mirrors formed by two adjacent sides of the regular pentagonal rotating mirror 13 are used to reflect the detection laser beam L1 and the echo L2, respectively.
  • FIG. 4 shows a preferred embodiment according to the present invention, wherein the polygon mirror 13 is an equilateral triangle mirror with reflection surfaces 131, 132 and 133.
  • the lidar 10 further includes a transmitting pendulum mirror 14, a transmitting lens 15, a receiving lens 16 and a receiving pendulum mirror 17.
  • the emitting pendulum mirror 14 and the emitting lens 15 are sequentially arranged between the array of the laser 11 and the polygon mirror 13, wherein the detection laser beam L1 is incident on the emitting pendulum mirror 14 and is reflected to The emitting lens 15 is shaped by the emitting lens 15 and then incident on the polygon mirror.
  • the detection beam emitted by the laser 111 usually has a certain divergence angle, and can be shaped into a parallel beam and emitted by the emitting lens 15 for detecting a target object.
  • the receiving lens 17 and the receiving swing mirror 17 are sequentially arranged between the polygon mirror 13 and the array of the detector 121, wherein the polygon mirror 13 reflects the echo to the receiving lens 16, After being shaped by the receiving lens 16, it is incident on the receiving pendulum mirror 17, and then is reflected to the array of the detector 121.
  • the laser 111 is usually arranged on the focal plane of the transmitting lens 15, and the detector 121 is usually arranged on the focal plane of the receiving lens 16.
  • the two light rays that are emitted or received together only refer to the divergence (gradually changing from a spot to a large spot) or convergence (gradually shrinking from a spot to a single spot) of the light beam. , Does not refer to the horizontal scanning range.
  • the transmitting pendulum mirror 14 and the receiving pendulum mirror 17 are particularly preferred in some embodiments.
  • the array of the laser 111 of the laser radar 10 and the array of the detector 121 are a one-dimensional linear array or 1.5 along the vertical direction (that is, the direction of the rotation axis 135 of the polygon mirror 13 in the figure).
  • the light output direction of each laser in the linear array corresponds to an angle in the vertical plane, so as to realize the scanning in the vertical direction; while in the horizontal direction, the scanning is realized by the unidirectional rotation of the polygon mirror 13. In this way, two-dimensional scanning in the vertical and horizontal directions is realized.
  • a 1.5-dimensional linear array refers to an array in which the length of one dimension of the linear array is much greater than the length of another dimension, for example, greater than or equal to 10 times the length of the other dimension.
  • a 64*2 or 40*2 laser array can be regarded as a 1.5-dimensional linear array in the sense of the present invention.
  • Figures 5A and 5B show a preferred embodiment according to the present invention.
  • the polygonal mirror 13 of the equilateral triangle further includes a driving mechanism 138 located inside.
  • the driving mechanism 138 is, for example, a rotating motor, which includes The bearing 140 cooperates with the rotating shaft 135 of the rotating mirror 13 to rotate around the rotating shaft 135 of the polygonal rotating mirror 13 to drive the multiple reflecting surfaces on the outer circumference of the polygonal rotating mirror 13 to rotate.
  • the driving mechanism 138 is basically located in the space enclosed by the reflecting surface, thereby helping to further reduce the height of the lidar, and the upper end and the lower end do not exceed the axial range of the reflecting surface.
  • the polygon mirror 13 further includes an encoder disc 139, which is arranged at the bottom of the rotating mirror 13 for measuring and encoding the rotational movement of the rotating mirror 13, so that the laser The control system of the radar 10 can learn the current position and angle of the rotating mirror 13.
  • the height of the polygon mirror 10 basically restricts the total height of the lidar.
  • a very flat lidar system can be realized while maintaining a larger aperture.
  • the height of the polygon mirror 10 is basically the lidar.
  • the height can be several centimeters.
  • Lidar can be divided into multiple types according to its functions, including lidar for autonomous driving, lidar for sweeping robots, and lidar for automated guided vehicles.
  • lidar may be installed in different locations. Take the lidar installed on the vehicle as an example. It may be installed on the roof of the vehicle as the main radar, or installed on the front of the vehicle (for example, integrated in the lights) as a forward radar, or installed on the side of the vehicle as a lateral radar. radar.
  • the lidar can be easily integrated in various positions of the vehicle, for example, in the lights or the body of the vehicle, so as to reduce the change and influence on the appearance of the vehicle.
  • the angle between the detection laser beam L1 incident on the polygon mirror 13 and the echo L2 reflected by the polygon mirror when receiving is the angle of the polygon mirror 13 Twice the external angle, or can be described as the angle between the light exit direction of the laser 111 and the detection direction of the detector 121 is twice the external angle of the polygon mirror 13.
  • the angle between the detection laser beam L1 incident on the polygonal rotating mirror 13 and the echo L2 reflected by the polygonal rotating mirror during reception is 180 degrees
  • Each external angle of the polygon mirror 13 is 90 degrees, and the two are in a double relationship.
  • the external angle of the polygon mirror is an angle that is in a complementary relationship with the internal angle of the polygon mirror.
  • the angle between the detection laser beam L1 incident on the polygonal rotating mirror 13 and the echo L2 reflected by the polygonal rotating mirror when received is 144 degrees
  • the outer angle of the polygon mirror 13 is 72 degrees
  • the relationship between the two is doubled.
  • the angle between the detection laser beam L1 incident on the polygonal rotating mirror 13 and the echo L2 reflected by the polygonal rotating mirror during reception is 240 degrees
  • Each external angle of the mirror 13 is 120 degrees, and the two are in a double relationship.
  • the transmission and reception of the lidar can be aligned, that is, the echo of the detection laser beam emitted by the laser reflected by the target can be incident on the corresponding detector 121 after being reflected by the polygon mirror.
  • the direction of the beam refers to the direction where the center of the beam is located.
  • the detection laser beam L1 incident on the polygonal rotating mirror 13 may be in the same direction as the echo L2 reflected by another reflecting surface during reception.
  • Fig. 6 shows the arrangement of lasers 111 according to a preferred embodiment of the present invention, wherein the array of lasers 111 includes multiple rows of lasers distributed along a second direction perpendicular to the direction of the rotation axis, shown in the figure as Two columns, each column includes at least one laser, wherein the lasers of different columns are staggered from each other along the direction of the rotation axis.
  • the vertical arrangement height can be reduced, and the vertical resolution can be improved.
  • the two sets of lasers in FIG. 6 are preferably staggered in a direction perpendicular to the plane of the drawing, so as to facilitate the arrangement of the lasers.
  • the array of lasers 111 may also be structured in a single column along the direction of the rotation axis, and encryption is performed by the transmitting pendulum mirror 14 shown in FIG. 4. Assuming that the transmitting pendulum mirror 14 has three positions, and the detection laser beams can be reflected at the three positions respectively, then for the same laser, the detection laser beam emitted by it will be encrypted into three beams, as shown in "Surface 1" in Figure 7. , "Side 2" and “Side 3" as shown.
  • the swing mirror in the encryption process by means of a swing mirror, each time the polygon mirror 13 switches a reflecting surface, the swing mirror swings vertically by a fixed small angle; therefore, the need for vertical transmitting and receiving arrays is reduced.
  • the number of channels, or the super-resolution effect is achieved when the same number of channels is used.
  • the arrays of the plurality of lasers 111 and the arrays of the plurality of detectors 121 are arranged at substantially the same longitudinal position relative to the rotation axis 135 of the polygon mirror 13, thereby helping To achieve a very flat lidar.
  • the array of the laser 111 and the array of the detector 121 correspond to each other in the axial position, and neither exceeds The axial range of the multiple reflecting surfaces can thereby significantly reduce the height of the lidar.
  • the present invention also relates to a method for detecting a target object using the lidar 10 as described above.
  • Fig. 8 shows a lighting strategy according to a preferred embodiment of the present invention: according to the listed light, the light is emitted at intervals in a single column.
  • Fig. 8 schematically shows the arrangement of the laser array, for example, it is divided into four columns with 9 lasers in each column.
  • the probe beam When launching the probe beam, it adopts the mode of illuminating according to the listed light and the interval within a single row. Specifically, firstly, part of the lasers in the first row of lasers are driven to emit light, and after the first row of lasers emit light, the second row of lasers are driven to emit light, and the third row and the fourth row of lasers are driven to emit light.
  • the first column of lasers it is preferable to prevent adjacent lasers from emitting light at the same time, so as to ensure human eye safety.
  • you can emit light at a certain interval for example, first drive a plurality of lasers in the A sequence to emit light (positions 1, 4, 7), after the laser is lighted and the detection and reception of the corresponding channel is completed, drive B The multiple lasers in the sequence emit light (positions 2, 5, and 8), and finally the lasers of the C sequence are driven to emit light (positions 3, 6, 9).
  • the time interval between adjacent column sequences is related to the number of polygon mirrors and the horizontal resolution of the system. This scanning method has a significant effect on improving the safety threshold of the human eye.
  • the horizontal minimum listed light time interval ⁇ t 2 will still be much larger than the traveling light time interval ⁇ t 1 ; Then, in a given human eye safety calculation window (such as a typical 5 milliradian field of view), the eye safety of lidar will be limited to adjacent light emitting units in a single row.
  • the scanning sequence is switched from i to ii, the physical distance between the two front and rear emitting lasers can be increased by dislocation light emission, which further effectively improves the safety threshold of human eyes; among them, in the same column, the light emission interval of the nearest neighbor unit is pulled to the maximum
  • the A sequence in the figure emits light first, then the C sequence, and finally the B sequence.
  • the multiple lasers of the A sequence in the present invention emit light at the same time. It does not mean that the multiple lasers of the A sequence are driven to emit light at the same time in a strict sense.
  • the time difference between adjacent columns is sufficient, for example, less than or equal to 10% or 1% of the time difference between adjacent columns. In this case, it can be considered that multiple lasers of the A sequence emit light at the same time.
  • FIGS 9A and 9B take an equilateral triangle polygon mirror as an example for illustration, where the solid triangle A indicates the polygon mirror in the initial center position, triangle A'indicates the situation where the polygon mirror rotates towards the emitting end, triangle A" The polygon mirror rotates toward the receiving end.
  • the transmitting aperture and the receiving aperture exactly correspond to the width of the reflecting surface of the polygon mirror.
  • the effective output light energy increases, but the effective receiving aperture decreases; on the contrary, when the polygon mirror rotates toward the receiving end, as shown by triangle A” , The effective output light energy is reduced, but the effective receiving aperture is increasing.
  • the significant advantage of this method is mainly that a polygon mirror with a smaller reflective surface can be used to achieve a larger horizontal field of view, and a polygon mirror with a smaller reflective surface can be used to achieve a larger horizontal field of view.
  • the size and inertia of the moving parts of the mirror are small, which reduces the volume of the system and improves the reliability of the system, but it can still ensure a long range.
  • the above describes a lidar system in which the horizontal polygon mirror of the vertical array transceiver unit realizes two-dimensional scanning according to the embodiment of the present invention.
  • the swing mirror scans a vertical linear array or a 1.5-dimensional array horizontally.
  • the embodiments of the present invention can realize a highly compact lidar.
  • the solution of the embodiment of the present invention has a higher transmission and reception efficiency, thereby helping to expand the absolute measurement range.
  • the method of the upper and lower layers results in a higher height of the lidar, and the solution of the present invention can effectively reduce the height of the lidar and can be better installed on the vehicle.
  • the transmission and reception of the laser can be close to the theoretical transmission and reception efficiency limit, thereby facilitating long-distance measurement.
  • the low-speed rotating polygon mirror can achieve a large reflection aperture, and the measurement range can be very far. Because the radar architecture is very efficient and beneficial in terms of system transceiver efficiency and human eye safety, it can reduce laser light energy, reduce system power consumption or provide transmitter unit reliability, and is beneficial to human eye safety, or it can be used in conjunction with other similar The system can obtain a longer range with considerable energy.
  • the number of channels can be realized by the array in the vertical direction, and the entire array can be scanned two-dimensionally by rotating the horizontal polygon mirror, but the adjacent surfaces of the polygon mirror are used for transmitting and receiving, so as to realize the separation of transmission and reception.
  • the vertical field of view of the lidar can reach several tens of degrees (depending on the length and focal length of the array in the vertical direction), and the horizontal field of view can range from several degrees, tens of degrees to more than one hundred degrees.
  • the number of detector channels is used to ensure the radar line beam.
  • the laser array at the transmitting end can be an independent light source corresponding to the number of detectors, or it can be a segmented line light source that illuminates several units at the same time.
  • the frequency of horizontal scanning can be matched with the frame frequency of lidar.
  • the radar frame frequency is 10 Hz.
  • the rotation frequency of the polygon mirror is 10/N Hz, if The N reflecting surfaces of the polygon mirror are combined into one frame, so the rotation frequency of the polygon mirror is equal to 10 Hz.
  • the height of the system of the present invention ultimately basically depends on the height of the reflector (the entire motor can be embedded in the reflector module). Therefore, this solution is likely to realize a highly compact and flat lidar system to meet the needs of large-scale mass production. Demand for cars.
  • the effective optical aperture of the transmitting and receiving is not equal when the polygon mirror rotates, so that the transceiving can have complementary characteristics of energy: when transmitting When the effective output energy of the end is reduced, the effective receiving aperture of the receiving end is increased, thereby making up for the range loss caused by the reduced emission energy. Improve reliability.
  • FIG. 10 shows a laser radar 10' according to an embodiment of the present invention, which will be described in detail below with reference to FIG. 10.
  • the lidar 10 includes a laser emitting unit 11', an echo detection unit 12', and a swing mirror 13'.
  • the laser emitting unit 11 ′ includes an array composed of a plurality of lasers 111 ′, for example, arranged along a direction perpendicular to the paper surface in FIG. 10.
  • the laser 111 is mounted on the circuit board and is configured to emit a detection laser beam L1 for detecting a target object.
  • the array of the laser 111' may be a laser array formed by a single laser or a linear array laser or a surface array laser, and the laser includes an edge emitting laser or a vertical cavity surface emitting laser.
  • the detection laser beam L1 is emitted from the lidar 10' and then incident on the target, diffusely reflected on the target, and part of the reflected echo L2 returns to the lidar 10'.
  • the echo detection unit 12' includes an array composed of a plurality of detectors 121', for example, arranged along a direction perpendicular to the paper surface in FIG. 10, and configured to receive the echo of the detection laser beam reflected by the target object.
  • the detector 141' includes but is not limited to photodetectors such as photodiodes, SiPM, SPAD, etc., which can convert the echo L2 into an electrical signal, and the electrical signal can reflect the intensity of the echo L2.
  • the laser radar processing device can calculate the distance of the target object according to the time difference between the transmission time of the detection laser beam and the reception time of the echo, that is, the time of flight (TOF). In this lidar, the number of detector channels in the vertical direction ensures the radar beam.
  • the laser array can be an independent light source corresponding to the number of detectors, or it can be a segmented line light source that illuminates several units at the same time.
  • the laser array includes a plurality of lasers arranged along the direction of the rotation axis OX of the pendulum mirror, and the detector array includes a plurality of lasers arranged along the direction of the rotation axis of the pendulum mirror.
  • the lasers are preferably non-uniformly distributed, for example, along the longitudinal direction of the lidar, the density of the lasers is high at the middle position of the array, and the density of the lasers is low at the positions on both sides.
  • the detection accuracy of the horizontal field of view in the lidar detection can be effectively improved, and the horizontal field of view is the most critical part of the field of view of the lidar. Therefore, improving the detection accuracy of the horizontal field of view is important for the lidar. Significance.
  • the detector array can also be distributed in a non-uniform manner.
  • the swing mirror 13' can swing back and forth around its rotation axis OX, as shown by the arrow R in FIG. 10.
  • the pendulum mirror 13' has a reflecting surface 131' parallel to the rotation axis OX.
  • the swing mirror 13' is located downstream of the optical path of the laser emitting unit 11' and upstream of the optical path of the echo detection unit 12'.
  • the reflective surface 131' can receive the detection laser beam L1 and reflect it to the Outside the lidar, it is used to detect a target, and can receive the echo L2 and reflect the echo toward the echo detection unit 12'. As shown in Fig.
  • the detection laser beam L1 is incident on the reflective surface 131' and reflected to the outside of the lidar, and the echo L2 is incident on the reflective surface 132' and then directed toward the echo detection unit 12' reflection.
  • the pendulum mirror 13' swings back and forth around its rotation axis 131', it can scan the detection laser beam L1 along different exit directions and receive echoes from different directions.
  • the pendulum mirror 13' has a single reflecting surface 131', which is used to scan and emit the detection laser beam L1 and also to receive the radar echo L2.
  • the lidar 10' also includes a beam splitter 14', a shaping lens 15' and a folding mirror 16' which are sequentially arranged between the laser array 111' and the pendulum mirror 13'.
  • the beam splitter 14' is configured to receive the detection laser beam L1 from the laser 111' and allow it to be emitted to the shaping lens 15'.
  • the shaping lens 15' is, for example, a collimating lens for controlling the detection laser beam.
  • L1 is collimated and modulated and emitted to the folding mirror 16'.
  • the folding mirror 16' may include a reflecting mirror to reflect the detection laser beam L1 to the reflecting surface 131' of the swing mirror 13'.
  • the swing mirror 13' receives the echo L2 from the target and reflects it to the folding mirror 16', and is reflected by the folding mirror 16' to the shaping lens 15' and out to the beam splitter.
  • the mirror 14' is further incident on the echo detection unit 12'.
  • the beam splitter 14' can be a small aperture mirror or a PBS polarizing beam splitter.
  • the laser radar 10' shown in FIG. 10 has a coaxial structure, that is, the transmitting optical path and the receiving optical path basically overlap, and the short-distance blind area generated by such a structure is small.
  • the present invention is not limited to this, and can also be applied to a laser radar with a different axis structure. This is described below with reference to the drawings.
  • FIG. 11 shows a laser radar 20' with an off-axis structure according to an embodiment of the present invention. The following focuses on the differences between the lidar 20' in FIG. 11 and the lidar 10' shown in FIG. 10.
  • the laser radar 20' includes a laser emitting unit 11', an echo detection unit 12', and a swing mirror 23', wherein the laser emitting unit 11' includes an array composed of lasers 111', and the echo detection unit 12' includes The array formed by the detector 121' is the same as or similar to the embodiment shown in FIG. 10, and will not be repeated here.
  • the pendulum mirror 23' is a double-sided pendulum mirror, including a first reflective surface 231' and a second reflective surface 232' that are parallel to each other, wherein the first reflective surface 231' is used for receiving and reflecting For the detection laser beam L1, the second reflecting surface 232' is used to receive and reflect the echo L2.
  • the lidar 20' further includes a transmitting lens group 25', a receiving lens group 26', a first folding mirror 27', and a second folding mirror 28'.
  • the emitting lens group 25' is arranged between the laser 211' and the pendulum mirror 23', and the first folding mirror 27' is arranged downstream of the optical path of the first reflecting surface 231', so that The transmitting lens group 25' can receive the detection laser beam from the laser 111', after being shaped, it is incident on the first reflecting surface 231' and reflected to the first folding mirror 27', and then it is first folded.
  • the mirror 27' reflects and exits.
  • the receiving lens group 26' is arranged between the detector 121' and the swing mirror 23', and the second folding mirror 28' is arranged upstream of the optical path of the second reflecting surface 232', so that The folding mirror 28' can reflect the echo L2 to the second reflecting surface 232', reflect by the second reflecting surface 232', and be converged by the receiving lens group 26' to enter the detector array .
  • the laser array is located on the focal plane of the receiving lens group 25', and the detector array is located on the focal plane of the detecting lens group 26'.
  • FIG. 12 shows a laser radar 30 ′ with a different axis structure according to another embodiment of the present invention. The following focuses on the differences between the laser radar 30 ′ in FIG. 12 and the laser radar 10 ′ shown in FIG. 10.
  • the laser radar 30' includes a laser emitting unit 11', an echo detection unit 12', and a swing mirror 33', wherein the laser emitting unit 11' includes an array composed of lasers 111', and the echo detection unit 12' includes The array formed by the detector 121' is the same as or similar to the embodiment shown in FIG. 10, and will not be repeated here.
  • the pendulum mirror 33' includes a non-parallel first reflective surface 331' and a second reflective surface 332', wherein the first reflective surface 331' is used to receive and reflect the detection laser beam L1, and the second The reflecting surface 332' is used to receive and reflect the echo L2.
  • the lidar 30' additionally includes a transmitting lens group 25', a receiving lens group 26', a first folding mirror 27', and a second folding mirror 28'.
  • the first folding mirror 27' and the emitting lens group 25' are sequentially arranged between the array of the laser 111' and the swing mirror 33', so that the detection laser beam L1 emitted by the laser 111' passes through the first A folding mirror 27' reflects and is shaped by the emitting lens group 25' to be incident on the first reflecting surface 331'.
  • the second folding mirror 28' and the receiving lens group 26' are sequentially arranged between the array of the detector 121' and the swing mirror 33', so that the second reflecting surface 332' can return the
  • the wave L2 is reflected on the receiving lens group 26', converged by the receiving lens group 26', reflected by the second folding mirror 28', and then incident on the array of the detector 121'.
  • the optical axis V1 of the probe laser beam incident on the first reflecting surface and the optical axis V2 of the echo reflected by the second reflecting surface are The included angle between (that is, 2 ⁇ shown in FIG. 12) is twice the included angle between the first reflective surface and the second reflection surface (that is, ⁇ shown in FIG. 12).
  • the swing mirror 33' is configured such that the direction of the detection laser beam finally emitted by the lidar (V11 in Figure 12) and the direction of the echo received by the lidar ( Figure 12) The V22) is basically parallel.
  • FIG. 13 shows a lidar 40' according to an embodiment of the present invention.
  • a single-sided pendulum mirror 43' is used.
  • the reflective surface of the pendulum mirror 43' is divided into an upper region and a lower region. In the area, one is used to receive the detection laser beam from the laser emitting unit and reflected to the outside of the lidar, and the other is used to receive the echo from the target and reflected to the echo detection unit.
  • FIG. 13 shows that the upper area is used for receiving and reflecting the detection laser beam L1, and the lower area is used for receiving the echo.
  • the present invention is not limited to this, and may be used upside down. Through the coplanar receiving mode arranged up and down as shown in FIG.
  • the transmission and reception efficiency of the lidar 40' is relatively high, which is suitable for long-distance detection. It is easy for those skilled in the art to understand that the number of lasers 111' and detectors 121', as well as the number and direction of light rays shown in FIG. 13 are only exemplary, and any number of lasers 111' and Detector 121', these are all within the protection scope of the present invention.
  • the swing range of the swing mirror around its axis of rotation is less than or equal to 60 degrees. So almost all the scanning time can be used, and the time utilization is high.
  • the swing mirror can be swung around the axis in a sinusoidal scan mode, and emit light at an intermediate angle during the scanning process; it can also be in a uniform scan mode, with acceleration and deceleration at both ends of the uniform velocity section. speed.
  • the frequency of the horizontal reciprocating sweep scan matches the radar frame frequency. Assume that the radar frame rate is 10 Hz. If the forward sweep and retrace of the swing mirror are combined into one frame (the horizontal direction of the forward sweep and the retrace light is misaligned), the swing frequency of the swing mirror is 10 Hz; if the sweep is one frame and the retrace is the next frame, then The swing frequency of the pendulum mirror is 5 Hz.
  • an array of multiple lasers arranged along the direction of the rotation axis of the pendulum mirror realizes the detection field of view of the lidar in the vertical direction;
  • the swing scanning in the horizontal plane realizes the scanning field of view of the lidar on the horizontal plane.
  • the lidar may further include a pendulum mirror drive mechanism connected to the pendulum mirror and capable of driving the pendulum mirror to swing around its rotation axis, and the pendulum mirror drive mechanism is arranged on the first reflecting surface and the first reflection surface.
  • the swing drive mechanism includes a rotating electric machine 31', a lower bearing 32', an upper bearing 35', and a main shaft 33'.
  • the main shaft 33' is used to support the swing mirror 33' and is driven by a rotating motor 31'.
  • the upper bearing 35' and the lower bearing 32' are respectively connected to the upper and lower parts of the main shaft for connecting to the swing mirror 33'.
  • the lidar further includes an angle measuring mirror 34 ′, which is used for angle measurement through PSD, for example, to obtain the current angular orientation of the swing mirror 33 ′.
  • a photoelectric code disc may also be used for angle measurement.
  • FIG. 15A and 16A show two different types of drive mechanisms.
  • a single-sided swing mirror is used, which is fixed on the main shaft and is located between the upper bearing and the lower bearing.
  • the drive coil stator
  • the lateral magnetizing ring will be twisted in different directions, thereby driving the main shaft to swing in different directions.
  • the pendulum mirror Correspondingly drive the pendulum mirror to swing.
  • the lateral magnetization ring does not need to be a complete 360-degree magnet ring, and the lateral magnetization ring (mover) only needs to be able to cover the swing range of the swing mirror.
  • a turntable is installed above the swing motor, and the turntable can be driven by the swing motor.
  • Figure 16B shows the principle of a swing motor, in which when currents in different directions are applied to the coil windings (stator), the magnetic ring (rotor) can be driven to rotate in different directions, and the drive magnetic ring (rotor) is fixed to the turntable. connect.
  • the swing mirror is fixedly installed on the turntable, so that it can swing synchronously with the turntable.
  • the figure shown includes two sets of driving coils. The present invention is not limited to this. Multiple sets of driving coils can also be arranged to improve the linearity of the drive and thus the swing angle. It also includes a code disc, which is arranged at the bottom of the pendulum mirror and used to measure and encode the rotational movement of the pendulum mirror, so that the lidar control system can know the current position and angle of the pendulum mirror.
  • Figures 17 and 18 respectively show two structures of the swing mirror.
  • the swing mirror includes a longitudinal axis and a swing mirror main body, the reflecting surface is located on the swing mirror main body, and the swing mirror main body is mounted on the fixed shaft through a swing arm.
  • Magnets can be adhered to the back of the swing mirror body, and the energized stator coils are used to generate mutual repulsion or attraction forces, so that the swing mirror body swings back and forth around the longitudinal axis.
  • the structure shown in Figure 17 can reduce the vertical height of the swing mirror.
  • the height of the pendulum mirror 10 basically restricts the total height of the lidar.
  • a very flat lidar system can be realized while maintaining a larger aperture.
  • the height of the pendulum mirror is basically the height of the lidar.
  • Lidar can be divided into multiple types according to its functions, including lidar for autonomous driving, lidar for sweeping robots, and lidar for automated guided vehicles.
  • lidar may be installed in different locations. Take the lidar installed on the vehicle as an example. It may be installed on the roof of the vehicle as the main radar, or installed on the front of the vehicle (for example, integrated in the lights) as a forward radar, or installed on the side of the vehicle as a lateral radar. radar.
  • the lidar can be easily integrated in various positions of the vehicle, for example, in the lights or the body of the vehicle, so as to reduce the change and influence on the appearance of the vehicle.
  • the swing mirror includes a frame and a swing mirror main body, the reflecting surface is located on the swing mirror main body, and the swing mirror main body is installed in the frame through a twist beam.
  • Magnets can be attached to the back of the swing mirror body, and the energized stator coils are used to generate mutual repulsion or attraction forces, so that the swing mirror body swings back and forth around the axis OX in the frame.
  • the structure of FIG. 18 is more compact in the horizontal direction.
  • a PSD sensor can be used for angle measurement. Regarding the angle measurement method using the PSD sensor, I will not repeat it here.
  • Figure 19 shows the arrangement of lasers 111' according to a preferred embodiment of the present invention, wherein the array of lasers 111' includes multiple rows of lasers distributed along a second direction perpendicular to the direction of the rotation axis. There are two rows, each row includes at least one laser, and the lasers in different rows are staggered from each other along the direction of the rotation axis. By displacing the encryption in the vertical direction, the vertical arrangement height can be reduced, and the vertical resolution can be improved.
  • the two sets of lasers in FIG. 19 are preferably staggered in a direction perpendicular to the plane of the drawing, so as to facilitate the arrangement of the lasers.
  • Fig. 20 shows the arrangement of the laser 111' according to another preferred embodiment of the present invention.
  • the laser array includes multiple columns of lasers distributed along a second direction perpendicular to the direction of the rotation axis. There are two rows of lasers 111'-2, and the field of view corresponding to each row of lasers is separated from each other.
  • the first row of lasers 111'-1 and the second row of lasers 111'-2 can be used to detect different horizontal fields of view, for example, the first row of lasers 111'-1
  • the second row of lasers 111'-2 is used to detect the 30-degree field of view on the right in the horizontal field of view.
  • the swing amplitude required by the swing mirror can be reduced, for example, it can be reduced to half.
  • FIG. 21 shows a lighting strategy according to a preferred embodiment of the present invention: according to the listed light, the light is emitted at intervals in a single column.
  • FIG. 21 schematically shows the arrangement of the laser array, taking a row of lasers as an example, which includes, for example, 9 lasers.
  • When launching the probe beam it adopts the mode of illuminating according to the listed light and the interval within a single row.
  • the i, ii, iii, and iv in FIG. 21 represent the four horizontal light-emitting positions of the swing mirror.
  • the swing mirror swings to the horizontal second light-emitting position ii, then the lasers are driven to emit light, and then similarly, the swing mirror swings to the third and fourth horizontal positions
  • Each light-emitting position drives the laser to emit light.
  • the four horizontal light-emitting positions shown in FIG. 21 are only exemplary, and the swing mirror may also include more or fewer light-emitting positions. Among them, for a row of lasers, it is preferable to prevent adjacent lasers from emitting light at the same time, so as to ensure human eye safety.
  • the time interval between adjacent column sequences is related to the number of pendulum mirrors and the horizontal resolution of the system. This scanning method has a significant effect on improving the safety threshold of the human eye.
  • the horizontal minimum listed light time interval ⁇ t 2 will still be much larger than the traveling light time interval ⁇ t 1 ; Then, in a given human eye safety calculation window (such as a typical 5 milliradian field of view), the eye safety of lidar will be limited to adjacent light emitting units in a single row.
  • the scanning sequence is switched from i to ii, the physical distance between the two front and rear emitting lasers can be increased by dislocation light emission, which further effectively improves the safety threshold of human eyes; among them, in the same column, the light emission interval of the nearest neighbor unit is pulled to the maximum
  • the A sequence in the figure emits light first, then the C sequence, and finally the B sequence.
  • the multiple lasers of the A sequence in the present invention emit light at the same time. It does not mean that the multiple lasers of the A sequence are driven to emit light at the same time in a strict sense.
  • the time difference between adjacent columns is sufficient, for example, less than or equal to 10% or 1% of the time difference between adjacent rows. In this case, it can be considered that multiple lasers of the A sequence emit light at the same time.
  • Figure 21 shows a schematic diagram of the light emission formed by the same column of lasers scanned by a swing mirror.
  • the display shows the situation in which the lasers in this column emit light and scan in sequence at the second position of the swing mirror; in column iii, the display shows in At the third position of the swing mirror, the lasers in the column emit light and scan in sequence; in the iv column, the lasers in the column emit light and scan in sequence at the 4th position of the swing mirror.
  • the first position of the swing mirror 9 lasers, for example, follow (1, 4, 7), (2, 5, 8), (3, 6, 9) the order of light emission
  • the display shows the situation in which the lasers in this column emit light and scan in sequence at the second position of the swing mirror
  • the display shows in At the third position of the swing mirror, the lasers in the column emit light and scan in sequence
  • in the iv column the lasers in the column emit light and scan in sequence at the 4th position of the swing mirror.
  • the time interval between adjacent columns (such as the i-th column and the ii-th column) will be larger and the angular velocity will be smaller, which is beneficial to enlarge the The light-emitting interval of the laser spot in a small field of view.
  • the folding mirror may be a fixed reflecting mirror.
  • the folding mirror may also include a swing mirror that swings in a vertical direction.
  • the folding mirror may have a position state A and a position state B, which are respectively two swing positions in the vertical direction, and the light beams incident on it can be emitted along different angles in the vertical plane.
  • a working mode in which the folding mirror swings at a small one-dimensional angle during retrace can be used to increase the resolution.
  • FIG. 22 shows a schematic diagram of the light spot of the forward sweep and the retrace merged in one frame when working with the folding mirror.
  • the present invention also provides a method for detecting a target object using the above-mentioned lidar.
  • the above describes a lidar system that implements two-dimensional scanning through a vertical array transceiver unit and a horizontal swing mirror according to an embodiment of the present invention, where the vertical direction is determined by the position of the array and the optical lens group, and the horizontal direction is reciprocated.
  • the swing mirror is scanned horizontally.
  • the embodiments of the present invention can realize a highly compact lidar.
  • the height of the system of the embodiment of the present invention ultimately basically depends on the height of the reflector (the entire motor can be embedded in the reflector module). Therefore, this solution may realize a highly compact and flat lidar system to meet the needs of large-scale quantities. The demand for producing passenger cars.
  • the effective optical apertures of transmitting and receiving are not equal when the pendulum mirror rotates, so that transceiving on different sides can have complementary characteristics of energy: when the transmitting end is effective When the emission energy of the oscillating mirror decreases, the effective receiving aperture of the receiving end increases, thereby making up for the range loss caused by the decrease in emission energy, and vice versa. Then the actual circumscribed circle radius of the pendulum mirror can be smaller, which is convenient for reducing the volume and improving the reliability. .
  • the embodiment of the present invention can realize a high-resolution, long-distance lidar system.
  • the multi-sided rotating mirror it is suitable for situations with a large field of view, for example, 100 degrees or more, especially when it is matched with the reflective surface of the multi-sided rotating mirror, such as a nod scanner, the vertical resolution can be improved.
  • the scanning field of view is relatively small, the effective scanning time is wasted very seriously; although the number of reflecting surfaces of the polygon mirror can be improved, the rotation speed of the polygon mirror under the corresponding fixed frame rate needs to be increased accordingly, and the scanning time in the horizontal direction The interval needs to be shortened.
  • the volume of the multi-sided rotating mirror also increases significantly, resulting in an increase in the volume of the system and an increase in reliability uncertainty.
  • the resonant mirrors are mainly limited by high-frequency scanning, so the aperture is difficult to increase, and the reliability of the high-frequency scanner is also a problem.
  • a reciprocating mirror is used for lateral scanning in the horizontal direction, and the laser array of another dimension (vertical) passes through the optical system to produce a certain field of view.
  • the reciprocating swing horizontal scanning greatly saves the scanning time, the light-emitting duty ratio is high, and the horizontal swing scanning can be used to emit light most of the time, so high angular resolution can still be achieved without affecting the safety of the human eye , Even in the horizontal ultra-high resolution, the horizontal scanning interval is very long, which is very beneficial to human eye safety.
  • the embodiment of the present invention significantly reduces the volume, and the inertia of the swing part is small, and the horizontal direction is a low-speed scan of several Hz to several tens of Hz, so the reliability of the reciprocating swing mechanism is high.
  • the transceiver can be isolated.
  • the field of view can be zoomed, especially when the horizontal field of view is reduced, the horizontal angular resolution can be improved. It can maximize the efficiency of receiving and sending, especially when using different surfaces or layered receiving and sending, it can be close to the theoretical limit of receiving and sending efficiency, so as to facilitate long-distance measurement.
  • the reflection aperture of the low-speed swing mirror can be very large, which can improve the measuring range.
  • the radar architecture is very efficient and beneficial in terms of system transceiver efficiency and human eye safety, it can reduce laser light energy, reduce system power consumption or provide transmitter unit reliability, and is beneficial to human eye safety, or it can be used in conjunction with other similar
  • the system can obtain a longer range with considerable energy.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

提供了一种激光雷达及使用该激光雷达进行目标物探测的方法,其中该激光雷达(10)包括:激光发射单元(11),回波探测单元(12)和多面转镜(13);该激光发射单元(11)包括多个激光器(111)的阵列,配置成可发射出探测激光束(L1)用于探测目标物;该回波探测单元(12)包括多个探测器(121)的阵列,配置成可接收探测激光束(L1)被目标物反射后的回波(L2);多面转镜(13)可围绕其转轴(135)旋转,具有多个反射面(131,132,133,134),多面转镜(13)位于激光发射单元(11)的光路下游,并位于回波探测单元(12)的光路上游,其中一个反射面可接收探测激光束(L1)并反射到激光雷达(10)外部,其中另一个反射面可接收回波(L2)并将回波(L2)朝向回波探测单元(12)反射。

Description

激光雷达以及使用该激光雷达进行目标物探测的方法 技术领域
本公开涉及光电技术领域,尤其涉及一种基于往复摆动的摆镜的激光雷达以及使用该激光雷达进行目标物探测的方法。
背景技术
激光雷达是以发射激光束探测目标的位置、速度等特征量的雷达系统,是一种将激光技术与光电探测技术相结合的先进探测方式。激光雷达因其分辨率高、隐蔽性好、抗有源干扰能力强、低空探测性能好、体积小及重量轻等优势,被广泛应用于自动驾驶、交通通讯、无人机、智能机器人、资源勘探等领域。
激光雷达通常由发射系统、接收系统、信息处理等部分组成,其中发射系统通常包括各种形式的激光器和发射光学系统,接收系统通常包括采用各种形式的光电探测器和接收光学系统。如何优化激光雷达的机械和光路结构,从而提高收发效率、提高测程以及使得激光雷达更加小型化,是相关领域技术人员持续需要解决的问题。
背景技术部分的内容仅仅是公开人所知晓的技术,并不当然代表本领域的现有技术。
发明内容
本发明提供一种激光雷达以及利用该激光雷达进行目标物探测的方法。
根据本发明的一个方面,激光雷达包括:
激光发射单元,所述激光发射单元包括多个激光器的阵列,配置成可发射出探测激光束用于探测目标物;
回波探测单元,所述回波探测单元包括多个探测器的阵列,配置成可接收所述探测激光束被目标物反射后的回波;和
摆镜,所述摆镜可围绕其转轴来回摆动,所述摆镜具有反射面,所述反射面配置成可接收来自所述激光发射单元的探测激光束并反射到激光雷达外部,用于探测目标物,并且可接收来自目标物的回波,并反射到所述回波探测单元。
根据本发明的一个方面,所述摆镜具有单个反射面,所述激光雷达还包括依次设置在所述激光器阵列和摆镜之间的折转镜、整形透镜和分光镜,其中所述分光镜配置成接收所述探测激光束并出射到所述整形透镜,经所述整形透镜调制后通过折转镜反射到所述摆镜的反射面上,所述摆镜接收来自目标物的回波并反射到所述折转镜上,经所述折转镜反射到所述整形透镜并出射到所述分光镜上,进而被入射到所述回波探测单元。
根据本发明的一个方面,所述摆镜包括相互平行的第一反射面和第二反射面,其中所述第一反射面用于将接收并反射所述探测激光束,所述第二反射面用于接收并反射所述回波,所述激光雷达还包括发射透镜组、接收透镜组、第一折转镜和第二折转镜,
其中所述发射透镜组设置在所述激光器阵列与所述摆镜之间,所述第一折转镜设置在所述第一反射面的光路下游,从而所述发射透镜组可从所述激光器阵列接收所述 探测激光束,整形后使其入射到第一反射面上并被反射到第一折转镜,经第一折转镜反射后出射;
其中所述接收透镜组设置在所述探测器阵列与所述摆镜之间,所述第二折转镜设置在所述第二反射面的光路上游,从而所述折转镜可将所述回波反射到所述第二反射面上,经第二反射面反射、并经接收透镜组汇聚后入射到所述探测器阵列。
根据本发明的一个方面,所述摆镜包括非平行的第一反射面和第二反射面,其中所述第一反射面用于接收并反射所述探测激光束,所述第二反射面用于接收并反射所述回波,所述激光雷达还包括发射透镜组、接收透镜组、第一折转镜和第二折转镜,
其中所述第一折转镜和发射透镜组依次设置在所述激光器阵列与所述摆镜之间,从而所述激光器阵列发出的探测激光束经第一折转镜反射、并经所述发射透镜组整形后入射到第一反射面上;
其中所述第二折转镜和接收透镜组依次设置在所述探测器阵列与所述摆镜之间,从而所述第二反射面可将所述回波反射到所述接收透镜组上,经所述接收透镜组汇聚、并经所述第二折转镜反射后,入射到所述探测器阵列。
根据本发明的一个方面,入射到所述第一反射面上的探测激光束的光轴与经所述第二反射面反射的回波的光轴之间的夹角,为所述第一反射面和第二反射面之间夹角的二倍。
根据本发明的一个方面,所述摆镜的反射面的上部区域和下部区域中的一个用于接收来自所述激光发射单元的探测激光束并反射到激光雷达外部,所述摆镜的反射面的上部区域和下部区域中的另一个用于接收来自目标物的回波,并反射到所述回波探测单元。
根据本发明的一个方面,所述激光器阵列包括沿着所述摆镜的转轴方向排布的多个激光器,所述探测器阵列包括沿着所述摆镜的转轴方向排布的多个探测器。
根据本发明的一个方面,所述的激光雷达还包括摆镜驱动机构,所述摆镜驱动机构与所述摆镜连接并可驱动所述摆镜绕其转轴摆动,所述摆镜驱动机构设置在所述第一反射面和第二反射面围成的空间内。
根据本发明的一个方面,所述摆镜包括纵向轴以及摆镜主体,所述反射面位于所述摆镜主体上,所述摆镜主体通过摆臂安装在所述固定轴上。
根据本发明的一个方面,所述摆镜包括框架以及摆镜主体,所述反射面位于所述摆镜主体上,所述摆镜主体通过扭梁安装在所述框架内。
根据本发明的一个方面,所述激光器的阵列包括沿着垂直于所述转轴方向的第二方向分布的多列激光器,每列包括至少一个激光器,其中不同列的激光器沿着所述转轴方向相互错开。
根据本发明的一个方面,所述激光器的阵列包括沿着垂直于所述转轴方向的第二方向分布的多列激光器,每列激光器所对应的视场相互分离。
根据本发明的一个方面,所述激光器的阵列采用按列出光、单列内间隔发光的方式被驱动发光。
根据本发明的一个方面,所述摆镜配置成使得所述激光雷达最终出射的探测激光束的方向和激光雷达接收的回波的方向基本平行。
根据本发明的一个方面,所述摆镜围绕其转轴来回摆动的角度为至多60度,其中 所述激光器的阵列为非均匀分布的,所述激光器的阵列中,沿着所述激光雷达纵向在中间位置处,激光器的密度高,在两边的位置处,激光器的密度低。
本发明还提供一种使用如上所述的激光雷达进行目标物探测的方法。
根据本发明的一个方面,激光雷达包括:
激光发射单元,所述激光发射单元包括多个激光器的阵列,其中所述激光器的阵列为非均匀分布的,配置成可发射出探测激光束;
回波探测单元,所述回波探测单元包括多个探测器的阵列,配置成可接收所述探测激光束被目标物反射后的回波;和
多面转镜,所述多面转镜可围绕其转轴旋转,具有与所述转轴平行的多个反射面,其中所述多面转镜位于所述激光发射单元的光路下游,并位于所述回波探测单元的光路上游,其中一个反射面可接收所述探测激光束并反射到所述激光雷达外部,其中另一个反射面可接收所述回波并将所述回波朝向所述回波探测单元反射。
根据本发明的另一个方面,所述激光器的阵列中,沿着所述激光雷达纵向在中间位置处,激光器阵列的密度相对更高,在两边的位置处,激光器的密度相对较低,所述多面转镜包括双面镜、正三面转镜、正方形转镜或正五边形转镜中的一种,所述多面转镜配置成围绕其转轴单向旋转。
根据本发明的另一个方面,所述多个激光器的阵列和多个探测器的阵列相对于所述多面转镜的转轴设置在基本相同的纵向位置上。
根据本发明的另一个方面,所述多面转镜还包括驱动机构,所述驱动机构基本位于所述第一反射面和第二反射面围成的空间内。
根据本发明的另一个方面,所述多个激光器的阵列沿着所述转轴方向包括多行激光器,每行包括至少一个激光器;所述多个探测器的阵列沿着所述转轴方向包括多行探测器,每行包括至少一个探测器。
根据本发明的另一个方面,入射到所述多面转镜的探测激光束与接收时被所述多面转镜反射后的回波之间的夹角是所述多面转镜外角的两倍。
根据本发明的另一个方面,所述激光雷达,还包括:
发射摆镜和发射透镜,依次设置在所述激光器的阵列与所述多面转镜之间,其中所述探测激光束入射到所述发射摆镜上,被反射到所述发射透镜,经所述发射透镜整形后入射到所述多面转镜;
接收透镜和接收摆镜,依次设置在所述多面转镜与所述探测器的阵列之间,其中所述多面转镜将所述回波反射到所述接收透镜,经所述接收透镜整形后入射到所述接收摆镜上,然后被反射到所述探测器的阵列。
根据本发明的另一个方面,所述激光器的阵列包括沿着垂直于所述转轴方向的第二方向分布的多列激光器,每列包括至少一个激光器,其中不同列的激光器沿着所述转轴方向相互错开。
根据本发明的另一个方面,所述多面转镜配置成使得所述激光雷达最终出射的探测激光束的方向和激光雷达接收的回波的方向基本平行。
根据本发明的另一个方面,所述激光器的阵列采用按列出光、单列内间隔发光的方式被驱动发光。
本发明还涉及一种使用如上所述的激光雷达进行目标物探测的方法。
根据本发明实施例的一种垂直阵列收发单元水平多面转镜实现二维扫描的激光雷达系统,其中垂直方向通过阵列的位置以及光学透镜组确定视场角,水平方向通过往复运动的摆镜将垂直的线阵或1.5维阵列进行水平扫描。本发明的实施例能够实现一个高度紧凑的激光雷达。相比于同轴多面转镜方式的激光雷达,本发明实施例的方案收发效率较高,从而有助于扩大绝对测程。相比于上下分层的旁轴多面转镜的激光雷达,上下分层的方式造成激光雷达高度较高,而本发明的方案能够有效降低激光雷达的高度,能够更方便地安装在车辆上。
附图说明
构成本公开的一部分的附图用来提供对本公开的进一步理解,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1示出了根据本发明一个实施例的激光雷达的示意图;
图2-图4示出了根据本发明优选实施例的激光雷达的示意图,其中具有不同形状的多面转镜;
图5A和5B示出了根据本发明优选实施例的多面转镜,其中内部设置有驱动机构;
图6和图7示出了根据本发明优选实施例的激光器阵列的排布方式;
图8示出了激光器阵列的发光时序示意图;
图9A和9B示出了在旋转过程中激光雷达的发射口径和接收口径的变化示意图;
图10示出了根据本发明一个实施例的激光雷达的示意图;
图11示出了根据本发明一个实施例的异轴结构的激光雷达的示意图;
图12示出了根据本发明另一个实施例的异轴结构的激光雷达的示意图;
图13示出了根据本发明的一个实施例的共面接收的激光雷达的示意图;
图14示出了根据本发明优选实施例的摆镜,其中内部设置有驱动机构;
图15A和15B示出了根据本发明优选实施例的摆镜安装方式以及旋转电机的示意图;
图16A和16B示出了根据本发明优选实施例的摆镜安装方式以及旋转电机的示意图;
图17和图18分别示出了摆镜的两种结构;
图19和图20示出了根据本发明优选实施例的激光器阵列的排布方式;
图21示出了激光器阵列的发光时序示意图;和
图22示出了结合折转镜工作时正扫和回扫合并一帧的光斑示意图。
具体实施方式
在下文中,仅简单地描述了某些示例性实施例。正如本领域技术人员可认识到的那样,在不脱离本发明的精神或范围的情况下,可通过各种不同方式修改所描述的实施例。因此,附图和描述被认为本质上是示例性的而非限制性的。
在本发明的描述中,需要理解的是,术语"中心"、"纵向"、"横向"、"长度"、"宽度"、"厚度"、"上"、"下"、"前"、"后"、"左"、"右"、"竖直"、"水平"、"顶"、"底"、"内"、"外"、"顺时针"、"逆时针"等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元 件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语"第一"、"第二"仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有"第一"、"第二"的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明的描述中,"多个"的含义是两个或两个以上,除非另有明确具体的限定。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语"安装"、"相连"、"连接"应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接:可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之"上"或之"下"可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征"之上"、"上方"和"上面"包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征"之下"、"下方"和"下面"包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度小于第二特征。
下文的公开提供了许多不同的实施方式或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
以下结合附图对本发明的优选实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本发明,并不用于限定本发明。
图1示出了根据本发明一个实施例的激光雷达10,下面参考图1详细描述。如图1所示,激光雷达10包括激光发射单元11、回波探测单元12以及多面转镜13。其中所述激光发射单元11包括多个激光器111构成的阵列,例如沿着图1中垂直纸面的方向排布。激光器111安装在电路板上,并且配置成可发射出探测激光束L1,用于探测目标物。所述激光器111的阵列可以是由单个激光器或线阵激光器或面阵激光器形成的激光器阵列,所述激光器包括边发射型激光器或垂直腔面发射激光器。探测激光束L1在目标物上发生漫反射,部分反射回波L2返回到激光雷达10。回波探测单元12包括多个探测器121构成的阵列,例如沿着图1中垂直纸面的方向排布,配置成可接收所述探测激光束被目标物反射后的回波。所述探测器141包括但不限于光电二极管、SiPM、SPAD等光电探测器,可以将回波L2转换成电信号,该电信号可以反映回波L2的强度。激光雷达的处理装置根据探测激光束的发射时间和回波的接收时间之间的时间差,即飞行时间TOF(Time of Flight),就可以计算获得目标物的距离。
根据本发明的一个优选实施例,所述激光器的阵列中,激光器为非均匀分布的,例如沿着所述激光雷达纵向,在阵列的中间位置处,激光器的密度相对于两边的位置更高,在两边的位置处,激光器的排布密度相对较低。通过这样的方式,可以有效提 高激光雷达在大约对应驾驶员眼睛平行方向的视场的探测精度,而驾驶员眼睛平行视场是激光雷达的视场中最为关键的部分,或者说是前向雷达很重要的视场,因此提高中间位置视场探测精度对于激光雷达有重要的意义。
所述多面转镜13可围绕其转轴135旋转,优选为沿着一个方向单向旋转,如图1中的箭头R所示。所述多面转镜13具有与所述转轴135平行的多个反射面。图1中示出了多面转镜13为正方形截面转镜的情形,其中正方形的四个边分别构成四个反射面,分别为131、132、133和134。所述多面转镜13位于所述激光发射单元11的光路下游,并位于所述回波探测单元12的光路上游,其中一个反射面可接收所述探测激光束L1并反射到所述激光雷达外部,用于探测目标物,其中另一个反射面可接收所述回波L2并将所述回波朝向所述回波探测单元12反射。如图1所示,在当前位置,探测激光束L1入射到反射面131上并被反射到激光雷达外部,回波L2入射到反射面132上,然后被朝着回波探测单元12反射。随着多面转镜13围绕其转轴135旋转,其多个反射面中不同的反射面分别用于反射探测激光束和反射雷达回波。并且优选的,同一个反射面不会同时用于反射探测激光束和反射雷达回波。
图1中示出了正方形转镜的实施例,本发明不限于此,所述多面转镜13可以是双面镜、正三角形转镜、正五边形转镜、或边数更多(大于5)的正多边形中的任一种,所述多面转镜13配置成围绕其转轴单向旋转。图2中示出了双面转镜的实施例。如图2所示,其中多面转镜13为双面转镜,包括相反的两个反射面131和132。并且为了适应激光雷达10中的光路布置需求,其中还可包括第一折转镜136和第二折转镜137,其中第一折转镜136用于改变经所述多面转镜13反射后的探测激光束L1的方向,第二折转镜136用于改变激光雷达接收的回波L2的方向,使其入射到所述多面转镜13的反射面132上。第一折转镜136和第二折转镜137通常是固定的,从而沿着固定的方向反射入射的光线。当然,第一折转镜136和第二折转镜137也可以设置为振动或者可旋转,通过与多面转镜13配合,从而可以进一步提高点云的分辨率。通过设置第一折转镜136和第二折转镜137,可以使得激光雷达10的结构更加紧凑。图5中示出了正五边形转镜的示意图。如图所示,正五边形转镜13的相邻两个侧面构成的反射镜分别用于反射探测激光束L1和回波L2。
图4示出了根据本发明的一个优选实施例,其中所述多面转镜13是正三角形转镜,具有反射面131、132和133。另外,所述激光雷达10还包括发射摆镜14、发射透镜15、接收透镜16和接收摆镜17。其中所述发射摆镜14和发射透镜15依次设置在所述激光器11的阵列与所述多面转镜13之间,其中所述探测激光束L1入射到所述发射摆镜14上,被反射到所述发射透镜15,经所述发射透镜15整形后入射到所述多面转镜。激光器111发出的探测光束通常带有一定发散角,通过发射透镜15可以被整形为平行光束并出射,用于探测目标物。所述接收透镜17和接收摆镜17依次设置在所述多面转镜13与所述探测器121的阵列之间,其中所述多面转镜13将所述回波反射到所述接收透镜16,经所述接收透镜16整形后入射到所述接收摆镜17上,然后被反射到所述探测器121的阵列。所述激光器111通常设置在所述发射透镜15的焦平面上,探测器121通常设置在所述接收透镜16的焦平面上。另外本领域技术人员理解,图4中,图示的两根共同出射或接收的光线仅指代光束的发散(从点逐渐变成一个大光斑)或者汇聚(从一个光斑逐渐缩小为一个点),并不是指代水平扫描范围。
发射摆镜14和接收摆镜17在一些实施例中是特别优选的。发明人发现,随着多面转镜镜面数量的增加,实际可使用的视场FOV逐渐减小,但是通过摆镜加密等手段,可以实现的垂直方向的线束以及角分辨率逐渐增加。
根据本发明的一个优选实施例,激光雷达10的激光器111的阵列和探测器121的阵列是沿着竖直方向(即图中多面转镜13的转轴135的方向)的一维线阵或者1.5维线阵,线阵中每一个激光器的出光方向对应于竖直平面内的一个角度,从而实现竖直方向上的扫描;而在水平方向上,通过多面转镜13的单向旋转实现扫描,从而实现了竖直方向和水平方向上的二维扫描。本发明中,1.5维线阵是指这样的阵列,其中线阵一个维度的长度要远远大于另一个维度的长度,例如大于等于另一个维度长度的10倍。举例来说,例如64*2或者40*2的激光器阵列,可认为是本发明意义下的1.5维线阵。
图5A和5B示出了根据本发明的一个优选实施例,如图所示,所述正三角形的多面转镜13还包括位于其内部的驱动机构138,驱动机构138例如为旋转电机,其包括轴承140,轴承140与转镜13的转轴135相互配合,从而围绕多面转镜13的转轴135旋转,带动所述多面转镜13外周上的多个反射面进行转动。所述驱动机构138基本位于所述反射面围成的空间内,从而有助于进一步减小激光雷达的高度,并且上端和下端不超出所述反射面的轴向范围。另外如图5A所示,所述多面转镜13还包括编码盘139,编码盘139设置于所述转镜13的底部,用于对所述转镜13的转动运动进行测量和编码,从而激光雷达10的控制系统可以获知转镜13当前的位置和角度。
根据上述实施例,多面转镜10的高度基本约束了激光雷达的总高,同时在保持较大口径的前提下,仍能实现一个非常扁平的激光雷达系统,多面转镜的高度基本就是激光雷达的高度,高度大概可以为数个厘米级。激光雷达可根据其功能划分为多种类型,包括用于自动驾驶的激光雷达、用于扫地机器人的激光雷达、以及用于自动引导车的激光雷达。另外,激光雷达可能安装在不同的位置处。以车辆上安装的激光雷达为例,其可能安装在车顶上作为主雷达,也可能安装在车辆前部(例如集成在车灯内)作为前向雷达,或者安装在车辆侧部作为侧向雷达。通过实现扁平化的激光雷达,可以方便地将激光雷达集成在车辆的各个位置,例如集成在车灯内或者车身内,减少对于车辆外观的改变和影响。
根据本发明的一个优选实施例,入射到所述多面转镜13的探测激光束L1与接收时被所述多面转镜反射后的回波L2之间的夹角是所述多面转镜13的外角的两倍,或者可描述为激光器111的出光方向与探测器121的探测方向之间的夹角是所述多面转镜13的外角的两倍。如图1所示,对于正方形的转镜13,入射到所述多面转镜13的探测激光束L1与接收时被所述多面转镜反射后的回波L2之间的夹角为180度,多面转镜13的各个外角为90度,二者为二倍的关系。本发明中,多面转镜的外角是与多面转镜的内角成互补关系的角。对于图3的正五边形的转镜13,入射到所述多面转镜13的探测激光束L1与接收时被所述多面转镜反射后的回波L2之间的夹角为144度,多面转镜13的外角为72度,二者为二倍的关系。对于图4的正三角形的转镜13,入射到所述多面转镜13的探测激光束L1与接收时被所述多面转镜反射后的回波L2之间的夹角为240度,多面转镜13的各个外角为120度,二者为二倍的关系。通过以上角度关系,有助于使得激光雷达最终出射的探测光束的方向和雷达接收的回波的方向基本是平行的,包括在摆动过程中仍然保持平行。另外,可以使得激光雷达的发射和接 收能够对准,也就是激光器发射出的探测激光束被目标物反射后的回波,经过多面转镜反射后,能够入射到所对应的探测器121中。当光束为扩散或者汇聚的光束时,光束的方向是指光束中心所在的方向。对于回波也是如此。而对于双面转镜,如图2所示,入射到所述多面转镜13的探测激光束L1与接收时被另一个反射面反射后的回波L2可以是同向的。
图6示出了根据本发明一个优选实施例的激光器111的排布,其中所述激光器111的阵列包括沿着垂直于所述转轴方向的第二方向分布的多列激光器,图中示出为两列,每列包括至少一个激光器,其中不同列的激光器沿着所述转轴方向相互错开。通过在垂直方向上错位排布加密,能够减少垂直方向排布高度,提升垂直方向分辨率。另外,虽然在图6中未示出,但本领域技术人员容易理解,图6中两组激光器在垂直于图面的方向上优选相互错开,从而便于布置激光器。
可替换的,如图7所示,所述激光器111的阵列也可以沿着所述转轴方向成单列构造,通过图4所示的发射摆镜14来进行加密。假设发射摆镜14具有三个位置,在三个位置处分别可以反射探测激光束,那么对于同一个激光器,其发出的探测激光束将被加密为三束,如图7中的“面1”、“面2”和“面3”所示的。另外根据本发明的一个实施例,在通过摆镜的方式进行加密过程中,多面转镜13每切换一个反射面,摆镜垂直摆动一个固定的小角度;因此减少了垂直发射和接收阵列所需的通道数,或者在使用相同通道数时实现了超分辨率效果。
另外,根据本发明的一个优选实施例,所述多个激光器111的阵列和多个探测器121的阵列相对于所述多面转镜13的转轴135设置在基本相同的纵向位置上,从而有助于实现一个非常扁平的激光雷达。仍然以图6和图7为例进行说明,在沿着多面转轴13的转轴135的方向上,所述激光器111的阵列与探测器121的阵列在轴向位置上是相对应的,均不超出所述多个反射面的轴向范围,从而能够显著降低激光雷达的高度。
本发明还涉及一种使用如上所述的激光雷达10进行目标物探测的方法。
图8示出了根据本发明一个优选实施例的发光策略:按列出光,单列内间隔发光。图8中示意性示出了激光器阵列的排布,例如分为四列,每列9个激光器。在发射探测光束时,采取按列出光、单列内间隔发光的模式。具体的,首先驱动第一列激光器内部分激光器发光,在第一列激光器发光完毕后,驱动第二列激光器发光,并以此驱动第三列和第四列激光器发光。其中对于第一列激光器,优选地避免相邻的激光器同时发光,从而保证人眼安全。为此,可以按照一定的间隔进行发光,例如首先驱动其中A序列的多个激光器进行发光(位置为1、4、7),在该激光器发光完毕并完成相应通道的探测和接收后,驱动B序列的多个激光器进行发光(位置为2、5、8),最后驱动C序列的激光器进行发光(位置为3、6、9)。相邻列序列之间的时间间隔与多面转镜面数和系统的水平分辨率有关。该扫描方式对于提高人眼安全阈值是有显著作用的,另一方面,即使在非常高的横向角分辨率下,横向的最小的列出光时间间隔Δt 2仍会远大于行出光时间间隔Δt 1;那么,在一个给定的人眼安全计算窗口(比如典型的5毫弧度视场内),激光雷达的人眼安全会受限于单列内相邻的出光单元。在扫描序列从ⅰ切换到ⅱ的过程中,通过错位发光能够增加两个前后发光激光器的物理距离,进一步有效提高人眼安全阈值;其中同一列中,把最相邻单元的发光间隔拉到最大为原则,比 如图示中A序列先发光,然后C序列,最后B序列。另外,本领域技术人员容易理解,本发明中A序列的多个激光器同时发光,并非是指A序列的多个激光器严格意义上被同时驱动发光,可以间隔微小的时间差,只要该时间差远小于相邻列之间的时间差即可,例如小于等于相邻列之间的时间差的10%,或者1%。在这种情况下,可以认为A序列的多个激光器是同时发光的。
本发明实施例的一种显著特征是收发具有能量互补特性。如图9A和9B所示。图9A和9B中以正三角形的多面转镜为例进行说明,其中实线的三角形A指示处于初始居中位置的多面转镜,三角形A’指示多面转镜旋转为朝向发射端的情形,三角形A”多面转镜旋转为朝向接收端的情形。
如图9A和9B所示的,当多面转镜初始居中时,发射口径和接收口径正好完全对应多面镜的反射面宽度。而当多面镜往发射端旋转时,如三角形A’所示,有效的出射光能量增加,但是有效接收口径在减小;反之,在多面镜往接收端旋转时,如三角形A”所示的,有效的出射光能量减少,但是有效接收口径在增加。这种方式的显著优点主要在于可以使用一个反射面较小的多面转镜实现一个较大的水平视场,反射面较小的多面转镜运动部件的尺寸以及惯量较小,减小了系统体积并且提高了系统的可靠性,但是仍然能够保证较远的测程。
以上描述了根据本发明实施例的一种垂直阵列收发单元水平多面转镜实现二维扫描的激光雷达系统,其中垂直方向通过阵列的位置以及光学透镜组确定视场角,水平方向通过往复运动的摆镜将垂直的线阵或1.5维阵列进行水平扫描。本发明的实施例能够实现一个高度紧凑的激光雷达。相比于同轴多面转镜方式的激光雷达,本发明实施例的方案收发效率较高,从而有助于扩大绝对测程。相比于上下分层的旁轴多面转镜的激光雷达,上下分层的方式造成激光雷达高度较高,而本发明的方案能够有效降低激光雷达的高度,能够更好地安装在车辆上。另外,由于上下分层方式中发射和接收光学系统存在物理的隔离,因此不可避免地存在比较可观的近距离盲区,而异面收发方案的发射和接收光斑之间理论上存在交叠,因此即使距离很近时必然能有一部分能量能够被接收端光学系统所接收,所以异面收发方案的近距离盲区会比上下分层的方案小。
另外,本发明实施例中,激光的收发可以接近理论的收发效率极限,从而利于测远。另外,低速转动的多面转镜反射口径可以做到很大,测程可以很远。由于该雷达架构不管是系统收发效率以及人眼安全角度都十分高效有利,因此可以减少激光器出光能量降低系统功耗或提供发射单元可靠性,并且有利于人眼安全,或者可以在使用和其他同类系统相当能量下获得更远的测程。
本发明的实施例中,垂直方向可通过阵列实现通道数,整个阵列通过水平多面转镜旋转扫描实现二维扫描,但是发射和接收使用多面转镜的相邻面,从而实现收发的分离。本发明实施例中,激光雷达的垂直视场可以达到几十度(取决于阵列垂直方向的长度、焦距等),水平视场可以从几度、几十度到一百多度。垂直方向通过探测器通道数保证雷达线束,发射端的激光器阵列可以是与探测器数目一一对应的独立光源,也可以是同时照亮几个单元的分段线光源。
另外,水平扫描的频率可以与激光雷达的帧频相匹配,比如雷达帧频10赫兹,多面转镜的一组收发反射面为一帧时,多面转镜的转动频率为10/N赫兹,如果多面转镜 的N个反射面合为一帧,那么多面转镜转动频率等同为10赫兹。
另外,本发明的系统高度最终基本取决于反射镜的高度(整个电机可以嵌入反射镜模组内),因此,该方案有可能实现高度非常紧凑扁平的激光雷达系统,从而满足大规模量产乘用车的需求。多面转镜异面收发时,通过使用较大的发射和接收光学口径,在多面转镜转动时发射和接收的有效光学口径是不相等的,从而异面收发可以具有能量的互补特性:当发射端有效的出射能量减小时,接收端的有效接收口径增大,从而弥补了发射能量减小的测程损失,反之亦然,那么实际的多面转镜外接圆半径可以较小,便于减小体积和提高可靠性。
图10示出了根据本发明一个实施例的激光雷达10',下面参考图10详细描述。如图10所示,激光雷达10包括激光发射单元11'、回波探测单元12'以及摆镜13'。其中所述激光发射单元11'包括多个激光器111'构成的阵列,例如沿着图10中垂直纸面的方向排布。激光器111安装在电路板上,并且配置成可发射出探测激光束L1,用于探测目标物。所述激光器111'的阵列可以是由单个激光器或线阵激光器或面阵激光器形成的激光器阵列,所述激光器包括边发射型激光器或垂直腔面发射激光器。探测激光束L1从激光雷达10'出射后入射到目标物上,在目标物上发生漫反射,部分反射回波L2返回到激光雷达10'。回波探测单元12'包括多个探测器121'构成的阵列,例如沿着图10中垂直纸面的方向排布,配置成可接收所述探测激光束被目标物反射后的回波。所述探测器141'包括但不限于光电二极管、SiPM、SPAD等光电探测器,可以将回波L2转换成电信号,该电信号可以反映回波L2的强度。激光雷达的处理装置根据探测激光束的发射时间和回波的接收时间之间的时间差,即飞行时间TOF(Time of Flight),就可以计算获得目标物的距离。该激光雷达中,垂直方向通过探测器通道数保证雷达线束,激光器阵列可以是与探测器数目一一对应的独立光源,也可以是同时照亮几个单元的分段线光源。
根据本发明的一个优选实施例,所述激光器阵列包括沿着所述摆镜的转轴OX方向排布的多个激光器,所述探测器阵列包括沿着所述摆镜的转轴方向排布的多个探测器。所述激光器的阵列中,激光器优选为非均匀分布的,例如沿着所述激光雷达纵向,在阵列的中间位置处,激光器的密度高,在两边的位置处,激光器的密度低。通过这样的方式,可以有效提高激光雷达探测中大约水平方向的视场的探测精度,而水平视场是激光雷达的视场中最为关键的部分,因此提高水平方向视场探测精度对于激光雷达有重要的意义。与此相对应的,探测器阵列也可以采取非均匀分布的方式。
所述摆镜13'可围绕其转轴OX来回摆动,如图10中的箭头R所示。所述摆镜13'具有与所述转轴OX平行的反射面131'。所述摆镜13'位于所述激光发射单元11'的光路下游,并位于所述回波探测单元12'的光路上游,该反射面131'可接收所述探测激光束L1并反射到所述激光雷达外部,用于探测目标物,并且可以接收所述回波L2并将所述回波朝向所述回波探测单元12'反射。如图10所示,在当前位置,探测激光束L1入射到反射面131'上并被反射到激光雷达外部,回波L2入射到反射面132'上,然后被朝着回波探测单元12'反射。随着摆镜13'围绕其转轴131'来回摆动,其可以将探测激光束L1沿着不同的出射方向扫描,并且接收来自不同方向的回波。
图10所示的实施例中,所述摆镜13'具有单个反射面131',既用于扫描出射探测激光束L1,也用于接收雷达回波L2。另外如图10所示,所述激光雷达10'还包括依次 设置在所述激光器阵列111'和摆镜13'之间的分光镜14'、整形透镜15'和折转镜16',其中所述分光镜14'配置成从激光器111'接收所述探测激光束L1并允许其出射到所述整形透镜15',所述整形透镜15'例如为准直透镜,用于对所述探测激光束L1进行准直调制并出射到折转镜16'上,折转镜16'可包括反射镜,将探测激光束L1反射到所述摆镜13'的反射面131'上。同时,所述摆镜13'接收来自目标物的回波L2并反射到所述折转镜16'上,经所述折转镜16'反射到所述整形透镜15'并出射到所述分光镜14'上,进而被入射到所述回波探测单元12'。本领域技术人员容易理解,分光镜14'可以为小孔镜或者PBS偏振分光镜。
图10所示的激光雷达10'具有同轴结构,即发射光路与接收光路基本重合,这样的结构所产生的近距离盲区较小。本发明不限于此,也可以适用于异轴结构的激光雷达。下面参考附图描述。
图11示出了根据本发明一个实施例的异轴结构的激光雷达20'。下面重点描述图11中的激光雷达20'与图10所示的激光雷达10'的不同之处。
如图11所示,激光雷达20'包括激光发射单元11'、回波探测单元12'以及摆镜23',其中激光发射单元11'包括激光器111'构成的阵列,回波探测单元12'包括由探测器121'构成的阵列,与图10所示的实施例相同或类似,此处不再赘述。图11的实施例中,摆镜23'为双面摆镜,包括相互平行的第一反射面231'和第二反射面232',其中所述第一反射面231'用于将接收并反射所述探测激光束L1,所述第二反射面232'用于接收并反射所述回波L2。另外,所述激光雷达20'还包括发射透镜组25'、接收透镜组26'、第一折转镜27'和第二折转镜28'。其中所述发射透镜组25'设置在所述激光器211'与所述摆镜23'之间,所述第一折转镜27'设置在所述第一反射面231'的光路下游,从而所述发射透镜组25'可从所述激光器111'接收所述探测激光束,整形后使其入射到第一反射面231'上并被反射到第一折转镜27',经第一折转镜27'反射后出射。所述接收透镜组26'设置在所述探测器121'与所述摆镜23'之间,所述第二折转镜28'设置在所述第二反射面232'的光路上游,从而所述折转镜28'可将所述回波L2反射到所述第二反射面232'上,经第二反射面232'反射、并经接收透镜组26'汇聚后入射到所述探测器阵列。其中所述激光器阵列位于所述接收透镜组25'的焦平面上,所述探测器阵列位于所述探测透镜组26'的焦平面上。
图12示出了根据本发明另一个实施例的异轴结构的激光雷达30',下面重点描述图12中的激光雷达30'与图10所示的激光雷达10'的不同之处。
如图12所示,激光雷达30'包括激光发射单元11'、回波探测单元12'以及摆镜33',其中激光发射单元11'包括激光器111'构成的阵列,回波探测单元12'包括由探测器121'构成的阵列,与图10所示的实施例相同或类似,此处不再赘述。其中所述摆镜33'包括非平行的第一反射面331'和第二反射面332',其中所述第一反射面331'用于接收并反射所述探测激光束L1,所述第二反射面332'用于接收并反射所述回波L2。所述激光雷达30'另外还包括发射透镜组25'、接收透镜组26'、第一折转镜27'和第二折转镜28'。其中所述第一折转镜27'和发射透镜组25'依次设置在所述激光器111'的阵列与所述摆镜33'之间,从而所述激光器111'发出的探测激光束L1经第一折转镜27'反射、并经所述发射透镜组25'整形后入射到第一反射面331'上。所述第二折转镜28'和接收透镜组26'依次设置在所述探测器121'的阵列与所述摆镜33'之间,从而所 述第二反射面332'可将所述回波L2反射到所述接收透镜组26'上,经所述接收透镜组26'汇聚、并经所述第二折转镜28'反射后,入射到所述探测器121'的阵列。
另外,根据本发明的一个优选实施例,如图12所示,入射到所述第一反射面上的探测激光束的光轴V1与经所述第二反射面反射的回波的光轴V2之间的夹角(即图12中所示的2θ),为所述第一反射面和第二反射面之间夹角(即图12中所示的θ)的二倍。
另外,根据本发明的一个实施例,摆镜33'配置成使得所述激光雷达最终出射的探测激光束的方向(如图12中的V11)和激光雷达接收的回波的方向(如图12中的V22)基本平行。
图13示出了根据本发明的一个实施例的激光雷达40',如图13所示,其中采用了单面的摆镜43',所述摆镜43'的反射面分为上部区域和下部区域,一个用于接收来自所述激光发射单元的探测激光束并反射到激光雷达外部,另一个用于接收来自目标物的回波,并反射到所述回波探测单元。图13中示出了上部区域用于接收探测激光束L1并反射出去,下部区域用于接收回波。本发明不限于此,也可以颠倒使用。通过图13所示的上下布置的共面接收方式,激光雷达40'的收发效率较高,适用于远距离探测。本领域技术人员容易理解,图13中所示的激光器111'和探测器121'的数目、以及光线的数目和指向,仅是示例性的,可以根据实际的需求设置任意数目的激光器111'和探测器121',这些都在本发明的保护范围内。
根据本发明的一个实施例,所述摆镜围绕其转轴来回摆动的范围小于等于60度。从而几乎所有的扫描时间都可以被利用,时间利用率高。
图10-13的实施例中,所述摆镜的绕轴摆动可采用正弦扫描的方式,在扫描过程中等角度发光;也可以采用匀速扫描的方式,在匀速段的两端具有加速段和减速度。水平往复摆动扫描的频率与雷达帧频相匹配。假设雷达帧频10赫兹。如果将摆镜的正扫和回扫合为一帧时(正扫和回扫水平方向发光错位),摆镜的摆动频率为10赫兹;如果正扫一帧、回扫为下一帧,那么摆镜的摆动频率为5赫兹。
图10-图13所示的激光雷达中,通过沿着摆镜的转轴方向排布的多个激光器的阵列,实现了激光雷达在竖直方向上的探测视场;通过摆镜围绕其转轴在水平面内的摆动扫描,实现了激光雷达在水平面上的扫描视场。
激光雷达还可包括摆镜驱动机构,所述摆镜驱动机构与所述摆镜连接并可驱动所述摆镜绕其转轴摆动,所述摆镜驱动机构设置在所述第一反射面和第二反射面围成的空间内。如图14所示,摆动驱动机构包括旋转电机31'、下轴承32'、上轴承35'以及主轴33'。主轴33'用于支撑所述摆镜33',并且由旋转电机31'驱动。上轴承35'和下轴承32'分别连接在主轴的上部和下部,用于连接到所述摆镜33'。因此随着旋转电机31'来回摆动,可以带动摆镜33'进行来回摆动。并且摆镜驱动机构位于第一反射面331'和第二反射面332'围成的空间内,有助于进一步减小激光雷达的高度,并且上端和下端不超出所述反射面的轴向范围。另外,如图14所示,激光雷达还包括测角反射镜34',例如用于通过PSD进行角度测量,以获取摆镜33'当前的角度方位。可替换的,也可以采用光电码盘来进行角度测量,具体参见下面关于图16A的描述。
图15A和图16A示出了两种不同类型的驱动机构。在图15A的实施例中,采用单面摆镜,固定在主轴上,位于上轴承和下轴承之间。如图15A和15B所示,当驱动线圈(定子)中通入不同方向的电流时,会对侧向充磁磁环(动子)产生不同方向的扭 转力,从而带动主轴沿着不同方向摆动,相应地带动摆镜进行摆动。如图15B所示,该侧向充磁磁环(动子)可以不必是完整的360度的磁环,侧向充磁磁环(动子)只需要能够覆盖摆镜的摆动范围即可。在图16A的实施例中,摆动电机上方安装有转台,转台可由所述摆动电机驱动。图16B示出了摆动电机的原理,其中当线圈绕组(定子)中通入不同方向的电流时,可以驱动磁环(转子)沿着不同方向转动,驱动磁环(转子)与所述转台固定连接。摆镜固定安装在所述转台上,从而可以与转台同步摆动。图中示出的包括两组驱动线圈,本发明不限于此,也可以布置多组驱动线圈,从而提升驱动的线性度从而提升摆角。另外还包括码盘,码盘设置于所述摆镜的底部,用于对所述摆镜的转动运动进行测量和编码,从而激光雷达的控制系统可以获知摆镜当前的位置和角度。
图17和图18分别示出了摆镜的两种结构。在图17的实施例中,摆镜包括纵向轴以及摆镜主体,所述反射面位于所述摆镜主体上,述摆镜主体通过摆臂安装在所述固定轴上。摆镜主体的背面上可粘附磁铁,利用通电定子线圈产生互斥或相吸作用力,使得摆镜主体围绕该纵向轴来回摆动。图17所示的结构可减小摆镜的竖直高度。
根据上述实施例,摆镜10的高度基本约束了激光雷达的总高,同时在保持较大口径的前提下,仍能实现一个非常扁平的激光雷达系统,摆镜的高度基本就是激光雷达的高度。激光雷达可根据其功能划分为多种类型,包括用于自动驾驶的激光雷达、用于扫地机器人的激光雷达、以及用于自动引导车的激光雷达。另外,激光雷达可能安装在不同的位置处。以车辆上安装的激光雷达为例,其可能安装在车顶上作为主雷达,也可能安装在车辆前部(例如集成在车灯内)作为前向雷达,或者安装在车辆侧部作为侧向雷达。通过实现扁平化的激光雷达,可以方便地将激光雷达集成在车辆的各个位置,例如集成在车灯内或者车身内,减少对于车辆外观的改变和影响。
在图18的实施例中,摆镜包括框架以及摆镜主体,所述反射面位于所述摆镜主体上,所述摆镜主体通过扭梁安装在所述框架内。摆镜主体的背面上可粘附磁铁,利用通电定子线圈产生互斥或相吸作用力,使得摆镜主体在框架内围绕轴线OX来回摆动。相较于图17的结构,图18的结构在水平方向上更为紧凑。图17和图18的结构中,可以采用PSD传感器进行角度测量。关于采用PSD传感器进行角度测量的方式,此处不再赘述。
图19示出了根据本发明一个优选实施例的激光器111'的排布,其中所述激光器111'的阵列包括沿着垂直于所述转轴方向的第二方向分布的多列激光器,图中示出为两列,每列包括至少一个激光器,其中不同列的激光器沿着所述转轴方向相互错开。通过在垂直方向上错位排布加密,能够减少垂直方向排布高度,提升垂直方向分辨率。另外,虽然在图19中未示出,但本领域技术人员容易理解,图19中两组激光器在垂直于图面的方向上优选相互错开,从而便于布置激光器。
图20示出了根据本发明另一个优选实施例的激光器111'的排布。如图20所示,激光器的阵列包括沿着垂直于所述转轴方向的第二方向分布的多列激光器,图20中示出了包括两列,分别为第一列激光器111'-1和第二列激光器111'-2,每列激光器所对应的视场相互分离。以激光雷达水平视场为60度为例,第一列激光器111'-1和第二列激光器111'-2可分别用于探测不同的水平视场,例如第一列激光器111'-1用于探测水平视场中左侧30度的视场,第二列激光器111'-2用于探测水平视场中右侧30度 的视场,二者拼接之后可覆盖60度的视场。通过这样的方式,可以减小摆镜需要的摆动幅度,例如可减小为一半。
图21示出了根据本发明一个优选实施例的发光策略:按列出光,单列内间隔发光。图21中示意性示出了激光器阵列的排布,以一列激光器为例,其中例如包含9个激光器。在发射探测光束时,采取按列出光、单列内间隔发光的模式。图21中的i、ii、iii以及iv代表所述摆镜的四个水平出光位置。首先在第一个出光位置,多个激光器被驱动进行发射和探测;然后摆镜摆动到水平第二个出光位置ii后驱动激光器出光,之后类似地,摆镜摆动到水平第三个和第四个出光位置驱动激光器出光。另外,图21所示的四个水平出光位置仅仅是示例性的,摆镜也可以包括更多或更少数目的出光位置。其中对于一列激光器,优选地避免相邻的激光器同时发光,从而保证人眼安全。为此,可以按照一定的间隔进行发光,例如首先驱动其中A序列的多个激光器进行发光(位置为1、4、7),在该激光器发光完毕并完成相应通道的探测和接收后,驱动B序列的多个激光器进行发光(位置为2、5、8),最后驱动C序列的激光器进行发光(位置为3、6、9)。相邻列序列之间的时间间隔与摆镜面数和系统的水平分辨率有关。该扫描方式对于提高人眼安全阈值是有显著作用的,另一方面,即使在非常高的横向角分辨率下,横向的最小的列出光时间间隔Δt 2仍会远大于行出光时间间隔Δt 1;那么,在一个给定的人眼安全计算窗口(比如典型的5毫弧度视场内),激光雷达的人眼安全会受限于单列内相邻的出光单元。在扫描序列从ⅰ切换到ⅱ的过程中,通过错位发光能够增加两个前后发光激光器的物理距离,进一步有效提高人眼安全阈值;其中同一列中,把最相邻单元的发光间隔拉到最大为原则,比如图示中A序列先发光,然后C序列,最后B序列。另外,本领域技术人员容易理解,本发明中A序列的多个激光器同时发光,并非是指A序列的多个激光器严格意义上被同时驱动发光,可以间隔微小的时间差,只要该时间差远小于相邻列之间的时间差即可,例如小于等于相邻行之间的时间差的10%,或者1%。在这种情况下,可以认为A序列的多个激光器是同时发光的。图21中所示的为同一列激光器经过摆镜扫描形成的发光示意图。例如在第i列,其中显示的为在摆镜的第1位置处,该列激光器依次发光并扫描的情形(9个激光器例如遵循(1、4、7)、(2、5、8)、(3、6、9)的发光次序);在第ii列,其中显示的为在摆镜的第2位置处,该列激光器依次发光并扫描的情形;在第iii列,其中显示的为在摆镜的第3位置处,该列激光器依次发光并扫描的情形;在第iv列,其中显示的为在摆镜的第4位置处,该列激光器依次发光并扫描的情形。在激光器工作过程中,摆镜的几乎所有摆动范围都可以被利用,因此相邻列(如第i列和第ii列)之间的时间间隔会更大,角速度较小,有利于拉大在一个小视场内的激光点的发光间隔。
图10-图13中所示的实施例中,折转镜可以为固定的反射镜。根据本发明的另一个实施例,其中的折转镜也可以包括一个垂直方向摆动的摆镜。该折转镜例如可具有位置状态A和位置状态B,分别为竖直方向两个摆动位置,可以将入射到其上的光束在竖直面中沿着不同的角度出射。此时,可以采用回扫时该折转镜摆动一维小角度提升分辨率的工作方式。图22示出了结合折转镜工作时正扫和回扫合并一帧的光斑示意图。如图22所示,当摆镜13、23、33往右扫描时,折转镜在位置状态A;当摆镜13、23、33往回扫描时,摆镜在位置状态B。因此在竖直方向上形成了两排扫描光斑。把正扫和回扫合并为一帧,依此,实现了错位加密。使用该工作方式,可以在收发单元已经 紧密排布仍然垂直分辨率不足时,实现超分辨率的效果。
本发明还提供一种使用如上所述的激光雷达进行目标物探测的方法。
以上描述了根据本发明实施例的一种通过垂直阵列收发单元和水平摆镜实现二维扫描的激光雷达系统,其中垂直方向通过阵列的位置以及光学透镜组确定视场角,水平方向通过往复运动的摆镜进行水平扫描。本发明的实施例能够实现一个高度紧凑的激光雷达。另外,本发明实施例的系统高度最终基本取决于反射镜的高度(整个电机可以嵌入反射镜模组内),因此,该方案有可能实现高度非常紧凑扁平的激光雷达系统,从而满足大规模量产乘用车的需求。摆镜异面收发时,通过使用较大的发射和接收光学口径,在摆镜转动时发射和接收的有效光学口径是不相等的,从而异面收发可以具有能量的互补特性:当发射端有效的出射能量减小时,接收端的有效接收口径增大,从而弥补了发射能量减小的测程损失,反之亦然,那么实际的摆镜外接圆半径可以较小,便于减小体积和提高可靠性。本发明的实施例可实现一个高分辨率、远距离的激光雷达系统。
对于现有的多面转镜的技术方案,其适合视场较大的情况,例如100度以上,特别是有与多面转镜的反射面相匹配的比如点头扫描器配合使用时可以提升垂直分辨率。但是如果扫描视场比较小,对有效扫描时间的浪费非常严重;虽然增加多面转镜的反射面数目可以改善,但是相应的固定帧率下多面转镜的转速需要相应提高,水平方向扫描的时间间隔需要缩短。并且为了保证具有一定的接收口径从而探测一个较远的距离,随着转镜面数的增加多面转镜的体积也显著增加,造成系统的体积增加可靠性不确定性提高。对于现有的谐振镜的技术方案,谐振镜主要受限于高频扫描的限制,因此口径难以提升,并且高频扫描器的可靠性也是问题。
本发明在水平方向上使用往复摆动的反射镜进行横向扫描,另一个维度(垂直)激光器阵列通过光学系统后产生一定的视场角。由于采用往复摆动水平扫描极大地节省了扫描时间,发光占空比高,水平摆动扫描绝大部分时间均可用以发光,因此在不影响人眼安全前提下,仍然可以实现很高的角分辨率,即使是在横向超高分辨率下横向扫描间隔也非常长,对人眼安全十分有利。相对多面转镜,本发明的实施例显著减小了体积,而且摆动部分惯量很小,并且水平方向是一个几赫兹到几十赫兹的低速扫描,因此往复摆动机构的可靠性很高。
本发明的多个实施例中,收发可以实现隔离。另外视场可缩放,特别地在水平视场缩小的时候,可以提升水平角分辨率。能够最大化收发效率,特别地在采用异面收发或上下分层收发时,可以接近理论的收发效率极限,从而利于测远。低速摆镜的反射口径可以做到很大,因而可以提高测程。
由于该雷达架构不管是系统收发效率以及人眼安全角度都十分高效有利,因此可以减少激光器出光能量降低系统功耗或提供发射单元可靠性,并且有利于人眼安全,或者可以在使用和其他同类系统相当能量下获得更远的测程。
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (26)

  1. 一种激光雷达,包括:
    激光发射单元,所述激光发射单元包括多个激光器的阵列,配置成可发射出探测激光束用于探测目标物;
    回波探测单元,所述回波探测单元包括多个探测器的阵列,配置成可接收所述探测激光束被目标物反射后的回波;和
    多面转镜,所述多面转镜可围绕其转轴旋转,具有多个反射面,其中所述多面转镜位于所述激光发射单元的光路下游,并位于所述回波探测单元的光路上游,其中一个反射面可接收所述探测激光束并反射到所述激光雷达外部,其中另一个反射面可接收所述回波并将所述回波朝向所述回波探测单元反射。
  2. 根据权利要求1所述的激光雷达,其中所述激光器的阵列中,沿着所述激光雷达纵向在中间位置处,激光器的排布密度相对更高,在两边的位置处,激光器的排布密度相对更低,所述多面转镜包括双面镜、正三面转镜、正方形转镜、正五边形转镜或边数大于5的正多边形中的一种,所述多面转镜配置成围绕其转轴单向旋转。
  3. 根据权利要求1或2所述的激光雷达,其中所述多个激光器的阵列和多个探测器的阵列相对于所述多面转镜的转轴设置在基本相同的轴向位置上。
  4. 根据权利要求1或2所述的激光雷达,其中所述多面转镜还包括驱动机构,所述驱动机构基本位于所述其中一个反射面和另一个反射面围成的空间内。
  5. 根据权利要求1或2所述的激光雷达,其中所述多面转镜是正多边形转镜,入射到所述多面转镜的探测激光束与被所述多面转镜反射后的回波之间的夹角是所述多面转镜外角的两倍。
  6. 根据权利要求1或2所述的激光雷达,还包括:
    发射摆镜和发射透镜,依次设置在所述激光器的阵列与所述多面转镜之间,其中所述探测激光束入射到所述发射摆镜上,被反射到所述发射透镜,经所述发射透镜整形后入射到所述多面转镜;
    接收透镜和接收摆镜,依次设置在所述多面转镜与所述探测器的阵列之间,其中所述多面转镜将所述回波反射到所述接收透镜,经所述接收透镜汇聚后入射到所述接收摆镜上,然后被反射到所述探测器的阵列。
  7. 根据权利要求1或2所述的激光雷达,其中所述激光器的阵列包括沿着垂直于所述转轴方向的第二方向分布的多列激光器,每列包括至少一个激光器,其中不同列的激光器沿着所述转轴方向相互错开。
  8. 根据权利要求1或2所述的激光雷达,其中所述多面转镜配置成使得所述激光雷达最终出射的探测激光束的方向和激光雷达接收的回波的方向基本平行。
  9. 根据权利要求7所述的激光雷达,其中所述激光器的阵列采用按列出光、单列内间隔发光的方式被驱动发光。
  10. 使用如权利要求1-9中任一项所述的激光雷达进行目标物探测的方法。
  11. 一种激光雷达,包括:
    激光发射单元,所述激光发射单元包括多个激光器的阵列,配置成可发射出探测激光束用于探测目标物;
    回波探测单元,所述回波探测单元包括多个探测器的阵列,配置成可接收所述探测激光束被目标物反射后的回波;和
    摆镜,所述摆镜可围绕其转轴来回摆动,所述摆镜具有反射面,所述反射面配置成可接收来自所述激光发射单元的探测激光束并反射到激光雷达外部,用于探测目标物,并且可接收来自目标物的回波,并反射到所述回波探测单元。
  12. 根据权利要求11所述的激光雷达,其中所述摆镜具有单个反射面,所述激光雷达还包括依次设置在所述激光器阵列和摆镜之间的分光镜、整形透镜和折转镜,其中所述分光镜配置成接收所述探测激光束并出射到所述整形透镜,经所述整形透镜调制后通过折转镜反射到所述摆镜的反射面上,所述摆镜接收来自目标物的回波并反射到所述折转镜上,经所述折转镜反射到所述整形透镜并出射到所述分光镜上,进而被入射到所述回波探测单元。
  13. 根据权利要求11所述的激光雷达,其中所述摆镜包括相互平行的第一反射面和第二反射面,其中所述第一反射面用于将接收并反射所述探测激光束,所述第二反射面用于接收并反射所述回波,所述激光雷达还包括发射透镜组、接收透镜组、第一折转镜和第二折转镜,
    其中所述发射透镜组设置在所述激光器阵列与所述摆镜之间,所述第一折转镜设置在所述第一反射面的光路下游,从而所述发射透镜组可从所述激光器阵列接收所述探测激光束,整形后使其入射到第一反射面上并被反射到第一折转镜,经第一折转镜反射后出射;
    其中所述接收透镜组设置在所述探测器阵列与所述摆镜之间,所述第二折转镜设置在所述第二反射面的光路上游,从而所述折转镜可将所述回波反射到所述第二反射面上,经第二反射面反射、并经接收透镜组汇聚后入射到所述探测器阵列。
  14. 根据权利要求11所述的激光雷达,其中所述摆镜包括非平行的第一反射面和第二反射面,其中所述第一反射面用于接收并反射所述探测激光束,所述第二反射面用于接收并反射所述回波,所述激光雷达还包括发射透镜组、接收透镜组、第一折转镜和第二折转镜,
    其中所述第一折转镜和发射透镜组依次设置在所述激光器阵列与所述摆镜之间,从而所述激光器阵列发出的探测激光束经第一折转镜反射、并经所述发射透镜组整形后入射到第一反射面上;
    其中所述第二折转镜和接收透镜组依次设置在所述探测器阵列与所述摆镜之间,从而所述第二反射面可将所述回波反射到所述接收透镜组上,经所述接收透镜组汇聚、并经所述第二折转镜反射后,入射到所述探测器阵列。
  15. 根据权利要求14所述的激光雷达,其中入射到所述第一反射面上的探测激光 束的光轴与经所述第二反射面反射的回波的光轴之间的夹角,为所述第一反射面和第二反射面之间夹角的二倍。
  16. 根据权利要求12所述的激光雷达,其中所述摆镜的反射面的上部区域和下部区域中的一个用于接收来自所述激光发射单元的探测激光束并反射到激光雷达外部,所述摆镜的反射面的上部区域和下部区域中的另一个用于接收来自目标物的回波,并反射到所述回波探测单元。
  17. 根据权利要求11-16中任一项所述的激光雷达,其中所述激光器阵列包括沿着所述摆镜的转轴方向排布的多个激光器,所述探测器阵列包括沿着所述摆镜的转轴方向排布的多个探测器。
  18. 根据权利要求13-15中任一项所述的激光雷达,还包括摆镜驱动机构,所述摆镜驱动机构与所述摆镜连接并可驱动所述摆镜绕其转轴摆动,所述摆镜驱动机构设置在所述第一反射面和第二反射面围成的空间内。
  19. 根据权利要11-16中任一项所述的激光雷达,其中所述摆镜包括纵向轴以及摆镜主体,所述反射面位于所述摆镜主体上,所述摆镜主体通过摆臂安装在所述固定轴上。
  20. 根据权利要11-16中任一项所述的激光雷达,其中所述摆镜包括框架以及摆镜主体,所述反射面位于所述摆镜主体上,所述摆镜主体通过扭梁安装在所述框架内。
  21. 根据权利要11-16中任一项所述的激光雷达,其中所述激光器的阵列包括沿着垂直于所述转轴方向的第二方向分布的多列激光器,每列包括至少一个激光器,其中不同列的激光器沿着所述转轴方向相互错开。
  22. 根据权利要求11-16中任一项所述的激光雷达,其中所述激光器的阵列包括沿着垂直于所述转轴方向的第二方向分布的多列激光器,每列激光器所对应的视场相互分离。
  23. 根据权利要求11-16中任一项所述的激光雷达,其中所述激光器的阵列采用按列出光、单列内间隔发光的方式被驱动发光。
  24. 根据权利要求11或12所述的激光雷达,其中所述摆镜配置成使得所述激光雷达最终出射的探测激光束的方向和激光雷达接收的回波的方向基本平行。
  25. 根据权利要求11-16中任一项所述的激光雷达,其中所述摆镜围绕其转轴来回摆动的角度为至多60度,其中所述激光器的阵列为非均匀分布的,所述激光器的阵列中,沿着所述激光雷达纵向在中间位置处,激光器的密度高,在两边的位置处,激光器的密度低。
  26. 使用如权利要求11-25中任一项所述的激光雷达进行目标物探测的方法。
PCT/CN2021/082801 2020-04-03 2021-03-24 激光雷达以及使用该激光雷达进行目标物探测的方法 WO2021197170A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010260771.X 2020-04-03
CN202010260771.XA CN113552578A (zh) 2020-04-03 2020-04-03 激光雷达以及使用该激光雷达进行目标物探测的方法
CN202010306959.3 2020-04-17
CN202010306959.3A CN113552580A (zh) 2020-04-17 2020-04-17 激光雷达以及使用该激光雷达进行目标物探测的方法

Publications (1)

Publication Number Publication Date
WO2021197170A1 true WO2021197170A1 (zh) 2021-10-07

Family

ID=77927267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/082801 WO2021197170A1 (zh) 2020-04-03 2021-03-24 激光雷达以及使用该激光雷达进行目标物探测的方法

Country Status (1)

Country Link
WO (1) WO2021197170A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114265041A (zh) * 2021-12-14 2022-04-01 北醒(北京)光子科技有限公司 扫描装置和扫描方法
CN114966616A (zh) * 2022-07-26 2022-08-30 深圳市速腾聚创科技有限公司 激光雷达及存储介质
CN115291189A (zh) * 2022-07-19 2022-11-04 深圳市杉川机器人有限公司 扫描机构、激光雷达及清洁设备
CN115327867A (zh) * 2022-10-13 2022-11-11 之江实验室 一种高速高精度对准的激光直写光刻方法与装置
CN115343688A (zh) * 2022-08-16 2022-11-15 中国科学院西安光学精密机械研究所 一种基于多面转镜的激光扫描同步控制系统及控制方法
CN116009009A (zh) * 2022-05-26 2023-04-25 湖南阿秒光学科技有限公司 Tof激光测量系统、激光发射和接收模组以及激光雷达
CN116400325A (zh) * 2022-09-14 2023-07-07 苏州睿新微系统技术有限公司 一种光发射组件及激光雷达
WO2023143078A1 (zh) * 2022-01-29 2023-08-03 华为技术有限公司 激光雷达及终端设备
DE102022206076A1 (de) 2022-06-15 2023-12-21 Robert Bosch Gesellschaft mit beschränkter Haftung LIDAR-Vorrichtung für ein Fahrzeug und Verfahren zur optischen Erfassung eines Sichtfelds für ein Fahrzeug
CN117890930A (zh) * 2024-03-14 2024-04-16 深圳阜时科技有限公司 一种转镜激光雷达、转动角度检测方法及电子设备

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014115182A (ja) * 2012-12-10 2014-06-26 Konica Minolta Inc レーザレーダ
CN105319555A (zh) * 2007-02-28 2016-02-10 电装波动株式会社 用于目标三维探测的激光雷达装置
CN105467399A (zh) * 2015-12-29 2016-04-06 大连楼兰科技股份有限公司 基于Light Tools的车载激光雷达光学系统及其工作方法
CN108490419A (zh) * 2018-06-04 2018-09-04 电子科技大学 一种自动驾驶车载多线激光雷达系统
US10324170B1 (en) * 2018-04-05 2019-06-18 Luminar Technologies, Inc. Multi-beam lidar system with polygon mirror
CN110376567A (zh) * 2019-08-16 2019-10-25 上海禾赛光电科技有限公司 激光雷达及其发射装置
CN110794382A (zh) * 2019-10-30 2020-02-14 上海禾赛光电科技有限公司 激光雷达及其探测方法
CN110873868A (zh) * 2018-08-31 2020-03-10 探维科技(北京)有限公司 基于mems扫描镜的激光雷达系统
CN111580114A (zh) * 2020-04-29 2020-08-25 上海禾赛光电科技有限公司 用于激光雷达的转镜单元、相应的激光雷达和使用方法
CN111580115A (zh) * 2020-04-29 2020-08-25 上海禾赛光电科技有限公司 用于激光雷达的扫描装置及激光雷达
CN212623082U (zh) * 2020-04-29 2021-02-26 上海禾赛光电科技有限公司 用于激光雷达的扫描装置及激光雷达

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105319555A (zh) * 2007-02-28 2016-02-10 电装波动株式会社 用于目标三维探测的激光雷达装置
JP2014115182A (ja) * 2012-12-10 2014-06-26 Konica Minolta Inc レーザレーダ
CN105467399A (zh) * 2015-12-29 2016-04-06 大连楼兰科技股份有限公司 基于Light Tools的车载激光雷达光学系统及其工作方法
US10324170B1 (en) * 2018-04-05 2019-06-18 Luminar Technologies, Inc. Multi-beam lidar system with polygon mirror
CN108490419A (zh) * 2018-06-04 2018-09-04 电子科技大学 一种自动驾驶车载多线激光雷达系统
CN110873868A (zh) * 2018-08-31 2020-03-10 探维科技(北京)有限公司 基于mems扫描镜的激光雷达系统
CN110376567A (zh) * 2019-08-16 2019-10-25 上海禾赛光电科技有限公司 激光雷达及其发射装置
CN110794382A (zh) * 2019-10-30 2020-02-14 上海禾赛光电科技有限公司 激光雷达及其探测方法
CN111580114A (zh) * 2020-04-29 2020-08-25 上海禾赛光电科技有限公司 用于激光雷达的转镜单元、相应的激光雷达和使用方法
CN111580115A (zh) * 2020-04-29 2020-08-25 上海禾赛光电科技有限公司 用于激光雷达的扫描装置及激光雷达
CN212623082U (zh) * 2020-04-29 2021-02-26 上海禾赛光电科技有限公司 用于激光雷达的扫描装置及激光雷达

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114265041A (zh) * 2021-12-14 2022-04-01 北醒(北京)光子科技有限公司 扫描装置和扫描方法
WO2023143078A1 (zh) * 2022-01-29 2023-08-03 华为技术有限公司 激光雷达及终端设备
CN116009009A (zh) * 2022-05-26 2023-04-25 湖南阿秒光学科技有限公司 Tof激光测量系统、激光发射和接收模组以及激光雷达
CN116009009B (zh) * 2022-05-26 2023-06-30 湖南阿秒光学科技有限公司 Tof激光测量系统、激光发射和接收模组以及激光雷达
DE102022206076A1 (de) 2022-06-15 2023-12-21 Robert Bosch Gesellschaft mit beschränkter Haftung LIDAR-Vorrichtung für ein Fahrzeug und Verfahren zur optischen Erfassung eines Sichtfelds für ein Fahrzeug
CN115291189A (zh) * 2022-07-19 2022-11-04 深圳市杉川机器人有限公司 扫描机构、激光雷达及清洁设备
CN114966616A (zh) * 2022-07-26 2022-08-30 深圳市速腾聚创科技有限公司 激光雷达及存储介质
CN115343688A (zh) * 2022-08-16 2022-11-15 中国科学院西安光学精密机械研究所 一种基于多面转镜的激光扫描同步控制系统及控制方法
CN115343688B (zh) * 2022-08-16 2024-04-12 中国科学院西安光学精密机械研究所 一种基于多面转镜的激光扫描同步控制系统及控制方法
CN116400325A (zh) * 2022-09-14 2023-07-07 苏州睿新微系统技术有限公司 一种光发射组件及激光雷达
CN116400325B (zh) * 2022-09-14 2024-01-26 苏州睿新微系统技术有限公司 一种光发射组件及激光雷达
CN115327867A (zh) * 2022-10-13 2022-11-11 之江实验室 一种高速高精度对准的激光直写光刻方法与装置
CN117890930A (zh) * 2024-03-14 2024-04-16 深圳阜时科技有限公司 一种转镜激光雷达、转动角度检测方法及电子设备

Similar Documents

Publication Publication Date Title
WO2021197170A1 (zh) 激光雷达以及使用该激光雷达进行目标物探测的方法
CN215641806U (zh) 激光雷达
CN213182011U (zh) 激光雷达的发射单元、接收单元及激光雷达
CN110231606B (zh) 激光扫描装置和包括其的激光雷达装置
WO2020114229A1 (zh) 激光雷达光学系统及扫描方法
CN210864033U (zh) 一种扫描装置及激光雷达系统
CN212008926U (zh) 一种激光雷达
CN113640812A (zh) 基于一维振镜和多面转镜的同轴激光雷达系统
CN109752704A (zh) 一种棱镜及多线激光雷达系统
EP3982150A1 (en) Lidar apparatus having wide-viewing angle
US20230314571A1 (en) Detection apparatus, scanning unit, movable platform, and control method of detection apparatus
CN108227183A (zh) 旋转式激光扫描装置
CN113552580A (zh) 激光雷达以及使用该激光雷达进行目标物探测的方法
CN111308443B (zh) 一种激光雷达
CN110794382A (zh) 激光雷达及其探测方法
WO2022227733A1 (zh) 光探测装置及行驶载具、激光雷达及探测方法
CN217543379U (zh) 激光雷达
CN113552578A (zh) 激光雷达以及使用该激光雷达进行目标物探测的方法
CN208334781U (zh) 旋转式激光扫描装置
CN110045350A (zh) 一种360°扫描三维激光雷达
CN117607830A (zh) 激光雷达的探测方法、激光雷达以及计算机存储介质
WO2022110210A1 (zh) 一种激光雷达及移动平台
CN105549026A (zh) 一种多线光学扫描测距装置及其方法
CN211402711U (zh) 一种激光雷达
CN116500586A (zh) 一种多面体转镜及激光雷达扫描系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21780038

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21780038

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21780038

Country of ref document: EP

Kind code of ref document: A1