WO2022110210A1 - 一种激光雷达及移动平台 - Google Patents

一种激光雷达及移动平台 Download PDF

Info

Publication number
WO2022110210A1
WO2022110210A1 PCT/CN2020/132926 CN2020132926W WO2022110210A1 WO 2022110210 A1 WO2022110210 A1 WO 2022110210A1 CN 2020132926 W CN2020132926 W CN 2020132926W WO 2022110210 A1 WO2022110210 A1 WO 2022110210A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
scanning
lidar
mirror surface
detection
Prior art date
Application number
PCT/CN2020/132926
Other languages
English (en)
French (fr)
Inventor
谢承志
晏蕾
黄科
赵文
熊伟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/132926 priority Critical patent/WO2022110210A1/zh
Priority to CN202080107177.5A priority patent/CN116457698A/zh
Publication of WO2022110210A1 publication Critical patent/WO2022110210A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements

Definitions

  • the present application relates to the field of detection technology, and in particular, to a laser radar and a mobile platform.
  • the level of automotive automation gradually shifts from specific single-function automation (eg, cruise control, electronic stability control, etc.) to combined-function automated driving assistance (eg, adaptive cruise, lane keeping, emergency braking, etc.) etc.) and even more advanced vehicle autonomous driving (eg, high-speed autonomous driving, autonomous parking and pickup, etc.) is gradually evolving.
  • specific single-function automation eg, cruise control, electronic stability control, etc.
  • combined-function automated driving assistance eg, adaptive cruise, lane keeping, emergency braking, etc.
  • advanced vehicle autonomous driving eg, high-speed autonomous driving, autonomous parking and pickup, etc.
  • a high-performance lidar that meets future needs needs to achieve high resolution (angular resolution ⁇ 0.3°, or >100 lines), large field of view (horizontal>140°vertical>30°), long-range detection (>150m ) and other three core indicators, and at the same time have basic characteristics such as low cost, low complexity and high reliability.
  • the horizontal angular resolution of the gimbal rotation scheme is determined by the highest repetition frequency emitted by the laser and the rotation speed of the gimbal, which can generally be freely configured according to user needs.
  • the aperture size of the transceiver lens can easily reach more than 30mm, and more energy is reflected from the detected object, the ranging performance of this type of technical solution is better, generally reaching more than 150M.
  • the physical stacking of a large number of active devices such as lasers and lidars brings complex assembly procedures and high material costs, which seriously restricts the application of this solution in consumer products such as ordinary passenger cars. use on.
  • the present application provides a laser radar and a mobile platform to reduce the size of the laser radar and facilitate miniaturization development.
  • a lidar is provided, and the lidar is used on a mobile platform, especially a self-driving smart car.
  • the lidar includes a laser transmitter, a detector, and a scanning device; wherein, the laser transmitter is used for emitting detection laser light; and the scanning device is used for forming the detection laser light into scanning light.
  • the scanning device includes two parts, one part is a one-dimensional scanning micro-galvanometer used to reflect the detection laser light into a first scanning light along the first direction; the other part is used to reflect the first scanning light to form a first scanning light along the first direction.
  • a detector is used for laser detection based on the reflected laser light.
  • the laser radar uses a one-dimensional scanning micro-galvanometer to reflect the detection laser into a first scanning light in a first direction, and the first scanning light is reflected in a second direction through a rotating scanning component.
  • the second scanning ray enables scanning in two directions.
  • the one-dimensional scanning micro-galvanometer only realizes one-dimensional scanning, so that the structure of the one-dimensional scanning micro-galvanometer is relatively simple, and the reliability is increased. Compared with the structure required for scanning by means of mechanical rotation in the prior art, the structural complexity of the scanning device is reduced, the occupied space is reduced, and the miniaturization of the laser radar is facilitated.
  • the rotary scanning assembly includes a rotating mirror and a driving mechanism for driving the rotating mirror to rotate along an axis parallel to the first direction, wherein the rotating mirror includes a polygonal prism, and The reflecting mirror surfaces arranged on each side surface of the polygonal prism, wherein the number of the reflecting mirror surfaces is at least three.
  • the rotating mirror surface includes an adjacent first reflecting mirror surface and a second reflecting mirror surface; wherein one of the first reflecting mirror surface and the second reflecting mirror surface is used to The first scanning light reflected by the one-dimensional scanning micro-galvanometer is reflected into the second scanning light along the second direction, and the other reflecting mirror is used to reflect the received reflected laser light to the detector.
  • the detection laser light and the reflected laser light are respectively reflected by two adjacent mirror surfaces in the rotating mirror surface.
  • the size of the first reflecting mirror surface is greater than or equal to the size of the second reflecting mirror surface. Different detection ranges can be achieved.
  • the rotating mirror surface includes four mirror surfaces enclosing a rectangle. Simplified the structure of the rotating mirror.
  • the laser transmitter includes a laser for emitting the detection laser, and a lens group for adjusting the detection laser spot.
  • the lens group includes a first lens group for adjusting the divergence angle of the probe laser emitted by the laser. It is convenient to detect the laser irradiation to the one-dimensional scanning micro-galvanometer.
  • the lens group includes a second lens group for compressing the diameter of the detection laser.
  • the lidar further includes a reflector, the reflector is located between the laser transmitter and the optical path of the one-dimensional scanning micro-galvanometer, and is used to reflect the detection laser to the 1D scanning galvo mirror.
  • the lidar further includes a reflector; the reflector is located between the one-dimensional scanning micro-galvanometer and the rotating mirror, and is used to convert the one-dimensional scanning micro-galvanometer The reflected probe laser is reflected to the rotating mirror.
  • the laser transmitter includes a plurality of lasers, and the plurality of lasers are arranged in a single row or an array along the vertical direction. Improved detection range.
  • the lasers can be different types of lasers, such as EEL lasers, VCSEL lasers, MOPA lasers, DPSS lasers, and tunable lasers.
  • the detector includes a plurality of laser receivers, and the plurality of laser receivers are arranged in a single row or in an array. to ensure that all reflected laser light can be received.
  • a mobile platform in a second aspect, includes a central control processor and at least one lidar according to any one of the above; the central control processor performs laser detection through each of the lidars The result controls the actions of the mobile platform.
  • the central control processor performs laser detection through each of the lidars The result controls the actions of the mobile platform.
  • the central control processor determines the detection detected by each radar by the relative position of each of the lidars and the relative position of the detected objects detected by each lidar relative to the lidar relative position of the object relative to the mobile platform. The judgment of the detected object is realized by the central control processor.
  • the mobile platform is an aircraft or an automobile.
  • FIG. 1 shows a schematic diagram of an application scenario of a lidar provided by an embodiment of the present application
  • FIG. 2 shows a schematic diagram of an application scenario of a lidar provided by an embodiment of the present application
  • FIG. 3 shows a block diagram of information interaction between a lidar and a mobile platform provided by an embodiment of the present application
  • FIG. 4 shows a top view of a lidar provided by an embodiment of the present application
  • FIG. 5 shows a schematic structural diagram of a laser transmitter of a laser radar provided by an embodiment of the present application
  • FIG. 6 shows a schematic structural diagram of another laser transmitter of a laser radar provided by an embodiment of the present application.
  • FIG. 7 shows a schematic diagram of a three-dimensional structure of a lidar provided by an embodiment of the present application.
  • FIG. 11 shows a scanning waveform diagram of the detection laser of the lidar provided by the embodiment of the present application.
  • FIG. 12 shows a schematic structural diagram of a detector provided by an embodiment of the present application.
  • FIG. 13 shows a top view of another lidar provided by an embodiment of the present application.
  • FIG. 14 shows a reference diagram of a use state of another lidar provided by an embodiment of the present application.
  • FIG. 15 shows a structural block diagram of information interaction between a lidar and a mobile platform provided by an embodiment of the present application.
  • the lidar provided in the embodiments of the present application is applied to a mobile platform to realize automatic driving of the mobile platform, or to assist the driver in driving.
  • the lidars are respectively set at four corners of the car.
  • Each lidar can cover a field of view range greater than 120° horizontally and greater than 30° vertically. Through the installation in the four corners of the car, the field of vision coverage around the whole vehicle can be achieved.
  • Figure 3 shows a block diagram of the basic structure of the LiDAR link.
  • the laser radar 100 emits laser light and receives the reflected laser light.
  • the electrical signal obtained by the received laser light after being photosensitive by the laser radar 100 enters the processing chip 200 for arithmetic operation and finally calculates the distance of the detected object.
  • the distance of the detected object and the orientation of the detected object are packaged into frame data and output through the Ethernet port.
  • One network port of the multiple lidars 100 is output to a central control processor 300 for data fusion to realize functions such as target recognition and perception, and finally generate control instructions to control the driving of the car.
  • the structure of the laser radar in the prior art is relatively complex, and can no longer meet the needs of the development of the mobile platform. For this reason, the embodiment of the present application provides a laser radar with a simple structure and convenient miniaturization. It will be described in detail below with reference to the specific drawings and embodiments.
  • FIG. 4 shows a top view of a lidar provided by an embodiment of the present application.
  • the main structure of the lidar includes a pair of laser emitters 10 and detectors 40, and a scanning device.
  • the laser transmitter 10 is used for emitting detection laser light
  • the detector 40 is used for receiving the reflected laser light reflected by the detected object.
  • the scanning device is located between the laser emitter 10 and the detector 40, and is used to reflect the detection laser light and the reflected laser light, and perform laser detection based on the reflected laser light.
  • the scanning device includes an independently arranged rotary scanning component and a one-dimensional scanning micro-galvanometer 20, and the one-dimensional scanning micro-galvanometer 20 can be used to reflect the detection laser light into a first scanning light along a first direction.
  • the rotating scanning component is the rotating mirror component 30, which can reflect the first scanning light to form the second scanning light along the second direction, and reflect the reflected laser light formed after the second scanning light irradiates the detection object to the detection object. device 40.
  • the first direction and the second direction are two directions that are perpendicular to each other. As an example, the first direction is a vertical direction, and the second direction is a horizontal direction.
  • the above-mentioned vertical direction and horizontal direction refer to the vertical direction and horizontal direction relative to the setting plane of the laser detector as the reference plane.
  • FIG. 5 shows a schematic structural diagram of a laser transmitter provided by an embodiment of the present application.
  • the laser transmitter includes one or more lasers 11, and one laser 11 is illustrated in FIG. 5, but it should be understood that the embodiment of the present application does not limit the specific number of lasers 11, and the number of lasers 11 may be 1, 2 , 3, etc. different numbers.
  • the lasers 11 can also be arranged in different ways. Exemplarily, the lasers 11 are arranged in a single row along the vertical direction. Alternatively, the lasers 11 are arranged in an array. Such as 2*2 arrangement, 3*3 arrangement, 2*3 arrangement and other different arrangements.
  • the above-mentioned laser 11 may adopt different types of lasers, for example, the laser 11 may be any one of an EEL laser, a VCSEL laser, a MOPA laser, a DPSS laser or a tunable laser.
  • the EEL laser 11 is used as an example for description.
  • the laser transmitter also includes a lens group used in conjunction with the laser 11 .
  • the lens group is arranged on the light-emitting surface of the laser 11 and is used for adjusting the light spot of the detection laser emitted by the laser 11 .
  • the purpose of the spot shaping is to make the detection laser emitted by the laser 11 form a spot that can be irradiated to the one-dimensional scanning micro-galvanometer, so that the detection laser can pass through the one-dimensional scanning micro-mirror.
  • the spot of the galvanometer is scanned vertically.
  • the lens group at least includes a first lens group 12 , and the first lens group 12 is used to adjust the divergence angle of the detection laser light emitted by the laser 11 .
  • the probe laser light with a large divergence angle emitted by the laser 11 is collimated into a light beam with a small divergence angle or even almost parallel through the first lens group 12 and then exits.
  • the above-mentioned first lens group 12 can be a combination of a conventional convex lens and a concave lens, and the detection laser can be collimated by the convex lens and the concave lens, the principle of which will not be described in detail here.
  • the lens group may further include a second lens group 13 for compressing the diameter of the detection laser. Therefore, the outgoing detection laser can be completely received and reflected by the one-dimensional scanning micro-galvanometer.
  • the detection laser emitted by the laser 11 can be collimated (the first lens group 12 ) and the light spot is compressed (the second lens group 13 ) and then irradiated onto the one-dimensional scanning micro-galvanometer for reflection.
  • the detection lasers emitted by the multiple lasers may be parallel to each other when they are shaped and emitted, and then the detection lasers emitted by the multiple lasers are refracted or reflected through the third lens group 50 Then, they illuminate the one-dimensional scanning micro-galvo mirror 20 at a certain angle to each other.
  • the three lasers shown in FIG. 6 the three lasers respectively refract the detection lasers through a corresponding lens, so that the three detection lasers converge to the one-dimensional scanning micro-galvanometer 20, but the incidence angles of the three detection lasers are different. , after being reflected by the one-dimensional scanning micro-galvanometer 20, it can be reflected to the rotating mirror group 30 along different optical paths.
  • FIG. 7 shows a schematic diagram of the cooperation between the one-dimensional scanning micro-galvanometer 20 and the rotating mirror assembly 30 provided by the embodiment of the present application.
  • the one-dimensional scanning micro-galvo mirror 20 adopts a MEMS (MEMS, Micro-Electro-Mechanical System, micro-electromechanical system) micro-galvo mirror, and the MEMS micro-galvo mirror is a one-dimensional reciprocating scanning structure.
  • MEMS Micro-Electro-Mechanical System, micro-electromechanical system
  • the detection laser emitted by the laser transmitter 10 is reflected on the mirror surface of the MEMS micro-galvanometer and then reaches the rotating mirror assembly 30 .
  • the arcs illustrate the swing direction of the one-dimensional scanning micro-galvo mirror 20 .
  • the one-dimensional scanning micro-galvanometer 20 swings along the horizontal axis, and its mirror surface swings back and forth in the vertical direction, so that the outgoing detection laser forms a vertical trace within the field of view of the lidar.
  • the laser transmitter 10 uses three lasers. The three lasers emit detection lasers respectively, and the three detection lasers irradiate the one-dimensional scanning micro-galvo mirror 20 at different incident angles. After one-dimensional scanning The micro-galvanometer 20 is reflected and irradiated to the rotating mirror assembly 3030 .
  • the rotating mirror assembly 30 includes a rotating mirror surface 31 and a driving mechanism 32 for driving the rotating mirror surface 31 to rotate along an axis parallel to the first direction.
  • the rotating mirror surface 31 includes a polygonal prism and a reflecting mirror surface arranged on each side of the polygonal prism.
  • the rotating mirror surface 31 is used to reflect the first scanning light and the reflected laser light
  • the driving mechanism 32 is used to drive the rotating mirror surface 31. rotate.
  • the driving mechanism 32 can drive the rotating mirror 31 to rotate in a clockwise direction (taking the placement direction of the lidar shown in FIG. 7 as a reference direction).
  • the rotating mirror surface 31 includes four mirror surfaces surrounding in a ring shape, and adjacent mirror surfaces are perpendicular to each other.
  • the rotating mirror surface 31 may be composed of an aluminum quadrangular prism or a glass quadratic prism, and the four mirror surfaces are formed by plated with gold or aluminum on the side surfaces of the quadrangular prism.
  • the four vertical edges of the quadrangular prism can be chamfered.
  • the rotating mirror surface 31 in the embodiment of the present application may also adopt other numbers of mirror surfaces (the number of mirror surfaces ⁇ 3), for example, the number of mirror surfaces is 3, 5 and other different numbers. In the embodiments of the present application, only four mirror surfaces are taken as an example for description.
  • two adjacent mirror surfaces are used as reflecting mirror surfaces, one of which is used to reflect the first scanning light reflected by the one-dimensional scanning micro-galvanometer 20 into scanning light in the horizontal direction, and the other is used to reflect the scanning light in the horizontal direction.
  • the mirror surface is used to reflect the reflected laser light formed after the second scanning light irradiates the detection object to the detector. That is, the transmitting path of the laser transmitter 10 and the receiving path of the detector are reflected by two different mirror surfaces on the rotating mirror surface 31 .
  • the two mirror surfaces for reflecting the first scanning light and reflecting the reflected laser light are named as a first reflecting mirror surface and a second reflecting mirror surface, respectively.
  • the laser transmitter 10 is located on the left side of the rotating mirror 31 , and the detection laser is reflected by any one of the rotating mirrors 31 and then exits. After the second scanning light beam irradiates the detection object, the reflected laser light returns in a path parallel to the second scanning light beam. After the reflected laser light is reflected by another mirror surface of the rotating mirror surface 31 , it reaches the detector 40 located on the right side of the rotating mirror surface 31 to receive light.
  • FIGS. 8 to 10 show the scanning process of detecting laser light when the rotating mirror 31 rotates to different angles.
  • the first mirror surface 311 , the second mirror surface 312 , the third mirror surface 313 and the fourth mirror surface 314 in the rotating mirror surface 31 are defined.
  • the above four mirror surfaces are all reflective mirror surfaces.
  • the first scanning light reflected by the one-dimensional scanning micro-galvanometer 20 is irradiated to the first mirror 311 , and the first scanning light is reflected by the first mirror 311 to form the second scanning light, and the second scanning light is irradiated into the detection area.
  • the reflected laser light reflected by the detector is irradiated to the second mirror surface 312 in a direction parallel to the second scanning light beam, and after being reflected by the second mirror surface 312 , it is irradiated to the detector 40 .
  • the first mirror surface 311 and the second mirror surface 312 are the first reflecting mirror surface and the second reflecting mirror surface.
  • the rotating mirror surface 31 when the rotating mirror surface 31 is located at the second position, the first mirror surface 311 and the second mirror surface 312 are relatively rotated by a first angle.
  • the incident angle of the first scanning light irradiating the first mirror surface 311 is also rotated by the first angle, and the reflection angle is also rotated by the first angle.
  • the reflected laser light reflected by the detector is irradiated to the second mirror surface 312 in a direction parallel to the second scanning light beam, and after being reflected by the second mirror surface 312 , it is irradiated to the detector 40 .
  • the rotating mirror surface 31 rotates to the third position
  • the first mirror surface 311 and the second mirror surface 312 are relatively rotated by a second angle.
  • the second scanning light reflected after the first scanning light irradiates the first mirror surface 311 also rotates by the second angle.
  • the reflected laser light reflected by the detector is irradiated to the second mirror surface 312 in a direction parallel to the second scanning light beam, and after being reflected by the second mirror surface 312 , it is irradiated to the detector 40 .
  • the rotating mirror 31 rotates along the vertical axis.
  • the first scanning light passes through the first mirror 311 to scan the detection area, and the reflected laser can pass through the detection area.
  • the second mirror surface 312 is reflected into the detector 40 to realize one scan of the detection area by the lidar.
  • the rotation angle of the first mirror surface 311 is the angle at which the lidar scans in the horizontal direction.
  • the fourth mirror 314, the third mirror 313, and the second mirror 312 can be used to reflect the first scanning light in sequence, and the first mirror 311, the fourth mirror 314, and the third mirror 313 can be used in sequence.
  • the reflected laser light is reflected to the detector 40, thereby realizing uninterrupted scanning of the detection area.
  • FIG. 11 shows the waveform formed by the light beam of the probe laser reflected by the one-dimensional scanning micro-galvanometer 20 and the rotating mirror. 7 and 11, because the swing of the one-dimensional scanning micro-galvo mirror 20 is a resonant motion (reciprocating swing), the horizontal scanning of the linear rotational motion of the rotating mirror surface 31 is coordinated, so that the detection laser is reflected by the one-dimensional scanning micro-galvo mirror 20. Afterwards, the resonant scanning waveform as shown in FIG. 11 is formed by reflection from the rotating mirror surface 31 .
  • the three second scanning rays form three sinusoidal function graphs arranged in the vertical direction, and the height of the three sinusoidal function waveforms forms the vertical detection range of the lidar, and the width forms the horizontal detection range of the lidar.
  • the lidar provided by the embodiments of the present application has the advantage of high vertical resolution.
  • the detection laser and the reflected laser are reflected by different reflecting mirrors on the rotating mirror, the light-receiving paths of the lidar are separated, and the aperture of the receiving beam (reflecting laser) is only determined by the size of the reflecting mirror in the rotating mirror that reflects the receiving beam. The size is determined by the size of the receiving lens in the detector. Therefore, the laser radar provided by the embodiments of the present application has the advantage of a long detection distance when the mirror rotation is used to achieve horizontal scanning.
  • the second scanning light leaves the lidar and irradiates the detected object at a long distance and then returns, it enters the detector after passing through the reflective mirror surface of the rotating mirror.
  • the detector is used to receive reflected laser light and photosensitive.
  • the detector 40 includes a fourth lens group 41 and a laser receiver 42 .
  • the fourth lens group 41 is used for focusing the reflected laser light to the focal plane where the laser receiver 42 is located for light-sensing.
  • the laser receiver 42 is used for receiving reflected laser light and photosensitive.
  • the laser receiver 42 may be a single-point device, a one-dimensional line array device, or a two-dimensional area array device. Specifically, it depends on the range of the received reflected laser light.
  • the laser receiver 42 may be a PIN photodiode, an APD, or a SPAD. It can be made of Si material and can be made of III-V group materials such as InGaAs. In the embodiment of the present application, the laser receiver 42 adopts a one-dimensional SiAPD array, including 32 pixel units. However, it should be understood that the receiving range of the laser receiver 42 provided in the embodiment of the present application should ensure that the reflected laser light formed by the reflection of the detection laser light emitted by the laser transmitter is received.
  • FIG. 13 shows a modified structure based on the lidar shown in FIG. 4 .
  • the laser light emitted by the laser transmitter 10 only needs a small mirror surface to be emitted after the light spot is shaped. Therefore, on the rotating mirror surface 31, the size of the reflecting mirror surface used for laser light emission and reception can be different.
  • the detector 40 can receive the reflected laser light at the same time.
  • the lidar is also provided with two mirrors, and the two mirrors are the first mirror 60 and the second mirror 70 respectively.
  • one of the first reflecting mirror 60 and the second reflecting mirror 70 is a one-dimensional scanning micro-galvo mirror.
  • the first reflecting mirror 60 is located between the laser emitter and the optical path of the one-dimensional scanning micro-galvanometer, and is used to reflect the detection laser to the one-dimensional scanning mirror.
  • Microscope is also provided with two mirrors, and the two mirrors are the first mirror 60 and the second mirror 70 respectively.
  • one of the first reflecting mirror 60 and the second reflecting mirror 70 is a one-dimensional scanning micro-galvo mirror.
  • the first reflecting mirror 60 is located between the laser emitter and the optical path of the one-dimensional scanning micro-galvanometer, and is used to reflect the detection laser to the one-dimensional scanning mirror. Microscope.
  • the second reflecting mirror 70 is located between the one-dimensional scanning micro-galvo mirror and the rotating mirror surface 31, and is used to reflect the detection laser reflected by the one-dimensional scanning micro-galvo mirror to the rotating mirror Mirror 31.
  • a first reflecting mirror surface 315 and a second reflecting mirror surface 316 are defined.
  • the first reflecting mirror surface 315 and the second reflecting mirror surface 316 are two adjacent reflecting mirror surfaces in the rotating mirror surface 31 .
  • one of the first reflecting mirror surface 315 and the second reflecting mirror surface 316 is used to reflect the first scanning light reflected by the one-dimensional scanning micro-galvanometer into the second scanning light along the second direction; the other reflecting mirror is used for to reflect the received reflected laser light to the detector.
  • the detection laser light and the reflected laser light are respectively reflected by two adjacent mirror surfaces in the rotating mirror surface 31 .
  • the rotating mirror surface 31 includes two larger reflecting mirror surfaces (the first reflecting mirror surface 315 ) and two smaller reflecting mirror surfaces (the second reflecting mirror surface 316 ).
  • the receiving aperture of the detector 40 is relatively large, which is suitable for the detection of long-distance weak echo signals.
  • the second reflecting mirror surface 316 is used to receive the reflected laser light, the receiving aperture of the detector 40 is small, which is suitable for the detection of strong echo signals at short distances.
  • the rotating mirror surface may include more reflecting mirror surfaces of different sizes, and the reflecting mirror surface passing through the detection laser and the reflecting mirror surface passing through the reflected laser light need to be perpendicular to each other.
  • the embodiment of the present application also provides a mobile platform, and the mobile platform can be a common automated driving or intelligent form tool such as an aircraft or a car.
  • the mobile platform includes a central control processor and at least one lidar according to any one of the above; wherein, the central control processor controls the action of the mobile platform through the results of laser detection performed by each of the lidars .
  • the central control driver chip makes the laser light and records the absolute position of the one-dimensional scanning micro-galvanometer and the rotating mirror (the first reflecting mirror surface and the second reflecting mirror surface) rotating and scanning.
  • the received laser light is received by the laser receiver, and the electrical signal obtained by the laser receiver enters the signal processing chip for algorithm operation and finally calculates the distance of the detected object.
  • the distance of the detected object and the orientation of the detected object are packaged into frame data and output through the Ethernet port.
  • a network port of multiple lidars is output to a central control processor for data fusion to achieve target recognition and perception and other functions, and finally generate control instructions to control car driving.
  • the central control processor determines the relative position of the detection object detected by each radar relative to the moving platform through the relative position of each lidar and the relative position of the detection object detected by each lidar relative to the lidar.
  • the judgment of the detected object is realized by the central control processor. That is, the relative position relationship between the detected object and the mobile platform is determined by the relative position of the central control processor to the lidar and the relative position of the detected object detected by each lidar relative to the lidar.
  • the lidar uses a one-dimensional scanning micro-galvanometer to reflect the detection laser into vertical scanning light, which greatly reduces the size of the lidar.
  • the one-dimensional scanning micro-galvanometer mirror Only one-dimensional scanning is realized, so that the structure of the one-dimensional scanning micro-galvanometer is relatively simple, and the reliability is increased.
  • the laser radar of the present invention will cover the field of view range with a horizontal angle greater than 120° and a vertical angle greater than 30°. By installing it at the four corners of the car, it can realize the coverage of the field of view around the whole vehicle, and can be applied to the cut-in overtaking of the preceding vehicle, and the overtaking of the other vehicle changing lanes.
  • the above-mentioned lidar has a 200M long-distance detection capability and a high angular resolution of vertical/horizontal ⁇ 0.2°, which can distinguish small obstacles at long distances. Therefore, the lidar is very suitable for scenarios such as avoiding small objects on the ground at a distance in high-speed cruise scenarios.

Abstract

一种激光雷达(100)及移动平台,激光雷达(100)包括激光发射器(10)、探测器(40)以及为位于激光发射器(10)和探测器(40)之间的扫描装置;扫描装置用于将探测激光形成扫描光线。扫描装置包括两部分,其中一部分为用于将探测激光反射成沿竖直方向扫描光线的一维扫描微振镜(20);另一部分为用于将一维扫描微振镜(20)反射的探测激光反射形成沿水平方向扫描光线的旋转式的扫描组件;另外,旋转式的扫描组件还用于将反射激光反射到探测器40)。激光雷达(100)通过采用一个一维扫描微振镜(20)将探测激光反射成竖直扫描光线,极大的减少了激光雷达(100)的尺寸,同时,一维扫描微振镜(20)仅实现一维扫描,使得一维扫描微振镜(20)的结构比较简单,且可靠性增大。

Description

一种激光雷达及移动平台 技术领域
本申请涉及到探测技术领域,尤其涉及到一种激光雷达及移动平台。
背景技术
随着车载传感器数据收集能力的不断扩展,汽车自动化水平逐渐由特定单一功能自动化(如,定速巡航,电子稳定控制等)向着组合功能自动化辅助驾驶(如,自适应巡航,车道保持,紧急刹车等)甚至更高级的车辆自主驾驶(如,高速自动驾驶,自动泊车取车等)逐步演进。激光雷达作为高级别自动驾驶最重要的传感器之一,将承担感知各种复杂的路况并对多种目标进行识别和分类的关键工作。因此,激光雷达的性能直接决定了搭载该雷达的车辆所能实现的自动驾驶功能的级别以及安全性。一种满足未来需求的高性能激光雷达需要达到高分辨率(角分辨率<0.3°,或>100线),大视场角(水平>140°垂直>30°),远距离探测(>150m)等三个核心指标,同时又要具备低成本低复杂度高可靠度等基本特征。
早期车载激光雷达收发模组由成对的激光器与激光接收器构成,因此早期也把在垂直方向上堆垒的激光器激光雷达的组数称作线数。在这种堆垒的架构中,垂直FOV一定的情况下,线数越大,代表激光雷达垂直方向上的角度分辨率越高。常见的线数配置包括16线,32线,64线,128线等。水平方向上,早期车载激光雷达采用了机械旋转的方式进行扫描。整个光机模组(包括堆垒的激光器和激光雷达组,收发镜头,光学反射镜片等等器件)被放置于云台电机上进行整体旋转。因此,水平FOV可以做到360°全覆盖。云台旋转方案的水平角度分辨率由激光器发射的最高重频以及云台的旋转速度共同决定,一般可根据用户需求自由配置。同时,因为收发镜头孔径尺寸可以轻松达到30mm以上,接收到探测物反射回来的能量更多,所以此类技术方案的测距性能较好,一般可达150M以上。然而,随着分辨率要求的不断提高,大量激光器激光雷达等有源器件的物理堆垒带来了复杂的装配工序以及高昂的物料成本,严重制约了该方案在普通乘用车等消费类产品上的使用。
发明内容
本申请提供了一种激光雷达及移动平台,用以减小激光雷达的尺寸,便于小型化发展。
第一方面,提供了一种激光雷达,该激光雷达用于移动平台上,特别是自动驾驶的智能汽车。激光雷达包括激光发射器、探测器以及扫描装置;其中,激光发射器用于发射探测激光;扫描装置用于将探测激光形成扫描光线。扫描装置包括两部分,一部分为用于将所述探测激光反射成沿第一方向的第一扫描光线的一维扫描微振镜;另一部分为用于将所述第一扫描光线反射形成沿第二方向的第二扫描光线的旋转式的扫描组件;另外,上述的旋转式的扫描组件还用于将所述第二扫描光线照射探测物后形成的反射激光反射到探测器。探测器用于基于所述反射激光进行激光探测。在上述技术方案中,激光雷达通过采用一维扫描微振镜将探测激光反射成沿第一方向的第一扫描光线,并通过旋转式的扫描组件将第一扫描光线反射成沿第二方向的第二扫描光线,从而实现在两个方向上的扫描。其中, 一维扫描微振镜仅实现一维扫描,使得一维扫描微振镜的结构比较简单,且可靠性增大,采用一维扫描微振镜和旋转式的扫描组件组成的扫描装置与现有技术中采用机械旋转的方式进行扫描所需的结构相比,降低了扫描装置的结构复杂程度,同时减少了占用的空间,便于激光雷达小型化。
在一个具体的可实施方案中,所述旋转式的扫描组件包括旋转镜面以及驱动所述旋转镜面沿平行于第一方向的轴线转动的驱动机构,其中,所述旋转镜面包括多棱柱体,以及设置在所述多棱柱体的每个侧面的反射镜面,其中,所述反射镜面的个数至少为三个。通过旋转镜面沿第一方向的轴线旋转,实现探测激光在第二方向的扫描。
在一个具体的可实施方案中,所述旋转镜面包括相邻的第一反射镜面和第二反射镜面;其中所述第一反射镜面和所述第二反射镜面中的一个反射镜面用于将所述一维扫描微振镜反射的第一扫描光线反射成沿第二方向的第二扫描光线,另一个反射镜面用于将接收到的所述反射激光反射到所述探测器。通过旋转镜面中相邻的两个镜面分别反射探测激光以及反射激光。
在一个具体的可实施方案中,所述第一反射镜面的尺寸大于或等于所述第二反射镜面的尺寸。可实现不同的探测范围。
在一个具体的可实施方案中,所述旋转镜面包括围成矩形的四个镜面。简化了旋转镜面的结构。
在一个具体的可实施方案中,所述激光发射器包括用于发射所述探测激光的激光器,以及用于调整所述探测激光光斑的透镜组。
在一个具体的可实施方案中,所述透镜组包括用于调整所述激光器发射的探测激光的发散角的第一透镜组。方便探测激光照射到一维扫描微振镜。
在一个具体的可实施方案中,所述透镜组包括用于压缩所述探测激光直径的第二透镜组。
在一个具体的可实施方案中,所述激光雷达还包括反射镜,所述反射镜位于所述激光发射器和所述一维扫描微振镜的光路之间,并用于将所述探测激光反射到所述一维扫描微振镜。
在一个具体的可实施方案中,所述激光雷达还包括反射镜;所述反射镜位于所述一维扫描微振镜和所述旋转镜面之间,并用于将所述一维扫描微振镜反射的所述探测激光反射到所述旋转镜面。
在一个具体的可实施方案中,所述激光发射器包括多个激光器,多个激光器沿竖直方向单排排列或阵列排列。提高了探测范围。
在一个具体的可实施方案中,激光器可以为EEL激光器,VCSEL激光器,MOPA激光器,DPSS激光器及可调激光器等不同类型的激光器。
在一个具体的可实施方案中,所述探测器包括多个激光接收器,多个激光接收器单排排列或者阵列排列。以保证可接收到所有反射激光。
第二方面,提供了一种移动平台,该移动平台包括中央控制处理器,以及至少一个上述任一项所述的激光雷达;所述中央控制处理器通过每个所述激光雷达进行的激光探测的结果控制所述移动平台的行动。在上述技术方案中,通过采用上述的激光雷达,减少了激光雷达的尺寸,便于激光雷达设置。
在一个具体的可实施方案中,所述中央控制处理器通过每个所述激光雷达的相对位置, 以及每个激光雷达探测的探测物相对该激光雷达的相对位置,确定每个雷达探测的探测物相对所述移动平台的相对位置。通过中央控制处理器实现对探测物的判断。
在一个具体的可实施方案中,所述移动平台为飞行器或汽车。
附图说明
图1示出本申请实施例提供的激光雷达的应用场景示意图;
图2示出本申请实施例提供的激光雷达的应用场景示意图;
图3示出了本申请实施例提供的激光雷达与移动平台的信息交互的框图;
图4示出了本申请实施例提供的激光雷达的俯视图;
图5示出了本申请实施例提供的激光雷达的激光发射器的结构示意图;
图6示出了本申请实施例提供的激光雷达的另一激光发射器的结构示意图;
图7示出了本申请实施例提供的激光雷达的立体结构示意图;
图8~图10示出了本申请实施例提供的激光雷达的旋转式的扫描组件的扫描流程图;
图11示出了本申请实施例提供的激光雷达的探测激光的扫描波形图;
图12示出了本申请实施例提供的探测器的结构示意图;
图13示出了本申请实施例提供的另一种激光雷达的俯视图;
图14示出了本申请实施例提供的另一种激光雷达的使用状态参考图;
图15示出了本申请实施例提供的激光雷达与移动平台信息交互的结构框图。
具体实施方式
为方便理解本申请实施例提供的激光雷达,首先说明一下其应用场景。本申请实施例提供的激光雷达应用于移动平台中,用以实现移动平台的自动驾驶,或者辅助驾驶员驾驶。如图1及图2所示的移动平台在应用时,本申请实施例提供的激光雷达应用汽车上时,在汽车的四个角分别设置激光雷达。每个激光雷达可覆盖水平大于120°,垂直大于30°的视场角范围。通过在汽车四角的安装可以实现环绕整车的视野覆盖。
如图3中所示,图3展示了激光雷达的链接的基本结构框图。激光雷达100发射激光并接收反射回的激光,接收的激光经激光雷达100感光后获得的电信号进入处理芯片200进行算法运算并最终计算出探测物的距离。最终探测物的距离和探测物所在方位被打包成帧数据经以太网口输出。多个激光雷达100的一台网口输出至通一个中央控制处理器300进行数据融合实现目标识别感知等功能最终生成控制指令控制汽车驾驶。然而现有技术中的激光雷达结构比较复杂,已经无法满足移动平台发展的需求,为此本申请实施例提供了一种结构简单,便于小型化的激光雷达。下面结合具体的附图以及实施例对其进行详细的说明。
参考图4,图4示出了本申请实施例提供的激光雷达的俯视图。激光雷达的主要结构包括成对出现的激光发射器10及探测器40,以及一个扫描装置。其中,激光发射器10用于发射探测激光,探测器40用于接收被探测物反射回的反射激光。扫描装置位于激光发射器10和探测器40之间,并用于反射探测激光和反射激光,并基于反射激光进行激光探测。扫描装置包括独立设置的旋转式的扫描组件和一维扫描微振镜20,一维扫描微振镜20可用于将探测激光反射成沿第一方向的第一扫描光线。旋转式的扫描组件为旋转镜组件 30,旋转镜组件30可将第一扫描光线反射形成沿第二方向的第二扫描光线,以及将第二扫描光线照射探测物后形成的反射激光反射到探测器40。其中,第一方向和第二方向为相互垂直的两个方向。作为一个示例,第一方向为竖直方向,第二方向为水平方向。上述竖直方向和水平方向指代的是相对激光探测器的设置面为参考面的竖直方向和水平方向。
参考图5,图5示出了本申请实施例提供的激光发射器的结构示意图。激光发射器包括一个或者多个激光器11,在图5中示例出了1个激光器11,但应理解本申请实施例不限定激光器11的具体个数,激光器11的个数可以为1个、2个、3个等不同的个数。另外,在激光器11为多个时,激光器11也可按照不同的方式排布。示例性的,激光器11沿竖直方向呈单排方式排列。或者激光器11呈阵列方式排列。如以2*2方式排布、3*3方式排布、2*3方式排布等不同的排列方式。
上述激光器11可采用不同类型的激光器,示例性的,激光器11可以为EEL激光器、VCSEL激光器、MOPA激光器、DPSS激光器或可调激光器中的任一种激光器。在本申请实施例中以EEL激光器11为例进行说明。
激光发射器除上述激光器11外,还包括与激光器11配合使用的透镜组。透镜组设置在激光器11的出光面,并用于调整激光器11发射出的探测激光的光斑的透镜组。探测激光由激光器11出射后先经过透镜组进行光斑整形,光斑整形的目的是使得激光器11发射的探测激光形成可照射到一维扫描微振镜的光斑,以使得探测激光可通过一维扫描微振镜的光斑进行垂直扫描。
透镜组至少包括第一透镜组12,第一透镜组12用于调整激光器11发射的探测激光的发散角。激光器11发射出的大发散角的探测激光通过第一透镜组12准直为很小发散角甚至几乎平行的光束后出射。上述的第一透镜组12可采用常规的凸透镜、凹透镜的组合,通过凸透镜和凹透镜可实现对探测激光的准直,其原理在此不再详细赘述。
透镜组还可包括第二透镜组13,第二透镜组13用于压缩探测激光直径。从而使出射的探测激光可以被一维扫描微振镜完全接收并反射。激光器11发射的探测激光可经准直(第一透镜组12)和光斑压缩(第二透镜组13)后照射到一维扫描微振镜上进行反射。
作为一个可选的方案,在激光发射器10包括多个激光器时,多个激光器发射的探测激光整形出射时可以相互平行,之后经过第三透镜组50将多个激光器发射的探测激光折射或反射后再相互呈现一定的角度照向一维扫描微振镜20。以图6所示的3个激光器为例,3个激光器分别通过一个对应的透镜将探测激光折射,使得3个探测激光汇聚到一维扫描微振镜20,但3个探测激光的入射角度不同,经一维扫描微振镜20反射后,可沿不同的光路反射到旋转镜组30上。
参考图7,图7示出了本申请实施例提供的一维扫描微振镜20与旋转镜组件30的配合示意图。一维扫描微振镜20采用MEMS(MEMS,Micro-Electro-Mechanical System,微机电系统)微振镜,MEMS微振镜为一维往复式扫描结构。激光发射器10发射的探测激光照射在MEMS微振镜的镜面上反射后再到达旋转镜组件30上。
如图7所示的带箭头示例的两个相反的弧线,该弧线示例出了一维扫描微振镜20的摆动方向。一维扫描微振镜20沿水平轴摆动,其镜面在垂直方向上往复摆动,从而使出射的探测激光在激光雷达的视场范围内形成竖直方向描。在图7中示例出了激光发射器10采用3个激光器的方式,3个激光器分别发射处探测激光,3个探测激光以不同的入射角度照射到一维扫描微振镜20,经一维扫描微振镜20反射后照射到旋转镜组件3030。
继续参考图7,旋转镜组件30包括旋转镜面31以及驱动旋转镜面31沿平行于第一方向的轴线转动的驱动机构32。旋转镜面31包括多棱柱体,以及设置在所述多棱柱体的每个侧面的反射镜面,旋转镜面31用于对第一扫描光线和反射激光进行反射,而驱动机构32用于驱动旋转镜面31旋转。如图7中所示的带箭头的弧线,驱动机构32可带动旋转镜面31沿顺时针方向转动(以图7所示的激光雷达的放置方向为参考方向)。
旋转镜面31包括四个围绕成环形的镜面,且相邻镜面相互垂直。示例性的,旋转镜面31可以由铝制四棱柱或玻璃制四棱柱构成,四个镜面采用在四棱柱的侧表面镀金或镀铝构成。另外,考虑安全性,可将四棱柱的四个垂直棱进行倒角。应理解,本申请实施例中旋转镜面31还可采用其他个数的镜面(镜面的面数≥3),如镜面的个数为3个、5个等不同个数。在本申请实施例中,仅以4个镜面为例进行说明。
在旋转镜面31转动过程中,相邻的两个镜面作为反射镜面,其中的一个反射镜面用于将一维扫描微振镜20反射的第一扫描光线反射成沿水平方向扫描光线,另一个反射镜面用于将第二扫描光线照射探测物后形成的反射激光反射到探测器。即激光发射器10发射路径与探测器的接收路径由旋转镜面31上不同的两个镜面进行反射。为方便描述,将用于反射第一扫描光线和反射反射激光的两个镜面分别命名为第一反射镜面和第二反射镜面。
一并参考图8所示的激光雷达的俯视图。激光发射器10位于旋转镜面31的左侧,探测激光经旋转镜面31中的任意一个镜面反射后出射。第二扫描光线照射到探测物后,反射回的反射激光以平行于第二扫描光线的路径返回。反射激光通过旋转镜面31中的另一镜面反射后,达位于旋转镜面31右侧的探测器40进行感光。
为方便理解旋转式的扫描组件的扫描原理,一并参考图8、图9及图10,图8~图10示出了旋转镜面31在转动到不同角度时,探测激光的扫描过程。为方便描述,定义了旋转镜面31中的第一镜面311、第二镜面312、第三镜面313和第四镜面314。上述四个镜面均为反射镜面。
首先参考图8,在旋转镜面31位于第一位置时,一维扫描微振镜20反射的第一扫描光线照射到第一镜面311,通过第一镜面311将第一扫描光线反射形成第二扫描光线,第二扫描光线照射到探测区域中。探测物反射回的反射激光以与第二扫描光线平行的方向照射到第二镜面312,经第二镜面312反射后,照射到探测器40。此时,第一镜面311和第二镜面312为第一反射镜面和第二反射镜面。
参考图9,在旋转镜面31位于第二位置时,第一镜面311及第二镜面312相对转动了第一角度。第一扫描光线照射到第一镜面311的入射角也相对转动第一角度,反射角也相对转动第一角度。探测物反射回的反射激光以与第二扫描光线平行的方向照射到第二镜面312,经第二镜面312反射后,照射到探测器40。
参考图10,旋转镜面31旋转到第三位置时,第一镜面311及第二镜面312相对转动了第二角度。第一扫描光线照射到第一镜面311后反射出的第二扫描光线也转动了第二角度。探测物反射回的反射激光以与第二扫描光线平行的方向照射到第二镜面312,经第二镜面312反射后,照射到探测器40。
由图8~图10可看出,旋转镜面31沿竖直轴线旋转,在旋转镜面31的旋转过程中,第一扫描光线通过第一镜面311实现对探测区域内进行扫描,同时反射激光可通过第二镜面312反射到探测器40中,实现激光雷达对探测区域的一次扫描。另外,在第一扫描光 线照射到第一镜面311后,第一镜面311转动的角度为激光雷达在水平方向扫描的角度。通过控制第一镜面311的尺寸可调整激光雷达在水平方向扫描的角度。
在旋转镜面31继续旋转过程中,第四镜面314、第三镜面313、第二镜面312可依次用于反射第一扫描光线,第一镜面311、第四镜面314、第三镜面313可依次用于反射反射激光到探测器40,从而实现不间断的对探测区域的扫描。
如图11所示,图11示出了经一维扫描微振镜20和旋转镜面反射后的探测激光的光束形成的波形。结合图7及图11,因为一维扫描微振镜20的摆动为谐振运动(往复摆动),配合旋转镜面31的线性旋转运动的水平扫描,使得探测激光在经一维扫描微振镜20反射后,再通过旋转镜面31反射形成如图11中所示的谐振扫描波形。在图11中,三条第二扫描光线形成沿竖直方向排列的三个正弦函数图形,且三个正弦函数波形的高度形成激光雷达的竖直探测范围,宽度形成激光雷达的水平探测范围。
由图11可看出,得益于垂直方向上的一维扫描微振镜20的振动扫描,垂直分辨率可以由控制探测激光发射的重频进行调节。在激光发射器采用少量的激光器个数下即可获得很高的垂直分辨率。因此本申请实施例提供的激光雷达具有垂直分辨率高的优点。另外,得益于探测激光及反射激光通过旋转镜面上不同的反射镜面反射,使得激光雷达的收发光路的分离,接收光束(反射激光)的孔径仅由旋转镜面中反射接收光束的反射镜面的尺寸大小和探测器中的接收透镜的大小决定。因此,本申请实施例提供的激光雷达在采用镜面旋转实现水平扫描时具有探测距离长的优点。
第二扫描光线离开激光雷达后照射到远距离外的探测物再返回时,经过旋转镜面的反射镜面后进入探测器。探测器用于接收反射激光并进行感光。
参考图12,探测器40包括第四透镜组41以及激光接收器42。第四透镜组41用于将反射激光聚焦至激光接收器42所在的焦平面进行感光。激光接收器42用于接收反射激光并进行感光。
激光接收器42可以为单点器件,也可以为一维线阵列器件,也可以为二维面阵列器件。具体的根据接收的反射激光的范围而定。
在本申请实施例中,激光接收器42可以为PIN光电二极管,可以为APD,可以为SPAD。可以是Si材料制成可以是InGaAs等III-V族材料制成。在本申请实施例中,激光接收器42采用一维SiAPD阵列,包含32个像素单元。但应理解本申请实施例提供的激光接收器42的接收范围应保证接收到激光发射器发射的探测激光反射后形成的反射激光。
参考图13,图13示出了基于图4所示的激光雷达的一种变形结构。由激光发射器10发射的激光经过光斑整形后仅需很小的镜面即可出射。因此,位于旋转镜面31上的,激光出射和接收所用的反射镜面大小可以不同。
为保证激光的光路可照射到探测区域,同时探测器40可接收到反射激光。激光雷达还设置了两个反射镜,两个反射镜分别为第一反射镜60和第二反射镜70。其中,第一反射镜60和第二反射镜70中的一个反射镜为一维扫描微振镜。示例性的,在第二反射镜70为一维扫描微振镜时,第一反射镜60位于激光发射器和一维扫描微振镜的光路之间,并用于将探测激光反射到一维扫描微振镜。在第一反射镜60为一维扫描微振镜时,第二反射镜70位于一维扫描微振镜和旋转镜面31之间,并用于将一维扫描微振镜反射的探测激光反射到旋转镜面31。
在图13所示的旋转镜面31中,定义了第一反射镜面315和第二反射镜面316。第一 反射镜面315和第二反射镜面316为旋转镜面31中相邻的两个反射镜面。其中,第一反射镜面315和第二反射镜面316中的一个反射镜面用于将一维扫描微振镜反射的第一扫描光线反射成沿第二方向的第二扫描光线;另一个反射镜面用于将接收到的反射激光反射到探测器。以通过旋转镜面31中相邻的两个镜面分别反射探测激光以及反射激光。在设置第一反射镜面315和第二反射镜面316时,第一反射镜面315的尺寸大于第二反射镜面316的尺寸。结合图13所示的俯视图。旋转镜面31包含两个较大的反射镜面(第一反射镜面315)和两个较小的反射镜面(第二反射镜面316)。如图13中所示,当使用第一反射镜面315接收反射激光时,探测器40的接收的孔径较大,适合远距离弱回波信号的探测。如图14所示,当使用第二反射镜面316接收反射激光时,探测器40的接收孔径小,适合近距离强回波信号的探测。
应理解,在其他实施例中,旋转镜面可以包含更多不同大小的反射镜面,探测激光所经过的反射镜面和反射激光经过的反射镜面需相互垂直。
本申请实施例还提供了一种移动平台,移动平台可为飞行器或汽车等常见的自动化行驶或智能形式的工具。该移动平台包括中央控制处理器,以及至少一个上述任一项所述的激光雷达;其中,所述中央控制处理器通过每个所述激光雷达进行的激光探测的结果控制所述移动平台的行动。
如图15所示,单个激光雷达中,中控的驱动芯片使激光器打光的同时记录一维扫描微振镜和旋转镜面(第一反射镜面和第二反射镜面)旋转扫描的绝对位置。之后接收的激光经激光接收器感光后获得的电信号进入信号处理芯片进行算法运算并最终计算出探测物的距离。最终探测物的距离和探测物所在方位(由扫描机构绝对位置表征)被打包成帧数据经以太网口输出。多个激光雷达的一台网口输出至通一个中央控制处理器进行数据融合实现目标识别感知等功能最终生成控制指令控制汽车驾驶。或者,中央控制处理器通过每个激光雷达的相对位置,以及每个激光雷达探测的探测物相对该激光雷达的相对位置,确定每个雷达探测的探测物相对移动平台的相对位置。通过中央控制处理器实现对探测物的判断。即通过中央控制处理器对激光雷达的相对位置,以及每个激光雷达探测到的探测物相对激光雷达的相对位置,确定探测物与移动平台之间的相对位置关系。结合上述激光雷达的描述,可看出,激光雷达通过采用一个一维扫描微振镜将探测激光反射成竖直扫描光线,极大的减少了激光雷达的尺寸,同时,一维扫描微振镜仅实现一维扫描,使得一维扫描微振镜的结构比较简单,且可靠性增大。本发明的激光雷达将覆盖水平大于120°垂直大于30°的视场角范围。通过在汽车四角的安装可以实现环绕整车的视野覆盖,可应用于前车cut-in超车切入,以及自车变道超车等场景。另外,上述激光雷达具有200M远距离探测能力和垂直/水平<0.2°的高角分辨率,可以辨别远距离的小障碍物体。因此该激光雷达非常适合应用于高速巡航场景中对远距离地面小物体的规避等场景。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (13)

  1. 一种激光雷达,其特征在于,包括:激光发射器、探测器以及扫描装置;其中,
    所述激光发射器用于发射探测激光;
    所述扫描装置包括:
    一维扫描微振镜,用于将所述探测激光反射成沿第一方向的第一扫描光线;
    旋转式的扫描组件,用于将所述第一扫描光线反射形成沿第二方向的第二扫描光线;以及将所述第二扫描光线照射探测物后形成的反射激光反射到所述探测器;
    所述探测器用于基于所述反射激光进行激光探测。
  2. 如权利要求1所述的激光雷达,其特征在于,所述旋转式的扫描组件包括旋转镜面以及驱动所述旋转镜面沿平行于第一方向的轴线转动的驱动机构,其中,
    所述旋转镜面包括多棱柱体,以及设置在所述多棱柱体的每个侧面的反射镜面,其中,所述反射镜面的个数至少为三个。
  3. 如权利要求2所述的激光雷达,其特征在于,所述旋转镜面包括相邻的第一反射镜面和第二反射镜面;其中所述第一反射镜面和所述第二反射镜面中的一个反射镜面用于将所述一维扫描微振镜反射的第一扫描光线反射成沿第二方向的第二扫描光线,另一个反射镜面用于将接收到的所述反射激光反射到所述探测器。
  4. 如权利要求3所述的激光雷达,其特征在于,所述第一反射镜面的尺寸大于或等于所述第二反射镜面的尺寸。
  5. 如权利要求2~4任一项所述的激光雷达,其特征在于,所述旋转镜面包括围成矩形的四个镜面。
  6. 如权利要求1~5任一项所述的激光雷达,其特征在于,所述激光发射器包括用于发射所述探测激光的激光器,以及用于调整所述探测激光光斑的透镜组。
  7. 如权利要求6所述的激光雷达,其特征在于,所述透镜组包括用于调整所述激光器发射的探测激光的发散角的第一透镜组。
  8. 如权利要求6或7所述的激光雷达,其特征在于,所述透镜组包括用于压缩所述探测激光直径的第二透镜组。
  9. 如权利要求1~8任一项所述的激光雷达,其特征在于,所述激光雷达还包括反射镜,所述反射镜位于所述激光发射器和所述一维扫描微振镜的光路之间,并用于将所述探测激光反射到所述一维扫描微振镜。
  10. 如权利要求1~8任一项所述的激光雷达,其特征在于,所述激光雷达还包括反射镜;所述反射镜位于所述一维扫描微振镜和所述旋转镜面之间,并用于将所述一维扫描微振镜反射的所述探测激光反射到所述旋转镜面。
  11. 一种移动平台,其特征在于,包括中央控制处理器,以及至少一个如权利要求1~10任一项所述的激光雷达;
    所述中央控制处理器通过每个所述激光雷达进行的激光探测的结果控制所述移动平台的行动。
  12. 如权利要求11所述的移动平台,其特征在于,所述中央控制处理器通过每个所述激光雷达的相对位置,以及每个激光雷达探测的探测物相对该激光雷达的相对位置,确定每个雷达探测的探测物相对所述移动平台的相对位置。
  13. 如权利要求11所述的移动平台,其特征在于,所述移动平台为飞行器或汽车。
PCT/CN2020/132926 2020-11-30 2020-11-30 一种激光雷达及移动平台 WO2022110210A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/132926 WO2022110210A1 (zh) 2020-11-30 2020-11-30 一种激光雷达及移动平台
CN202080107177.5A CN116457698A (zh) 2020-11-30 2020-11-30 一种激光雷达及移动平台

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/132926 WO2022110210A1 (zh) 2020-11-30 2020-11-30 一种激光雷达及移动平台

Publications (1)

Publication Number Publication Date
WO2022110210A1 true WO2022110210A1 (zh) 2022-06-02

Family

ID=81753949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/132926 WO2022110210A1 (zh) 2020-11-30 2020-11-30 一种激光雷达及移动平台

Country Status (2)

Country Link
CN (1) CN116457698A (zh)
WO (1) WO2022110210A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114966616A (zh) * 2022-07-26 2022-08-30 深圳市速腾聚创科技有限公司 激光雷达及存储介质
CN115480253A (zh) * 2022-10-31 2022-12-16 北京因泰立科技有限公司 一种基于spad线阵探测器的三维扫描激光雷达

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140009747A1 (en) * 2012-07-03 2014-01-09 Ricoh Company, Ltd. Laser radar device
CN107703510A (zh) * 2017-06-15 2018-02-16 深圳市速腾聚创科技有限公司 激光雷达及激光雷达控制方法
CN109828259A (zh) * 2019-02-14 2019-05-31 昂纳信息技术(深圳)有限公司 一种激光雷达及组合扫描装置
CN110346814A (zh) * 2018-04-08 2019-10-18 浙江国自机器人技术有限公司 一种基于3d激光的障碍物检测及避障控制方法和系统
CN210119568U (zh) * 2018-12-06 2020-02-28 蔚来汽车有限公司 激光雷达扫描装置及具有该装置的车辆
US20200150247A1 (en) * 2018-11-14 2020-05-14 Innovusion Ireland Limited Lidar systems that use a multi-facet mirror
CN111505605A (zh) * 2020-05-27 2020-08-07 中科融合感知智能研究院(苏州工业园区)有限公司 一种摆镜和转镜相结合的大范围扫描激光雷达

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140009747A1 (en) * 2012-07-03 2014-01-09 Ricoh Company, Ltd. Laser radar device
CN107703510A (zh) * 2017-06-15 2018-02-16 深圳市速腾聚创科技有限公司 激光雷达及激光雷达控制方法
CN110346814A (zh) * 2018-04-08 2019-10-18 浙江国自机器人技术有限公司 一种基于3d激光的障碍物检测及避障控制方法和系统
US20200150247A1 (en) * 2018-11-14 2020-05-14 Innovusion Ireland Limited Lidar systems that use a multi-facet mirror
CN210119568U (zh) * 2018-12-06 2020-02-28 蔚来汽车有限公司 激光雷达扫描装置及具有该装置的车辆
CN109828259A (zh) * 2019-02-14 2019-05-31 昂纳信息技术(深圳)有限公司 一种激光雷达及组合扫描装置
CN111505605A (zh) * 2020-05-27 2020-08-07 中科融合感知智能研究院(苏州工业园区)有限公司 一种摆镜和转镜相结合的大范围扫描激光雷达

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114966616A (zh) * 2022-07-26 2022-08-30 深圳市速腾聚创科技有限公司 激光雷达及存储介质
CN115480253A (zh) * 2022-10-31 2022-12-16 北京因泰立科技有限公司 一种基于spad线阵探测器的三维扫描激光雷达
CN115480253B (zh) * 2022-10-31 2023-10-24 北京因泰立科技有限公司 一种基于spad线阵探测器的三维扫描激光雷达

Also Published As

Publication number Publication date
CN116457698A (zh) 2023-07-18

Similar Documents

Publication Publication Date Title
US10649072B2 (en) LiDAR device based on scanning mirrors array and multi-frequency laser modulation
KR102604047B1 (ko) 분산 모듈형 솔리드-스테이트 광 검출 및 거리 측정 시스템
CN108226899B (zh) 激光雷达及其工作方法
KR102020037B1 (ko) 하이브리드 라이다 스캐너
JPH09113262A (ja) 走査距離計及び距離計を使用する走査方法
US20200096639A1 (en) System and method for adaptable lidar imaging
KR102210101B1 (ko) 광학계 모듈 및 그를 갖는 스캐닝 라이다
KR101951242B1 (ko) 라이다 장치 및 이를 포함하는 라이다 시스템
CN210038146U (zh) 测距模组、测距装置及可移动平台
WO2022110210A1 (zh) 一种激光雷达及移动平台
CN109752704A (zh) 一种棱镜及多线激光雷达系统
KR102438071B1 (ko) 전후방 측정이 가능한 라이다 스캐닝 장치
CN115461260A (zh) 玻璃镜附接至旋转金属电机框架
KR20170112766A (ko) 오목 반사 미러를 가지는 스캐닝 라이다
JP2024014877A (ja) Lidarの視野を変更するためのシステムおよび方法
CN113933811B (zh) 激光雷达的探测方法、激光雷达以及计算机存储介质
CN210199305U (zh) 一种扫描模组、测距装置及可移动平台
CN209979845U (zh) 一种测距装置及移动平台
CN111263898A (zh) 一种光束扫描系统、距离探测装置及电子设备
US11879996B2 (en) LIDAR sensors and methods for LIDAR sensors
CN113820721B (zh) 一种收发分离的激光雷达系统
US20210341588A1 (en) Ranging device and mobile platform
WO2022126429A1 (zh) 测距装置、测距方法和可移动平台
CN115480254A (zh) 一种检测方法及装置
JP2023542383A (ja) レーザレーダ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20963098

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202080107177.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20963098

Country of ref document: EP

Kind code of ref document: A1