WO2023164906A1 - 一种扫描方法及装置 - Google Patents

一种扫描方法及装置 Download PDF

Info

Publication number
WO2023164906A1
WO2023164906A1 PCT/CN2022/079144 CN2022079144W WO2023164906A1 WO 2023164906 A1 WO2023164906 A1 WO 2023164906A1 CN 2022079144 W CN2022079144 W CN 2022079144W WO 2023164906 A1 WO2023164906 A1 WO 2023164906A1
Authority
WO
WIPO (PCT)
Prior art keywords
scanning
scanning area
area
roi
view
Prior art date
Application number
PCT/CN2022/079144
Other languages
English (en)
French (fr)
Inventor
王超
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2022/079144 priority Critical patent/WO2023164906A1/zh
Publication of WO2023164906A1 publication Critical patent/WO2023164906A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements

Definitions

  • the present application relates to the technical field of laser detection, in particular to a scanning method and device.
  • the radar system In the daily driving process, the radar system often needs to focus on different areas at different times to form one or more regions of interest (ROI), and effectively detect and identify various complex road conditions through ROI.
  • ROI regions of interest
  • Embodiments of the present application provide a scanning method and device for better adaptive adjustment of ROI.
  • the embodiment of the present application provides a scanning method, which includes:
  • the scan area is an area of interest, the scan area includes a first scan area and a second scan area; the first scan area and the second scan area overlap in the field of view; the The resolution of the first scanning area is greater than the resolution of the second scanning area; the scanning area is scanned.
  • the application divides the region of interest into at least the first scanning area and the second scanning area, and sets the first scanning area and the second scanning area to have different resolutions, so that in the actual detection process, different resolutions can be based on
  • the rate requirements set the resolution of the corresponding scanning area and adjust it flexibly, so as to meet the requirements of different resolutions of the detection device, so that the system resources can be better self-adapted, and the continuous attention and key detection of specific targets can be realized.
  • resource utilization For example, by setting the first scanning area and the second scanning area with different resolutions, it is possible to achieve higher resolution in part of the field of view and lower resolution in part of the field of view within the entire field of view.
  • the layout of the area of interest in the full field of view can be effectively enriched, and various scans can be generated according to actual detection requirements. Patterns, adaptability and freedom are stronger.
  • the overlapping area between the first scanning area and the second scanning area can be understood as a new scanning area, and the resolution of the overlapping area can be the resolution of the first scanning area.
  • the sum of the rate and the resolution of the second scanning area, wherein the size of the overlapping area can be determined by setting and adjusting the positional relationship between the first scanning area and the second scanning area, the size of the area, etc. according to the detection requirements. accomplish.
  • the vertical viewing angle of the first scanning area overlaps with the vertical viewing angle of the second scanning area.
  • the following pattern may be formed in the viewing field:
  • the height of the first scanning area is the same as that of the second scanning area, but the width is different; or, in the field of view, the height of the first scanning area and the second scanning area are different, but the width is the same; or, in the field of view , the first scanning area and the second scanning area have different heights and different widths.
  • the embodiment of the present application provides a scan area pattern that may appear in the field of view, for example, in the case where the first scan area and the second scan area included in the view field overlap,
  • a variety of different field of view schemes may be constructed, with various forms and stronger adaptability.
  • the vertical starting position of the first scanning area is different from the vertical starting position of the second scanning area.
  • the Patterns such as the following may form in the field of view:
  • the first scanning area and the second scanning area have the same height and different width; or, in the field of view, the first scanning area and the second scanning area have different heights and different widths.
  • the embodiment of the present application sets the situation that the first scanning area overlaps with the second scanning area, and the vertical starting position of the first scanning area is different from the vertical starting position of the second scanning area.
  • Patterns that may appear in the field of view for example, the pattern that appears in the field of view may be that the height of the first scan area is the same as that of the second scan area, but the width is different; the pattern that appears in the field of view may also be the first scan The height of the area is different from that of the second scanning area, and the width is also different.
  • the vertical starting position of the first scanning area is the same as the vertical starting position of the second scanning area.
  • the Patterns such as the following may form in the field of view:
  • the first scanning area and the second scanning area have different heights and the same width.
  • the embodiment of the present application sets the situation that the first scanning area overlaps with the second scanning area, and the vertical starting position of the first scanning area is the same as the vertical starting position of the second scanning area.
  • Patterns that may appear in the field of view for example, the pattern that may appear in the field of view may be that the height of the first scanning area is different from that of the second scanning area, but the width is the same.
  • the first scanning area presents a vertical strip shape in the field of view
  • the second scanning area presents a horizontal strip shape in the field of view
  • the first scanning area The area is in the shape of a horizontal strip in the field of view
  • the second scanning area is in the shape of a vertical strip in the field of view.
  • the following pattern may be formed in the field of view:
  • the first scanning area and the second scanning area form a cross-shaped pattern, wherein the first scanning area can be a vertical strip area in the cross-shaped pattern, and the second scanning area can be a cross-shaped pattern
  • the embodiment of the present application provides a cross-shaped scanning pattern, and the presentation mode is more novel and vivid.
  • the number of the first scanning areas is M and the number of the second scanning areas is N
  • one or more first scanning areas in the M first scanning areas A vertical viewing angle of a scanning area overlaps with a vertical viewing angle of one or more of the N second scanning areas; wherein, the M and the N are positive integers.
  • the embodiment of the present application increases the number of the first scanning area and the second scanning area, thereby providing more abundant and various scanning patterns.
  • a well-shaped pattern may be formed in the field of view, wherein the two first scanning areas may be a well-shaped pattern
  • the 2 second scanning areas can be the strip area of the horizontal direction in the well-shaped pattern; or, the 2 first scanning areas can be the long strip area of the horizontal direction in the well-shaped pattern Strip area, the two second scanning areas can be long strip areas in the vertical direction in the well-shaped pattern.
  • a pattern in the shape of a letter "Feng" may be formed in the field of view, wherein the three first scanning areas can be For the long strip area in the horizontal direction in the font-shaped pattern, one second scanning area can be the strip area in the vertical direction in the font-shaped pattern.
  • a king-shaped pattern may be formed in the field of view, wherein one first scanning area may be the king The vertical strip area in the letter-shaped pattern, and the three second scanning areas can be the horizontal strip area in the king-shaped pattern.
  • a soil-shaped pattern may be formed in the field of view, wherein the 2 first scanning areas can be soil
  • one second scanning area can be the long strip area in the vertical direction in the Chinese-shaped pattern.
  • a dry-shaped pattern may be formed in the field of view, wherein one first scanning area may be a dry The vertical strip area in the font-shaped pattern, and the two second scanning areas can be the horizontal strip area in the font-shaped pattern.
  • a non-shaped pattern may be formed in the field of view, wherein the 3 first scanning areas may be non-
  • a pattern in the shape of a square may be formed in the field of view, wherein the three first scanning areas may be The long strip areas in the horizontal direction in the word-shaped pattern, and the three second scanning areas can be the long strip areas in the vertical direction in the word-shaped pattern.
  • a word-shaped pattern may be formed in the field of view, wherein the 4 first scanning areas can be the target The long strip area in the horizontal direction in the word-shaped pattern, the two second scanning areas can be the long strip area in the vertical direction in the word-shaped pattern.
  • a Japanese-shaped pattern may be formed in the field of view, wherein the 3 first scanning areas can be The long strip area in the horizontal direction in the font-shaped pattern, and the two second scanning areas can be the strip area in the vertical direction in the Japanese-shaped pattern. Furthermore, based on the Japanese pattern, increasing the number of the first scanning area and the number of the second scanning area can also expand the pattern in the shape of a crystal character.
  • a word-shaped pattern may be formed in the field of view, wherein the 2 first scanning areas can be The long strip areas in the horizontal direction in the word-shaped pattern, and the two second scanning areas can be long strip areas in the vertical direction in the word-shaped pattern. Further, based on the character pattern, increasing the number of the first scanning area and the number of the second scanning area can also expand the pattern of the shape of the word character.
  • the embodiment of the present application provides more abundant and various scanning patterns by enriching the number of the first scanning area and the second scanning area, and the presentation mode is more novel and vivid.
  • the scanning area further includes a third scanning area and a fourth scanning area; the third scanning area and the fourth scanning area overlap in the field of view; the first scanning area The resolution of the third scanning area is greater than the resolution of the fourth scanning area.
  • other scanning areas can also be added in the embodiment of the present application, for example, the third scanning area and the fourth scanning area are added, so that the third scanning area overlaps with the fourth scanning area, and the resolutions are different.
  • the first scanning area and the second scanning area further enrich the layout of the region of interest in the full field of view, effectively improving the degree of freedom in the design and regulation of the region of interest.
  • the different resolutions between scanning areas in the embodiments of the present application can enable better self-adaptive allocation of system resources, achieve continuous attention and key detection of specific targets, and improve resource utilization.
  • the vertical viewing angle of the third scanning area overlaps with the vertical viewing angle of the fourth scanning area.
  • the third scanning area and the fourth scanning area have the same height and different width; or, the third scanning area and the fourth scanning area have different heights and different widths; or, the third scanning area and the fourth scanning area have different widths;
  • the scan areas vary in height and have the same width.
  • the field of view includes the first scanning area and the first scanning area
  • the field of view also includes the third scanning area and the fourth scanning area
  • the third scanning area and the fourth scanning area In the case where the vertical field of view overlaps, the following pattern may be formed in the field of view:
  • the first scanning area and the second scanning area form a first cross-shaped pattern
  • the third scanning area and the fourth scanning area form a second cross-shaped pattern
  • the third scanning area may overlap with the first scanning area or the second scanning area; and/or, the fourth scanning area may overlap with the first scanning area or the second scanning area.
  • the scanning area is determined according to the acquired collected data of the environment.
  • the laser radar may determine the scanning area according to the acquired environmental collection data; or, other devices may determine the scanning area according to the acquired environmental collection data, and then notify the scanning area
  • the lidar is not limited here.
  • the first scanning area and the second scanning area overlap in the field of view, and by controlling the scanning speed relationship between the fast axis and the slow axis in the scanner, the transmitter initially emits The number of light sources and the size of the pointing angle regulate the overlapping of the first scanning area and the second scanning area in the field of view.
  • the embodiment of the present application provides a way to control the overlapping of the first scanning area and the second scanning area in the field of view, for example, by controlling the scanning speed relationship between the fast axis and the slow axis in the scanner,
  • the number of light sources initially emitted by the transmitter and the size of the pointing angle regulate the overlapping of the first scanning area and the second scanning area in the field of view.
  • the embodiment of the present application does not limit the way of regulating the overlapping of the first scanning area and the second scanning area in the field of view. limited.
  • the resolution of the first scanning area is greater than the resolution of the second scanning area, by controlling the on and off of the emitter, and/or by controlling the spot frequency of the emitter Change, adjusting the resolution of the first scanning area to be greater than the resolution of the second scanning area.
  • the embodiment of the present application provides a way to control the resolution of the first scanning area to be greater than the resolution of the second scanning area, for example, by controlling the opening and closing of the transmitter, and/or
  • the resolution of the first scanning area is regulated to be greater than the resolution of the second scanning area by controlling the change of the spot frequency of the transmitter.
  • the number of the third scanning areas is H and the number of the fourth scanning areas is W
  • one or more of the H third scanning areas overlap with the vertical viewing angles of one or more fourth scanning areas in the W fourth scanning areas; wherein, the H and the W are positive integers.
  • the embodiment of the present application increases the number of the third scanning area and the fourth scanning area, thereby providing more abundant and various scanning patterns.
  • the number of the first scan area is 2
  • the number of the second scan area is 2
  • the number of the third scan area is 3
  • the number of the fourth scan area is 1
  • the 2 first scanning areas can be the strip areas in the vertical direction in the pattern of the well
  • the 2 second scanning areas can be the pattern of the well
  • the three third scanning areas can be long strip areas in the horizontal direction in the Feng-shaped pattern
  • one fourth scanning area can be the long strip area in the vertical direction in the Feng-shaped pattern.
  • the number of the first scanning area is 3, the number of the second scanning area is 1, the number of the third scanning area is 1, and the number of the fourth scanning area is 3, it is possible in the field of view
  • a Feng-shaped pattern and a Wang-shaped pattern will be formed, wherein the three first scanning areas can be long strips in the horizontal direction in the Feng-shaped pattern, and one second scanning area can be a Feng-shaped pattern In the vertical strip area, one third scanning area can be the vertical strip area in the king-shaped pattern, and the three fourth scanning areas can be the horizontal strip area in the king-shaped pattern.
  • the number of the first scanning area is 2
  • the number of the second scanning area is 1
  • the number of the third scanning area is 1
  • the number of the fourth scanning area is 2
  • the two first scanning areas can be long strips in the horizontal direction in the soil-shaped pattern
  • one second scanning area can be a soil-shaped pattern
  • one third scanning area can be the vertical strip area in the dry-shaped pattern
  • the two fourth scanning areas can be the horizontal strip area in the dry-shaped pattern.
  • the number of the first scanning area is 6, the number of the second scanning area is 2, the number of the third scanning area is 3, and the number of the fourth scanning area is 3, it is possible in the field of view
  • a non-character-shaped pattern and a matt-shaped pattern will be formed, wherein the three first scanning areas can be long strips in the horizontal direction on the left side of the non-character-shaped pattern, and the other three first scanning areas can be non-character-shaped patterns.
  • the strip area in the horizontal direction on the right side in the font-shaped pattern, 2 second scanning areas can be the strip area in the vertical direction in the non-zigzag pattern, and the 3rd scanning area can be the horizontal direction in the matt-shaped pattern.
  • the three fourth scanning areas may be strip areas in the vertical direction in the cross-shaped pattern.
  • the number of the first scanning area is 4, the number of the second scanning area is 2, the number of the third scanning area is 3, and the number of the fourth scanning area is 2, it is possible in the field of view
  • a pattern in the shape of a word and a pattern in the shape of a Japanese will be formed, wherein the 4 first scanning areas can be long strips in the horizontal direction in the pattern of the shape of the word, and the 2 second scanning areas can be the pattern of the shape of the word
  • the three third scanning areas can be the horizontal strip areas in the Japanese-shaped pattern
  • the two third scanning areas can be the vertical strip areas in the Japanese-shaped pattern.
  • the embodiments of the present application enrich the number of the third scanning area and the fourth scanning area to provide more abundant and various scanning patterns, and the presentation method is more novel and vivid.
  • the present application provides a scanning device, which is used to implement any one of the methods in the first aspect or the first aspect, including corresponding functional modules or units, respectively used to implement the methods in the first aspect. step.
  • Functions can be realized by hardware, or by executing corresponding software by hardware, and the hardware or software includes one or more modules or units corresponding to the above-mentioned functions.
  • the device includes at least one determining unit and a scanning unit;
  • the determining unit is configured to determine a scanning area, the scanning area is a first region of interest, and the scanning area includes a first scanning area and a second scanning area; the first scanning area and the second scanning area There is overlap in the field of view; the resolution of the first scanning area is greater than the resolution of the second scanning area;
  • the scanning unit is configured to scan the scanning area.
  • the vertical viewing angle of the first scanning area overlaps with the vertical viewing angle of the second scanning area.
  • the vertical starting position of the first scanning area is different from the vertical starting position of the second scanning area.
  • the second scanning area presents a horizontal strip shape in the field of view; or the first scanning area presents a horizontal strip shape in the field of view, and the second scanning area A vertical strip shape appears in the field of view.
  • the vertical viewing angle of one or more first scanning areas in the M first scanning areas is different from the vertical viewing angle of one or more second scanning areas in the N second scanning areas.
  • the vertical viewing angles of the scanning area overlap; wherein, the M and the N are positive integers.
  • the scanning area further includes a third scanning area and a fourth scanning area; the third scanning area and the fourth scanning area overlap in the field of view; the first scanning area The resolution of the third scanning area is greater than the resolution of the fourth scanning area.
  • the vertical viewing angle of the third scanning area overlaps with the vertical viewing angle of the fourth scanning area.
  • the determining unit is specifically configured to determine the scanning area according to the acquired collected data of the environment.
  • the scanning unit is specifically configured to control the scanning speed relationship between the fast axis and the slow axis in the scanner, the number of light sources initially emitted by the transmitter, and the size of the pointing angle to regulate the first The scanning area and the second scanning area overlap in the field of view.
  • the scanning unit is specifically configured to adjust the resolution of the first scanning area to be larger than The resolution of the second scanning area.
  • a scanning device in a third aspect, includes a processor and a memory.
  • the memory is used to store calculation programs or instructions
  • the processor is coupled to the memory; when the processor executes the computer programs or instructions, the device is made to execute the first aspect or any one of the methods in the first aspect.
  • the scanning device may be a laser radar, or a device capable of supporting the laser radar to realize the functions required by the method provided in the first aspect above, such as a chip system.
  • the scanning device may be a laser radar, or a terminal device equipped with the laser radar, or a part of components (such as a chip) in the laser radar.
  • the terminal device may be, for example, a smart mobile terminal, a smart home device, a smart car, a smart wearable device, and the like.
  • the present application provides a laser radar, including: an emitting light source, a scanner, and an optical system;
  • the emitting light source is used to emit laser pulses
  • the scanner is configured to determine a scanning area, the scanning area is a first region of interest, and the scanning area includes a first scanning area and a second scanning area; the first scanning area and the second scanning area There is overlap in the field of view; the resolution of the first scanning area is greater than the resolution of the second scanning area; scanning the scanning area;
  • the optical system is used to satisfy that the echo signal of the emitting light source can be received, identified, processed and output by the corresponding area of the scanner.
  • the present application provides a laser radar, which includes a module/unit for performing the method of the first aspect or any possible implementation manner of the first aspect.
  • modules/units can be realized by hardware, and can also be realized by executing corresponding software by hardware.
  • a sixth aspect provides a terminal, and the terminal may include the device described in any one of the second to fifth aspects above.
  • the device may be a smart communication device, a smart home device, a smart manufacturing device, a smart transportation device, etc., such as a vehicle, a drone, an unmanned transport vehicle, a robot, and the like.
  • the present application provides a chip, which is connected to a memory, and is used to read and execute computer programs or instructions stored in the memory, so as to realize the above-mentioned first aspect or any possible implementation of the first aspect Methods.
  • a computer-readable storage medium is provided.
  • Computer programs or instructions are stored in the computer-readable storage medium.
  • the device When the computer programs or instructions are executed by a device, the device performs any of the above-mentioned first aspect or the first aspect. method in a possible implementation.
  • the present application provides a computer program product, the computer program product includes a computer program or an instruction, and when the computer program or instruction is executed by a device, the device executes the above-mentioned first aspect or any possible method of the first aspect. method in the implementation.
  • FIG. 1 is a schematic diagram of an application scenario of a laser radar provided by the present application
  • FIG. 2 is a schematic structural diagram of a laser radar provided by the present application.
  • FIG. 3 is a schematic flow chart of a scanning method provided by the present application.
  • FIG. 4 is a schematic diagram of a scene of a region of interest provided by the present application.
  • Fig. 5 is a schematic diagram of the resolution of different regions provided by the present application.
  • FIG. 6 is a schematic diagram of the first field of view scanning area pattern provided by the present application.
  • Fig. 7 is a schematic diagram of the second field of view scanning area pattern provided by the present application.
  • Fig. 8 is a schematic diagram of the third field of view scanning area pattern provided by the present application.
  • FIG. 9 is a schematic diagram of the fourth field of view scanning area pattern provided by the present application.
  • FIG. 10 is a schematic diagram of the fifth field of view scanning area pattern provided by the present application.
  • Figure 11 is a schematic diagram of the sixth field of view scanning area pattern provided by the present application.
  • Fig. 12 is a schematic diagram of the seventh field of view scanning area pattern provided by the present application.
  • Fig. 13 is a schematic diagram of the first field of view scanning area pattern provided by the present application.
  • FIG. 14 is a schematic diagram of the second field of view scanning area pattern provided by the present application.
  • FIG. 15 is a schematic diagram of the third field of view scanning area pattern provided by the present application.
  • Fig. 16 is a schematic diagram of the fourth field of view scanning area pattern provided by the present application.
  • Fig. 17 is a schematic diagram of the fifth field of view scanning area pattern provided by the present application.
  • Fig. 18 is a schematic diagram of the sixth field of view scanning area pattern provided by the present application.
  • Fig. 19 is a schematic diagram of the seventh field of view scanning area pattern provided by the present application.
  • Fig. 20 is a schematic diagram of the eighth field of view scanning area pattern provided by the present application.
  • Fig. 21 is a schematic diagram of the ninth field of view scanning area pattern provided by the present application.
  • Fig. 22 is a schematic diagram of the tenth field of view scanning area pattern provided by the present application.
  • Fig. 23 is a schematic diagram of the eleventh field of view scanning area pattern provided by the present application.
  • Fig. 24 is a schematic diagram of the twelfth field of view scanning area pattern provided by the present application.
  • Fig. 25 is a schematic diagram of the thirteenth field of view scanning area pattern provided by the present application.
  • Fig. 26 is a schematic diagram of the fourteenth field of view scanning area pattern provided by the present application.
  • Fig. 27 is a schematic diagram of the fifteenth field of view scanning area pattern provided by the present application.
  • Fig. 28 is a schematic diagram of the sixteenth field of view scanning area pattern provided by the present application.
  • Fig. 29 is a schematic diagram of the seventeenth field of view scanning area pattern provided by the present application.
  • FIG. 30 is a schematic diagram of the eighteenth field of view scanning area pattern provided by the present application.
  • FIG. 31 is a schematic diagram of a scanning scene provided by the present application.
  • Fig. 32 is a schematic structural diagram of a control device provided by the present application.
  • a region of interest refers to an area that is more interesting or more focused on the content of the full field of view than other areas.
  • the ROI in the embodiment of the present application can be used as a lidar Identify focal areas of interest during processing.
  • ROIs with high resolution are more interesting to users than ROIs with low resolution.
  • the region of interest in the embodiment of the present application may be a region determined by a box, a circle, an ellipse, or other regular or irregular graphics, etc., which is not limited here.
  • the region of interest is introduced as an example of a region determined in a box manner.
  • the full field of view can be understood as the range of the field of view that can be detected by the lidar scanning one cycle.
  • the embodiment of the present application can describe the field of view range by the horizontal field of view angle and vertical field of view angle, for example, the current field of view range of the full field of view is the horizontal field of view angle of 100°*vertical field of view angle of 40° °.
  • the scanning module in the lidar can scan in two dimensions, horizontal and vertical, to realize point cloud collection, and respectively obtain Point cloud 1 in the horizontal dimension and point cloud 2 in the vertical dimension.
  • the point cloud 1 collected in the horizontal dimension and the point cloud 2 collected in the vertical dimension are synthesized to obtain the final output result.
  • the lidar may scan from left to right in the horizontal dimension, and scan from top to bottom in the vertical dimension.
  • the present application does not limit the specific manner of scanning the lidar.
  • the axis with a fast scanning speed may be referred to as the fast axis.
  • the fast axis in the embodiment of the present application is the axis perpendicular to the light source, wherein the scanning mode of the fast axis may be bottom-up scanning in the vertical dimension.
  • the design freedom of the variable-speed scanning in the fast-axis direction is relatively high, which is related to system requirements.
  • Slow axis in the embodiment of the present application, the axis with a slow scanning speed may be referred to as the slow axis.
  • the slow axis in the embodiment of the present application is parallel to the axis of the light source, wherein the scanning mode of the slow axis may be scanning from left to right in the horizontal dimension.
  • the scanning speed of the scanner can be controlled.
  • the scanning speed changes rapidly at certain moments within a frame and then moves at a constant speed for a period of time thereafter.
  • a plurality of regions with different uniform velocities are formed in the vertical direction.
  • the uniform acceleration and deceleration, variable acceleration movement, etc. are related to the design of the system.
  • the at least one involved in this application refers to one or more; a plurality refers to two or more than two.
  • terms such as “first”, “second”, and “third” are only used for the purpose of distinguishing descriptions, and should not be understood as indicating or implying relative importance. Neither should it be construed as indicating or implying an order.
  • references to "one embodiment” or “some embodiments” or the like in this specification means that a particular feature, structure, or characteristic described in connection with the embodiment is included in one or more embodiments of the present application.
  • appearances of the phrases “in one embodiment,” “in some embodiments,” “in other embodiments,” “in other embodiments,” etc. in various places in this specification are not necessarily All refer to the same embodiment, but mean “one or more but not all embodiments” unless specifically stated otherwise.
  • the terms “including”, “comprising”, “having” and variations thereof mean “including but not limited to”, unless specifically stated otherwise.
  • LiDAR can be installed on mobile devices.
  • LiDAR is applied to automatic driving scenarios, or it can also be applied to networked vehicle scenarios, etc.
  • the lidar can be installed on a vehicle as a vehicle-mounted lidar; for another example, the lidar can be installed on an aircraft as an airborne lidar.
  • the lidar can also be installed on a mobile platform, such as a satellite.
  • the lidar needs the assistance of other devices in the mobile platform to determine its current position and steering information, which ensures the availability of measurement data.
  • the lidar can also be installed on a fixed platform, for example, the lidar can be installed on a roadside unit (road side unit, RSU), a roof, or a base station.
  • RSU road side unit
  • the lidar needs the assistance of other devices in the fixed platform to determine its current position and steering information, which can ensure the availability of measurement data.
  • the laser radar in this application can also be applied to other possible scenarios, which are not limited here.
  • FIG. 2 exemplarily shows a schematic structural diagram of a laser radar provided by the present application.
  • the lidar includes an emitter 210 , a scanner 220 , and an optical system 230 .
  • the transmitter 210 is used to transmit light source signals to the outside.
  • the light source signal reaches the detected target (also referred to as the target object), it will be reflected back.
  • the emitting light source in the embodiment of the present application may be a solid state, a semiconductor, or a fiber laser.
  • the wavelength distribution of the emission light source in the embodiment of the present application covers 850 nm ⁇ 1550 nm.
  • the scanner 220 is configured to perform a scanning process.
  • scanning is performed by the scanner to obtain a scanning area
  • the scanning area refers to a part of the area within the full field of view, for example, the scanning area refers to the area of interest of the region of interest.
  • the optical system 230 is used to satisfy that the echo signal of the emitting light source can be received, identified, processed and output by the corresponding area of the scanner.
  • the lidar described in the embodiment of the present application may also include other devices, for example, the lidar may also include a processor, and the processor may be used to determine the scanning mode, thereby instructing the scanner to scan according to the scanning mode. Scanning is performed to obtain the scanning area.
  • a processor outside the lidar determines the scan area, notifies the scan area to the lidar, and the lidar scans the scan area.
  • the radar system in the daily driving process, the radar system often needs to focus on different areas at different times to form one or more ROIs, and effectively detect, identify and classify various complex road conditions through ROIs.
  • an embodiment of the present application provides a scanning method.
  • the embodiment of the present application determines at least two regions of interest, so that the at least two regions of interest overlap in the field of view and have different resolutions, thereby enriching the region of interest in the full field of view.
  • the layout method effectively improves the freedom of design and regulation of the area of interest, enables system resources to be replaced and self-adapted, realizes continuous attention and key detection of specific targets, and improves resource utilization.
  • FIG. 3 it is a schematic flowchart of a scanning method provided by the present application.
  • the method can be performed by lidar, the method includes the following steps:
  • Step 301 the lidar determines a scanning area, the scanning area is an area of interest, and the scanning area includes a first scanning area and a second scanning area, wherein the first scanning area and the second scanning area are viewed Fields overlap, and the resolution of the first scanning area is greater than the resolution of the second scanning area.
  • the scanning area can be determined by the laser radar itself; or, in the embodiment of the present application, the scanning area can be determined by other means, and then notified to the laser radar.
  • the full field of view can be divided into at least three regions, for example, the first scanning region (may be referred to as the first region of interest), the second scanning region (may be referred to as the second region of interest), and The remaining area in the full field of view (can be called the non-interest area).
  • Step 302 the laser radar scans the scanning area.
  • step 302 can be understood as forming at least two overlapping scanning areas with different resolutions in the field of view according to the determined scanning area; Scanning, forming a first scanning area and a second scanning area in the field of view, wherein the first scanning area and the second scanning area overlap in the field of view, and the resolution of the first scanning area is greater than The resolution of the second scanning area.
  • the region of interest is at least divided into a first scanning area and a second scanning area, and the first scanning area and the second scanning area are set to have different resolutions, so that in the actual detection process, based on different resolutions
  • the first scanning area and the second scanning area with different resolutions, it is possible to achieve higher resolution in part of the field of view and lower resolution in part of the field of view within the entire field of view.
  • the layout of the area of interest in the full field of view can be effectively enriched, and various scans can be generated according to actual detection requirements. Patterns, adaptability and freedom are stronger.
  • the processing device in the laser radar can determine the resolution requirements of different areas in the scanning area based on the current application scenario, so that the scanning device in the laser radar can perform different tasks according to different resolution requirements.
  • the scanning area is scanned according to different scanning modes.
  • the scanning mode of the scanning area may include one or more of the following:
  • Scanning mode 1 types of ROIs included in the scanning area, and numbers corresponding to different types of ROIs.
  • the types of ROIs described in the embodiments of the present application are related to the actually recognized targets, and different targets correspond to different types of ROIs.
  • ROIs belonging to the same type have the same resolution
  • ROIs of different types have different resolutions
  • the type of ROI has nothing to do with the size and position of the ROI.
  • the identified area 1 where the pedestrian is located and the area 2 where the vehicle is located are both areas of interest, but the area 1 and the area 2 are both areas of interest.
  • the types of the two regions of interest in the region 2 are different.
  • the embodiment of the present application can first predict the area to be identified in advance through the collected historical perception data, so as to better understand the target situation in the scene to be followed. For example, based on the perception The scenes to be concerned about in data understanding include nearby pedestrians and distant vehicles shown in Figure 4 above. Then, based on the target situation, the type of the region of interest to be scanned next is determined. Finally, according to the type of the region of interest, different regions to be scanned next, scanning methods, etc. are determined, so as to obtain the scanning region described in the embodiment of the present application.
  • Scanning method 2 Boundary planning of multiple regions of interest in the field of view.
  • the scanning mode indicates that the vertical viewing angle of the first scanning area included in the scanning area overlaps with the vertical viewing angle of the second scanning area, and the vertical starting position of the first scanning area is different from that of the second scanning area.
  • the vertical start positions of the regions are different.
  • the scanning manner may further indicate a specific vertical starting position of the first scanning area, a specific vertical starting position of the second scanning area, and the like.
  • the display positions of multiple regions of interest in the field of view can be determined. For example, when the field of view includes the first scanning area and the second scanning area, the distance between the first scanning area and the second scanning area can be determined. position and the overlapping size between the first scanning area and the second scanning area, so that scanning can be performed by adjusting the positional relationship between the first scanning area and the second scanning area, the size of the area, and the overlapping size, etc.
  • Mode indication realize the rich layout of the region of interest in the field of view, generate a variety of scanning patterns, and have stronger adaptability and freedom.
  • Scan mode 3 Resolution of the region of interest.
  • the scan mode indicates that the resolution of the first scan area included in the scan area is higher than the resolution of the second scan area.
  • the resolution of the region of interest in the layout strategy may be designed according to the distance of the target object included in the collected data.
  • the laser radar adjusts some parameters so that the scanned full field of view presents a scanning scan pattern indicated by the mode.
  • the adaptive control of the region of interest can be realized by adjusting the following parameters of the lidar:
  • Parameter adjustment 1 Lidar realizes the adjustment of the region of interest by controlling the speed relationship between the fast axis and the slow axis for scanning.
  • the laser radar can control the scanning speed in the direction of the slow axis.
  • the laser radar can move rapidly at certain moments in a frame by controlling the slow axis, and move at a constant speed at other certain moments.
  • a plurality of scanning areas with different uniform velocities are formed in the vertical direction of the full field of view.
  • variable speed design of the slow axis in the embodiment of the present application for example, controlling the slow axis to achieve uniform acceleration and deceleration, variable acceleration movement, etc., is related to the layout strategy.
  • Parameter adjustment 2 The lidar realizes the control of the area of interest by controlling the number of light sources initially emitted by the emitting light source and the size of the pointing angle.
  • the laser radar can control the size of the pointing angle, for example, the laser radar can present the second scanning area in the full field of view by controlling the vertical viewing angles of the first scanning area and the second scanning area to be the same.
  • a scanning area and a second scanning area have overlapping scanning patterns.
  • Parameter adjustment 3 Lidar realizes the control of the region of interest by controlling the repetition frequency of the transmitter, which determines the point cloud density per unit time and unit square angle.
  • Design method 1 When a frame of point cloud is formed, the laser radar can realize the encryption or sparseness of the point cloud by controlling the change of the point frequency of the transmitter.
  • Design method 2 The laser radar can design the emission mode of the transmitter as a burst mode to realize the encryption of the point cloud.
  • the laser radar continuously transmits a pulse train through the transmitter, wherein the time interval between the pulses can be adjusted, for example, the time interval between the pulses can be designed in a chirp manner to realize the point of spatial emission Cloud encryption, at this time, one transmission corresponds to multiple receptions, and each pulse is aligned with the start time of a reception's Time of Flight (TOF).
  • TOF Time of Flight
  • Design method 3 The lidar control transmitter is temporarily turned off in certain time periods, and then turned on again in other time periods, so as to realize the encryption or sparseness of point clouds. Wherein, this process can be reproduced multiple times within one frame.
  • the laser radar when adjusting the resolution of the region of interest by controlling the timing of the lighting, can adjust the starting time of emitting light between one adjacent row (column) or multiple rows (columns)
  • the delay relationship can realize different topological forms of spatial point cloud.
  • topological forms in the embodiment of the present application can also be used to define different regions of interest, and the designable point cloud topological forms are related to resolution.
  • the ellipse in each scanning area represents the light spot formed by the optical signal emitted by the transmitting module entering the detection area. Since the spot topologies formed in the first scanning area and the second scanning area are different, the resolutions of the first scanning area and the second scanning area are also different.
  • the resolution of the overlapping portion shown in (c) in FIG. 5 is equal to the sum of the resolution corresponding to the first scanning area and the resolution corresponding to the second scanning area, and the resolution of the overlapping portion is high
  • the resolution in the first scanning area is also higher than the corresponding resolution in the second scanning area.
  • the shape of the light spot in the corresponding area of the scanning field of view can also be other possible shapes, such as a circle, or other possible irregular shapes.
  • the content shown in Figure 5 above is an example of an ellipse of.
  • the area corresponding to the scanning field of view is a rectangle as an example, and the present application does not limit the shape of the area corresponding to the scanning field of view, for example, it may also be a square, or other regular or irregular shapes.
  • one of the above-mentioned parameter adjustment schemes can be selected for sensing when regulating the region of interest.
  • multiple of the above parameter adjustment schemes may be selected, and the regulation of the region of interest may be performed in a combined manner.
  • the scanning area in the embodiment of the present application includes a first scanning area and a second scanning area, and the specific scanning patterns formed are not limited to the following patterns.
  • Pattern 1 By scanning one scanning period, a full field of view as shown in FIG. 6 is obtained, wherein the full field of view includes three regions, namely ROI-1, ROI-2 and non-ROI.
  • the positions displayed in the field of view of the ROI-1 and ROI-2 are the scan areas formed in this embodiment of the present application.
  • the vertical field of view of ROI-1 is the same as that of ROI-2, the vertical starting position of ROI-1 is different from that of ROI-2, and the vertical starting position of ROI-2 includes ROI
  • the vertical start position of -1, and the resolution of ROI-1 is higher than that of ROI-2, and the resolution of ROI-2 is higher than that of non-ROIs.
  • scanning can be performed based on the scanning mode corresponding to ROI-1 first to obtain the scanning pattern of ROI-1, and then scanning can be performed based on the scanning mode corresponding to ROI-2 to obtain the scanning area of ROI-2.
  • the resolution of ROI-1 is 200
  • the resolution of ROI-2 is 300
  • the scan superposition with a resolution of 100 was performed again to obtain the scan area of ROI-2.
  • Pattern 2 By scanning one scanning period, a full field of view as shown in FIG. 7 is obtained, wherein the full field of view includes three regions, namely ROI-1, ROI-2 and non-ROI.
  • the positions displayed in the field of view of the ROI-1 and ROI-2 are the scan areas formed in this embodiment of the present application.
  • the vertical field of view of ROI-1 is different from that of ROI-2, the vertical field of view of ROI-2 is larger than that of ROI-1, and the vertical starting position of ROI-1 is the same as that of ROI-2.
  • -2 have the same vertical start position, and the resolution of ROI-1 is higher than that of ROI-2, and the resolution of ROI-2 is higher than that of non-ROIs.
  • the scanning process of forming the scanning pattern as shown in FIG. 7 can refer to the introduction of the above-mentioned FIG. 6 , and will not be repeated here.
  • Pattern 3 By scanning one scanning period, a full field of view as shown in Figure 8 is obtained, wherein, the full field of view includes three regions, which are 1 ROI-1, 1 ROI-2 and non- ROI.
  • the positions displayed in the field of view of the ROI-1 and ROI-2 are the scan areas formed in this embodiment of the present application.
  • the vertical field of view of ROI-1 overlaps with the vertical field of view of ROI-2, the vertical starting position of ROI-1 is different from that of ROI-2, and the vertical starting position of ROI-2 includes The vertical starting position of ROI-1, the resolution of ROI-1 is higher than that of ROI-2, the resolution of ROI-2 is higher than that of non-ROI, and ROI-1 presents a vertical strip in the field of view Shape, ROI-2 presents a horizontal strip shape in the field of view, that is, a cross-shaped pattern can be formed in the field of view.
  • the scanning process for forming the scanning pattern as shown in FIG. 8 can refer to the introduction of the above-mentioned FIG. 6 , and will not be repeated here.
  • the scanning area in the embodiment of the present application includes one first scanning area and multiple second scanning areas; or, when the scanning area includes multiple first scanning areas and one second scanning area, the specifically formed scanning pattern does not Limited to the following patterns.
  • Pattern 1 By scanning one scanning period, a full field of view as shown in Figure 9 is obtained, wherein the full field of view includes four regions, which are two ROI-1, one ROI-2 and non-ROI .
  • the area formed by the two ROI-1 and the one ROI-2 is the scanning area in the full field of view.
  • the vertical field angle of each ROI-1 is the same as that of ROI-2
  • the vertical starting position of each ROI-1 is different from that of ROI-2
  • the vertical starting position of ROI-2 is different from that of ROI-2.
  • the vertical starting position includes the vertical starting position of 2 ROI-1, the starting position between the two ROI-1 is different, and the resolution of the two ROI-1 is the same and higher than the resolution of ROI-2,
  • the resolution of ROI-2 is higher than that of non-ROI.
  • the scanning process of forming the scanning pattern as shown in FIG. 9 can refer to the introduction of the above-mentioned FIG. 6 , and will not be repeated here.
  • Pattern 2 By scanning one scan period, a full field of view as shown in Figure 10 is obtained, wherein, the full field of view includes four areas, which are 1 ROI-1, 2 ROI-2 and non- ROI.
  • the area formed by the one ROI-1 and the two ROI-2 is the scanning area in the full field of view.
  • the vertical viewing angle of ROI-1 overlaps with the vertical viewing angle of each ROI-2, and the vertical viewing angle of ROI-1 is the sum of the vertical viewing angles of two ROI-2s.
  • the vertical start position of ROI-1 is different from the vertical start position of each ROI-2, the vertical start position of each ROI-2 includes the vertical start position of ROI-1, and the resolution of ROI-1 is higher than that of ROI
  • the resolution of -2, the resolution of ROI-2 is higher than that of non-ROI, and ROI-1 presents a vertical strip shape in the field of view, and ROI-2 presents a horizontal strip shape in the field of view.
  • the scanning process of forming the scanning pattern as shown in FIG. 10 can refer to the introduction of the above-mentioned FIG. 6 , and will not be repeated here.
  • Pattern 3 By scanning one scan period, a full field of view as shown in Figure 11 is obtained, wherein the full field of view includes three areas, which are 1 ROI-1, 1 ROI-2 and non- ROI.
  • the area formed by the one ROI-1 and the one ROI-2 is the scanning area in the full field of view.
  • the vertical field of view of ROI-1 overlaps with the vertical field of view of ROI-2, the vertical starting position of ROI-1 is the same as that of ROI-2, and the resolution of ROI-1 is higher than The resolution of ROI-2, the resolution of ROI-2 is higher than that of non-ROI.
  • the scanning process for forming the scanning pattern as shown in FIG. 11 can refer to the introduction of the above-mentioned FIG. 6 , and will not be repeated here.
  • Pattern 4 By scanning one scan period, a full field of view as shown in Figure 12 is obtained, wherein the full field of view includes three areas, which are 1 ROI-1, 1 ROI-2 and non- ROI.
  • the area formed by the one ROI-1 and the one ROI-2 is the scanning area in the full field of view.
  • the vertical field angle of ROI-1 overlaps with the vertical field angle of ROI-2, and the vertical initial position of ROI-1 is different from the vertical initial position of ROI-2.
  • the vertical start position of ROI-1 is smaller than the vertical start position of ROI-2
  • the vertical end position of ROI-1 is smaller than the vertical end position of ROI-2
  • the resolution of ROI-1 is higher than that of ROI-2
  • the resolution of ROI-2 is higher than that of non-ROI.
  • the scanning process of forming the scanning pattern as shown in FIG. 12 can refer to the introduction of the above-mentioned FIG. 6 , and will not be repeated here.
  • Pattern 5 By scanning one scanning cycle, a full field of view as shown in Figure 13 is obtained, wherein, the full field of view includes five regions, which are 2 ROI-1, 2 ROI-2 and non- ROI.
  • the area formed by the two ROI-1 and the two ROI-2 is the scanning area in the full field of view.
  • the vertical viewing angle of ROI-1 and the vertical viewing angle of ROI-2 both overlap, and form a well-shaped pattern in the viewing field.
  • 2 ROI-1s are vertical strip areas in the well-shaped pattern
  • 2 ROI-2 are horizontal strip areas in the well-shaped pattern
  • the resolution of ROI-1 can be higher than that of ROI -2 resolution
  • the resolution of ROI-2 is higher than that of non-ROI.
  • the two ROI-1 may also be long strips in the horizontal direction in the well-shaped pattern, and the two ROI-2 may be long strips in the vertical direction in the well-shaped pattern.
  • the scanning process for forming the scanning pattern as shown in FIG. 13 can refer to the introduction of the above-mentioned FIG. 6 , and will not be repeated here.
  • Pattern 6 By scanning one scanning period, a full field of view as shown in Figure 14 is obtained, wherein the full field of view includes five regions, which are 3 ROI-1, 1 ROI-2 and non- ROI.
  • the area formed by the three ROI-1 and one ROI-2 is the scan area in the full field of view.
  • the vertical viewing angle of ROI-1 and ROI-2 both overlap, and form a pattern in the shape of Feng in the viewing field.
  • 1 ROI-2 is the long strip area in the vertical direction in the Feng-shaped pattern
  • 3 ROI-1s are the long strip areas in the horizontal direction in the Feng-shaped pattern
  • the resolution of ROI-1 can be higher than that of ROI -2 resolution
  • the resolution of ROI-2 is higher than that of non-ROI.
  • the scanning process of forming the scanning pattern as shown in FIG. 14 can refer to the introduction of the above-mentioned FIG. 6 , and will not be repeated here.
  • Pattern 7 By scanning one scanning period, a full field of view as shown in Figure 15 is obtained, wherein, the full field of view includes five regions, which are 3 ROI-1, 1 ROI-2 and non- ROI.
  • the area formed by the three ROI-1 and one ROI-2 is the scan area in the full field of view.
  • the vertical viewing angle of ROI-1 and ROI-2 both overlap, and form a king-shaped pattern in the viewing field.
  • 1 ROI-2 is the vertical strip area in the king-shaped pattern
  • 3 ROI-1 is the horizontal strip area in the king-shaped pattern
  • the resolution of ROI-1 can be higher than that of ROI -2 resolution
  • the resolution of ROI-2 is higher than that of non-ROI.
  • the scanning process for forming the scanning pattern as shown in FIG. 15 can refer to the introduction of the above-mentioned FIG. 6 , and will not be repeated here.
  • Pattern 8 By scanning one scanning period, the full field of view as shown in Figure 16 is obtained, wherein the full field of view includes four areas, which are 2 ROI-1, 1 ROI-2 and non- ROI.
  • the area formed by the two ROI-1 and one ROI-2 is the scan area in the full field of view.
  • the vertical field of view of ROI-1 overlaps with that of ROI-2, forming an earthen-shaped pattern in the field of view.
  • one ROI-2 is the vertical strip area in the earth-shaped pattern
  • two ROI-1 are the horizontal strip areas in the earth-shaped pattern
  • the resolution of ROI-1 can be higher than that of ROI -2 resolution
  • the resolution of ROI-2 is higher than that of non-ROI.
  • the scanning process of forming the scanning pattern as shown in FIG. 16 can refer to the introduction of the above-mentioned FIG. 6 , and will not be repeated here.
  • Pattern 9 By scanning one scanning period, a full field of view as shown in Figure 17 is obtained, wherein the full field of view includes four areas, which are 1 ROI-1, 2 ROI-2 and non- ROI.
  • the area formed by the one ROI-1 and the two ROI-2 is the scanning area in the full field of view.
  • the vertical viewing angle of ROI-1 and ROI-2 both overlap, and form a dry-shaped pattern in the viewing field.
  • 1 ROI-1 is the vertical strip region in the stem shape pattern
  • 2 ROI-2 is the horizontal strip region in the stem shape pattern
  • the resolution of ROI-1 can be higher than ROI -2 resolution
  • the resolution of ROI-2 is higher than that of non-ROI.
  • the scanning process of forming the scanning pattern as shown in FIG. 17 can refer to the introduction of the above-mentioned FIG. 6 , and will not be repeated here.
  • Pattern 10 By scanning one scanning period, a full field of view as shown in Figure 18 is obtained, wherein the full field of view includes nine regions, which are 6 ROI-1, 2 ROI-2 and non- ROI.
  • the area formed by the six ROI-1 and the two ROI-2 is the scanning area in the full field of view.
  • the vertical viewing angle of ROI-1 overlaps with that of ROI-2, and forms a non-word-shaped pattern in the viewing field.
  • 3 ROI-1s are long strip areas on the left horizontal direction in the non-glyph-shaped pattern
  • the other 3 ROI-1 are long strip areas on the right horizontal direction in the non-glyph-shaped pattern
  • 2 ROI-2 are non-glyph-shaped patterns.
  • the vertical strip area in the glyph pattern, and the resolution of ROI-1 may be higher than that of ROI-2, and the resolution of ROI-2 is higher than that of non-ROIs.
  • the scanning process of forming the scanning pattern as shown in FIG. 18 can refer to the introduction of the above-mentioned FIG. 6 , and will not be repeated here.
  • Pattern 11 By scanning one scanning period, a full field of view as shown in Figure 19 is obtained, wherein the full field of view includes seven regions, which are 3 ROI-1, 3 ROI-2 and non- ROI.
  • the area formed by the three ROI-1 and the three ROI-2 is the scan area in the full field of view.
  • the vertical viewing angle of ROI-1 overlaps with that of ROI-2, forming a cross-shaped pattern in the viewing field.
  • 3 ROI-1s are long strips in the horizontal direction in the pattern of matts
  • 3 ROI-2s are strips in the vertical direction in the pattern of matts
  • the resolution of ROI-1 can be higher than that of ROI -2 resolution
  • the resolution of ROI-2 is higher than that of non-ROI.
  • the scanning process of forming the scanning pattern as shown in FIG. 19 can refer to the introduction of the above-mentioned FIG. 6 , and will not be repeated here.
  • Pattern 12 By scanning one scanning period, a full field of view as shown in Figure 20 is obtained, wherein the full field of view includes seven regions, which are 4 ROI-1, 2 ROI-2 and non- ROI.
  • the area formed by the four ROI-1 and the two ROI-2 is the scanning area in the full field of view.
  • the vertical viewing angle of ROI-1 and ROI-2 both overlap, and form a pattern in the shape of a word in the viewing field.
  • ROI-1s are the long strip regions in the horizontal direction in the word-shaped pattern
  • 2 ROI-2 are the long strip regions in the vertical direction in the word-shaped pattern
  • the resolution of ROI-1 can be higher than that of ROI -2 resolution
  • the resolution of ROI-2 is higher than that of non-ROI.
  • the scanning process for forming the scanning pattern as shown in FIG. 20 can refer to the introduction of the above-mentioned FIG. 6 , and will not be repeated here.
  • Pattern 13 By scanning one scanning period, a full field of view as shown in Figure 21 is obtained, wherein the full field of view includes six regions, which are 2 ROI-1, 3 ROI-2 and non- ROI.
  • the area formed by the two ROI-1 and the three ROI-2 is the scan area in the full field of view.
  • the vertical field of view of ROI-1 overlaps with that of ROI-2, forming a Japanese-shaped pattern in the field of view.
  • 3 ROI-2 are horizontal long strip areas in the Japanese-shaped pattern, and 2 ROI-1 are vertical long strip areas in the Japanese-shaped pattern, and the resolution of ROI-1 can be higher than that of ROI -2 resolution, the resolution of ROI-2 is higher than that of non-ROI.
  • the embodiment of the present application can also expand the pattern of crystal characters as shown in FIG. 22 by increasing the number of ROI-1 and the number of ROI-2.
  • Pattern 14 By scanning one scanning period, a full field of view as shown in FIG. 23 is obtained.
  • the full field of view includes five regions, which are 2 ROI-1, 2 ROI-2 and non-ROI.
  • the area formed by the two ROI-1 and the two ROI-2 is the scanning area in the full field of view.
  • the vertical viewing angle of ROI-1 and ROI-2 overlap, and form a word-shaped pattern in the viewing field.
  • 2 ROI-2 are horizontal strip regions in the word-shaped pattern
  • 2 ROI-1 are vertical strip regions in the word-shaped pattern
  • the resolution of ROI-1 can be higher than ROI -2 resolution
  • the resolution of ROI-2 is higher than that of non-ROI.
  • the embodiment of the present application can also expand the character-shaped pattern as shown in FIG. 24 by increasing the number of ROI-1 and ROI-2.
  • the scanning process of forming the scanning pattern as shown in FIGS. 13 and 24 can refer to the introduction of the above-mentioned FIG. 6 , and will not be repeated here.
  • the scanning area in the embodiment of the present application includes the first scanning area, the second scanning area, the third scanning area and the fourth scanning area, and the specific scanning patterns formed are not limited to the following patterns.
  • Pattern 1 By scanning one scanning period, a full field of view as shown in Figure 25 is obtained, and the full field of view includes 5 areas, namely 1 ROI-1, 1 ROI-2, and 1 ROI -3, 1 ROI-4 and non-ROI.
  • the area formed by the one ROI-1, one ROI-2, one ROI-3 and one ROI-4 is the scanning area in the full field of view.
  • the vertical field of view of ROI-1 is the same as that of ROI-2, the vertical starting position of ROI-1 is different from that of ROI-2, and the vertical starting position of ROI-2 includes ROI -1 for the vertical starting position.
  • the vertical field of view of ROI-3 is the same as that of ROI-4, the vertical starting position of ROI-3 is different from that of ROI-4, and the vertical starting position of ROI-3 includes ROI-4 The vertical starting position of .
  • the vertical field of view of ROI-3 and ROI-4 are smaller than the vertical field of view of ROI-1 and ROI-2, and ROI-3 and ROI-4 are in the full field of view
  • the presented position is above the presented positions of ROI-1 and ROI-2 in the full field of view.
  • the resolution of ROI-3 is higher than that of ROI-4, the resolution of ROI-4 is higher than that of ROI-1, the resolution of ROI-1 is higher than that of ROI-2, and the resolution of ROI-2 is higher than that of ROI-2.
  • the rate is higher than the non-ROI resolution.
  • the scanning process of forming the scanning pattern as shown in FIG. 25 can refer to the introduction of the above-mentioned FIG. 6 , and will not be repeated here.
  • Pattern 2 By scanning one scanning period, a full field of view as shown in Figure 26 is obtained, wherein, the full field of view includes 5 regions, which are 1 ROI-1, 1 ROI-2, 1 1 ROI-3, 1 ROI-4 and non-ROI.
  • the area formed by the one ROI-1, one ROI-2, one ROI-3 and one ROI-4 is the scanning area in the full field of view.
  • the vertical viewing angle of ROI-1 is greater than that of ROI-2, and the vertical starting position of ROI-1 is the same as that of ROI-2.
  • the vertical viewing angle of ROI-3 is greater than that of ROI-4, and the vertical starting position of ROI-3 is the same as that of ROI-4.
  • the vertical starting positions of ROI-3 and ROI-4 are different from those of ROI-1 and ROI-2, and the positions of ROI-3 and ROI-4 in the full field of view are located between ROI-1 and ROI- 2 to the right of the rendering position in full field of view.
  • the resolution of ROI-3 is higher than that of ROI-4, the resolution of ROI-4 is higher than that of ROI-1, the resolution of ROI-1 is higher than that of ROI-2, and the resolution of ROI-2 is higher than that of ROI-2.
  • the rate is higher than the non-ROI resolution.
  • the scanning process of forming the scanning pattern as shown in FIG. 26 can refer to the introduction of the above-mentioned FIG. 6 , and will not be repeated here.
  • Pattern 3 By scanning one scanning period, a full field of view as shown in Figure 27 is obtained, wherein the full field of view includes 9 regions, which are 2 ROI-1, 2 ROI-2, 3 1 ROI-3, 1 ROI-4 and non-ROI.
  • the area formed by the 2 ROI-1, 2 ROI-2, 3 ROI-3 and 1 ROI-4 is the scan area in the full field of view.
  • the vertical field of view of ROI-1 overlaps with the vertical field of view of ROI-2
  • the vertical field of view of ROI-3 overlaps with that of ROI-4, forming a A tic-tac-shaped pattern and a feng-shaped pattern.
  • 2 ROI-1s are vertical strip areas in the well-shaped pattern
  • 2 ROI-2 are horizontal long strip areas in the well-shaped pattern
  • 3 ROI-3 are in the Fengzi-shaped pattern
  • one ROI-4 is the long strip area in the vertical direction in the Feng-shaped pattern
  • the positions of ROI-3 and ROI-4 in the full field of view are located in ROI-1 and ROI-2
  • the resolution of ROI-3 is higher than that of ROI-4
  • the resolution of ROI-4 is higher than that of ROI-1
  • the resolution of ROI-1 is higher than that of ROI -2 resolution
  • the resolution of ROI-2 is higher than that of non-ROI.
  • the scanning process of forming the scanning pattern as shown in FIG. 27 can refer to the introduction of the above-mentioned FIG. 6 , and will not be repeated here.
  • Pattern 4 By scanning one scan period, a full field of view as shown in Figure 28 is obtained, wherein the full field of view includes 9 regions, which are 3 ROI-1, 1 ROI-2, 1 1 ROI-3, 3 ROI-4 and non-ROIs.
  • the area formed by the three ROI-1, one ROI-2, one ROI-3 and three ROI-4 is the scanning area in the full field of view.
  • the vertical field of view of ROI-1 overlaps with the vertical field of view of ROI-2
  • the vertical field of view of ROI-3 overlaps with that of ROI-4, forming a A pattern in the shape of Feng and a pattern in the shape of Wang.
  • 3 ROI-1s are the strip regions in the horizontal direction in the Feng character pattern
  • 1 ROI-2 is the vertical strip region in the Feng character pattern
  • 3 ROI-4 are in the Wang character pattern.
  • one ROI-3 is the long strip area in the vertical direction in the king-shaped pattern
  • the positions of ROI-3 and ROI-4 in the full field of view are located in ROI-1 and ROI-2
  • the resolution of ROI-3 is higher than that of ROI-4
  • the resolution of ROI-4 is higher than that of ROI-1
  • the resolution of ROI-1 is higher than that of ROI -2 resolution
  • the resolution of ROI-2 is higher than that of non-ROI.
  • the scanning process of forming the scanning pattern as shown in FIG. 28 can refer to the introduction of the above-mentioned FIG. 6 , and will not be repeated here.
  • Pattern 5 By scanning one scanning period, a full field of view as shown in Figure 29 is obtained, wherein the full field of view includes 7 areas, which are 2 ROI-1, 1 ROI-2, 1 1 ROI-3, 2 ROI-4 and non-ROI.
  • the area formed by the two ROI-1, one ROI-2, one ROI-3 and two ROI-4 is the scanning area in the full field of view.
  • the vertical field of view of ROI-1 overlaps with the vertical field of view of ROI-2
  • the vertical field of view of ROI-3 overlaps with that of ROI-4, forming a A pattern in the shape of an earth character and a pattern in the shape of a dry character.
  • 2 ROI-1s are the long strip areas in the horizontal direction in the earth-shaped pattern
  • 1 ROI-2 is the vertical strip area in the earth-shaped pattern
  • 2 ROI-4 are in the dry-shaped pattern
  • one ROI-3 is the long strip area in the vertical direction in the dry-shaped pattern
  • the positions of ROI-3 and ROI-4 in the full field of view are located in ROI-1 and ROI-2
  • the resolution of ROI-3 is higher than that of ROI-4
  • the resolution of ROI-4 is higher than that of ROI-1
  • the resolution of ROI-1 is higher than that of ROI -2 resolution
  • the resolution of ROI-2 is higher than that of non-ROI.
  • the scanning process for forming the scanning pattern as shown in FIG. 29 can refer to the introduction of the above-mentioned FIG. 6 , and will not be repeated here.
  • Pattern 6 By scanning one scanning period, a full field of view as shown in FIG. 30 is obtained.
  • the full field of view includes 12 regions, which are 4 ROI-1, 2 ROI-2, 3 ROI-3, 2 ROI-4 and non-ROI.
  • the area formed by the 4 ROI-1, 2 ROI-2, 3 ROI-3 and 2 ROI-4 is the scanning area in the full field of view.
  • the vertical field of view of ROI-1 overlaps with the vertical field of view of ROI-2
  • the vertical field of view of ROI-3 overlaps with that of ROI-4, forming a A pattern in the shape of the word " ⁇ " and a pattern in the shape of the word " ⁇ ".
  • ROI-1s are the strip regions in the horizontal direction in the word-shaped pattern of the word mesh
  • 2 ROI-2 are the long strip regions in the vertical direction in the shape pattern of the word mesh
  • 3 ROI-3s are in the pattern of the Japanese word shape
  • the two ROI-4 are the long strip area in the vertical direction in the Japanese-shaped pattern
  • the positions of ROI-3 and ROI-4 in the full field of view are located in ROI-1 and ROI-2 Bottom left of rendering position in full field of view
  • ROI-3 has a higher resolution than ROI-4
  • ROI-4 has a higher resolution than ROI-1
  • ROI-1 has a higher resolution than ROI -2 resolution
  • the resolution of ROI-2 is higher than that of non-ROI.
  • the scanning process of forming the scanning pattern as shown in FIG. 30 can refer to the introduction of the above-mentioned FIG. 6 , and will not be repeated here.
  • the scanning area in the embodiment of the present application may also include other scanning areas such as the fifth scanning area and the sixth scanning area.
  • the specific scanning pattern please refer to the introduction of the above scanning pattern and the deformation of the above scanning pattern, etc. , for the sake of brevity, no further details are given here.
  • the layout of the above scanning pattern does not constitute a limitation on the scanning pattern presented in the embodiment of the application, it is only used as an example, and the resolution between different scanning areas in the above scanning pattern does not constitute a limitation on the implementation of the application.
  • the definition of the resolution of different scanning areas the embodiment of the present application can define and adjust the resolution of different scanning areas according to the actual situation.
  • the embodiment of the present application can use a horizontal scanner with a polygon (Polygon) whose number of planes is P or other possible multi-plane scanners to scan, and during the scanning process, a multi-channel transceiver unit can be used to perform laser transmission and reception. Scan the full field of view in the horizontal direction.
  • a 4-way transceiver unit is used for laser transmission and reception, so as to obtain 4 point cloud lines.
  • the parameters set by the laser radar for area scanning in the embodiment of the present application can be as follows:
  • the pointing angle of the initial emission is 1/4*0.5*(VFOV-VFOV'), where VFOV is the total vertical field of view (vertical field of view) of area 1 to area 3, and VFOV' is the area of area 2 vertical field of view.
  • the time utilization rate of the scanner to complete a scan of the horizontal field of view is K.
  • the time utilization rate K represents the ratio of the scanning angle actually to be realized by the scanner to the scanning angle that the scanner can theoretically cover, wherein, in general, the value of the time utilization rate K is between 70% and Between 80%.
  • VFOV is the vertical field of view
  • Vres is the vertical angular resolution ( Vertical resolution)
  • Hres is the horizontal angular resolution (Horizontal resolution)
  • HFOV is the horizontal field of view (Horizontal field of view).
  • the repetition frequency of the central ROI in area 2 can be set to f1, and the repetition frequency of other fields of view in area 2 can be set to f2.
  • the scanner in the laser radar is controlled to keep moving at a constant speed, so that the horizontal scanner maintains a constant speed in the entire area 2 .
  • control the repetition frequency of the laser and the point cloud dot delay relationship between rows for example, control the laser to turn off at an appropriate time, and turn on again after scanning a certain field of view, so as to present the left boundary and right of the ROI. boundary.
  • the speed of the horizontal scanner can be set to be constant, so the scanning time of the ROI and the non-ROI is proportional to the respective field angles. If the repetition frequency of the laser is quickly adjusted at the switching boundary between the non-ROI and the ROI, the horizontal resolution of the ROI and the non-ROI can be further regulated.
  • the area 1 or area 3 in the embodiment of the present application can be designed using symmetrical design specifications.
  • the rotation speed in the horizontal direction can be calculated according to the vertical resolution (number of vertical lines) designed by the system and the scanning time occupied in a single frame, so that the horizontal scanning rotation speed different from that in area 2 can be obtained.
  • the method and the device are conceived based on the same or similar technology, and since the method and the device have similar problem-solving principles, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • the embodiment of the present application further provides an apparatus for realizing the foregoing method.
  • the device may include a hardware structure and/or a software module, and realize the above-mentioned functions in the form of a hardware structure, a software module, or a hardware structure plus a software module. Whether one of the above-mentioned functions is executed in the form of a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • FIG. 32 it is a schematic structural diagram of a scanning device provided in the embodiment of the present application.
  • the device may be a scanner, or a component in the scanner, or a device that can be used in conjunction with the scanner.
  • the apparatus 3200 may include: a determining module 3201 and a scanning module 3202 .
  • the device 3200 may also include other modules, which are not limited in the embodiment of the present application, and only show the main functional modules.
  • the scanning device in the embodiment of the present application may also include a transceiver module, and the transceiver module may include sending module and receiving module.
  • the determining module 3201 is used to determine a scan area, the scan area is a first region of interest, and the scan area includes a first scan area and a second scan area; the first scan area and the second scan area The areas overlap in the field of view; the resolution of the first scanning area is greater than the resolution of the second scanning area; the scanning module 3202 is configured to scan the scanning area.
  • the vertical viewing angle of the first scanning area overlaps with the vertical viewing angle of the second scanning area.
  • the vertical starting position of the first scanning area is different from the vertical starting position of the second scanning area.
  • the first scanning area presents a vertical strip shape in the field of view
  • the second scanning area presents a horizontal strip shape in the field of view
  • the first scanning area is in the shape of a horizontal strip in the field of view
  • the second scanning area is in the shape of a vertical strip in the field of view.
  • the number of the first scanning areas is M and the number of the second scanning areas is N
  • one or more first scanning areas in the M first scanning areas A vertical viewing angle of a scanning area overlaps with a vertical viewing angle of one or more of the N second scanning areas; wherein, the M and the N are positive integers.
  • the scanning area further includes a third scanning area and a fourth scanning area; the third scanning area and the fourth scanning area overlap in the field of view; the second scanning area The resolution of the third scanning area is greater than the resolution of the fourth scanning area.
  • the vertical viewing angle of the third scanning area overlaps with the vertical viewing angle of the fourth scanning area.
  • the determining module 3201 is specifically used for:
  • the scanning area is determined according to the collected data of the environment.
  • the scanning module 3202 is specifically used for:
  • the number of light sources initially emitted by the emitter and the size of the pointing angle, the overlapping of the first scanning area and the second scanning area in the field of view is regulated.
  • the scanning module 3202 is specifically used for:
  • the resolution of the first scanning area is regulated to be greater than the resolution of the second scanning area.
  • An embodiment of the present application also provides a sensor system, which includes at least one scanning device described above. Further optionally, the sensor system further includes at least one camera.
  • An embodiment of the present application also provides a vehicle, such as a vehicle, an unmanned aerial vehicle, an unmanned vehicle, etc., including the above-mentioned sensor system.
  • a vehicle such as a vehicle, an unmanned aerial vehicle, an unmanned vehicle, etc.
  • the present application may further provide a laser radar, and the laser radar may include the device in any of the above embodiments.
  • the lidar may also include a processor.
  • the terminal device may include a control device for executing any of the foregoing method embodiments. Further, optionally, the terminal device may further include a memory, and the memory is used to store programs or instructions. Certainly, the terminal device may also include other components, such as a wireless control device and the like. Wherein, for the control device, reference may be made to the description of the above control device, which will not be repeated here.
  • the terminal device can be, for example, a vehicle (such as an unmanned car, a smart car, an electric car, or a digital car, etc.), a robot, a surveying and mapping device, a drone, a smart home device (such as a TV, a sweeping robot, a smart desk lamp, etc.) , audio system, intelligent lighting system, electrical control system, home background music, home theater system, intercom system, or video surveillance, etc.), intelligent manufacturing equipment (such as industrial equipment), intelligent transportation equipment (such as AGV, unmanned transport vehicle , or trucks, etc.), or smart terminals (mobile phones, computers, tablets, handheld computers, desktops, headphones, audio, wearable devices, vehicle-mounted devices, virtual reality devices, augmented reality devices, etc.), etc.
  • a vehicle such as an unmanned car, a smart car, an electric car, or a digital car, etc.
  • a robot such as a robot, a surveying and mapping device, a drone, a smart home device (such as a TV, a
  • the embodiments of the present application also provide a computer-readable storage medium, including instructions, which, when run on a computer, cause the computer to execute the method described in the above embodiments.
  • the embodiments of the present application also provide a computer program product, including instructions, which, when run on a computer, cause the computer to execute the method described in the above embodiments.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer programs or instructions. When the computer program or instructions are loaded and executed on the computer, the processes or functions described in the embodiments of the present application are executed in whole or in part.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, network equipment, user equipment, or other programmable devices.
  • the computer program or instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program or instructions may be downloaded from a website, computer, A server or data center transmits to another website site, computer, server or data center by wired or wireless means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrating one or more available media. Described usable medium can be magnetic medium, for example, floppy disk, hard disk, magnetic tape; It can also be optical medium, for example, digital video disc (digital video disc, DVD); It can also be semiconductor medium, for example, solid state drive (solid state drive) , SSD).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种扫描方法及装置,可应用于自动驾驶、智能驾驶等领域,尤其涉及激光传感器的探测。该方法包括:确定扫描区域,扫描区域为感兴趣区域,扫描区域包括第一扫描区域和第二扫描区域,第一扫描区域和第二扫描区域在视场上有重叠,第一扫描区域的分辨率大于第二扫描区域的分辨率(301);对扫描区域进行扫描(302)。该方法丰富了全视场中感兴趣区域的布局方式,有效提高了感兴趣区域的设计和调控的自由度,实现对特定目标持续关注和重点探测,提高了资源的利用率。

Description

一种扫描方法及装置 技术领域
本申请涉及激光探测技术领域,尤其涉及一种扫描方法及装置。
背景技术
在日常驾驶过程中,雷达系统经常需要在不同时刻关注不同的区域,形成一个或多个感兴趣区域(region of interesting,ROI),通过ROI对各种复杂的路况进行有效的探测和识别分类。
然而,目前扫描ROI的方式经常存在调控的自由度和灵活性不足、实际的点云分辨率受限于工程误差和耦合效率,对全视场的目标采用相同权重的关注度策略,导致对重要和不重要信息采集时消耗了相近比例的资源,无法实现真正的自适应调整ROI等问题。
发明内容
本申请实施例提供一种扫描方法及装置,用以实现更好的自适应调整ROI。
第一方面,本申请实施例提供了一种扫描方法,该方法包括:
确定扫描区域,所述扫描区域为感兴趣区域,所述扫描区域包括第一扫描区域和第二扫描区域;所述第一扫描区域和所述第二扫描区域在视场上有重叠;所述第一扫描区域的分辨率大于所述第二扫描区域的分辨率;对所述扫描区域进行扫描。
通过上述方法,由于在实际探测过程中,经常存在基于不同探测场景的分辨率需求不同,以及基于全视场范围内不同区域的分辨率需求不同的情况,而目前的扫描方式对全视场中的目标采用相同权重的关注度策略,调控的自由度和灵活性不足、无法适应实际的探测需求。为此,本申请将感兴趣区域至少划分成第一扫描区域和第二扫描区域,以及设置第一扫描区域与第二扫描区域具有不同分辨率,使得在实际探测过程中,可以基于不同的分辨率需求,设置相应的扫描区域的分辨率,灵活调控,从而可以满足探测装置的不同分辨率的需求,使系统资源进行更好的自适用调配,实现对特定目标持续关注和重点探测,提高了资源的利用率。例如,通过设置分辨率不同的第一扫描区域以及第二扫描区域,可以在全视场范围内,实现部分视场的分辨率较高,部分视场的分辨率较低。此外,可以通过调整第一扫描区域与第二扫描区域的位置关系,区域大小,以及重叠大小等,能够有效丰富全视场范围内感兴趣区域的布局方式,可以根据实际探测需求产生多样的扫描图案,适应性以及自由度更强。
在上述实施例中,所述第一扫描区域与所述第二扫描区域之间的重叠区域可以理解为一个新的扫描区域,所述重叠区域的分辨率可以为所述第一扫描区域的分辨率与所述第二扫描区域的分辨率之和,其中,所述重叠区域的大小可以根据探测需求,通过对第一扫描区域与第二扫描区域的位置关系,区域大小等进行设置和调整来实现。在一种可能的实现方式中,所述第一扫描区域的垂直视场角与所述第二扫描区域的垂直视场角有重叠。
在该实施方式中,第一扫描区域的垂直视场角与第二扫描区域的垂直视场角有重叠时,在视场中可能会形成如下图案:
在视场中,第一扫描区域与第二扫描区域的高度一样,宽度不同;或者,在视场中, 第一扫描区域与第二扫描区域的高度不同,宽度相同;或者,在视场中,第一扫描区域与第二扫描区域的高度不同,宽度也不同。
通过上述方法,本申请实施例提供了一种视场中可能呈现的扫描区域图案的情况,例如,视场中包括的第一扫描区域以及第二扫描区域在视场上有重叠的情况下,可能会构造出多种不同的视场方案,形式多样,适应性更强。
在一种可能的实现方式中,所述第一扫描区域的垂直起始位置与所述第二扫描区域的垂直起始位置不同。
在该实施方式中,基于上述第一扫描区域与第一扫描区域在视场上有重叠的情况,当第一扫描区域的垂直起始位置与第二扫描区域的垂直起始位置不同时,在视场中可能会形成如下图案:
在视场中,第一扫描区域与第二扫描区域的高度一样,宽度不同;或者,在视场中,第一扫描区域与第二扫描区域的高度不同,宽度也不同。
通过上述方法,本申请实施例通过设置第一扫描区域与第二扫描区域重叠,且第一扫描区域的垂直起始位置与第二扫描区域的垂直起始位置不同的情况,更加具体细化了视场中可能出现的图案情况,例如,视场中呈现的图案情况可能是第一扫描区域与第二扫描区域的高度一样,但是宽度不同;视场中呈现的图案情况还可能是第一扫描区域与第二扫描区域的高度不同,宽度也不相同。
在一种可能的实现方式中,所述第一扫描区域的垂直起始位置与所述第二扫描区域的垂直起始位置相同。
在该实施方式中,基于上述第一扫描区域与第一扫描区域在视场上有重叠的情况,当第一扫描区域的垂直起始位置与第二扫描区域的垂直起始位置相同时,在视场中可能会形成如下图案:
在视场中,第一扫描区域与第二扫描区域的高度不同,宽度相同。
通过上述方法,本申请实施例通过设置第一扫描区域与第二扫描区域重叠,且第一扫描区域的垂直起始位置与第二扫描区域的垂直起始位置相同的情况,更加具体细化了视场中可能出现的图案情况,例如,视场中呈现的图案情况可能是第一扫描区域与第二扫描区域的高度不同,但是宽度相同。
在一种可能的实现方式中,所述第一扫描区域在视场中呈现竖直长条形状,所述第二扫描区域在所述视场中呈现水平长条形状;或所述第一扫描区域在视场中呈现水平长条形状,所述第二扫描区域在所述视场中呈现竖直长条形状。
在该实施方式中,基于上述第一扫描区域的分辨率高于第二扫描区域的分辨率,以及第一扫描区域与第二扫描区域有重叠的情况,在视场中可能会形成如下图案:
在视场中,第一扫描区域与第二扫描区域形成一个十字形状的图案,其中,第一扫描区域可以为十字形状图案中竖直方向的长条区域,第二扫描区域可以为十字形状图案中水平方向的长条区域;或者,第一扫描区域可以为十字形状图案中水平方向的长条区域,第二扫描区域可以为十字形状图案中竖直方向的长条区域。
通过上述方法,本申请实施例提供了一种十字形状的扫描图案,呈现方式更加新颖生动。
在一种可能的实现方式中,当所述第一扫描区域的数量为M个,所述第二扫描区域的数量为N个时,所述M个第一扫描区域中的一个或多个第一扫描区域的垂直视场角,与 所述N个第二扫描区域中的一个或多个第二扫描区域的垂直视场角有重叠;其中,所述M与所述N为正整数。
在该实施方式中,本申请实施例丰富了第一扫描区域与第二扫描区域的数量,从而提供了更加丰富多样的扫描图案。
例如,当第一扫描区域的数量为2个,第二扫描区域的数量为2个时,在视场中可能会形成一个井字形状的图案,其中,2个第一扫描区域可以为井字形状图案中竖直方向的长条区域,2个第二扫描区域可以为井字形状图案中水平方向的长条区域;或者,2个第一扫描区域可以为井字形状图案中水平方向的长条区域,2个第二扫描区域可以为井字形状图案中竖直方向的长条区域。
再例如,当第一扫描区域的数量为3个,第二扫描区域的数量为1个时,在视场中可能会形成一个丰字形状的图案,其中,3个第一扫描区域可以为丰字形状图案中水平方向的长条区域,1个第二扫描区域可以为丰字形状图案中竖直方向的长条区域。
再例如,当第一扫描区域的数量为1个,第二扫描区域的数量为3个时,在视场中可能会形成一个王字形状的图案,其中,1个第一扫描区域可以为王字形状图案中竖直方向的长条区域,3个第二扫描区域可以为王字形状图案中水平方向的长条区域。
再例如,当第一扫描区域的数量为2个,第二扫描区域的数量为1个时,在视场中可能会形成一个土字形状的图案,其中,2个第一扫描区域可以为土字形状图案中水平方向的长条区域,1个第二扫描区域可以为土字形状图案中竖直方向的长条区域。
再例如,当第一扫描区域的数量为1个,第二扫描区域的数量为2个时,在视场中可能会形成一个干字形状的图案,其中,1个第一扫描区域可以为干字形状图案中竖直方向的长条区域,2个第二扫描区域可以为干字形状图案中水平方向的长条区域。
再例如,当第一扫描区域的数量为6个,第二扫描区域的数量为2个时,在视场中可能会形成一个非字形状的图案,其中,3个第一扫描区域可以为非字形状图案中左侧水平方向的长条区域,另外3个第一扫描区域可以为非字形状图案中右侧水平方向的长条区域,2个第二扫描区域可以为非字形状图案中竖直方向的长条区域。
再例如,当第一扫描区域的数量为3个,第二扫描区域的数量为3个时,在视场中可能会形成一个田字形状的图案,其中,3个第一扫描区域可以为田字形状图案中水平方向的长条区域,3个第二扫描区域可以为田字形状图案中竖直方向的长条区域。
再例如,当第一扫描区域的数量为4个,第二扫描区域的数量为2个时,在视场中可能会形成一个目字形状的图案,其中,4个第一扫描区域可以为目字形状图案中水平方向的长条区域,2个第二扫描区域可以为目字形状图案中竖直方向的长条区域。
再例如,当第一扫描区域的数量为3个,第二扫描区域的数量为2个时,在视场中可能会形成一个日字形状的图案,其中,3个第一扫描区域可以为日字形状图案中水平方向的长条区域,2个第二扫描区域可以为日字形状图案中竖直方向的长条区域。进一步的,基于日字图案,增加第一扫描区域的数量以及第二扫描区域的数量,还可以拓展出来晶字形状的图案。
再例如,当第一扫描区域的数量为2个,第二扫描区域的数量为2个时,在视场中可能会形成一个口字形状的图案,其中,2个第一扫描区域可以为口字形状图案中水平方向的长条区域,2个第二扫描区域可以为口字形状图案中竖直方向的长条区域。进一步的,基于口字图案,增加第一扫描区域的数量以及第二扫描区域的数量,还可以拓展出来品字 形状的图案。
通过上述方法,本申请实施例通过丰富了第一扫描区域与第二扫描区域的数量,提供了更加丰富多样的扫描图案,呈现方式更加新颖生动。在一种可能的实现方式中,所述扫描区域还包括第三扫描区域和第四扫描区域;所述第三扫描区域和所述第四扫描区域在所述视场上有重叠;所述第三扫描区域的分辨率大于所述第四扫描区域的分辨率。
通过上述方法,本申请实施例中还可以增加其他扫描区域,例如,增加第三扫描区域和第四扫描区域,使得第三扫描区域与第四扫描区域有重叠,且分辨率不同,基于上述的第一扫描区域与第二扫描区域,更加丰富了全视场中感兴趣区域的布局方式,有效提高了感兴趣区域的设计和调控的自由度。此外,本申请实施例中所述扫描区域之间的分辨率不同,能够使系统资源进行更好的自适用调配,实现对特定目标持续关注和重点探测,提高了资源的利用率。
在一种可能的实现方式中,所述第三扫描区域的垂直视场角与所述第四扫描区域的垂直视场角有重叠。
例如,在视场中,第三扫描区域与第四扫描区域的高度一样,宽度不同;或者,第三扫描区域与第四扫描区域的高度不同,宽度不同;或者,第三扫描区域与第四扫描区域的高度不同,宽度相同。
在该实施方式中,基于上述视场中包括第一扫描区域与第一扫描区域的情况,当视场中还包括第三扫描区域以及第四扫描区域,且第三扫描区域与第四扫描区域的垂直视场角有重叠的情况下,在视场中可能会形成如下图案:
在视场中,第一扫描区域与第二扫描区域形成第一十字形状的图案,第三扫描区域与第四扫描区域形成第二十字形状的图案。
在一种可能的实现方式中,第三扫描区域可以与第一扫描区域或第二扫描区域有重叠;和/或,第四扫描区域可以与第一扫描区域或第二扫描区域有重叠。
在一种可能的实现方式中,根据获取到的环境的采集数据,确定扫描区域。
在该实施方式中,可以是激光雷达根据获取到的环境的采集数据,确定扫描区域;或者,还可以是其他装置根据获取到的环境的采集数据,确定扫描区域,然后将所述扫描区域通知给所述激光雷达,在此并不进行限定。
在一种可能的实现方式中,所述第一扫描区域和所述第二扫描区域在视场上有重叠,可以通过控制扫描器中快轴与慢轴进行扫描的速度关系,发射器初始发射的光源数量以及指向角的大小,调控所述第一扫描区域和所述第二扫描区域在视场上有重叠。
通过上述方法,本申请实施例提供了一种控制第一扫描区域与第二扫描区域在视场上有重叠的方式,例如,可以通过控制扫描器中快轴与慢轴进行扫描的速度关系,发射器初始发射的光源数量以及指向角的大小,调控所述第一扫描区域和所述第二扫描区域在视场上有重叠。
需要说明的是,本申请实施例并不限定调控第一扫描区域与第二扫描区域在视场上有重叠的方式,上述内容仅作为本申请实施例的列举,并不构成对本申请实施例的限定。
在一种可能的实现方式中,所述第一扫描区域的分辨率大于所述第二扫描区域的分辨率,通过控制发射器的开启和关闭,和/或通过控制所述发射器的点频变化,调控所述第一扫描区域的分辨率大于所述第二扫描区域的分辨率。
通过上述方法,本申请实施例提供了一种调控所述第一扫描区域的分辨率大于所述第 二扫描区域的分辨率的方式,例如,可以通过控制发射器的开启和关闭,和/或通过控制所述发射器的点频变化,调控所述第一扫描区域的分辨率大于所述第二扫描区域的分辨率。
在一种可能的实现方式中,当所述第三扫描区域的数量为H个,所述第四扫描区域的数量为W个时,所述H个第三扫描区域中的一个或多个第三扫描区域的垂直视场角,与所述W个第四扫描区域中的一个或多个第四扫描区域的垂直视场角有重叠;其中,所述H与所述W为正整数。
在该实施方式中,本申请实施例丰富了第三扫描区域与第四扫描区域的数量,从而提供了更加丰富多样的扫描图案。
例如,当第一扫描区域的数量为2个,第二扫描区域的数量为2个,第三扫描区域的数量为3个,第四扫描区域的数量为1个时,在视场中可能会形成一个井字形状的图案以及一个丰字形状的图案,其中,2个第一扫描区域可以为井字形状图案中竖直方向的长条区域,2个第二扫描区域可以为井字形状图案中水平方向的长条区域,3个第三扫描区域可以为丰字形状图案中水平方向的长条区域,1个第四扫描区域可以为丰字形状图案中竖直方向的长条区域。
再例如,当第一扫描区域的数量为3个,第二扫描区域的数量为1个,第三扫描区域的数量为1个,第四扫描区域的数量为3个时,在视场中可能会形成一个丰字形状的图案以及一个王字形状的图案,其中,3个第一扫描区域可以为丰字形状图案中水平方向的长条区域,1个第二扫描区域可以为丰字形状图案中竖直方向的长条区域,1个第三扫描区域可以为王字形状图案中竖直方向的长条区域,3个第四扫描区域可以为王字形状图案中水平方向的长条区域。
再例如,当第一扫描区域的数量为2个,第二扫描区域的数量为1个,第三扫描区域的数量为1个,第四扫描区域的数量为2个时,在视场中可能会形成一个土字形状的图案以及一个干字形状的图案,其中,2个第一扫描区域可以为土字形状图案中水平方向的长条区域,1个第二扫描区域可以为土字形状图案中竖直方向的长条区域,1个第三扫描区域可以为干字形状图案中竖直方向的长条区域,2个第四扫描区域可以为干字形状图案中水平方向的长条区域。
再例如,当第一扫描区域的数量为6个,第二扫描区域的数量为2个,第三扫描区域的数量为3个,第四扫描区域的数量为3个时,在视场中可能会形成一个非字形状的图案以及一个田字形状的图案,其中,3个第一扫描区域可以为非字形状图案中左侧水平方向的长条区域,另外3个第一扫描区域可以为非字形状图案中右侧水平方向的长条区域,2个第二扫描区域可以为非字形状图案中竖直方向的长条区域,3个第三扫描区域可以为田字形状图案中水平方向的长条区域,3个第四扫描区域可以为田字形状图案中竖直方向的长条区域。
再例如,当第一扫描区域的数量为4个,第二扫描区域的数量为2个,第三扫描区域的数量为3个,第四扫描区域的数量为2个时,在视场中可能会形成一个目字形状的图案以及一个日字形状的图案,其中,4个第一扫描区域可以为目字形状图案中水平方向的长条区域,2个第二扫描区域可以为目字形状图案中竖直方向的长条区域,3个第三扫描区域可以为日字形状图案中水平方向的长条区域,2个第三扫描区域可以为日字形状图案中竖直方向的长条区域。
通过上述方法,本申请实施例通过丰富了第三扫描区域与第四扫描区域的数量,提供 了更加丰富多样的扫描图案,呈现方式更加新颖生动。
第二方面,本申请提供一种扫描装置,该装置用于实现上述第一方面或第一方面中任意一种方法,包括相应的功能模块或单元,分别用于实现上述第一方面方法中的步骤。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现,硬件或软件包括一个或多个与上述功能相应的模块或单元。
在一种可能的实现方式中,该装置包括至少一个确定单元和扫描单元;
所述确定单元,用于确定扫描区域,所述扫描区域为第一感兴趣区域,所述扫描区域包括第一扫描区域和第二扫描区域;所述第一扫描区域和所述第二扫描区域在视场上有重叠;所述第一扫描区域的分辨率大于所述第二扫描区域的分辨率;
所述扫描单元,用于对所述扫描区域进行扫描。
在一种可能的实现方式中,所述第一扫描区域的垂直视场角与所述第二扫描区域的垂直视场角有重叠。
在一种可能的实现方式中,所述第一扫描区域的垂直起始位置与所述第二扫描区域的垂直起始位置不同。
在一种可能的实现方式中,所述第二扫描区域在所述视场中呈现水平长条形状;或所述第一扫描区域在视场中呈现水平长条形状,所述第二扫描区域在所述视场中呈现竖直长条形状。
在一种可能的实现方式中,所述M个第一扫描区域中的一个或多个第一扫描区域的垂直视场角,与所述N个第二扫描区域中的一个或多个第二扫描区域的垂直视场角有重叠;其中,所述M与所述N为正整数。
在一种可能的实现方式中,所述扫描区域还包括第三扫描区域和第四扫描区域;所述第三扫描区域和所述第四扫描区域在所述视场上有重叠;所述第三扫描区域的分辨率大于所述第四扫描区域的分辨率。
在一种可能的实现方式中,所述第三扫描区域的垂直视场角与所述第四扫描区域的垂直视场角有重叠。
在一种可能的实现方式中,所述确定单元具体用于根据获取到的环境的采集数据,确定扫描区域。
在一种可能的实现方式中,所述扫描单元具体用于通过控制扫描器中快轴与慢轴进行扫描的速度关系,发射器初始发射的光源数量以及指向角的大小,调控所述第一扫描区域和所述第二扫描区域在视场上有重叠。
在一种可能的实现方式中,所述扫描单元具体用于通过控制发射器的开启和关闭,和/或通过控制所述发射器的点频变化,调控所述第一扫描区域的分辨率大于所述第二扫描区域的分辨率。
第三方面,提供一种扫描装置,该装置包括处理器和存储器。其中,存储器用于存储计算程序或指令,处理器与存储器耦合;当处理器执行计算机程序或指令时,使得该装置执行上述第一方面或第一方面中的任意一种方法。该扫描装置可以是激光雷达,或能够支持激光雷达实现上述第一方面提供的方法所需的功能的装置,例如芯片系统。例如,所述扫描装置可以激光雷达,或者是搭载该激光雷达的终端设备,或者是激光雷达内的部分组件(比如芯片)。所述终端设备例如可以是智能移动终端、智能家居设备、智能汽车、智能穿戴设备等。
第四方面,本申请提供了一种激光雷达,包括:发射光源、扫描器和光学系统;
所述发射光源,用于发射激光脉冲;
所述扫描器,用于确定扫描区域,所述扫描区域为第一感兴趣区域,所述扫描区域包括第一扫描区域和第二扫描区域;所述第一扫描区域和所述第二扫描区域在视场上有重叠;所述第一扫描区域的分辨率大于所述第二扫描区域的分辨率;对所述扫描区域进行扫描;
所述光学系统,用于满足发射光源的回波信号可以被所述扫描器的对应区域接收、识别、处理和输出。
第五方面,本申请提供了一种激光雷达,该激光雷达包括执行上述第一方面或第一方面任意可能实现方式的方法的模块/单元。这些模块/单元可以通过硬件实现,也可以通过硬件执行相应的软件实现。
第六方面,提供一种终端,该终端可包括上述第二方面至第五方面中任一方面所述的装置。可选的,该装置可以为智能通信设备、智能家居设备、智能制造设备、智能运输设备等,例如车辆、无人机、无人运输车、机器人等。
第七方面,本申请提供一种芯片,芯片与存储器相连,用于读取并执行存储器中存储的计算机程序或指令,以实现上述第一方面或第一方面的任一种可能的实现方式中的方法。
第八方面,提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机程序或指令,当计算机程序或指令被装置执行时,使得该装置执行上述第一方面或第一方面的任意可能的实现方式中的方法。
第九方面,提供本申请提供一种计算机程序产品,该计算机程序产品包括计算机程序或指令,当计算机程序或指令被装置执行时,使得该装置执行上述第一方面或第一方面的任意可能的实现方式中的方法。
附图说明
图1为本申请提供的一种激光雷达的应用场景示意图;
图2为本申请提供的一种激光雷达的结构示意图;
图3为本申请提供的一种扫描方法流程示意图;
图4为本申请提供的一种感兴趣区域的种类场景示意图;
图5为本申请提供的一种不同区域的分辨率示意图;
图6为本申请提供的第一种视场扫描区域图案示意图;
图7为本申请提供的第二种视场扫描区域图案示意图;
图8为本申请提供的第三种视场扫描区域图案示意图;
图9为本申请提供的第四种视场扫描区域图案示意图;
图10为本申请提供的第五种视场扫描区域图案示意图;
图11为本申请提供第六种视场扫描区域图案示意图;
图12为本申请提供的第七种视场扫描区域图案示意图;
图13为本申请提供的第一种视场扫描区域图案示意图;
图14为本申请提供的第二种视场扫描区域图案示意图;
图15为本申请提供的第三种视场扫描区域图案示意图;
图16为本申请提供的第四种视场扫描区域图案示意图;
图17为本申请提供的第五种视场扫描区域图案示意图;
图18为本申请提供的第六种视场扫描区域图案示意图;
图19为本申请提供的第七种视场扫描区域图案示意图;
图20为本申请提供的第八种视场扫描区域图案示意图;
图21为本申请提供的第九种视场扫描区域图案示意图;
图22为本申请提供的第十种视场扫描区域图案示意图;
图23为本申请提供的第十一种视场扫描区域图案示意图;
图24为本申请提供的第十二种视场扫描区域图案示意图;
图25为本申请提供的第十三种视场扫描区域图案示意图;
图26为本申请提供的第十四种视场扫描区域图案示意图;
图27为本申请提供的第十五种视场扫描区域图案示意图;
图28为本申请提供的第十六种视场扫描区域图案示意图;
图29为本申请提供的第十七种视场扫描区域图案示意图;
图30为本申请提供的第十八种视场扫描区域图案示意图;
图31为本申请提供的一种扫描场景示意图;
图32为本申请提供的一种控制装置结构示意图。
具体实施方式
以下对本申请实施例的部分用语进行解释说明,以便于本领域技术人员理解。
1)感兴趣区域(region of interesting,ROI),是指全视场中相比其他区域的内容更让人感兴趣或者更重点关注的区域,其中,本申请实施例中的ROI可以作为激光雷达识别处理过程中所关注的焦点区域。
进一步的,本申请实施例中全视场区域中可以存在至少两个ROI,不同ROI之间的分辨率可以不同。
可以理解的,本申请实施例中分辨率高的ROI,相比分辨率低的ROI,更让用户感兴趣。
其中,本申请实施例中的感兴趣区域可以是以方框、圆、椭圆、或其它规则或不规则图形等方式确定出的区域,在此并不进行限定,下述实施例为了方便阐述,所述感兴趣区域以方框方式确定出的区域进行举例介绍。
2)全视场,可以理解为激光雷达扫描一个周期,能够探测到的视场范围。
示例性的,本申请实施例可以通过水平视场角和垂直视场角来描述所述视场范围,例如,当前全视场的视场范围为水平视场角100°*垂直视场角40°。
进一步的,本申请实施例基于所述全视场范围对所述全视场进行信息采集时,可以通过激光雷达中的扫描模块进行水平和垂直两个维度的扫描,实现点云采集,分别得到水平维度的点云1,垂直维度的点云2。
然后,通过激光雷达中的处理模块将水平维度采集到的点云1与垂直维度采集到的点云2进行合成,得到最终的输出结果。
可选的,本申请实施例中激光雷达进行扫描的方式可以是水平维度进行自左至右扫描,垂直维度进行自上而下扫描。本申请对激光雷达进行扫描的具体方式不进行限定。
3)快轴,本申请实施例中可以将扫描速度快的轴向称之为快轴。
示例性的,假设本申请实施例的快轴为垂直于光源的轴向,其中,所述快轴进行扫描 的方式可以是垂直维度进行自下而上扫描。
其中,本申请实施例中快轴方向变速扫描的设计自由度较高,与系统需求有关。
4)慢轴,本申请实施例中可以将扫描速度慢的轴向称之为慢轴。
示例性的,假设本申请实施例的慢轴为平行于光源的轴向,其中,所述慢轴进行扫描的方式可以是水平维度进行自左至右扫描。
进一步的,本申请实施例中慢轴进行扫描时,可以控制扫描器进行扫描的速度。
示例性的,可以控制扫描器在慢轴方向进行扫描时,扫描速度在一帧内某几个时刻快速变化并在之后一段时间进行匀速运动。从而,在垂直方向形成匀速度不同的多个区域。
其中,慢轴进行扫描时,进行匀加减速、变加速运动等与系统的设计有关。
需要说明的是,本申请实施例中的术语“装置”和“设备”可被互换使用。本申请实施例的描述中,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本申请中所涉及的至少一个是指一个或多个;多个,是指两个或两个以上。另外,需要理解的是,在本申请的描述中,“第一”、“第二”、“第三”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
前文介绍了本申请所涉及到的一些用语,下面介绍本申请涉及的技术特征及可能的应用场景。需要说明的是,这些解释是为了便于本领域技术人员理解,并不是对本申请所要求的保护范围构成限定。
如图1所示,本申请一种可选的应用场景,激光雷达可被安装在移动设备上,例如,本申请中激光雷达应用于自动驾驶场景中、或者也可应用于网联车场景等情况下,激光雷达可以被安装在车辆上,用作车载激光雷达;再例如,激光雷达可以被安装在飞行器上,用作机载激光雷达等。
本申请一种可选的应用场景,激光雷达还可以安装于移动平台,如卫星。在此情况下,激光雷达需要移动平台中的其它装置的协助以确定自身当前的位置和转向信息,这样可保证测量数据的可用性。
本申请一种可选的应用场景,激光雷达也可以被安装在固定平台,例如,激光雷达可以安装于路侧单元(road side unit,RSU)、屋顶或基站等。对于激光雷达安装于固定平台的场景中,激光雷达需要固定平台中的其它装置的协助以确定自身当前的位置和转向信息,这样可保证测量数据的可用性。
此外,本申请中的激光雷达还可应用于其它可能的场景,在此不进行限定。
基于上述内容,图2示例性示出了本申请提供的一种激光雷达的结构示意图。
该激光雷达包括发射器210、扫描器220、光学系统230。
其中,发射器210,用于对外发射光源信号。
其中,该光源信号到达被探测目标(也称为目标物体)后,会被反射回来。
可选的,本申请实施例中所述发射光源可以是固体、半导体或光纤激光器等。
可选的,本申请实施例中的发射光源的波长分布覆盖850nm~1550nm。
扫描器220,用于执行扫描过程。
其中,本申请实施例通过所述扫描器进行扫描,可以得到扫描区域,所述扫描区域是指全视场范围内的一部分区域,例如,所述扫描区域是指感兴趣区域所关注的区域。
可以理解的,本申请实施例通过所述扫描器进行扫描时,全视场范围都进行了扫描,其中,本申请重点关注全视场范围内的感兴趣区域是如何进行扫描,以及得到的所述扫描区域的图案是什么样的,全视场范围内的其他区域在此不进行限定。
光学系统230,用于满足发射光源的回波信号可以被所述扫描器的对应区域接收、识别、处理和输出。
其中,本申请实施例所述激光雷达还可以包括其他器件,例如,所述激光雷达还可以包括处理器,所述处理器可以用于确定扫描方式,从而指示所述扫描器根据所述扫描方式进行扫描,得到所述扫描区域。或者,激光雷达外部的处理器确定扫描区域,向激光雷达通知该扫描区域,激光雷达对该扫描区域进行扫描。
其中,在日常驾驶过程中,雷达系统经常需要在不同时刻关注不同的区域,形成一个或多个ROI,通过ROI对各种复杂的路况进行有效的探测和识别分类。
例如,当车辆在高速公路行驶时,要关注远处动态车辆与静态小障碍物;例如,在驶过街道路口时,警惕周边行人和两轮车;再例如,经过拥堵路段时,则提防周边车辆强行加塞行为。
然而,目前扫描ROI的方式经常存在调控的自由度和灵活性不足、实际的点云分辨率受限于工程误差和耦合效率,对全视场的目标采用相同权重的关注度策略,导致对重要和不重要信息采集时消耗了相近比例的资源,无法实现真正的自适应调整ROI等问题。
基于此,本申请实施例提供一种扫描方法。在该方法中,本申请实施例通过确定至少两个感兴趣区域,使所述至少两个感兴趣区域在视场上有重叠,且分辨率不同,从而丰富了全视场中感兴趣区域的布局方式,有效提高了感兴趣区域的设计和调控的自由度,能够使系统资源进行更换的自适用调配,实现对特定目标持续关注和重点探测,提高了资源的利用率。
基于上述内容,如图3所示,为本申请提供的一种扫描方法的流程示意图。该方法可以由激光雷达执行,该方法包括以下步骤:
步骤301,激光雷达确定扫描区域,所述扫描区域为感兴趣区域,所述扫描区域包括第一扫描区域和第二扫描区域,其中,所述第一扫描区域和所述第二扫描区域在视场上有重叠,所述第一扫描区域的分辨率大于所述第二扫描区域的分辨率。
需要说明的是,本申请实施例中可以通过激光雷达自行确定扫描区域;或者,本申请实施例中可以通过其他装置确定扫描区域,然后通知给所述激光雷达。
其中,基于S301,可以将全视场划分为至少三个区域,例如,第一扫描区域(可以称为第一感兴趣区域),第二扫描区域(可以称为第二感兴趣区域),以及全视场中剩余区域(可以称之为非感兴趣区域)。
步骤302,激光雷达对所述扫描区域进行扫描。
其中,步骤302可以理解为激光雷达根据确定的扫描区域,在视场中形成至少两个有重叠,且分辨率不同的扫描区域;或者,步骤302还可以理解为激光雷达对所述扫描区域进行扫描,在视场中形成第一扫描区域和第二扫描区域,其中,所述第一扫描区域与所述第二扫描区域在视场上有重叠,且所述第一扫描区域的分辨率大于所述第二扫描区域的分辨率。
通过上述方案,将感兴趣区域至少划分成第一扫描区域和第二扫描区域,以及设置第一扫描区域与第二扫描区域具有不同分辨率,使得在实际探测过程中,可以基于不同的分辨率需求,设置相应的扫描区域的分辨率,灵活调控,从而可以满足探测装置的不同分辨率的需求,使系统资源进行更好的自适用调配,实现对特定目标持续关注和重点探测,提高了资源的利用率。例如,通过设置分辨率不同的第一扫描区域以及第二扫描区域,可以在全视场范围内,实现部分视场的分辨率较高,部分视场的分辨率较低。此外,可以通过调整第一扫描区域与第二扫描区域的位置关系,区域大小,以及重叠大小等,能够有效丰富全视场范围内感兴趣区域的布局方式,可以根据实际探测需求产生多样的扫描图案,适应性以及自由度更强。
进一步的,本申请实施例可以通过激光雷达中的处理装置,基于当前应用场景,确定所述扫描区域中不同区域的分辨率需求,从而使激光雷达中的扫描装置根据不同的分辨率需求,对所述扫描区域按照不同的扫描方式进行扫描。
其中,所述扫描区域的扫描方式可以包括下列中的一个或多个:
扫描方式1:所述扫描区域中包括的感兴趣区域的种类,以及不同种类感兴趣区域分别对应的数量。
作为一种示例,本申请实施例中所述的感兴趣区域的种类与实际识别到的目标有关,不同目标对应的感兴趣区域的种类不同。其中,属于同一种类的感兴趣区域的分辨率相同,不同种类的感兴趣区域的分辨率不同,感兴趣区域的种类与感兴趣区域的大小和位置无关。
例如,如图4所示,在车辆行驶过程中,通过激光雷达进行前方路况探测识别时,识别到的行人所在的区域1和车辆所在的区域2都是感兴趣区域,但是所述区域1与所述区域2这两个感兴趣区域的种类是不同的。
其中,本申请实施例根据不同的目标确定感兴趣区域后,可以进一步基于感兴趣区域确定不同目标的具体的扫描区域。
示例性的,本申请实施例首先可以通过采集到的历史的感知数据,对后续要识别的区域进行提前预判,更好的了解后续要关注的场景里的目标情况,例如,基于所述感知数据了解要关注的场景里包括上述图4所示的近处的行人,以及远处的车辆。然后,基于所述目标情况,确定接下来要扫描的感兴趣区域的种类。最后,根据这个感兴趣区域的种类确定接下来要扫描的不同的区域以及扫描方式等,从而得到本申请实施例所述的扫描区域。
需要说明的是,本申请实施例所述的感兴趣区域的种类的数量以及不同种类的具体数量在此不做限定。
扫描方式2:视场中多个感兴趣区域的边界规划。
例如,所述扫描方式指示所述扫描区域中包括的第一扫描区域的垂直视场角与第二扫描区域的垂直视场角有重叠,以及第一扫描区域的垂直起始位置与第二扫描区域的垂直起 始位置不同。
再例如,所述扫描方式中还可以指示所述第一扫描区域的具体垂直起始位置以及所述第二扫描区域的具体垂直起始位置等。
基于该扫描方式2,能够确定视场中多个感兴趣区域的显示位置,例如,当视场中包括第一扫描区域以及第二扫描区域时,可以确定第一扫描区域与第二扫描区域的位置以及所述第一扫描区域与第二扫描区域之间的重叠大小,从而可以基于实际情况,通过调整第一扫描区域与第二扫描区域的位置关系,区域大小,以及重叠大小等,进行扫描方式指示,在视场中实现丰富的感兴趣区域的布局方式,产生多样的扫描图案,适应性以及自由度更强。
扫描方式3:感兴趣区域的分辨率。
例如,所述扫描方式指示所述扫描区域中包括的第一扫描区域的分辨率高于第二扫描区域的分辨率。其中,可以根据所述采集数据中包括的所述目标物体的距离设计所述布局策略中感兴趣区域的分辨率。
进一步的,本申请实施例在确定扫描区域的扫描方式之后,通过激光雷达对所述扫描区域进行扫描时,所述激光雷达通过对部分参数进行调整,使扫描后的全视场中呈现出扫描方式指示的扫描图案。其中,可以通过下述几种激光雷达的参数调整,实现感兴趣区域的自适应调控:
参数调整1:激光雷达通过控制快轴与慢轴进行扫描的速度关系,实现感兴趣区域的调控。
示例性的,本申请实施例中,激光雷达可以通过控制慢轴方向的扫描速度,例如,激光雷达通过控制慢轴在一帧内某几个时刻快速运动,在另外某几个时刻匀速运动,从而在全视场的垂直方向形成匀速度不同的多个扫描区域。
可以理解的,本申请实施例中慢轴的变速设计,例如,控制慢轴实现匀加减速、变加速运动等,与布局策略有关。
参数调整2:激光雷达通过控制发射光源初始发射的光源数量以及指向角的大小,实现感兴趣区域的调控。
示例性的,本申请实施例中,激光雷达可以通过控制指向角的大小,例如,激光雷达通过控制第一扫描区域与第二扫描区域的垂直视场角相同,从而在全视场中呈现第一扫描区域与第二扫描区域有重叠的扫描图案。
参数调整3:激光雷达通过控制发射器的重频情况,实现感兴趣区域的调控,所述发射器的重频决定了单位时间和单位平方角度内的点云密度。
其中,本申请实施例激光雷达通过重频设计实现点云密度调制的方式有多种,具体并不限于下述几种:
设计方式1:在一帧点云形成时,激光雷达可以通过控制发射器的点频变化,实现点云的加密或稀疏。
设计方式2:激光雷达可以将发射器的发射模式可以设计为爆裂(burst)模式,实现点云的加密。
示例性的,激光雷达通过所述发射器连续发射一个脉冲串,其中,脉冲之间的时间间隔可调控,例如,可以将脉冲之间的时间间隔按照啁啾的方式设计,实现空间发射的点云加密,此时一个发射对应多个接收,每个脉冲与一个接收的飞行时间(Time of Flight,TOF) 的起始时间对齐。
设计方式3:激光雷达控制发射器在某些时间段内暂时关闭,在另一些时间段内再开启,从而实现点云的加密或稀疏。其中,该过程可以再一帧内多次复现。
需要说明的是,上述三种方式在起始时间上可以彼此同步也可以异步,最终实现不同的分辨率(测距能力)的边界,形成对应的感兴趣区域。
示例性的,通过控制打光时序,调控感兴趣区域的分辨率时,激光雷达可以通过调控发射光源在其相邻1行(列)或多行(列)之间的起始发光的时间的延迟关系,实现空间点云的不同拓扑形式。
其中,本申请实施例中不同的拓扑形式也可以用于定义不同的感兴趣区域,可设计的点云拓扑形式与分辨率有关。
例如,如图5中的(a)所示,为本申请实施例全视场中的第一扫描区域,如图5中的(b)所示,为本申请实施例中的第二扫描区域,如图5中的(c)所示,为本申请实施例中第一扫描区域与第二扫描区域的重叠区域。
其中,每个扫描区域中的椭圆表示发射模组发射的光信号射入探测区域所形成的光斑。由于第一扫描区域与第二扫描区域中形成的光斑拓扑形式不同,因此,第一扫描区域与第二扫描区域的分辨率也不相同。
此外,可以理解的,如图5中的(c)所示的重叠部分的分辨率等于第一扫描区域对应的分辨率与第二扫描区域对应的分辨率的和,该重叠部分的分辨率高于第一扫描区域的分辨率,也高于第二扫描区域对应的分辨率。
需要说明的是,扫描视场对应区域中的光斑的形状也可以是其它可能的形状,例如圆形、或者其它可能的不规则图形,上述图5所示的内容,是以椭圆形为例示意的。此外,扫描视场对应的区域以矩形为例,本申请对扫描视场对应的区域的形状不作限定,例如还可以是正方形,或者其他规则或不规则的形状。
需要说明的是,上述参数调整方案仅用于举例说明,并不构成本申请实施例的限定,其中,本申请实施例在进行感兴趣区域调控时,可以选取上述参数调整方案中的一个进行感兴趣区域的调控,还可以选取上述参数调整方案中的多个,通过组合的方式进行感兴趣区域的调控。
其中,为了更好的对本申请提供的扫描方法进行介绍,下面基于上述图3所示的方法,列举几种本申请实施例能够实现的全视场扫描区域的图案,具体并不限于下述几种场景:
场景一、本申请实施例中的扫描区域包括一个第一扫描区域以及一个第二扫描区域,具体形成的扫描图案不限于下述几种图案。
图案1:通过对一个扫描周期进行扫描,得到如图6所示的全视场,其中,所述全视场中包括三个区域,分别是ROI-1,ROI-2以及非ROI。作为一种示例,所述ROI-1,ROI-2在视场中显示的位置为本申请实施例形成的扫描区域。
其中,ROI-1的垂直视场角与ROI-2的垂直视场角相同,ROI-1的垂直起始位置与ROI-2的垂直起始位置不同,ROI-2的垂直起始位置包括ROI-1的垂直起始位置,且ROI-1的分辨率高于ROI-2的分辨率,ROI-2的分辨率高于非ROI分辨率。
在扫描过程中,可以先基于ROI-1对应的扫描方式进行扫描,得到ROI-1的扫描图案, 然后在基于ROI-2对应的扫描方式进行扫描,得到ROI-2的扫描区域。
例如,假设ROI-1的分辨率为200,ROI-2的分辨率为300,则在得到ROI-1扫描区域后,可以在ROI-1扫描区域上,根据ROI-2扫描方式中指示的位置再次进行分辨率为100的扫描叠加,从而得到ROI-2的扫描区域。
需要说明的是,上述形成如图6所示的扫描图案的扫描过程仅作为一种示例,并不构成对本申请实施例的限定。
图案2:通过对一个扫描周期进行扫描,得到如图7所示的全视场,其中,所述全视场中包括三个区域,分别是ROI-1,ROI-2以及非ROI。
作为一种示例,所述ROI-1,ROI-2在视场中显示的位置为本申请实施例形成的扫描区域。
其中,ROI-1的垂直视场角与ROI-2的垂直视场角不相同,ROI-2的垂直视场角大于ROI-1的垂直视场角,ROI-1的垂直起始位置与ROI-2的垂直起始位置相同,且ROI-1的分辨率高于ROI-2的分辨率,ROI-2的分辨率高于非ROI分辨率。
其中,形成如图7所示的扫描图案的扫描过程可以参加上述图6的介绍,在此不进行赘述。
图案3:通过对一个扫描周期进行扫描,得到如图8所示的全视场,其中,所述全视场中包括三个区域,分别是1个ROI-1,1个ROI-2以及非ROI。
作为一种示例,所述ROI-1,ROI-2在视场中显示的位置为本申请实施例形成的扫描区域。
其中,ROI-1的垂直视场角与ROI-2的垂直视场角有重叠,ROI-1的垂直起始位置与ROI-2的垂直起始位置不同,ROI-2的垂直起始位置包括ROI-1的垂直起始位置,ROI-1的分辨率高于ROI-2的分辨率,ROI-2的分辨率高于非ROI分辨率,以及ROI-1在视场中呈现竖直长条形状,ROI-2在所述视场中呈现水平长条形状,即在视场中可以形成一个十字形状的图案。
其中,形成如图8所示的扫描图案的扫描过程可以参加上述图6的介绍,在此不进行赘述。
场景二、本申请实施例中的扫描区域包括一个第一扫描区域以及多个第二扫描区域;或者,扫描区域包括多个第一扫描区域以及一个第二扫描区域时,具体形成的扫描图案不限于下述几种图案。
图案1:通过对一个扫描周期进行扫描,得到如图9所示的全视场,其中,所述全视场中包括四个区域,分别是两个ROI-1,一个ROI-2以及非ROI。
作为一种示例,所述两个ROI-1以及一个ROI-2形成的区域为所述全视场中的扫描区域。
其中,每个ROI-1的垂直视场角都与ROI-2的垂直视场角相同,每个ROI-1的垂直起始位置都与ROI-2的垂直起始位置不同,ROI-2的垂直起始位置包括2个ROI-1的垂直起始位置,两个ROI-1之间的起始位置不同,且两个ROI-1的分辨率相同,并高于ROI-2的分辨率,ROI-2的分辨率高于非ROI分辨率。
其中,形成如图9所示的扫描图案的扫描过程可以参加上述图6的介绍,在此不进行赘述。
图案2:通过对一个扫描周期进行扫描,得到如图10所示的全视场,其中,所述全视 场中包括四个区域,分别是1个ROI-1,2个ROI-2以及非ROI。
作为一种示例,所述1个ROI-1以及2个ROI-2形成的区域为所述全视场中的扫描区域。
其中,ROI-1的垂直视场角与每个ROI-2的垂直视场角都有重叠,且ROI-1的垂直视场角大小为两个ROI-2的垂直视场角之和。
ROI-1的垂直起始位置与每个ROI-2的垂直起始位置不同,每个ROI-2的垂直起始位置包括ROI-1的垂直起始位置,ROI-1的分辨率高于ROI-2的分辨率,ROI-2的分辨率高于非ROI分辨率,以及ROI-1在视场中呈现竖直长条形状,ROI-2在所述视场中呈现水平长条形状。
其中,形成如图10所示的扫描图案的扫描过程可以参加上述图6的介绍,在此不进行赘述。
图案3:通过对一个扫描周期进行扫描,得到如图11所示的全视场,其中,所述全视场中包括三个区域,分别是1个ROI-1,1个ROI-2以及非ROI。
作为一种示例,所述1个ROI-1以及1个ROI-2形成的区域为所述全视场中的扫描区域。
其中,ROI-1的垂直视场角与ROI-2的垂直视场角都有重叠,ROI-1的垂直起始位置与ROI-2的垂直起始位置相同,ROI-1的分辨率高于ROI-2的分辨率,ROI-2的分辨率高于非ROI分辨率。
其中,形成如图11所示的扫描图案的扫描过程可以参加上述图6的介绍,在此不进行赘述。
图案4:通过对一个扫描周期进行扫描,得到如图12所示的全视场,其中,所述全视场中包括三个区域,分别是1个ROI-1,1个ROI-2以及非ROI。
作为一种示例,所述1个ROI-1以及1个ROI-2形成的区域为所述全视场中的扫描区域。
其中,ROI-1的垂直视场角与ROI-2的垂直视场角都有重叠,ROI-1的垂直起始位置与ROI-2的垂直起始位置不相同。
其中,ROI-1的垂直起点位置小于ROI-2的垂直起点位置,ROI-1的垂直结束位置小于ROI-2的垂直结束位置,以及ROI-1的分辨率高于ROI-2的分辨率,ROI-2的分辨率高于非ROI分辨率。
其中,形成如图12所示的扫描图案的扫描过程可以参加上述图6的介绍,在此不进行赘述。
图案5:通过对一个扫描周期进行扫描,得到如图13所示的全视场,其中,所述全视场中包括五个区域,分别是2个ROI-1,2个ROI-2以及非ROI。
作为一种示例,所述2个ROI-1以及2个ROI-2形成的区域为所述全视场中的扫描区域。
其中,ROI-1的垂直视场角与ROI-2的垂直视场角都有重叠,并在视场中形成一个井字形状的图案。
其中,2个ROI-1为井字形状图案中竖直方向的长条区域,2个ROI-2为井字形状图案中水平方向的长条区域,以及ROI-1的分辨率可以高于ROI-2的分辨率,ROI-2的分辨率高于非ROI分辨率。
可以理解的,上述图13中,还可以是2个ROI-1为井字形状图案中水平方向的长条区域,2个ROI-2为井字形状图案中竖直方向的长条区域。
其中,形成如图13所示的扫描图案的扫描过程可以参加上述图6的介绍,在此不进行赘述。
图案6:通过对一个扫描周期进行扫描,得到如图14所示的全视场,其中,所述全视场中包括五个区域,分别是3个ROI-1,1个ROI-2以及非ROI。
作为一种示例,所述3个ROI-1以及1个ROI-2形成的区域为所述全视场中的扫描区域。
其中,ROI-1的垂直视场角与ROI-2的垂直视场角都有重叠,并在视场中形成一个丰字形状的图案。
其中,1个ROI-2为丰字形状图案中竖直方向的长条区域,3个ROI-1为丰字形状图案中水平方向的长条区域,以及ROI-1的分辨率可以高于ROI-2的分辨率,ROI-2的分辨率高于非ROI分辨率。
其中,形成如图14所示的扫描图案的扫描过程可以参加上述图6的介绍,在此不进行赘述。
图案7:通过对一个扫描周期进行扫描,得到如图15所示的全视场,其中,所述全视场中包括五个区域,分别是3个ROI-1,1个ROI-2以及非ROI。
作为一种示例,所述3个ROI-1以及1个ROI-2形成的区域为所述全视场中的扫描区域。
其中,ROI-1的垂直视场角与ROI-2的垂直视场角都有重叠,并在视场中形成一个王字形状的图案。
其中,1个ROI-2为王字形状图案中竖直方向的长条区域,3个ROI-1为王字形状图案中水平方向的长条区域,以及ROI-1的分辨率可以高于ROI-2的分辨率,ROI-2的分辨率高于非ROI分辨率。
其中,形成如图15所示的扫描图案的扫描过程可以参加上述图6的介绍,在此不进行赘述。
图案8:通过对一个扫描周期进行扫描,得到如图16所示的全视场,其中,所述全视场中包括四个区域,分别是2个ROI-1,1个ROI-2以及非ROI。
作为一种示例,所述2个ROI-1以及1个ROI-2形成的区域为所述全视场中的扫描区域。
其中,ROI-1的垂直视场角与ROI-2的垂直视场角都有重叠,并在视场中形成一个土字形状的图案。
其中,1个ROI-2为土字形状图案中竖直方向的长条区域,2个ROI-1为土字形状图案中水平方向的长条区域,以及ROI-1的分辨率可以高于ROI-2的分辨率,ROI-2的分辨率高于非ROI分辨率。
其中,形成如图16所示的扫描图案的扫描过程可以参加上述图6的介绍,在此不进行赘述。
图案9:通过对一个扫描周期进行扫描,得到如图17所示的全视场,其中,所述全视场中包括四个区域,分别是1个ROI-1,2个ROI-2以及非ROI。
作为一种示例,所述1个ROI-1以及2个ROI-2形成的区域为所述全视场中的扫描区 域。
其中,ROI-1的垂直视场角与ROI-2的垂直视场角都有重叠,并在视场中形成一个干字形状的图案。
其中,1个ROI-1为干字形状图案中竖直方向的长条区域,2个ROI-2为干字形状图案中水平方向的长条区域,以及ROI-1的分辨率可以高于ROI-2的分辨率,ROI-2的分辨率高于非ROI分辨率。
其中,形成如图17所示的扫描图案的扫描过程可以参加上述图6的介绍,在此不进行赘述。
图案10:通过对一个扫描周期进行扫描,得到如图18所示的全视场,其中,所述全视场中包括九个区域,分别是6个ROI-1,2个ROI-2以及非ROI。
作为一种示例,所述6个ROI-1以及2个ROI-2形成的区域为所述全视场中的扫描区域。
其中,ROI-1的垂直视场角与ROI-2的垂直视场角都有重叠,并在视场中形成一个非字形状的图案。
其中,3个ROI-1为非字形状图案中左侧水平方向的长条区域,另外3个ROI-1为非字形状图案中右侧水平方向的长条区域,2个ROI-2为非字形状图案中竖直方向的长条区域,以及ROI-1的分辨率可以高于ROI-2的分辨率,ROI-2的分辨率高于非ROI分辨率。
其中,形成如图18所示的扫描图案的扫描过程可以参加上述图6的介绍,在此不进行赘述。
图案11:通过对一个扫描周期进行扫描,得到如图19所示的全视场,其中,所述全视场中包括七个区域,分别是3个ROI-1,3个ROI-2以及非ROI。
作为一种示例,所述3个ROI-1以及3个ROI-2形成的区域为所述全视场中的扫描区域。
其中,ROI-1的垂直视场角与ROI-2的垂直视场角都有重叠,并在视场中形成一个田字形状的图案。
其中,3个ROI-1为田字形状图案中水平方向的长条区域,3个ROI-2为田字形状图案中竖直方向的长条区域,以及ROI-1的分辨率可以高于ROI-2的分辨率,ROI-2的分辨率高于非ROI分辨率。
其中,形成如图19所示的扫描图案的扫描过程可以参加上述图6的介绍,在此不进行赘述。
图案12:通过对一个扫描周期进行扫描,得到如图20所示的全视场,其中,所述全视场中包括七个区域,分别是4个ROI-1,2个ROI-2以及非ROI。
作为一种示例,所述4个ROI-1以及2个ROI-2形成的区域为所述全视场中的扫描区域。
其中,ROI-1的垂直视场角与ROI-2的垂直视场角都有重叠,并在视场中形成一个目字形状的图案。
其中,4个ROI-1为目字形状图案中水平方向的长条区域,2个ROI-2为目字形状图案中竖直方向的长条区域,以及ROI-1的分辨率可以高于ROI-2的分辨率,ROI-2的分辨率高于非ROI分辨率。
其中,形成如图20所示的扫描图案的扫描过程可以参加上述图6的介绍,在此不进 行赘述。
图案13:通过对一个扫描周期进行扫描,得到如图21所示的全视场,其中,所述全视场中包括六个区域,分别是2个ROI-1,3个ROI-2以及非ROI。
作为一种示例,所述2个ROI-1以及3个ROI-2形成的区域为所述全视场中的扫描区域。
其中,ROI-1的垂直视场角与ROI-2的垂直视场角都有重叠,并在视场中形成一个日字形状的图案。
其中,3个ROI-2为日字形状图案中水平方向的长条区域,2个ROI-1为日字形状图案中竖直方向的长条区域,以及ROI-1的分辨率可以高于ROI-2的分辨率,ROI-2的分辨率高于非ROI分辨率。
进一步的,基于日字图案,本申请实施例还可以通过增加ROI-1的数量以及ROI-2的数量,拓展出来如图22所示的晶字形状的图案。
其中,形成如图21以及22所示的扫描图案的扫描过程可以参加上述图6的介绍,在此不进行赘述。
图案14:通过对一个扫描周期进行扫描,得到如图23所示的全视场,所述全视场中包括五个区域,分别是2个ROI-1,2个ROI-2以及非ROI。
作为一种示例,所述2个ROI-1以及2个ROI-2形成的区域为所述全视场中的扫描区域。
其中,ROI-1的垂直视场角与ROI-2的垂直视场角都有重叠,并在视场中形成一个口字形状的图案。
其中,2个ROI-2为口字形状图案中水平方向的长条区域,2个ROI-1为口字形状图案中竖直方向的长条区域,以及ROI-1的分辨率可以高于ROI-2的分辨率,ROI-2的分辨率高于非ROI分辨率。
进一步的,基于口字图案,本申请实施例还可以通过增加ROI-1的数量以及ROI-2的数量,拓展出来如图24所示的品字形状的图案。
其中,形成如图13以及24所示的扫描图案的扫描过程可以参加上述图6的介绍,在此不进行赘述。
场景三、本申请实施例中的扫描区域包括第一扫描区域,第二扫描区域,第三扫描区域以及第四扫描区域,具体形成的扫描图案不限于下述几种图案。
图案1:通过对一个扫描周期进行扫描,得到如图25所示的全视场,所述全视场中包括5个区域,分别是1个ROI-1,1个ROI-2,1个ROI-3,1个ROI-4以及非ROI。
作为一种示例,所述1个ROI-1,1个ROI-2,1个ROI-3以及1个ROI-4形成的区域为所述全视场中的扫描区域。
其中,ROI-1的垂直视场角与ROI-2的垂直视场角相同,ROI-1的垂直起始位置与ROI-2的垂直起始位置不同,ROI-2的垂直起始位置包括ROI-1的垂直起始位置。
ROI-3的垂直视场角与ROI-4的垂直视场角相同,ROI-3的垂直起始位置与ROI-4的垂直起始位置不同,ROI-3的垂直起始位置包括ROI-4的垂直起始位置。
ROI-3的垂直视场角与ROI-4的垂直视场角,小于ROI-1的垂直视场角与ROI-2的垂直视场角,且ROI-3与ROI-4在全视场中呈现的位置位于ROI-1与ROI-2在全视场中呈现位置的上方。
ROI-3的分辨率高于ROI-4的分辨率,ROI-4的分辨率高于ROI-1的分辨率,ROI-1的分辨率高于ROI-2的分辨率,ROI-2的分辨率高于非ROI分辨率。
其中,形成如图25所示的扫描图案的扫描过程可以参加上述图6的介绍,在此不进行赘述。
图案2:通过对一个扫描周期进行扫描,得到如图26所示的全视场,其中,所述全视场中包括5个区域,分别是1个ROI-1,1个ROI-2,1个ROI-3,1个ROI-4以及非ROI。
作为一种示例,所述1个ROI-1,1个ROI-2,1个ROI-3以及1个ROI-4形成的区域为所述全视场中的扫描区域。
其中,ROI-1的垂直视场角大于ROI-2的垂直视场角,ROI-1的垂直起始位置与ROI-2的垂直起始位置相同。ROI-3的垂直视场角大于ROI-4的垂直视场角,ROI-3的垂直起始位置与ROI-4的垂直起始位置相同。
ROI-3与ROI-4的垂直起始位置不同于ROI-1与ROI-2的垂直起始位置,且ROI-3与ROI-4在全视场中呈现的位置位于ROI-1与ROI-2在全视场中呈现位置的右方。
ROI-3的分辨率高于ROI-4的分辨率,ROI-4的分辨率高于ROI-1的分辨率,ROI-1的分辨率高于ROI-2的分辨率,ROI-2的分辨率高于非ROI分辨率。
其中,形成如图26所示的扫描图案的扫描过程可以参加上述图6的介绍,在此不进行赘述。
图案3:通过对一个扫描周期进行扫描,得到如图27所示的全视场,其中,所述全视场中包括9个区域,分别是2个ROI-1,2个ROI-2,3个ROI-3,1个ROI-4以及非ROI。
作为一种示例,所述2个ROI-1,2个ROI-2,3个ROI-3以及1个ROI-4形成的区域为所述全视场中的扫描区域。
其中,ROI-1的垂直视场角与ROI-2的垂直视场角都有重叠,ROI-3的垂直视场角与ROI-4的垂直视场角都有重叠,并在视场中形成一个井字形状的图案以及一个丰字形状的图案。
其中,2个ROI-1为井字形状图案中竖直方向的长条区域,2个ROI-2为井字形状图案中水平方向的长条区域,3个ROI-3为丰字形状图案中水平方向的长条区域,1个ROI-4为丰字形状图案中竖直方向的长条区域,以及ROI-3与ROI-4在全视场中呈现的位置位于ROI-1与ROI-2在全视场中呈现位置的右方,ROI-3的分辨率高于ROI-4的分辨率,ROI-4的分辨率高于ROI-1的分辨率,ROI-1的分辨率高于ROI-2的分辨率,ROI-2的分辨率高于非ROI分辨率。
其中,形成如图27所示的扫描图案的扫描过程可以参加上述图6的介绍,在此不进行赘述。
图案4:通过对一个扫描周期进行扫描,得到如图28所示的全视场,其中,所述全视场中包括9个区域,分别是3个ROI-1,1个ROI-2,1个ROI-3,3个ROI-4以及非ROI。
作为一种示例,所述3个ROI-1,1个ROI-2,1个ROI-3以及3个ROI-4形成的区域为所述全视场中的扫描区域。
其中,ROI-1的垂直视场角与ROI-2的垂直视场角都有重叠,ROI-3的垂直视场角与ROI-4的垂直视场角都有重叠,并在视场中形成一个丰字形状的图案以及一个王字形状的图案。
其中,3个ROI-1为丰字形状图案中水平方向的长条区域,1个ROI-2为丰字形状图 案中竖直方向的长条区域,3个ROI-4为王字形状图案中水平方向的长条区域,1个ROI-3为王字形状图案中竖直方向的长条区域,以及ROI-3与ROI-4在全视场中呈现的位置位于ROI-1与ROI-2在全视场中呈现位置的左方,ROI-3的分辨率高于ROI-4的分辨率,ROI-4的分辨率高于ROI-1的分辨率,ROI-1的分辨率高于ROI-2的分辨率,ROI-2的分辨率高于非ROI分辨率。
其中,形成如图28所示的扫描图案的扫描过程可以参加上述图6的介绍,在此不进行赘述。
图案5:通过对一个扫描周期进行扫描,得到如图29所示的全视场,其中,所述全视场中包括7个区域,分别是2个ROI-1,1个ROI-2,1个ROI-3,2个ROI-4以及非ROI。
作为一种示例,所述2个ROI-1,1个ROI-2,1个ROI-3以及2个ROI-4形成的区域为所述全视场中的扫描区域。
其中,ROI-1的垂直视场角与ROI-2的垂直视场角都有重叠,ROI-3的垂直视场角与ROI-4的垂直视场角都有重叠,并在视场中形成一个土字形状的图案以及一个干字形状的图案。
其中,2个ROI-1为土字形状图案中水平方向的长条区域,1个ROI-2为土字形状图案中竖直方向的长条区域,2个ROI-4为干字形状图案中水平方向的长条区域,1个ROI-3为干字形状图案中竖直方向的长条区域,以及ROI-3与ROI-4在全视场中呈现的位置位于ROI-1与ROI-2在全视场中呈现位置的右上方,ROI-3的分辨率高于ROI-4的分辨率,ROI-4的分辨率高于ROI-1的分辨率,ROI-1的分辨率高于ROI-2的分辨率,ROI-2的分辨率高于非ROI分辨率。
其中,形成如图29所示的扫描图案的扫描过程可以参加上述图6的介绍,在此不进行赘述。
图案6:通过对一个扫描周期进行扫描,得到如图30所示的全视场。其中,所述全视场中包括12个区域,分别是4个ROI-1,2个ROI-2,3个ROI-3,2个ROI-4以及非ROI。
作为一种示例,所述4个ROI-1,2个ROI-2,3个ROI-3以及2个ROI-4形成的区域为所述全视场中的扫描区域。
其中,ROI-1的垂直视场角与ROI-2的垂直视场角都有重叠,ROI-3的垂直视场角与ROI-4的垂直视场角都有重叠,并在视场中形成一个目字形状的图案以及一个日字形状的图案。
其中,4个ROI-1为目字形状图案中水平方向的长条区域,2个ROI-2为目字形状图案中竖直方向的长条区域,3个ROI-3为日字形状图案中水平方向的长条区域,2个ROI-4为日字形状图案中竖直方向的长条区域,以及ROI-3与ROI-4在全视场中呈现的位置位于ROI-1与ROI-2在全视场中呈现位置的左下方,ROI-3的分辨率高于ROI-4的分辨率,ROI-4的分辨率高于ROI-1的分辨率,ROI-1的分辨率高于ROI-2的分辨率,ROI-2的分辨率高于非ROI分辨率。
其中,形成如图30所示的扫描图案的扫描过程可以参加上述图6的介绍,在此不进行赘述。
可以理解的,本申请实施例中的扫描区域还可以包括第五扫描区域,第六扫描区域等其它扫描区域,具体形成的扫描图案可以参见上述扫描图案的介绍以及可以对上述扫描图案进行变形等,为简洁描述,在此不进行赘述。
需要说明的是,上述扫描图案的布局并不构成对本申请实施例呈现的扫描图案的限定,仅作为一个示例,以及上述扫描图案中不同扫描区域之间的分辨率大小也并不构成对本申请实施例不同扫描区域的分辨率的限定,本申请实施例可以根据实际情况进行不同扫描区域的分辨率的限定以及调整。
进一步的,基于上述内容,结合如图31所示的扫描场景,进一步详细介绍:
示例性的,本申请实施例可以采用水平扫描器的面数为P的多边形(Polygon)或其他可能的多面扫描器进行扫描,以及在扫描过程中可以多路收发单元进行激光发送以及接收,完成对水平方向的全视场扫描。例如,采用4路收发单元进行激光发送以及接收,从而得到4条点云线。
其中,本申请实施例中激光雷达设置用于进行区域扫描的参数可以如下:
(1)初始发射的指向角为1/4*0.5*(VFOV-VFOV’),其中,VFOV为区域1~区域3的总垂直视场角(vertical field of view),VFOV’为区域2的垂直视场角。
(2)若发射端口的间距为a,则发射镜头的焦距f=a/(1/4*0.5*(VFOV-VFOV’))。
(3)扫描器完成一次水平视场扫描的时间利用率为K。所述时间利用率K表示所述扫描器实际要实现的扫描角占所述扫描器理论上能够覆盖的扫描角的比例,其中,一般情况下所述时间利用率K的取值在70%~80%之间。
(4)水平扫描器的转速为:VFOV’/Vres/4/P*60*k*f1*Hres/HFOV(r/min),其中,VFOV为垂直视场角,Vres为垂直角度分辨率(Vertical resolution),Hres为水平角度分辨率(Horizontal resolution),HFOV为水平视场角(Horizontal field of view)。
(5)区域2内的中心ROI的重频可以设置为f1,在区域2内其他视场的重频可以设置为f2。
(6)区域2中心ROI内均匀或非均匀的分辨率Hres*Vres,其中,Vres为垂直角度分辨率,Hres为水平角度分辨率。
其中,在激光雷达进行水平扫描每一行的过程中,控制激光雷达中的扫描器保持匀速运动,从而使整个区域2内,水平扫描器保持匀速。
基于上述参数,控制激光器的重频和各行间的点云打点延时关系,例如,控制激光器在合适的时间进行关闭,并在完成一定视场扫描后再次开启,从而呈现ROI的左边界以及右边界。
其中,本申请实施例在完成一次水平扫描时,可以设置水平扫描器的速度始终不变,因此ROI与非ROI的扫描时间与各自的视场角成正比。若在非ROI和ROI的切换边界对激光器的重频进行快速调整,则可以进一步调控ROI和非ROI的水平分辨率。
此外,本申请实施例中区域1或区域3,可以采用对称设计规格进行设计。其中,水平方向的转速可以根据系统设计的垂直分辨率(垂直线数)和单帧内占据的扫描时间计算,由此可以得到与区域2不同的水平扫描转速。
进一步的,本申请实施例可以根据区域1~3在单帧时间内各自占据的扫描时间和系统设计要求的各自对应的垂直视场角,可以评估垂直方向完成一次扫描时所需的速度比及变速要求等,从而改变发射光束的数量和彼此的指向角关系,实现垂直分辨率,垂直线数的重叠关系以及相关的一些列的系统参数的调整。
其中,方法和装置是基于相同或相似技术构思的,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。
为了实现上述本申请实施例提供的方法中的各功能,本申请实施例还提供一种装置用于实现上述方法。该装置可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
一种可能的实现方式中,如图32所示,为本申请实施例提供的一种扫描装置结构示意图。该装置可以是扫描器,也可以是扫描器中的部件,或者是能够和扫描器匹配使用的装置。该装置3200可以包括:确定模块3201和扫描模块3202。当然,该装置3200还可能包括其他模块,本申请实施例并不限定,仅示出主要的功能模块,例如,本申请实施例中所述扫描装置还可以包括收发模块,所述收发模块可以包括发送模块和接收模块。
其中,确定模块3201,用于确定扫描区域,所述扫描区域为第一感兴趣区域,所述扫描区域包括第一扫描区域和第二扫描区域;所述第一扫描区域和所述第二扫描区域在视场上有重叠;所述第一扫描区域的分辨率大于所述第二扫描区域的分辨率;所述扫描模块3202,用于对所述扫描区域进行扫描。
本申请一种可选的方式,所述第一扫描区域的垂直视场角与所述第二扫描区域的垂直视场角有重叠。
本申请一种可选的方式,所述第一扫描区域的垂直起始位置与所述第二扫描区域的垂直起始位置不同。
本申请一种可选的方式,所述第一扫描区域在视场中呈现竖直长条形状,所述第二扫描区域在所述视场中呈现水平长条形状;或,
所述第一扫描区域在视场中呈现水平长条形状,所述第二扫描区域在所述视场中呈现竖直长条形状。
本申请一种可选的方式,当所述第一扫描区域的数量为M个,所述第二扫描区域的数量为N个时,所述M个第一扫描区域中的一个或多个第一扫描区域的垂直视场角,与所述N个第二扫描区域中的一个或多个第二扫描区域的垂直视场角有重叠;其中,所述M与所述N为正整数。
本申请一种可选的方式,所述扫描区域还包括第三扫描区域和第四扫描区域;所述第三扫描区域和所述第四扫描区域在所述视场上有重叠;所述第三扫描区域的分辨率大于所述第四扫描区域的分辨率。
本申请一种可选的方式,所述第三扫描区域的垂直视场角与所述第四扫描区域的垂直视场角有重叠。
本申请一种可选的方式,所述确定模块3201,具体用于:
根据获取到的环境的采集数据,确定扫描区域。
本申请一种可选的方式,所述扫描模块3202,具体用于:
通过控制扫描器中快轴与慢轴进行扫描的速度关系,发射器初始发射的光源数量以及指向角的大小,调控所述第一扫描区域和所述第二扫描区域在视场上有重叠。
本申请一种可选的方式,所述扫描模块3202,具体用于:
通过控制发射器的开启和关闭,和/或通过控制所述发射器的点频变化,调控所述第一 扫描区域的分辨率大于所述第二扫描区域的分辨率。
本申请实施例还提供了一种传感器系统,所述传感器系统包含至少一个上述扫描装置。进一步可选的,所述传感器系统还包含至少一个摄像头。
本申请实施例还提供一种交通工具,例如车辆、无人机、无人车等,包含上述传感器系统。基于上述描述的装置的结构和功能原理,本申请还可以提供一种激光雷达,该激光雷达可以包括上述任一实施例中的装置。进一步,可选地,该激光雷达还可包括处理器。
基于上述内容和相同构思,本申请提供一种终端设备。该终端设备可包括用于执行上述任意方法实施例的控制装置。进一步,可选的,该终端设备还可包括存储器,存储器用于存储程序或指令。当然,该终端设备还可以包括其他器件,例如无线控制装置等。其中,控制装置可参见上述控制装置的描述,此处不再赘述。
示例性地,该终端设备例如可以是车辆(例如无人车、智能车、电动车、或数字汽车等)、机器人、测绘设备、无人机、智能家居设备(例如电视、扫地机器人、智能台灯、音响系统、智能照明系统、电器控制系统、家庭背景音乐、家庭影院系统、对讲系统、或视频监控等)、智能制造设备(例如工业设备)、智能运输设备(例如AGV、无人运输车、或货车等)、或智能终端(手机、计算机、平板电脑、掌上电脑、台式机、耳机、音响、穿戴设备、车载设备、虚拟现实设备、增强现实设备等)等。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请实施例还提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行上文实施例所描述的方法。
本申请实施例还提供一种计算机程序产品,包括指令,当其在计算机上运行时,使得计算机执行上文实施例所描述的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序或指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,数字视频光盘(digital video disc,DVD);还可以是半导体介质,例如,固态硬盘(solid state drive,SSD)。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要 求所界定的方案进行示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。

Claims (22)

  1. 一种扫描方法,其特征在于,包括:
    确定扫描区域,所述扫描区域为感兴趣区域,所述扫描区域包括第一扫描区域和第二扫描区域;
    所述第一扫描区域和所述第二扫描区域在视场上有重叠;
    所述第一扫描区域的分辨率大于所述第二扫描区域的分辨率;
    对所述扫描区域进行扫描。
  2. 如权利要求1所述的方法,其特征在于,所述第一扫描区域和所述第二扫描区域在视场上有重叠,包括:
    所述第一扫描区域的垂直视场角与所述第二扫描区域的垂直视场角有重叠。
  3. 如权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述第一扫描区域的垂直起始位置与所述第二扫描区域的垂直起始位置不同。
  4. 如权利要求1~3中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一扫描区域在视场中呈现竖直长条形状,所述第二扫描区域在所述视场中呈现水平长条形状;或
    所述第一扫描区域在视场中呈现水平长条形状,所述第二扫描区域在所述视场中呈现竖直长条形状。
  5. 如权利要求1~4中任一项所述的方法,其特征在于,当所述第一扫描区域的数量为M个,所述第二扫描区域的数量为N个时,所述第一扫描区域的垂直视场角与所述第二扫描区域的垂直视场角有重叠,包括:
    所述M个第一扫描区域中的一个或多个第一扫描区域的垂直视场角,与所述N个第二扫描区域中的一个或多个第二扫描区域的垂直视场角有重叠;
    其中,所述M与所述N为正整数。
  6. 如权利要求1~5中任一项所述的方法,其特征在于,所述扫描区域还包括第三扫描区域和第四扫描区域;
    所述第三扫描区域和所述第四扫描区域在所述视场上有重叠;
    所述第三扫描区域的分辨率大于所述第四扫描区域的分辨率。
  7. 如权利要求6所述的方法,其特征在于,所述第三扫描区域和所述第四扫描区域在所述视场上有重叠,包括:
    所述第三扫描区域的垂直视场角与所述第四扫描区域的垂直视场角有重叠。
  8. 如权利要求2~7中任一项所述的方法,其特征在于,所述第一扫描区域和所述第二扫描区域在视场上有重叠,包括:
    通过控制扫描器中快轴与慢轴进行扫描的速度关系,发射器初始发射的光源数量以及指向角的大小,调控所述第一扫描区域和所述第二扫描区域在视场上有重叠。
  9. 如权利要求2~8中任一项所述的方法,其特征在于,所述第一扫描区域的分辨率大于所述第二扫描区域的分辨率,包括:
    通过控制发射器的开启和关闭,和/或通过控制所述发射器的点频变化,调控所述第一扫描区域的分辨率大于所述第二扫描区域的分辨率。
  10. 一种扫描装置,其特征在于,包括:确定单元和处理单元;
    所述确定单元,用于确定扫描区域,所述扫描区域为感兴趣区域,所述扫描区域包括第一扫描区域和第二扫描区域;所述第一扫描区域和所述第二扫描区域在视场上有重叠;所述第一扫描区域的分辨率大于所述第二扫描区域的分辨率;
    所述扫描单元,用于对所述扫描区域进行扫描。
  11. 如权利要求10所述的扫描装置,其特征在于,所述第一扫描区域的垂直视场角与所述第二扫描区域的垂直视场角有重叠。
  12. 如权利要求10或11所述的扫描装置,其特征在于,所述第一扫描区域的垂直起始位置与所述第二扫描区域的垂直起始位置不同。
  13. 如权利要求10~12中任一项所述的扫描装置,其特征在于,所述第一扫描区域在视场中呈现竖直长条形状,所述第二扫描区域在所述视场中呈现水平长条形状;或,
    所述第一扫描区域在视场中呈现水平长条形状,所述第二扫描区域在所述视场中呈现竖直长条形状。
  14. 如权利要求10~13中任一项所述的扫描装置,其特征在于,当所述第一扫描区域的数量为M个,所述第二扫描区域的数量为N个时,所述M个第一扫描区域中的一个或多个第一扫描区域的垂直视场角,与所述N个第二扫描区域中的一个或多个第二扫描区域的垂直视场角有重叠;其中,所述M与所述N为正整数。
  15. 如权利要求10~14中任一项所述的扫描装置,其特征在于,所述扫描区域还包括第三扫描区域和第四扫描区域;
    所述第三扫描区域和所述第四扫描区域在所述视场上有重叠;
    所述第三扫描区域的分辨率大于所述第四扫描区域的分辨率。
  16. 如权利要求15所述的扫描装置,其特征在于,所述第三扫描区域的垂直视场角与所述第四扫描区域的垂直视场角有重叠。
  17. 如权利要求10~16中任一项所述的扫描装置,其特征在于,所述扫描单元具体用于:
    通过控制扫描器中快轴与慢轴进行扫描的速度关系,发射器初始发射的光源数量以及指向角的大小,调控所述第一扫描区域和所述第二扫描区域在视场上有重叠。
  18. 如权利要求10~17中任一项所述的扫描装置,其特征在于,所述扫描单元具体用于:
    通过控制发射器的开启和关闭,和/或通过控制所述发射器的点频变化,调控所述第一扫描区域的分辨率大于所述第二扫描区域的分辨率。
  19. 一种扫描装置,其特征在于,包括至少一个处理器和接口电路;所述接口电路为所述至少一个处理器提供程序或者指令,所述至少一个处理器通过逻辑电路或执行程序或者指令以实现所述扫描装置执行如权利要求1~9中任一项所述的方法。
  20. 一种激光雷达,其特征在于,包括如权利要求10~19中任一项所述的扫描装置。
  21. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序或指令,当所述计算机程序或指令被扫描装置执行时,实现如权利要求1至9中任一项所述的方法。
  22. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序或指令,当所述计算机程序或指令被扫描装置执行时,实现如权利要求1至9中任一项所述的方法。
PCT/CN2022/079144 2022-03-03 2022-03-03 一种扫描方法及装置 WO2023164906A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/079144 WO2023164906A1 (zh) 2022-03-03 2022-03-03 一种扫描方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/079144 WO2023164906A1 (zh) 2022-03-03 2022-03-03 一种扫描方法及装置

Publications (1)

Publication Number Publication Date
WO2023164906A1 true WO2023164906A1 (zh) 2023-09-07

Family

ID=87882839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/079144 WO2023164906A1 (zh) 2022-03-03 2022-03-03 一种扫描方法及装置

Country Status (1)

Country Link
WO (1) WO2023164906A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106546977A (zh) * 2015-09-16 2017-03-29 福特全球技术公司 车辆雷达感知和定位
CN106797461A (zh) * 2014-10-10 2017-05-31 康蒂-特米克微电子有限公司 用于机动车辆的立体摄像机
US20180100918A1 (en) * 2016-04-07 2018-04-12 Uhnder, Inc. Software defined automotive radar systems
US20180105107A1 (en) * 2016-10-19 2018-04-19 Novateur Research Solutions LLC Pedestrian collision warning system for vehicles
US20180288320A1 (en) * 2017-04-03 2018-10-04 Uber Technologies, Inc. Camera Fields of View for Object Detection
CN109997057A (zh) * 2016-09-20 2019-07-09 创新科技有限公司 激光雷达系统和方法
CN110730966A (zh) * 2017-05-24 2020-01-24 Kpit技术有限责任公司 用于行人检测的系统和方法
US20200064483A1 (en) * 2017-04-28 2020-02-27 SZ DJI Technology Co., Ltd. Sensing assembly for autonomous driving
CN112616318A (zh) * 2020-01-03 2021-04-06 深圳市速腾聚创科技有限公司 激光雷达及自动驾驶设备
CN113167897A (zh) * 2020-04-03 2021-07-23 深圳市速腾聚创科技有限公司 激光收发系统、激光雷达及自动驾驶设备

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106797461A (zh) * 2014-10-10 2017-05-31 康蒂-特米克微电子有限公司 用于机动车辆的立体摄像机
CN106546977A (zh) * 2015-09-16 2017-03-29 福特全球技术公司 车辆雷达感知和定位
US20180100918A1 (en) * 2016-04-07 2018-04-12 Uhnder, Inc. Software defined automotive radar systems
CN109997057A (zh) * 2016-09-20 2019-07-09 创新科技有限公司 激光雷达系统和方法
US20180105107A1 (en) * 2016-10-19 2018-04-19 Novateur Research Solutions LLC Pedestrian collision warning system for vehicles
US20180288320A1 (en) * 2017-04-03 2018-10-04 Uber Technologies, Inc. Camera Fields of View for Object Detection
US20200064483A1 (en) * 2017-04-28 2020-02-27 SZ DJI Technology Co., Ltd. Sensing assembly for autonomous driving
CN110730966A (zh) * 2017-05-24 2020-01-24 Kpit技术有限责任公司 用于行人检测的系统和方法
CN112616318A (zh) * 2020-01-03 2021-04-06 深圳市速腾聚创科技有限公司 激光雷达及自动驾驶设备
CN113167897A (zh) * 2020-04-03 2021-07-23 深圳市速腾聚创科技有限公司 激光收发系统、激光雷达及自动驾驶设备

Similar Documents

Publication Publication Date Title
US11987250B2 (en) Data fusion method and related device
WO2021226776A1 (zh) 一种车辆可行驶区域检测方法、系统以及采用该系统的自动驾驶车辆
CN108419446B (zh) 用于激光深度图取样的系统及方法
US10535191B2 (en) Object identification and labeling tool for training autonomous vehicle controllers
US9922553B2 (en) Vehicle assistance systems and methods utilizing vehicle to vehicle communications
CN109840448A (zh) 用于无人驾驶车辆的信息输出方法和装置
US10922881B2 (en) Three dimensional/360 degree (3D/360°) real-time full information smart management integrated mapping system (SMIMS) and process of generating the same
US11971536B2 (en) Dynamic matrix filter for vehicle image sensor
CN112382079A (zh) 一种面向车路协同的路侧感知模拟仿真方法和系统
Fukatsu et al. Automated driving with cooperative perception using millimeter-wave V2V communications for safe overtaking
WO2023185773A1 (zh) 智能车及其控制方法、行车系统
JP6678609B2 (ja) 情報処理装置、情報処理方法、情報処理プログラム、および移動体
CN111098842A (zh) 车辆速度控制方法及相关设备
WO2023164906A1 (zh) 一种扫描方法及装置
CN115460539B (zh) 一种获取电子围栏的方法、设备、介质及程序产品
WO2024001554A1 (zh) 车辆导航方法、装置、设备、存储介质和计算机程序产品
CN113156461B (zh) 一种2d激光雷达slam地图动态加载方法及系统
CN209117856U (zh) 智能感知激光雷达系统
KR20220091686A (ko) 차량용 주행 환경 표시 장치 및 그 제어 방법
WO2023218855A1 (ja) 情報処理装置、情報処理方法及び情報生成方法
WO2023056585A1 (zh) 一种探测系统、终端设备、控制探测方法及控制装置
US20220309693A1 (en) Adversarial Approach to Usage of Lidar Supervision to Image Depth Estimation
US11884312B2 (en) Object macrocells in frame locked rasters for real-time driving, positive train control, and general purpose anti-collision
CN117043639A (zh) 一种控制方法、激光雷达及终端设备
WO2024041034A1 (zh) 一种显示模组、光学显示系统、终端设备及成像方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22929355

Country of ref document: EP

Kind code of ref document: A1