WO2022116534A1 - 一种激光雷达 - Google Patents

一种激光雷达 Download PDF

Info

Publication number
WO2022116534A1
WO2022116534A1 PCT/CN2021/104440 CN2021104440W WO2022116534A1 WO 2022116534 A1 WO2022116534 A1 WO 2022116534A1 CN 2021104440 W CN2021104440 W CN 2021104440W WO 2022116534 A1 WO2022116534 A1 WO 2022116534A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
lidar
laser beam
transmitting
transmitting module
Prior art date
Application number
PCT/CN2021/104440
Other languages
English (en)
French (fr)
Inventor
胡小波
沈俭
Original Assignee
深圳市镭神智能系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市镭神智能系统有限公司 filed Critical 深圳市镭神智能系统有限公司
Priority to JP2022502095A priority Critical patent/JP7420915B2/ja
Priority to KR1020227007281A priority patent/KR20220079815A/ko
Priority to EP21835147.6A priority patent/EP4033270A4/en
Priority to US17/569,655 priority patent/US20220179049A1/en
Publication of WO2022116534A1 publication Critical patent/WO2022116534A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers

Definitions

  • the embodiments of the present application relate to the technical field of radar, and in particular, to a laser radar.
  • Lidar is a radar system that uses lasers to detect the position, speed, attitude and other characteristics of the target. By receiving the information of the signal, information such as the distance, bearing, height, speed, attitude, and even shape of the target can be obtained.
  • a laser beam emitted by a laser transmitter of the lidar forms a spot in the target area, and the echo beam reflected by the spot is received by a receiver of the lidar to form a target. echoes, thereby forming a pixel in the point cloud image, where the laser beam emitted by the laser transmitter is emitted as many times as received by the receiver. Since one laser transmitter corresponds to one receiver, if the spot size is not well controlled, the receiver will not receive the echo beam completely, which will affect the detection accuracy. In addition, since a laser beam can only produce one pixel, to improve the resolution of the lidar, it is necessary to increase the emission frequency of the laser beam, which causes the problem of increasing the power consumption of the lidar, and makes the scanning mechanism of the lidar more complex.
  • a lidar is provided.
  • An embodiment of the present application provides a lidar, including at least one transmitting module and at least one receiving module, wherein the transmitting module corresponds to the receiving module one-to-one;
  • the transmitting module is configured to emit a laser beam to the target area
  • the receiving module is configured to receive the echo beam reflected by the target area corresponding to the laser beam emitted by the transmitting module, wherein the transmitting module includes at least one transmitting
  • the receiving module includes at least two receivers, and each transmitter in the transmitting module corresponds to the at least two receivers.
  • the receiving module is set to be set to be set to be set to be set to be configured to be configured to configure the lidar provided by the embodiment of the present application, by setting the receiving module to include at least two receivers corresponding to at least one transmitter, thereby helping to receive the echo beam, Improve detection accuracy.
  • a laser beam can generate at least two pixel points, which improves the imaging resolution of the lidar.
  • FIG. 1 is a schematic structural diagram of a laser radar according to an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a receiving module according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of another receiving module provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a light spot formed in a target area by an emission module according to an embodiment of the present application
  • FIG. 5 is a schematic structural diagram of another receiving module provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of another laser radar according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another laser radar provided by an embodiment of the present application of the present invention.
  • FIG. 8 is a schematic structural diagram of a light spot formed in a target area by another laser radar according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another laser radar provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of another light spot formed by a laser radar in a target area according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of another lidar provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of still another light spot formed by a laser radar in a target area according to an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a laser radar according to an embodiment of the application
  • FIG. 2 is a schematic structural diagram of a receiving module according to an embodiment of the application.
  • the radar includes at least one transmitting module 10 and at least one receiving module 11 , and the transmitting modules 10 are in one-to-one correspondence with the receiving modules 11 .
  • the transmitting module 10 is used to transmit the laser beam 20 to the target area 12, and the receiving module 11 is configured to receive the echo beam 21 reflected by the laser beam 20 emitted by the corresponding transmitting module 10 by the target area 12, wherein the receiving module 11 includes at least one transmitter , the receiving module 11 includes at least two receivers 111 , and each of the transmitters in the transmitting module 10 corresponds to the at least two receivers 111 .
  • the lidar may include a transmitter module 10 and a receiver module 11 , the transmitter module 10 includes a transmitter to form a single-line radar, and includes a plurality of transmitter modules 10 and a plurality of receiver modules 11 corresponding to the transmitter modules 10 one-to-one , or a transmitter module 10 includes a plurality of transmitters to form a multi-line radar.
  • the laser radar is configured to include a transmitter module 10 and a receiver module 11
  • the transmitter module 10 includes a transmitter as an example, and one transmitter in the transmitter module 10 is configured to emit laser light to the target area 12 .
  • the receiving module 11 includes at least two receivers 111, and one transmitter in the transmitting module 10 corresponds to the at least two receivers 111.
  • one transmitter in the transmitting module 10 transmits a laser beam 20 to the target area 12, and the laser beam 20 is reflected by the target area 12 to form an echo beam 21, and at least two receivers 111 in the receiving module 11 corresponding to the transmitter receive the echo beam 21 at the same time, so as to increase the receiving area of the receiving module 11, thereby contributing to the The echo beam 21 is completely received to improve detection accuracy.
  • one receiving module 11 includes at least two receivers 111 , one laser beam 20 can generate at least two pixels, which improves detection accuracy and also improves resolution.
  • the receiving module 11 may include two receivers 111 or more receivers 111. Those skilled in the art can set the number of receivers 111 in the receiving module 11 according to actual needs. The greater the number of receivers 111 in 11, the higher the detection resolution of the lidar, which is not limited in this embodiment of the present application.
  • the receiving module 11 is configured to include four receivers 111 as an example, the transmitting module 10 emits a laser beam 20 to the target area 12 , and the laser beam 20 is reflected by the target area 12 to form an echo.
  • the beam 21, the echo beam 21 formed by the reflection of a laser beam 20 by the target area 12 will be divided into four parts, which are received by the four receivers 111 at the same time.
  • the receiving area is It is increased by four times, so that the echo beam 21 is completely received and the detection accuracy is improved.
  • the four receivers 111 receive the echo beams 21 at the same time, so that one laser beam 20 can generate four pixel points, so that the resolution is increased by four times, so that the lidar can be configured to reflect the target area 12 more finely. state.
  • the embodiment of the present application proposes a laser radar configured as a laser radar.
  • the receiving module 11 By setting the receiving module 11 to include at least two receivers 111, the receiving area of the receiving module 11 is increased, thereby helping to fully receive the echo beam 21 and improving the detection accuracy.
  • one receiving module 11 since one receiving module 11 includes at least two receivers 111 , one laser beam 20 can generate at least two pixels, which improves the imaging resolution of the lidar.
  • FIG. 3 is a schematic structural diagram of another receiving module configured as an embodiment of the present application.
  • the receiver 111 includes a photoelectric conversion unit 30, an amplifying unit 31, and a sampling unit 32.
  • the amplifying unit 31 are respectively electrically connected to the photoelectric conversion unit 30 and the sampling unit 32, the photoelectric conversion unit 30 is set to convert the received echo beam 21 into an electrical signal, the amplifying unit 31 is set to amplify the electrical signal, and the sampling unit 32 is set to amplify the 31.
  • the amplified electrical signal is sampled to generate a sampled signal.
  • the laser radar configured in this embodiment of the present application further includes a data processing module 13.
  • the data processing module 13 is electrically connected to the sampling unit 32, and the data processing module 13 is configured to sample the The signal is processed to generate point cloud data.
  • the receiving module 11 is configured to include four receivers 111 as an example, the transmitting module 10 emits a laser beam 20 to the target area 12 , and the laser beam 20 is reflected by the target area 12 to form an echo beam 21 , The laser beams 20 emitted by each transmitting module 10 are simultaneously received by the four receivers 111 in the corresponding receiving module 11 , and the four signals generated by the four receivers 111 are processed independently.
  • each receiver 111 the photoelectric conversion unit 30 receives part of the echo beam 21 and converts the received echo beam 21 into an electrical signal, the amplifying unit 31 amplifies the electrical signal, is configured to enhance the signal strength, and samples The unit 32 is configured to sample the electrical signal amplified by the amplifying unit 31 , and use the data processing module 13 to perform algorithm processing to generate point cloud data, thereby forming pixel points in the point cloud image, and obtaining relevant information of the target area 12 .
  • the four receivers 111 can form four pixels in the point cloud image, so that the resolution is increased by four times, so that the lidar can be configured to reflect the state of the target area 12 in a finer manner.
  • sampling unit 32 may use an analog-to-digital converter (Analog-to-Digital Converter, ADC), and may also use other analog signal analysis devices, which are not limited in this embodiment of the present application.
  • ADC Analog-to-Digital Converter
  • the photoelectric conversion unit 30 includes an avalanche photodiode (Avalanche Photon Diode, APD).
  • APD avalanche Photon Diode
  • the Avalanche Photon Diode is a highly sensitive detector that uses the avalanche multiplication effect to multiply the photocurrent. It has the advantages of ultra-low noise, high-speed configuration and high transimpedance gain.
  • the photoelectric conversion unit 30 may also be configured with a single photon avalanche diode, a PIN photodiode, and other photodiodes, and those skilled in the art may also select according to actual application requirements, which are not specifically limited in the embodiments of the present application. .
  • the amplifying unit 31 includes a trans-impedance amplifier (TIA) 311 and a secondary amplifier 312.
  • the trans-impedance amplifier 311 is electrically connected to the photoelectric conversion unit 30 and the secondary amplifier 312, respectively.
  • Two The stage amplifier 312 is electrically connected to the sampling unit 32 .
  • the trans-impedance amplifier (trans-impedance amplifier, TIA) 311 has the advantage of high bandwidth and can be set as a high-speed circuit.
  • the transimpedance amplifier 311 amplifies the electrical signal from the photoelectric conversion unit 30, and the secondary amplifier 312 further amplifies the electrical signal from the transimpedance amplifier 311, thereby further enhancing the signal strength.
  • the receiver 111 may further include circuit devices other than the photoelectric conversion unit 30, the amplifying unit 31 and the sampling unit 32.
  • the receiver 111 may further include a filter circuit configured to filter the electrical signal.
  • FIG. 4 is a schematic structural diagram of a light spot configured as an embodiment of the present application.
  • the receiving module 11 at least two receivers 111 are arranged in an array to form a receiving module.
  • the laser beam 20 emitted by the transmitting module 10 forms a light spot 41 in the target area 12
  • the outline shape of the receiver array 40 is the same as that of the light spot 41 .
  • the receiving module 11 is configured to include four receivers 111 as an example, and the four receivers 111 form a receiver array 40 . If the light spot 41 formed by the laser beam 20 emitted by the transmitting module 10 in the target area 12 is circular, the contour of the receiver array 40 is also circular, which helps to receive the echo beam 21 completely and improves the detection accuracy.
  • the light spot formed in the target area 12 by the laser beam 20 emitted by the emission module 10 may also be any other shape such as a square, a rectangle, an ellipse, etc., and the wavelength of the laser beam 20 emitted by the emission module 10 may also be based on actual needs.
  • the wavelength of the laser beam 20 emitted by the emitting module 10 can be configured to be 1550 nm, forming a circular spot; or, the wavelength of the laser beam 20 emitted by the emitting module 10 can also be configured to be 905 nm, forming a long spot,
  • the contour of the receiver array 40 is set to be the same as the shape of the light spot, so that the echo beam 21 is completely received, and the number of the receivers 111 in the receiver array 40 can also be set according to the shape of the light spot.
  • FIG. 5 is a schematic structural diagram of another receiving module configured as an embodiment of the present application.
  • the receiving module 11 is set to include eight receivers 111 configured to form a receiver array 40 with a rectangular outline, so as to completely receive the echo beam 21 and improve detection accuracy.
  • those skilled in the art can design the receiver array 40 according to actual conditions, which is not limited in this embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of another laser radar configured as an embodiment of the present application.
  • the laser radar configured as an embodiment of the present application further includes a rotating mechanism 50 , a transmitting module 10 and the receiving module 11 are fixedly connected with the rotating mechanism 50 , and the rotating mechanism 50 is configured to drive the transmitting module 10 and the receiving module 11 to rotate around the rotating shaft 501 .
  • the rotating mechanism 50 rotates around the rotating shaft 501 , and the transmitting module 10 and the receiving module 11 realize the scanning detection in the direction perpendicular to the rotating shaft 501 with the rotation of the rotating mechanism 50 .
  • FIG. 7 is a schematic structural diagram of another laser radar configured as an embodiment of the present application
  • FIG. 8 is a structural schematic diagram of a light spot formed in a target area by another laser radar configured as an embodiment of the present application, as shown in FIG.
  • the lidar configured in this embodiment of the present application includes a transmitter module 10, the transmitter module 10 is configured to emit the laser beam 20 at a fixed emission period, and the rotating mechanism 50 rotates within one emission period.
  • the angle of ⁇ 1 is ⁇ 1, and the beam divergence angle of the laser beam 20 emitted by the transmitting module 10 along the first direction X is ⁇ 2, where ⁇ 1 ⁇ 2, ⁇ 1 is less than or equal to ⁇ 2, and the first direction X is perpendicular to the extension direction Z of the rotation axis 501.
  • the rotation angle ⁇ 1 of the rotating mechanism 50 in one emission cycle is less than or equal to the beam divergence angle ⁇ 2 of the laser beam 20 emitted by the emission module 10 along the first direction X, so that the light spot formed by the emission module 10 in adjacent cycles There is an overlap to ensure that all areas within the target area 12 can be detected.
  • the emitting module 10 is configured to emit the laser beam 20 at a fixed emission period, and the rotating mechanism 50 drives the emitting module 10 to rotate around the rotation axis 501 .
  • the laser beam 20 emitted by the transmitting module 10 in one cycle forms a light spot 42 in the target area 12 (as shown by the dotted lines in FIG. 7 and FIG. 8 ).
  • the laser beam 20 emitted by the emitting module 10 forms a light spot 43 in the target area 12 (as shown by the solid lines in FIG. 7 and FIG.
  • the extension direction Z and the first direction X of the rotation shaft 501 can be set according to actual needs.
  • the extension direction Z of the rotation shaft 501 is the vertical direction, and the first direction X is the horizontal direction; or, the extension direction of the rotation shaft 501
  • the direction Z is a horizontal direction, and the first direction X is a vertical direction, which is not limited in this embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another lidar configured as an embodiment of the present application.
  • the lidar configured as an embodiment of the present application includes a plurality of transmitting modules 10, and a plurality of The emitting modules 10 are arranged along the second direction Y, wherein the second direction Y is parallel to the extending direction Z of the rotation axis 501 .
  • a multi-line laser radar can be realized, so that the height information of the object can be recognized and a 3D scanning image of the surrounding environment can be obtained, thereby increasing the detection range of the laser radar.
  • the transmitting module 10 By driving the transmitting module 10 to rotate around the rotation axis 501 by the rotating mechanism 50, a wide range of scanning detection can be realized.
  • the laser beam 20 emitted by each emitting module 10 forms a corresponding scanning range, and the corresponding scanning ranges of two adjacent emitting modules 10 are different and have overlapping areas.
  • FIG. 10 is a schematic structural diagram of another light spot formed by a laser radar in a target area according to an embodiment of the present application.
  • the laser radar is configured to include four transmitting modules 10 .
  • the four transmitting modules 10 are respectively a first transmitting module 101 , a second transmitting module 102 , a third transmitting module 103 and a fourth transmitting module 104 .
  • the first transmitting module 101 is formed with a corresponding scanning range 201
  • the second transmitting module 102 is formed with a corresponding scanning range 202
  • the third transmitting module 103 is formed with a corresponding scanning range 203
  • the fourth transmitting module 104 is formed with a corresponding scanning range 203.
  • Scan range 204 Since the scanning ranges corresponding to two adjacent emitting modules 10 are different and there is an overlapping area, the spot 44 formed by the laser beam 20 emitted by the first emitting module 101 in the target area 12 and the laser beam 20 emitted by the second emitting module 102 are There is an overlapping area between the light spots 45 formed by the target area 12, and the laser beam 20 emitted by the second emitting module 102 has an overlapping area between the spots 45 formed by the target area 12 and the laser beam 20 emitted by the third emitting module 103.
  • the beam divergence angle ⁇ 2 is greater than or equal to the resolution P1 of the lidar along the second direction Y, thereby ensuring that all areas within the target area 12 can be detected.
  • FIG. 11 is a schematic structural diagram of another laser radar configured as an embodiment of the present application
  • FIG. 12 is a structural schematic diagram of a light spot formed in a target area by another laser radar configured as an embodiment of the present application, as shown in FIG. 11 and FIG. 12
  • the emission module 10 is configured to emit the laser beam 20 in a fixed emission period
  • the rotation angle of the rotation mechanism 50 in one emission period is ⁇ 3
  • the scanning range corresponding to the emission module 10 is along the first direction.
  • the beam divergence angle of X is ⁇ 4, where ⁇ 3 ⁇ 4, and ⁇ 3 is less than or equal to ⁇ 4.
  • the first direction X is perpendicular to the extending direction Z of the rotation axis 501 .
  • the rotation angle ⁇ 3 of the rotating mechanism 50 in one emission cycle is less than or equal to the beam divergence angle ⁇ 4 of the laser beam 20 emitted by the emission module 10 along the first direction X, so that the light spots formed by the emission module 10 in adjacent cycles are There is an overlap to ensure that all areas within the target area 12 can be detected.
  • the laser radar is configured to include four emission modules 10 as an example, the emission module 10 is configured to emit the laser beam 20 at a fixed emission period, and the rotating mechanism 50 drives the emission module 10 to surround the rotation axis. 501 turns.
  • the laser beam 20 emitted by the transmitting module 10 in one cycle forms a light spot 44 , a light spot 45 , a light spot 46 and a light spot 47 in the target area 12 (as shown by the dotted line in FIG. 12 ).
  • the rotating mechanism 50 drives the transmitting module 10 to rotate around
  • the laser beam 20 emitted by the transmitting module 10 forms the light spot 44, the light spot 45, the light spot 46 and the light spot 47 in the target area 12 again (as shown by the solid line in FIG. 12).
  • the angle ⁇ 3 of the inner rotation is smaller than the beam divergence angle ⁇ 4 of the laser beam 20 emitted from the transmitting module 10 along the first direction X. Therefore, there is an overlapping area between the light spots 44, 45, 46 and 47 formed in adjacent periods.
  • the beam divergence angle ⁇ 2 of the laser beam 20 emitted by the transmitting module 10 is greater than or equal to the resolution P2 of the laser radar along the first direction X, thereby ensuring that all areas within the target area 12 can be detected.
  • the laser radar configured in the embodiment of the present application further includes a controller 14, and the controller 14 is electrically connected to the transmitting module 10, and is configured to control the transmitting module 10 to be configured to emit laser light at a fixed transmission period. Beam 20.
  • the laser radar configured in this embodiment of the present application further includes a transmitting lens 15 and a receiving lens 16 .
  • the transmitting lens 15 is located on the propagation path of the laser beam 20 and is configured to align the laser beam 20 .
  • the receiving lens 16 is located on the propagation path of the echo beam 21 , and is arranged to collimate the echo beam 21 and transmit it to the receiver 111 .
  • the laser radar configured in the embodiment of the present application may be configured as a mechanical scanning radar or a galvanometer scanning radar, etc.
  • the laser radar may also include other devices configured to realize the functions of the laser radar. Set according to requirements, which is not limited in this embodiment of the present application.
  • the embodiment of the present application proposes a laser radar configured as a laser radar.
  • the receiving module 11 By setting the receiving module 11 to include at least two receivers 111, the receiving area of the receiving module 11 is increased, thereby helping to fully receive the echo beam 21 and improving the detection accuracy. .
  • one receiving module 11 includes at least two receivers 111 , one laser beam 20 can generate at least two pixels, which improves the imaging resolution of the lidar.
  • the beam divergence angle ⁇ 2 of the laser beam 20 emitted by the transmitting module 10 is greater than or equal to the resolution of the lidar, it is ensured that all areas within the target area 12 can be detected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

本申请公开了一种激光雷达,包括至少一个发射模块和至少一个接收模块,发射模块与接收模块一一对应,发射模块设置为向目标区域发射激光光束,接收模块设置为接收对应发射模块发射的激光光束经目标区域反射的回波光束,其中,接收模块包括至少两个接收器。

Description

一种激光雷达
本申请要求于2020年12月3日提交中国专利局、申请号为202022900737.2、申请名称为“一种激光雷达”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及雷达技术领域,尤其涉及一种激光雷达。
背景技术
随着激光技术的发展和应用,激光扫描技术越来越广泛地应用于测量、交通、驾驶辅助和移动机器人等领域。激光雷达是一种通过激光来探测目标的位置、速度、姿态等特征量的雷达系统,其基本原理是先向目标发射探测激光光束,然后将接收从目标反射回来的信号,通过比较发射信号与接收信号的信息,就可获得目标的距离、方位、高度、速度、姿态、甚至形状等信息。
现有的激光雷达在扫描目标区域时,激光雷达的一个激光发射器发射的一束激光光束在目标区域形成一个光斑,这个光斑反射的回波光束被激光雷达的一个接收器接收,形成一个目标回波,从而在点云图中形成一个像素点,其中,激光发射器的激光光束发射次数和接收器的接收次数相同。由于一个激光发射器对应一个接收器,如果光斑大小没有控制很好,就会导致接收器接收回波光束不完全,影响探测精度。此外,由于一束激光光束只能产生一个像素点,若要提高激光雷达分辨率就需要提高激光光束的发射频率,造成激光雷达的功耗上升的问题,且使得激光雷达的扫描机构变得更加复杂。
申请内容
根据本申请的各种实施例,提供一种激光雷达。
本申请实施例提供了一种激光雷达,包括至少一个发射模块和至少一个接收模块,所述发射模块与所述接收模块一一对应;
所述发射模块设置为向目标区域发射激光光束,所述接收模块设置为接收对应所述发射模块发射的激光光束经所述目标区域反射的回波光束,其中,所述发射模块包括至少一个发射器,所述接收模块包括至少两个接收器,所述发射模块中的每个发射器与所述至少两个接收器对应。
设置为设置为设置为设置为设置为配置为配置为本申请实施例提供的激光雷达,通过设置接收模块包括至少两个接收器对应至少一个发射器,,从而有助于将回波光束接收,提高探测精度。同时,由于一个接收模块包括至少两个接收器,使得一束激光光束能够产生至少两个像素点,提高了激光雷达的成像分辨率。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其它特征和优点将从说明书、附图配置为及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可配置为根据这些附图获得其他实施例的附图。
图1为本申请实施例提供的一种激光雷达的结构示意图;
图2为本申请实施例提供的一种接收模块的结构示意图;
图3为本申请实施例提供的另一种接收模块的结构示意图;
图4为本申请实施例提供的一种发射模块在目标区域形成的光斑的结构示意图;
图5为本申请实施例提供的又一种接收模块的结构示意图;
图6为本申请实施例提供的另一种激光雷达的结构示意图;
图7为本实用新型本申请实施例提供的又一种激光雷达的结构示意图;
图8为本申请实施例提供的另一种激光雷达在目标区域形成的光斑的结构示意图;
图9为本申请实施例提供的又一种激光雷达的结构示意图;
图10为本申请实施例提供的又一种激光雷达在目标区域形成的光斑的结构示意图;
图11为本申请实施例提供的又一种激光雷达的结构示意图;
图12为本申请实施例提供的又一种激光雷达在目标区域形成的光斑的结构示意图。
具体实施方式
下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本实用新型,而非对本申请的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。
图1为本申请实施例提供的一种激光雷达的结构示意图,图2为本申请实 施例提供的一种接收模块的结构示意图,如图1和图2所示,本申请实施例提供的激光雷达包括至少一个发射模块10和至少一个接收模块11,发射模块10与接收模块11一一对应。发射模块10用于向目标区域12发射激光光束20,接收模块11设置为接收对应发射模块10发射的激光光束20经目标区域12反射的回波光束21,其中,接收模块11包括至少一个发射器,接收模块11包括至少两个接收器111,发射模块10中每个所述发射器均与至少两个接收器111对应。
其中,激光雷达可包括一个发射模块10和一个接收模块11,发射模块10包括一个发射器以构成单线雷达,包括多个发射模块10和与多个发射模块10一一对应的多个接收模块11,或者一个发射模块10包括多个发射器以构成多线雷达。如图1和图2所示,配置为激光雷达包括一个发射模块10和一个接收模块11,发射模块10包括一个发射器为例,发射模块10中的一个发射器设置为向目标区域12发射激光光束20,激光光束20经目标区域12反射形成回波光束21,接收模块11设置为接收回波光束21,然后将接收到的回波光束21与发射的激光光束20进行比较,作适当处理后,就可获得目标区域12的有关信息,如目标区域12中的目标距离、方位、高度、速度、姿态、甚至形状等参数,进而可对目标进行探测、跟踪和识别。
接收模块11包括至少两个接收器111,发射模块10中的一个发射器与至少两个接收器111对应,具体的,发射模块10中的一个发射器向目标区域12发射激光光束20,激光光束20经目标区域12反射形成回波光束21,与该发射器对应的接收模块11中的至少两个接收器111同时接收回波光束21,以增大接收模块11的接收面积,从而有助于将回波光束21完全接收,提高探测精度。 并且,由于一个接收模块11包括至少两个接收器111,使得一束激光光束20能够产生至少两个像素点,提高探测精度同时还能够提高分辨率。
其中,接收模块11可以包括两个接收器111,也可包括更多个接收器111,本领域技术人员可根据实际需求对接收模块11中接收器111的数量进行设置,通常情况下,接收模块11中接收器111的数量越多,激光雷达的探测分辨率越高,本申请实施例对此不作限定。
示例性的,如图1和图2所示,配置为接收模块11包括四个接收器111为例,发射模块10向目标区域12发射激光光束20,激光光束20经目标区域12反射形成回波光束21,一束激光光束20由目标区域12反射形成的回波光束21会分成四个部分,分别被四个接收器111同时接收,与接收模块11仅包括一个接收器111相比,接收面积增大了四倍,从而将回波光束21完全接收,提高探测精度。并且,四个接收器111同时接收回波光束21,使得一束激光光束20能够产生四个像素点,使得分辨率提高了四倍,从而使激光雷达可配置为更精细的反应目标区域12的状态。
本申请实施例提被配置为的激光雷达,通过设置接收模块11包括至少两个接收器111,增大了接收模块11的接收面积,从而有助于将回波光束21完全接收,提高探测精度。同时,由于一个接收模块11包括至少两个接收器111,使得一束激光光束20能够产生至少两个像素点,提高了激光雷达的成像分辨率。
图3为本申请实施例提被配置为的另一种接收模块的结构示意图,如图3所示,可选的,接收器111包括光电转换单元30、放大单元31和采样单元32,放大单元31分别与光电转换单元30和采样单元32电连接,光电转换单元30设置为将接收到的回波光束21转换为电信号,放大单元31设置为放大电信号, 采样单元32设置为对放大单元31放大后的电信号进行采样,生成采样信号,本申请实施例提被配置为的激光雷达还包括数据处理模块13,数据处理模块13与采样单元32电连接,数据处理模块13设置为对采样信号进行处理,生成点云数据。
示例性的,如图3所示,配置为接收模块11包括四个接收器111为例,发射模块10向目标区域12发射激光光束20,激光光束20经目标区域12反射形成回波光束21,每个发射模块10发射的激光光束20都由对应接收模块11中的四个接收器111同时接收,且四个接收器111产生的四个信号独立处理。具体的,在每个接收器111中,光电转换单元30接收部分回波光束21,并将接收到的回波光束21转换为电信号,放大单元31放大电信号,配置为增强信号强度,采样单元32设置为对放大单元31放大后的电信号进行采样,用数据处理模块13进行算法处理,生成点云数据,从而在点云图中形成像素点,得到目标区域12的相关信息。基于上述原理,四个接收器111能够在点云图中形成四个像素点,使得分辨率提高了四倍,从而使激光雷达可配置为更精细的反应目标区域12的状态。
其中,采样单元32可采用模数转换器(Analog-to-Digital Converter,ADC),也可采用其他模拟信号解析器件,本申请实施例对此不作限定。
可选的,光电转换单元30包括雪崩光电二极管(Avalanche Photon Diode,APD)。
其中,雪崩光电二极管(Avalanche Photon Diode,APD)是一种利用雪崩倍增效应使光电流得到倍增的高灵敏度的探测器,具有超低噪声、高速配置为及高互阻抗增益的优势。
在其他实施例中,光电转换单元30还可采用单光子雪崩二极管、PIN光电二极管配置为及其他光电二极管,本领域技术人员还可根据实际应用需求进行选择,本申请实施例对此不作具体限定。
继续参考图3,可选的,放大单元31包括跨阻放大器(trans-impedance amplifier,TIA)311和二级放大器312,跨阻放大器311分别与光电转换单元30和二级放大器312电连接,二级放大器312与采样单元32电连接。
其中,跨阻放大器(trans-impedance amplifier,TIA)311,具有高带宽的优点,可应设置为高速电路。跨阻放大器311对来自光电转换单元30的电信号进行放大处理,二级放大器312对来自跨阻放大器311的电信号进行进一步放大处理,从而进一步增强信号强度。
需要注意的是,接收器111还可包括光电转换单元30、放大单元31和采样单元32之外的电路器件,例如接收器111还包括滤波电路,配置为对电信号进行滤波,本领域技术人员可根据实际需求进行设置,本申请实施例对此不作限定。
图4为本申请实施例提被配置为的一种光斑的结构示意图,如图3和图4所示,可选的,在接收模块11中,至少两个接收器111阵列排布,形成接收器阵列40,发射模块10发射的激光光束20在目标区域12形成有光斑41,接收器阵列40的轮廓形状与光斑41的形状相同。
示例性的,如图3和图4所示,配置为接收模块11包括四个接收器111为例,四个接收器111形成接收器阵列40。若发射模块10发射的激光光束20在目标区域12形成的光斑41为圆形,则设置接收器阵列40的轮廓也为圆形,从而有助于将回波光束21完全接收,提高探测精度。
在其他实施例中,发射模块10发射的激光光束20在目标区域12形成的光斑还可为正方形、长方形、椭圆形等其他任意形状,发射模块10发射的激光光束20的波长也可根据实际需求进行设置,例如,发射模块10发射的激光光束20的波长可配置为是1550nm,形成的圆形光斑;或者,发射模块10发射的激光光束20的波长也可配置为是905nm,形成长光斑,相应的,设置接收器阵列40的轮廓与光斑的形状相同,从而将回波光束21完全接收,接收器阵列40中接收器111的数量也可根据光斑的形状进行设置。
示例性的,图5为本申请实施例提被配置为的又一种接收模块的结构示意图,如图5所示,若发射模块10发射的激光光束20的波长为905nm,形成长光斑,可设置接收模块11包括八个接收器111配置为形成轮廓为长方形的接收器阵列40,从而将回波光束21完全接收,提高探测精度。在其他实施例中,本领域技术人员可根据实际情况对接收器阵列40进行设计,本申请实施例对此不作限定。
图6为本申请实施例提被配置为的另一种激光雷达的结构示意图,如图6所示,可选的,本申请实施例提被配置为的激光雷达还包括转动机构50,发射模块10和接收模块11与转动机构50固定连接,转动机构50设置为带动发射模块10和接收模块11围绕旋转轴501转动。
其中,如图6所示,转动机构50围绕旋转轴501转动,发射模块10和接收模块11随着转动机构50的旋转实现垂直于旋转轴501方向的扫描探测。
图7为本申请实施例提被配置为的又一种激光雷达的结构示意图,图8为本申请实施例提被配置为的另一种激光雷达在目标区域形成的光斑的结构示意图,如图6-8所示,可选的,本申请实施例提被配置为的激光雷达包括一个发 射模块10,发射模块10配置为固定的发射周期发射激光光束20,转动机构50在一个发射周期内转动的角度为θ1,发射模块10发射的激光光束20沿第一方向X的光束发散角为θ2,其中,θ1≤θ2,θ1小于等于θ2,第一方向X垂直于旋转轴501的延伸方向Z。
其中,通过设置转动机构50在一个发射周期内转动的角度θ1小于或等于发射模块10出射的激光光束20沿第一方向X的光束发散角θ2,使得发射模块10在相邻周期所形成的光斑之间存在交叠,从而确保目标区域12内的所有区域都能够被探测到。
示例性的,如图6-8所示,发射模块10配置为固定的发射周期发射激光光束20,转动机构50带动发射模块10围绕旋转轴501转动。发射模块10在一周期发射的激光光束20在目标区域12形成光斑42(如图7和图8中虚线所示),在下一周期,转动机构50带动发射模块10围绕旋转轴501转动θ1度,发射模块10发射的激光光束20在目标区域12形成光斑43(如图7和图8中实线所示),由于转动机构50在一个发射周期内转动的角度θ1小于发射模块10出射的激光光束20沿第一方向X的光束发散角θ2,因此,光斑42和光斑43之间存在交叠区域,随着转动机构50继续旋转,能够确保目标区域12内的所有区域都能够被探测到。
其中,旋转轴501的延伸方向Z和第一方向X可根据实际需求进行设置,例如,旋转轴501的延伸方向Z为竖直方向,第一方向X为水平方向;或者,旋转轴501的延伸方向Z为水平方向,第一方向X为竖直方向,本申请实施例对此不作限定。
图9为本申请实施例提被配置为的又一种激光雷达的结构示意图,如图9 所示,可选的,本申请实施例提被配置为的激光雷达包括多个发射模块10,多个发射模块10沿第二方向Y排列,其中,第二方向Y平行于旋转轴501的延伸方向Z。
其中,通过设置多个发射模块10沿第二方向Y排列,可实现多线激光雷达,从而能够识别物体的高度信息并获取周围环境的3D扫描图,增大激光雷达的探测范围。通过转动机构50带动发射模块10围绕旋转轴501转动,可实现大范围的扫描探测。
继续参考图9,可选的,每个发射模块10发射的激光光束20形成有相应的扫描范围,相邻两个发射模块10对应的扫描范围不同且存在交叠区域。
其中,通过设置相邻两个发射模块10对应的扫描范围不同且存在交叠区域,提高扫描范围的同时,能够确保目标区域12内的所有区域都能够被探测到。
图10为本申请实施例提被配置为的又一种激光雷达在目标区域形成的光斑的结构示意图,示例性的,如图9和图10所示,配置为激光雷达包括四个发射模块10为例,四个发射模块10分别为第一发射模块101、第二发射模块102、第三发射模块103和第四发射模块104。其中,第一发射模块101形成有相应的扫描范围201,第二发射模块102形成有相应的扫描范围202,第三发射模块103形成有相应的扫描范围203,第四发射模块104形成有相应的扫描范围204。由于相邻两个发射模块10对应的扫描范围不同且存在交叠区域,使得第一发射模块101发射的激光光束20在目标区域12形成的光斑44与第二发射模块102发射的激光光束20在目标区域12形成的光斑45之间存在交叠区域,第二发射模块102发射的激光光束20在目标区域12形成的光斑45之间存在交叠区域与第三发射模块103发射的激光光束20在目标区域12形成的光斑46之间存在交 叠区域,第三发射模块103发射的激光光束20在目标区域12形成的光斑46之间存在交叠区域与第四发射模块104发射的激光光束20在目标区域12形成的光斑47之间存在交叠区域,从而使得相邻的两个发射模块10发射的激光光束20在目标区域12形成的光斑具有重叠的部分,保证发射模块10发射的激光光束20的光束发散角θ2大于或等于激光雷达沿第二方向Y的分辨率P1,从而确保目标区域12内的所有区域都能够被探测到。
图11为本申请实施例提被配置为的又一种激光雷达的结构示意图,图12为本申请实施例提被配置为的又一种激光雷达在目标区域形成的光斑的结构示意图,如图11和图12所示,可选的,发射模块10配置为固定的发射周期发射激光光束20,转动机构50在一个发射周期内转动的角度为θ3,发射模块10对应的扫描范围沿第一方向X的光束发散角为θ4,其中,θ3≤θ4,θ3小于等于θ4第一方向X垂直于旋转轴501的延伸方向Z。
其中,通过设置转动机构50在一个发射周期内转动的角度θ3小于或等于发射模块10出射的激光光束20沿第一方向X的光束发散角θ4,使得发射模块10在相邻周期所形成的光斑之间存在交叠,从而确保目标区域12内的所有区域都能够被探测到。
示例性的,如图9-图12所示,配置为激光雷达包括四个发射模块10为例,发射模块10配置为固定的发射周期发射激光光束20,转动机构50带动发射模块10围绕旋转轴501转动。发射模块10在一周期发射的激光光束20在目标区域12形成光斑44、光斑45、光斑46和光斑47(如图12中虚线所示),在下一周期,转动机构50带动发射模块10围绕旋转轴501转动θ3度,发射模块10发射的激光光束20在目标区域12再次形成光斑44、光斑45、光斑46和光 斑47(如图12中实线所示),由于转动机构50在一个发射周期内转动的角度θ3小于发射模块10出射的激光光束20沿第一方向X的光束发散角θ4,因此,相邻周期形成的光斑44、光斑45、光斑46和光斑47之间存在交叠区域,保证发射模块10发射的激光光束20的光束发散角θ2大于或等于激光雷达沿第一方向X的分辨率P2,从而确保目标区域12内的所有区域都能够被探测到。
可选的,继续参考图1,本申请实施例提被配置为的激光雷达还包括控制器14,控制器14与发射模块10电连接,设置为控制发射模块10配置为固定的发射周期发射激光光束20。
可选的,继续参考图1,本申请实施例提被配置为的激光雷达还包括发射透镜15和接收透镜16,发射透镜15位于激光光束20的传播路径上,设置为将激光光束20进行准直,并发射至目标区域12;接收透镜16位于回波光束21的传播路径上,设置为将回波光束21进行准直,并发射至接收器111。
本申请实施例提被配置为的激光雷达可配置为为机械扫描雷达或振镜扫描雷达等,激光雷达还可包括其他器件,配置为实现激光雷达所具有的功能,本领域技术人员可根据实际需求进行设置,本申请实施例对此不作限定。
本申请实施例提被配置为的激光雷达,通过设置接收模块11包括至少两个接收器111,增大了接收模块11的接收面积,从而有助于将回波光束21完全接收,提高探测精度。同时,由于一个接收模块11包括至少两个接收器111,使得一束激光光束20能够产生至少两个像素点,提高了激光雷达的成像分辨率。通过保证发射模块10发射的激光光束20的光束发散角θ2大于或等于激光雷达的分辨率,从而确保目标区域12内的所有区域都能够被探测到。
注意,上述仅为本申请的较佳实施例及所运用技术原理。本领域技术人员 会理解,本申请不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本申请的保护范围。因此,虽然通过配置为上实施例对本申请进行了较为详细的说明,但是本申请不仅仅限于配置为上实施例,在不脱离本申请构思的情况下,还可配置为包括更多其他等效实施例,而本申请的范围由所附的权利要求范围决定。

Claims (10)

  1. 一种激光雷达,其中,包括至少一个发射模块和至少一个接收模块,所述发射模块与所述接收模块一一对应;
    所述发射模块设置为向目标区域发射激光光束,所述接收模块设置为接收对应所述发射模块发射的激光光束经所述目标区域反射的回波光束,其中,所述发射模块包括至少一个发射器,所述接收模块包括至少两个接收器,所述发射模块中的每个发射器与所述至少两个接收器对应。
  2. 根据权利要求1所述的激光雷达,其中,所述接收器包括光电转换单元、放大单元和采样单元;
    所述放大单元分别与所述光电转换单元和所述采样单元电连接;
    所述光电转换单元设置为将接收到的所述回波光束转换为电信号,所述放大单元设置为放大所述电信号,所述采样单元设置为对所述放大单元放大的电信号进行采样,生成采样信号;
    以及所述激光雷达还包括数据处理模块,所述数据处理模块与所述采样单元电连接,所述数据处理模块设置为对所述采样信号进行处理,生成点云数据。
  3. 根据权利要求2所述的激光雷达,其中,所述光电转换单元包括雪崩光电二极管。
  4. 根据权利要求2所述的激光雷达,其中,所述放大单元包括跨阻放大器和二级放大器,所述跨阻放大器分别与所述光电转换单元和所述二级放大器电连接,所述二级放大器与所述采样单元电连接。
  5. 根据权利要求1所述的激光雷达,其中,在所述接收模块中,至少两个接收器阵列排布,形成接收器阵列;
    所述发射模块发射的激光光束在所述目标区域形成有光斑;
    所述接收器阵列的轮廓形状与所述光斑的形状相同。
  6. 根据权利要求1所述的激光雷达,其中,所述激光雷达还包括转动机构,所述发射模块和所述接收模块与所述转动机构固定连接,所述转动机构设置为带动所述发射模块和所述接收模块围绕旋转轴转动。
  7. 根据权利要求6所述的激光雷达,其中,所述激光雷达包括一个所述发射模块;所述发射模块配置为固定的发射周期发射激光光束,所述转动机构在一个所述发射周期内转动的角度为θ1,所述发射模块发射的激光光束沿第一方向的光束发散角为θ2,其中,θ1小于等于θ2,所述第一方向垂直于所述旋转轴的延伸方向。
  8. 根据权利要求6所述的激光雷达,其中,所述激光雷达包括多个发射模块,多个所述发射模块沿第二方向排列,其中,所述第二方向平行于所述旋转轴的延伸方向。
  9. 根据权利要求8所述的激光雷达,其中,每个发射模块发射的激光光束形成有相应的扫描范围,相邻两个所述发射模块对应的扫描范围不同且存在交叠区域。
  10. 根据权利要求9所述的激光雷达,其中,所述发射模块配置为固定的发射周期发射激光光束;所述转动机构在一个所述发射周期内转动的角度为θ3,所述发射模块发射的激光光束沿第一方向的光束发散角为θ4,其中,θ3小于等于θ4,所述第一方向垂直于所述旋转轴的延伸方向。
PCT/CN2021/104440 2020-12-03 2021-07-05 一种激光雷达 WO2022116534A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022502095A JP7420915B2 (ja) 2020-12-03 2021-07-05 レーザーレーダー
KR1020227007281A KR20220079815A (ko) 2020-12-03 2021-07-05 레이저 레이더
EP21835147.6A EP4033270A4 (en) 2020-12-03 2021-07-05 LASER RADAR
US17/569,655 US20220179049A1 (en) 2020-12-03 2022-01-06 Laser radar

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202022900737.2 2020-12-03
CN202022900737.2U CN213986839U (zh) 2020-12-03 2020-12-03 一种激光雷达

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/569,655 Continuation US20220179049A1 (en) 2020-12-03 2022-01-06 Laser radar

Publications (1)

Publication Number Publication Date
WO2022116534A1 true WO2022116534A1 (zh) 2022-06-09

Family

ID=77240188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/104440 WO2022116534A1 (zh) 2020-12-03 2021-07-05 一种激光雷达

Country Status (2)

Country Link
CN (1) CN213986839U (zh)
WO (1) WO2022116534A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117368886A (zh) * 2022-06-30 2024-01-09 深圳市速腾聚创科技有限公司 一种激光发射模组及激光雷达

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105277949A (zh) * 2014-07-21 2016-01-27 北京自动化控制设备研究所 一种三维成像激光雷达系统
CN108614254A (zh) * 2018-08-13 2018-10-02 北京经纬恒润科技有限公司 一种激光雷达
CN110161517A (zh) * 2019-05-22 2019-08-23 深圳市速腾聚创科技有限公司 激光雷达系统和激光扫描控制方法
CN110161511A (zh) * 2019-04-30 2019-08-23 探维科技(北京)有限公司 一种激光雷达系统
US20190353868A1 (en) * 2018-05-18 2019-11-21 University Of Central Florida Research Foundation, Inc. Imaging-based transmitter for free-space optical communications
CN110940990A (zh) * 2018-09-21 2020-03-31 宁波舜宇车载光学技术有限公司 激光雷达系统及其探测方法和应用
CN210572728U (zh) * 2019-06-26 2020-05-19 深圳市镭神智能系统有限公司 一种激光雷达及激光雷达系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105277949A (zh) * 2014-07-21 2016-01-27 北京自动化控制设备研究所 一种三维成像激光雷达系统
US20190353868A1 (en) * 2018-05-18 2019-11-21 University Of Central Florida Research Foundation, Inc. Imaging-based transmitter for free-space optical communications
CN108614254A (zh) * 2018-08-13 2018-10-02 北京经纬恒润科技有限公司 一种激光雷达
CN110940990A (zh) * 2018-09-21 2020-03-31 宁波舜宇车载光学技术有限公司 激光雷达系统及其探测方法和应用
CN110161511A (zh) * 2019-04-30 2019-08-23 探维科技(北京)有限公司 一种激光雷达系统
CN110161517A (zh) * 2019-05-22 2019-08-23 深圳市速腾聚创科技有限公司 激光雷达系统和激光扫描控制方法
CN210572728U (zh) * 2019-06-26 2020-05-19 深圳市镭神智能系统有限公司 一种激光雷达及激光雷达系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117368886A (zh) * 2022-06-30 2024-01-09 深圳市速腾聚创科技有限公司 一种激光发射模组及激光雷达

Also Published As

Publication number Publication date
CN213986839U (zh) 2021-08-17

Similar Documents

Publication Publication Date Title
US9007600B2 (en) Laser radar system
WO2021196194A1 (zh) 激光收发系统、激光雷达及自动驾驶设备
CN112068150A (zh) 激光雷达和测距方法
CN110244279B (zh) 光线接收模块和激光雷达
CN114002703A (zh) 一种三维成像的全固态激光雷达装置
US20230119371A1 (en) Lidar and ranging method
WO2022116534A1 (zh) 一种激光雷达
US11668801B2 (en) LIDAR system
CN212008925U (zh) 一种多线激光雷达
US20210382147A1 (en) Lidar and detection apparatus thereof
KR20120069487A (ko) 능동형 광 레이더 장치
Xu et al. A Semi-coaxial MEMS-based LiDAR
US20220179049A1 (en) Laser radar
CN111766588A (zh) 全景激光雷达
WO2023066397A1 (zh) 一种片上相干检测的扫描同轴面阵收发机
US20220155442A1 (en) Light detection device, lidar device including the same, and method of measuring distance
CN213210475U (zh) 一种激光接收系统、激光雷达系统以及机器人设备
CN214669607U (zh) 基于mcp-pmt的光子计数激光雷达成像系统
US20210382150A1 (en) Wide fov lidar and vehicle with multiple galvanometer scanners
WO2022126429A1 (zh) 测距装置、测距方法和可移动平台
CN210514625U (zh) 一种多镜头多线激光雷达测距系统
CN210401654U (zh) 一种收发同轴的多线激光雷达
CN210243829U (zh) 一种激光雷达系统及激光测距装置
CN110726983A (zh) 一种激光雷达
WO2020142921A1 (zh) 一种光探测模组及测距装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022502095

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021835147

Country of ref document: EP

Effective date: 20220127

NENP Non-entry into the national phase

Ref country code: DE