WO2020142963A1 - 测距装置及移动平台 - Google Patents

测距装置及移动平台 Download PDF

Info

Publication number
WO2020142963A1
WO2020142963A1 PCT/CN2019/071051 CN2019071051W WO2020142963A1 WO 2020142963 A1 WO2020142963 A1 WO 2020142963A1 CN 2019071051 W CN2019071051 W CN 2019071051W WO 2020142963 A1 WO2020142963 A1 WO 2020142963A1
Authority
WO
WIPO (PCT)
Prior art keywords
board
circuit board
distance measuring
functional circuit
outer surfaces
Prior art date
Application number
PCT/CN2019/071051
Other languages
English (en)
French (fr)
Inventor
刘祥
周立奎
董帅
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2019/071051 priority Critical patent/WO2020142963A1/zh
Priority to CN201980005254.3A priority patent/CN111279213A/zh
Publication of WO2020142963A1 publication Critical patent/WO2020142963A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/46Indirect determination of position data
    • G01S17/48Active triangulation systems, i.e. using the transmission and reflection of electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers

Definitions

  • This application relates to the technical field of laser ranging, in particular to a ranging device and a mobile platform.
  • Lidar is a perception system for the outside world, which can obtain three-dimensional three-dimensional information of the outside world.
  • the lidar is based on the principle of time of flight (TOF)
  • TOF time of flight
  • the embodiments of the present application provide a distance measuring device and a mobile platform.
  • the distance measuring device includes a distance measuring module, a scanning module, and a circuit board.
  • the distance measuring module includes a distance measuring housing having a plurality of outer surfaces and a distance measuring assembly provided on the distance measuring housing. The distance measuring assembly is used to emit a laser pulse to the probe, and receive the laser pulse reflected by the probe, and determine the distance between the probe and the distance measuring device according to the reflected laser pulse.
  • the scanning module includes a scanning housing having a plurality of outer sides and a scanning component disposed on the scanning housing. The scanning component is used to change the propagation direction of the laser pulse passing through the scanning module.
  • the circuit board assembly includes a plurality of electrically connected function circuit boards, the plurality of function circuit boards are respectively disposed on at least one of the outer surfaces, or at least one of the outer surfaces and at least one of the outer surfaces . Wherein, at least two of the outer surfaces provided with the functional circuit board are adjacently arranged, and/or, at least two of the outer sides provided with the functional circuit board are adjacently arranged, and/or At least one of the outer surfaces provided with the functional circuit board is located close to at least one of the outer sides provided with the functional circuit board.
  • the mobile platform includes a body and a distance measuring device installed on the body.
  • the distance measuring device includes a distance measuring module, a scanning module and a circuit board.
  • the distance measuring module includes a distance measuring housing having a plurality of outer surfaces and a distance measuring assembly disposed on the distance measuring housing.
  • the distance measuring assembly is used to emit a laser pulse to the probe, and receive the laser pulse reflected by the probe, and determine the distance between the probe and the distance measuring device according to the reflected laser pulse.
  • the scanning module includes a scanning housing having a plurality of outer sides and a scanning component disposed on the scanning housing. The scanning component is used to change the propagation direction of the laser pulse passing through the scanning module.
  • the circuit board assembly includes a plurality of electrically connected function circuit boards, the plurality of function circuit boards are respectively disposed on at least one of the outer surfaces, or at least one of the outer surfaces and at least one of the outer surfaces . Wherein, at least two of the outer surfaces provided with the functional circuit board are adjacently arranged, and/or, at least two of the outer sides provided with the functional circuit board are adjacently arranged, and/or At least one of the outer surfaces provided with the functional circuit board is located close to at least one of the outer sides provided with the functional circuit board.
  • the functional circuit board is provided on the outer surface or the outer surface, which shortens the signal transmission path between the functional circuit board and the distance measuring component or between the functional circuit board and the scanning component.
  • At least two outer surfaces provided with a functional circuit board are arranged adjacently, or at least two outer sides provided with a functional circuit board are arranged adjacently, or one outer side provided with a functional circuit board is arranged close to the outer surface, so that The signal transmission path between the two functional circuit boards is short, which reduces the possibility of signal interference during transmission, thereby improving the detection accuracy of the distance measuring device.
  • FIG. 1 is a schematic structural diagram of a mobile platform according to an embodiment of the present application.
  • FIGS. 2 to 4 are schematic perspective assembly views of a distance measuring device according to an embodiment of the present application.
  • FIG. 5 is an exploded perspective view of the distance measuring device according to the embodiment of the present application.
  • FIG. 6 is a schematic diagram of the ranging principle of the ranging device according to the embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a laser emitting board, an analog signal board, and a distance measuring assembly according to an embodiment of the present application;
  • FIG 9 and 10 are exploded perspective views of the distance measuring device according to the embodiment of the present application.
  • the first feature “above” or “below” the second feature may be that the first and second features are in direct contact, or the first and second features are indirectly intermediary contact.
  • the first feature is “above”, “above” and “above” the second feature may be that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • the first feature is “below”, “below” and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontal than the second feature.
  • the mobile platform 1000 includes a body 200 and a distance measuring device 100.
  • the mobile platform 1000 may be a mobile platform 1000 such as an aircraft, a vehicle, or a ship, for example, it may be an unmanned aerial vehicle, an unmanned vehicle, an unmanned boat, or the like.
  • the body 200 may be an installation carrier of the mobile platform 1000, for example, when the mobile platform 1000 is an unmanned aerial vehicle, the body 200 may be a fuselage or a fuselage equipped with a gimbal.
  • the distance measuring device 100 may specifically be detachably mounted on the body 200, for example, installed on the body 200 by snapping, screwing, or the like.
  • the distance measuring device 100 may be used to detect the environment around the mobile platform 1000.
  • the distance measuring device 100 may be used to detect depth information of objects around the mobile platform 1000, that is, the distance between the object and the distance measuring device 100.
  • the mobile platform 1000 can further perform operations such as obstacle avoidance, modeling, and trajectory selection according to the depth information. It can be understood that one mobile platform 1000 may be configured with one or more ranging devices 100, and different ranging devices 100 may be used to detect objects in different orientations.
  • the distance measuring device 100 includes a distance measuring module 10, a scanning module 20 and a circuit board assembly 30.
  • the ranging module 10 includes a ranging housing 11 and a ranging assembly 12.
  • the ranging housing 11 has a plurality of outer surfaces 111.
  • the ranging assembly 12 is disposed on the ranging housing 11.
  • the distance measuring assembly 12 is used to emit laser pulses to the detection object, and receive the laser pulses reflected by the detection object, and determine the distance between the detection object and the distance measuring device 100 according to the reflected laser pulses.
  • the scanning module 20 includes a scanning housing 21 and a scanning assembly 22.
  • the scanning housing 21 has a plurality of outer sides 211.
  • the scanning assembly 22 is disposed on the scanning housing 21.
  • the scanning component 22 is used to change the propagation direction of the laser pulse passing through the scanning component 22.
  • the circuit board assembly 30 includes a plurality of electrically connected functional circuit boards 3a.
  • the plurality of functional circuit boards 3a are respectively disposed on at least one outer surface 111, or the plurality of functional circuit boards 3a are respectively disposed on at least one outer surface 111 and at least one outer side surface 211.
  • At least two of the outer surfaces 111 of the functional circuit board 3a are provided adjacently, and/or at least two of the outer side 211 of the functional circuit board 3a are provided adjacently, and/or functional circuits are provided At least one of the outer surfaces 111 of the board 3a is disposed close to at least one of the outer sides 211 provided with the functional circuit board 3a.
  • the multiple functional circuit boards 3a on one outer surface 111 or one outer side 211 may be one circuit board, and The functions of multiple functional circuit boards 3a are integrated.
  • the functional circuit board 3a is provided on the outer surface 111 or the outer side surface 211, which shortens the signal transmission path between the functional circuit board 3a and the distance measuring assembly 12, or the functional circuit board 3a and the scanning assembly 22
  • at least two outer surfaces 111 provided with the functional circuit board 3a are adjacently arranged, or at least two outer sides 211 provided with the functional circuit board 3a are adjacently arranged, or one outer side 211 provided with the functional circuit board 3a
  • Being disposed close to the outer surface 111 makes the signal transmission path between the plurality of functional circuit boards 3a shorter, reduces the possibility of signal interference during transmission, and further improves the detection accuracy of the distance measuring device 100.
  • the ranging module 10 includes a ranging housing 11 and a ranging assembly 12.
  • the ranging housing 11 can be used to house the ranging assembly 12, or the ranging assembly 12 can be built into the ranging casing 11.
  • the ranging housing 11 includes multiple outer surfaces 111.
  • the shapes of the ranging housing 11 are different.
  • the shapes and distribution states of the multiple outer surfaces 111 may be different.
  • the ranging housing 11 is substantially rectangular parallelepiped, so that the outer surface 111 of the ranging housing 11 is relatively flat, and it is easy to dispose the circuit board assembly 30 on the outer surface 111.
  • the outer surface 111 of the ranging housing 11 may also be provided with a fixing and positioning structure, so as to easily install the ranging module 10 on other structures, such as the housing 50 of the ranging device 100. It can be understood that adjacent and non-adjacent outer surfaces 111 are necessarily present in the plurality of outer surfaces 111, where adjacent edges have overlapping portions of the edges of the two outer surfaces 111, and non-adjacent means that the edges of the two outer surfaces 111 do not There is a coincident part.
  • the distance measuring assembly 12 may be at least partially contained in the cavity formed by the distance measuring housing 11 to reduce the influence of the external environment on the distance measuring assembly 12, such as the influence of water vapor, dust, and stray light on the distance measuring assembly 12.
  • the distance measuring assembly 12 is used to emit laser pulses to the detection object, and receive the laser pulses reflected by the detection object, and determine the distance between the detection object and the distance measuring device 100 according to the reflected laser pulses.
  • the distance measuring assembly 12 includes a light source device 121, an optical path changing element 122, a collimating element 123 and a detector 124.
  • the light source device 121 can be used to emit a sequence of laser pulses.
  • the laser pulses emitted by the light source device 121 are narrow-bandwidth light beams with wavelengths outside the visible light range.
  • the light source device 121 can be installed on the ranging housing 11, and the laser pulse sequence emitted by the light source device 121 can enter the cavity of the ranging housing 11.
  • the light source device 121 may include a laser diode (Laser diode), through which the laser light of the nanosecond level is emitted.
  • the laser pulse emitted by the light source device 121 lasts for 10 ns.
  • the optical path changing element 122 is installed in the ranging housing 11 and is disposed on the light exiting optical path of the light source device 121.
  • the optical path changing element 122 is used to change the propagation direction of the laser pulse emitted by the light source device 121.
  • the optical path changing element 122 may specifically be a mirror or a half mirror, the optical path changing element 122 includes a reflecting surface, and the light source device 121 is opposite to the reflecting surface.
  • the collimating element 123 is disposed on the light exiting light path of the light source device 121 and is used to collimate the laser pulse emitted from the light source device 121.
  • the collimating element 123 may be installed in the cavity of the ranging housing 11 and located at an end close to the scanning module 20.
  • the collimating element 123 can also be used to converge at least a part of the laser pulse reflected back by the probe.
  • the collimating element 123 may be a collimating lens or other element capable of collimating the light beam.
  • the detector 124 may be used to receive the laser pulse reflected back by the probe through the collimating element 123.
  • the light source device 121 emits a laser pulse, which is collimated by the collimating element 123 after the optical path changing element 122 changes the optical path direction (which can be changed by 90 degrees), and the collimated laser pulse is scanned After the component 22 changes the transmission direction, it is emitted and projected onto the detection object. At least a part of the laser pulse reflected by the detection object after passing through the scanning component 22 is converged on the detector 124 by the collimating element 123.
  • the distance measuring module 10 calculates the movement time according to the time information of the laser pulse emitted by the light source device 121 and the time information of the laser pulse received by the detector 124, so as to determine the distance between the detected object and the distance measuring device 100.
  • the scanning module 20 includes a scanning housing 21 and a scanning component 22.
  • the scanning housing 21 can be used to house the scanning assembly 22, or the scanning assembly 22 can be built into the scanning housing 21.
  • the scanning housing 21 includes a plurality of outer sides 211.
  • the shape of the scanning housing 21 is different, and the shape and distribution of the plurality of outer sides 211 may also be different.
  • the scanning housing 21 is also substantially rectangular parallelepiped, the scanning housing 21 and the distance measuring housing 11 can be disposed close to and spaced apart, and the scanning housing 21 and the distance measuring housing 11 can be formed separately Two independent housings, the scanning housing 21 and the ranging housing 11 may be combined with each other or separated from each other.
  • the plurality of outer surfaces 111 and the plurality of outer side surfaces 211 there are an outer surface 111 and an outer side surface 211 disposed close to each other, when there is no remaining outer surface 111 or outer side surface 211 between the edges of one outer surface 111 and one outer side surface 211 , It can be considered that the one outer surface 111 and the one outer side surface 211 are the outer surface 111 and the outer side surface 211 close to each other, as shown in FIG.
  • the outer surface 111b and the outer side surface 211a are close to the outer surface 111c and the outer side surface 211b
  • the outer surface 111b and the outer side 211b are close to each other
  • the outer surface 111c and the outer side 211a are close to each other
  • the outer surface 111a and the outer side 211a are not close to each other
  • the outer surface 111a and the outer side 211b are not close to each other.
  • the scanning housing 21 and the distance measuring housing 11 may be an integrally formed complete housing, in which case, the outer surface 111 and the outer side surface 211 are connected.
  • the circuit board assembly 30 includes a plurality of functional circuit boards 3 a, a plurality of functional circuit boards 3 a, a plurality of functional circuit boards 3 a and the distance measuring module 10, a plurality of functional circuit boards Both the 3a and the scanning module 20 can be electrically connected for signal transmission, and the electrical connection can be through wires.
  • the plurality of functional circuit boards 3a may be a printed circuit board, a flexible circuit board, a rigid-flex board, or the like. Different functional devices may be provided on different functional circuit boards 3a. For example, the above-mentioned power supply device 121, detector 124, etc. may be provided on the functional circuit board 3a.
  • the functional circuit board 3a is provided on the outer surface 111 or the outer side surface 211.
  • the functional circuit board 3a may be fixed on the outer surface 111 of the ranging housing 11 or the outer side 211 of the scanning housing 21 by screws or other fasteners;
  • the functional circuit board 3a is fixed on the housing 50 (see FIG. 9 and FIG. 10). After the distance measuring device 100 is completely assembled, the functional circuit board 3a is located on the outer surface 111 or the outer side 211.
  • the plurality of functional circuit boards 3a may be respectively disposed on at least one outer surface 111, and the plurality of functional circuit boards 3a may also be disposed on at least one outer surface 111 and at least one outer side surface 211, respectively.
  • one outer surface 111 is provided with multiple functional circuit boards 3a; or multiple outer surfaces 111 are provided with functional circuit boards 3a.
  • the functional circuit board 3 a includes a first functional circuit board 31 and at least one second functional circuit board 32.
  • the first functional circuit board 31 and the at least one second functional circuit respectively The board 32 is connected and placed close to each other.
  • the first functional circuit board 31 and the second functional circuit board 32 may be electrically connected.
  • the first functional circuit board 31 and the second functional circuit board 32 are arranged close to each other, which may be that the first functional circuit board 31 and the second functional circuit board 32 are arranged on the same outer surface 111 at the same time, or both on the same outer side 211 Or, they are respectively provided on two adjacent outer surfaces 111, or are respectively provided on two adjacent outer sides 211, or are respectively provided on an outer surface 111 and an outer side 211 which are close to each other.
  • the physical transmission path of the electrical connection between the first functional circuit board 31 and the second functional circuit board 32 can be shorter, and the specific functions and types of the first functional circuit board 31 and the second functional circuit board 32 can be based on actual measurement
  • the design requirements of the distance module 10 and the scanning module 20 are set, and are not limited herein.
  • the first functional circuit board 31 includes a signal digitizing board 311.
  • the second functional circuit board 32 includes a laser emitting board 321.
  • the laser emitting plate 321 is disposed on an outer surface 111, and the laser emitting plate 321 is used to drive the light source device 121 to emit laser pulses.
  • the signal digitizing board 311 is used to control the laser emitting board 321 to drive the light source device 121 to emit laser pulses.
  • the signal digitizing board 311 and the laser emitting board 321 are disposed on the same outer surface 111 or respectively disposed on two adjacent outer surfaces 111. Or the signal digitizing board 311 is provided on one outer side 211 close to the laser emitting board 321.
  • the laser emitting board 321 may be electrically connected to the light source device 121, for example, the light source device 121 may be installed on the laser emitting board 321 (as shown in FIG. 8), and the power source of the light source device 121, the driving chip, etc. may also be integrated on the laser emitting board 321 Electronic Components.
  • the signal digitizing board 311 is electrically connected to the laser emitting board 321, and the signal digitizing board 311 can send a driving pulse to the laser emitting board 321, and the laser emitting board 321 further drives the light source device 121 to emit laser pulses according to the driving pulse, for example, when the driving pulse is high Normally, the light source device 121 emits laser light outward.
  • the emission signal edge of the laser pulse of the light source device 121 needs to be as small as possible, that is, the driving signal edge of the driving pulse needs to be as small as possible (that is, the driving signal needs to be as fast as possible).
  • the transmission path of the small driving pulse between the signal digitizing board 311 and the laser emitting board 321, for example, the signal digitizing board 311 and the laser emitting board 321 can be arranged as close as possible.
  • the laser emitting plate 321 is disposed on an outer surface 111, so that the laser emitting plate 321 is easily connected to the light source device 121, and easily meets the optical requirements of the light source device 121 to emit laser pulses.
  • the signal digitizing board 311 and the laser emitting board 321 may be disposed on the same outer surface 111, and the two may be disposed side by side or stacked.
  • the signal digitizing board 311 and the laser emitting board 321 may be disposed on two adjacent outer surfaces 111, respectively.
  • the signal digitizing board 311 can also be disposed on one outer side 211 close to the laser emitting board 321.
  • the above setting methods can make the distance between the signal digitizing board 311 and the laser emitting board 321 closer, the length of the connecting line between the two is shorter, and the driving pulse is not easily disturbed and distorted during the transmission process, thereby improving the distance measurement The detection accuracy of the device 100.
  • the second functional circuit board 32 further includes an analog signal board 322.
  • the analog signal board 322 is disposed on an outer surface 111.
  • the analog signal board 322 is used to generate an analog electric signal according to the reflected laser pulse.
  • the signal digitizing board 311 is connected to the analog signal board 322, and the signal digitizing board 311 is used to convert the analog electrical signal into a digital electrical signal.
  • the signal digitizing board 311 and the analog signal board 322 are disposed on the same outer surface 111 or on two adjacent outer surfaces 111 respectively. Alternatively, the signal digitizing board 311 is disposed on an outer side 211 close to the analog signal board 322.
  • the analog signal board 322 may be connected with a detector 124, for example, the detector 124 is disposed on the analog signal board 322 (as shown in FIG. 8).
  • the analog signal board 322 can be converted into an analog electrical signal characterizing the laser pulse according to the laser pulse received by the detector 124.
  • An analog amplifier circuit can also be provided on the analog signal board 322 to amplify the analog electrical signal to facilitate the signal digitizing board 311 Digitize the analog electrical signal.
  • the gain of the analog amplifier circuit is relatively large, and it is necessary to amplify a very weak signal to meet the input requirements of the signal digitizing board 311, which is relatively susceptible to interference. Therefore, the signal digitizing board 311 and the analog signal board 322 need to be arranged closer.
  • the signal digitizing board 311 and the analog signal board 322 may be disposed on the same outer surface 111, and the two may be disposed side by side or stacked.
  • the signal digitizing board 311 and the analog signal board 322 may also be provided on two adjacent outer surfaces 111, respectively.
  • the signal digitizing board 311 can also be disposed on an outer side 211 close to the analog signal board 322.
  • the above setting methods can make the distance between the signal digitizing board 311 and the laser emitting board 321 closer, the length of the connecting line between the two is shorter, reducing the transmission path of the analog signal, the analog signal is distorted or digitized before digitization The interference may be small, thereby improving the detection accuracy of the distance measuring device 100.
  • the analog signal board 322 and the laser emitting board 321 are respectively disposed on two adjacent outer surfaces 111.
  • the analog signal board 322 and the laser emitting board 321 are both disposed on the outer surface 111, so that the analog signal board 322 and the laser emitting board 321 are easily connected to the detector, the light source device, etc. in the ranging assembly 12.
  • the analog signal board 322 is disposed adjacent to the laser emitting board 321, which is convenient for designing the optical path of the distance measuring assembly 12.
  • the outer surface 111 includes an end surface 1111 and a side surface 1112.
  • the end surface 1111 is perpendicular to the direction in which the laser pulse is emitted from the distance measuring module 10, and the side surface 1112 is parallel to the direction in which the laser pulse is emitted from the distance measuring module 10.
  • the direction in which the laser pulse emerges from the ranging module 10 is shown in the Z direction shown in FIG. 8.
  • One of the analog signal board 322 and the laser emitting board 321 is provided on the end surface 1111, and the other is provided on the side surface 1112.
  • the end surface 1111 may be in contact with the side surface 1112.
  • the ranging housing 11 is substantially rectangular parallelepiped, and may have six side wall surfaces.
  • the end surface 1111 may be a side wall surface of the rectangular parallelepiped, the side surface 1112 It may be the other side wall surface of the rectangular parallelepiped, and the orientations of the two are different. It can be understood that the specific shapes of the end surface 1111 and the side surface 1112 of the ranging housing 11 with different shapes may be different.
  • One of the analog signal board 322 and the laser emitting board 321 is provided on the end surface 1111, and the other may be provided on any one of the side surfaces 1112.
  • the end surface 1111 is perpendicular to the direction from which the laser pulse exits the ranging module 10, and the side surface 1112 is parallel to the direction from which the laser pulse exits from the ranging module 10, the end surface 1111 is perpendicular to the side surface 1112, and the analog signal board 322 and the laser emitting board 321 It is also approximately vertical to facilitate the design of the optical path of the ranging assembly 12. More specifically, in the examples shown in FIGS.
  • the laser emitting board 321, the signal digitizing board 311 and the analog signal board 322 are respectively provided on the three outer surfaces 111, and the analog signal board 322 is provided on the end surface 1111
  • the laser emitting board 321 is provided on one side surface 1112, and the signal digitizing board 311 is provided on the other side wall surface, wherein the side wall surface where the laser emitting board 321 is located is adjacent to the side wall surface where the signal digitizing board 311 is located.
  • the laser emitting board 321 is disposed on the end surface 1111
  • the analog signal board 322 is disposed on one side 1112
  • the signal digitizing board 311 is disposed on the other side wall surface, wherein the analog signal board 322 The side wall surface where it is located is adjacent to the side wall surface where the signal digitizing board 311 is located.
  • the distance measuring device 100 further includes a shield.
  • the shielding cover is fixed on the ranging module 10.
  • the shielding cover at least partially covers the analog signal board 322.
  • the shielding cover is used to shield at least electromagnetic interference to the analog signal board 322.
  • the gain of the amplifier circuit on the analog signal board 322 is relatively large, and the analog electrical signal is susceptible to external interference, such as electromagnetic interference.
  • Electromagnetic interference may originate from other functional circuit boards 3a, the scanning module 20, and the distance measuring module In group 10, etc., the shielding cover can at least shield the electromagnetic interference to the analog signal board 322 and avoid the distortion of the analog electric signal.
  • the shielding case may be made of a conductive material such as metal, and the shielding case may be in conduction with the ranging housing 11.
  • the second functional circuit board 32 further includes a data interface board 323.
  • the data interface board 323 is used to transmit data and/or electrical energy with external devices.
  • the data interface board 323 and the signal digitizing board 311 are respectively arranged on the same outer surface 111 or respectively arranged on two adjacent outer surfaces 111.
  • the data interface board 323 and the signal digitizing board 311 are respectively arranged on the same outer side 211 or respectively arranged on two adjacent outer sides 211.
  • the data interface board 323 and the signal digitizing board 311 are respectively disposed on an outer surface 111 and an outer side surface 211 adjacent to each other.
  • the data interface board 323 includes a physical interface for transmitting data and/or electrical energy and related functional chips.
  • the data interface board 323 needs to be connected to the signal digitizing board 311, and the digital signal generated by the signal digitizing board 311 needs to be transmitted to the data interface
  • the board 323 is further transmitted to external equipment, and the transmission path of the digital signal between the signal digitizing board 311 and the data interface board 323 should be as short as possible to reduce signal loss and at the same time reduce the electromagnetic interference emitted by the digital signal during transmission .
  • the data interface board 323 can also transmit electrical energy to the signal digitizing board 311. Since the power consumption of the signal digitizing board 311 is high and the power required is more, the data interface board 323 and the signal digitizing board 311 are also required.
  • the connection path is short to reduce the loss of electrical energy and external radiation during transmission.
  • the data interface board 323 and the signal digitizing board 311 may be disposed on the same outer surface 111, for example, side by side or stacked; the data interface board 323 and the signal digitizing board 311 may also be disposed on two adjacent outer surfaces 111, respectively;
  • the data interface board 323 and the signal digitizing board 311 can also be arranged on the same outer side 211; the data interface board 323 and the signal digitizing board 311 can also be arranged on the two adjacent outer sides 211; the data interface board 323 and the signal
  • the digitizing board 311 may also be disposed on an adjacent outer surface 111 and an outer side surface 211, respectively.
  • the data interface board 323 and the signal digitizing board 311 are arranged close to each other in the manner described above, so that the data and power transmission path between the data interface board 323 and the signal digitizing board 311 is short.
  • the signal digitizing board 311 and the data interface board 323 are respectively disposed on the two outer surfaces 111.
  • the second functional circuit board 32 further includes a detection board 324.
  • the detection board 324 is used to detect the scanning parameters of the scanning module 20.
  • the detection board 324 and the signal digitizing board 311 are disposed on the same outer surface 111 or on two adjacent outer surfaces 111 respectively. Or, the detection board 324 and the signal digitizing board 311 are disposed on the same outer side 211 or on two adjacent outer sides 211 respectively. Or, the detection board 324 and the signal digitizing board 311 are respectively disposed on an outer side 211 and an outer surface 111 adjacent to each other.
  • the scanning parameters of the scanning module 20 may be parameters that are used to characterize the direction in which the laser pulse is emitted from the distance measuring device 100 and the direction in which the laser pulse received by the distance measuring device 100 is reflected back.
  • the detection board 324 may send the detected scanning parameters to the signal digitizing board 311.
  • the signal transmission path of the detection board 324 and the signal digitizing board 311 also needs to be as short as possible to ensure that the scanning parameters received by the signal digitizing board 311 are more accurate.
  • the detection board 324 and the signal digitizing board 311 can be disposed on the same outer surface 111; the detection board 324 and the signal digitizing board 311 can also be disposed on two adjacent outer surfaces 111; the detection board 324 and the signal digitizing board 311 are also It can be arranged on the same outer side 211; the detection board 324 and the signal digitizing board 311 can also be arranged on two adjacent outer sides 211; the detection board 324 and the signal digitizing board 311 can also be arranged on the adjacent one respectively
  • the outer side surface 211 is on an outer surface 111.
  • the detection board 324 and the signal digitizing board 311 are arranged close to each other in the manner described above, so that the path for transmitting scanning parameters between the detection board 324 and the signal digitizing board 311 is short.
  • the detection board 324 is disposed on an outer side 211
  • the signal digitizing board 311 is disposed on an outer surface 111
  • the outer side 211 provided with the detection board 324 and the signal digitizing board 311 are provided
  • the outer surface 111 is adjacent.
  • the scanning component 22 includes an optical element 221, a code wheel and a photoelectric switch.
  • the scanning module 20 performs scanning by rotating the optical element 221.
  • the code wheel rotates synchronously with the optical element 221, the photoelectric switch is used to detect the rotation parameters of the code wheel, and the photoelectric switch is connected to the detection board 324.
  • the optical element 221 can be any element that can refract light, for example, it can be a prism. When the optical element 221 rotates to different angles, the optical element 221 has a different refraction effect on the laser pulse, which can be changed by changing the rotation parameters of the optical element 221 Change the scanning angle.
  • the code wheel rotates synchronously with the optical element 221, and the rotation parameter of the optical element 221 can be obtained by detecting the rotation parameter of the code wheel.
  • the code disc may be formed with a light-transmitting area and a non-light-transmitting area. When the code disc is rotated, the light-transmitting area and the non-light-transmitting area alternately rotate between the light emitting end and the light receiving end of the photoelectric switch to detect
  • the board 324 obtains the rotation parameters of the code wheel by analyzing the optical signal received by the light receiving end, that is, the rotation parameters of the optical element 221, and can further obtain the scan parameters of the scanning module 20 through the rotation parameters of the optical element 221.
  • the functional circuit board 3 a further includes a third functional circuit board 33.
  • the third functional circuit board 33 is connected to one of the at least one second functional circuit board 32 and is located close to .
  • the third functional circuit board 33 may be electrically connected to the second functional circuit board 32.
  • the third functional circuit board 33 and the second functional circuit board 32 may be disposed close to each other.
  • the third functional circuit board 33 and the second functional circuit board 32 may be disposed at the same time.
  • the same outer surface 111, or at the same time on the same side surface 1112, or on the two adjacent outer surfaces 111, or on the two adjacent outer surfaces 211, or near each An outer surface 111 and an outer side surface 211 are provided.
  • the physical transmission path of the electrical connection between the third functional circuit board 33 and the second functional circuit board 32 may be shorter, and the specific functions and types of the third functional circuit board 33 and the second functional circuit board 32 may be based on actual measurement
  • the design requirements of the distance module 10 and the scanning module 20 are set, and are not limited herein.
  • the scanning component 22 includes a driver 222 and an optical element 221.
  • the driver 222 is disposed in the scanning housing 21, and the driver 222 is used to drive the optical element 221 to rotate to change the propagation direction of the laser pulse passing through the optical element 221.
  • the second functional circuit board 32 includes a data interface board 323, which is used to transmit data and/or power with external devices.
  • the third functional circuit board 33 includes a driving board 331 for driving the driver 222 to rotate. Wherein, the driving board 331 and the data interface board 323 are disposed on the same outer surface 111 or on two adjacent outer surfaces 111 respectively.
  • the driving board 331 and the data interface board 323 are disposed on the same outer side 211 or on two adjacent outer sides 211 respectively. Or, the driving board 331 and the data interface board 323 are respectively disposed on an outer side 211 and an outer surface 111 which are substantially vertical.
  • the driver board 331 is used to drive the driver 222 to rotate.
  • the driver board 331 needs to transmit more power to the driver 222, and the power of the driver board 331 is obtained from the external device through the data interface board 323. Therefore, the data interface board 323 and the driver board 331 are required to be close Set to reduce the loss and external radiation during the transmission of electrical energy between the data interface board 323 and the driver board 331.
  • the driving board 331 and the data interface board 323 may be disposed on the same outer surface 111; the driving board 331 and the data interface board 323 may also be disposed on two adjacent outer surfaces 111; the driving board 331 and the data interface board 323 may also It can be arranged on the same outer side 211; the driving board 331 and the data interface board 323 can also be arranged on two adjacent outer sides 211; the driving board 331 and the data interface board 323 can also be arranged on a substantially vertical one
  • the outer side surface 211 is on an outer surface 111.
  • the driving board 331 and the data interface board 323 are arranged close to each other in the above-mentioned manner, so that the path for transmitting electrical energy between the driving board 331 and the data interface board 323 is short.
  • the driving board 331 is provided on an outer side 211 and the data interface board 323 is provided on an outer surface 111.
  • the driving board 331 is disposed on one outer side surface 211 with the shortest connection distance to the driver 222. It can be understood that the driving board 331 needs to transmit more power to the driver 222, and the driving board 331 and the driver 222 also need to be arranged as close as possible to reduce the loss of power in the transmission process.
  • the driving board 331 may be disposed on an outer side surface 211 having the shortest connection distance with the driver 222, and a through hole may be opened on the outer side surface 211 to facilitate the wire passing through the through hole to connect the driving board 331 with Drive 222.
  • the driver 222 may be a motor, the rotor of the motor may include a hollow structure, the optical element 221 may be accommodated in the rotor, and the type of the driving board 331 may specifically be an electrically adjustable driving board.
  • the driver 222 may cause the scanning housing 21 to vibrate during operation.
  • the single functional circuit board 3a may only be fixed at It is not necessary to fix the same functional circuit board 3a on the scanning housing 21 and the distance measuring housing 11 at the same time.
  • the distance measuring device 100 further includes a housing 50 and a heat sink 40.
  • the scanning module 20, the distance measuring module 10 and the circuit board assembly 30 are all contained in the housing 50.
  • the heat sink 40 is disposed between the target circuit board 34 and the housing 50 in the circuit board assembly 30 to conduct the heat of the target circuit board 34 to the housing 50.
  • the target circuit board 34 may be any one or more of the plurality of functional circuit boards 3a
  • the heat dissipation member 40 may be a thermally conductive block provided on the housing 50, and some components on the target circuit board 34 may directly communicate with the thermally conductive block Fitting;
  • the heat sink 40 may also be a thermally conductive material filled between the target circuit board 34 and the housing 50, such as thermally conductive mud, thermally conductive grease, or the like.
  • the housing 50 may also be made of a material with a high thermal conductivity, such as copper, aluminum, or other materials.
  • the heat generated by the target circuit board 34 can be transferred to the housing 50 in a timely manner and radiated to the outside world, reducing the temperature in the housing 50 and improving the scanning module 20 , The working environment of the ranging module 10 and the circuit board assembly 30.
  • the target circuit board 34 includes a first target circuit board 341 and a second target circuit board 342.
  • the first target circuit board 341 is provided on one outer surface 111
  • the second target circuit board 342 is provided on one outer side 211.
  • the first target circuit board 341 is disposed opposite to the second target circuit board 342.
  • the first target circuit board 341 and the second target circuit board 342 may be functional circuit boards 3a that generate a large amount of heat.
  • the first target circuit board 341 and the second target circuit board 342 are disposed opposite to each other, that is, the first target circuit board 341
  • the distance from the second target circuit board 342 can be far, and the heat dissipated by the two is dispersed to avoid local overheating in the housing 50.
  • the first target circuit board 341 includes a signal digitizing board 311.
  • the signal digitizing board 311 can be used to control the distance measuring assembly 12 to emit laser pulses, control the rotation speed and direction of the driver 222 (send control signals to the driving board 331 to control the rotation speed and direction of the driver 222), and identify the rotation speed and phase of the driver 222 ( The rotation speed and phase of the driver 222 can be detected by the detection board 324) and other functions.
  • Some devices on the signal digitizing board 311 (such as processors, memories, etc.) have high power consumption and generate a lot of heat during operation.
  • the heat dissipation member 40 can ensure that the heat generated by the signal digitizing board 311 is conducted to the outside in a timely manner.
  • the scanning assembly 22 further includes a driver 222 and an optical element 221.
  • the driver 222 is disposed in the scanning housing 21.
  • the driver 222 is used to drive the optical element 221 to rotate to change the propagation direction of the laser pulse passing through the optical element 221.
  • the second target circuit board 342 includes a driving board 331 for driving the driver 222 to rotate.
  • the power consumption of some devices on the driving board 331 is also relatively high, and the heat sink 40 can ensure that the heat generated by the driving board 331 is transmitted to the outside in a timely manner.
  • the driver 222 may be the above-mentioned motor
  • the driving board 331 may be the above-mentioned ESC driving board.
  • the housing 50 includes opposite top and bottom walls 521 and 511, and the heat dissipating member 40 is disposed between the first target circuit board 341 and the top wall 521; and/or, The heat sink 40 is disposed between the second target circuit board 342 and the bottom wall 511.
  • the housing 50 includes a base 51 and a cover 52, the base 51 includes a bottom wall 511, the cover 52 includes a top wall 521, and the top wall 521 is opposite to the bottom wall 511.
  • the heat dissipating member 40 can be installed on the bottom wall 511 first, and then a plurality of functional circuit boards 3a can be installed on the scanning module 20 and the distance measuring module 10 first, and then the functional circuit can be installed.
  • the scanning module 20 and the distance measuring module 10 of the board 3a are fixed on the base 51, and at the same time, the heat sink 40 is located between the second target circuit board 342 and the bottom wall 511.
  • the heat dissipation member 40 may be provided on the first target circuit board 341, and the cover 52 and the base 51 are further combined, so that the heat dissipation member 40 is located between the first target circuit board 341 and the top wall 521.
  • the ranging housing 11 and the scanning housing 21 are substantially rectangular parallelepipeds, and the ranging housing 11 and the scanning housing 21 are close to and spaced apart.
  • the end surface 1111 of the ranging housing 11 is provided with an analog signal board 322, and the three outer surfaces 111 perpendicular to the end surface 1111 are respectively provided with a laser emitting board 321, a signal digitizing board 311, and a data interface board 323, where the signal digitizing board 311 is located
  • the outer surface 111 opposite to the outer surface 111 is used for fixed connection with the housing 50, wherein the corresponding outer surfaces 111 of the analog signal board 322, the laser emitting board 321, the signal digitizing board 311, and the data interface board 323 are substantially perpendicular to each other.
  • a detection board 324 is provided on one outer side 211 of the scanning housing 21, and the outer side 211 provided with the detection board 324 is adjacent to the outer surface 111 provided with the signal digitizing board 311.
  • a driving board 331 is provided on one outer side 211 of the scanning housing 21. The outer side 211 of the driving board 331 is opposite to the outer side 211 of the detecting board 324. In this way, the signal transmission path between the plurality of functional circuit boards 3a is shorter, reducing the possibility that the signal is interfered during the transmission process, and thereby improving the detection accuracy of the distance measuring device.
  • first and second are used for description purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated.
  • the features defined as “first” and “second” may explicitly or implicitly include at least one of the features.
  • the meaning of “plurality” is at least two, such as two or three, unless otherwise specifically limited.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种测距装置(100)及移动平台(1000),测距装置(100)包括测距模组(10)、扫描模组(20)及电路板组件(30)。测距模组(10)包括测距壳体(11)和测距组件(12),测距壳体(11)具有多个外表面(111),测距组件(12)设置于测距壳体(11)上。扫描模组(20)包括扫描壳体(21)和扫描组件(22),扫描壳体(21)具有多个外侧面(211)。电路板组件(30)包括多个电性连接的功能电路板(3a),多个功能电路板(3a)分别设置在至少一个外表面(111)上,或多个功能电路板(3a)分别设置在至少一个外表面(111)上以及至少一个外侧面(211)上。其中,设有功能电路板(3a)的外表面(111)中的至少两个相邻设置,和/或设有功能电路板(3a)的外侧面(211)中的至少两个相邻设置,和/或设有功能电路板(3a)的外表面(111)中的至少一个与设有功能电路板(3a)的外侧面(211)中的至少一个靠近设置。

Description

测距装置及移动平台 技术领域
本申请涉及激光测距技术领域,特别涉及一种测距装置及移动平台。
背景技术
激光雷达是对外界的感知系统,可以获知外界的立体三维信息,激光雷达内可以设置有多个具有不同功能的电路板,由于激光雷达具体依据飞行时间(Time of flight,TOF)的原理获取待测物的距离,激光雷达对时间控制的精确度等具有较高要求,而如何设置多个电路板以使多个电路板之间的信号传输不受到干扰,满足激光雷达的探测精度成为需要解决的问题。
发明内容
本申请的实施方式提供了一种测距装置及移动平台。
本申请实施方式的测距装置包括测距模组、扫描模组及电路板。所述测距模组包括具有多个外表面的测距壳体和设置于所述测距壳体上的测距组件。所述测距组件用于向探测物发射激光脉冲,并接收由所述探测物反射回的激光脉冲,以及根据所述反射回的激光脉冲确定所述探测物与所述测距装置的距离。所述扫描模组包括具有多个外侧面的扫描壳体和设置于所述扫描壳体上的扫描组件,所述扫描组件用于改变经过所述扫描模组的激光脉冲的传播方向。所述电路板组件包括多个电性连接的功能电路板,多个所述功能电路板分别设置在至少一个所述外表面上,或至少一个所述外表面上以及至少一个所述外侧面上。其中,设有所述功能电路板的所述外表面中的至少两个相邻设置,和/或,设有所述功能电路板的所述外侧面的至少两个相邻设置,和/或,设有所述功能电路板的所述外表面中的至少一个与设有所述功能电路板的所述外侧面中的至少一个靠近设置。
本申请实施方式的移动平台包括本体及安装在本体上的测距装置。所述测距装置包括测距模组、扫描模组及电路板。所述测距模组包括具有多个外表面的测距壳体和设置于所述测距壳体上测距组件。所述测距组件用于向探测物发射激光脉冲,并接收由所述探测物反射回的激光脉冲,以及根据所述反射回的激光脉冲确定所述探测物与所述测距装置的距离。所述扫描模组包括具有多个外侧面的扫描壳体和设置于所述扫描壳体上的扫描组件,所述扫描组件用于改变经过所述扫描模组的激光脉冲的传播方向。所述电路板组件包括多个电性连接的功能电路板,多个所述功能电路板分别设置在至少一个所述外表面上,或至少一个所述外表面上以及至少一个所述外侧面上。其中,设有所述功能电路板的所述外表面中的至少两个相邻设置,和/或,设有所述功能电路板的所述外侧面的至少两个相邻设置,和/或,设有所述功能电路板的所述外表面中的至少一个与设有所述功能电路板的所述外侧面中的至少一个靠近设置。
本申请实施方式的测距装置及移动平台中,功能电路板设置在外表面或外侧面上,缩短功能电路板 与测距组件之间、或功能电路板与扫描组件之间的信号传输路径,同时,设置有功能电路板的至少两个外表面相邻设置,或设置有功能电路板的至少两个外侧面相邻设置,或设置有功能电路板的一个外侧面与外表面靠近设置,使得多个功能电路板之间的信号传输路径较短,减少信号在传输过程中受到干扰的可能,进而提高测距装置的探测精度。
本申请的实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实施方式的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本申请实施方式的移动平台的结构示意图;
图2至图4是本申请实施方式的测距装置的立体装配示意图;
图5是本申请实施方式的测距装置的立体分解示意图;
图6是本申请实施方式的测距装置的测距原理示意图;
图7是本申请实施方式的测距模组与扫描模组的分解示意图;
图8是本申请实施方式的激光发射板、模拟信号板与测距组件的结构示意图;
图9及图10是本申请实施方式的测距装置的立体分解示意图。
具体实施方式
以下结合附图对本申请的实施方式作进一步说明。附图中相同或类似的标号自始至终表示相同或类似的元件或具有相同或类似功能的元件。
另外,下面结合附图描述的本申请的实施方式是示例性的,仅用于解释本申请的实施方式,而不能理解为对本申请的限制。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
请参阅图1,本申请实施方式的移动平台1000包括本体200及测距装置100。移动平台1000可以是飞行器、车、船等移动平台1000,例如可以是无人飞行器、无人车、无人船等。本体200可以是移动平台1000的安装载体,例如当移动平台1000为无人飞行器时,本体200可以是机身或者是装配有云台的机身等。
测距装置100具体可以是可拆卸地安装在本体200上,例如通过卡合、螺合等方式安装在本体200上。测距装置100可以用于探测移动平台1000周围的环境,具体地,测距装置100可以用于探测移动平台1000周围的物体的深度信息,即物体与测距装置100的距离。移动平台1000可以进一步依据该深度信息进行避障、建模、轨迹选择等操作。可以理解,一个移动平台1000可以配置一个或多个测距装置100,不同的测距装置100可以用于探测不同方位的物体。
请参阅图2至图6,测距装置100包括测距模组10、扫描模组20及电路板组件30。测距模组10包括测距壳体11和测距组件12。测距壳体11具有多个外表面111。测距组件12设置于测距壳体11上。测距组件12用于向探测物发射激光脉冲,并接收由探测物反射回的激光脉冲,以及根据反射回的激光脉冲确定探测物与测距装置100的距离。扫描模组20包括扫描壳体21和扫描组件22。扫描壳体21具有多个外侧面211。扫描组件22设置于扫描壳体21上。扫描组件22用于改变经过扫描组件22的激光脉冲的传播方向。电路板组件30包括多个电性连接的功能电路板3a。多个功能电路板3a分别设置在至少一个外表面111上,或多个功能电路板3a分别设置在至少一个外表面111上以及至少一个外侧面211上。
其中,设有功能电路板3a的外表面111中的至少两个相邻设置,和/或设有功能电路板3a的外侧面211中的至少两个相邻设置,和/或设有功能电路板3a的外表面111中的至少一个与设有功能电路板3a的外侧面211中的至少一个靠近设置。
可以理解,当在一个外表面111或一个外侧面211上设有多个功能电路板3a时,在一个外表面111或一个外侧面211上的多个功能电路板3a可以为一个电路板,并集成有多个功能电路板3a的功能。
本申请实施方式的移动平台1000中,功能电路板3a设置在外表面111或外侧面211上,缩短功能电路板3a与测距组件12、或功能电路板3a与扫描组件22之间的信号传输路径,同时,设置有功能电路板3a的至少两个外表面111相邻设置,或设置有功能电路板3a的至少两个外侧面211相邻设置,或设置有功能电路板3a的一个外侧面211与外表面111靠近设置,使得多个功能电路板3a之间的信号传输路径较短,减少信号在传输过程中受到干扰的可能,进而提高测距装置100的探测精度。
具体地,请参阅图5及图6,测距模组10包括测距壳体11及测距组件12。测距壳体11可以用于收容测距组件12,或者说,测距组件12可以内置于测距壳体11内。测距壳体11包括多个外表面111,测距壳体11的形状不同,多个外表面111的形状及分布状态可以不同。在本申请实施例中,测距壳体11大致呈长方体状,以使测距壳体11的外表面111较为平整,容易在外表面111上设置电路板组件30。进一步地,测距壳体11的外表面111还可以设置有固定和定位结构,以容易将测距模组10安装在其他结构上,例如安装在测距装置100的外壳50上。可以理解,多个外表面111中必然存在相邻与不相邻的外表面111,其中,相邻指两个外表面111的边缘存在重合部分,不相邻指两个外表面111的边缘不存在重合部分。
测距组件12可以有至少部分收容在测距壳体11形成的腔体内,以减少外界环境对测距组件12的影响,例如水汽、灰尘、杂光等对测距组件12的影响。测距组件12用于向探测物发射激光脉冲,并接收由探测物反射回的激光脉冲,以及根据反射回的激光脉冲确定探测物与测距装置100的距离。请参阅图5及图6,在本申请实施例中,测距组件12包括光源装置121、光路改变元件122、准直元件123及探测器124。光源装置121可用于发射激光脉冲序列,可选地,光源装置121发射出的激光脉冲为波长在可见光范围之外的窄带宽光束。光源装置121可以安装在测距壳体11上,光源装置121发出的激光脉冲序列能够进入到测距壳体11的腔体内。在一个例子中,光源装置121可以包括激光二极管(Laser diode),通过激光二极管发射纳秒级别的激光。例如,光源装置121发射的激光脉冲持续10ns。光路改变元件122安装在测距壳体11内并设置在光源装置121的出光光路上,光路改变元件122用于改变光源装置121发出的激光脉冲的传播方向。光路改变元件122具体可以为反射镜或半反半透镜,光路改变元件122包括反射面,光源装置121与反射面相对。准直元件123设置在光源装置121的出光光路上,用于准直从光源装置121发出的激光脉冲。准直元件123可以安装在测距壳体11的腔体内并位于靠近扫描模组20的一端。准直元件123还可用于汇聚经探测物反射回的激光脉冲的至少一部分。准直元件123可以是准直透镜或者是其他能够准直光束的元件。探测器124可以用于接收穿过准直元件123的由探测物反射回的激光脉冲。
在测距装置100工作时,光源装置121发出激光脉冲,该激光脉冲经光路改变元件122改变光路方向(可以为改变90度)后被准直元件123准直,准直后的激光脉冲被扫描组件22改变传输方向后出射并投射到探测物上,经探测物反射回的激光脉冲经过扫描组件22后的至少一部分被准直元件123汇聚到探测器124上。测距模组10再依据光源装置121发出激光脉冲的时间信息和探测器124接收激光脉冲的时间信息计算移动时间,从而确定探测物到测距装置100的距离。
请参阅图2至图5,扫描模组20包括扫描壳体21及扫描组件22。扫描壳体21可以用于收容扫描组件22,或者说,扫描组件22可以内置于扫描壳体21内。扫描壳体21包括多个外侧面211,扫描壳体21的形状不同,多个外侧面211的形状及分布也可以不同。在本申请实施例中,扫描壳体21也大致呈长方体状,扫描壳体21与测距壳体11可以靠近设置并具有间隔,扫描壳体21与测距壳体11可以是分体成型的两个独立的壳体,扫描壳体21与测距壳体11可以相互结合或者互相分离。可以理解,多个外侧面211中必然存在相邻与不相邻的外侧面211,其中,相邻指两个外侧面211的边缘存在重合部分,不相邻指两个外侧面211的边缘不存在重合部分。另外,多个外表面111与多个外侧面211中存在靠近设置的外表面111与外侧面211,当一个外表面111与一个外侧面211的边缘之间没有其余外表面111或外侧面211时,则可认为该一个外表面111与该一个外侧面211为靠近设置的外表面111与外侧面211,如图7中的外表面111b与外侧面211a为靠近设置、外表面111c与外侧面211b为靠近设置、外表面111b与外侧面211b为靠近设置、外表面111c与外侧面211a为靠近设置、外表面111a与外侧面211a不是靠近设置、外表面111a与外侧面211b不是靠近设置等。当然,在其他例子中,扫描壳体21与测距壳体 11可以是一体成型的一个完整的壳体,此时,外表面111与外侧面211相接。
请继续参阅图2至图5,电路板组件30包括多个功能电路板3a,多个功能电路板3a之间、多个功能电路板3a与测距模组10之间、多个功能电路板3a与扫描模组20之间均可以通过电性连接以进行信号传输,电性连接的方式可以是通过导线连接。多个功能电路板3a可以是印刷电路板、柔性电路板或软硬结合板等类型的电路板。不同的功能电路板3a上可以设置不同的功能器件,例如上述的电源装置121、探测器124等均可以设置在功能电路板3a上。功能电路板3a设置外表面111或外侧面211上,可以是功能电路板3a通过螺钉等紧固件固定在测距壳体11的外表面111或扫描壳体21的外侧面211上;还可以是功能电路板3a固定在外壳50(如图9及图10)上,测距装置100整体组装完全后功能电路板3a位于外表面111或外侧面211上。
多个功能电路板3a可以分别设置在至少一个外表面111上,多个功能电路板3a也可以分别设置在至少一个外表面111上以及至少一个外侧面211上。例如一个外表面111上设置有多个功能电路板3a;或者多个外表面111上均设置有功能电路板3a,此时,设有功能电路板3a的外表面111中的至少两个相邻设置,以使设置在该两个外表面111上的功能电路板3a的信号传输路径较短,减小信号失真的可能;或者多个外侧面211上均设置有功能电路板3a,此时,设有功能电路板3a的外侧面211中的至少两个相邻设置,以使设置在该两个外侧面211上的功能电路板3a的信号传输路径较短,减小信号失真的可能;或者外表面111与及外侧面211上均设置有一个或多个功能电路板3a,且设有功能电路板3a的外表面111中的至少一个与设有功能电路板3a的外侧面211中的至少一个靠近设置。
请参阅图2至图5,在某些实施方式中,功能电路板3a包括第一功能电路板31及至少一个第二功能电路板32,第一功能电路板31分别与至少一个第二功能电路板32连接且靠近设置。其中,第一功能电路板31与第二功能电路板32连接可以是电连接。第一功能电路板31与第二功能电路板32靠近设置可以是第一功能电路板31与第二功能电路板32同时设置在同一个外表面111上、或者同时设置在同一个外侧面211上、或者分别设置在相邻的两个外表面111上、或者分别设置在相邻的两个外侧面211上、或者分别设置在靠近设置的一个外表面111上及一个外侧面211上。第一功能电路板31与第二功能电路板32之间电连接的物理传输路径可以较短,而第一功能电路板31与第二功能电路板32的具体功能及类型,可以依据实际的测距模组10及扫描模组20的设计需求进行设置,在此不作限制。
请继续参阅图2至图5,在某些实施方式中,第一功能电路板31包括信号数字化板311。第二功能电路板32包括激光发射板321。激光发射板321设置在一个外表面111上,激光发射板321用于驱动光源装置121发射激光脉冲。信号数字化板311用于控制激光发射板321驱动光源装置121发射激光脉冲。其中,信号数字化板311与激光发射板321设置在同一个外表面111上或分别设置在相邻的两个外表面111上。或者信号数字化板311设置在靠近激光发射板321的一个外侧面211上。
激光发射板321可以与光源装置121电连接,例如光源装置121可以安装在激光发射板321上(如图8所示),激光发射板321上还可以集成有光源装置121的电源、驱动芯片等电子元器件。信号数字 化板311与激光发射板321电连接,信号数字化板311可以向激光发射板321发送驱动脉冲,激光发射板321进一步依据该驱动脉冲驱动光源装置121发射激光脉冲,例如在驱动脉冲为高电平时,光源装置121向外发射激光。在实际使用中,光源装置121的激光脉冲的发射信号沿需要尽量小,也就是驱动脉冲的驱动信号沿需要尽量小(也就是说驱动信号需要尽量快),为了满足这一要求,需要尽量减小驱动脉冲在信号数字化板311与激光发射板321之间的传输路径,例如,可以将信号数字化板311与激光发射板321尽量靠近设置。
激光发射板321设置在一个外表面111上,使得激光发射板321与光源装置121容易连接,且容易满足光源装置121发射激光脉冲的光学需求。可以将信号数字化板311与激光发射板321设置在同一个外表面111,二者可以并排设置或者层叠设置。也可以将信号数字化板311与激光发射板321分别设置在相邻的两个外表面111。还可以将信号数字化板311设置在靠近激光发射板321的一个外侧面211上。以上设置方式均可使得信号数字化板311与激光发射板321之间的距离较近,二者之间的连接线的长度较短,驱动脉冲在传输过程中不易受到干扰而失真,进而提高测距装置100的探测精度。
请继续参阅图2至图5,在某些实施方式中,第二功能电路板32还包括模拟信号板322。模拟信号板322设置在一个外表面111上,模拟信号板322用于依据反射回的激光脉冲生成模拟电信号。信号数字化板311与模拟信号板322连接,信号数字化板311用于将模拟电信号转化为数字电信号。其中,信号数字化板311与模拟信号板322设置在同一个外表面111上或分别设置在相邻的两个外表面111上。或者,信号数字化板311设置在靠近模拟信号板322的一外侧面211。
模拟信号板322可以探测器124连接,例如探测器124设置在模拟信号板322上(如图8所示)。模拟信号板322能够依据探测器124接收到的激光脉冲转化成表征激光脉冲的模拟电信号,模拟信号板322上还可以设置有模拟放大电路,以将该模拟电信号放大以方便信号数字化板311将该模拟电信号数字化。其中,模拟放大电路的增益比较大,需要将很微弱信号放大到满足信号数字化板311的输入要求,比较容易受到干扰。因此,需要将信号数字化板311与模拟信号板322设置得较近。
可以将信号数字化板311与模拟信号板322设置在同一个外表面111上,二者可以并排设置或者层叠设。也可以将信号数字化板311与模拟信号板322分别设置在相邻的两个外表面111上。还可以将信号数字化板311设置在靠近模拟信号板322的一个外侧面211上。以上设置方式均可使得信号数字化板311与激光发射板321之间的距离较近,二者之间的连接线的长度较短,减小模拟信号的传输路径,模拟信号在数字化之前畸变或者被干扰到的可能较小,进而提高测距装置100的探测精度。
请参阅图5,在本申请实施例中,模拟信号板322与激光发射板321分别设置在相邻的两个外表面111上。模拟信号板322与激光发射板321均设置在外表面111上,使得模拟信号板322与激光发射板321容易与测距组件12中的探测器、光源装置等连接。模拟信号板322与激光发射板321相邻设置,便于设计测距组件12的光路。
具体地,请结合图5及图,外表面111包括端面1111和侧面1112。端面1111垂直激光脉冲从测距 模组10出射的方向,侧面1112平行激光脉冲从测距模组10出射的方向。其中激光脉冲从测距模组10出射的方向如图8所示的Z方向。模拟信号板322与激光发射板321中的一个设置在端面1111上,另一个设置在侧面1112上。
端面1111可以与侧面1112相接,在如图5所示的实施例中,测距壳体11大致呈长方体状,可以具有六个侧壁面,端面1111可以是该长方体的一个侧壁面,侧面1112可以是该长方体的另一侧壁面,两者的朝向不同。可以理解,不同形状的测距壳体11,端面1111与侧面1112的具体形状可以有不同。侧面1112的数量可以有多个,模拟信号板322与激光发射板321中的一个设置在端面1111上,另一个可以设置在任意一个侧面1112上。由于端面1111垂直于激光脉冲从测距模组10出射的方向,侧面1112平行于激光脉冲从测距模组10出射的方向,则端面1111与侧面1112垂直,模拟信号板322与激光发射板321也大致垂直,以便于对测距组件12的光路进行设计。更具体地,在如图2至图5所示的例子中,激光发射板321、信号数字化板311及模拟信号板322分别设置在三个外表面111上,模拟信号板322设于端面1111上,激光发射板321设于一个侧面1112上,信号数字化板311设于另一个侧壁面上,其中,激光发射板321所在的侧壁面与信号数字化板311所在的侧壁面相邻设置。当然,在其他例子中,也可以说是激光发射板321设置于端面1111上,模拟信号板322设置于一个侧面1112上,信号数字化板311设置于另一个侧壁面上,其中,模拟信号板322所在的侧壁面与信号数字化板311所在的侧壁面相邻设置。
在某些实施方式中,测距装置100还包括屏蔽罩。屏蔽罩固定在测距模组10上,屏蔽罩至少部分遮盖模拟信号板322,屏蔽罩用于至少屏蔽对模拟信号板322的电磁干扰。如上所述的,模拟信号板322上的放大电路的增益比较大,模拟电信号容易受到外界的干扰,例如电磁干扰,电磁干扰可能来源于其余功能电路板3a、扫描模组20及测距模组10等,屏蔽罩能够至少屏蔽对模拟信号板322的电磁干扰,避免模拟电信号失真。屏蔽罩可以由金属等导电的材料制成,屏蔽罩可以与测距壳体11相导通。
请参阅图2至图5,在某些实施方式中,第二功能电路板32还包括数据接口板323。数据接口板323用于与外部设备传输数据及/或电能。其中,数据接口板323与信号数字化板311分别设置在同一个外表面111上或分别设置在相邻的两个外表面111上。或,数据接口板323与信号数字化板311分别设置在同一个外侧面211上或分别设置在相邻的两个外侧面211上。或,数据接口板323与信号数字化板311分别设置在相邻的一个外表面111与一个外侧面211上。
数据接口板323上包括了用于传输数据及/或电能的物理接口及相关的功能芯片等,数据接口板323需要与信号数字化板311连接,信号数字化板311生成的数字信号需要传输到数据接口板323并进一步传输到外部设备中,而数字信号在信号数字化板311与数据接口板323之间的传输路径应该尽量短,以减少信号损耗,同时减少数字信号在传输过程中对外发出的电磁干扰。另外,数据接口板323还可向信号数字化板311传输电能,而由于信号数字化板311的功耗较高,需要的电能较多,因此,也要求数据接口板323与信号数字化板311之间的连接路径较短,以减少电能在传输过程中的损耗及对外辐射。
数据接口板323与信号数字化板311可以设置在同一个外表面111上,例如并排设置或者层叠设置;数据接口板323与信号数字化板311也可以分别设置在相邻的两个外表面111上;数据接口板323与信号数字化板311也可以设置在同一个外侧面211上;数据接口板323与信号数字化板311也可以分别设置在相邻的两个外侧面211上;数据接口板323与信号数字化板311也可以分别设置在相邻的一个外表面111与一个外侧面211上。数据接口板323与信号数字化板311按照上述的方式靠近设置,使得数据接口板323与信号数字化板311之间的数据及电能传输路径较短。在如图5所示的实施例中,信号数字化板311与数据接口板323分别设置在两个外表面111上。
请继续参阅图2至图5,在某些实施方式中,第二功能电路板32还包括检测板324。检测板324用于检测扫描模组20的扫描参数。其中,检测板324与信号数字化板311设置在同一个外表面111上或分别设置在相邻的两个外表面111上。或,检测板324与信号数字化板311设置在同一个外侧面211上或分别设置在相邻的两个外侧面211上。或,检测板324与信号数字化板311分别设置在相邻的一个外侧面211与一个外表面111上。
扫描模组20的扫描参数可以是用于表征激光脉冲从测距装置100出射方向、及用于表征测距装置100接收的被反射回的激光脉冲的方向的参数。检测板324可以将检测到的扫描参数发送至信号数字化板311。检测板324与信号数字化板311的信号传输路径也要求能够尽量短,以保证信号数字化板311接收到的扫描参数较准确。
检测板324与信号数字化板311可以设置在同一个外表面111上;检测板324与信号数字化板311也可以分别设置在相邻的两个外表面111上;检测板324与信号数字化板311也可以设置在同一个外侧面211上;检测板324与信号数字化板311也可以分别设置在相邻的两个外侧面211上;检测板324与信号数字化板311也可以分别设置在相邻的一个外侧面211与一个外表面111上。检测板324与信号数字化板311按照上述的方式靠近设置,使得检测板324与信号数字化板311之间传输扫描参数的路径较短。在如图5所示的实施例中,检测板324设置在一个外侧面211上,信号数字化板311设置在一个外表面111上,设置有检测板324的外侧面211与设置有信号数字化板311的外表面111相邻。
请参阅图4至图6,在本申请实施例中,扫描组件22包括光学元件221、码盘及光电开关。扫描模组20通过转动光学元件221以进行扫描。码盘与光学元件221同步转动,光电开关用于检测码盘的转动参数,光电开关与检测板324连接。光学元件221可以是任意可以对光产生折射作用的元件,例如可以是棱镜,光学元件221转动到不同角度时,光学元件221对激光脉冲的折射作用不同,可以通过改变光学元件221的转动参数来改变扫描的角度。码盘与光学元件221同步转动,通过检测码盘的转动参数即可以获取光学元件221的转动参数。具体地,码盘上可以形成有透光区域及非透光区域,码盘在转动时,透光区域与非透光区域交替地转动到光电开关的光发射端与光接收端之间,检测板324通过分析光接收端接收到的光信号以获取码盘的转动参数,即获取光学元件221的转动参数,并可进一步通过光学元件221的转动参数获取扫描模组20的扫描参数。
请参阅图4及图5,在某些实施方式中,功能电路板3a还包括第三功能电路板33,第三功能电路板33与至少一个第二功能电路板32中的一个连接且靠近设置。第三功能电路板33可以与第二功能电路板32电连接,第三功能电路板33与第二功能电路板32靠近设置可以是第三功能电路板33与第二功能电路板32同时设置在同一个外表面111上、或者同时设置在同一个侧面1112上、或者分别设置在相邻的两个外表面111上、或者分别设置在相邻的两个外侧面211上、或者分别设置在靠近设置的一个外表面111上及一个外侧面211上。第三功能电路板33与第二功能电路板32之间电连接的物理传输路径可以较短,而第三功能电路板33与第二功能电路板32的具体功能及类型,可以依据实际的测距模组10及扫描模组20的设计需求进行设置,在此不作限制。
请参阅图4及图5,在某些实施方式中,扫描组件22包括驱动器222和光学元件221。驱动器222设置在扫描壳体21内,驱动器222用于驱动光学元件221转动以改变经过光学元件221的激光脉冲的传播方向。第二功能电路板32包括数据接口板323,数据接口板323用于与外部设备传输数据及/或电能。第三功能电路板33包括驱动板331,驱动板331用于驱动驱动器222转动。其中,驱动板331与数据接口板323设置在同一个外表面111上或分别设置在相邻的两个外表面111上。或,驱动板331与数据接口板323设置在同一个外侧面211上或分别设置在相邻的两个外侧面211上。或,驱动板331与数据接口板323分别设置在大致垂直的一个外侧面211与一个外表面111上。
驱动板331用于驱动驱动器222转动,驱动板331需要为驱动器222传送较多电能,而驱动板331的电能通过数据接口板323从外部设备获取,因此,要求数据接口板323与驱动板331靠近设置,以减少数据接口板323与驱动板331之间传输电能过程中的损耗及对外辐射。
驱动板331与数据接口板323可以设置在同一个外表面111上;驱动板331与数据接口板323也可以分别设置在相邻的两个外表面111上;驱动板331与数据接口板323也可以设置在同一个外侧面211上;驱动板331与数据接口板323也可以分别设置在相邻的两个外侧面211上;驱动板331与数据接口板323也可以分别设置在大致垂直的一个外侧面211与一个外表面111上。驱动板331与数据接口板323按照上述的方式靠近设置,使得驱动板331与数据接口板323之间传输电能的路径较短。在如图4所示的实施例中,驱动板331设置在一个外侧面211上,数据接口板323设置在一个外表面111上。
进一步地,驱动板331设置在与驱动器222的连接距离最短的一个外侧面211上。可以理解,驱动板331需要向驱动器222传输较多的电能,驱动板331与驱动器222之间也需要尽量靠近设置,以减少电能在传输过程中的损耗。具体地,可以将驱动板331设置在与驱动器222的连接距离最短的一个外侧面211上,在该外侧面211上还可以开设有过孔,以便于导线穿过过孔以连接驱动板331与驱动器222。在一个例子中,驱动器222可以是电机,电机的转子可以包括中空的结构,光学元件221可以收容在转子内,驱动板331的类型具体可以是电调驱动板。
可以理解,驱动器222在工作时可能会带动扫描壳体21发生震动,为了避免扫描壳体21的震动传递到测距模组10上,优选地,单个功能电路板3a在设置时可以仅固定在扫描壳体21上,或者仅固定 在测距壳体11上,而不需要将同一个功能电路板3a同时固定在扫描壳体21及测距壳体11上。
请参阅图5、图9和图10,在某些实施方式中,测距装置100还包括外壳50和散热件40。扫描模组20、测距模组10及电路板组件30均收容在外壳50内。散热件40设置在电路板组件30中的目标电路板34与外壳50之间,以传导目标电路板34的热量至外壳50。
具体地,目标电路板34可以是多个功能电路板3a中的任意一个或多个,散热件40可以是设置在外壳50上导热块,目标电路板34上的部分元器件可以直接与导热块贴合;散热件40也可以是填充在目标电路板34与外壳50之间的导热材料,例如导热泥、导热脂等。进一步地,外壳50也可以由导热系数较高的材料制成,例如铜、铝等材料。通过在目标电路板34与外壳50之间设置有散热件40,以使目标电路板34工作产生的热量能够及时传递至外壳50并散发到外界,降低外壳50内的温度,改善扫描模组20、测距模组10及电路板组件30的工作环境。
请参阅图5、图9和图10,在某些实施方式中,目标电路板34包括第一目标电路板341及第二目标电路板342。第一目标电路板341设置在一个外表面111上,第二目标电路板342设置在一个外侧面211上。第一目标电路板341与第二目标电路板342相背设置。第一目标电路板341与第二目标电路板342可以是发热量较大的功能电路板3a,第一目标电路板341与第二目标电路板342相背设置,即,第一目标电路板341与第二目标电路板342设置的距离可以较远,二者散发的热量较分散,避免外壳50内局部过热。
在本申请实施例中,第一目标电路板341包括信号数字化板311。信号数字化板311可用于实现控制测距组件12发射激光脉冲、控制驱动器222的转速与方向(向驱动板331发送控制信号以控制驱动器222的转速与方向)、识别驱动器222的转动速度与相位(驱动器222的转动速度与相位可由检测板324检测)等功能。信号数字化板311上的部分器件(例如处理器、存储器等)功耗较高,工作时产生的热量较多,通过设置散热件40可以确保信号数字化板311产生的热量被及时传导到外界。
扫描组件22还包括驱动器222和光学元件221,驱动器222设置在扫描壳体21内,驱动器222用于驱动光学元件221转动以改变经过光学元件221的激光脉冲的传播方向。第二目标电路板342包括驱动板331,驱动板331用于驱动驱动器222转动。驱动板331上的部分器件功耗同样较高,通过设置散热件40可以确保驱动板331产生的热量被及时传导到外界。当然,驱动器222可以是上述的电机,驱动板331可以是上述的电调驱动板。
在如图9及图10所示的实施例中,外壳50包括相背的顶壁521及底壁511,散热件40设置在第一目标电路板341与顶壁521之间;及/或,散热件40设置在第二目标电路板342与底壁511之间。
具体地,外壳50包括底座51及盖体52,底座51包括底壁511,盖体52包括顶壁521,顶壁521与底壁511相背。在安装测距装置100时,可以先将散热件40设置在底壁511上,然后将多个功能电路板3a先安装在扫描模组20及测距模组10上,再将安装有功能电路板3a的扫描模组20及测距模组10固定在底座51上,同时使得散热件40位于第二目标电路板342与底壁511之间。此时可以在第一目 标电路板341上设置散热件40,并进一步将盖体52与底座51结合,并使得散热件40位于第一目标电路板341与顶壁521之间。
综上,在本申请实施例中,测距壳体11与扫描壳体21大致呈长方体状,测距壳体11与扫描壳体21靠近且间隔设置。测距壳体11的端面1111上设置模拟信号板322、与端面1111垂直的三个外表面111上分别设置了激光发射板321、信号数字化板311及数据接口板323,与信号数字化板311所在的外表面111相背的外表面111则用于与外壳50固定连接,其中,模拟信号板322、激光发射板321、信号数字化板311及数据接口板323对应的外表面111均相互大致垂直。扫描壳体21的一个外侧面211上设置有检测板324,设置检测板324的外侧面211与设置信号数字化板311的外表面111相邻设置。扫描壳体21的一个外侧面211上设置有驱动板331,设置驱动板331的外侧面211与设置检测板324的外侧面211相背。如此,使得多个功能电路板3a之间的信号传输路径较短,减少信号在传输过程中受到干扰的可能,进而提高测距装置的探测精度。
在本说明书的描述中,参考术语“某些实施方式”、“一个实施方式”、“一些实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个所述特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个,除非另有明确具体的限定。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (48)

  1. 一种测距装置,其特征在于,包括:
    测距模组,包括具有多个外表面的测距壳体和设置于所述测距壳体上的测距组件,所述测距组件用于向探测物发射激光脉冲,并接收由所述探测物反射回的激光脉冲,以及根据所述反射回的激光脉冲确定所述探测物与所述测距装置的距离;
    扫描模组,包括具有多个外侧面的扫描壳体和设置于所述扫描壳体上的扫描组件,所述扫描组件用于改变经过所述扫描模组的激光脉冲的传播方向;及
    电路板组件,所述电路板组件包括多个电性连接的功能电路板,多个所述功能电路板分别设置在至少一个所述外表面上,或至少一个所述外表面上以及至少一个所述外侧面上;
    其中,设有所述功能电路板的所述外表面中的至少两个相邻设置,和/或,设有所述功能电路板的所述外侧面中的至少两个相邻设置,和/或,设有所述功能电路板的所述外表面中的至少一个与设有所述功能电路板的所述外侧面中的至少一个靠近设置。
  2. 根据权利要求1所述的测距装置,其特征在于,所述功能电路板包括第一功能电路板和至少一个第二功能电路板,所述第一功能电路板分别与至少一个所述第二功能电路板连接且靠近设置。
  3. 根据权利要求2所述的测距装置,其特征在于,所述第一功能电路板包括信号数字化板,所述第二功能电路板包括激光发射板;
    所述激光发射板设置在一个所述外表面上,且用于驱动光源装置发射激光脉冲;及
    所述信号数字化板用于控制所述激光发射板驱动所述光源装置发射激光脉冲;
    其中,所述信号数字化板与所述激光发射板设置在同一个所述外表面上或分别设置在相邻的两个所述外表面上;或,所述信号数字化板设置在靠近所述激光发射板的一个所述外侧面上。
  4. 根据权利要求3所述的测距装置,其特征在于,所述第二功能电路板还包括模拟信号板;
    所述模拟信号板设置在一个所述外表面上,且用于依据所述反射回的激光脉冲生成模拟电信号;
    所述信号数字化板与所述模拟信号板连接,且用于将所述模拟电信号转化为数字电信号;
    其中,所述信号数字化板与所述模拟信号板设置在同一个所述外表面上或分别设置在相邻的两个所述外表面上;或,所述信号数字化板设置在靠近所述模拟信号板的一个所述外侧面上。
  5. 根据权利要求4所述的测距装置,其特征在于,所述模拟信号板与所述激光发射板分别设置在相邻的两个所述外表面上。
  6. 根据权利要求4或5所述的测距装置,其特征在于,所述外表面包括端面和侧面,所述端面垂直所述激光脉冲从所述测距模组出射的方向,所述侧面平行所述激光脉冲从所述测距模组出射的方向;
    所述模拟信号板与所述激光发射板中的一个设置在所述端面上,另一个设置在所述侧面上。
  7. 根据权利要求6所述的测距装置,其特征在于,所述激光发射板、所述信号数字化板以及所述模 拟信号板分别设于三个所述外表面上,且所述模拟信号板设于所述端面上,所述激光发射板设于所述侧面上。
  8. 根据权利要求4所述的测距装置,其特征在于,所述测距装置还包括屏蔽罩,所述屏蔽罩固定在所述测距模组上,所述屏蔽罩至少部分遮盖所述模拟信号板,所述屏蔽罩用于至少屏蔽对所述模拟信号板的电磁干扰。
  9. 根据权利要求3所述的测距装置,其特征在于,所述第二功能电路板还包括数据接口板;
    所述数据接口板用于与外部设备传输数据及/或电能;
    其中,所述数据接口板与所述信号数字化板分别设置在同一个所述外表面上或分别设置在相邻的两个所述外表面上;或,所述数据接口板与所述信号数字化板分别设置在同一个所述外侧面上或分别设置在相邻的两个所述外侧面上;或,所述数据接口板与所述信号数字化板分别设置在相邻的一个所述外表面与一个所述外侧面上。
  10. 根据权利要求9所述的测距装置,其特征在于,所述信号数字化板与所述数据接口板分别设于两个所述外表面上。
  11. 根据权利要求3所述的测距装置,其特征在于,所述第二功能电路板还包括检测板;
    所述检测板用于检测所述扫描模组的扫描参数;
    其中,所述检测板与所述信号数字化板设置在同一个所述外表面上或分别设置在相邻的两个所述外表面上;或,所述检测板与所述信号数字化板设置在同一个所述外侧面上或分别设置在相邻的两个所述外侧面上;或,所述检测板与所述信号数字化板分别设置在相邻的一个所述外侧面与一个所述外表面上。
  12. 根据权利要求11所述的测距装置,其特征在于,所述检测板设置在一个所述外侧面上,所述信号数字化板设置在一个所述外表面上。
  13. 根据权利要求11或12所述的测距装置,其特征在于,所述扫描组件包括光学元件、码盘及光电开关,所述扫描模组通过转动所述光学元件以进行扫描,所述码盘与所述光学元件同步转动,所述光电开关用于检测所述码盘的转动参数,所述光电开关与所述检测板连接。
  14. 根据权利要求2所述的测距装置,其特征在于,所述功能电路板还包括第三功能电路板,所述第三功能电路板与至少一个所述第二功能电路板中的一个连接且靠近设置。
  15. 根据权利要求14所述的测距装置,其特征在于,所述扫描组件包括驱动器和光学元件,所述驱动器设置在所述扫描壳体内,用于驱动所述光学元件转动以改变经过所述光学元件的激光脉冲的传播方向;
    所述第二功能电路板包括数据接口板,用于与外部设备传输数据及/或电能;
    所述第三功能电路板包括驱动板,用于驱动所述驱动器转动;
    其中,所述驱动板与所述数据接口板设置在同一个所述外表面上或分别设置在相邻的两个所述外表面上;或,所述驱动板与所述数据接口板设置在同一个所述外侧面上或分别设置在相邻的两个所述外侧 面上;或,所述驱动板与所述数据接口板分别设置在大致垂直的一个所述外侧面与一个所述外表面上。
  16. 根据权利要求15所述的测距装置,其特征在于,所述驱动板设置在一个所述外侧面上,所述数据接口板设置在一个所述外表面上。
  17. 根据权利要求15或16所述的测距装置,其特征在于,所述驱动板设置在与所述驱动器的连接距离最短的一个所述外侧面上。
  18. 根据权利要求1所述的测距装置,其特征在于,所述测距装置还包括:
    外壳,所述扫描模组、所述测距模组及所述电路板组件均收容在所述外壳内;及
    散热件,所述散热件设置在多个所述功能电路板中的目标电路板与所述外壳之间,以传导所述目标电路板的热量至所述外壳。
  19. 根据权利要求18所述的测距装置,其特征在于,所述目标电路板包括设置在一个所述外表面上的第一目标电路板和设置在一个所述外侧面上的第二目标电路板,且所述第一目标电路板和所述第二目标电路板相背设置。
  20. 根据权利要求19所述的测距装置,其特征在于,所述外壳包括相背的顶壁及底壁,所述散热件设置在所述第一目标电路板与所述顶壁之间;及/或,所述散热件设置在所述第二目标电路板与所述底壁之间。
  21. 根据权利要求19或20所述的测距装置,其特征在于,所述第一目标电路板包括信号数字化板,用于控制所述测距组件发射所述激光脉冲。
  22. 根据权利要求19或20所述的测距装置,其特征在于,所述扫描组件还包括驱动器和光学元件,所述驱动器设置在所述扫描壳体内,用于驱动所述光学元件转动以改变经过所述光学元件的激光脉冲的传播方向;
    所述第二目标电路板板包括驱动板,用于驱动所述驱动器转动。
  23. 根据权利要求15或20所述的测距装置,其特征在于,所述驱动器包括电机,所述驱动板包括电调驱动板。
  24. 根据权利要求18所述的测距装置,其特征在于,所述散热件包括填充在所述目标电路板与所述外壳之间的导热材料。
  25. 一种移动平台,其特征在于,包括本体及安装在所述本体上的测距装置;所述测距装置包括:
    测距模组,包括具有多个外表面的测距壳体和设置于所述测距壳体上的测距组件,所述测距组件用于向探测物发射激光脉冲,并接收由所述探测物反射回的激光脉冲,以及根据所述反射回的激光脉冲确定所述探测物与所述测距装置的距离;
    扫描模组,包括具有多个外侧面的扫描壳体和设置于所述扫描壳体上的扫描组件,所述扫描组件用于改变经过所述扫描模组的激光脉冲的传播方向;及
    电路板组件,所述电路板组件包括多个电性连接的功能电路板,多个所述功能电路板分别设置在至 少一个所述外表面上,或至少一个所述外表面上以及至少一个所述外侧面上;
    其中,设有所述功能电路板的所述外表面中的至少两个相邻设置,和/或,设有所述功能电路板的所述外侧面中的至少两个相邻设置,和/或,设有所述功能电路板的所述外表面中的至少一个与设有所述功能电路板的所述外侧面中的至少一个靠近设置。
  26. 根据权利要求25所述的移动平台,其特征在于,所述功能电路板包括第一功能电路板和至少一个第二功能电路板,所述第一功能电路板分别与至少一个所述第二功能电路板连接且靠近设置。
  27. 根据权利要求26所述的移动平台,其特征在于,所述第一功能电路板包括信号数字化板,所述第二功能电路板包括激光发射板;
    所述激光发射板设置在一个所述外表面上,且用于驱动光源装置发射激光脉冲;及
    所述信号数字化板用于控制所述激光发射板驱动所述光源装置发射激光脉冲;
    其中,所述信号数字化板与所述激光发射板设置在同一个所述外表面上或分别设置在相邻的两个所述外表面上;或,所述信号数字化板设置在靠近所述激光发射板的一个所述外侧面上。
  28. 根据权利要求27所述的移动平台,其特征在于,所述第二功能电路板还包括模拟信号板;
    所述模拟信号板设置在一个所述外表面上,且用于依据所述反射回的激光脉冲生成模拟电信号;
    所述信号数字化板与所述模拟信号板连接,且用于将所述模拟电信号转化为数字电信号;
    其中,所述信号数字化板与所述模拟信号板设置在同一个所述外表面上或分别设置在相邻的两个所述外表面上;或,所述信号数字化板设置在靠近所述模拟信号板的一个所述外侧面上。
  29. 根据权利要求28所述的移动平台,其特征在于,所述模拟信号板与所述激光发射板分别设置在相邻的两个所述外表面上。
  30. 根据权利要求28或29所述的移动平台,其特征在于,所述外表面包括端面和侧面,所述端面垂直所述激光脉冲从所述测距模组出射的方向,所述侧面平行所述激光脉冲从所述测距模组出射的方向;
    所述模拟信号板与所述激光发射板中的一个设置在所述端面上,另一个设置在所述侧面上。
  31. 根据权利要求30所述的移动平台,其特征在于,所述激光发射板、所述信号数字化板以及所述模拟信号板分别设于三个所述外表面上,且所述模拟信号板设于所述端面上,所述激光发射板设于所述侧面上。
  32. 根据权利要求28所述的移动平台,其特征在于,所述测距装置还包括屏蔽罩,所述屏蔽罩固定在所述测距模组上,所述屏蔽罩至少部分遮盖所述模拟信号板,所述屏蔽罩用于至少屏蔽对所述模拟信号板的电磁干扰。
  33. 根据权利要求27所述的移动平台,其特征在于,所述第二功能电路板还包括数据接口板;
    所述数据接口板用于与外部设备传输数据及/或电能;
    其中,所述数据接口板与所述信号数字化板分别设置在同一个所述外表面上或分别设置在相邻的两个所述外表面上;或,所述数据接口板与所述信号数字化板分别设置在同一个所述外侧面上或分别设置 在相邻的两个所述外侧面上;或,所述数据接口板与所述信号数字化板分别设置在相邻的一个所述外表面与一个所述外侧面上。
  34. 根据权利要求33所述的移动平台,其特征在于,所述信号数字化板与所述数据接口板分别设于两个所述外表面上。
  35. 根据权利要求27所述的移动平台,其特征在于,所述第二功能电路板还包括检测板;
    所述检测板用于检测所述扫描模组的扫描参数;
    其中,所述检测板与所述信号数字化板设置在同一个所述外表面上或分别设置在相邻的两个所述外表面上;或,所述检测板与所述信号数字化板设置在同一个所述外侧面上或分别设置在相邻的两个所述外侧面上;或,所述检测板与所述信号数字化板分别设置在相邻的一个所述外侧面与一个所述外表面上。
  36. 根据权利要求35所述的移动平台,其特征在于,所述检测板设置在一个所述外侧面上,所述信号数字化板设置在一个所述外表面上。
  37. 根据权利要求35或36所述的移动平台,其特征在于,所述扫描组件包括光学元件、码盘及光电开关,所述扫描模组通过转动所述光学元件以进行扫描,所述码盘与所述光学元件同步转动,所述光电开关用于检测所述码盘的转动参数,所述光电开关与所述检测板连接。
  38. 根据权利要求26所述的移动平台,其特征在于,所述功能电路板还包括第三功能电路板,所述第三功能电路板与至少一个所述第二功能电路板中的一个连接且靠近设置。
  39. 根据权利要求38所述的移动平台,其特征在于,所述扫描组件包括驱动器和光学元件,所述驱动器设置在所述扫描壳体内,用于驱动所述光学元件转动以改变经过所述光学元件的激光脉冲的传播方向;
    所述第二功能电路板包括数据接口板,用于与外部设备传输数据及/或电能;
    所述第三功能电路板包括驱动板,用于驱动所述驱动器转动;
    其中,所述驱动板与所述数据接口板设置在同一个所述外表面上或分别设置在相邻的两个所述外表面上;或,所述驱动板与所述数据接口板设置在同一个所述外侧面上或分别设置在相邻的两个所述外侧面上;或,所述驱动板与所述数据接口板分别设置在大致垂直的一个所述外侧面与一个所述外表面上。
  40. 根据权利要求39所述的移动平台,其特征在于,所述驱动板设置在一个所述外侧面上,所述数据接口板设置在一个所述外表面上。
  41. 根据权利要求39或40所述的移动平台,其特征在于,所述驱动板设置在与所述驱动器的连接距离最短的一个所述外侧面上。
  42. 根据权利要求25所述的移动平台,其特征在于,所述测距装置还包括:
    外壳,所述扫描模组、所述测距模组及所述电路板组件均收容在所述外壳内;及
    散热件,所述散热件设置在多个所述功能电路板中的目标电路板与所述外壳之间,以传导所述目标电路板的热量至所述外壳。
  43. 根据权利要求42所述的移动平台,其特征在于,所述目标电路板包括设置在一个所述外表面上的第一目标电路板和设置在一个所述外侧面上的第二目标电路板,且所述第一目标电路板和所述第二目标电路板相背设置。
  44. 根据权利要求42或43所述的测距装置,其特征在于,其特征在于,所述外壳包括相背的顶壁及底壁,所述散热件设置在所述第一目标电路板与所述顶壁之间;及/或,所述散热件设置在所述第二目标电路板与所述底壁之间。
  45. 根据权利要求42或43所述的移动平台,其特征在于,所述第一目标电路板包括信号数字化板,用于控制所述测距组件发射所述激光脉冲。
  46. 根据权利要求43所述的移动平台,其特征在于,所述扫描组件还包括驱动器和光学元件,所述驱动器设置在所述扫描壳体内,用于驱动所述光学元件转动以改变经过所述光学元件的激光脉冲的传播方向;
    所述第二目标电路板板包括驱动板,用于驱动所述驱动器转动。
  47. 根据权利要求39或44所述的移动平台,其特征在于,所述驱动器包括电机,所述驱动板包括电调驱动板。
  48. 根据权利要求42所述的移动平台,其特征在于,所述散热件包括填充在所述目标电路板与所述外壳之间的导热材料。
PCT/CN2019/071051 2019-01-09 2019-01-09 测距装置及移动平台 WO2020142963A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/071051 WO2020142963A1 (zh) 2019-01-09 2019-01-09 测距装置及移动平台
CN201980005254.3A CN111279213A (zh) 2019-01-09 2019-01-09 测距装置及移动平台

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/071051 WO2020142963A1 (zh) 2019-01-09 2019-01-09 测距装置及移动平台

Publications (1)

Publication Number Publication Date
WO2020142963A1 true WO2020142963A1 (zh) 2020-07-16

Family

ID=70999805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/071051 WO2020142963A1 (zh) 2019-01-09 2019-01-09 测距装置及移动平台

Country Status (2)

Country Link
CN (1) CN111279213A (zh)
WO (1) WO2020142963A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203838341U (zh) * 2014-05-12 2014-09-17 重庆海珠光电科技有限公司 微型半导体激光测距仪
CN205427181U (zh) * 2016-03-18 2016-08-03 深圳玩智商科技有限公司 一种激光测距装置的电力传输模块及激光测距装置
CN206292397U (zh) * 2016-12-23 2017-06-30 珠海码硕科技有限公司 激光测距仪及其激光发射组件
CN107688186A (zh) * 2017-09-19 2018-02-13 深圳市镭神智能系统有限公司 一种多线激光雷达光路系统
CN207908675U (zh) * 2018-03-19 2018-09-25 北京因泰立科技有限公司 一种用于激光测距传感器的发射接收调节结构
US10094925B1 (en) * 2017-03-31 2018-10-09 Luminar Technologies, Inc. Multispectral lidar system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2482094B1 (de) * 2011-01-31 2013-06-12 Sick AG Entfernungsmessender optoelektronischer Sensor und Verfahren zur Objekterfassung
CN202256665U (zh) * 2011-09-22 2012-05-30 中国航天科工集团第三研究院第八三五八研究所 一种激光雷达小型一体化探测部件外壳
CN106324582A (zh) * 2016-10-28 2017-01-11 深圳市镭神智能系统有限公司 一种基于时间飞行法的激光雷达系统
CN107643516A (zh) * 2017-09-27 2018-01-30 北京因泰立科技有限公司 一种基于mems微镜的三维扫描激光雷达

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203838341U (zh) * 2014-05-12 2014-09-17 重庆海珠光电科技有限公司 微型半导体激光测距仪
CN205427181U (zh) * 2016-03-18 2016-08-03 深圳玩智商科技有限公司 一种激光测距装置的电力传输模块及激光测距装置
CN206292397U (zh) * 2016-12-23 2017-06-30 珠海码硕科技有限公司 激光测距仪及其激光发射组件
US10094925B1 (en) * 2017-03-31 2018-10-09 Luminar Technologies, Inc. Multispectral lidar system
CN107688186A (zh) * 2017-09-19 2018-02-13 深圳市镭神智能系统有限公司 一种多线激光雷达光路系统
CN207908675U (zh) * 2018-03-19 2018-09-25 北京因泰立科技有限公司 一种用于激光测距传感器的发射接收调节结构

Also Published As

Publication number Publication date
CN111279213A (zh) 2020-06-12

Similar Documents

Publication Publication Date Title
US20210190918A1 (en) Lidar, laser emitter, laser emitter emitting board assembly, and method for manufacturing laser emitter
US20210215803A1 (en) Scanning module, distance measuring device, distance measuring assembly, distance detection device, and mobile platform
US20210311173A1 (en) Laser measuring device and unmanned aerial vehicle
EP3105615B1 (en) Vcsel array for a depth camera
WO2020062909A1 (zh) 控制方法与装置、飞行时间设备、终端及计算机可读存储介质
WO2020107164A1 (zh) 激光二极管封装模块及距离探测装置、电子设备
CN108594206A (zh) 光传输模块、激光发射模块、激光雷达系统及车辆
CN110663147A (zh) 激光二极管封装模块及发射装置、测距装置、电子设备
WO2019047340A1 (zh) 一种光学测距装置
WO2020142957A1 (zh) 一种测距装置及移动平台
JP2022128450A (ja) 距離測定装置、レーザレーダ及び移動ロボット
WO2024098771A1 (zh) 激光雷达
WO2020142963A1 (zh) 测距装置及移动平台
CN110596675A (zh) 一种激光发射装置及激光雷达系统
CN209606612U (zh) 测距装置及移动平台
CN211206787U (zh) 测距组件及移动平台
US11539183B2 (en) Passive thermal management for semiconductor laser based lidar transmitter
CN217360311U (zh) 测距装置、激光雷达和移动机器人
CN211236241U (zh) 距离探测设备及移动平台
CN111742450B (zh) 转发器以及测距系统
CN211718524U (zh) 一种可拆卸探测装置及移动平台
WO2020142955A1 (zh) 一种测距装置及移动平台
CN211236239U (zh) 距离探测设备及移动平台
CN211605531U (zh) 一种防水接插件及雷达、可移动平台
CN211206773U (zh) 扫描模组、测距组件及移动平台

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19909292

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19909292

Country of ref document: EP

Kind code of ref document: A1