WO2020062909A1 - 控制方法与装置、飞行时间设备、终端及计算机可读存储介质 - Google Patents

控制方法与装置、飞行时间设备、终端及计算机可读存储介质 Download PDF

Info

Publication number
WO2020062909A1
WO2020062909A1 PCT/CN2019/090021 CN2019090021W WO2020062909A1 WO 2020062909 A1 WO2020062909 A1 WO 2020062909A1 CN 2019090021 W CN2019090021 W CN 2019090021W WO 2020062909 A1 WO2020062909 A1 WO 2020062909A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
target
measured
laser
light
Prior art date
Application number
PCT/CN2019/090021
Other languages
English (en)
French (fr)
Inventor
张学勇
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2020062909A1 publication Critical patent/WO2020062909A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft

Definitions

  • the present application relates to the technical field of consumer electronic devices, and in particular, to a control method, a control device, a time-of-flight device, a terminal, and a computer-readable storage medium.
  • the existing Time of Flight (TOF) equipment is generally used to measure the distance between the target to be measured and the time of flight equipment.
  • Embodiments of the present application provide a control method, a control device, a time-of-flight device, a terminal, and a computer-readable storage medium.
  • the control method in the embodiment of the present application includes controlling a light transmitter to emit a laser of a first frequency to a target to be measured, and controlling when a projection distance between the light transmitter and the target to be measured is smaller than a first preset distance, The light transmitter emits laser light of a second frequency to the target to be measured, the second frequency being greater than the first frequency.
  • the control device includes a control module, the control module is configured to control the light transmitter to emit a laser of a first frequency to a target to be measured, and a projection distance between the light transmitter and the target to be measured is less than When the first preset distance is controlled, the light transmitter is controlled to emit laser light of a second frequency to the target to be measured, and the second frequency is greater than the first frequency.
  • the time-of-flight device includes a light transmitter and a processor, where the processor is configured to control the light transmitter to emit a laser of a first frequency to a target to be tested, and When the projection distance between the targets is smaller than the first preset distance, the light transmitter is controlled to emit a laser with a second frequency to the target to be measured, and the second frequency is greater than the first frequency.
  • the terminal of this embodiment includes a casing and the time-of-flight device of the foregoing embodiment, and the time-of-flight device is disposed on the casing.
  • the computer-readable storage medium of the embodiment of the present application includes a computer program used in combination with a terminal, and the computer program can be executed by a processor to complete the control method described in the foregoing embodiment.
  • FIG. 1 is a schematic diagram of a three-dimensional structure of a terminal according to some embodiments of the present application.
  • FIG. 2 is a schematic flowchart of a control method according to some embodiments of the present application.
  • FIG 3 is a schematic structural diagram of a light source in a light transmitter of a time of flight device according to some embodiments of the present application.
  • FIG. 4 is a schematic flowchart of a control method according to some embodiments of the present application.
  • FIG. 5 is a schematic block diagram of a control device according to some embodiments of the present application.
  • 6 to 10 are schematic flowcharts of a control method according to some embodiments of the present application.
  • FIG. 11 is a schematic diagram of the working principle of a time of flight device according to some embodiments of the present application.
  • FIG. 12 is a schematic flowchart of a control method according to some embodiments of the present application.
  • FIG. 13 is a schematic perspective structural diagram of a terminal according to some embodiments of the present application.
  • FIG. 14 is a schematic perspective structural diagram of a time of flight device according to some embodiments of the present application.
  • FIG. 15 is a schematic plan view of a time of flight device according to some embodiments of the present application.
  • FIG. 16 is a schematic cross-sectional view of the time-of-flight device in FIG. 15 along the line XVI-XVI.
  • FIG. 17 is a schematic structural diagram of a light emitter according to some embodiments of the present application.
  • 18 and 19 are schematic structural diagrams of a light source of a light emitter according to some embodiments of the present application.
  • FIG. 20 is a schematic diagram of a connection between a computer-readable storage medium and a terminal according to some embodiments of the present application.
  • control method includes:
  • the light transmitter 21 is controlled to emit a laser with a second frequency to the target to be measured, and the second frequency is greater than the first frequency.
  • control method further includes:
  • the projection distance is greater than the second preset distance
  • control the light transmitter 21 to emit a third frequency laser or a fourth frequency laser and a fifth frequency laser to the target to be measured.
  • the second preset The distance is greater than the first preset distance
  • the third frequency is greater than the first frequency and less than the second frequency
  • the fourth frequency is different from the fifth frequency.
  • the least common multiple of the maximum distance that can be measured at the fourth frequency and the maximum distance that can be measured at the fifth frequency is greater than the projection distance.
  • control method further includes:
  • control the light receiver 22 to receive the laser light of the second frequency reflected by the target to be measured to obtain a measurement distance between the time-of-flight device 20 and the target to be measured;
  • the light receiver 22 is controlled to receive the laser beam of the third frequency reflected by the target to be measured to obtain a measurement distance between the time-of-flight device 20 and the target to be measured (step 061). Or, when the projection distance is greater than the second preset distance, the light receiver 22 is controlled to receive the laser light of the fourth frequency and the laser light of the fifth frequency reflected by the target to be measured to obtain the time between the time-of-flight device 20 and the target to be measured Measuring distance (step 062).
  • step 062 includes:
  • step 01 includes:
  • Control the optical transmitter 21 to emit a laser with a first frequency to a target to be measured at a first power.
  • step 02 includes:
  • the optical transmitter 21 is controlled to emit a laser of a second frequency to the target to be measured at a second power, and the second power is smaller than the first power.
  • step 05 includes:
  • Control the optical transmitter 21 to emit a laser of a third frequency to the target to be measured at a third power or to emit a laser of a fourth frequency and a laser at a fifth frequency to the target to be measured at a fourth power.
  • the third power is less than the first power.
  • And is greater than the second power, and the fourth power is less than the first power and greater than the second power.
  • step 052 includes:
  • Control the light transmitter 21 to sequentially emit a laser with a fifth frequency and a laser with a fourth frequency to the target to be measured;
  • the light transmitter 21 is controlled to simultaneously emit a fourth-frequency laser light and a fifth-frequency laser light to the target to be measured.
  • the control device 10 includes a control module 11.
  • the control module 11 may be used to control the optical transmitter 21 to emit a laser of a first frequency to a target to be measured, When the projection distance between the measurement targets is less than the first preset distance, the light transmitter 21 is controlled to emit a laser with a second frequency to the measurement target.
  • the time-of-flight device 20 includes a light transmitter 21 and a processor 23.
  • the processor 23 may be used to control the light transmitter 21 to emit a first-frequency laser to a target to be measured, When the projection distance between the target 21 and the target to be measured is less than the first preset distance, the light transmitter 21 is controlled to emit a laser with a second frequency to the target to be measured.
  • the casing 101 and the time-of-flight device 20 according to any one of the above embodiments, the time-of-flight device 20 is disposed on the casing 101.
  • a computer-readable storage medium 50 includes a computer program 60 used in combination with the terminal 100.
  • the computer program 60 may be executed by the processor 23 to complete the control method of the light transmitter 21 according to any one of the above embodiments.
  • control method includes:
  • the light transmitter 21 is controlled to emit a laser with a second frequency to the target to be measured, and the second frequency is greater than the first frequency.
  • the control device 10 includes a control module 11 connected to the light transmitter 21.
  • the control module 11 may be used to control the light transmitter 21 to perform steps 01 and 02. That is, the control module 11 can be used to control the light transmitter 21 to emit laser light of the first frequency to the target to be measured, and to control the light when the projection distance between the light transmitter 21 and the target to be measured is smaller than the first preset distance.
  • the transmitter 21 emits a second frequency laser to the target to be measured.
  • the time of flight device 20 includes a light transmitter 21, a light receiver 22, and a processor 23.
  • the processor 23 is connected to the light transmitter 21 and the light receiver 22.
  • the processor 23 may be used to control the light transmitter 21 to perform steps 01 and steps. 02. That is, the processor 23 may be configured to control the light transmitter 21 to emit laser light of the first frequency to the target to be measured, and to control the light when the projection distance between the light transmitter 21 and the target to be measured is smaller than the first preset distance.
  • the transmitter 21 emits a second frequency laser to the target to be measured.
  • the time of flight device 20 can be applied to the terminal 100.
  • the processor 23 in the time of flight device 20 according to the embodiment of the present application and the processor 23 in the terminal 100 may be the same processor 23 or two independent processors 23. In the specific embodiment of the present application, the processor 23 in the time of flight device 20 and the processor 23 of the terminal 100 are the same processor 23.
  • the terminal 100 may be a mobile phone, a tablet computer, a smart wearable device (a smart watch, a smart bracelet, a smart glasses, a smart helmet), a drone, etc., and is not limited herein.
  • the light transmitter 21 is used to project laser light into the scene, and the light receiver 22 receives the laser light reflected by the target to be measured in the scene.
  • the time of flight device 20 generally obtains the projection distance between the light emitter 21 and the target to be measured in two ways: direct acquisition and indirect acquisition.
  • the processor 23 can calculate the flight time of the laser in the scene according to the time point at which the light transmitter 21 emits the laser light and the time point at which the light receiver 22 receives the reflected laser light, and according to the laser flight in the scene Time calculates the depth information of the scene.
  • the light transmitter 21 emits laser light into the scene
  • the light receiver 22 collects the laser light reflected by the target to be measured to obtain a phase difference, and calculates the depth information of the scene according to the phase difference and the light emission frequency of the laser.
  • d is the projection distance between the time-of-flight device 20 and the target to be measured
  • c is the speed of light
  • t is the flight time of the laser
  • T is the emission period of the laser.
  • f is the emission frequency of the laser. It should be noted, The value is from 0 degrees to 360 degrees.
  • the projection distance When d is 0, the projection distance is minimum; Time, The projection distance has a maximum value, and the projection distance at this time is the maximum distance that the time of flight device 20 can measure when the transmission frequency is f.
  • the maximum distance that the time-of-flight device 20 can measure depends on the light emitting frequency of the light transmitter 21. The higher the light frequency, the shorter the maximum distance that the time-of-flight device 20 can measure and the lower the light-emitting frequency, the maximum distance that the time-of-flight device 20 can measure. Longer.
  • the optical transmitter 21 of this embodiment can emit lasers of multiple frequencies to a target to be measured.
  • the frequencies of the lasers that the optical transmitter 21 can emit include 100 MHz, 80 MHz, 60 MHz, 50 MHz, 30 MHz, 25 MHz, and the like.
  • the size of the first frequency is the smaller (or smallest) one of the frequencies that the light transmitter 21 can transmit, so that the projection distance falls as much as possible within the maximum distance that the first frequency can measure.
  • the frequency of the laser light that the optical transmitter 21 can emit is 100 MHz, 80 MHz, 60 MHz, 50 MHz, 30 MHz, or 25 MHz
  • the first frequency may be 25 MHz.
  • the control method of this embodiment defaults the projection distance obtained according to the first frequency to be within a range that can be measured by the first frequency.
  • the target light emission frequency of the light transmitter 21 (which may be the second frequency, the third frequency, the fourth frequency, and the fifth frequency mentioned later) may be determined according to the projection distance obtained by the light transmitter 21 transmitting the first frequency. ), And then control the light emitter 21 to emit light at the target emission frequency.
  • the projection distance obtained according to the first frequency is generally not accurate enough, or the error between the projection distance and the actual distance is generally large.
  • the projection distance is a specific value and the target luminous frequency is also a specific value.
  • the projection distance corresponds to the target luminous frequency one by one.
  • the projection distance is a range and the target luminous frequency.
  • the projection distance corresponds to the target light emission frequency one-to-one.
  • the mapping relationship between the projection distance and the target emission frequency may be determined based on calibration data of a large number of experiments before the time of flight device 20 leaves the factory.
  • the mapping relationship between the projection distance and the target luminous frequency satisfies the law that the target luminous frequency decreases as the projection distance increases.
  • the projection distance between the light transmitter 21 and the target to be measured is smaller than the maximum distance that the light transmitter 21 can measure at a certain transmission frequency, and the closer the projection distance is to the maximum measurement distance, the time-of-flight device 20 measures The higher the accuracy of the projection distance.
  • the maximum distance that a light transmitter 21 can project with a 25MHz laser is 6 meters
  • the maximum distance that a light transmitter 21 projects with a 60MHz laser can measure 2.5 meters
  • the light transmitter 21 can measure with a 100MHz laser
  • the maximum distance is 1.5 meters.
  • the accuracy of the projection distance measured by the optical transmitter 21 emitting a 25 MHz laser is less than (less than) the projection distance measured by the optical transmitter 21 emitting a 60 MHz laser.
  • Accuracy ⁇ (less than) the accuracy of the projection distance measured by the 100MHz laser emitted by the light transmitter 21, at this time, the target light emission frequency of the light transmitter 21 can be 100MHz; when the actual projection distance is within 1.5 meters to 2.5 meters
  • the accuracy of the projection distance measured by the optical transmitter 21 emitting a 25MHz laser is smaller than the accuracy of the projection distance obtained by the optical transmitter 21 emitting a 60MHz laser measurement.
  • the target light emitting frequency of the optical transmitter 21 may be 60MHz .
  • the control module 11 controls the light transmitter 21 to emit a first-frequency laser to a target to be measured and the measured projection distance is less than the first preset distance
  • the light transmitter 21 is controlled to After emitting light at the first frequency, it emits light at the second frequency.
  • the second frequency is greater than the first frequency
  • the first preset distance is less than the maximum distance that can be measured by the first frequency
  • the first preset distance is less than or equal to the maximum distance that can be measured by the second frequency.
  • the control module 11 controls the optical transmitter 21 to emit laser light to the target to be measured at a second frequency of 100 MHz, so that the time-of-flight device 20 can obtain a highly accurate projection distance.
  • the terminal 100, the time-of-flight device 20, the control device 10, and the control method according to the embodiments of the present application control the light transmitter 21 to emit a laser of a first frequency to a target to be measured, and a projection distance obtained by the laser according to the first frequency is shorter than the first
  • the light transmitter 21 is controlled to emit a laser with a second frequency to the target to be measured, so that a highly accurate projection distance can be obtained according to the laser with the second frequency.
  • the light emitter 21 includes a light source 211.
  • the light source 211 includes a substrate 2111 and a plurality of light emitting elements 2112 disposed on the substrate 2111.
  • the plurality of light emitting elements 2112 form a plurality of groups.
  • the group light-emitting element 2112 can emit a laser of a frequency to a target to be measured.
  • the light emitting elements 2112 may be divided into two groups, three groups, four groups, or any plurality of groups.
  • the number of the light-emitting elements 2112 in each group may be one, two, three, or any plurality.
  • Each group of light-emitting elements 2112 can emit a laser with a frequency, and the control module 11 or the processor 23 can control any group of light-emitting elements 2112 to work independently or control multiple groups of light-emitting elements 2112 to work simultaneously.
  • a plurality of light-emitting elements 2112 are composed of three groups g1, g2, and g3.
  • the light-emitting element 2112 of the g1 group can emit a laser with a frequency of 30 MHz
  • the light-emitting element 2112 of the g2 group can emit a frequency of 60 MHz
  • the light emitting element 2112 of the g3 group can emit a laser having a frequency of 100 MHz.
  • the control module 11 or the processor 23 can control the light emitting elements 2112 of the g1 group to emit a laser alone. At this time, the light emitting elements 2112 of the g2 group and the g3 group are turned off.
  • the laser is emitted separately, at this time, the light-emitting elements 2112 of the g1 and g3 groups are turned off; or, the control module 11 or the processor 23 can control the light-emitting elements 2112 of the g3 group to emit laser alone.
  • the light-emitting elements of the g1 and g2 groups 2112 is turned off; or the control module 11 or the processor 23 can control the light emitting elements 2112 of the g1 and g2 groups to emit laser light at the same time, at this time, the light emitting element 2112 of the g3 group is turned off; or the control module 11 or the processor 23 can control g1 The light emitting elements 2112 of the g2 group and the g3 group emit laser light at the same time. At this time, the light emitting elements 2112 of the g2 group are turned off; or, the control module 11 or the processor 23 can control the light emitting elements 2112 of the g2 group and the g3 group to emit laser light at the same time.
  • the light emitting element 2112 of the g1 group is turned off.
  • the plurality of light emitting elements 2112 of each group are distributed in an array, and each row or each column of the light emitting elements 2112 of different groups is arranged at intervals.
  • each group of light-emitting elements 2112 can also emit laser light of multiple frequencies.
  • the plurality of groups of light-emitting elements 2112 can emit lasers of multiple frequencies to the target to be measured, and at least two of the multiple frequencies are different.
  • the frequencies of the laser light emitted by the light emitting elements 2112 of different groups may be different from each other; or the laser light emitted by the light emitting elements 2112 of different groups may be partially the same.
  • multiple groups of light emitting elements 2112 can emit lasers of multiple frequencies to a target to be measured simultaneously or in a time-sharing manner.
  • the light-emitting element 2112 can simultaneously emit 100 MHz laser and 60 MHz laser to the target to be measured.
  • at least two sets of the plurality of light-emitting elements 2112 can emit two frequencies of laser light to the target to be measured in a time-sharing manner.
  • the light-emitting element 2112 can emit 100-MHz laser light and 60-MHz laser to the target to be measured in a time-sharing manner.
  • the control module 11 or the processor 23 can control a plurality of groups of light emitting elements 2112 to emit lasers of multiple frequencies to the target to be measured simultaneously or in a time-sharing manner.
  • control method further includes:
  • the light receiver 22 is controlled to receive the laser light of the first frequency reflected by the target to be measured to obtain a projection distance.
  • Step 03 is performed after step 01 and before step 02.
  • the above-described embodiment may be executed by the control device 10.
  • the control device 10 further includes an acquisition module 12 connected to the light transmitter 21 and the light receiver 22, and the acquisition module 12 is configured to control the light receiver 22 to receive the first frequency laser light reflected by the target to be measured to obtain a projection distance.
  • the acquisition module 12 includes a control unit 121 and a calculation unit 122.
  • the control unit 121 is used to control the optical receiver 22 to receive the laser light of the first frequency reflected by the target to be measured, and the calculation unit 122 is used to calculate the projection according to the laser of the first frequency. distance.
  • the acquisition module 12 can calculate the projection distance according to the indirect acquisition method mentioned above. Specifically, after the control module 11 controls the laser of the first frequency of the optical transmitter 21 to the target to be measured, the control unit 121 controls the optical receiver 22 to receive the laser of the first frequency reflected by the target to be measured, and the calculation unit 122 emits the light according to the light. The first frequency laser emitted by the receiver 21 and the first frequency laser received by the optical receiver 22 to obtain a phase difference of the first frequency, and calculate a projection distance according to the first frequency and the phase difference of the first frequency.
  • the above embodiment may also be performed by the time-of-flight device 20.
  • the processor 23 is further configured to control the light receiver 22 to receive the laser light of the first frequency reflected by the target to be measured to obtain a projection distance.
  • the processor 23 may also calculate the projection distance according to the indirect acquisition method mentioned above.
  • control method further includes:
  • the light receiver 22 is controlled to receive the laser light of the second frequency reflected by the target to be measured to obtain a measurement distance between the time-of-flight device 20 and the target to be measured.
  • Step 04 is performed after step 02.
  • the above-described embodiment may be executed by the control device 10.
  • the obtaining module 12 is further configured to execute step 04.
  • the acquisition module 12 is further configured to control the optical receiver 22 to receive the second frequency laser light reflected by the target after the control module 11 controls the light transmitter 21 to emit the second frequency laser to the target.
  • the control unit 121 is further configured to control the optical receiver 22 to receive laser light of the second frequency reflected by the target to be measured
  • the calculation unit 122 is further configured to calculate a measurement distance according to the laser of the second frequency.
  • the above embodiment may also be executed by the time of flight device 20.
  • the processor 23 is further configured to execute step 04, that is, the processor 23 is further configured to control the optical receiver 22 to receive the measured object after controlling the optical transmitter 21 to emit a second-frequency laser light to the measured object.
  • the second frequency laser reflected by the target is used to obtain the measurement distance between the time-of-flight device 20 and the target to be measured.
  • the second frequency is less than the first frequency, and the maximum distance that the time of flight device 20 can detect according to the second frequency is greater than the projection distance, the time between the time of flight device 20 and the target to be measured obtained by the time of flight device 20 according to the second frequency The accuracy of the measurement distance is greater than the accuracy of the projection distance.
  • control method further includes:
  • the projection distance is greater than the second preset distance
  • control the light transmitter 21 to emit a third frequency laser or a fourth frequency laser and a fifth frequency laser to the target to be measured.
  • the second preset The distance is greater than the first preset distance
  • the third frequency is greater than the first frequency and less than the second frequency
  • the fourth frequency is different from the fifth frequency.
  • Step 05 can be performed after step 01 or step 03.
  • control module 11 may be further configured to execute step 05. That is, the control device 11 is further configured to control the light transmitter 21 to emit a laser of a third frequency to the target to be measured when the projection distance is greater than the second preset distance (step 051); or the control device 11 is further configured to When the projection distance is greater than the second preset distance, the light transmitter 21 is controlled to emit a laser of a fourth frequency and a laser of a fifth frequency to the target to be measured (step 052).
  • the above embodiment may also be executed by the time of flight device 20.
  • the processor 23 may be further configured to execute step 05. That is, the processor 23 is further configured to control the light transmitter 21 to emit a laser of a third frequency to the target to be measured when the projection distance is greater than the second preset distance (step 051); or the processor 23 is further configured to: When the projection distance is greater than the second preset distance, the light transmitter 21 is controlled to emit a laser of a fourth frequency and a laser of a fifth frequency to the target to be measured (step 052).
  • the second preset distance is greater than the first preset distance and less than the maximum distance that the first frequency laser can measure
  • the projection distance is less than the maximum distance that can be measured at the first frequency and the maximum distance that can be measured at the third frequency .
  • the fourth frequency and the fifth frequency are both greater than the first frequency, and the fourth frequency is not equal to the fifth frequency.
  • the control method can control the light transmitter 21 to emit a laser with a third frequency (30MHz)
  • the third frequency is greater than the first frequency
  • the accuracy of the measurement distance obtained by the control method according to the third frequency is greater than the accuracy of the projection distance.
  • the projection distance is 4.5 meters
  • the first preset distance is 1.5 meters
  • the second frequency is 100MHz
  • the second preset distance is 2.5 meters.
  • the 100MHz laser and the 60MHz laser are common.
  • the maximum distance that can be measured during measurement is 7.5 meters. Since the projection distance (4.5 meters) is greater than the second preset distance (2.5 meters), the control method can control the light transmitter 21 to emit the fourth frequency (100MHz) and the fifth Laser at a frequency (60 MHz) for obtaining a measurement distance. Further, since the fourth frequency and the fifth frequency are both larger than the first frequency, the accuracy of the measurement distance obtained by the control method according to the fourth frequency and the fifth frequency is greater than the projection distance. The accuracy.
  • the least common multiple of the maximum distance that can be measured at the fourth frequency and the maximum distance that can be measured at the fifth frequency is greater than the projection distance, so that the projection distance between the light transmitter 21 and the target to be measured falls within the first
  • the combination of the four-frequency laser and the fifth-frequency laser is within the range that can be measured.
  • the maximum distance that can be measured when the fourth frequency laser and the fifth frequency laser are used in combination is equal to the least common multiple of the maximum distance that can be measured at the fourth frequency and the maximum distance that can be measured at the fifth frequency. For example, if the maximum distance that a laser with a fourth frequency of 100 MHz can measure is 1.5 meters, the maximum distance that a laser with a fifth frequency of 60 MHz can measure is 2.5 meters, and the least common multiple of 1.5 meters and 2.5 meters is 7.5 meters, then the fourth The maximum distance that can be measured when the frequency (100MHz) is combined with the fifth frequency (60MHz) is 7.5 meters.
  • the light transmitter 21 is controlled to emit a fourth frequency laser and a fifth frequency laser to the target to be measured (step 052). )include:
  • Control the light transmitter 21 to sequentially emit a laser with a fifth frequency and a laser with a fourth frequency to the target to be measured;
  • the light transmitter 21 is controlled to simultaneously emit a fourth-frequency laser light and a fifth-frequency laser light to the target to be measured.
  • Steps 0521, 0522, and 0523 can all be executed by the control module 11 and the processor 23.
  • the control module 11 or the processor 23 controls the optical transmitter 21 to continuously emit the fourth frequency and fifth frequency laser to the target to be measured. In this way, the control method of this embodiment can reduce the measurement error caused by the movement of the target to be measured.
  • control method further includes:
  • the light receiver 22 is controlled to receive the laser beam of the third frequency reflected by the target to be measured to obtain a measurement distance between the time-of-flight device 20 and the target to be measured (step 061). Or, when the projection distance is greater than the second preset distance, the light receiver 22 is controlled to receive the laser light of the fourth frequency and the laser light of the fifth frequency reflected by the target to be measured to obtain the time between the time-of-flight device 20 and the target to be measured Measuring distance (step 062).
  • Step 06 is performed after step 05, where step 061 is performed after step 051 and step 062 is performed after step 052.
  • the obtaining module 12 may be further configured to execute step 06. That is, the acquisition module 12 is further configured to control the optical receiver 22 to receive the third reflected by the target under test after the control module 11 controls the optical transmitter 21 to emit a third frequency laser to the target under test (step 051). Frequency laser to obtain the measurement distance between the time-of-flight device 20 and the target to be measured (step 061). Alternatively, the acquisition module 12 is further configured to control the optical receiver 22 to receive the reflection of the target to be measured after the control module 11 controls the optical transmitter 21 to emit the fourth frequency laser and the fifth frequency laser to the target to be measured (step 052). The fourth frequency laser and the fifth frequency laser are returned to obtain the measurement distance between the time-of-flight device 20 and the target to be measured (step 062).
  • the processor 23 may be further configured to execute step 06. That is, the processor 23 is further configured to control the light transmitter 21 to emit the third frequency laser to the target to be measured (step 051), and then control the light receiver 22 to receive the third frequency laser reflected by the target to be measured In order to obtain the measurement distance between the time-of-flight device 20 and the target to be measured (step 061). Alternatively, the processor 23 is further configured to, after controlling the light transmitter 21 to emit the fourth frequency laser and the fifth frequency laser to the target to be measured (step 052), control the light receiver 22 to receive the first reflected from the target to be measured. Four-frequency laser and fifth-frequency laser to obtain the measurement distance between the time-of-flight device 20 and the target to be measured (step 062).
  • the light receiver 22 is controlled to receive the fourth-frequency laser light and the fifth-frequency laser light reflected from the target to be measured to obtain the time-of-flight device 20 and the target device.
  • the measurement distance between the targets includes:
  • the above-described embodiment may be executed by the control device 10.
  • the obtaining module 12 may also be used to perform steps 0621 to 0625. That is, the acquisition module 12 is further configured to control the optical receiver 22 to receive the fourth frequency laser light reflected from the target to be measured to obtain the first phase difference, and to control the optical receiver 22 to receive the first phase reflected from the target to be measured. Five-frequency lasers to obtain a second phase difference, a first distance calculated from a fourth frequency and a first phase difference, a second distance calculated from a fifth frequency and a second phase difference, and a first distance and a second distance Calculate the measured distance.
  • control unit 121 is further configured to control the optical receiver 22 to receive laser light of a fourth frequency reflected from the target to be measured to obtain a first phase difference, and to control the optical receiver 22 to receive a fifth frequency reflected from the target to be measured. Frequency laser to obtain a second phase difference.
  • the calculation unit 122 is further configured to calculate a first distance according to the fourth frequency and the first phase difference, obtain a second distance according to the fifth frequency and the second phase difference, and calculate a measurement distance according to the first distance and the second distance.
  • the above embodiment may also be executed by the time of flight device 20.
  • the processor 23 may be further configured to execute steps 0621 to 0625. That is to say, the processor 23 is further configured to control the optical receiver 22 to receive laser light of a fourth frequency reflected from the target to be measured to obtain a first phase difference, and to control the optical receiver 22 to receive the first reflected light from the target to be measured. Five-frequency lasers to obtain a second phase difference, a first distance calculated from a fourth frequency and a first phase difference, a second distance calculated from a fifth frequency and a second phase difference, and a first distance and a second distance Calculate the measured distance.
  • the control method controls the optical transmitter 21Launches a fourth frequency (100MHz) laser and a fifth frequency (60MHz) laser.
  • the maximum distance that can be measured when the fourth frequency is used for measurement alone is 1.5 meters, and the maximum distance that the fifth frequency can be measured when used alone for measurement. It is 2.5 meters, and the maximum distance that can be measured when the fourth frequency is combined with the fifth frequency is 7.5 meters.
  • the optical transmitter 21 When the optical transmitter 21 emits a laser of a fourth frequency (100 MHz), the first phase difference obtained by the laser of the fourth frequency (100 MHz) received by the optical receiver 21 and reflected by the target to be measured is 120 degrees, then measure The obtained first distance is 0.5 m.
  • the optical receiver 21 receives the laser of the fifth frequency (60 MHz) reflected by the target to be measured.
  • the second phase difference is 360 degrees, and the second distance obtained by the measurement is 2.5m.
  • controlling the light transmitter 21 to emit a laser with a first frequency to a target to be measured includes:
  • Control the optical transmitter 21 to emit a laser with a first frequency to a target to be measured at a first power.
  • Step 010 may be performed by the control module 11, that is, the control module 11 may also be used to control the light transmitter 21 to emit a laser with a first frequency to the target to be measured at a first power.
  • Step 010 may also be executed by the processor 23, that is, the processor 23 may also be used to control the optical transmitter 21 to emit a laser with a first frequency to a target to be measured at a first power.
  • Controlling the optical transmitter 21 to emit a second frequency laser to the target to be measured includes:
  • the optical transmitter 21 is controlled to emit a laser of a second frequency to the target to be measured at a second power, and the second power is smaller than the first power.
  • Step 020 may be performed by the control module 11, that is, the control module 11 may also be used to control the light transmitter 21 to emit a laser with a second frequency to the target to be measured.
  • Step 020 may also be executed by the processor 23, that is, the processor 23 may also be used to control the optical transmitter 21 to emit a laser with a second frequency to the target to be measured.
  • Controlling the optical transmitter 21 to emit a laser of a third frequency or a laser of a fourth frequency and a laser of a fifth frequency to the target to be measured includes:
  • Control the optical transmitter 21 to emit a laser of a third frequency to the target to be measured at a third power or to emit a laser of a fourth frequency and a laser at a fifth frequency to the target to be measured at a fourth power.
  • the third power is less than the first power.
  • And is greater than the second power, and the fourth power is less than the first power and greater than the second power.
  • Step 050 can be executed by the control module 11, that is, the control module 11 can also be used to control the light transmitter 21 to emit a third frequency laser to the target to be measured at the third power (step 0510); the control module 11 can also be used The control of the optical transmitter 21 emits laser light of a fourth frequency and laser light of a fifth frequency to a target to be measured with a fourth power (step 0520).
  • Step 050 may also be executed by the processor 23, that is, the processor 23 may also be used to control the optical transmitter 21 to emit a third-frequency laser to a target to be measured at a third power (step 0510); the processor 23 may also It is used to control the optical transmitter 21 to emit a laser of a fourth frequency and a laser of a fifth frequency to a target to be measured at a fourth power (step 0520).
  • the third power may be greater than, less than or equal to the fourth power. Due to the energy loss of the laser during transmission, the farther the projection distance between the light transmitter 21 and the target to be measured is, the greater the transmission power of the light transmitter 21 can improve the light receiver 22 to receive the reflection from the target to be measured. The intensity of the returned laser light, thereby avoiding that the reflected laser light cannot be accurately identified by the light receiver 22 due to the intensity of the laser light received by the light receiver 22 being too low.
  • the control module 11 or the processor 23 can control the light emitting element 2112 of the g1 group to emit a laser with a first frequency (for example, 25 MHz) at a first power (P1).
  • a first frequency for example, 25 MHz
  • the control module 11 or the processor 23 can control the light emitting elements 2112 of the g2 group to emit a second frequency (for example, 100 MHz) at the second power (P2). ) 'S laser.
  • the control module 11 or the processor 23 can control the light-emitting elements 2112 of the g3 group to emit at a third power (P3) Laser at a third frequency (for example, 30 MHz).
  • P3 third power
  • the control module 11 and the processor 23 can also control the light emitting elements of the g2 group to emit at the fourth power (P4)
  • a laser of a fourth frequency for example, 100 MHz
  • a light-emitting element 2112 controlling the g3 group emit a laser of a fifth frequency (for example, 60 MHz) at a fourth power (P4).
  • the third power P3 is smaller than the first power P1 and larger than the second power P2
  • the fourth power P4 is smaller than the first power P1 and larger than the second power P2.
  • the terminal 100 includes a casing 101 and a time-of-flight device 20 according to any one of the foregoing embodiments.
  • the time-of-flight device 20 is disposed on the casing 101.
  • the casing 101 can be used as a mounting carrier for the functional elements of the terminal 100.
  • the housing 101 can provide protection for the functional elements from dust, drop, and water.
  • the functional elements can be a display screen 102, a visible light camera, a receiver, and the like.
  • the housing 101 includes a main body 103 and a movable bracket 104.
  • the movable bracket 104 can move relative to the main body 103 under the driving of a driving device.
  • the movable bracket 104 can slide relative to the main body 103 to slide. Slide in or out of the main body 103 (as shown in FIG. 1).
  • FIG. 1 and FIG. 13 are merely examples of a specific form of the casing 101, and cannot be understood as a limitation on the casing 101 of the present application.
  • the time of flight device 20 is mounted on the casing 101.
  • the casing 101 may be provided with an acquisition window, and the time-of-flight device 20 is aligned with the acquisition window so that the time-of-flight device 20 acquires depth information.
  • the time of flight device 20 is mounted on the movable bracket 104.
  • the user can trigger the movable bracket 104 to slide out from the main body 103 to drive the time-of-flight device 20 to extend from the main body 103; when the time-of-flight device 20 is not needed, the movable support can be triggered 104 slides into the main body 103 to cause the time of flight device 20 to retract into the main body.
  • the time-of-flight device 20 includes a first substrate assembly 24 and a pad 25 in addition to the light transmitter 21, the light receiver 22 and the processor 23.
  • the first substrate assembly 24 includes a first substrate 241 and a flexible circuit board 242 connected to each other.
  • the spacer 25 is disposed on the first substrate 241.
  • the light emitter 21 is used for projecting laser light outward, and the light emitter 21 is disposed on the pad 25.
  • the flexible circuit board 242 is bent and one end of the flexible circuit board 242 is connected to the first substrate 241 and the other end is connected to the light emitter 21.
  • the light receiver 22 is disposed on the first substrate 241.
  • the light receiver 22 is used to receive laser light reflected by a person or an object in the target space.
  • the light receiver 22 includes a housing 221 and an optical element 222 provided on the housing 221.
  • the housing 221 is integrally connected with the pad 25.
  • the first substrate assembly 24 includes a first substrate 241 and a flexible circuit board 242.
  • the first substrate 241 may be a printed wiring board or a flexible wiring board.
  • the control circuit and the like of the time of flight device 20 may be laid on the first substrate 24.
  • One end of the flexible circuit board 242 may be connected to the first substrate 241, and the other end of the flexible circuit board 242 may be connected to the circuit board 215 (shown in FIG. 16).
  • the flexible circuit board 242 can be bent at a certain angle, so that the relative positions of the devices connected at both ends of the flexible circuit board 242 can be selected.
  • the spacer 25 is disposed on the first substrate 241.
  • the pad 25 is in contact with the first substrate 241 and is carried on the first substrate 241.
  • the pad 25 may be combined with the first substrate 241 by means such as gluing.
  • the material of the spacer 25 may be metal, plastic, or the like.
  • a surface where the pad 25 is combined with the first substrate 241 may be a plane, and a surface of the pad 25 opposite to the combined surface may be a plane, so that the light emitter 21 is disposed on the pad 25. It has better smoothness.
  • the light receiver 22 is disposed on the first substrate 241, and the contact surface between the light receiver 22 and the first substrate 241 is substantially flush with the contact surface between the pad 25 and the first substrate 241 (that is, the installation starting point of the two is at On the same plane).
  • the light receiver 22 includes a housing 221 and an optical element 222.
  • the casing 221 is disposed on the first substrate 241, and the optical element 222 is disposed on the casing 221.
  • the casing 221 may be a lens holder and a lens barrel of the light receiver 22, and the optical element 222 may be a lens or other elements disposed in the casing 221.
  • the light receiver 22 further includes a photosensitive chip (not shown), and the laser light reflected by a person or an object in the target space passes through the optical element 222 and is irradiated into the photosensitive chip, and the photosensitive chip generates a response to the laser.
  • the casing 221 and the cushion block 25 are integrally connected.
  • the housing 221 and the spacer 25 may be integrally formed; or the materials of the housing 221 and the spacer 25 are different, and the two are integrally formed by two-color injection molding or the like.
  • the housing 221 and the spacer 25 may also be separately formed, and the two form a matching structure.
  • one of the housing 221 and the spacer 25 may be set on the first substrate 241, and then the other It is disposed on the first substrate 241 and connected integrally.
  • the light emitter 21 is set on the pad 25, which can raise the height of the light emitter 21, thereby increasing the height of the surface on which the light emitter 21 emits the laser light.
  • the device 22 is blocked, so that the laser light can be completely irradiated on the measured object in the target space.
  • a receiving cavity 251 is defined on a side where the pad 25 is combined with the first substrate 241.
  • the time of flight device 20 further includes an electronic component 26 provided on the first substrate 241.
  • the electronic component 26 is received in the receiving cavity 251.
  • the electronic component 26 may be an element such as a capacitor, an inductor, a transistor, or a resistor.
  • the electronic component 26 may be electrically connected to a control line laid on the first substrate 241 and used for or controlling the operation of the light transmitter 21 or the light receiver 22.
  • the electronic component 26 is housed in the receiving cavity 251, and the space in the pad 25 is used reasonably.
  • the number of the receiving cavities 251 may be one or more, and the receiving cavities 251 may be spaced apart from each other. When mounting the spacer 25, the receiving cavity 251 and the electronic component 26 can be aligned and the spacer 25 can be set on the first substrate 241.
  • the cushion block 25 is provided with an escape through hole 252 connected to at least one receiving cavity 251, and at least one electronic component 26 extends into the escape through hole 252. It can be understood that when the electronic component 26 needs to be accommodated in the avoiding through hole, the height of the electronic component 26 is required to be not higher than the height of the receiving cavity 251. For electronic components having a height higher than the receiving cavity 251, an avoiding through hole 252 corresponding to the receiving cavity 251 may be provided, and the electronic component 26 may partially extend into the avoiding through hole 252 so as not to increase the height of the spacer 25. Arranges the electronic component 26.
  • the first substrate assembly 24 further includes a reinforcing plate 243.
  • the reinforcing plate 243 is coupled to a side of the first substrate 241 opposite to the pad 25.
  • the reinforcing plate 243 may cover one side of the first substrate 241, and the reinforcing plate 243 may be used to increase the strength of the first substrate 241 and prevent deformation of the first substrate 241.
  • the reinforcing plate 243 may be made of a conductive material, such as a metal or an alloy.
  • the reinforcing plate 243 may be electrically connected to the casing 101 to ground the reinforcing plate 243. And it can effectively reduce the interference of the static electricity of the external components on the time-of-flight device 20.
  • the time-of-flight device 20 further includes a connector 27 connected to the first substrate assembly 24 and used for electronic components external to the time-of-flight device 20. Electrical connection.
  • the light emitter 21 includes a light source 211, a diffuser 212, a lens barrel 213, a protective cover 214, a circuit board 215, and a driver 216.
  • the lens barrel 213 includes a ring-shaped lens barrel side wall 2131, and the ring-shaped lens barrel side wall 2131 surrounds a receiving cavity 2132.
  • the side wall 2131 of the lens barrel includes an inner surface 2133 located in the receiving cavity 2132 and an outer surface 2134 opposite to the inner surface.
  • the side wall 2131 of the lens barrel includes a first surface 2135 and a second surface 2136 opposite to each other.
  • the receiving cavity 2132 penetrates the first surface 2135 and the second surface 2136.
  • the first surface 2135 is recessed toward the second surface 2136 to form a mounting groove 2137 communicating with the receiving cavity 2132.
  • the bottom surface 2138 of the mounting groove 2137 is located on a side of the mounting groove 2137 away from the first surface 2135.
  • the outer surface 2134 of the side wall 2131 of the lens barrel is circular at one end of the first surface 2135, and the outer surface 2134 of the side wall 2131 of the lens barrel is formed with an external thread at one end of the first surface 2135.
  • the circuit board 215 is disposed on the second surface 2136 of the lens barrel 213 and closes one end of the receiving cavity 2132.
  • the circuit board 215 may be a flexible circuit board or a printed circuit board.
  • the light source 211 is carried on the circuit board 215 and is contained in the receiving cavity 2132.
  • the light source 211 is configured to emit laser light toward the first surface 2135 (the mounting groove 2137) side of the lens barrel 213.
  • the light source 211 may be a single-point light source or a multi-point light source.
  • the light source 211 may specifically be an edge-emitting laser, for example, a distributed feedback laser (Distributed Feedback Laser (DFB), etc.); when the light source 211 is a multi-point light source, the light source 211 may specifically be vertical A cavity-surface emitter (Vertical-Cavity Surface Laser, VCSEL), or the light source 211 is also a multi-point light source composed of multiple edge-emitting lasers.
  • a distributed feedback laser distributed Feedback Laser (DFB), etc.
  • DFB Distributed Feedback Laser
  • VCSEL Vertical-Cavity Surface Laser
  • the vertical cavity surface emitting laser has a small height, and the use of a vertical cavity surface emitter as the light source 211 is conducive to reducing the height of the light emitter 21 and facilitating the integration of the light emitter 21 into a mobile phone, etc., which have high requirements on the thickness of the fuselage Terminal 100.
  • the temperature drift of the edge-emitting laser is smaller, and the influence of the temperature on the effect of the projected laser light from the light source 211 can be reduced.
  • the driver 216 is carried on the circuit board 215 and is electrically connected to the light source 211. Specifically, the driver 216 may receive the modulated input signal, and convert the input signal into a constant current source and transmit it to the light source 211, so that the light source 211 faces the first surface 2135 of the lens barrel 213 under the action of the constant current source. Laser is emitted on one side.
  • the driver 216 of this embodiment is provided outside the lens barrel 213. In other embodiments, the driver 216 may be disposed in the lens barrel 213 and carried on the circuit board 215.
  • the diffuser 212 is mounted (bearing) in the mounting groove 2137 and is in contact with the bottom surface 2138 of the mounting groove 2137.
  • the diffuser 212 is used to diffuse the laser light passing through the diffuser 212. That is, when the light source 211 emits laser light toward the first surface 2135 side of the lens barrel 213, the laser light passes through the diffuser 212 and is diffused or projected outside the lens barrel 213 by the diffuser 212.
  • the protective cover 214 includes a top wall 2141 and a protective side wall 2142 extending from one side of the top wall 2141.
  • a light through hole 2143 is defined in the center of the top wall 2141.
  • the protective side wall 2142 is disposed around the top wall 2141 and the light through hole 2143.
  • the top wall 2141 and the protection side wall 2142 together form a mounting cavity 2144, and the light-through hole 2143 communicates with the mounting cavity 2144.
  • the inner surface of the protective sidewall 2142 has a circular cross section, and an internal thread is formed on the inner surface of the protective sidewall 2142.
  • the internal thread of the protective sidewall 2142 is screwed with the external thread of the lens barrel 213 to mount the protective cover 214 on the lens barrel 213.
  • the top wall 2141 abuts the diffuser 212 such that the diffuser 40 is clamped between the top wall 2141 and the bottom surface 2138 of the mounting groove 2137.
  • the diffuser 212 is clamped between the protective cover 214 and the mounting groove. Between the bottom surfaces 2138 of 2137, the diffuser 212 can be fixed on the lens barrel 213. In this way, it is not necessary to use glue to fix the diffuser 212 on the lens barrel 213, which can prevent the gaseous glue from solidifying on the surface of the diffuser 212 and affecting the microstructure of the diffuser 212 after the glue is volatilized to a gaseous state. When the glue with the lens barrel 213 decreases due to aging, the diffuser 212 falls off from the lens barrel 213.
  • the structure of the vertical cavity surface emitter at this time may be:
  • the vertical cavity surface emitter includes a substrate 2111 and a plurality of light-emitting units 2112 provided on the substrate 2111.
  • the plurality of light-emitting units 2112 form a plurality of independently controllable fan-shaped regions 2113, and the fan-shaped regions 2113 surround Circular (as shown in FIG. 18) or polygon (not shown).
  • Circular as shown in FIG. 18
  • polygon not shown
  • the light source 211 includes two groups of light-emitting elements 2112, and the light-emitting units 2112 in three spaced-apart regions 2113 form a group, and the two groups of light-emitting elements 2112 can emit lasers of different frequencies, and the light emitting power of the light emitter 21 can be realized by turning on the light emitting units 2112 in different number of fan-shaped regions 2113, that is, the correspondence between the target light-emitting power and the target number of the turned-on fan-shaped array.
  • the light source 211 in the light source 211 only emits a laser of a certain frequency (for example, 100 MHz) in the fan-shaped region 2113, the power of the laser of the frequency (100 MHz) is the smallest; when three fan-shaped regions in a group
  • the light emitting units 2112 in 2113 all emit lasers of a certain frequency (for example, 30 MHz) (as shown in FIG. 18)
  • the group emits lasers of that frequency (30 MHz) with the highest power.
  • the vertical cavity surface emitter includes a substrate 2111 and a plurality of light-emitting units 2112 provided on the substrate 2111.
  • the plurality of light-emitting units 2112 form a plurality of independently controllable light-emitting regions 2114.
  • the light-emitting regions 2114 may be circular regions. It can also be a ring-shaped area. At least one circular area and at least one ring-shaped area surround a circle (as shown in FIG. 19).
  • the light-emitting elements 2112 in each light-emitting area 2114 form a group.
  • Each group of light-emitting elements 2112 can be A preset power emits lasers of one frequency.
  • the preset powers of different groups are different.
  • the frequencies emitted by different groups of light emitting elements 2112 may be the same or different.
  • the present application further provides a computer-readable storage medium 50.
  • the computer-readable storage medium 50 includes a computer program 60 used in conjunction with the terminal 100.
  • the computer program 60 may be executed by the processor 23 to complete the control method of the light transmitter 21 according to any one of the above embodiments.
  • the computer program 60 may be executed by the processor 23 to complete the following steps:
  • the light transmitter 21 is controlled to emit a laser with a second frequency to the target to be measured, and the second frequency is greater than the first frequency.
  • the computer program 60 may also be executed by the processor 23 to perform the following steps:
  • control the light receiver 22 to receive the laser light of the second frequency reflected by the target to be measured to obtain a measurement distance between the time-of-flight device 20 and the target to be measured;
  • the projection distance is greater than the second preset distance
  • control the light transmitter 21 to emit a third frequency laser or a fourth frequency laser and a fifth frequency laser to the target to be measured.
  • the second preset The distance is greater than the first preset distance, the third frequency is less than the first frequency, and the fourth frequency is different from the fifth frequency;
  • control the light receiver 22 When the projection distance is greater than the second preset distance, control the light receiver 22 to receive the laser light of the third frequency reflected by the target to be measured; or, when the projection distance is greater than the second preset distance, control the light receiver 22 The fourth frequency laser light and the fifth frequency laser light reflected from the target to be measured are received to obtain a measurement distance between the time-of-flight device 20 and the target to be measured.
  • first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Therefore, the features defined as “first” and “second” may explicitly or implicitly include at least one of the features. In the description of the present application, the meaning of "a plurality” is at least two, for example, two, three, etc., unless it is specifically and specifically defined otherwise.
  • Any process or method description in a flowchart or otherwise described herein can be understood as a module, fragment, or portion of code that includes one or more executable instructions for implementing a particular logical function or step of a process
  • the scope of the preferred embodiments of this application includes additional implementations in which the functions may be performed out of the order shown or discussed, including performing the functions in a substantially simultaneous manner or in the reverse order according to the functions involved, which should It is understood by those skilled in the art to which the embodiments of the present application pertain.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种控制方法、控制装置(10)、飞行时间设备(20)、终端(100)及计算机可读存储介质(50),该控制方法包括:控制光发射器(21)向待测目标发射第一频率的激光;在光发射器(21)与待测目标之间的投射距离小于第一预设距离时,控制光发射器(21)向待测目标发射第二频率的激光,第二频率大于第一频率。

Description

控制方法与装置、飞行时间设备、终端及计算机可读存储介质
优先权信息
本申请请求2018年09月27日向中国国家知识产权局提交的、专利申请号为201811135537.3的专利申请的优先权和权益,并且通过参照将其全文并入此处。
技术领域
本申请涉及消费性电子设备技术领域,特别涉及一种控制方法、控制装置、飞行时间设备、终端及计算机可读存储介质。
背景技术
现有的飞行时间(Time Of Flight,TOF)设备一般用于测量待测目标与飞行时间设备之间的距离。
发明内容
本申请实施方式提供一种控制方法、控制装置、飞行时间设备、终端及计算机可读存储介质。
本申请实施方式的控制方法包括控制光发射器向待测目标发射第一频率的激光、及在所述光发射器与所述待测目标之间的投射距离小于第一预设距离时,控制所述光发射器向所述待测目标发射第二频率的激光,所述第二频率大于所述第一频率。
本申请实施方式的控制装置包括控制模块,所述控制模块用于控制光发射器向待测目标发射第一频率的激光、在所述光发射器与所述待测目标之间的投射距离小于第一预设距离时,控制所述光发射器向所述待测目标发射第二频率的激光,所述第二频率大于所述第一频率。
本申请实施方式的飞行时间设备包括光发射器及处理器,所述处理器用于控制所述光发射器向待测目标发射第一频率的激光、及在所述光发射器与所述待测目标之间的投射距离小于第一预设距离时,控制所述光发射器向所述待测目标发射第二频率的激光,所述第二频率大于所述第一频率。
本实施方式的终端包括壳体和上述实施方式的飞行时间设备,所述飞行时间设备设置在所述壳体上。
本申请实施方式的计算机可读存储介质包括与终端结合使用的计算机程序,所述计算机程序可被处理器执行以完成上述实施方式所述的控制方法。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1是本申请某些实施方式的终端立体结构示意图。
图2是本申请某些实施方式的控制方法的流程示意图。
图3是本申请某些实施方式的飞行时间设备的光发射器中的光源的结构示意图。
图4是本申请某些实施方式的控制方法的流程示意图。
图5是本申请某些实施方式的控制装置的模块示意图。
图6至图10是本申请某些实施方式的控制方法的流程示意图。
图11是本申请某些实施方式的飞行时间设备的工作原理示意图。
图12是本申请某些实施方式的控制方法的流程示意图。
图13是本申请某些实施方式的终端的立体结构示意图。
图14是本申请某些实施方式的飞行时间设备的立体结构示意图。
图15是本申请某些实施方式的飞行时间设备的平面结构示意图。
图16是图15中的飞行时间设备沿XVI-XVI线的截面示意图。
图17是本申请某些实施方式的光发射器的结构示意图。
图18和图19是本申请某些实施方式的光发射器的光源的结构示意图。
图20是本申请某些实施方式的计算机可读存储介质与终端的连接示意图。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号 表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
请参阅图1及图2,本申请实施方式的控制方法包括:
01,控制光发射器21向待测目标发射第一频率的激光;及
02,在光发射器21与待测目标之间的投射距离小于第一预设距离时,控制光发射器21向待测目标发射第二频率的激光,第二频率大于第一频率。
请参阅图1及图7,在某些实施方式中,控制方法还包括:
05,在投射距离大于第二预设距离时,控制光发射器21向待测目标发射第三频率的激光或向待测目标发射第四频率的激光和第五频率的激光,第二预设距离大于第一预设距离,第三频率大于第一频率且小于第二频率,第四频率与第五频率不同。
在某些实施方式中,第四频率能够测量的最大距离与第五频率能够测量的最大距离的最小公倍数大于投射距离。
请参阅图1、图4至图6及图9,在某些实施方式中,控制方法还包括:
03,控制光接收器22接收被待测目标反射回来的第一频率的激光以获得投射距离;
04,在投射距离小于第一预设距离时,控制光接收器22接收被待测目标反射回来的第二频率的激光以获取飞行时间设备20与待测目标之间的测量距离;
06,在投射距离大于第二预设距离时,控制光接收器22接收被待测目标反射回来的第三频率的激光以获取飞行时间设备20与待测目标之间的测量距离(步骤061);或者,在投射距离大于第二预设距离时,控制光接收器22接收被待测目标反射回来的第四频率的激光和第五频率的激光以获取飞行时间设备20与待测目标之间的测量距离(步骤062)。
请参阅图1及图10,在某些实施方式中,步骤062包括:
0621,控制光接收器22接收被待测目标反射回来的第四频率的激光以获得第一相位差;
0622,控制光接收器接22收被待测目标反射回来的第五频率的激光以获得第二相位差;
0623,根据第四频率和第一相位差计算获得第一距离;
0624,根据第五频率和第二相位差计算获得第二距离;及
0625,根据第一距离和第二距离计算获得测量距离。
请参阅图12,在某些实施方式中,步骤01包括:
010,控制光发射器21以第一功率向待测目标发射第一频率的激光。
请参阅图12,在某些实施方式中,步骤02包括:
020,控制光发射器21以第二功率向待测目标发射第二频率的激光,第二功率小于所述第一功率。
请参阅图12,在某些实施方式中,步骤05包括:
050,控制光发射器21以第三功率向待测目标发射第三频率的激光或以第四功率向待测目标发射第四频率的激光和第五频率的激光,第三功率小于第一功率并大于第二功率,第四功率小于第一功率并大于第二功率。
请参阅图1及图8,在某些实施方式中,步骤052包括:
0521,控制光发射器21依次向待测目标发射第四频率的激光和第五频率的激光;或
0522,控制光发射器21依次向待测目标发射第五频率的激光和第四频率的激光;或
0523,控制光发射器21同时向待测目标发射第四频率的激光和第五频率的激光。
请参阅图1及图5,本申请实施方式的控制装置10包括控制模块11,控制模块11可用于控制光发射器21向待测目标发射第一频率的激光、以及在光发射器21与待测目标之间的投射距离小于第一预设距离时,控制光发射器21向待测目标发射第二频率的激光。
请参阅图1,本申请实施方式的飞行时间设备20包括光发射器21和处理器23,处理器23可用于控制光发射器21向待测目标发射第一频率的激光、以及在光发射器21与待测目标之间的投射距离小于第一预设距离时,控制光发射器21向待测目标发射第二频率的激光。
请参阅图1,壳体101和上述任意一实施方式的飞行时间设备20,飞行时间设备20设置在壳体101上。
请参阅图20,本申请实施方式的计算机可读存储介质50包括与终端100结合使用计算机程序60。计算机程序60可被处理器23执行以完成上述任意一项实施方式所述的光发射器21的控制方法。
请参阅图1及图2,本申请实施方式的控制方法包括:
01,控制光发射器21向待测目标发射第一频率的激光;及
02,在光发射器21与待测目标之间的投射距离小于第一预设距离时,控制光发射器21向待测目标发射第二频率的激光,第二频率大于第一频率。
上述实施方式可以由控制装置10执行。具体地,请结合图5,控制装置10包括与光发射器21连接的控制模块11,控制模块11可用于控制光发射器21执行步骤01和步骤02。也就是说,控制模块11可用于控制光发射器21向待测目标发射第一频率的激光、以及在光发射器21与待测目标之间的投射距离小于第一预设距离时,控制光发射器21向待测目标发射第二频率的激光。
上述实施方式还可以由飞行时间设备20执行。具体地,飞行时间设备20包括光发射器21、光接收器22和处理器23,处理器23连接光发射器21和光接收器22,处理器23可用于控制光发射器21执行步骤01和步骤02。也就是说,处理器23可用于控制光发射器21向待测目标发射第一频率的激光、以及在光发射器21与待测目标之间的投射距离小于第一预设距离时,控制光发射器21向待测目标发射第二频率的激光。
请结合图20,本申请实施方式的飞行时间设备20可以应用于终端100中。本申请实施方式的飞行时间设备20中的处理器23与终端100中的处理器23可以为同一个处理器23,也可以为两个独立的处理器23。在本申请的具体实施例中,飞行时间设备20中的处理器23与终端100的处理器23为同一个处理器23。终端100可以是手机、平板电脑、智能穿戴设备(智能手表、智能手环、智能眼镜、智能头盔)、无人机等,在此不作限制。
光发射器21用于向场景中投射激光,光接收器22接收由场景中的待测目标反射回的激光。飞行时间设备20获取光发射器21与待测目标之间的投射距离通常包括直接获取和间接获取两种方式。直接获取方式下:处理器23可以根据光发射器21发射激光的时间点与光接收器22接收到反射回来的激光的时间点计算激光在场景中的飞行时间,并根据激光在场景中的飞行时间计算场景的深度信息。间接获取方式下:光发射器21向场景中发射激光,光接收器22采集被待测目标反射回来的激光以获得相位差,并根据该相位差和激光的发光频率计算场景的深度信息。在一个实施例中,
Figure PCTCN2019090021-appb-000001
其中d为飞行时间设备20与待测目标之间的投射距离,c为光速,t为激光的飞行时间,T为激光的发光周期,
Figure PCTCN2019090021-appb-000002
为相位差,f为激光的发光频率。需要说明的是,
Figure PCTCN2019090021-appb-000003
的取值为0度至360度,在
Figure PCTCN2019090021-appb-000004
时,d为0,投射距离取得最小值;在
Figure PCTCN2019090021-appb-000005
时,
Figure PCTCN2019090021-appb-000006
投射距离取得最大值,此时的投射距离为飞行时间设备20在发射频率为f时能够测量的最大距离。飞行时间设备20能够测量的最大距离取决于光发射器21的发光频率,发光频率越高,飞行时间设备20能够测量的最大距离越短,发光频率越低,飞行时间设备20能够测量的最大距离越长。
本实施方式的光发射器21能够向待测目标发射多种频率的激光,例如,光发射器21能够发射的激光的频率可以包括100MHz、80MHz、60MHz、50MHz、30MHz、25MHz等。一般地,第一频率的大小为光发射器21能够发射的频率中较小(或最小)的一个,以使投射距离尽可能落入到第一频率能够测量的最大距离内。例如,当光发射器21能够发射的激光的频率为100MHz、80MHz、60MHz、50MHz、30MHz、25MHz时,第一频率可以为25MHz。本实施方式的控制方法将根据第一频率获得的投射距离默认为在第一频率能够测量的范围内。
本实施方式可以根据光发射器21发射第一频率获得的投射距离来确定光发射器21的目标发光频率(可为后文提及的第二频率、第三频率、第四频率及第五频率),然后控制光发射器21按照目标发光频率发光。其中,根据第一频率获得的投射距离一般不够准确,或者说投射距离与实际距离的误差一般比较大。投射距离与目标发光频率具有映射关系,例如,投射距离为一个具体的值,目标发光频率也为一个具体值,投射距离与目标发光频率一一对应;或者,投射距离为一个范围,目标发光频率为一个具体值,投射距离与目标发光频率一一对应。投射距离与目标发光频率之间映射关系可以是在飞行时间设备20出厂前基于大量实验的标定数据确定得到的。投射距离与目标发光频率之间的映射关系满足目标发光频率随投射距离的增加而减小的规律。
一般地,光发射器21与待测目标之间的投射距离小于光发射器21在某一发射频率下能够测量的最大距离,并且投射距离与最大测量距离越接近时,飞行时间设备20测量到的投射距离的精度越高。换句话说,光发射器21发出的激光的频率越高,飞行时间设备20根据该频率测量得到的投射距离的精度越高。例如,光发射器21投射25MHz的激光能够测得的最大距离为6米,光发射器21投射60MHz的激光能够测得的最大距离为2.5米,光发射器21投射100MHz的激光能够测得的最大距离为1.5米,当实际的投射距离为1.5米内时,光发射器21发出25MHz的激光进行测量得到的投射距离的精度<(小于)光发射器21发出60MHz的激光进行测量得到的投射距离的精度<(小于)光发射器21发出100MHz的激光进行测量得到的投射距离的精度,此时,光发射器21的目标发光频率可以为100MHz;当实际的投射距离为1.5米至2.5米内时,光发射器21发出25MHz的激光进行测量得到的投射距离的精度要小 于光发射器21发出60MHz的激光测量进行得到的投射距离的精度,此时,光发射器21的目标发光频率可以为60MHz。
本实施方式中,当控制模块11(或处理器23)控制光发射器21向待测目标发射第一频率的激光后测得到的投射距离小于第一预设距离时,控制光发射器21以第一频率发光后以第二频率发光。其中,第二频率大于第一频率,第一预设距离小于第一频率能够测量的最大距离,并且第一预设距离小于或等于第二频率能够测量的最大距离。例如,当光发射器21向待测目标发射第一频率为25MHz的激光,并且飞行时间设备20根据第一频率测得的投射距离小于或等于1.5米(其中,第一预设距离为1.5米)时,控制模块11(或处理器23)控制光发射器21以第二频率为100MHz向待测目标发射激光,以使飞行时间设备20能够得到精度较高的投射距离。
现有的飞行时间设备测量得到的距离的精度较差。
本申请实施方式的终端100、飞行时间设备20、控制装置10及控制方法控制光发射器21向待测目标发射第一频率的激光、并在根据第一频率的激光获得的投射距离小于第一预设距离时,控制光发射器21向待测目标发射第二频率的激光,从而能够根据第二频率的激光获得精度较高的投射距离。
请参阅图3,在某些实施方式中,光发射器21包括光源211,光源211包括衬底2111及设置在衬底2111上的多个发光元件2112,多个发光元件2112形成多组,每组发光元件2112能够向待测目标发射一种频率的激光。
具体地,发光元件2112可以分为两组、三组、四组或任意多组。每组发光元件2112的数量可以为一个、两个、三个或任意多个。每组发光元件2112能够发出一种频率的激光,控制模块11或处理器23能够控制任意一组发光元件2112单独工作或者控制多组发光元件2112同时工作。
例如,图3的实施例中,多个发光元件2112组成g1、g2和g3三组,其中,g1组的发光元件2112能够发出频率为30MHz的激光,g2组的发光元件2112能够发出频率为60MHz的激光,g3组的发光元件2112能够发出频率为100MHz的激光。控制模块11或处理器23能够控制g1组的发光元件2112单独发出激光,此时,g2组和g3组的发光元件2112关闭;或者,控制模块11或处理器23能够控制g2组的发光元件2112单独发出激光,此时,g1组和g3组的发光元件2112关闭;或者,控制模块11或处理器23能够控制g3组的发光元件2112单独发出激光,此时,g1组和g2组的发光元件2112关闭;或者,控制模块11或处理器23能够控制g1组和g2组的发光元件2112同时发出激光,此时,g3组的发光元件2112关闭;或者,控制模块11或处理器23能够控制g1组和g3组的发光元件2112同时发出激光,此时,g2组的发光元件2112关闭;或者,控制模块11或处理器23能够控制g2组和g3组的发光元件2112同时发出激光,此时,g1组的发光元件2112关闭。在其他实施方式中,每组的多个发光元件2112呈阵列分布,不同组的发光元件2112的每一行或每一列间隔设置。在其他实施方式中,每组发光元件2112也能够发出多种频率的激光。
请参阅图3,在某些实施方式中,多组发光元件2112能够向待测目标发射多种频率的激光,且多种频率中至少有两种频率不相同。
一般地,不同组的发光元件2112发出的激光的频率可以互不相同;或者,不同组的发光元件2112发出的激光也可以部分相同。
请参阅图3,在某些实施方式中,多组发光元件2112能够向待测目标同时或分时发射多种频率的激光。
多组发光元件2112中至少存在两组发光元件2112能够同时向待测目标发射两种频率的激光,例如,发光元件2112能够同时向待测目标发射100MHz的激光和60MHz的激光。或者,多组发光元件2112中至少存在两组发光元件2112能够分时向待测目标发射两种频率的激光,例如,发光元件2112能够分时向待测目标发射100MHz的激光和60MHz的激光。控制模块11或处理器23能够控制多组发光元件2112向待测目标同时或分时发射多种频率的激光。
请参阅图1、图4及图5,在某些实施方式中,控制方法还包括:
03,控制光接收器22接收被待测目标反射回来的第一频率的激光以获得投射距离。
步骤03在步骤01之后并在步骤02之前执行。上述实施方式可以由控制装置10执行。具体地,控制装置10还包括连接光发射器21及光接收器22的获取模块12,获取模块12用于控制光接收器22接收被待测目标反射回来的第一频率的激光以获得投射距离。获取模块12包括控制单元121和计算单元122,控制单元121用于控制光接收器22接收被待测目标反射回来的第一频率的激光,计算单元122用于根据第一频率的激光计算得到投射距离。
获取模块12可以依据上面提及的间接获取方式计算投射距离。具体地,控制模块11控制光发射器21向待测目标第一频率的激光后,控制单元121控制光接收器22接收被待测目标反射回来的第一频率 的激光,计算单元122根据光发射器21发射的第一频率的激光和光接收器22接收的第一频率的激光以获取第一频率的相位差,并根据第一频率及第一频率的相位差计算投射距离。
上述实施方式也可以由飞行时间设备20执行。具体地,处理器23还用于控制光接收器22接收被待测目标反射回来的第一频率的激光以获得投射距离。处理器23也可以依据上面提及的间接获取方式计算投射距离。
请参阅图1、图5、图6,在某些实施方式中,控制方法还包括:
04,在投射距离小于第一预设距离时,控制光接收器22接收被待测目标反射回来的第二频率的激光以获取飞行时间设备20与待测目标之间的测量距离。
步骤04在步骤02之后执行。上述实施方式可以由控制装置10执行。具体地,获取模块12还用于执行步骤04。也就是说,获取模块12还用于在控制模块11控制光发射器21向待测目标发射第二频率的激光之后,控制光接收器22接收被待测目标反射回来的第二频率的激光以获取飞行时间设备20与待测目标之间的测量距离。控制单元121还用于控制光接收器22接收被待测目标反射回来的第二频率的激光,计算单元122还用于根据第二频率的激光计算得到测量距离。
上述实施方式还可以由飞行时间设备20执行。具体地,处理器23还用于执行步骤04,也就是说,处理器23还用于在控制光发射器21向待测目标发射第二频率的激光之后,控制光接收器22接收被待测目标反射回来的第二频率的激光以获取飞行时间设备20与待测目标之间的测量距离。
由于第二频率小于第一频率,并且飞行时间设备20根据第二频率能够检测的最大距离大于投射距离,因此,飞行时间设备20根据第二频率获得的飞行时间设备20与待测目标之间的测量距离的精度大于投射距离的精度。
请参阅图1、图5及图7,在某些实施方式中,控制方法还包括:
05,在投射距离大于第二预设距离时,控制光发射器21向待测目标发射第三频率的激光或向待测目标发射第四频率的激光和第五频率的激光,第二预设距离大于第一预设距离,第三频率大于第一频率且小于第二频率,第四频率与第五频率不同。
步骤05可以在步骤01或步骤03之后执行。
上述实施方式可以由控制装置10执行。具体地,控制模块11还可用于执行步骤05。也就是说,控制装置11还用于在投射距离大于第二预设距离时,控制光发射器21向待测目标发射第三频率的激光(步骤051);或者,控制装置11还用于在投射距离大于第二预设距离时,控制光发射器21向待测目标发射第四频率的激光和第五频率的激光(步骤052)。
上述实施方式还可以由飞行时间设备20执行。具体地,处理器23还可用于执行步骤05。也就是说,处理器23还用于在投射距离大于第二预设距离时,控制光发射器21向待测目标发射第三频率的激光(步骤051);或者,处理器23还用于在投射距离大于第二预设距离时,控制光发射器21向待测目标发射第四频率的激光和第五频率的激光(步骤052)。
具体地,第二预设距离大于第一预设距离且小于第一频率激光能够测得的距离的最大值,投射距离小于第一频率能够测量的最大距离以及小于第三频率能够测量的最大距离。第四频率和第五频率均大于第一频率,并且第四频率与第五频率不相等。
例如,若投射第一频率为25MHz的激光测得的投射距离为4.5米,第一预设距离为1.5米,第二频率为100MHz,第二预设距离为2.5米,由于投射距离(4.5米)大于第二预设距离(2.5米),30MHz的激光能够测量的最大距离为5米并大于投射距离(4.5米),则控制方法可以控制光发射器21发出第三频率(30MHz)的激光以用于获得测量距离,进一步地,由于第三频率大于第一频率,因此控制方法根据第三频率获得的测量距离的精度大于投射距离的精度。
若投射第一频率为25MHz的激光测得的投射距离为4.5米,第一预设距离为1.5米,第二频率为100MHz,第二预设距离为2.5米,100MHz的激光和60MHz的激光共同用于测量时能够测量的最大距离为7.5米,由于投射距离(4.5米)大于第二预设距离(2.5米),则控制方法可以控制光发射器21发出第四频率(100MHz)和第五频率(60MHz)的激光以用于获得测量距离,进一步地,由于第四频率和第五频率都大于第一频率,因此控制方法根据第四频率和第五频率获得的测量距离的精度大于投射距离的精度。
在某些实施方式中,第四频率能够测量的最大距离与第五频率能够测量的最大距离的最小公倍数大于投射距离,以使光发射器21与待测目标之间的投射距离落入到第四频率的激光和第五频率的激光组合使用时在能够测量的范围内。
具体地,第四频率的激光和第五频率的激光组合使用时能够测量的最大距离等于第四频率能够测量的最大距离与第五频率能够测量的最大距离的最小公倍数。例如,若第四频率为100MHz的激光能够测量的最大距离为1.5米,第五频率为60MHz的激光能够测量的最大距离为2.5米,1.5米与2.5米的最小 公倍数为7.5米,则第四频率(100MHz)与第五频率(60MHz)组合使用时能够测量的最大距离为7.5米。
请参阅图1及图8,在某些实施方式中,在投射距离大于第二预设距离时,控制光发射器21向待测目标发射第四频率的激光和第五频率的激光(步骤052)包括:
0521,控制光发射器21依次向待测目标发射第四频率的激光和第五频率的激光;或
0522,控制光发射器21依次向待测目标发射第五频率的激光和第四频率的激光;或
0523,控制光发射器21同时向待测目标发射第四频率的激光和第五频率的激光。
步骤0521、步骤0522和步骤0523均可以由控制模块11和处理器23执行。
一般地,当第四频率的激光与第五频率的激光不是同时发射时,控制模块11或处理器23控制光发射器21连续向待测目标发射第四频率和第五频率的激光。如此,本实施方式的控制方法能够减小由于待测目标发生移动而引起的测量误差。
请参阅图1、图5及图9,在某些实施方式中,控制方法还包括:
06,在投射距离大于第二预设距离时,控制光接收器22接收被待测目标反射回来的第三频率的激光以获取飞行时间设备20与待测目标之间的测量距离(步骤061);或者,在投射距离大于第二预设距离时,控制光接收器22接收被待测目标反射回来的第四频率的激光和第五频率的激光以获取飞行时间设备20与待测目标之间的测量距离(步骤062)。
步骤06在步骤05之后执行,其中,步骤061在步骤051之后执行,步骤062在步骤052之后执行。
上述实施方式可以由控制装置10执行。具体地,获取模块12还可用于执行步骤06。也就是说,获取模块12还用于在控制模块11控制光发射器21向待测目标发射第三频率的激光(步骤051)之后,控制光接收器22接收被待测目标反射回来的第三频率的激光以获取飞行时间设备20与待测目标之间的测量距离(步骤061)。或者,获取模块12还用于在控制模块11控制光发射器21向待测目标发射第四频率的激光和第五频率的激光(步骤052)之后,控制光接收器22接收被待测目标反射回来的第四频率的激光和第五频率的激光以获取飞行时间设备20与待测目标之间的测量距离(步骤062)。
上述实施方式可以由飞行时间设备20执行。具体地,处理器23还可用于执行步骤06。也就是说,处理器23还用于在控制光发射器21向待测目标发射第三频率的激光(步骤051)之后,控制光接收器22接收被待测目标反射回来的第三频率的激光以获取飞行时间设备20与待测目标之间的测量距离(步骤061)。或者,处理器23还用于在控制光发射器21向待测目标发射第四频率的激光和第五频率的激光(步骤052)之后,控制光接收器22接收被待测目标反射回来的第四频率的激光和第五频率的激光以获取飞行时间设备20与待测目标之间的测量距离(步骤062)。
请参阅图1、图5及图10,在某些实施方式中,控制光接收器22接收被待测目标反射回来的第四频率的激光和第五频率的激光以获取飞行时间设备20与待测目标之间的测量距离(步骤062)包括:
0621,控制光接收器22接收被待测目标反射回来的第四频率的激光以获得第一相位差;
0622,控制光接收器接22收被待测目标反射回来的第五频率的激光以获得第二相位差;
0623,根据第四频率和第一相位差计算获得第一距离;
0624,根据第五频率和第二相位差计算获得第二距离;及
0625,根据第一距离和第二距离计算获得测量距离。
上述实施方式可以由控制装置10执行。获取模块12还可以用于执行步骤0621至步骤0625。也就是说,获取模块12还用于控制光接收器22接收被待测目标反射回来的第四频率的激光以获得第一相位差、控制光接收器接22收被待测目标反射回来的第五频率的激光以获得第二相位差、根据第四频率和第一相位差计算获得第一距离、根据第五频率和第二相位差计算获得第二距离、及根据第一距离和第二距离计算获得测量距离。其中,控制单元121还用于控制光接收器22接收被待测目标反射回来的第四频率的激光以获得第一相位差、及控制光接收器接22收被待测目标反射回来的第五频率的激光以获得第二相位差。计算单元122还用于根据第四频率和第一相位差计算获得第一距离、根据第五频率和第二相位差计算获得第二距离、及根据第一距离和第二距离计算获得测量距离。
上述实施方式还可以由飞行时间设备20执行。处理器23还可以用于执行步骤0621至步骤0625。也就是说,处理器23还用于控制光接收器22接收被待测目标反射回来的第四频率的激光以获得第一相位差、控制光接收器接22收被待测目标反射回来的第五频率的激光以获得第二相位差、根据第四频率和第一相位差计算获得第一距离、根据第五频率和第二相位差计算获得第二距离、及根据第一距离和第二距离计算获得测量距离。
请参阅图11,若第一频率为25MHz测得的投射距离为4.95米,第一预设距离为1.5米,第二频率为100MHz,第二预设距离为2.5米,控制方法控制光发射器21发射第四频率(100MHz)的激光和第五频率(60MHz)的激光,第四频率单独用于测量时能够测量的最大距离为1.5米,第五频率单独用于 测量时能够测量的最大距离为2.5米,第四频率与第五频率组合使用时能够测量的最大距离为7.5米。在光发射器21发出第四频率(100MHz)的激光时,光接收器21接收到的被待测目标反射回来的第四频率(100MHz)的激光获得的第一相位差为120度,则测量获得的第一距离为0.5m,在光发射器21发出第五频率(60MHz)的激光时,光接收器21接收到的被待测目标反射回来的第五频率(60MHz)的激光获得的第二相位差为360度,则测量获得的第二距离为2.5m。实际的测量距离应该为1.5k1+0.5,同时也应该为2.5k2+2.5,令1.5k1+0.5=2.5k2+2.5,则可以计算获得3k1=5k2+4,求k1和k2的最小自然数解即可获得实际投射距离,例如k1=3,k2=1,则实际的测量为1.5*3+0.5=2.5*1+2.5=5米。如此,可以通过第四频率和第五频率来准确地获得测量距离,并且由于第四频率和第五频率大于第一频率,因此能够使得测量获得的投射距离的精度更高。需要说明的是,在能够测量到的距离范围内,光发射器21发射激光的频率越高,飞行时间设备20测量获得的距离的精度越高,发光频率越低,飞行时间设备20测量获得的距离的精度越低。
请参阅图12,在某些实施方式中,控制光发射器21向待测目标发射第一频率的激光(步骤01),包括:
010,控制光发射器21以第一功率向待测目标发射第一频率的激光。
步骤010可以由控制模块11执行,也即是,控制模块11还可以用于控制光发射器21以第一功率向待测目标发射第一频率的激光。
步骤010也可以由处理器23执行,也即是,处理器23还可以用于控制光发射器21以第一功率向待测目标发射第一频率的激光。
控制光发射器21向待测目标发射第二频率的激光(步骤02),包括:
020,控制光发射器21以第二功率向待测目标发射第二频率的激光,第二功率小于所述第一功率。
步骤020可以由控制模块11执行,也即是,控制模块11还可以用于控制光发射器21向待测目标发射第二频率的激光。
步骤020也可以由处理器23执行,也即是,处理器23还可以用于控制光发射器21向待测目标发射第二频率的激光。
控制光发射器21向待测目标发射第三频率的激光或向待测目标发射第四频率的激光和第五频率的激光(步骤05),包括:
050,控制光发射器21以第三功率向待测目标发射第三频率的激光或以第四功率向待测目标发射第四频率的激光和第五频率的激光,第三功率小于第一功率并大于第二功率,第四功率小于第一功率并大于第二功率。
步骤050可以由控制模块11执行,也即是,控制模块11还可以用于控制光发射器21以第三功率向待测目标发射第三频率的激光(步骤0510);控制模块11还可以用于控制光发射器21以第四功率向待测目标发射第四频率的激光和第五频率的激光(步骤0520)。
步骤050也可以由处理器23执行,也即是,处理器23还可以用于控制光发射器21以第三功率向待测目标发射第三频率的激光(步骤0510);处理器23还可以用于控制光发射器21以第四功率向待测目标发射第四频率的激光和第五频率的激光(步骤0520)。
第三功率可以大于、小于或等于第四功率。由于激光在传输过程会发生能量损失,因此,光发射器21与待测目标之间的投射距离越远,光发射器21的发射功率越大能够提升光接收器22接收到被待测目标反射回来的激光的强度,从而避免由于光接收器22接收到的激光的强度过低而导致反射回来的激光不能够被光接收器22准确的识别。
请结合图3,控制模块11或处理器23能够控制g1组的发光元件2112以第一功率(P1)发出第一频率(例如,25MHz)的激光。当投射距离小于1.5米(其中,第一预设距离为1.5米)时,控制模块11或处理器23能够控制g2组的发光元件2112以第二功率(P2)发出第二频率(例如,100MHz)的激光。当投射距离大于2.5米(其中,第二预设距离为2.5米),并且投射距离小于5米时,控制模块11或处理器23能够控制g3组的发光元件2112以第三功率(P3)发出第三频率(例如,30MHz)的激光。当投射距离大于2.5米(其中,第二预设距离为2.5米),并且投射距离小于5米时,控制模块11和处理器23还可以控制g2组的发光元件以第四功率(P4)发出第四频率(例如100MHz)的激光、以及控制g3组的发光元件2112以第四功率(P4)发出第五频率(例如,60MHz)的激光。其中,第三功率P3小于第一功率P1并大于第二功率P2,第四功率P4小于第一功率P1并大于第二功率P2。
本申请实施方式的终端100包括壳体101和上述任意一实施方式的飞行时间设备20,飞行时间设备20设置在壳体101上。
请一并参阅图1和图13,在某些实施方式中,壳体101可以作为终端100的功能元件的安装载体。壳体101可以为功能元件提供防尘、防摔、防水等保护,功能元件可以是显示屏102、可见光摄像头、 受话器等。在本申请实施例中,壳体101包括主体103及可动支架104,可动支架104在驱动装置的驱动下可以相对于主体103运动,例如可动支架104可以相对于主体103滑动,以滑入主体103(如图1所示)或从主体103滑出(如图1所示)。部分功能元件(例如显示屏102)可以安装在主体103上,另一部分功能元件(例如飞行时间设备20、可见光摄像头、受话器)可以安装在可动支架104上,可动支架104运动可带动该另一部分功能元件缩回主体103内或从主体103中伸出。当然,图1和图13所示仅仅是对壳体101的一种具体形式举例,不能理解为对本申请的壳体101的限制。
飞行时间设备20安装在壳体101上。具体地,壳体101上可以开设有采集窗口,飞行时间设备20与采集窗口对准安装以使飞行时间设备20采集深度信息。在本申请的具体实施例中,飞行时间设备20安装在可动支架104上。用户在需要使用飞行时间设备20时,可以触发可动支架104从主体103中滑出以带动飞行时间设备20从主体103中伸出;在不需要使用飞行时间设备20时,可以触发可动支架104滑入主体103以带动飞行时间设备20缩回主体中。
请一并参阅图14至图16,在某些实施方式中,飞行时间设备20除了包括光发射器21、光接收器22和处理器23外,还包括第一基板组件24和垫块25。第一基板组件24包括互相连接的第一基板241及柔性电路板242。垫块25设置在第一基板241上。光发射器21用于向外投射激光,光发射器21设置在垫块25上。柔性电路板242弯折且柔性电路板242的一端连接第一基板241,另一端连接光发射器21。光接收器22设置在第一基板241上,光接收器22用于接收被目标空间中的人或物反射回的激光。光接收器22包括外壳221及设置在外壳221上的光学元件222。外壳221与垫块25连接成一体。
具体地,第一基板组件24包括第一基板241及柔性电路板242。第一基板241可以是印刷线路板或柔性线路板。第一基板24上可以铺设有飞行时间设备20的控制线路等。柔性电路板242的一端可以连接在第一基板241上,柔性电路板242的另一端连接在电路板215(图16所示)上。柔性电路板242可以发生一定角度的弯折,使得柔性电路板242的两端连接的器件的相对位置可以有较多选择。
垫块25设置在第一基板241上。在一个例子中,垫块25与第一基板241接触且承载在第一基板241上,具体地,垫块25可以通过胶粘等方式与第一基板241结合。垫块25的材料可以是金属、塑料等。在本申请的实施例中,垫块25与第一基板241结合的面可以是平面,垫块25与该结合的面相背的面也可以是平面,使得光发射器21设置在垫块25上时具有较好的平稳性。
光接收器22设置在第一基板241上,且光接收器22和第一基板241的接触面与垫块25和第一基板241的接触面基本齐平设置(即,二者的安装起点在同一平面上)。具体地,光接收器22包括外壳221及光学元件222。外壳221设置在第一基板241上,光学元件222设置在外壳221上,外壳221可以是光接收器22的镜座及镜筒,光学元件222可以是设置在外壳221内的透镜等元件。进一步地,光接收器22还包括感光芯片(图未示),由目标空间中的人或物反射回的激光通过光学元件222后照射到感光芯片中,感光芯片对该激光产生响应。在本申请的实施例中,外壳221与垫块25连接成一体。具体地,外壳221与垫块25可以是一体成型;或者外壳221与垫块25的材料不同,二者通过双色注塑等方式一体成型。外壳221与垫块25也可以是分别成型,二者形成配合结构,在组装飞行时间设备20时,可以先将外壳221与垫块25中的一个设置在第一基板241上,再将另一个设置在第一基板241上且连接成一体。
如此,将光发射器21设置在垫块25上,垫块25可以垫高光发射器21的高度,进而提高光发射器21出射激光的面的高度,光发射器21发射的激光不易被光接收器22遮挡,使得激光能够完全照射到目标空间中的被测物体上。
请再一并参阅图14至图16,在某些实施方式中,垫块25与第一基板241结合的一侧开设有容纳腔251。飞行时间设备20还包括设置在第一基板241上的电子元件26。电子元件26收容在容纳腔251内。电子元件26可以是电容、电感、晶体管、电阻等元件。电子元件26可以与铺设在第一基板241上的控制线路电连接,并用于或控制光发射器21或光接收器22工作。电子元件26收容在容纳腔251内,合理利用了垫块25内的空间,不需要增加第一基板241的宽度来设置电子元件26,有利于减小飞行时间设备20的整体尺寸。容纳腔251的数量可以是一个或多个,容纳腔251可以是互相间隔的。在安装垫块25时,可以将容纳腔251与电子元件26的位置对准并将垫块25设置在第一基板241上。
请继续一并参阅图14至图16,在某些实施方式中,垫块25开设有与至少一个容纳腔251连接的避让通孔252,至少一个电子元件26伸入避让通孔252内。可以理解,需要将电子元件26收容在避让通孔内时,要求电子元件26的高度不高于容纳腔251的高度。而对于高度高于容纳腔251的电子元件,可以开设与容纳腔251对应的避让通孔252,电子元件26可以部分伸入避让通孔252内,以在不提高垫块25的高度的前提下布置电子元件26。
请还一并参阅图14至图16,在某些实施方式中,第一基板组件24还包括加强板243,加强板243结合在第一基板241的与垫块25相背的一侧。加强板243可以覆盖第一基板241的一个侧面,加强板 243可以用于增加第一基板241的强度,避免第一基板241发生形变。另外,加强板243可以由导电的材料制成,例如金属或合金等,当飞行时间设备20安装在终端100上时,可以将加强板243与壳体101电连接,以使加强板243接地,并有效地减少外部元件的静电对飞行时间设备20的干扰。
请再一并参阅图14至图16,在某些实施方式中,飞行时间设备20还包括连接器27,连接器27连接在第一基板组件24上并用于与飞行时间设备20外部的电子元件电性连接。
请参阅图17,在某些实施方式中,光发射器21包括光源211、扩散器212、镜筒213、保护罩214、电路板215及驱动器216。
其中,镜筒213包括呈环状的镜筒侧壁2131,环状的镜筒侧壁2131围成收容腔2132。镜筒侧壁2131包括位于收容腔2132内的内表面2133及与内表面相背的外表面2134。镜筒侧壁2131包括相背的第一面2135及第二面2136。收容腔2132贯穿第一面2135及第二面2136。第一面2135朝第二面2136凹陷形成与收容腔2132连通的安装槽2137。安装槽2137的底面2138位于安装槽2137的远离第一面2135的一侧。镜筒侧壁2131的外表面2134在第一面2135的一端的横截面呈圆形,镜筒侧壁2131的外表面2134在第一面2135的一端形成有外螺纹。
电路板215设置在镜筒213的第二面2136上并封闭收容腔2132的一端。电路板215可以为柔性电路板或印刷电路板。
光源211承载在电路板215上并收容在收容腔2132内。光源211用于朝镜筒213的第一面2135(安装槽2137)一侧发射激光。光源211可以是单点光源,也可是多点光源。在光源211为单点光源时,光源211具体可以为边发射型激光器,例如可以为分布反馈式激光器(Distributed Feedback Laser,DFB)等;在光源211为多点光源时,光源211具体可以为垂直腔面发射器(Vertical-Cavity Surface Laser,VCSEL),或者光源211也为由多个边发射型激光器组成的多点光源。垂直腔面发射激光器的高度较小,采用垂直腔面发射器作为光源211,有利于减小光发射器21的高度,便于将光发射器21集成到手机等对机身厚度有较高的要求的终端100中。与垂直腔面发射器相比,边发射型激光器的温漂较小,可以减小温度对光源211的投射激光的效果的影响。
驱动器216承载在电路板215上并与光源211电性连接。具体地,驱动器216可以接收经过调制的输入信号,并将输入信号转化为恒定的电流源后传输给光源211,以使光源211在恒定的电流源的作用下朝镜筒213的第一面2135一侧发射激光。本实施方式的驱动器216设置在镜筒213外。在其他实施方式中,驱动器216可以设置在镜筒213内并承载在电路板215上。
扩散器212安装(承载)在安装槽2137内并与安装槽2137的底面2138相抵触。扩散器212用于扩散穿过扩散器212的激光。也即是,光源211朝镜筒213的第一面2135一侧发射激光时,激光会经过扩散器212并被扩散器212扩散或投射到镜筒213外。
保护罩214包括顶壁2141及自顶壁2141的一侧延伸形成的保护侧壁2142。顶壁2141的中心开设有通光孔2143。保护侧壁2142环绕顶壁2141及通光孔2143设置。顶壁2141与保护侧壁2142共同围成安装腔2144,通光孔2143与安装腔2144连通。保护侧壁2142的内表面的横截面呈圆形,保护侧壁2142的内表面上形成有内螺纹。保护侧壁2142的内螺纹与镜筒213的外螺纹螺合以将保护罩214安装在镜筒213上。顶壁2141与扩散器212抵触使得扩散器40被夹持在顶壁2141与安装槽2137的底面2138之间。
如此,通过在镜筒213上开设安装槽2137,并将扩散器212安装在安装槽2137内,以及通过保护罩214安装在镜筒213上以将扩散器212夹持在保护罩214与安装槽2137的底面2138之间,从而可以将扩散器212固定在镜筒213上。此种方式无需使用胶水将扩散器212固定在镜筒213上,能够避免胶水挥发成气态后,气态的胶水凝固在扩散器212的表面而影响扩散器212的微观结构,并能够避免扩散器212和镜筒213的胶水因老化而使粘着力下降时扩散器212从镜筒213脱落。
请一并参阅图18和图19,在某些实施方式中,在调节光发射器21的发光功率时,可以通过调节驱动光发射器21发光的驱动电流的来实现。另外地,如果光发射器21的光源211为垂直腔面发射器,则此时垂直腔面发射器的结构可为:
(1)垂直腔面发射器包括衬底2111和设置在衬底2111上的多个发光单元2112,多个发光单元2112形成多个可独立控制的扇形区域2113内,多个扇形区域2113围成圆形(如图18所示)或多边形(图未示),图18中光源211包括两组发光元件2112,相间隔的三个扇形区域2113内的发光单元2112形成一组,两组发光元件2112能够发出不同频率的激光,光发射器21的发光功率可以通过开启不同数目的扇形区域2113内的发光单元2112来实现,也即是说,目标发光功率与开启的扇形阵列的目标数量的对应,当光源211中只有一个扇形区域2113内的发光元件2112发出某一频率(例如100MHz)的激光时,光源211发出该频率(100MHz)的激光的功率最小;当一组中的三个扇形区域2113内的发光单元2112均发出某一频率(例如30MHz)的激光(如图18所示)时,该组发出该频率(30MHz)的激光的功率 最大。
(2)垂直腔面发射器包括衬底2111和设置在衬底2111上的多个发光单元2112,多个发光单元2112形成多个可独立控制的发光区域2114,发光区域2114可以是圆形区域,也可以是环形区域,至少一个圆形区域和至少一个环形区域围成圆形(如图19所示),每个发光区域2114内的发光元件2112形成一组,每组发光元件2112能够以一预设功率发出一种频率的激光,不同组的预设功率不相同,不同组发光元件2112发出的频率可以相同也可以不同。
请参阅图20,本申请还提供一种计算机可读存储介质50。计算机可读存储介质50包括与终端100结合使用计算机程序60。计算机程序60可被处理器23执行以完成上述任意一项实施方式所述的光发射器21的控制方法。
例如,请结合图1、图2及图20,计算机程序60可被处理器23执行以完成以下步骤:
01,控制光发射器21向待测目标发射第一频率的激光;及
02,在光发射器21与待测目标之间的投射距离小于第一预设距离时,控制光发射器21向待测目标发射第二频率的激光,第二频率大于第一频率。
计算机程序60还可被处理器23执行以完成以下步骤:
03,控制光接收器22接收被待测目标反射回来的第一频率的激光以获得投射距离;
04,在投射距离小于第一预设距离时,控制光接收器22接收被待测目标反射回来的第二频率的激光以获取飞行时间设备20与待测目标之间的测量距离;
05,在投射距离大于第二预设距离时,控制光发射器21向待测目标发射第三频率的激光或向待测目标发射第四频率的激光和第五频率的激光,第二预设距离大于第一预设距离,第三频率小于第一频率,第四频率与第五频率不同;
06,在投射距离大于第二预设距离时,控制光接收器22接收被待测目标反射回来的第三频率的激光;或者,在投射距离大于第二预设距离时,控制光接收器22接收被待测目标反射回来的第四频率的激光和第五频率的激光以获取飞行时间设备20与待测目标之间的测量距离。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本申请的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本申请的实施例所属技术领域的技术人员所理解。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (20)

  1. 一种控制方法,其特征在于,所述控制方法包括:
    控制光发射器向待测目标发射第一频率的激光;及
    在所述光发射器与所述待测目标之间的投射距离小于第一预设距离时,控制所述光发射器向所述待测目标发射第二频率的激光,所述第二频率大于所述第一频率。
  2. 根据权利要求1所述的控制方法,其特征在于,所述控制方法还包括:
    在所述投射距离大于第二预设距离时,控制所述光发射器向所述待测目标发射第三频率的激光或向所述待测目标发射第四频率的激光和第五频率的激光,所述第二预设距离大于所述第一预设距离,所述第三频率大于所述第一频率且小于所述第二频率,所述第四频率与所述第五频率不同。
  3. 根据权利要求2所述的控制方法,其特征在于,所述第四频率能够测量的最大距离与所述第五频率能够测量的最大距离的最小公倍数大于所述投射距离。
  4. 根据权利要求2所述的控制方法,其特征在于,所述控制方法还包括:
    控制光接收器接收被所述待测目标反射回来的所述第一频率的激光以获取所述投射距离;
    在所述投射距离小于第一预设距离时,控制所述光接收器接收被所述待测目标反射回来的所述第二频率的激光以获取所述飞行时间设备与所述待测目标之间的测量距离;或
    在所述投射距离大于第二预设距离时,控制所述光接收器接收被所述待测目标反射回来的所述第三频率的激光或接收被所述待测目标反射回来的所述第四频率的激光和所述第五频率的激光以获取所述飞行时间设备与所述待测目标之间的测量距离。
  5. 根据权利要求4所述的控制方法,其特征在于,所述控制所述光接收器接收被所述待测目标反射回来的所述第四频率的激光和所述第五频率的激光以获取所述飞行时间设备与所述待测目标之间的测量距离,包括:
    控制所述光接收器接收被所述待测目标反射回来的所述第四频率的激光以获得所述第一相位差;
    控制所述光接收器接收被所述待测目标反射回来的所述第五频率的激光以获得所述第二相位差;
    根据所述第四频率和所述第一相位差计算获得第一距离;
    根据所述第五频率和所述第二相位差计算获得第二距离;及
    根据所述第一距离和所述第二距离计算获得测量距离。
  6. 根据权利要求2所述的控制方法,其特征在于,所述控制所述光发射器向待测目标发射第一频率的激光,包括:
    控制所述光发射器以第一功率向待测目标发射第一频率的激光;
    所述控制所述光发射器向所述待测目标发射第二频率的激光,包括:
    控制所述光发射器以第二功率向所述待测目标发射第二频率的激光,所述第二功率小于所述第一功率;
    所述控制所述光发射器向所述待测目标发射第三频率的激光或向所述待测目标发射第四频率的激光和第五频率的激光,包括:
    控制所述光发射器以第三功率向所述待测目标发射第三频率的激光或以第四功率向所述待测目标发射第四频率的激光和第五频率的激光,所述第三功率小于所述第一功率并大于所述第二功率,所述第四功率小于所述第一功率并大于所述第二功率。
  7. 根据权利要求2所述的控制方法,其特征在于,所述控制所述光发射器向所述待测目标发射第四频率的激光和第五频率的激光,包括:
    控制所述光发射器依次向所述待测目标发射所述第四频率的激光和所述第五频率的激光;或
    控制所述光发射器依次向所述待测目标发射所述第五频率的激光和所述第四频率的激光;或
    控制所述光发射器同时向所述待测目标发射所述第四频率的激光和所述第五频率的激光。
  8. 一种控制装置,其特征在于,所述控制装置包括控制模块,所述控制模块用于控制光发射器向待测目标发射第一频率的激光、在所述光发射器与所述待测目标之间的投射距离小于第一预设距离时,控制所述光发射器向所述待测目标发射第二频率的激光,所述第二频率大于所述第一频率。
  9. 一种飞行时间设备,其特征在于,所述飞行时间设备包括光发射器及处理器,所述处理器用于:
    控制所述光发射器向待测目标发射第一频率的激光;及
    在所述光发射器与所述待测目标之间的投射距离小于第一预设距离时,控制所述光发射器向所述待测目标发射第二频率的激光,所述第二频率大于所述第一频率。
  10. 根据权利要求9所述的飞行时间设备,其特征在于,所述处理器还用于:
    在所述投射距离大于第二预设距离时,控制所述光发射器向所述待测目标发射第三频率的激光或向所述待测目标发射第四频率的激光和第五频率的激光,所述第二预设距离大于所述第一预设距离,所述 第三频率大于所述第一频率且小于所述第二频率,所述第四频率与所述第五频率不同。
  11. 根据权利要求10所述的飞行时间设备,其特征在于,所述第四频率能够测量的最大距离与所述第五频率能够测量的最大距离的最小公倍数大于所述投射距离。
  12. 根据权利要求10所述的飞行时间设备,其特征在于,所述飞行时间设备还包括光接收器,所述处理器还用于:
    控制所述光接收器接收被所述待测目标反射回来的所述第一频率的激光以获取所述投射距离;
    在所述投射距离小于第一预设距离时,控制所述光接收器接收被所述待测目标反射回来的所述第二频率的激光以获取所述飞行时间设备与所述待测目标之间的测量距离;或
    在所述投射距离大于第二预设距离时,控制所述光接收器接收被所述待测目标反射回来的所述第三频率的激光或接收被所述待测目标反射回来的所述第四频率的激光和所述第五频率的激光以获取所述飞行时间设备与所述待测目标之间的测量距离。
  13. 根据权利要求12所述的飞行时间设备,其特征在于,所述处理器还用于:
    控制所述光接收器接收被所述待测目标反射回来的所述第四频率的激光以获得所述第一相位差;
    控制所述光接收器接收被所述待测目标反射回来的所述第五频率的激光以获得所述第二相位差;
    根据所述第四频率和所述第一相位差计算获得第一距离;
    根据所述第五频率和所述第二相位差计算获得第二距离;及
    根据所述第一距离和所述第二距离计算获得测量距离。
  14. 根据权利要求10所述的飞行时间设备,其特征在于,所述处理器还用于:
    控制所述光发射器以第一功率向待测目标发射第一频率的激光;
    控制所述光发射器以第二功率向所述待测目标发射第二频率的激光,所述第二功率小于所述第一功率;及
    控制所述光发射器以第三功率向所述待测目标发射第三频率的激光或以第四功率向所述待测目标发射第四频率的激光和第五频率的激光,所述第三功率小于所述第一功率并大于所述第二功率,所述第四功率小于所述第一功率并大于所述第二功率。
  15. 根据权利要求10所述的飞行时间设备,其特征在于,所述处理器还用于:
    控制所述光发射器依次向所述待测目标发射所述第四频率的激光和所述第五频率的激光;或
    控制所述光发射器依次向所述待测目标发射所述第五频率的激光和所述第四频率的激光;或
    控制所述光发射器同时向所述待测目标发射所述第四频率的激光和所述第五频率的激光。
  16. 根据权利要求9所述的飞行时间设备,其特征在于,所述光发射器包括光源,所述光源包括衬底及多个发光元件,多个所述发光元件形成多组,每组所述发光元件能够向所述待测目标发射一种频率的所述激光。
  17. 根据权利要求16所述的飞行时间设备,其特征在于,多组所述发光元件能够向所述待测目标发射多种频率的所述激光,且多种频率中至少有两种频率不相同。
  18. 根据权利要求16所述的飞行时间设备,其特征在于,多组所述发光元件能够向所述待测目标同时或分时发射多种频率的所述激光。
  19. 一种终端,其特征在于,所述终端包括:
    壳体;及
    权利要求9-18任意一项所述的飞行时间设备,所述飞行时间设备设置在所述壳体上。
  20. 一种计算机可读存储介质,其特征在于,包括与终端结合使用的计算机程序,所述计算机程序可被处理器执行以完成权利要求1至7任意一项所述的控制方法。
PCT/CN2019/090021 2018-09-27 2019-06-04 控制方法与装置、飞行时间设备、终端及计算机可读存储介质 WO2020062909A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811135537.3 2018-09-27
CN201811135537.3A CN109324633B (zh) 2018-09-27 2018-09-27 控制方法与装置、飞行时间设备、终端及计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2020062909A1 true WO2020062909A1 (zh) 2020-04-02

Family

ID=65265119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/090021 WO2020062909A1 (zh) 2018-09-27 2019-06-04 控制方法与装置、飞行时间设备、终端及计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN109324633B (zh)
WO (1) WO2020062909A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230007441A1 (en) * 2020-06-16 2023-01-05 Denso International America, Inc. System and method for automated data collection and anchor location evaluation

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109324633B (zh) * 2018-09-27 2021-07-02 Oppo广东移动通信有限公司 控制方法与装置、飞行时间设备、终端及计算机可读存储介质
CN113810530A (zh) * 2019-05-31 2021-12-17 Oppo广东移动通信有限公司 电子装置的控制方法及电子装置
CN110266394B (zh) * 2019-06-10 2021-08-31 Oppo广东移动通信有限公司 调节方法、终端及计算机可读存储介质
CN111580125B (zh) * 2020-05-28 2022-09-09 Oppo广东移动通信有限公司 飞行时间模组及其控制方法、电子设备
CN111708040B (zh) * 2020-06-02 2023-08-11 Oppo广东移动通信有限公司 测距装置、测距方法及电子设备
CN112526546B (zh) * 2021-02-09 2021-08-17 深圳市汇顶科技股份有限公司 深度信息确定方法及装置
CN113176551B (zh) * 2021-04-09 2023-12-29 Oppo广东移动通信有限公司 光源组件、发射模组及电子设备
CN113296106A (zh) * 2021-05-17 2021-08-24 江西欧迈斯微电子有限公司 一种tof测距方法、装置、电子设备以及存储介质
CN113900077A (zh) * 2021-09-30 2022-01-07 深圳市汇顶科技股份有限公司 激光雷达发射装置、激光雷达装置及电子设备
CN114442071A (zh) * 2022-01-28 2022-05-06 深圳市欢创科技有限公司 一种激光发射电路、测距方法、激光雷达和机器人

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100046802A1 (en) * 2008-08-19 2010-02-25 Tatsumi Watanabe Distance estimation apparatus, distance estimation method, storage medium storing program, integrated circuit, and camera
CN106054203A (zh) * 2016-05-23 2016-10-26 奇瑞汽车股份有限公司 激光测距装置
CN106772414A (zh) * 2016-10-14 2017-05-31 北醒(北京)光子科技有限公司 一种提高tof相位法测距雷达测距精度的方法
CN108037506A (zh) * 2017-11-30 2018-05-15 努比亚技术有限公司 超声波发射频率的选择方法、装置及计算机可读存储介质
CN108281880A (zh) * 2018-02-27 2018-07-13 广东欧珀移动通信有限公司 控制方法、控制装置、终端、计算机设备和存储介质
CN109324633A (zh) * 2018-09-27 2019-02-12 Oppo广东移动通信有限公司 控制方法与装置、飞行时间设备、终端及计算机可读存储介质

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2014342114B2 (en) * 2013-11-01 2019-06-20 Irobot Corporation Scanning range finder
CN103868521B (zh) * 2014-02-20 2016-06-22 天津大学 基于激光雷达的四旋翼无人机自主定位及控制方法
US9523765B2 (en) * 2014-07-14 2016-12-20 Omnivision Technologies, Inc. Pixel-level oversampling for a time of flight 3D image sensor with dual range measurements
DE102014111431A1 (de) * 2014-08-11 2016-02-11 Infineon Technologies Ag Flugzeitvorrichtungen und eine Beleuchtungsquelle
CN104468911A (zh) * 2014-12-16 2015-03-25 上海斐讯数据通信技术有限公司 一种具有激光测距功能的手机及其测量面积的方法
CN106817794A (zh) * 2015-11-30 2017-06-09 宁波舜宇光电信息有限公司 Tof电路模块及其应用
CN106597462B (zh) * 2016-12-26 2019-08-06 艾普柯微电子(上海)有限公司 测距方法及测距装置
CN107862853B (zh) * 2017-10-27 2020-12-22 Oppo广东移动通信有限公司 红外发射器控制方法、终端及计算机可读存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100046802A1 (en) * 2008-08-19 2010-02-25 Tatsumi Watanabe Distance estimation apparatus, distance estimation method, storage medium storing program, integrated circuit, and camera
CN106054203A (zh) * 2016-05-23 2016-10-26 奇瑞汽车股份有限公司 激光测距装置
CN106772414A (zh) * 2016-10-14 2017-05-31 北醒(北京)光子科技有限公司 一种提高tof相位法测距雷达测距精度的方法
CN108037506A (zh) * 2017-11-30 2018-05-15 努比亚技术有限公司 超声波发射频率的选择方法、装置及计算机可读存储介质
CN108281880A (zh) * 2018-02-27 2018-07-13 广东欧珀移动通信有限公司 控制方法、控制装置、终端、计算机设备和存储介质
CN109324633A (zh) * 2018-09-27 2019-02-12 Oppo广东移动通信有限公司 控制方法与装置、飞行时间设备、终端及计算机可读存储介质

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230007441A1 (en) * 2020-06-16 2023-01-05 Denso International America, Inc. System and method for automated data collection and anchor location evaluation
US11683663B2 (en) * 2020-06-16 2023-06-20 Denso International America, Inc. System and method for automated data collection and anchor location evaluation

Also Published As

Publication number Publication date
CN109324633B (zh) 2021-07-02
CN109324633A (zh) 2019-02-12

Similar Documents

Publication Publication Date Title
WO2020062909A1 (zh) 控制方法与装置、飞行时间设备、终端及计算机可读存储介质
CN109149355B (zh) 光发射模组及其控制方法、tof深度相机和电子设备
CN112702541B (zh) 控制方法及装置、深度相机、电子装置及可读存储介质
WO2020038058A1 (zh) 标定方法、标定控制器及标定系统
WO2020038053A1 (zh) 飞行时间模组及其控制方法、控制器和电子装置
US20210311173A1 (en) Laser measuring device and unmanned aerial vehicle
CN108833889B (zh) 控制方法及装置、深度相机、电子装置及可读存储介质
WO2020038061A1 (zh) 飞行时间模组及其控制方法、控制器和电子装置
WO2020052284A1 (zh) 控制方法及装置、深度相机、电子装置及可读存储介质
WO2020038066A1 (zh) 光投射器及其破裂的检测方法、深度相机和电子装置
CN109212763A (zh) 光发射模组及其损坏的检测方法、深度获取装置和电子设备
WO2019174384A1 (zh) 激光投射模组、深度相机和电子装置
CN111473747B (zh) 标定装置、标定系统、电子设备及标定方法
CN210923959U (zh) 飞行时间投射器、飞行时间深度模组和电子设备
WO2020052288A1 (zh) 深度采集模组及移动终端
CN110530611B (zh) 校准方法、激光发射模组、深度相机和电子设备
WO2020038057A1 (zh) 深度采集模组及电子设备
CN109901137B (zh) 广角tof模组的标定方法及其标定设备
KR102246084B1 (ko) 눈 보호 기능을 제공하는 빔프로젝터모듈
CN214066089U (zh) 一种激光标线测距仪
KR102548859B1 (ko) 눈 보호 기능을 제공하는 빔프로젝터모듈
CN108490523A (zh) 衍射光学元件及其制造方法、激光投射模组、深度相机与电子装置
CN112363150B (zh) 标定方法、标定控制器、电子装置及标定系统
CN113419252A (zh) 飞行时间模组、终端及深度检测方法
TWI685670B (zh) 具有雙發射器的近接感應模組

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19868052

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19868052

Country of ref document: EP

Kind code of ref document: A1