WO2019174384A1 - 激光投射模组、深度相机和电子装置 - Google Patents

激光投射模组、深度相机和电子装置 Download PDF

Info

Publication number
WO2019174384A1
WO2019174384A1 PCT/CN2019/070854 CN2019070854W WO2019174384A1 WO 2019174384 A1 WO2019174384 A1 WO 2019174384A1 CN 2019070854 W CN2019070854 W CN 2019070854W WO 2019174384 A1 WO2019174384 A1 WO 2019174384A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
circuit board
projection module
laser emitter
emitter
Prior art date
Application number
PCT/CN2019/070854
Other languages
English (en)
French (fr)
Inventor
周奇群
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2019174384A1 publication Critical patent/WO2019174384A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4205Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/30Collimators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4233Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive element [DOE] contributing to a non-imaging application
    • G02B27/425Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive element [DOE] contributing to a non-imaging application in illumination systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02253Out-coupling of light using lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • H04M1/0272Details of the structure or mounting of specific components for a projector or beamer module assembly
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/254Image signal generators using stereoscopic image cameras in combination with electromagnetic radiation sources for illuminating objects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/296Synchronisation thereof; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/51Housings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/56Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02255Out-coupling of light using beam deflecting elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips
    • H01S5/02355Fixing laser chips on mounts
    • H01S5/0236Fixing laser chips on mounts using an adhesive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02469Passive cooling, e.g. where heat is removed by the housing as a whole or by a heat pipe without any active cooling element like a TEC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • H04M1/0264Details of the structure or mounting of specific components for a camera module assembly
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment
    • H04N5/2224Studio circuitry; Studio devices; Studio equipment related to virtual studio applications
    • H04N5/2226Determination of depth image, e.g. for foreground/background separation

Definitions

  • the present application relates to the field of imaging technologies, and in particular, to a laser projection module, a depth camera, and an electronic device.
  • the laser emitter When the laser emitter emits a laser, the laser will diverge. After the laser diverges, the concentrated beam is superimposed on the center of the light emitting surface of the laser emitter as a zero-order beam, and the beam transmitted around the light emitting surface of the laser emitter is a non-zero-order beam.
  • the intensity of the zero-order beam is too strong, the zero-order beam cannot be completely diffracted when it is transmitted to the diffractive optical element, resulting in the intensity of the zero-order beam emitted by the diffractive optical element being too strong, which may endanger the user's eyes.
  • Embodiments of the present application provide a laser projection module, a depth camera, and an electronic device.
  • the laser projection module of the embodiment of the present application includes a laser emitter, a reflective element, a diffractive optical element, and a photodetector.
  • the laser emitter is used to emit a laser.
  • the reflective element is for reflecting laser light emitted by the laser emitter.
  • the diffractive optical element is for diffracting the laser light reflected by the reflective element.
  • the photodetector is disposed between a laser emitter and a reflective element, the photodetector for receiving the laser to output an electrical signal, the electrical signal being used to determine a non-zero-order beam intensity of the laser, and The non-zero-order beam intensity is less than a preset intensity to reduce the transmit power of the laser emitter.
  • the depth camera of the embodiment of the present application includes a laser projection module, an image collector, and a processor.
  • the laser projection module includes a laser emitter, a reflective element, a diffractive optical element, and a photodetector.
  • the laser emitter is used to emit a laser.
  • the reflective element is for reflecting laser light emitted by the laser emitter.
  • the diffractive optical element is for diffracting the laser light reflected by the reflective element.
  • the photodetector is disposed between a laser emitter and a reflective element, the photodetector for receiving the laser to output an electrical signal, the electrical signal being used to determine a non-zero-order beam intensity of the laser, and The non-zero-order beam intensity is less than a preset intensity to reduce the transmit power of the laser emitter.
  • the image collector is configured to collect the laser pattern projected by the laser projection module into a target space.
  • the processor is configured to determine a non-zero-order beam intensity of the laser according to the electrical signal, reduce a transmission power of the laser emitter when the non-zero-order beam intensity is less than a preset intensity, and process the laser The pattern gets a depth image.
  • the electronic device of the embodiment of the present application includes a housing and a depth camera.
  • the depth camera is disposed within the housing and exposed from the housing to capture a depth image.
  • the depth camera includes a laser projection module, an image collector, and a processor.
  • the laser projection module includes a laser emitter, a reflective element, a diffractive optical element, and a photodetector.
  • the laser emitter is used to emit a laser.
  • the reflective element is for reflecting laser light emitted by the laser emitter.
  • the diffractive optical element is for diffracting the laser light reflected by the reflective element.
  • the photodetector is disposed between a laser emitter and a reflective element, the photodetector for receiving the laser to output an electrical signal, the electrical signal being used to determine a non-zero-order beam intensity of the laser, and The non-zero-order beam intensity is less than a preset intensity to reduce the transmit power of the laser emitter.
  • the image collector is configured to collect the laser pattern projected by the laser projection module into a target space.
  • the processor is configured to determine a non-zero-order beam intensity of the laser according to the electrical signal, reduce a transmission power of the laser emitter when the non-zero-order beam intensity is less than a preset intensity, and process the laser The pattern gets a depth image.
  • FIG. 1 is a schematic structural view of a laser projection module according to some embodiments of the present application.
  • 2 to 5 are schematic diagrams of optical paths of a laser projection module according to some embodiments of the present application.
  • 6 and 7 are schematic structural views of a laser projection module according to some embodiments of the present application.
  • FIG. 8 is a schematic structural diagram of a depth camera according to some embodiments of the present application.
  • FIG. 9 is a schematic structural diagram of an electronic device according to some embodiments of the present application.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include one or more of the described features either explicitly or implicitly.
  • the meaning of "a plurality" is two or more unless specifically and specifically defined otherwise.
  • connection In the description of the present application, it should be noted that the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be fixed or detachable, for example, unless otherwise specifically defined and defined. Connected, or integrally connected; may be mechanically connected, or may be electrically connected or may communicate with each other; may be directly connected or indirectly connected through an intermediate medium, may be internal communication of two elements or interaction of two elements relationship.
  • Connected, or integrally connected may be mechanically connected, or may be electrically connected or may communicate with each other; may be directly connected or indirectly connected through an intermediate medium, may be internal communication of two elements or interaction of two elements relationship.
  • the specific meanings of the above terms in the present application can be understood on a case-by-case basis.
  • the present application provides a laser projection module 100 .
  • the laser projection module 100 includes a laser emitter 10, a reflective element 50, a diffractive optical element 30, and a photodetector 70.
  • the laser emitter 10 is used to emit laser light.
  • the reflective element 50 is for reflecting the laser light emitted by the laser emitter 10.
  • the diffractive optical element 30 is for diffracting the laser light reflected by the reflective element 50.
  • a photodetector 70 is disposed between the laser emitter 10 and the reflective element 50.
  • the photodetector 10 is for receiving a laser to output an electrical signal. The electrical signal is used to determine the non-zero-order beam intensity of the laser, and to reduce the transmit power of the laser emitter 10 when the non-zero-order beam intensity is less than a predetermined intensity.
  • the laser projection module 100 further includes a collimating element 20 .
  • the collimating element 20 is located between the laser emitter 10 and the reflective element 50; or/and the collimating element 20 is located between the reflective element 50 and the diffractive optical element 30.
  • the laser projection module 100 further includes a substrate assembly 60 and a lens barrel 40 .
  • the substrate assembly 60 includes a substrate 62 and a circuit board 61 carried on the substrate 62.
  • the laser emitter 10 is carried on a circuit board 61.
  • the lens barrel 40 includes a side wall 41 and a carrier 411 extending from the side wall 41.
  • the side wall 41 is disposed on the circuit board 61.
  • the side wall 41 and the circuit board 61 are surrounded by a receiving cavity 42.
  • the laser emitter 10, the reflective element 50, the collimating element 20, the diffractive optical element 30, and the photodetector 70 are all housed in the housing cavity 42.
  • reflective element 50 is placed on circuit board 61 and placed on the side of laser emitter 10.
  • the laser emitting direction of the laser emitter 10 is perpendicular to the optical axis of the light reflected by the reflective element 50.
  • photodetector 70 includes a light collecting surface 71.
  • the light-receiving surface 71 is parallel to the circuit board 61; or the light-receiving surface 71 is perpendicular to the circuit board 61; or the light-receiving surface 71 is inclined at an angle to the circuit board 61.
  • the side wall 41 is provided with a recess 43.
  • the laser emitter 10 is an edge emitting laser, and the emitting laser portion is housed in the recess 43.
  • the substrate 62 is provided with a heat dissipation hole 621 filled with a heat conductive material.
  • the laser emitter 10 includes a vertical cavity surface emitting laser and/or an edge emitting laser.
  • the present application also provides a depth camera 1000.
  • the depth camera 1000 includes the laser projection module 100, the image collector 200, and the processor 80 according to any of the above embodiments.
  • the image collector 200 is for collecting a laser pattern that is diffracted by the diffractive optical element 30 and projected into the target space.
  • the processor 80 is connected to the laser projection module 100 and the image collector 200, respectively.
  • the processor 80 is configured to process the laser pattern to obtain a depth image.
  • the present application further provides an electronic device 3000 .
  • the electronic device 3000 includes a housing 2000 and the depth camera 1000 of the above embodiment.
  • the depth camera 1000 is disposed within the housing 2000 and exposed from the housing 2000 to acquire a depth image.
  • the laser projection module 100 of the embodiment of the present application includes a lens barrel 40 and a substrate assembly 60 .
  • the substrate assembly 60 includes a substrate 62 and a circuit board 61.
  • the circuit board 61 is carried on the substrate 62.
  • the lens barrel 40 includes a side wall 41 and a carrying table 411 extending from the side wall 41.
  • the side wall 41 is disposed on the circuit board 61, and the side wall 41 and the circuit board 61 enclose the receiving cavity 42.
  • the laser projection module 100 further includes a laser emitter 10, a reflective element 50, a collimating element 20, a diffractive optical element 30, and a photodetector 70.
  • the laser emitter 10, the reflective element 50, the collimating element 20, the diffractive optical element 30, and the photodetector 70 are all housed in the housing cavity 42. Specifically, the laser emitter 10 is carried on a circuit board 61 for emitting laser light. The reflective element 50 is also carried on a circuit board 61 for reflecting the laser light emitted by the laser emitter 10. The collimating element 20 and the diffractive optical element 30 are sequentially disposed in the light outgoing direction of the reflective element 50, and the diffractive optical element 30 is placed on the stage 411. The collimating element 20 is used to collimate the laser light reflected by the reflective element 50.
  • the diffractive optical element 30 is for diffracting the laser light collimated by the collimating element 20 to form a laser pattern.
  • the photodetector 70 is disposed between the laser emitter 10 and the reflective element 50. More specifically, the photodetector 70 is disposed between the laser emitter 10 and the reflective element 50, and the photodetector 70 is configured to receive the laser emitter 10 for emission.
  • the laser emits an electrical signal. The electrical signal can be used to determine the non-zero level beam intensity of the laser and to reduce the transmit power of the laser emitter 10 when the non-zero level beam intensity is less than the preset intensity.
  • the reflective element 50 is placed on the side of the laser emitter 10.
  • the laser emitting direction of the laser emitter 10 is perpendicular to the optical axis of the light reflected by the reflective element 50.
  • the photodetector 70 includes a light-receiving surface 71 that is parallel to the circuit board 61.
  • the photodetector 70 can be an element that can convert a light intensity signal into an electrical signal, such as a photoresistor, a photodiode, a phototransistor, or the like.
  • the photodetector 70 is disposed between the laser emitter 10 and the collimating element 20.
  • the laser emitter 10 emits laser light
  • the laser emitted by the laser emitter 10 includes a zero-order beam.
  • a non-zero-order beam wherein the zero-order beam is a beam that is superimposed on the center of the illuminating surface after the laser diverges, and the non-zero-order beam is a beam that is transmitted around the illuminating surface after the laser is diverged, and thus is small in the non-zero-order beam.
  • Part of the light will illuminate the light-receiving surface 71 of the photodetector 70.
  • the photodetector 70 receives this portion of the light to produce an electrical signal output that characterizes the intensity of the non-zero-order beam.
  • the electrical signal output by the photodetector 70 is substantially uniform each time.
  • a certain voltage is applied to the laser emitter 10 and the electrical signal output by the photodetector 70 is low, it indicates that the intensity of the zero-order beam in the laser light emitted by the laser emitter 10 is large, resulting in a small non-zero laser beam intensity.
  • the zero-order beam is usually not diffracted when passing through the diffractive optical element 30, so it will be directly emitted, and the energy of the zero-order beam directly exiting may cause harm to the user's eyes.
  • the laser projection module 100 of the embodiment of the present application uses a photodetector 70 between the laser emitter 10 and the reflective element 50 to detect the intensity of the non-zero-order beam by the photodetector 70.
  • the intensity of the non-zero-order beam is small, It is determined that the energy of the zero-order beam may be too large, and the action of reducing the transmission power of the laser emitter 10 is performed immediately to avoid the problem that the zero-order beam energy is too large to endanger the eyes of the user, and the safety of the laser projection module 100 is improved. Sex.
  • the collimating element 20 when the collimating element 20 is one, the collimating element 20 can also be disposed between the laser emitter 10 and the reflective element 50. At this time, the collimating element 20 collimates the laser emission.
  • the laser light emitted from the device 10 reflects the laser light collimated by the collimating element 20, and the diffractive optical element 30 diffracts the laser light reflected by the reflecting element 50.
  • Providing the collimating element 20 between the reflective element 50 and the diffractive optical element 30 can reduce the thickness of the laser projection module 100.
  • the collimating element 20 may also be two.
  • One collimating element 20 is disposed between the laser emitter 10 and the reflective element 50, and the collimating element 20 is used for collimating the laser.
  • the laser light emitted by the emitter 10 is used to reflect the laser light collimated by the collimating element 20.
  • Another collimating element 20 is disposed between the reflective element 50 and the diffractive optical element 30 for collimating the laser light reflected by the collimating mirror element 50, and the diffractive optical element 30 is diffracted by the collimating element 20 After the laser.
  • the provision of two collimating elements 20 in the laser projection module 100 optimizes the collimation effect of the laser and improves the performance of the laser projection module 100.
  • the light collecting surface 71 of the photodetector 70 is perpendicular to the circuit board 61.
  • the position of the collimating element 20 may be: one of the collimating elements 20 is disposed between the laser emitter 10 and the reflective element 50 (as shown in FIG. 4); or, the collimating element 20 is one, disposed at Between the reflective element 50 and the diffractive optical element 30 (not shown); or two of the collimating elements 20, one disposed between the laser emitter 10 and the reflective element 50, and the other disposed between the reflective element 50 and the diffractive optics Between the components 30 (not shown).
  • the light-receiving surface 71 is perpendicular to the light-emitting direction of the laser emitter 10, and the laser light emitted from the laser emitter 10 is directed onto the light-receiving surface 71, and the photodetector 70 can more accurately detect the intensity of the non-zero-order light beam.
  • the light-receiving surface 71 of the photodetector 70 is at an oblique angle to the circuit board 61.
  • the position of the collimating element 20 may be: one of the collimating elements 20 is disposed between the laser emitter 10 and the reflective element 50 (as shown in FIG. 4); or, the collimating element 20 is one, disposed at Between the reflective element 50 and the diffractive optical element 30 (not shown); or two of the collimating elements 20, one disposed between the laser emitter 10 and the reflective element 50, and the other disposed between the reflective element 50 and the diffractive optics Between the components 30 (not shown).
  • the photodetector 70 is a phototransistor
  • the number of phototransistors that can be accommodated on the light-receiving surface 71 is greater, and the photodetector 70 can receive more light, thereby more accurately detecting the intensity of the non-zero-order beam.
  • the laser emitter 10 can be a Vertical Cavity Surface Emitting Laser (VCSEL) having a direction of illumination that is perpendicular to the optical axis of the light reflected by the reflective element 50. Since the light source of the vertical cavity surface emitting laser is multi-point and distributed in an irregular array, the laser pattern projected by the laser projection module 100 has a large irrelevance, which is favorable for improving the acquisition accuracy of the depth image.
  • VCSEL Vertical Cavity Surface Emitting Laser
  • the laser emitter 10 can be an edge-emitting laser (EEL).
  • the laser emitter 10 can be a distributed feedback laser (DFB).
  • the light emitting surface 11 of the laser emitter 10 faces the reflecting element 50, that is, the light emitting direction of the laser emitter 10 is perpendicular to the optical axis of the light reflected by the reflecting element 50.
  • the distributed feedback laser has a small temperature drift and is a single-point light-emitting structure, and does not need to design an array structure, and is simple to manufacture, and the laser projection module 100 has a low cost.
  • the laser emitter 10 is a distributed feedback laser
  • the laser of the distributed feedback laser obtains the power gain through the feedback of the grating structure
  • the length and / or increase of the injection current is achieved. Increasing the injection current causes the power consumption of the distributed feedback laser to increase and causes a problem of severe heat generation. Therefore, it is preferable to increase the length of the distributed feedback laser by increasing the length of the distributed feedback laser.
  • the side wall 41 of the lens barrel 40 of the laser projection module 100 is provided with a recess 43 in which the distributed feedback laser portion is housed.
  • the recess 43 can provide more space for the distributed feedback laser without increasing the width of the laser projection module 100.
  • the length, width and height of the groove 43 should correspond to the length, width and height of the distributed feedback laser.
  • the length, width and height of the groove 43 are slightly larger than the length of the distributed feedback laser.
  • the groove 43 can play a fixed role for the distributed feedback laser to prevent the distributed feedback laser from shifting or falling off, or, further, after the distributed feedback laser portion is received in the groove 43, the sealant is used.
  • the distributed feedback laser is bonded to the recess 43 and the sealant can be a thermally conductive adhesive. In this way, on the one hand, the distributed feedback laser can be fixedly distributed, and on the other hand, the distributed feedback laser can be dissipated.
  • the substrate 62 is provided with a heat dissipation hole 621 .
  • the position of the heat dissipation hole 621 is opposite to a position where the laser projection module 100 is placed on the circuit board 61 and a position where the photodetector 70 is placed on the circuit board 61.
  • heat can be dissipated for the laser emitter 10 and the photodetector 70.
  • the heat dissipation hole 621 may also be filled with a thermal conductive glue to further dissipate heat from the laser emitter 10 and the photodetector 70.
  • the present application further provides a depth camera 1000.
  • the depth camera 1000 of the embodiment of the present application includes the laser projection module 100, the image collector 200, and the processor 80 of any of the above embodiments.
  • the image collector 200 is configured to collect a laser pattern that is diffracted by the diffractive optical element 30 and projected into the target space.
  • the processor 80 is coupled to the laser projection module 100 and the image capture device 200, respectively.
  • the processor 80 is configured to process the laser pattern to obtain a depth image.
  • the laser projection module 100 projects a laser pattern into the target space through the projection window 901.
  • the image collector 200 collects the laser pattern modulated by the target object through the acquisition window 902.
  • Image capture device 200 can be an infrared camera.
  • the processor 80 calculates an offset value of each pixel point in the laser pattern and a corresponding pixel point in the reference pattern by using an image matching algorithm, and further obtains a depth image of the laser pattern according to the deviation value.
  • the image matching algorithm may be a Digital Image Correlation (DIC) algorithm. Of course, other image matching algorithms can be used instead of the DIC algorithm.
  • DIC Digital Image Correlation
  • the laser projection module 100 in the depth camera 1000 of the embodiment of the present application uses the photodetector 70 to detect the intensity of the non-zero-order beam at a non-zero level by providing a photodetector 70 between the laser emitter 10 and the reflective element 50.
  • the intensity of the beam is small, it is determined that the energy of the zero-order beam may be too large.
  • the action of reducing the transmission power of the laser emitter 10 is performed immediately to avoid the problem that the energy of the zero-order beam is too large to endanger the eyes of the user, and the laser projection mode is improved.
  • the security used by group 100 is used by group 100.
  • an electronic device 3000 includes a housing 2000 and a depth camera 1000 of the above embodiment.
  • the depth camera 1000 is disposed within the housing 2000 and exposed from the housing 2000 to acquire a depth image.
  • the laser projection module 100 in the electronic device 3000 of the embodiment of the present application detects a non-zero-order beam intensity at a non-zero level by using a photodetector 70 between the laser emitter 10 and the reflective element 50.
  • a photodetector 70 between the laser emitter 10 and the reflective element 50.
  • the intensity of the beam is small, it is determined that the energy of the zero-order beam may be too large.
  • the action of reducing the transmission power of the laser emitter 10 is performed immediately to avoid the problem that the energy of the zero-order beam is too large to endanger the eyes of the user, and the laser projection mode is improved.
  • the security used by group 100 is used by group 100.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Multimedia (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Measurement Of Optical Distance (AREA)
  • Semiconductor Lasers (AREA)
  • Studio Devices (AREA)

Abstract

一种激光投射模组(100)、深度相机(1000)和电子装置(3000)。激光投射模组(100)包括:激光发射器(10),激光发射器(10)用于发射激光;反射元件(50),反射元件(50)用于反射激光发射器(10)发射的激光;衍射光学元件(30),衍射光学元件(30)用于衍射经反射元件(50)反射后的激光;及光检测器(70),光检测器(70)设置在激光发射器(10)与反射元件(50)之间,光检测器(70)用于接收激光以输出电信号,电信号用于确定激光的非零级光束强度、以及在非零级光束强度小于预设强度时减小激光发射器(10)的发射功率。

Description

激光投射模组、深度相机和电子装置
优先权信息
本申请请求2018年3月12日向中国国家知识产权局提交的、专利申请号为201810202118.0的专利申请的优先权和权益,并且通过参照将其全文并入此处。
技术领域
本申请涉及成像技术领域,特别涉及一种激光投射模组、深度相机和电子装置。
背景技术
激光发射器发射激光时,激光会产生发散。激光发散后在激光发射器的发光面的中心位置处叠加聚集的光束为零级光束,在激光发射器的发光面的四周处传输的光束为非零级光束。当零级光束的强度过强时,零级光束传输到衍射光学元件时无法被完全衍射,导致经衍射光学元件出射的零级光束的强度过强,如此,可能危害用户的眼睛。
发明内容
本申请的实施例提供了一种激光投射模组、深度相机和电子装置。
本申请实施方式的激光投射模组包括激光发射器、反射元件、衍射光学元件和光检测器。所述激光发射器用于发射激光。所述反射元件用于反射所述激光发射器发射的激光。所述衍射光学元件用于衍射经所述反射元件反射后的激光。所述光检测器设置在激光发射器与反射元件之间,所述光检测器用于接收所述激光以输出电信号,所述电信号用于确定所述激光的非零级光束强度、以及在所述非零级光束强度小于预设强度时减小所述激光发射器的发射功率。
本申请实施方式的深度相机包括激光投射模组、图像采集器和处理器。所述激光投射模组包括激光发射器、反射元件、衍射光学元件和光检测器。所述激光发射器用于发射激光。所述反射元件用于反射所述激光发射器发射的激光。所述衍射光学元件用于衍射经所述反射元件反射后的激光。所述光检测器设置在激光发射器与反射元件之间,所述光检测器用于接收所述激光以输出电信号,所述电信号用于确定所述激光的非零级光束强度、以及在所述非零级光束强度小于预设强度时减小所述激光发射器的发射功率。所述图像采集器用于采集由所述激光投射模组向目标空间中投射的所述激光图案。所述处理器用于根据所述电信号确定所述激光的非零级光束强度、在所述非零级光束强度小于预设强度时减小所述激光发射器的发射功率、以及处理所述激光图案以获得深度图像。
本申请实施方式的电子装置包括壳体和深度相机。所述深度相机设置在所述壳体内并从所述壳体暴露以获取深度图像。深度相机包括激光投射模组、图像采集器和处理器。所述激光投射模组包括激光发射器、反射元件、衍射光学元件和光检测器。所述激光发射器用于发射激光。所述反射元件用于反射所述激光发射器发射的激光。所述衍射光学元件用于衍射经所述反射元件反射后的激光。所述光检测器设置在激光发射器与反射元件之间,所述光检测器用于接收所述激光以输出电信号,所述电信号用于确定所述激光的非零级光束强度、以及在所述非零级光束强度小于预设强度时减小所述激光发射器的发射功率。所述图像采集器用于采集由所述激光投射模组向目标空间中投射的所述激光图案。所述处理器用于根据所述电信号确定所述激光的非零级光束强度、在所述非零级光束强度小于预设强度时减小所述激光发射器的发射功率、以及处理所述激光图案以获得深度图像。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1是本申请某些实施方式的激光投射模组的结构示意图。
图2至图5是本申请某些实施方式的激光投射模组的光路示意图。
图6和图7是本申请某些实施方式的激光投射模组的结构示意图。
图8是本申请某些实施方式的深度相机的结构示意图。
图9是本申请某些实施方式的电子装置的结构示意图。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相 连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通信;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
下文的公开提供了许多不同的实施方式或例子用来实现本申请的不同结构。为了简化本申请的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
请参阅图1,本申请提供一种激光投射模组100。激光投射模组100包括激光发射器10、反射元件50、衍射光学元件30和光检测器70。激光发射器10用于发射激光。反射元件50用于反射激光发射器10发射的激光。衍射光学元件30用于衍射经反射元件50反射后的激光。光检测器70设置在激光发射器10与反射元件50之间。光检测器10用于接收激光以输出电信号。电信号用于确定激光的非零级光束强度、以及在非零级光束强度小于预设强度时减小激光发射器10的发射功率。
请参阅图1,在某些实施方式中,激光投射模组100还包括准直元件20。准直元件20位于激光发射器10与反射元件50之间;或/和准直元件20位于反射元件50与衍射光学元件30之间。
请参阅图1,在某些实施方式中,激光投射模组100还包括基板组件60和镜筒40。基板组件60包括基板62及承载在基板62上的电路板61。激光发射器10承载在电路板61上。镜筒40包括侧壁41及自侧壁41延伸的承载台411。侧壁41设置在电路板61上。侧壁41与电路板61围成有收容腔42。激光发射器10、反射元件50、准直元件20、衍射光学元件30及光检测器70均收容在收容腔42内。
请参阅图1,在某些实施方式中,反射元件50放置在电路板61上并置于激光发射器10的侧边。激光发射器10的激光发射方向与反射元件50反射的光线的光轴垂直。
请参阅图2至图5,在某些实施方式中,光检测器70包括收光面71。收光面71平行于电路板61;或收光面71与电路板61垂直;或收光面71与电路板61呈倾斜夹角。
请参阅图6,在某些实施方式中,侧壁41开设有凹槽43。激光发射器10为边发射激光器,边发射激光器部分收容在凹槽43内。
请参阅图7,在某些实施方式中,基板62开设有散热孔621,散热孔621填充有导热材料。
请参阅图1和图6,在某些实施方式中,激光发射器10包括垂直腔面发射激光器和/或边发射激光器。
请参阅图8,本申请还提供一种深度相机1000。深度相机1000包括上述任意一项实施方式所述的激光投射模组100、图像采集器200和处理器80。图像采集器200用于采集经衍射光学元件30衍射后向目标空间中投射的激光图案。处理器80分别与激光投射模组100和图像采集器200连接。处理器80用于处理激光图案以获取深度图像。
请参阅图9,本申请还提供一种电子装置3000。电子装置3000包括壳体2000及上述实施方式的深度相机1000。深度相机1000设置在壳体2000内并从壳体2000暴露以获取深度图像。
请参阅图1,本申请实施方式的激光投射模组100包括镜筒40和基板组件60。基板组件60包括基板62和电路板61。电路板61承载在基板62上。镜筒40包括侧壁41和自侧壁41延伸的承载台411,侧壁41设置在电路板61上,侧壁41和电路板61围成收容腔42。激光投射模组100还包括激光发射器10、反射元件50、准直元件20、衍射光学元件30和光检测器70。激光发射器10、反射元件50、准直元件20、衍射光学元件30和光检测器70均收容在收容腔42中。具体地,激光发射器10承载在电路板61上,激光发射器10用于发射激光。反射元件50也承载在电路板61上,反射元件50用于反射激光发射器10发射的激光。准直元件20和衍射光学元件30依次设置在反射元件50的出光方向上,衍射光学元件30放置在承载台411上。准直元件20用于准直经反射元件50反射后的激光。衍射光学元件30用于衍射经准直元件20准直后的激光以形成激光图案。光检测器70设置在激光发射器10和反射元件50之间,更具体地,光检测器70设置在激光发射器10和反射元件50之间,光检测器70用于接收激光发射器10发射的激光以输出电信号。电信号可用于确定激光的非零级光束强度、以及在非零级光束强度小于预设强度时减小激光发射器10的发射功率。
其中,反射元件50放置在激光发射器10的侧边。激光发射器10的激光发射方向与反射元件50反射的光线的光轴垂直。光检测器70包括收光面71,收光面71与电路板61平行。
光检测器70可以是光敏电阻、光电二极管、光电三极管等可以将光强度信号转换成电信号的元件。
可以理解,将光检测器70设置在激光发射器10和准直元件20之间,当激光发射器10发射激光时,由于激光发射时会产生发散,激光发射器10发射的激光包括零级光束和非零级光束,其中,零级光束为激光发散后叠加聚集在发光面中心位置处的光束,非零级光束为激光发散后向发光面四周传输的光束,因此非零级光束中的小部分光线会照射到光 检测器70的收光面71上,光检测器70接收这部分光线后产生电信号输出,该电信号表征的是非零级光束的强度。当每次使用激光发射器10时均对激光发射器10施加相同大小的电压,则每次光检测器70输出的电信号大体上是一致的。当对激光发射器10施加一定电压,光检测器70输出的电信号较低时,说明激光发射器10发射的激光中零级光束强度较大,从而导致非零激光束强度较小。而零级光束在经过衍射光学元件30时通常不会被衍射,因此会直接出射,直接出射的零级光束的能量过大会对用户的眼睛产生危害。
本申请实施方式的激光投射模组100通过在激光发射器10与反射元件50之间设置一个光检测器70,利用光检测器70检测非零级光束的强度在非零级光束强度较小时,确定零级光束的能量可能过大,此时立即执行减小激光发射器10的发射功率的动作,以避免零级光束能量过大而危害用户眼睛的问题,提升激光投射模组100使用的安全性。
请参阅图2,在某些实施方式中,准直元件20为一个时,准直元件20还可以设置在激光发射器10和反射元件50之间,此时,准直元件20准直激光发射器10发射的激光,反射元件50反射经由准直元件20准直后的激光,衍射光学元件30衍射经反射元件50反射后的激光。将准直元件20设置在反射元件50和衍射光学元件30之间可以减小激光投射模组100的厚度。
请参阅图3,在某些实施方式中,准直元件20也可为两个,一个准直元件20设置在激光发射器10与反射元件50之间,该准直元件20用于准直激光发射器10发射的激光,反射元件50用于反射经由该准直元件20准直后的激光。另一个准直元件20设置在反射元件50和衍射光学元件30之间,该准直元件20用于准直镜反射元件50反射后的激光,衍射光学元件30衍射经该准直元件20准直后的激光。激光投射模组100中设置两个准直元件20可以优化激光的准直效果,改善激光投射模组100的性能。
请参阅图4,在某些实施方式中,光检测器70的收光面71与电路板61垂直。此时,准直元件20的位置可以是:准直元件20为一个,设置在激光发射器10与反射元件50之间(如图4所示);或者,准直元件20为一个,设置在反射元件50与衍射光学元件30之间(图未示);或者,准直元件20为两个,一个设置在激光发射器10与反射元件50之间,另一个设置在反射元件50与衍射光学元件30之间(图未示)。如此,收光面71与激光发射器10的发光方向垂直,激光发射器10发射的激光直射到收光面71上,光检测器70可以更准确地检测非零级光束的强度。
请参阅图5,在某些实施方式中,光检测器70的收光面71与电路板61呈倾斜夹角。此时,准直元件20的位置可以是:准直元件20为一个,设置在激光发射器10与反射元件50之间(如图4所示);或者,准直元件20为一个,设置在反射元件50与衍射光学元件30之间(图未示);或者,准直元件20为两个,一个设置在激光发射器10与反射元件50 之间,另一个设置在反射元件50与衍射光学元件30之间(图未示)。如此,假设光检测器70为光电三极管,收光面71上可容纳的光电三极管的数量更多,光检测器70可接收到更多的光,从而可以更准确地检测非零级光束的强度。
在某些实施方式中,激光发射器10可为垂直腔面发射激光器(Vertical Cavity Surface Emitting Laser,VCSEL),垂直腔面发射激光器的发光方向与反射元件50反射的光线的光轴垂直。由于垂直腔面发射激光器的光源为多点且呈不规则的阵列分布,因此,激光投射模组100投射的激光图案的不相关性较大,有利于提升深度图像的获取精度。
在某些实施方式中,激光发射器10可为边发射激光器(edge-emitting laser,EEL),具体地,激光发射器10可为分布反馈式激光器(Distributed Feedback Laser,DFB)。此时,激光发射器10的发光面11朝向反射元件50,即激光发射器10的发光方向与反射元件50反射的光线的光轴垂直。分布反馈式激光器的温漂较小,且为单点发光结构,无需设计阵列结构,制作简单,激光投射模组100的成本较低。
进一步地,当激光发射器10为分布反馈式激光器时,由于分布反馈式激光器的激光是通过光栅结构的反馈获得功率的增益,要提高分布反馈式激光器的功率,需要通过增加分布反馈式激光器的长度和/或增大注入电流来实现。而增大注入电流会使得分布反馈式激光器的功耗增大并且出现发热严重的问题,因此,优选地,采用增加分布反馈式激光器的长度来提高分布反馈式激光器的长度。而为了减小激光投射模组100的宽度,请结合图6,激光投射模组100的镜筒40的侧壁41开设有一个凹槽43,分布式反馈激光器部分收容在凹槽43内。如此,凹槽43可为分布反馈式激光器提供更多的放置空间,且无需增加激光投射模组100的宽度。另外,优选地,凹槽43的长度、宽度和高度应与分布反馈式激光器的长度、宽度、高度对应,具体地,凹槽43的长度、宽度和高度均略大于分布反馈式激光器的长度,如此,凹槽43对分布式反馈激光器可以起到一定的固定作用,防止分布反馈式激光器移位或脱落,或者,进一步地,将分布反馈式激光器部分收容在凹槽43中后,使用封胶将分布反馈式激光器与凹槽43进行粘结,且封胶可为导热胶。如此,一方面可固定分布反馈式激光器,另一方面还可对分布反馈式激光器进行散热。
请参阅图7,在某些实施方式中,基板62开设有散热孔621。散热孔621的位置与激光投射模组100放置在电路板61上的位置以及与光检测器70放置在电路板61上的位置相对。如此,可以为激光发射器10和光检测器70进行散热。散热孔621中还可以填充有导热胶,进一步为激光发射器10和光检测器70进行散热。
请参阅图8,本申请还提供一种深度相机1000,本申请实施方式的深度相机1000包括上述任意一项实施方式的激光投射模组100、图像采集器200和处理器80。其中,图像采集器200用于采集经衍射光学元件30衍射后向目标空间中投射的激光图案。处理器80分 别与激光投射模组100和图像采集器200连接。处理器80用于处理激光图案以获取深度图像。
具体地,激光投射模组100通过投射窗口901向目标空间中投射激光图案。图像采集器200通过采集窗口902采集被目标物体调制后的激光图案。图像采集器200可为红外相机。处理器80采用图像匹配算法计算出该激光图案中各像素点与参考图案中的对应各个像素点的偏离值,再根据偏离值进一步获得该激光图案的深度图像。其中,图像匹配算法可为数字图像相关(Digital Image Correlation,DIC)算法。当然,也可以采用其它图像匹配算法代替DIC算法。
本申请实施方式的深度相机1000中的激光投射模组100通过在激光发射器10与反射元件50之间设置一个光检测器70,利用光检测器70检测非零级光束的强度在非零级光束强度较小时,确定零级光束的能量可能过大,此时立即执行减小激光发射器10的发射功率的动作,以避免零级光束能量过大而危害用户眼睛的问题,提升激光投射模组100使用的安全性。
请参阅图9,本申请实施方式的电子装置3000包括壳体2000及上述实施方式的深度相机1000。深度相机1000设置在壳体2000内并从壳体2000暴露以获取深度图像。
本申请实施方式的电子装置3000中的激光投射模组100通过在激光发射器10与反射元件50之间设置一个光检测器70,利用光检测器70检测非零级光束的强度在非零级光束强度较小时,确定零级光束的能量可能过大,此时立即执行减小激光发射器10的发射功率的动作,以避免零级光束能量过大而危害用户眼睛的问题,提升激光投射模组100使用的安全性。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (24)

  1. 一种激光投射模组,其特征在于,所述激光投射模组包括:
    激光发射器,所述激光发射器用于发射激光;
    反射元件,所述反射元件用于反射所述激光发射器发射的激光;
    衍射光学元件,所述衍射光学元件用于衍射经所述反射元件反射后的激光;及
    光检测器,所述光检测器设置在激光发射器与反射元件之间,所述光检测器用于接收所述激光以输出电信号,所述电信号用于确定所述激光的非零级光束强度、以及在所述非零级光束强度小于预设强度时减小所述激光发射器的发射功率。
  2. 根据权利要求1所述的激光投射模组,其特征在于,所述激光投射模组还包括准直元件,所述准直元件位于所述激光发射器与所述反射元件之间;或/和
    所述准直元件位于所述反射元件与所述衍射光学元件之间。
  3. 根据权利要求2所述的激光投射模组,其特征在于,所述激光投射模组还包括:
    基板组件,所述基板组件包括基板及承载在所述基板上的电路板,所述激光发射器承载在所述电路板上;
    镜筒,所述镜筒包括侧壁及自所述侧壁延伸的承载台,所述侧壁设置在所述电路板上,所述侧壁与所述电路板围成有收容腔,所述激光发射器、所述反射元件、所述准直元件、所述衍射光学元件及所述光检测器均收容在所述收容腔内。
  4. 根据权利要求3所述的激光投射模组,其特征在于,所述反射元件放置在所述电路板上并置于所述激光发射器的侧边,所述激光发射器的激光发射方向与所述反射元件反射的光线的光轴垂直。
  5. 根据权利要求3所述的激光投射模组,其特征在于,所述光检测器包括收光面,所述收光面平行于所述电路板;或
    所述收光面与所述电路板垂直;或
    所述收光面与所述电路板呈倾斜夹角。
  6. 根据权利要求3所述的激光投射模组,其特征在于,所述侧壁开设有凹槽,所述激光发射器为边发射激光器,所述边发射激光器部分收容在所述凹槽内。
  7. 根据权利要求3所述的激光投射模组,其特征在于,所述基板开设有散热孔,所述散热孔填充有导热材料。
  8. 根据权利要求1所述的激光投射模组,其特征在于,所述激光发射器包括垂直腔面发射激光器和/或边发射激光器。
  9. 一种深度相机,其特征在于,所述深度相机包括:
    激光投射模组,所述激光投射模组包括:
    激光发射器,所述激光发射器用于发射激光;
    反射元件,所述反射元件用于反射所述激光发射器发射的激光;
    衍射光学元件,所述衍射光学元件用于衍射经所述反射元件反射后的激光;及
    光检测器,所述光检测器设置在激光发射器与反射元件之间,所述光检测器用于接收所述激光以输出电信号;
    图像采集器,所述图像采集器用于采集由所述激光投射模组向目标空间中投射的所述激光图案;和
    处理器,所述处理器用于根据所述电信号确定所述激光的非零级光束强度、在所述非零级光束强度小于预设强度时减小所述激光发射器的发射功率、以及处理所述激光图案以获得深度图像。
  10. 根据权利要求9所述的深度相机,其特征在于,所述激光投射模组还包括准直元件,所述准直元件位于所述激光发射器与所述反射元件之间;或/和
    所述准直元件位于所述反射元件与所述衍射光学元件之间。
  11. 根据权利要求10所述的深度相机,其特征在于,所述激光投射模组还包括:
    基板组件,所述基板组件包括基板及承载在所述基板上的电路板,所述激光发射器承载在所述电路板上;
    镜筒,所述镜筒包括侧壁及自所述侧壁延伸的承载台,所述侧壁设置在所述电路板上,所述侧壁与所述电路板围成有收容腔,所述激光发射器、所述反射元件、所述准直元件、所述衍射光学元件及所述光检测器均收容在所述收容腔内。
  12. 根据权利要求11所述的深度相机,其特征在于,所述反射元件放置在所述电路板 上并置于所述激光发射器的侧边,所述激光发射器的激光发射方向与所述反射元件反射的光线的光轴垂直。
  13. 根据权利要求11所述的深度相机,其特征在于,所述光检测器包括收光面,所述收光面平行于所述电路板;或
    所述收光面与所述电路板垂直;或
    所述收光面与所述电路板呈倾斜夹角。
  14. 根据权利要求11所述的深度相机,其特征在于,所述侧壁开设有凹槽,所述激光发射器为边发射激光器,所述边发射激光器部分收容在所述凹槽内。
  15. 根据权利要求11所述的深度相机,其特征在于,所述基板开设有散热孔,所述散热孔填充有导热材料。
  16. 根据权利要求9所述的深度相机,其特征在于,所述激光发射器包括垂直腔面发射激光器和/或边发射激光器。
  17. 一种电子装置,其特征在于,所述电子装置包括壳体和深度相机,所述深度相机设置在所述壳体内并从所述壳体暴露以获取深度图像;所述深度相机包括:
    激光投射模组,所述激光投射模组包括:
    激光发射器,所述激光发射器用于发射激光;
    反射元件,所述反射元件用于反射所述激光发射器发射的激光;
    衍射光学元件,所述衍射光学元件用于衍射经所述反射元件反射后的激光;及
    光检测器,所述光检测器设置在激光发射器与反射元件之间,所述光检测器用于接收所述激光以输出电信号;
    图像采集器,所述图像采集器用于采集由所述激光投射模组向目标空间中投射的所述激光图案;和;
    处理器,所述处理器用于根据所述电信号确定所述激光的非零级光束强度、在所述非零级光束强度小于预设强度时减小所述激光发射器的发射功率、以及处理所述激光图案以获得所述深度图像。
  18. 根据权利要求17所述的电子装置,其特征在于,所述激光投射模组还包括准直元 件,所述准直元件位于所述激光发射器与所述反射元件之间;或/和
    所述准直元件位于所述反射元件与所述衍射光学元件之间。
  19. 根据权利要求18所述的电子装置,其特征在于,所述激光投射模组还包括:
    基板组件,所述基板组件包括基板及承载在所述基板上的电路板,所述激光发射器承载在所述电路板上;
    镜筒,所述镜筒包括侧壁及自所述侧壁延伸的承载台,所述侧壁设置在所述电路板上,所述侧壁与所述电路板围成有收容腔,所述激光发射器、所述反射元件、所述准直元件、所述衍射光学元件及所述光检测器均收容在所述收容腔内。
  20. 根据权利要求19所述的电子装置,其特征在于,所述反射元件放置在所述电路板上并置于所述激光发射器的侧边,所述激光发射器的激光发射方向与所述反射元件反射的光线的光轴垂直。
  21. 根据权利要求19所述的电子装置,其特征在于,所述光检测器包括收光面,所述收光面平行于所述电路板;或
    所述收光面与所述电路板垂直;或
    所述收光面与所述电路板呈倾斜夹角。
  22. 根据权利要求19所述的电子装置,其特征在于,所述侧壁开设有凹槽,所述激光发射器为边发射激光器,所述边发射激光器部分收容在所述凹槽内。
  23. 根据权利要求19所述的电子装置,其特征在于,所述基板开设有散热孔,所述散热孔填充有导热材料。
  24. 根据权利要求17所述的电子装置,其特征在于,所述激光发射器包括垂直腔面发射激光器和/或边发射激光器。
PCT/CN2019/070854 2018-03-12 2019-01-08 激光投射模组、深度相机和电子装置 WO2019174384A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810202118.0 2018-03-12
CN201810202118.0A CN108490632B (zh) 2018-03-12 2018-03-12 激光投射模组、深度相机和电子装置

Publications (1)

Publication Number Publication Date
WO2019174384A1 true WO2019174384A1 (zh) 2019-09-19

Family

ID=63338963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/070854 WO2019174384A1 (zh) 2018-03-12 2019-01-08 激光投射模组、深度相机和电子装置

Country Status (5)

Country Link
US (1) US11199398B2 (zh)
EP (1) EP3540371B1 (zh)
CN (1) CN108490632B (zh)
TW (1) TWI685678B (zh)
WO (1) WO2019174384A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108490632B (zh) 2018-03-12 2020-01-10 Oppo广东移动通信有限公司 激光投射模组、深度相机和电子装置
CN110333501A (zh) * 2019-07-12 2019-10-15 深圳奥比中光科技有限公司 深度测量装置及距离测量方法
CN111596507B (zh) * 2020-05-11 2022-04-22 常州纵慧芯光半导体科技有限公司 一种摄像模组及其制造方法
CN114877920A (zh) * 2022-06-01 2022-08-09 上海钊晟传感技术有限公司 一种人眼安全型激光传感器方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102062952A (zh) * 2009-11-15 2011-05-18 普莱姆森斯有限公司 带有光束监控器的光学投影仪
US20130201289A1 (en) * 2012-02-03 2013-08-08 Bryed Billerbeck Low profile depth camera
CN107167996A (zh) * 2017-06-05 2017-09-15 深圳奥比中光科技有限公司 自适应调整的激光投影模组及深度相机
CN107167997A (zh) * 2017-06-05 2017-09-15 深圳奥比中光科技有限公司 激光投影模组及深度相机
CN107783361A (zh) * 2017-10-25 2018-03-09 深圳奥比中光科技有限公司 含有光束监测单元的光学投影装置
CN108490632A (zh) * 2018-03-12 2018-09-04 广东欧珀移动通信有限公司 激光投射模组、深度相机和电子装置

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5406543A (en) 1993-04-07 1995-04-11 Olympus Optical Co., Ltd. Optical head with semiconductor laser
CN1155957C (zh) * 1998-06-30 2004-06-30 株式会社三协精机制作所 光传感装置
CN1167064C (zh) * 1998-12-03 2004-09-15 株式会社三协精机制作所 激光头装置及光源单元
JP2000353332A (ja) * 1999-04-19 2000-12-19 Samsung Electronics Co Ltd 光出力モジュール及びこれを採用した互換型光ピックアップ装置
JP4716239B2 (ja) * 2000-11-14 2011-07-06 コニカミノルタホールディングス株式会社 光ピックアップ装置用の対物レンズ及び光ピックアップ装置
JP4094501B2 (ja) * 2002-11-27 2008-06-04 シャープ株式会社 光ピックアップ装置
JP4412142B2 (ja) * 2003-12-19 2010-02-10 Tdk株式会社 光ヘッド
JP2008524634A (ja) * 2004-12-21 2008-07-10 イマゴ サイエンティフィック インストルメンツ コーポレーション レーザアトムプローブ
US7567495B2 (en) 2006-10-18 2009-07-28 Hitachi Media Electronics Co., Ltd. Optical pickup apparatus and optical disc apparatus using same
US7963447B2 (en) * 2007-11-30 2011-06-21 Symbol Technologies, Inc. Enhanced monitoring of laser output power in electro-optical readers
JP2011114182A (ja) * 2009-11-27 2011-06-09 Seiko Epson Corp レーザー光源装置、プロジェクター及びモニター装置
US9740019B2 (en) * 2010-02-02 2017-08-22 Apple Inc. Integrated structured-light projector
US8592739B2 (en) * 2010-11-02 2013-11-26 Microsoft Corporation Detection of configuration changes of an optical element in an illumination system
US9470778B2 (en) 2011-03-29 2016-10-18 Microsoft Technology Licensing, Llc Learning from high quality depth measurements
US9297889B2 (en) 2012-08-14 2016-03-29 Microsoft Technology Licensing, Llc Illumination light projection for a depth camera
JP6103179B2 (ja) * 2012-09-13 2017-03-29 株式会社リコー 距離測定装置
US10268885B2 (en) * 2013-04-15 2019-04-23 Microsoft Technology Licensing, Llc Extracting true color from a color and infrared sensor
US9443310B2 (en) 2013-10-09 2016-09-13 Microsoft Technology Licensing, Llc Illumination modules that emit structured light
US9778476B2 (en) 2014-11-03 2017-10-03 Aquifi, Inc. 3D depth sensor and projection system and methods of operating thereof
US10895753B2 (en) * 2014-11-14 2021-01-19 Ahead Optoelectronics, Inc. Structured light generation device and diffractive optical element thereof
US9553423B2 (en) * 2015-02-27 2017-01-24 Princeton Optronics Inc. Miniature structured light illuminator
US11431146B2 (en) * 2015-03-27 2022-08-30 Jabil Inc. Chip on submount module
US9800795B2 (en) 2015-12-21 2017-10-24 Intel Corporation Auto range control for active illumination depth camera
US10122146B2 (en) 2016-04-05 2018-11-06 Aquifi, Inc. Thin laser package for optical applications
US10827163B2 (en) * 2016-08-09 2020-11-03 Facebook Technologies, Llc Multiple emitter illumination source for depth information determination
CN106918303B (zh) * 2017-03-14 2019-02-19 安徽大学 光学自由曲面自适应非零位干涉检测系统
CN206908092U (zh) 2017-05-15 2018-01-19 深圳奥比中光科技有限公司 Vcsel阵列光源、激光投影装置及3d成像设备
CN206833136U (zh) 2017-06-14 2018-01-02 深圳奥比中光科技有限公司 投影模组及深度相机
CN206877030U (zh) 2017-07-07 2018-01-12 深圳奥比中光科技有限公司 发光装置及其激光投影模组
US20200228764A1 (en) * 2017-10-02 2020-07-16 Liqxtal Technology Inc. Tunable light projector
US10310281B1 (en) * 2017-12-05 2019-06-04 K Laser Technology, Inc. Optical projector with off-axis diffractive element
US10545457B2 (en) * 2017-12-05 2020-01-28 K Laser Technology, Inc. Optical projector with off-axis diffractive element and conjugate images
CN109901300B (zh) * 2017-12-08 2021-04-06 宁波盈芯信息科技有限公司 一种基于垂直腔面发射激光器规则点阵的激光散斑投射器
WO2019165862A1 (zh) * 2018-02-27 2019-09-06 Oppo广东移动通信有限公司 激光投射模组、深度相机和电子装置
CN208572292U (zh) * 2018-03-18 2019-03-01 宁波舜宇光电信息有限公司 深度信息摄像模组及其基座组件和电子设备
US10418780B1 (en) * 2018-07-19 2019-09-17 Arima Lasers Corp. Dot projector with automatic power control
US11223816B2 (en) * 2018-09-26 2022-01-11 Himax Technologies Limited Multi-image projector and electronic device having multi-image projector
CN109798838B (zh) * 2018-12-19 2020-10-27 西安交通大学 一种基于激光散斑投射的ToF深度传感器及其测距方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102062952A (zh) * 2009-11-15 2011-05-18 普莱姆森斯有限公司 带有光束监控器的光学投影仪
US20130201289A1 (en) * 2012-02-03 2013-08-08 Bryed Billerbeck Low profile depth camera
CN107167996A (zh) * 2017-06-05 2017-09-15 深圳奥比中光科技有限公司 自适应调整的激光投影模组及深度相机
CN107167997A (zh) * 2017-06-05 2017-09-15 深圳奥比中光科技有限公司 激光投影模组及深度相机
CN107783361A (zh) * 2017-10-25 2018-03-09 深圳奥比中光科技有限公司 含有光束监测单元的光学投影装置
CN108490632A (zh) * 2018-03-12 2018-09-04 广东欧珀移动通信有限公司 激光投射模组、深度相机和电子装置

Also Published As

Publication number Publication date
CN108490632A (zh) 2018-09-04
US11199398B2 (en) 2021-12-14
US20190278099A1 (en) 2019-09-12
EP3540371A1 (en) 2019-09-18
TWI685678B (zh) 2020-02-21
TW201939108A (zh) 2019-10-01
CN108490632B (zh) 2020-01-10
EP3540371B1 (en) 2021-11-10

Similar Documents

Publication Publication Date Title
WO2019174384A1 (zh) 激光投射模组、深度相机和电子装置
WO2019174382A1 (zh) 激光投射模组、深度相机和电子装置
US6636540B2 (en) Optical turn for monitoring light from a laser
CN108319034B (zh) 激光投射模组、深度相机和电子装置
TWI697729B (zh) 鐳射投射模組、深度相機和電子裝置
CN108344378B (zh) 激光投射模组及其损坏的检测方法、深度相机和电子装置
CN108387365B (zh) 激光投射模组及其损坏的检测方法、深度相机和电子装置
WO2019174434A1 (zh) 结构光投射器、深度相机和电子设备
CN111694161A (zh) 光发射模组、深度相机及电子设备
CN210923959U (zh) 飞行时间投射器、飞行时间深度模组和电子设备
US20180031790A1 (en) Optical couping module and optical communication apparatus using the same
CN108490572B (zh) 激光投射模组、深度相机及电子装置
CN108388065B (zh) 结构光投射器、光电设备和电子装置
US7684451B2 (en) Optical transmitter module for stabilizing optical output power and wavelength
TWI273299B (en) Optical sub-module device of optical transceiver
JPWO2020012538A1 (ja) 内視鏡用光源装置、内視鏡、および、内視鏡システム
US20070091299A1 (en) Compact laser output monitoring using reflection and diffraction
CN112393692A (zh) 激光投射模组、图像采集模组、深度相机及电子设备
CN108490595B (zh) 结构光投射模组、图像获取装置及电子设备
TW201905516A (zh) 光學模組
WO2021026829A1 (zh) 光发射模组、光接收模组、深度相机和电子设备
CN108508687B (zh) 激光投射模组、深度相机和电子装置
JP2010239079A (ja) 半導体レーザモジュール
TW202043846A (zh) 發光裝置及應用其之圖像採集裝置
CN215953962U (zh) 双眼式望远镜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19767434

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19767434

Country of ref document: EP

Kind code of ref document: A1