WO2019174434A1 - 结构光投射器、深度相机和电子设备 - Google Patents

结构光投射器、深度相机和电子设备 Download PDF

Info

Publication number
WO2019174434A1
WO2019174434A1 PCT/CN2019/075378 CN2019075378W WO2019174434A1 WO 2019174434 A1 WO2019174434 A1 WO 2019174434A1 CN 2019075378 W CN2019075378 W CN 2019075378W WO 2019174434 A1 WO2019174434 A1 WO 2019174434A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
region
lens
emitting elements
laser
Prior art date
Application number
PCT/CN2019/075378
Other languages
English (en)
French (fr)
Inventor
张学勇
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2019174434A1 publication Critical patent/WO2019174434A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4205Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2513Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object with several lines being projected in more than one direction, e.g. grids, patterns

Definitions

  • the present application relates to the field of imaging technologies, and in particular, to a structured light projector, a depth camera, and an electronic device.
  • Structured light projectors such as laser projectors, are used to transmit a set optical pattern to a target space, and in the field of optical-based three-dimensional measurement, structured light projectors are widely used.
  • the structured light projector generally comprises a light source, a collimating element and a diffractive optical element, wherein the light source may be a single edge emitting laser light source, or an area array laser light source composed of a plurality of vertical cavity surface emitting lasers.
  • Embodiments of the present application provide a structured light projector, a depth camera, and an electronic device.
  • a structured light projector of an embodiment of the present application includes a light source, a collimating element, and a diffractive optical element, the light source for emitting a laser, the light source including a substrate and an array of light emitting elements disposed on the substrate, the lining
  • the bottom includes a first region and a second region in contact with the first region from the center to the edge, wherein the first density of the light emitting elements in the first region is smaller than the light emitting elements in the second region a second density;
  • the collimating element is for collimating the laser;
  • the diffractive optical element is for diffracting the collimated laser light of the collimating element to form a laser pattern.
  • the depth camera of the embodiment of the present application includes the structured light projector, the diffractive optical element, and the processor described in the above embodiments; the image collector is configured to collect a laser pattern projected through the diffractive optical element and projected into the target space; The device is respectively coupled to the structured light projector and the image collector, and the processor is configured to process the laser pattern to obtain a depth image.
  • the electronic device of the embodiment of the present application includes a housing and the depth camera described in the above embodiment, the depth camera being disposed in the housing and exposed from the housing to acquire a depth image.
  • FIG. 1 is a schematic structural view of a structured light projector according to some embodiments of the present application.
  • FIGS. 2 to 7 are schematic structural views of a light source of a structured light projector according to some embodiments of the present application.
  • FIGS. 8 to 19 are partial structural views of a collimating element of a structured light projector according to some embodiments of the present application.
  • FIG. 20 is a schematic structural diagram of a depth camera according to some embodiments of the present application.
  • 21 is a schematic structural diagram of an electronic device according to some embodiments of the present application.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include one or more of the described features either explicitly or implicitly.
  • the meaning of "a plurality” is two or more unless specifically and specifically defined otherwise.
  • connection In the description of the embodiments of the present application, it should be noted that the terms “installation”, “connection”, and “connection” are to be understood broadly, and may be fixed connection, for example, or Removable connection, or integral connection; can be mechanical connection, electrical connection or communication with each other; can be direct connection or indirect connection through intermediate medium, can be internal connection of two components or two components Interaction relationship.
  • connection connection
  • the structured light projector 100 of the embodiment of the present application includes a light source 40 , a collimating element 50 , and a diffractive optical element 60 .
  • Light source 40 is used to emit laser light.
  • Light source 40 includes a substrate 43 and an array of light emitting elements 44 disposed on substrate 43.
  • the substrate 43 includes, in order from the center to the edge, a first region 432 and a second region 434 that is in contact with the first region 432.
  • the first density of the light-emitting elements 44 in the first region 432 is less than the second density of the light-emitting elements 44 in the second region 434.
  • the collimating element 50 is used to collimate the laser.
  • the diffractive optical element 60 is used to diffract the collimated laser light of the collimating element 50 to form a laser pattern.
  • the first density is zero.
  • the density of the illuminating elements 44 gradually increases from the first region 432 to the second region 434.
  • the array of light-emitting elements 44 is distributed in a matrix, and the light-emitting elements 44 of the second region 434 are located on at least two sides of the light-emitting elements 44 of the first region 432.
  • the array of light-emitting elements 44 is annularly distributed, and the light-emitting elements 44 of the second region 434 are disposed around the light-emitting elements 44 of the first region 432.
  • the light-emitting elements 44 of the first region 432 and the light-emitting elements 44 of the second region 434 are individually driven to emit laser light.
  • the intensity of the laser light emitted by the light-emitting element 44 of the first region 432 is smaller than the intensity of the laser light emitted by the light-emitting element 44 of the second region 434.
  • the light emitting area of the light emitting element 44 of the first region 432 is smaller than the light emitting area of the light emitting element 44 of the second region 434.
  • source 40 is a vertical cavity surface emitting laser.
  • source 40 is an edge emitting laser.
  • Each of the light-emitting elements 44 includes a light-emitting surface 41 that faces the collimating element 50.
  • the light emitting surface 41 is perpendicular to the collimating optical axis of the collimating element 50.
  • the structured light projector 100 further includes a substrate assembly 10 and a lens barrel 20 .
  • the lens barrel 20 is disposed on the substrate assembly 10 and forms a housing cavity 21 together with the substrate assembly 10.
  • the light source 40, the collimating element 50, and the diffractive optical element 60 are housed in the housing chamber 21.
  • the substrate assembly 10 includes a substrate 11 and a circuit board 12 carried on the substrate 11.
  • the circuit board 12 is provided with a via 121.
  • the light source 40 is carried on the substrate 11 and housed in the via 121.
  • the substrate 11 is provided with a heat dissipation hole 111 .
  • the lens barrel 20 includes a top portion 22 and a bottom portion 23 opposite each other.
  • the lens barrel 20 is formed with a through hole 24 penetrating the top portion 22 and the bottom portion 23.
  • the bottom 23 is carried on the substrate assembly 10.
  • the inner wall of the lens barrel 20 extends to the center of the through hole 24 with an annular carrier 25.
  • the diffractive optical element 60 is carried on a carrier 25.
  • the structured light projector 100 further includes a protective cover 30 .
  • a protective cover 30 is disposed on the top portion 22.
  • the protective cover 30 includes an abutting surface 31.
  • the opposite sides of the diffractive optical element 60 are in contact with the protective cover 30 and the carrier 25, respectively.
  • the protective cover 30 is provided with a light transmission hole 32 , and the light transmission hole 32 is aligned with the through hole 24 .
  • the protective cover 30 is made of a light transmissive material.
  • the collimating element 50 includes one or more lenses, one or more lenses disposed on the illuminating light path of the light source 40.
  • the depth camera 400 of the embodiment of the present application includes a structured light projector 100, an image collector 200, and a processor 300.
  • the image collector 200 is used to collect a laser pattern projected through the diffractive optical element 60 into the target space.
  • the processor 300 is connected to the structured light projector 100 and the image collector 200, respectively.
  • the processor 300 is for processing a laser pattern to obtain a depth image.
  • the electronic device 1000 of the embodiment of the present application includes a housing 500 and a depth camera 400 .
  • the depth camera 400 is disposed within the housing 500 and exposed from the housing 500 to acquire a depth image.
  • a structured light projector 100 of an embodiment of the present application includes a substrate assembly 10 , a lens barrel 20 , a protective cover 30 , a light source 40 , a collimating element 50 , and a diffractive optical element 60 .
  • the substrate assembly 10 includes a substrate 11 and a circuit board 12 carried on the substrate 11.
  • the material of the substrate 11 may be plastic, for example, Polyethylene Glycol Terephthalate (PET), Polymethyl Methacrylate (PMMA), Polycarbonate (PC), Poly Any one or more of imide (Polyimide, PI).
  • PET Polyethylene Glycol Terephthalate
  • PMMA Polymethyl Methacrylate
  • PC Polycarbonate
  • PI Polyimide
  • the substrate 11 is light in weight and has sufficient support strength.
  • the circuit board 12 can be a hard board, a soft board or a soft and hard board.
  • a via 121 is formed in the circuit board 12.
  • the light source 40 is fixed to the substrate 11 through the via 121 and electrically connected to the circuit board 12.
  • a heat dissipation hole 111 may be formed on the substrate 11 , and heat generated by the operation of the light source 40 or the circuit board 12 may be dissipated from the heat dissipation hole 111 , and the heat dissipation hole may be filled in the heat dissipation hole 111 to further improve the heat dissipation performance of the substrate assembly 10 .
  • the lens barrel 20 is disposed on the substrate assembly 10 and forms a housing cavity 21 together with the substrate assembly 10.
  • the light source 40, the collimating element 50, and the diffractive optical element 60 are housed in the housing chamber 21.
  • the collimating element 50 and the diffractive optical element 60 are sequentially disposed on the light-emitting path of the light source 40.
  • the lens barrel 20 includes a top portion 22 and a bottom portion 23 opposite to each other.
  • the lens barrel 20 is formed with a through hole 24 penetrating the top portion 22 and the bottom portion 23.
  • the bottom portion 23 is carried on the substrate assembly 10, and specifically can be fixed to the circuit board 12 by glue.
  • the inner wall of the lens barrel 20 extends to the center of the through hole 24 with an annular carrier 25 on which the diffractive optical element 60 is carried.
  • the protective cover 30 is disposed on the top portion 22, and the protective cover 30 includes an abutting surface 31 opposite to the substrate 11.
  • the protective cover 30 and the carrier 25 respectively interfere with the diffractive optical element 60 from opposite sides of the diffractive optical element 60.
  • the abutting surface 31 is a surface of the protective cover 30 that interferes with the diffractive optical element 60.
  • the structured light projector 100 is in contact with the diffractive optical element 60 by the protective cover 30 to accommodate the diffractive optical element 60 in the accommodating cavity 21, and to prevent the diffractive optical element 60 from falling off in the light outgoing direction.
  • the protective cover 30 can be made of a metallic material such as nanosilver, metallic silver wire, copper sheet, or the like.
  • the protective cover 30 is provided with a light transmission hole 32.
  • the light transmission hole 32 is aligned with the through hole 24.
  • the light transmission hole 32 is for emitting a laser pattern projected by the diffractive optical element 60.
  • the aperture of the light-transmitting aperture 32 is smaller than at least one of the width or length of the diffractive optical element 60 to confine the diffractive optical element 60 within the housing cavity 21.
  • the protective cover 30 can be made of a light transmissive material such as glass, polymethyl Methacrylate (PMMA), polycarbonate (Polycarbonate, PC), polyimide (Polyimide, PI). )Wait. Since the light-transmitting materials such as glass, PMMA, PC, and PI all have excellent light-transmitting properties, the protective cover 30 can be omitted from opening the light-transmitting holes 32. In this manner, the protective cover 30 can prevent the diffractive optical element 60 from being exposed to the outside of the lens barrel 20 while preventing the diffractive optical element 60 from falling off, and can function as a waterproof and dustproof for the diffractive optical element 60.
  • a light transmissive material such as glass, polymethyl Methacrylate (PMMA), polycarbonate (Polycarbonate, PC), polyimide (Polyimide, PI).
  • Light source 40 is used to emit laser light.
  • the light source 40 is carried on the substrate 11 and housed in the via 121.
  • the size of the via 121 corresponds to the size of the light source 40, that is, the size of the via 121 is larger than the size of the light source 40, or the size of the via 121 is equivalent to the size of the light source 40.
  • the light source 40 may be a Vertical Cavity Surface Emitting Laser (VCSEL).
  • VCSEL Vertical Cavity Surface Emitting Laser
  • the VCSEL is a novel laser that emits light on a vertical surface, that is, the VCSEL has a light-emitting direction perpendicular to the substrate, which can easily realize integration of a high-density two-dimensional array to achieve higher power output, and because it is more
  • the edge-emitting laser has a smaller size, which makes it easier to integrate into small electronic components.
  • the coupling efficiency of the VCSEL and the optical fiber is high, so that a complicated and expensive beam shaping system is not required, and the manufacturing process is compatible with the light-emitting diode. Reduced production costs.
  • the light source 40 can also be an edge-emitting laser (EEL), more specifically a Distributed Feedback Laser (DFB). It can be understood that the temperature drift of the DFB is small and the cost is low.
  • EEL edge-emitting laser
  • DFB Distributed Feedback Laser
  • the light source 40 when the light source 40 is a vertical cavity surface emitting laser, the light source 40 includes a semiconductor substrate 43 and an array of light emitting elements 44 disposed on the substrate 43, and the array of light emitting elements 44 is fixed on the substrate assembly 10 through the substrate 43. .
  • the light source 40 is an edge emitting laser, at this time, the light source 40 includes a plurality of DFBs, and the plurality of DFBs form an array of light emitting elements 44, that is, each of the light emitting elements 44 has a column shape, and an end surface of the light emitting element 44 away from the substrate assembly 10 forms a light.
  • the laser light is emitted from the light-emitting surface 41, the light-emitting surface 41 faces the collimating element 50, and the light-emitting surface 41 is perpendicular to the collimating optical axis of the collimating element 50.
  • the light source 40 is a vertical cavity surface emitting laser
  • the light source 40 is an edge emitting laser
  • the array of the light emitting elements 44 formed by the plurality of DFBs on the substrate 11 and the array of the light emitting elements 44 on the substrate 43 are arranged. The arrangement is the same.
  • a structured light projector such as a laser projector is used to emit a set optical pattern to a target space, and a structured light projector is widely used in the field of optical-based three-dimensional measurement.
  • the structured light projector generally comprises a light source, a collimating element and a diffractive optical element, wherein the light source may be a single edge emitting laser light source, or an area array laser light source composed of a plurality of vertical cavity surface emitting lasers.
  • a structured light projector based on a single edge-emitting laser source can emit a laser pattern with higher correlation, but its volume increases significantly with an increase in output power, and the uniformity of the laser pattern is poor;
  • a structured light projector that emits a laser light source from at least two vertical cavity faces can emit a laser pattern of the same power and having higher uniformity in a smaller volume, but the laser pattern has a lower correlation, and the laser pattern is The level of irrelevance directly affects the accuracy of the depth image and the speed of acquiring the depth image.
  • the substrate 43 includes a first region 432 and a second region 434 that is in contact with the first region 432 .
  • the density of the light-emitting elements 44 of the first region 432 and the second region 434 The light-emitting elements 44 have different densities. In this way, the irrelevance of the case laser pattern projected by the structured light projector 100 into the target space can be improved, thereby improving the speed and accuracy of acquiring the depth image of the laser pattern.
  • the irrelevance of the laser pattern refers to the uniqueness of the laser pattern generated by the light beam emitted by the light-emitting element 44, which includes the uniqueness of the shape, size, arrangement position, and the like of the laser pattern.
  • the first region 432 is a region of the center position of the substrate 43
  • the second region 434 is a region of the edge position of the substrate 43.
  • the density of the light-emitting elements 44 of the first region 432 may be greater than the density of the light-emitting elements 44 of the second region 434 (including the case where the density of the light-emitting elements 44 of the second region 434 is zero); or the light-emitting elements 44 of the first region 432
  • the density is smaller than the density of the light-emitting elements 44 of the second region 434 (including the case where the density of the light-emitting elements 44 of the first region 432 is zero).
  • the array of light-emitting elements 44 can be distributed in a matrix.
  • the light emitting elements 44 of the second region 434 are located on at least two sides of the light emitting elements 44 of the first region 432.
  • the light-emitting elements 44 of the second region 434 can be located on either side of the light-emitting elements 44 of the first region 432 (as shown in FIG. 2); or the light-emitting elements 44 of the second region 434 can be located in the first region 432. Any three sides of the element 44; or the light-emitting elements 44 of the second region 434 can be located on four sides of the light-emitting element 44 of the first region 432 (as shown in Figure 3).
  • the array of light-emitting elements 44 is annularly distributed, and may be in the form of a circular ring or a square ring.
  • the light-emitting element 44 of the second region 434 is disposed around the light-emitting element 44 of the first region 432.
  • the first density of the light-emitting elements 44 in the first region 432 is less than the second density of the light-emitting elements 44 in the second region 434.
  • the light-emitting elements 44 in the first region 432 and the light-emitting elements 44 in the second region 434 may each be uniformly distributed, in the direction of the first region 432 toward the second region 434, adjacent to the first region 432.
  • the distance between the elements 44 is greater than the distance between adjacent light-emitting elements 44 in the second region 434.
  • the laser light emitted by the structured light projector 100 includes a zero-order beam and a non-zero-order beam, wherein the zero-order beam is superimposed and concentrated on the laser after divergence.
  • the beam at the center position, the non-zero-order beam is the beam that is transmitted around the illuminating portion after the laser is diverged.
  • the intensity of the zero-order beam is too strong, the zero-order beam cannot be completely diffracted when it is transmitted to the diffractive optical element 60, resulting in the intensity of the zero-order beam emitted through the diffractive optical element 60 being too strong, which may endanger the user's eyes.
  • the first density of the light-emitting elements 44 in the first region 432 is smaller than the second density of the light-emitting elements 44 in the second region 434, which can reduce the light that converges to the middle of the optical path, thereby reducing the structured light projector.
  • the first density may be zero, that is, the light-emitting element 44 is not disposed in the intermediate portion of the substrate 43 to further reduce the light intensity of the zero-order beam of the structured light projector 100.
  • the density of the illuminating elements 44 gradually increases from the first region 432 to the second region 434.
  • the first region 432 sequentially includes a plurality of sub-regions, such as a first sub-region 4322, a second sub-region 4324, and the like, in a direction from the first region 432 to the second region 434.
  • the second region 434 sequentially includes a plurality of sub-regions, such as a third sub-region 4342, a fourth sub-region 4344, and the like, in the direction from the first region 432 to the second region 434.
  • the density of the light-emitting elements 44 of the first sub-area 4322, the density of the light-emitting elements 44 of the second sub-area 4324, the density of the light-emitting elements 44 of the third sub-area 4342, and the density of the light-emitting elements 44 of the fourth sub-area 4344 are in turn Increasing, or the number of light-emitting elements 44 per unit area of the first sub-area 4322, the number of light-emitting elements 44 per unit area of the second sub-area 4324, the number of light-emitting elements 44 per unit area of the third sub-area 4342, and the fourth sub- The number of light-emitting elements 44 per unit area of the area 4344 is sequentially increased.
  • the light-emitting elements 44 of the first region 432 and the light-emitting elements 44 of the second region 434 are separately driven to emit laser light, and the intensity of the laser light emitted by the light-emitting elements 44 of the first region 432 is less than that of the second region 434.
  • the intensity of the laser light emitted by the light-emitting element 44 is less than that of the second region 434.
  • the intensity of the laser light emitted by the light-emitting element 44 In this way, the intensity of the light concentrating to the intermediate position of the optical path can be reduced, thereby reducing the light intensity of the zero-order beam of the structured light projector 100.
  • the light-emitting area of the light-emitting element 44 of the first region 432 is smaller than the light-emitting area of the light-emitting element 44 of the second region 434. In this way, the light concentrating to the intermediate position of the optical path can be reduced, thereby reducing the light intensity of the zero-order beam of the structured light projector 100.
  • the collimating element 50 is used to collimate the laser light emitted by the source 40.
  • the collimating element 50 is fixed to the lens barrel 20, and the stage 25 is located between the collimating element 50 and the diffractive optical element 60.
  • the collimating element 50 includes one or more lenses, one or more lenses disposed on the illuminating light path of the light source 40, and the lens is made of a glass material.
  • the lenses of the collimating element 50 can all be made of glass material to solve the problem that the lens will have a temperature drift phenomenon when the ambient temperature changes; or the lenses of the collimating element 50 are made of plastic material, so that the cost is low, Easy to mass produce.
  • the collimating element 50 may include only the first lens 51.
  • the first lens 51 includes a first light incident surface 511 and a first light emitting surface 512 opposite to each other.
  • the first light incident surface 511 is a surface of the first lens 51 close to the light source 40
  • the first light exit surface 512 is a surface of the first lens 51 close to the diffractive optical element 60.
  • the first light incident surface 511 is a concave surface
  • the first light exit surface 512 is a convex surface.
  • the surface shape of the first lens 51 may be an aspherical surface, a spherical surface, a Fresnel surface, or a binary optical surface.
  • the aperture is disposed between the light source 40 and the first lens 51 for limiting the light beam.
  • the collimating element 50 can include a plurality of lenses that are coaxially disposed in sequence on the illuminating light path of the light source 40.
  • the shape of each lens may be any one of an aspherical surface, a spherical surface, a Fresnel surface, and a binary optical surface.
  • the plurality of lenses may include a first lens 51 and a second lens 52.
  • the first lens 51 and the second lens 52 are coaxially disposed on the light-emitting path of the light source 40 in order.
  • the first lens 51 includes a first light incident surface 511 and a first light emitting surface 512 opposite to each other.
  • the first light incident surface 511 is a surface of the first lens 51 close to the light source 40
  • the first light exit surface 512 is a surface of the first lens 51 close to the diffractive optical element 60.
  • the second lens 52 includes opposite second light incident surfaces 521 and second light exit surfaces 522.
  • the second light incident surface 521 is a surface of the second lens 52 close to the light source 40
  • the second light exit surface 522 is a surface of the second lens 52 close to the diffractive optical element 60.
  • the apex of the first light-emitting surface 512 is in contact with the apex of the second light-incident surface 521
  • the first light-incident surface 511 is a concave surface
  • the second light-emitting surface 522 is a convex surface.
  • the aperture is disposed on the second light incident surface 521 for limiting the light beam. Further, the first light-emitting surface 512 and the second light-incident surface 521 may both be convex surfaces.
  • the apex of the first light-emitting surface 512 is prevented from colliding with the apex of the second light-incident surface 521.
  • the radius of curvature of the first light-emitting surface 512 is smaller than the curvature of the second light-incident surface 521.
  • the plurality of lenses may further include a first lens 51, a second lens 52, and a third lens 53.
  • the first lens 51, the second lens 52, and the third lens 53 are coaxially disposed on the light-emitting path of the light source 40 in order.
  • the first lens 51 includes a first light incident surface 511 and a first light emitting surface 512 opposite to each other.
  • the first light incident surface 511 is a surface of the first lens 51 close to the light source 40
  • the first light exit surface 512 is a surface of the first lens 51 close to the diffractive optical element 60.
  • the second lens 52 includes opposite second light incident surfaces 521 and second light exit surfaces 522.
  • the second light incident surface 521 is a surface of the second lens 52 close to the light source 40
  • the second light exit surface 522 is a surface of the second lens 52 close to the diffractive optical element 60
  • the third lens 53 includes a third light incident surface 531 and a third light emitting surface 532 opposite to each other.
  • the third light incident surface 531 is a surface of the third lens 53 close to the light source 40
  • the third light exit surface 532 is a surface of the third lens 53 close to the diffractive optical element 60.
  • the third light incident surface 531 is a concave surface
  • the third light emitting surface 532 is a convex surface.
  • the aperture is disposed on the third light exit surface 532 for limiting the light beam.
  • first light incident surface 511 may be a convex surface
  • first light emitting surface 512 is a concave surface
  • second light incident surface 521 is a concave surface
  • the second light emitting surface 522 is a concave surface.
  • the collimating element 50 includes a plurality of lenses.
  • a plurality of lenses are sequentially disposed on the light-emitting path of the light source 40, and the optical axes of the at least one lens are offset with respect to the optical axes of the other lenses.
  • the structure of the lens barrel 20 may be in one or more stages, and each stage structure is used to mount a corresponding lens.
  • the collimating element 50 includes a first lens 51, a second lens 52, and a third lens 53.
  • the first lens 51, the second lens 52, and the third lens 53 are sequentially disposed on the light-emitting path of the light source 40.
  • the optical axis of the second lens 52 is offset with respect to the optical axis of the first lens 51, the optical axis of the first lens 51 coincides with the optical axis of the third lens 53 (as shown in FIG. 11), and further, the second lens 52
  • the optical axis may be parallel to the optical axis of the first lens 51.
  • the structure of the lens barrel 20 may have a two-stage structure, and the first segment structure 26 is used to mount the first lens 51 and the second lens 52, and the second segment structure 27 for mounting the third lens 53, the first segment structure 26 is obliquely connected to the second segment structure 27, and the second lens 52 is mounted at the junction of the first segment structure 26 and the second segment structure 27, thus, a plurality of Forming the lens into a curved shape facilitates increasing the optical path, thereby reducing the overall height of the structured light projector 100.
  • the inner walls of the first segment structure 26 and the second segment structure 27 are coated with a reflective coating, and the reflective coating is used for The light is reflected such that the light emitted by the light source 40 can sequentially pass through the first light incident surface 511, the first light exit surface 512, the second light incident surface 521, the second light exit surface 522, the third light incident surface 531, and the third light output.
  • the first segment structure 26 and the second segment structure 27 may also be independent of the lens barrel 2 a reflective element of 0, the reflective element is disposed on the lens barrel 20, the reflective element is a prism or a mirror, etc., the reflective element is for reflecting light to change the direction of the optical path; or the optical axis of the first lens 51 is opposite to the second lens 52.
  • the optical axis shifts, the optical axis of the second lens 52 coincides with the optical axis of the third lens 53 (as shown in FIG. 12), and further, the optical axis of the first lens 51 can be parallel to the optical axis of the second lens 52.
  • the optical axis of the third lens 53 is offset with respect to the optical axis of the first lens 51, and the optical axis of the first lens 51 coincides with the optical axis of the second lens 52 (as shown in FIG. 13), further,
  • the optical axis of the three lens 53 may be parallel to the optical axis of the first lens 51; or, the optical axis of the second lens 52 may be offset with respect to the optical axis of the first lens 51, and the optical axis of the third lens 53 with respect to the first lens
  • the optical axis of 51 is shifted, the optical axis of the second lens 52 and the optical axis of the third lens 53 are located on the same side of the optical axis of the first lens 51 (as shown in FIG.
  • the axis may be parallel to the optical axis of the second lens 52, the optical axis of the first lens 51 is parallel to the optical axis of the third lens 53, and the optical axis of the second lens 52 is The optical axis of the lens 53 is parallel; or, the optical axis of the second lens 52 is offset with respect to the optical axis of the first lens 51, and the optical axis of the third lens 53 is offset with respect to the optical axis of the first lens 51, the second lens
  • the optical axis of 52 and the optical axis of the third lens 53 are located on the opposite side of the optical axis of the first lens 51 (as shown in FIG. 15).
  • the optical axis of the first lens 51 may be the optical axis of the second lens 52.
  • the optical axis of the first lens 51 is parallel to the optical axis of the third lens 53
  • the optical axis of the second lens 52 is parallel to the optical axis of the third lens 53.
  • the optical axis of the second lens 52 is offset with respect to the optical axis of the first lens 51
  • the optical axis of the third lens 53 is offset with respect to the optical axis of the first lens 51
  • the optical axis of the second lens 52 is The optical axis of the third lens 53 is located on the opposite side of the optical axis of the first lens 51.
  • the formation of a plurality of lenses in a curved configuration facilitates increasing the optical path, increasing the focal length, and reducing the height of the structured light projector 100.
  • the collimating element 50 may also include more lenses. For example, referring to FIG.
  • the collimating element 50 includes a first lens 51, a second lens 52, a third lens 53, a fourth lens 54, and a fifth lens. 55, and a sixth lens 56.
  • the first lens 51, the second lens 52, the third lens 53, the fourth lens 54, the fifth lens 55, and the sixth lens 56 are sequentially disposed on the light-emitting path of the light source 40.
  • the optical axis of the second lens 52 is offset with respect to the optical axis of the first lens 51
  • the optical axis of the third lens 53 is offset with respect to the optical axis of the first lens 51
  • the optical axis of the second lens 52 and the third lens 53 are
  • the optical axis is located on the opposite side of the optical axis of the first lens 51
  • the optical axis of the fourth lens 54 coincides with the optical axis of the second lens 52
  • the optical axis of the fifth lens 55 coincides with the optical axis of the third lens 53.
  • the optical axis of the six lens 56 coincides with the optical axis of the first lens 51.
  • the structure of the lens barrel 20 is the same as or similar to that of the lens barrel 20 shown in FIG. 11, and the structure of the lens barrel 20 may be a section or Multi-segment structure will not be described here.
  • the collimating element 50 includes a plurality of lenses, the optical centers of the at least two lenses being in the same plane perpendicular to the first direction, the first direction being the direction from the light source 40 to the diffractive optical element 60.
  • the collimating element 50 includes a first lens 51, a second lens 52, and a third lens 53.
  • the optical center of the first lens 51 is on the same plane as the optical center of the second lens 52 (as shown in FIG. 17), and the optical axis of the first lens 51 and the optical axis of the second lens 52 may be located in the light of the third lens 53.
  • the opposite side of the shaft; or, the optical center of the second lens 52 is on the same plane as the optical center of the third lens 53 (as shown in FIG.
  • the optical axis of the second lens 52 and the optical axis of the third lens 53 are Located on the opposite side of the optical axis of the first lens 51; or, the optical center of the first lens 51 is on the same plane as the optical center of the third lens 53; or, the optical center of the first lens 51, the light of the second lens 52
  • the heart and the optical center of the third lens 53 are all on the same plane (as shown in FIG. 19).
  • the optical axis of the first lens 51 may be parallel to the optical axis of the second lens 52
  • the optical axis of the first lens 51 is parallel to the optical axis of the third lens 53
  • the optical axis of the second lens 52 and the third lens 53 The optical axes are parallel.
  • the diffractive optical element 60 is used to diffract the collimated laser light of the collimating element 50 to form a laser pattern.
  • the diffractive optical element 60 includes opposite diffraction exit faces 61 and diffractive incident faces 62.
  • the protective cover 30 can be adhered to the top portion 22 by glue, and the abutting surface 31 is in contact with the diffraction exit surface 61, and the diffractive incident surface 62 is in contact with the loading table 25, so that the diffractive optical element 60 does not fall off from the housing chamber 21 in the light exiting direction.
  • the diffractive optical element 60 may be made of a glass material or a composite plastic such as PET.
  • the collimating element 50 and the substrate assembly 10 on which the light source 40 is mounted are placed in the through hole 24 in order from the bottom portion 23 of the lens barrel 20 along the optical path.
  • the light source 40 can be mounted on the substrate assembly 10 first, and then the substrate assembly 10 on which the light source 40 is mounted is fixed to the bottom portion 23.
  • the diffractive optical element 60 is placed in the direction of the optical path from the top 22 into the through hole 24 and carried on the stage 25, and then the protective cover 30 is mounted, and the diffraction exit surface 61 of the diffractive optical element 60 is brought into contact with the protective cover 30,
  • the diffractive incident surface 62 is in interference with the carrier 25.
  • the structured light projector 100 has a simple structure and is easy to assemble.
  • the depth camera 400 of the embodiment of the present application includes the structured light projector 100, the image collector 200, and the processor 300 of any of the above embodiments.
  • the image collector 200 is configured to collect a laser pattern projected through the diffractive optical element 50 into the target space.
  • the processor 300 is connected to the structured light projector 100 and the image collector 200, respectively.
  • the processor 300 is for processing a laser pattern to obtain a depth image.
  • the structured light projector 100 projects the laser pattern projected into the target space outward through the projection window 401, and the image collector 200 collects the laser pattern modulated by the target object through the acquisition window 402.
  • the image collector 200 may be an infrared camera.
  • the processor 300 calculates an offset value of each pixel point in the laser pattern and a corresponding pixel point in the reference pattern by using an image matching algorithm, and further obtains the depth of the laser pattern according to the deviation value.
  • image may be a Digital Image Correlation (DIC) algorithm. Of course, other image matching algorithms can be used instead of the DIC algorithm.
  • DIC Digital Image Correlation
  • an electronic device 1000 includes a housing 500 and a depth camera 400 of the above embodiment.
  • the depth camera 400 is disposed within the housing 500 and exposed from the housing 500 to acquire a depth image.
  • the electronic device 1000 includes, but is not limited to, a mobile phone, a tablet computer, a notebook computer, a smart bracelet, a smart watch, a smart helmet, smart glasses, and the like.
  • the housing 500 can provide the depth camera 400 with protection against dust, water, drop, and the like.
  • the density of the light-emitting elements 44 of the first region 432 is smaller than the density of the light-emitting elements 44 of the second region 434, and the structured light projection can be improved.
  • the uncorrelation of the laser pattern projected by the device 100 into the target space increases the speed and accuracy of acquiring the depth image of the laser pattern.
  • the density of the light-emitting elements 44 of the first region 432 is smaller than the density of the light-emitting elements 44 of the second region 434, and the light concentrated to the intermediate position of the optical path can be reduced, thereby reducing the light intensity of the zero-order beam of the structured light projector 100. To avoid harm to the human eye.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Projection Apparatus (AREA)

Abstract

一种结构光投射器(100)、深度相机(400)和电子设备(1000)。该结构光投射器(100)包括光源(40)、准直元件(50)及衍射光学元件(60)。光源(40)用于发射激光,包括衬底(43)及设置在衬底(43)上的发光元件(44)阵列。衬底(43)由中心至边缘依次包括第一区域(432)和与第一区域(432)相接的第二区域(434)。第一区域(432)内发光元件(44)的第一密度小于第二区域(434)内发光元件(44)的第二密度。准直元件(50)用于准直激光。衍射光学元件(60)用于衍射准直元件(50)准直后的激光以形成激光图案。

Description

结构光投射器、深度相机和电子设备
优先权信息
本申请请求2018年3月12日向中国国家知识产权局提交的、专利申请号为201810200423.6的专利申请的优先权和权益,并且通过参照将其全文并入此处。
技术领域
本申请涉及成像技术领域,特别涉及一种结构光投射器、深度相机和电子设备。
背景技术
诸如激光投影仪等结构光投射器被用来向目标空间发射设定的光学图案,在基于光学的三维测量领域,结构光投射器得到了广泛应用。结构光投射器一般由光源、准直元件以及衍射光学元件组成,其中光源可以是单个边发射激光光源,也可以是由多个垂直腔面发射激光组成的面阵激光光源等。
发明内容
本申请实施方式提供一种结构光投射器、深度相机和电子设备。
本申请实施方式的结构光投射器包括光源、准直元件及衍射光学元件,所述光源用于发射激光,所述光源包括衬底及设置在所述衬底上的发光元件阵列,所述衬底由中心至边缘依次包括第一区域和与所述第一区域相接的第二区域,所述第一区域内所述发光元件的第一密度小于所述第二区域内所述发光元件的第二密度;所述准直元件用于准直所述激光;所述衍射光学元件用于衍射所述准直元件准直后的激光以形成激光图案。
本申请实施方式的深度相机包括上述实施方式所述的结构光投射器、衍射光学元件和处理器;所述图像采集器用于采集经所述衍射光学元件后向目标空间中投射的激光图案;处理器分别与所述结构光投射器、及所述图像采集器连接,所述处理器用于处理所述激光图案以获得深度图像。
本申请实施方式的电子设备包括壳体及上述实施方式所述的深度相机,所述深度相机设置在所述壳体内并从所述壳体暴露以获取深度图像。
本申请实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点可以从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本申请某些实施方式的结构光投射器的结构示意图;
图2至图7是本申请某些实施方式的结构光投射器的光源的结构示意图;
图8至图19是本申请某些实施方式的结构光投射器的准直元件的部分结构示意图;
图20是本申请某些实施方式的深度相机的结构示意图;
图21是本申请某些实施方式的电子设备的结构示意图。
具体实施方式
下面详细描述本申请的实施方式,所述实施方式的示例在附图中示出,其中,相同或类似的标号自始至终表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本申请的实施方式,而不能理解为对本申请的实施方式的限制。
在本申请的实施方式的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请的实施方式和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的实施方式的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的实施方式的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请的实施方式的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“连接”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接连接,也可以通过中间媒介间接连接,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请的实施方式中的具体含义。
下文的公开提供了许多不同的实施方式或例子用来实现本申请的实施方式的不 同结构。为了简化本申请的实施方式的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请的实施方式可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本申请的实施方式提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
请参阅图1、图2和图5,本申请实施方式的结构光投射器100包括光源40、准直元件50和衍射光学元件60。光源40用于发射激光。光源40包括衬底43及设置在衬底43上的发光元件44阵列。衬底43由中心至边缘依次包括第一区域432和与第一区域432相接的第二区域434。第一区域432内发光元件44的第一密度小于第二区域434内发光元件44的第二密度。准直元件50用于准直激光。衍射光学元件60用于衍射准直元件50准直后的激光以形成激光图案。
请参阅图6,在某些实施方式中,第一密度为零。
请参阅图2,在某些实施方式中,发光元件44的密度由第一区域432向第二区域434逐渐增大。
请参阅图2和图3,在某些实施方式中,发光元件44阵列呈矩阵分布,第二区域434的发光元件44位于第一区域432的发光元件44的至少两侧。
请参阅图4,在某些实施方式中,发光元件44阵列呈环形分布,第二区域434的发光元件44环绕第一区域432的发光元件44设置。
请参阅图2,在某些实施方式中,第一区域432的发光元件44和第二区域434的发光元件44被单独驱动以发射激光。第一区域432的发光元件44发射的激光的强度小于第二区域434的发光元件44发射的激光的强度。
请参阅图7,在某些实施方式中,第一区域432的发光元件44的发光面积小于第二区域434的发光元件44的发光面积。
请参阅图1,在某些实施方式中,光源40为垂直腔面发射激光器。
请参阅图1和图2,在某些实施方式中,光源40为边发射激光器。每个发光元件44包括发光面41,发光面41朝向准直元件50。
请参阅图1,在某些实施方式中,发光面41与准直元件50的准直光轴垂直。
请参阅图1,在某些实施方式中,结构光投射器100还包括基板组件10和镜筒20。镜筒20设置在基板组件10上并与基板组件10共同形成收容腔21。光源40、准直元件50及衍射光学元件60均收容在收容腔21内。
请参阅图1,在某些实施方式中,基板组件10包括基板11及承载在基板11上的 电路板12。电路板12开设有过孔121。光源40承载在基板11上并收容在过孔121内。
请参阅图1,在某些实施方式中,基板11开设有散热孔111。
请参阅图1,在某些实施方式中,镜筒20包括相背的顶部22及底部23。镜筒20形成有贯穿顶部22及底部23的通孔24。底部23承载在基板组件10上。镜筒20的内壁向通孔24的中心延伸有环形承载台25。衍射光学元件60承载在承载台25上。
请参阅图1,在某些实施方式中,结构光投射器100还包括保护罩30。保护罩30设置在顶部22上。保护罩30包括抵触面31。衍射光学元件60的相背两侧分别与保护罩30及承载台25抵触。
请参阅图1,在某些实施方式中,保护罩30开设有透光孔32,透光孔32与通孔24对准。
请参阅图1,在某些实施方式中,保护罩30由透光材料制成。
请参阅图8至图19,在某些实施方式中,准直元件50包括一个或多个透镜,一个或多个透镜设置在光源40的发光光路上。
请参阅图20,本申请实施方式的深度相机400包括结构光投射器100、图像采集器200和处理器300。图像采集器200用于采集经衍射光学元件60后向目标空间中投射的激光图案。处理器300分别与结构光投射器100、及图像采集器200连接。处理器300用于处理激光图案以获得深度图像。
请参阅图21,本申请实施方式的电子设备1000包括壳体500及深度相机400。深度相机400设置在壳体500内并从壳体500暴露以获取深度图像。
请参阅图1,本申请实施方式的结构光投射器100包括基板组件10、镜筒20、保护罩30、光源40、准直元件50、及衍射光学元件60。
基板组件10包括基板11及承载在基板11上的电路板12。基板11的材料可以为塑料,例如,聚对苯二甲酸乙二醇酯(Polyethylene Glycol Terephthalate,PET)、聚甲基丙烯酸甲酯(Polymethyl Methacrylate,PMMA)、聚碳酸酯(Polycarbonate,PC)、聚酰亚胺(Polyimide,PI)中的任意一种或多种。如此,基板11的质量较轻且具有足够的支撑强度。电路板12可以是硬板、软板或软硬结合板。电路板12上开设有过孔121。光源40通过过孔121固定在基板11上并与电路板12电连接。基板11上可以开设有散热孔111,光源40或电路板12工作产生的热量可以由散热孔111散出,散热孔111内还可以填充导热胶,以进一步提高基板组件10的散热性能。
镜筒20设置在基板组件10上并与基板组件10共同形成收容腔21。光源40、准直元件50、及衍射光学元件60均收容在收容腔21内。准直元件50与衍射光学元件 60依次设置在光源40的发光光路上。镜筒20包括相背的顶部22及底部23。镜筒20形成有贯穿顶部22及底部23的通孔24。底部23承载在基板组件10上,具体可通过胶水固定在电路板12上。镜筒20的内壁向通孔24的中心延伸有环形承载台25,衍射光学元件60承载在承载台25上。
保护罩30设置在顶部22上,保护罩30包括与基板11相对的抵触面31。保护罩30及承载台25分别从衍射光学元件60的相背两侧抵触衍射光学元件60。抵触面31为保护罩30的与衍射光学元件60相抵触的表面。结构光投射器100利用保护罩30抵触衍射光学元件60以使衍射光学元件60收容在收容腔21内,并防止衍射光学元件60沿出光方向脱落。
在某些实施方式中,保护罩30可由金属材料制成,例如纳米银丝、金属银线、铜片等。保护罩30开设有透光孔32。透光孔32与通孔24对准。透光孔32用于出射衍射光学元件60投射的激光图案。透光孔32的孔径大小小于衍射光学元件60的宽度或长度中的至少一个以将衍射光学元件60限制在收容腔21内。
在某些实施方式中,保护罩30可由透光材料制成,例如玻璃、聚甲基丙烯酸甲酯(Polymethyl Methacrylate,PMMA)、聚碳酸酯(Polycarbonate,PC)、聚酰亚胺(Polyimide,PI)等。由于玻璃、PMMA、PC、及PI等透光材料均具有优异的透光性能,保护罩30可以不用开设透光孔32。如此,保护罩30能够在防止衍射光学元件60脱落的同时,避免衍射光学元件60裸露在镜筒20的外面,对衍射光学元件60起到防水、防尘的作用。
光源40用于发射激光。光源40承载在基板11上并收容在过孔121内。过孔121的大小与光源40的大小对应,即过孔121的大小大于光源40的大小,或者过孔121的大小与光源40的大小相当。
在如图1所示的实施例中,光源40可以为垂直腔面发射激光器(Vertical Cavity Surface Emitting Laser,VCSEL)。具体地,VCSEL是一种垂直表面出光的新型激光器,即VCSEL的发光方向与衬底垂直,可以较容易地实现高密度二维面阵的集成,实现更高功率输出,且由于其较之于边发射型激光器拥有更小的体积,从而更加便于被集成到小型电子元器件中;同时VCSEL与光纤的耦合效率高,从而不需要复杂昂贵的光束整形系统,且制造工艺与发光二极管兼容,大大降低了生产成本。
当然,光源40也可以为边发射激光器(edge-emitting laser,EEL),更具体地为分布反馈式激光器(Distributed Feedback Laser,DFB)。可以理解,DFB的温漂较小,且成本较低。
请结合图2,当光源40为垂直腔面发射激光器时,光源40包括半导体衬底43及 设置在衬底43上的发光元件44阵列,发光元件44阵列通过衬底43固定在基板组件10上。当光源40为边发射激光器,此时,光源40包括多个DFB,该多个DFB形成发光元件44阵列,即每个发光元件44呈柱状,发光元件44的远离基板组件10的一个端面形成发光面41,激光从发光面41发出,发光面41朝向准直元件50且发光面41与准直元件50的准直光轴垂直。下面以光源40是垂直腔面发射激光器为例进行说明,而光源40为边发射激光器,多个DFB形成的发光元件44阵列在基板11上的排布与发光元件44在衬底43上的阵列排布相同。
可以理解,诸如激光投影仪等结构光投射器被用来向目标空间发射设定的光学图案,在基于光学的三维测量领域,结构光投射器得到了广泛应用。结构光投射器一般由光源、准直元件以及衍射光学元件组成,其中光源可以是单个边发射激光光源,也可以是由多个垂直腔面发射激光组成的面阵激光光源等。基于单个边发射激光光源的结构光投射器能够发射不相关性较高的激光图案,但其体积会随着输出功率的增大而明显增大,且该激光图案的均匀性较差;而基于由至少两个垂直腔面发射激光光源的结构光投射器可以以更小的体积发射出相同功率且具有更高均匀性的激光图案,但该激光图案的不相关性较低,而激光图案的不相关性的高低直接影响着其深度图像精度的高低及获取深度图像速度的快慢。
请继续参阅图2,本申请实施方式中,衬底43包括第一区域432和与第一区域432相接的第二区域434,第一区域432的发光元件44的密度与第二区域434的发光元件44的密度不同。如此,能够提高结构光投射器100向目标空间中投射的案激光图案的不相关性,从而提高获取该激光图案的深度图像的速度及精度。
需要指出的是,激光图案的不相关性指的是发光元件44发射的光束生成的激光图案具有较高的唯一性,该唯一性包括激光图案的形状、大小、排列位置等的唯一性。
具体地,第一区域432为衬底43的中心位置的区域,第二区域434为衬底43的边缘位置的区域。第一区域432的发光元件44的密度可大于第二区域434的发光元件44的密度(包括第二区域434的发光元件44的密度为零的情况);或者第一区域432的发光元件44的密度小于第二区域434的发光元件44的密度(包括第一区域432的发光元件44的密度为零的情况)。
请一并参阅图2及图3,在某些实施方式中,发光元件44阵列可呈矩阵分布。第二区域434的发光元件44位于第一区域432的发光元件44的至少两侧。
具体地,第二区域434的发光元件44可位于第一区域432的发光元件44的任意两侧(如图2所示);或者第二区域434的发光元件44可位于第一区域432的发光元件44的任意三侧;或者第二区域434的发光元件44可位于第一区域432的发光元 件44的四侧(如图3所示)。
请参阅图4,在某些实施方式中,发光元件44阵列呈环形分布,具体可以呈圆环形、或方环形。第二区域434的发光元件44环绕第一区域432的发光元件44设置。
请参阅图5,在某些实施方式中,第一区域432内发光元件44的第一密度小于第二区域434内发光元件44的第二密度。具体地,第一区域432内的发光元件44和第二区域434内的发光元件44可各自为均匀分布,沿第一区域432向第二区域434的方向,第一区域432内相邻的发光元件44之间的距离大于第二区域434内相邻的发光元件44之间的距离。
可以理解,当结构光投射器100发射激光时,由于激光会产生发散,结构光投射器100发射的激光包括零级光束和非零级光束,其中,零级光束为激光发散后叠加聚集在发光处中心位置的光束,非零级光束为激光发散后向发光处四周传输的光束。当零级光束的光强过强时,零级光束传输到衍射光学元件60时无法被完全衍射,导致经衍射光学元件60出射的零级光束的强度过强,可能危害用户的眼睛。在本申请实施方式中,第一区域432内发光元件44的第一密度小于第二区域434内发光元件44的第二密度,可以减少汇聚到光路中间位置的光线,从而减小结构光投射器100的零级光束的光强。
进一步地,请参阅图6,第一密度可为零,也即是说,在衬底43的中间区域不设置发光元件44,以进一步减小结构光投射器100的零级光束的光强。
请再次参阅图2,在某些实施方式中,发光元件44的密度由第一区域432向第二区域434逐渐增大。具体地,第一区域432沿第一区域432至第二区域434的方向依次包括多个子区域,例如第一子区域4322、第二子区域4324等。第二区域434沿第一区域432至第二区域434的方向依次包括多个子区域,例如第三子区域4342、第四子区域4344等。其中,第一子区域4322的发光元件44的密度、第二子区域4324的发光元件44的密度、第三子区域4342的发光元件44的密度、第四子区域4344的发光元件44的密度依次增大,或者说第一子区域4322的单位面积内发光元件44数量、第二子区域4324的单位面积内发光元件44数量、第三子区域4342的单位面积内发光元件44数量、第四子区域4344的单位面积内发光元件44数量依次增加。
在某些实施方式中,第一区域432的发光元件44和第二区域434的发光元件44被单独驱动以发射激光,第一区域432的发光元件44发射的激光的强度小于第二区域434的发光元件44发射的激光的强度。如此,可以减小汇聚到光路中间位置的光线的强度,从而减小结构光投射器100的零级光束的光强。
请参阅图7,在某些实施方式中,第一区域432的发光元件44的发光面积小于第 二区域434的发光元件44的发光面积。如此,可以减少汇聚到光路中间位置的光线,从而减小结构光投射器100的零级光束的光强。
请再次参阅图1,准直元件50用于准直光源40发射的激光。准直元件50固定在镜筒20上,承载台25位于准直元件50与衍射光学元件60之间。准直元件50包括一个或多个透镜,一个或多个透镜设置在光源40的发光光路上,透镜采用玻璃材质制成。准直元件50的透镜可均由玻璃材质制成,以解决环境温度变化时透镜会产生温漂现象的问题;或者,准直元件50的透镜均由塑料材质制成,以使得成本较低、便于量产。
请一并参阅图1及图8,在某些实施方式中,准直元件50可仅包括第一透镜51,第一透镜51包括相背的第一入光面511和第一出光面512。第一入光面511为第一透镜51靠近光源40的表面,第一出光面512为第一透镜51靠近衍射光学元件60的表面。第一入光面511为凹面,第一出光面512为凸面。第一透镜51的面型可以为非球面、球面、菲涅尔面、或二元光学面。光阑设置在光源40与第一透镜51之间,用于对光束起限制作用。
在某些实施方式中,准直元件50可包括多个透镜,多个透镜共轴依次设置在光源40的发光光路上。每个透镜的面型可以为非球面、球面、菲涅尔面、二元光学面中的任意一种。
例如:请一并参阅图1及图9,多个透镜可包括第一透镜51和第二透镜52。第一透镜51和第二透镜52共轴依次设置在光源40的发光光路上。第一透镜51包括相背的第一入光面511和第一出光面512。第一入光面511为第一透镜51靠近光源40的表面,第一出光面512为第一透镜51靠近衍射光学元件60的表面。第二透镜52包括相背的第二入光面521和第二出光面522。第二入光面521为第二透镜52靠近光源40的表面,第二出光面522为第二透镜52靠近衍射光学元件60的表面。第一出光面512的顶点与第二入光面521的顶点抵触,第一入光面511为凹面,第二出光面522为凸面。光阑设置在第二入光面521上,用于对光束起限制作用。进一步地,第一出光面512和第二入光面521可均为凸面。如此,便于第一出光面512的顶点与第二入光面521的顶点抵触。第一出光面512的曲率半径小于第二入光面521的曲率。
请一并参阅图1及图10,多个透镜还可包括第一透镜51、第二透镜52、及第三透镜53。第一透镜51、第二透镜52、及第三透镜53共轴依次设置在光源40的发光光路上。第一透镜51包括相背的第一入光面511和第一出光面512。第一入光面511为第一透镜51靠近光源40的表面,第一出光面512为第一透镜51靠近衍射光学元件60的表面。第二透镜52包括相背的第二入光面521和第二出光面522。第二入光 面521为第二透镜52靠近光源40的表面,第二出光面522为第二透镜52靠近衍射光学元件60的表面。第三透镜53包括相背的第三入光面531和第三出光面532。第三入光面531为第三透镜53靠近光源40的表面,第三出光面532为第三透镜53靠近衍射光学元件60的表面。第三入光面531为凹面,第三出光面532为凸面。光阑设置在第三出光面532上,用于对光束起限制作用。进一步地,第一入光面511可为凸面,第一出光面512为凹面,第二入光面521为凹面,第二出光面522为凹面。
在某些实施方式中,准直元件50包括多个透镜。多个透镜依次设置在光源40的发光光路上,至少一个透镜的光轴相对于其他透镜的光轴偏移。此时,镜筒20的结构可呈一段或多段结构,每段结构用于安装对应的透镜。
例如:请一并参阅图11至图15,准直元件50包括第一透镜51、第二透镜52和第三透镜53。第一透镜51、第二透镜52和第三透镜53依次设置在光源40的发光光路上。第二透镜52的光轴相对于第一透镜51的光轴偏移,第一透镜51的光轴与第三透镜53的光轴重合(如图11所示),进一步地,第二透镜52的光轴可与第一透镜51的光轴平行,此时,镜筒20的结构可呈两段结构,第一段结构26用于安装第一透镜51与第二透镜52,第二段结构27用于安装第三透镜53,第一段结构26与第二段结构27倾斜相接,第二透镜52安装在第一段结构26与第二段结构27的相接处,如此,多个透镜形成弯折形的结构有利于增加光程,从而减小结构光投射器100整体的高度,第一段结构26和第二段结构27的内壁涂布有反射涂层,反射涂层用于反射光线,以使得光源40发射的光线能够依次经过第一入光面511、第一出光面512、第二入光面521、第二出光面522、第三入光面531、以及第三出光面532;当然,在其他实施方式中,第一段结构26和第二段结构27也可为独立于镜筒20的反射元件,反射元件设置在镜筒20上,反射元件为棱镜或面镜等,反射元件用于反射光线以改变光路的方向;或者,第一透镜51的光轴相对于第二透镜52的光轴偏移,第二透镜52的光轴与第三透镜53的光轴重合(如图12所示),进一步地,第一透镜51的光轴可与第二透镜52的光轴平行;或者,第三透镜53的光轴相对于第一透镜51的光轴偏移,第一透镜51的光轴与第二透镜52的光轴重合(如图13所示),进一步地,第三透镜53的光轴可与第一透镜51的光轴平行;或者,第二透镜52的光轴相对于第一透镜51的光轴偏移,第三透镜53的光轴相对于第一透镜51的光轴偏移,第二透镜52的光轴和第三透镜53的光轴位于第一透镜51的光轴的同侧(如图14所示),进一步地,第一透镜51的光轴可与第二透镜52的光轴平行,第一透镜51的光轴与第三透镜53的光轴平行,第二透镜52的光轴与第三透镜53的光轴平行;或者,第二透镜52的光轴相对于第一透镜51的光轴偏移,第三透镜53的光轴相对于第一透 镜51的光轴偏移,第二透镜52的光轴和第三透镜53的光轴位于第一透镜51的光轴的异侧(如图15所示),进一步地,第一透镜51的光轴可与第二透镜52的光轴平行,第一透镜51的光轴与第三透镜53的光轴平行,第二透镜52的光轴与第三透镜53的光轴平行。
较佳地,第二透镜52的光轴相对于第一透镜51的光轴偏移,第三透镜53的光轴相对于第一透镜51的光轴偏移,第二透镜52的光轴和第三透镜53的光轴位于第一透镜51的光轴的异侧。如此,多个透镜形成弯折形的结构有利于增加光程,增长焦距,降低结构光投射器100的高度。当然,准直元件50也可以包括更多个透镜,例如,请参阅图16,准直元件50包括第一透镜51、第二透镜52、第三透镜53、第四透镜54、、第五透镜55、及第六透镜56。第一透镜51、第二透镜52、第三透镜53、第四透镜54、第五透镜55、及第六透镜56依次设置在光源40的发光光路上。第二透镜52的光轴相对于第一透镜51的光轴偏移,第三透镜53的光轴相对于第一透镜51的光轴偏移,第二透镜52的光轴和第三透镜53的光轴位于第一透镜51的光轴的异侧,第四透镜54的光轴与第二透镜52的光轴重合,第五透镜55的光轴与第三透镜53的光轴重合,第六透镜56的光轴与第一透镜51的光轴重合。
需要指出的是,在图12至图16所示的结构光投射器100中,镜筒20的结构与图11所示的镜筒20的结构相同或类似,镜筒20的结构可呈一段或多段结构,在此不再赘述。
在某些实施方式中,准直元件50包括多个透镜,至少两个透镜的光心位于与第一方向垂直的同一平面上,第一方向为由光源40至衍射光学元件60的方向。
例如:请一并参阅图17至图19,准直元件50包括第一透镜51、第二透镜52和第三透镜53。第一透镜51的光心与第二透镜52的光心位于同一平面上(如图17所示),第一透镜51的光轴和第二透镜52的光轴可位于第三透镜53的光轴的异侧;或者,第二透镜52的光心与第三透镜53的光心位于同一平面上(如图18所示),第二透镜52的光轴和第三透镜53的光轴可位于第一透镜51的光轴的异侧;或者,第一透镜51的光心与第三透镜53的光心位于同一平面上;或者,第一透镜51的光心、第二透镜52的光心、与第三透镜53的光心均位于同一平面上(如图19所示)。进一步地,第一透镜51的光轴可与第二透镜52的光轴平行,第一透镜51的光轴与第三透镜53的光轴平行,第二透镜52的光轴与第三透镜53的光轴平行。
请再次参阅图1,衍射光学元件60用于衍射准直元件50准直后的激光以形成激光图案。衍射光学元件60包括相背的衍射出射面61和衍射入射面62。保护罩30可以通过胶水粘贴在顶部22上,抵触面31与衍射出射面61抵触,衍射入射面62与承 载台25抵触,从而衍射光学元件60不会沿出光方向从收容腔21脱落。衍射光学元件60可以由玻璃材质制成,也可以由复合塑料(如PET)制成。
在组装上述的结构光投射器100时,沿着光路从镜筒20的底部23依次向通孔24内放入准直元件50、及安装好光源40的基板组件10。光源40可以先安装在基板组件10上,然后再将安装有光源40的基板组件10与底部23固定。逆着光路的方向从顶部22将衍射光学元件60放入通孔24并承载在承载台25上,然后再安装保护罩30,并使得衍射光学元件60的衍射出射面61与保护罩30抵触,衍射入射面62与承载台25抵触。结构光投射器100结构简单,组装方便。
请参阅图20,本申请实施方式的深度相机400包括上述任一实施方式的结构光投射器100、图像采集器200、及处理器300。图像采集器200用于采集经衍射光学元件50后向目标空间中投射的激光图案。处理器300分别与结构光投射器100、及图像采集器200连接。处理器300用于处理激光图案以获得深度图像。
具体地,结构光投射器100通过投射窗口401向外投射向目标空间中投射的激光图案,图像采集器200通过采集窗口402采集被目标物体调制后的激光图案。图像采集器200可为红外相机,处理器300采用图像匹配算法计算出该激光图案中各像素点与参考图案中的对应各个像素点的偏离值,再根据该偏离值进一步获得该激光图案的深度图像。其中,图像匹配算法可为数字图像相关(Digital Image Correlation,DIC)算法。当然,也可以采用其它图像匹配算法代替DIC算法。
请参阅图21,本申请实施方式的电子设备1000包括壳体500及上述实施方式的深度相机400。深度相机400设置在壳体500内并从壳体500暴露以获取深度图像。电子设备1000包括但不限于为手机、平板电脑、笔记本电脑、智能手环、智能手表、智能头盔、智能眼镜等。壳体500可以给深度相机400提供防尘、防水、防摔等保护。
综上,本申请实施方式的结构光投射器100、深度相机400和电子设备1000中,第一区域432的发光元件44的密度小于第二区域434的发光元件44的密度,能够提高结构光投射器100向目标空间中投射的案激光图案的不相关性,从而提高获取该激光图案的深度图像的速度及精度。另外,第一区域432的发光元件44的密度小于第二区域434的发光元件44的密度,还可以减少汇聚到光路中间位置的光线,从而减小结构光投射器100的零级光束的光强,避免对人眼造成伤害。
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或 示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
尽管上面已经示出和描述了本申请的实施方式,可以理解的是,上述实施方式是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施方式进行变化、修改、替换和变型。

Claims (20)

  1. 一种结构光投射器,其特征在于,包括:
    光源,所述光源用于发射激光,所述光源包括衬底及设置在所述衬底上的发光元件阵列,所述衬底由中心至边缘依次包括第一区域和与所述第一区域相接的第二区域,所述第一区域内所述发光元件的第一密度小于所述第二区域内所述发光元件的第二密度;
    准直元件,所述准直元件用于准直所述激光;及
    衍射光学元件,所述衍射光学元件用于衍射所述准直元件准直后的激光以形成激光图案。
  2. 根据权利要求1所述的结构光投射器,其特征在于,所述第一密度为零。
  3. 根据权利要求1所述的结构光投射器,其特征在于,所述发光元件的密度由所述第一区域向所述第二区域逐渐增大。
  4. 根据权利要求1所述的结构光投射器,其特征在于,所述发光元件阵列呈矩阵分布,所述第二区域的所述发光元件位于所述第一区域的所述发光元件的至少两侧。
  5. 根据权利要求1所述的结构光投射器,其特征在于,所述发光元件阵列呈环形分布,所述第二区域的所述发光元件环绕所述第一区域的所述发光元件设置。
  6. 根据权利要求1所述的结构光投射器,其特征在于,所述第一区域的所述发光元件和所述第二区域的所述发光元件被单独驱动以发射激光,所述第一区域的所述发光元件发射的激光的强度小于所述第二区域的所述发光元件发射的激光的强度。
  7. 根据权利要求1所述的结构光投射器,其特征在于,所述第一区域的所述发光元件的发光面积小于所述第二区域的所述发光元件的发光面积。
  8. 根据权利要求1所述的结构光投射器,其特征在于,所述光源为垂直腔面发射激光器。
  9. 根据权利要求1所述的结构光投射器,其特征在于,所述光源为边发射激光器,每个所述发光元件包括发光面,所述发光面朝向所述准直元件。
  10. 根据权利要求9所述的结构光投射器,其特征在于,所述发光面与所述准直元件的准直光轴垂直。
  11. 根据权利要求1所述的结构光投射器,其特征在于,所述结构光投射器还包括基板组件和镜筒,所述镜筒设置在所述基板组件上并与所述基板组件共同形成收容腔,所述光源、所述准直元件及所述衍射光学元件均收容在所述收容腔内。
  12. 根据权利要求11所述的结构光投射器,其特征在于,所述基板组件包括基板 及承载在所述基板上的电路板,所述电路板开设有过孔,所述光源承载在所述基板上并收容在所述过孔内。
  13. 根据权利要求12所述的结构光投射器,其特征在于,所述基板开设有散热孔。
  14. 根据权利要求11所述的结构光投射器,其特征在于,所述镜筒包括相背的顶部及底部,所述镜筒形成有贯穿所述顶部及所述底部的通孔,所述底部承载在所述基板组件上,所述镜筒的内壁向所述通孔的中心延伸有环形承载台,所述衍射光学元件承载在所述承载台上。
  15. 根据权利要求14所述的结构光投射器,其特征在于,所述结构光投射器还包括保护罩,所述保护罩设置在所述顶部上,所述保护罩包括抵触面,所述衍射光学元件的相背两侧分别与所述保护罩及所述承载台抵触。
  16. 根据权利要求15所述的结构光投射器,其特征在于,所述保护罩开设有透光孔,所述透光孔与所述通孔对准。
  17. 根据权利要求15所述的结构光投射器,其特征在于,所述保护罩由透光材料制成。
  18. 根据权利要求1所述的结构光投射器,其特征在于,所述准直元件包括一个或多个透镜,一个或多个所述透镜设置在所述光源的发光光路上。
  19. 一种深度相机,其特征在于,包括:
    权利要求1-18任意一项所述的结构光投射器;
    图像采集器,所述图像采集器用于采集经所述衍射光学元件后向目标空间中投射的激光图案;和
    分别与所述结构光投射器、及所述图像采集器连接的处理器,所述处理器用于处理所述激光图案以获得深度图像。
  20. 一种电子设备,其特征在于,包括:
    壳体;及
    权利要求19所述的深度相机,所述深度相机设置在所述壳体内并从所述壳体暴露以获取深度图像。
PCT/CN2019/075378 2018-03-12 2019-02-18 结构光投射器、深度相机和电子设备 WO2019174434A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810200423.6A CN108490628B (zh) 2018-03-12 2018-03-12 结构光投射器、深度相机和电子设备
CN201810200423.6 2018-03-12

Publications (1)

Publication Number Publication Date
WO2019174434A1 true WO2019174434A1 (zh) 2019-09-19

Family

ID=63338727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/075378 WO2019174434A1 (zh) 2018-03-12 2019-02-18 结构光投射器、深度相机和电子设备

Country Status (2)

Country Link
CN (1) CN108490628B (zh)
WO (1) WO2019174434A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114727089A (zh) * 2022-02-28 2022-07-08 深圳博升光电科技有限公司 一种结构光系统及具有其的电子设备、控制方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109120837B (zh) * 2018-10-31 2020-05-01 Oppo广东移动通信有限公司 图像获取方法、图像获取装置、结构光组件及电子装置
WO2020103165A1 (zh) * 2018-11-24 2020-05-28 深圳阜时科技有限公司 一种光源结构、光学投影模组、感测装置及设备
CN109643052B (zh) * 2018-11-24 2022-10-18 深圳阜时科技有限公司 一种光源结构、光学投影模组、感测装置及设备
CN111246073B (zh) * 2020-03-23 2022-03-25 维沃移动通信有限公司 成像装置、方法及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101984767A (zh) * 2008-01-21 2011-03-09 普莱姆森斯有限公司 用于使零级减少的光学设计
CN102193208A (zh) * 2010-03-08 2011-09-21 西福尔德高等学院 斑纹减少装置和斑纹减少掩模
US20160127714A1 (en) * 2014-11-03 2016-05-05 Aquifi, Inc. Systems and methods for reducing z-thickness and zero-order effects in depth cameras
CN106569382A (zh) * 2016-10-26 2017-04-19 深圳奥比中光科技有限公司 激光投影仪及其深度相机
CN106568396A (zh) * 2016-10-26 2017-04-19 深圳奥比中光科技有限公司 一种激光投影仪及其深度相机
CN106997603A (zh) * 2017-05-19 2017-08-01 深圳奥比中光科技有限公司 基于vcsel阵列光源的深度相机
CN107490930A (zh) * 2017-09-01 2017-12-19 深圳奥比中光科技有限公司 具有抑制零级衍射的激光投影装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103097805B (zh) * 2010-09-10 2016-05-04 皇家飞利浦电子股份有限公司 用于聚光照明的装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101984767A (zh) * 2008-01-21 2011-03-09 普莱姆森斯有限公司 用于使零级减少的光学设计
CN102193208A (zh) * 2010-03-08 2011-09-21 西福尔德高等学院 斑纹减少装置和斑纹减少掩模
US20160127714A1 (en) * 2014-11-03 2016-05-05 Aquifi, Inc. Systems and methods for reducing z-thickness and zero-order effects in depth cameras
CN106569382A (zh) * 2016-10-26 2017-04-19 深圳奥比中光科技有限公司 激光投影仪及其深度相机
CN106568396A (zh) * 2016-10-26 2017-04-19 深圳奥比中光科技有限公司 一种激光投影仪及其深度相机
CN106997603A (zh) * 2017-05-19 2017-08-01 深圳奥比中光科技有限公司 基于vcsel阵列光源的深度相机
CN107490930A (zh) * 2017-09-01 2017-12-19 深圳奥比中光科技有限公司 具有抑制零级衍射的激光投影装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114727089A (zh) * 2022-02-28 2022-07-08 深圳博升光电科技有限公司 一种结构光系统及具有其的电子设备、控制方法

Also Published As

Publication number Publication date
CN108490628B (zh) 2020-01-10
CN108490628A (zh) 2018-09-04

Similar Documents

Publication Publication Date Title
WO2019174434A1 (zh) 结构光投射器、深度相机和电子设备
TWI702391B (zh) 繞射光學組件、鐳射投射模組、深度相機和電子裝置
CN108303757B (zh) 激光投射模组、深度相机和电子装置
TWI771569B (zh) 鐳射投射模組、深度相機及電子裝置
TWI699611B (zh) 鐳射投射器、相機模組和電子裝置
CN108490631B (zh) 结构光投射器、图像获取结构和电子装置
TWI697729B (zh) 鐳射投射模組、深度相機和電子裝置
WO2019192240A1 (zh) 激光发射器、光电设备、深度相机和电子装置
WO2019233103A1 (zh) 衍射光学元件、光电模组、输入输出组件及电子设备
CN111694161A (zh) 光发射模组、深度相机及电子设备
CN108415209B (zh) 结构光投射模组、摄像组件和电子装置
CN108303756B (zh) 激光投射模组、深度相机和电子装置
TW201939108A (zh) 鐳射投射模組、深度相機和電子裝置
CN108388065B (zh) 结构光投射器、光电设备和电子装置
CN108563032A (zh) 结构光投射器、摄像组件和电子设备
WO2019174433A1 (zh) 激光投射模组、深度相机和电子装置
CN108594449B (zh) 激光投射模组、深度相机和电子装置
CN108508619B (zh) 激光投射模组、深度相机和电子装置
CN108490595B (zh) 结构光投射模组、图像获取装置及电子设备
CN108508623B (zh) 激光投射模组、深度相机和电子装置
WO2020052300A1 (zh) 投影模组、结构光三维成像装置和电子设备
CN108508618B (zh) 激光投射模组、深度相机和电子装置
CN112824955B (zh) 结构光模组、成像装置及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19766680

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19766680

Country of ref document: EP

Kind code of ref document: A1