WO2020052300A1 - 投影模组、结构光三维成像装置和电子设备 - Google Patents

投影模组、结构光三维成像装置和电子设备 Download PDF

Info

Publication number
WO2020052300A1
WO2020052300A1 PCT/CN2019/090828 CN2019090828W WO2020052300A1 WO 2020052300 A1 WO2020052300 A1 WO 2020052300A1 CN 2019090828 W CN2019090828 W CN 2019090828W WO 2020052300 A1 WO2020052300 A1 WO 2020052300A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
light
grating
reflective
projection module
Prior art date
Application number
PCT/CN2019/090828
Other languages
English (en)
French (fr)
Inventor
林君翰
李宗政
陈冠宏
周祥禾
Original Assignee
南昌欧菲生物识别技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201821510410.0U external-priority patent/CN208795953U/zh
Priority claimed from CN201811076642.4A external-priority patent/CN110908131A/zh
Application filed by 南昌欧菲生物识别技术有限公司 filed Critical 南昌欧菲生物识别技术有限公司
Priority to US17/043,954 priority Critical patent/US11467419B2/en
Publication of WO2020052300A1 publication Critical patent/WO2020052300A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4233Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive element [DOE] contributing to a non-imaging application
    • G02B27/425Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive element [DOE] contributing to a non-imaging application in illumination systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/254Projection of a pattern, viewing through a pattern, e.g. moiré
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/30Collimators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1861Reflection gratings characterised by their structure, e.g. step profile, contours of substrate or grooves, pitch variations, materials

Definitions

  • the present application relates to the field of optoelectronic technology, and more particularly, to a projection module, a structured light three-dimensional imaging device, and an electronic device.
  • the edge-emitting laser When an existing projection module uses an edge-emitting laser as a light source, the edge-emitting laser is generally placed horizontally, and its light emitting direction is perpendicular to the light emitting direction. Then, a prism is used to change the laser direction of the edge-emitting laser, thereby reducing the The height of the projection module, however, the projection module requires an additional prism. On the one hand, the prism will occupy the installation space of the projection module, and on the other hand, the cost of the projection module is increased.
  • Embodiments of the present application provide a projection module, a structured light three-dimensional imaging device, and an electronic device.
  • the projection module includes a laser emitter and a reflective grating.
  • the laser emitter includes a light emitting surface, and laser light is emitted from the light emitting surface.
  • the reflective grating includes a reflecting surface, the reflecting surface is disposed obliquely with respect to the light emitting surface, the reflecting surface is opposite to the light emitting surface, and a grating microstructure is provided on the reflecting surface, and the grating microstructure is used for The laser beam is expanded to form a laser pattern, and the reflection surface is used to adjust an emission angle of the laser pattern.
  • the reflective grating can not only expand the laser beam to generate a laser pattern, but also adjust the laser beam.
  • the reflection angle without the need to set a prism to adjust the reflection angle of the laser, not only saves the installation space occupied by the prism, but also saves the cost of a prism.
  • the laser emitter includes an edge emitting laser or a vertical cavity surface emitting laser.
  • the edge-emitting laser is a single-point light emitting structure, and it is not necessary to design an array structure when it is used as a laser transmitter.
  • the fabrication is simple, the laser emitter of the laser projection module is lower in cost, and compared with a vertical cavity surface-emitting laser, The temperature drift is small. If a vertical cavity surface emitting laser is used as the laser emitter, the irrelevance of the laser pattern will be higher, which is conducive to obtaining high-precision depth images.
  • the projection module further includes a substrate, the laser emitter is disposed on the substrate, and the light emitting surface is perpendicular to the substrate.
  • the light-emitting surface is perpendicular to the substrate, and the reflecting surface is opposite to the light-emitting surface.
  • the laser emission direction is basically parallel to the substrate. That is to say, the laser emitter is placed flat (inverted relative to vertical placement), so that the projection
  • the module has a periscope structure, which shortens the height of the projection module.
  • the projection module further includes a fixing member disposed on the substrate, and the reflective grating includes a mounting surface opposite to the reflecting surface, and the fixing member and the The reflective grating is connected to the mounting surface to fix the reflective grating.
  • the fixing member in the projection module is arranged on the substrate and connected to the reflective grating to the mounting surface.
  • the reflective grating can be firmly fixed on the substrate and the reflective surface can be maintained at a position opposite to the light emitting surface.
  • the reflective grating is a triangular prism, and the reflective grating includes a bearing surface, the reflecting surface, and a connecting surface connecting the bearing surface and the reflecting surface, and the bearing surface is disposed at On the substrate.
  • the structure of the reflective grating itself is a triangular prism, the reflecting surface is opposite to the light emitting surface, and the triangular prism is arranged on the substrate through the bearing surface, without the need for an additional fixing member for fixed support, and the degree of integration is higher.
  • the grating microstructure is a nanoscale grating microstructure and is evenly distributed on the reflective surface.
  • Nano-level grating microstructures have a higher density. Compared with general micron-level grating microstructures, a laser beam can be expanded into more laser beams to form a finer laser pattern.
  • an area on the reflective surface where the grating microstructure is disposed covers a light-emitting field of view of the laser.
  • the grating microstructure covers the laser's field of view, that is, all laser light is irradiated on the grating microstructure, ensuring that the laser is modulated by the grating microstructure instead of reflecting directly to affect the formation of the laser pattern, ensuring the emitted laser The accuracy of the pattern.
  • a collimating lens is disposed between the laser emitter and the reflective grating, and the collimating lens is located on an incident light path of the laser, and is configured to transmit light emitted by the laser emitter The collimated light is projected onto a reflective grating; and / or, an adjustment lens is provided on the exit light path of the laser pattern to adjust the optical performance of the exit beam.
  • the collimating lens When the collimating lens is disposed between the laser emitter and the reflective grating and is located on the incident light path of the laser, the collimating lens plays a role of collimating the laser light incident on the reflective grating, so that the laser light emitted by the laser emitter can be all Enter the reflective grating to improve the utilization rate of the laser.
  • the adjustment lens When the adjustment lens is set on the exit light path of the laser pattern, the adjustment lens adjusts the optical performance of the emitted laser pattern, such as adjusting contrast, distortion, or field of view.
  • Adjust and optimize the projection quality and effect of the laser pattern when the collimating lens is set between the laser emitter and the reflective grating and on the incident light path of the laser, and the adjustment lens is set on the outgoing light path of the laser pattern, it is set at The collimating lens between the laser transmitter and the reflective grating allows the laser light emitted by the laser transmitter to enter the reflective grating, thereby improving the utilization rate of the laser.
  • the adjustment lens set on the exit light path of the laser pattern projects the The laser pattern has been adjusted to adjust the projection quality and effect of the laser pattern fruit.
  • the structured light three-dimensional imaging device includes a camera module and a projection module according to any one of the above embodiments.
  • the projection module is configured to emit the laser pattern toward a target object;
  • the projection module includes a laser emitter and a reflective grating;
  • the laser emitter includes a light emitting surface from which the laser light is emitted; and the reflection
  • the grating includes a reflecting surface, the reflecting surface is inclined with respect to the light emitting surface, and a grating microstructure is provided on the reflecting surface.
  • the grating microstructure is used for expanding the laser beam to form a laser pattern.
  • the surface is used to adjust an emission angle of the laser pattern.
  • the camera module is configured to receive the laser pattern reflected by a target object.
  • the structured light three-dimensional imaging device is configured by setting a grating microstructure on a reflective surface of a reflective grating and obliquely setting the reflective surface relative to a light emitting surface.
  • the reflective grating can not only expand a laser beam to generate a laser pattern, but also adjust The reflection angle of the laser, without the need to set a prism to adjust the reflection angle of the laser, not only saves the installation space occupied by the prism, but also saves the cost of a prism.
  • An electronic device includes a housing and the structured light three-dimensional imaging device according to the above embodiments.
  • the structured light three-dimensional imaging device is disposed on the casing.
  • the structured light three-dimensional imaging device includes a projection module and a camera module; the projection module is configured to emit the laser pattern toward a target object; the projection module includes a laser emitter and a reflective grating; the laser emission
  • the reflector includes a light emitting surface, and the laser light is emitted from the light emitting surface.
  • the reflective grating includes a reflecting surface. The reflecting surface is inclined with respect to the light emitting surface.
  • a grating microstructure is provided on the reflecting surface. The grating microstructure is provided.
  • the laser is used to expand the laser beam to form a laser pattern.
  • the reflecting surface is used to adjust an exit angle of the laser pattern.
  • the camera module is configured to receive the laser pattern reflected by a target object.
  • the reflective grating can not only expand a laser beam to generate a laser pattern, but also adjust laser reflection Angle, without setting a prism to adjust the reflection angle of the laser, not only saves the installation space occupied by the prism, but also saves the cost of a prism.
  • the shell can protect the structured light three-dimensional imaging device.
  • FIG. 1 is a schematic structural diagram of a projection module according to some embodiments of the present application.
  • FIG. 2 is a schematic structural diagram of a projection module according to some embodiments of the present application.
  • FIG. 3 is a schematic structural diagram of a projection module according to another embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a projection module according to another embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a projection module according to another embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a structured light three-dimensional imaging device according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • the first feature "on” or “down” of the second feature may be the first and second features in direct contact, or the first and second features indirectly through an intermediate medium. contact.
  • the first feature is “above”, “above”, and “above” the second feature.
  • the first feature is directly above or obliquely above the second feature, or only indicates that the first feature is higher in level than the second feature.
  • the first feature is “below”, “below”, and “below” of the second feature.
  • the first feature may be directly below or obliquely below the second feature, or it may simply indicate that the first feature is less horizontal than the second feature.
  • the projection module 10 includes a laser emitter 11 and a reflective grating 12.
  • the laser transmitter 11 includes a light emitting surface 112, and the laser light L is emitted from the light emitting surface 112.
  • the reflective grating 12 includes a reflective surface 122.
  • the reflective surface 122 is inclined relative to the light emitting surface 112, that is, the reflective surface 122 is opposite to the light emitting surface 112.
  • a grating microstructure 124 is provided on the reflective surface 122.
  • the laser light L emitted from the light emitting surface 112 expands a beam to form a laser pattern, and adjusts the emitting angle of the laser pattern through the reflecting surface 122.
  • the laser emitter 11 emits the laser light L from the light emitting surface 112, and the light emitting surface 112 is opposite to the reflecting surface 122, that is, the laser emitter 11 emits the laser L toward the reflecting surface 122, and the reflecting surface 122 is inclined with respect to the light emitting surface 112.
  • the reflective surface 122 is provided with a grating microstructure 124. When the laser L passes through the grating microstructure 124, it is expanded to form a laser pattern. After the laser light is reflected by the reflective surface 122, the exit angle is changed.
  • the reflective surface 122 can be provided with a reflective coating to reflect the light.
  • the laser light L causes the laser pattern to be emitted from the projection module 10 at a predetermined angle.
  • the reflective grating 12 can not only expand the laser beam L to generate
  • the laser pattern can also adjust the reflection angle of the laser L without setting a prism to adjust the reflection angle of the laser L, which not only saves the installation space occupied by the prism, but also saves the cost of a prism.
  • the projection module 10 includes a substrate 14, a lens barrel 15, a laser emitter 11, and a reflective grating 12.
  • the substrate 14 may be at least one of a flexible circuit board, a rigid circuit board, or a rigid-flexible circuit board.
  • the lens barrel 15 is disposed on the substrate 14 and forms a receiving space 16 with the substrate 14.
  • the connection methods of the lens barrel 15 and the substrate 14 include screwing, gluing, engaging, welding, and the like.
  • Both the laser emitter 11 and the reflective grating 12 are housed in a receiving space 16.
  • the lens barrel 15 has a protective effect on the laser emitter 11 and the reflective grating 12.
  • the laser emitter 11 is provided on a substrate 14.
  • the laser emitter 11 includes a light emitting surface 112 from which the laser light is emitted.
  • the light emitting surface 112 is perpendicular to the substrate 14 and the reflecting surface 122 is opposite to the light emitting surface 112.
  • the emitting direction of the laser light is substantially parallel to the substrate 14, that is, the laser emitter 11 is placed horizontally (as opposed to being placed vertically) Inverted), so that the projection module 10 has a periscope structure, thereby reducing the height of the projection module 10.
  • the laser transmitter 11 may be an edge-emitting laser (for example, a distributed feedback laser (Distributed Feedback Laser, DFB)) or a vertical-cavity surface-emitting laser (VCSEL).
  • DFB distributed Feedback Laser
  • VCSEL vertical-cavity surface-emitting laser
  • the side-emitting laser is a single-point light-emitting structure.
  • the laser emitter 11 of the laser projection module has a lower cost, and is a side-emitting laser.
  • the temperature drift of the laser is small. If a vertical cavity surface emitting laser is used as the laser emitter 11, the irrelevance of the laser pattern will be higher, which is beneficial for obtaining a highly accurate depth image.
  • the reflective grating 12 is disposed on the substrate 14.
  • the reflective grating 12 includes a reflective surface 122 and a mounting surface 126.
  • the reflective surface 122 is opposite to the mounting surface 126.
  • the reflecting surface 122 is opposite to the light emitting surface 112 and the reflecting surface 122 is inclined with respect to the light emitting surface 112. By controlling the inclination angle of the reflecting surface 122 with respect to the light emitting surface 112, the laser reflection angle can be controlled.
  • the laser light emitted from the light emitting surface 112 enters the reflective grating.
  • the incident angle of 12 is greater than 0 degrees and less than 90 degrees, that is to say, the incident direction of the laser light cannot be parallel or perpendicular to the reflecting surface 122 to prevent the laser light from being reflected or reflected back along the incident optical path.
  • the incident angle of the laser light emitted from the light emitting surface 112 may be 15 degrees, 30 degrees, 45 degrees, 65 degrees, and the like, and may be determined according to the requirements of the emitting angle of the laser pattern.
  • the reflective surface 122 is provided with a grating microstructure 124.
  • the reflective grating 12 implements the diffraction effect of a diffractive optical element (DOE) by setting the grating microstructure 124 on the reflective surface 122.
  • DOE diffractive optical element
  • the diffractive optical element is Based on the principle of light diffraction, computer-aided design and semiconductor chip manufacturing processes are used to etch on the substrate (or the surface of traditional optical devices) to produce stepped or continuous relief structures (ie, grating microstructures 124), forming coaxial reproduction, And a class of optical elements with extremely high diffraction efficiency.
  • stepped or continuous relief structures ie, grating microstructures 124
  • the reflective surface 122 of the reflective grating 12 is provided with a grating microstructure 124.
  • the grating microstructure 124 is a plurality of steps with a certain depth.
  • the grating microstructure 124 of the reflective grating 12 of the present application is a nanoscale grating microstructure 124, and the nanoscale grating microstructure 124 is evenly distributed on the reflective surface 122, so that the divergence angle of the laser light and the shape of the light spot are more accurately controlled.
  • a laser beam is expanded to form a specific laser pattern.
  • the nano-level grating microstructure 124 has a higher density. Compared with the general micro-level grating microstructure 124, a laser beam can be expanded into more laser beams to form a laser pattern with higher accuracy.
  • the area on the reflective surface 122 provided with the grating microstructure 124 covers the luminous field of view of the laser, that is, all the laser light can be irradiated onto the grating microstructure 124 to ensure that the laser is modulated by the grating microstructure 124 instead of directly. Reflected to ensure the accuracy of the laser pattern emitted.
  • the reflective grating 12 may be any suitable shape such as a rectangular body, a cylinder, and the like, and is not limited herein.
  • the projection module 10 further includes a fixing member 17.
  • One end of the reflective grating 12 is connected to the substrate 14, and a fixing member 17 is disposed on the substrate 14 and is connected to the mounting surface 126 with the reflective grating 12, that is, the fixing member 17 is used to support the reflective grating 12.
  • the reflecting surface 122 is maintained at a position opposite to the light emitting surface 112.
  • the reflective grating 12, the substrate 14 and the fixing member 17 form a similar triangular structure.
  • connection and the connection between the fixing member 17 and the reflective grating 12 may be connection methods such as snap-fitting, gluing, and screwing, so that the fixing member 17, the reflective grating 12, and the substrate 14 are firmly connected together.
  • the reflective grating 12 is a triangular prism.
  • the reflective grating 12 includes a bearing surface 121, a reflecting surface 122, and a connecting surface 123 connecting the bearing surface 121 and the reflecting surface 122.
  • the bearing surface 121 can be connected to the substrate 14 by means of snapping, screwing, gluing, or the like to fix the reflective grating 12 on the substrate 14.
  • the projection module 10 can adjust the angle between the reflection surface 122 and the bearing surface 121 to keep the reflection surface 122 facing the light emitting surface 112 and adjust the reflection angle of the laser light.
  • the reflective grating 12 is fixedly disposed on the substrate 14 through the bearing surface 121.
  • one end of the reflective grating 12 is connected to the substrate 14 and has a larger contact area. It is relatively stable and does not need to be additionally provided with a fixing member 17 for supporting and fixing, and has a high degree of integration.
  • the projection module 10 may further include a collimator lens 13 and / or an adjustment lens 13 ′ contained in the accommodation space 16.
  • the collimating lens 13 and the adjusting lens 13 ′ are lenses, which may be separate lenses, and the lens is a convex lens or a concave lens; or the collimating lens 13 and the adjusting lens 13 ′ are multiple lenses, and the multiple lenses may be convex lenses or concave lenses. Or part is convex lens, part is concave lens.
  • the collimating lens 13 is disposed between the laser emitter 11 and the reflective grating 12, and the collimating lens 13 is disposed on the incident light path of the laser, that is, the collimating lens 13
  • the laser light emitted from the light emitting surface 112 can be collimated to form a collimated light and is directed toward the reflecting surface 122 substantially parallel to the substrate 11 to ensure that all the laser light enters the reflective grating 12 to improve the utilization rate of the laser;
  • the adjustment lens 13 ′ is set on the light path of the laser pattern, and the adjustment lens 13 ′ adjusts the optical performance of the emitted laser pattern, for example, for possible contrast, distortion, and field of view. Adjust so that the projection quality and effect of the laser pattern can be adjusted.
  • the adjusting lens 13 ′ may be provided with different adjusting functions according to needs, and the embodiment of the present application is not limited.
  • the projection module 10 includes a collimating lens 13 and an adjusting lens 13 ′, wherein the collimating lens 13 is disposed between the laser emitter 11 and the reflective grating 12 and is located at the incident light of the laser On the road, the collimating lens 13 can collimate the laser light emitted by the laser emitter 11 so that all the laser light emitted by the laser emitter 11 can enter the reflective grating 12, thereby improving the utilization rate of the laser light.
  • the adjustment lens 13 ′ is disposed on the light path of the laser pattern. The adjustment lens 13 ′ can adjust the optical performance of the laser pattern, so that the projection quality and effect of the laser pattern can be adjusted.
  • a grating microstructure 124 is provided on the reflective surface 122 of the reflective grating 12 and the reflective surface 122 is inclined relative to the light emitting surface 112.
  • the grating microstructure 124 can expand a laser beam to generate a laser pattern.
  • the reflective surface 122 is provided with a reflective coating to adjust the reflection angle of the laser without the need to separately set a prism to adjust the reflection angle of the laser, which not only saves the installation space occupied by the prism, but also saves the cost of a prism.
  • a structured light three-dimensional imaging device 100 includes a projection module 10, a camera module 20, and a processor 30.
  • the projection module 10 is configured to emit a laser pattern toward a target object.
  • the camera module 20 is configured to receive a laser pattern modulated by a target object.
  • the processor 30 is used for imaging (depth image) according to the laser pattern received by the camera module 20.
  • the structured light three-dimensional imaging device 100 is formed with a projection window 40 corresponding to the projection module 10 and an acquisition window 50 corresponding to the camera module 20.
  • the projection module 10 is configured to project a laser pattern onto a target space through a projection window 40
  • the camera module 20 is configured to receive a laser pattern reflected by a target object for imaging.
  • the projection module 10 emits light
  • the laser transmitter 11 emits laser light
  • the laser light is reflected by the reflective grating 12 to form a laser pattern and is emitted from the projection window 40.
  • the projection module 10 emits a laser pattern toward the target object, and the laser pattern is a speckle pattern.
  • the camera module 20 collects the laser pattern reflected by the target object through the acquisition window 50.
  • the processor 30 is connected to both the camera module 20 and the projection module 10.
  • the processor 30 is configured to process the laser pattern to obtain a depth image. Specifically, the processor 30 compares the laser pattern with a reference pattern, and generates a depth image according to the difference between the laser pattern and the reference pattern.
  • the laser pattern is a coded structured light image with a specific pattern, that is, a specific code.
  • a depth image is obtained by extracting the coded structured light image in the laser pattern and comparing it with a reference pattern. After obtaining the depth image, it can be applied to the fields of face recognition, 3D modeling and so on.
  • the structured light three-dimensional imaging device 100 is configured by setting a grating microstructure 124 on the reflective surface 122 of the reflective grating 12 and obliquely setting the reflective surface 122 with respect to the light emitting surface 112.
  • the grating microstructure 124 can expand a laser beam to generate
  • the reflective surface 122 is provided with a reflective coating to adjust the reflection angle of the laser without the need to separately set a prism to adjust the reflection angle of the laser, which not only saves the installation space occupied by the prism, but also saves the cost of a prism.
  • the structured light three-dimensional imaging device 100 can receive and process the laser pattern modulated by the target object through the cooperation of the camera module 20 and the processor 30 to obtain a depth image, so that it can be applied to face recognition, 3D modeling, etc. field.
  • an electronic device 1000 includes a housing 200 and a structured light three-dimensional imaging device 100.
  • the electronic device 1000 may be a mobile phone, a surveillance camera, a tablet computer, a laptop computer, a game console, a headset device, an access control system, a teller machine, etc.
  • the embodiment of the present application is described using the electronic device 1000 as a mobile phone. It can be understood that the electronic device 1000 The specific form may be other, and is not limited herein.
  • the structured light three-dimensional imaging device 100 is disposed on the casing 200 to acquire an image. Specifically, the structured light three-dimensional imaging device 100 is disposed in and exposed from the casing 200.
  • the casing 200 may provide the structured light three-dimensional imaging device 100.
  • the housing 200 is provided with a hole corresponding to the structured light three-dimensional imaging device 100 for protection against dust, water, and fall, so that light can pass through the hole or enter the housing 200.
  • a grating microstructure 124 is provided on the reflective surface 122 of the reflective grating 12 and the reflective surface 122 is inclined with respect to the light emitting surface 112.
  • the grating microstructure 124 can expand a laser beam to generate a laser pattern.
  • the reflecting surface 122 is provided with a reflective coating to adjust the reflection angle of the laser without the need to separately set a prism to adjust the reflection angle of the laser, which not only saves the installation space occupied by the prism, but also saves the cost of a prism.
  • the electronic device 1000 can receive and process the laser pattern modulated by the target object to obtain a depth image through the cooperation of the camera module 20 and the processor 30, so that it can be applied to the fields of face recognition, 3D modeling, and the like.
  • first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Therefore, the features defined as “first” and “second” may explicitly or implicitly include at least one of the features. In the description of the present application, the meaning of "plurality” is at least two, for example, two, three, unless specifically defined otherwise.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种投影模组(10)、结构光三维成像装置(100)和电子设备(1000)。投影模组(10)包括激光发射器(11)和反射式光栅(12)。激光发射器(11)包括出光面(112),激光自出光面(112)出射。反射式光栅(12)包括反射面(122),反射面(122)相对出光面(112)倾斜设置,反射面(122)与出光面(112)相对,反射面(122)上设置有光栅微结构(124)。投影模组(10) 在扩束以生成激光图案的同时实现激光反射角度的调整。

Description

投影模组、结构光三维成像装置和电子设备
优先权信息
本申请请求2018年9月14日向中国国家知识产权局提交的专利申请号为201811076642.4的专利申请、及专利申请号为201821510410.0的专利申请的优先权和权益,并且通过参照将其全文并入此处。
技术领域
本申请涉及光电技术领域,更具体而言,涉及一种投影模组、结构光三维成像装置和电子设备。
背景技术
现有的投影模组通过边发射型激光器作为光源时,一般将边发射型激光器水平放置,其发光方向与出光方向垂直,然后通过一个棱镜改变边发射型激光器的激光方向,从而起到减小投影模组的高度的作用,然而,投影模组需多设置一个棱镜,一方面棱镜会占用投影模组的安装空间,另一方面增加了投影模组的成本。
发明内容
本申请实施方式提供一种投影模组、结构光三维成像装置和电子设备。
本申请实施方式的投影模组包括激光发射器和反射式光栅。所述激光发射器包括出光面,激光自所述出光面出射。所述反射式光栅包括反射面,所述反射面相对所述出光面倾斜设置,所述反射面与所述出光面相对,所述反射面上设置有光栅微结构,所述光栅微结构用于将所述激光扩束以形成激光图案,所述反射面用于调整所述激光图案的出射角度。
本申请实施方式的投影模组通过在反射式光栅的反射面设置光栅微结构且将反射面相对出光面倾斜设置,反射式光栅不仅可以对激光进行扩束以生成激光图案,还可以调整激光的反射角度,而无需单独设置一个棱镜去调整激光的反射角度,不仅节省了棱镜所占的安装空间,还省去了一个棱镜的成本。
在某些实施方式中,所述激光发射器包括边发射型激光器或垂直腔面发射激光器。
边发射型激光器为单点发光结构,作为激光发射器时无需设计阵列结构,制作简单,激光投射模组的激光发射器成本较低,而且较垂直腔面发射激光器而言,边发射型激光器的温飘较小。采用垂直腔面发射激光器作为激光发射器,则激光图案的不相 关性会更高,有利于获取高精度的深度图像。
在某些实施方式中,所述投影模组还包括基板,所述激光发射器设置在所述基板上,所述出光面与所述基板垂直。
出光面与基板垂直,且反射面与出光面相对,激光的出射方向基本与基板平行,也即是说,激光发射器为平躺放置(相对于竖直放置而言为倒放),使得投影模组具有潜望式结构,从而缩短了投影模组的高度。
在某些实施方式中,所述投影模组还包括固定件,所述固定件设置在所述基板上,所述反射式光栅包括与所述反射面相背的安装面,所述固定件与所述反射式光栅连接于所述安装面以固定所述反射式光栅。
投影模组中的固定件设置在基板上并与反射式光栅连接于安装面,能够牢固地将反射式光栅固定在基板上并使得反射面保持在与出光面相对的位置。
在某些实施方式,所述反射式光栅为三角棱镜,所述反射式光栅包括承载面、所述反射面、及连接所述承载面与所述反射面的连接面,所述承载面设置在所述基板上。
反射式光栅本身的结构为三角棱镜,反射面与出光面相对,且该三角棱镜通过承载面设置在基板上,而无需额外设置一个固定件来进行固定支撑,集成度更高。
在某些实施方式中,所述光栅微结构为纳米级光栅微结构并均匀分布在所述反射面上。
纳米级别的光栅微结构的密度更大,相较于一般的微米级别的光栅微结构,可以将一束激光扩束为更多束激光以形成更为精细的激光图案。
在某些实施方式中,所述反射面上设置有所述光栅微结构的区域覆盖所述激光的发光视场范围。
光栅微结构覆盖激光的发光视场范围,也即是说,所有激光均照射在光栅微结构上,保证激光都经过光栅微结构调制而不是直接反射出去影响激光图案的形成,保证了出射的激光图案的精度。
在某些实施方式中,所述激光发射器和所述反射式光栅之间设置有准直透镜,且所述准直透镜位于所述激光的入射光路上,用于将激光发射器发出的光线变成准直光线后投射至反射式光栅;和/或,所述激光图案的出射光路上设置有调节镜头,以调整出射光束的光学性能。
当准直透镜设置在激光发射器和反射式光栅之间并位于激光的入射光路上时,准直透镜对入射到反射式光栅的激光起到准直作用,使得激光发射器发射的激光能够全部进入反射式光栅,从而提高激光的利用率;当调节镜头设置在激光图案的出射光路上时,调节镜头对出射的激光图案进行光学性能调整,例如调整对比度、失真或视场 角等,从而能够调整并优化激光图案的投射质量和效果;当准直透镜设置在激光发射器和反射式光栅之间并位于激光的入射光路上,且调节镜头设置在激光图案的出射光路上时,则设置在激光发射器和反射式光栅之间的准直透镜使得激光发射器发射的激光能够全部进入反射式光栅,从而提高激光的利用率,而设置在激光图案的出射光路上的调节镜头对投射出的激光图案的进行了调整,从而能够调整激光图案的投射质量和效果。
本申请实施方式的结构光三维成像装置包括相机模组和上述任一实施方式的投影模组。所述投影模组用于朝目标物体发射所述激光图案;所述投影模组包括激光发射器和反射式光栅;所述激光发射器包括出光面,激光自所述出光面出射;所述反射式光栅包括反射面,所述反射面相对所述出光面倾斜设置,所述反射面上设置有光栅微结构,所述光栅微结构用于将所述激光扩束以形成激光图案,所述反射面用于调整所述激光图案的出射角度。所述相机模组用于接收经目标物体反射后的所述激光图案。
本申请实施方式的结构光三维成像装置通过在反射式光栅的反射面设置光栅微结构且将反射面相对出光面倾斜设置,反射式光栅不仅可以对激光进行扩束以生成激光图案,还可以调整激光的反射角度,而无需单独设置一个棱镜去调整激光的反射角度,不仅节省了棱镜所占的安装空间,还省去了一个棱镜的成本。
本申请实施方式的电子设备包括壳体和上述实施方式的结构光三维成像装置。所述结构光三维成像装置设置在所述壳体上。所述结构光三维成像装置包括投影模组和相机模组;所述投影模组用于朝目标物体发射所述激光图案;所述投影模组包括激光发射器和反射式光栅;所述激光发射器包括出光面,激光自所述出光面出射;所述反射式光栅包括反射面,所述反射面相对所述出光面倾斜设置,所述反射面上设置有光栅微结构,所述光栅微结构用于将所述激光扩束以形成激光图案,所述反射面用于调整所述激光图案的出射角度;所述相机模组用于接收经目标物体反射后的所述激光图案。
本申请实施方式的电子设备通过在反射式光栅的反射面设置光栅微结构且将反射面相对出光面倾斜设置,反射式光栅不仅可以对激光进行扩束以生成激光图案,还可以调整激光的反射角度,而无需单独设置一个棱镜去调整激光的反射角度,不仅节省了棱镜所占的安装空间,还省去了一个棱镜的成本。且壳体可以对结构光三维成像装置起到保护作用。
本申请的实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实施方式的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1为本申请某些实施方式的投影模组的结构示意图;
图2为本申请某些实施方式的投影模组的结构示意图;
图3为本申请另一实施方式的投影模组的结构示意图;
图4为本申请再一实施方式的投影模组的结构示意图;
图5为本申请又一实施方式的投影模组的结构示意图;
图6为本申请实施方式的结构光三维成像装置的结构示意图;和
图7为本申请实施方式的电子设备的结构示意图。
具体实施方式
以下结合附图对本申请的实施方式作进一步说明。附图中相同或类似的标号自始至终表示相同或类似的元件或具有相同或类似功能的元件。
另外,下面结合附图描述的本申请的实施方式是示例性的,仅用于解释本申请的实施方式,而不能理解为对本申请的限制。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
请参阅图1,投影模组10包括激光发射器11和反射式光栅12。激光发射器11包括出光面112,激光L自出光面112射出。反射式光栅12包括反射面122,反射面122相对出光面112倾斜设置,也即使得反射面122与出光面112相对设置,反射面122上设置有光栅微结构124,光栅微结构124可将自出光面112射出的激光L扩束以形成激光图案并经反射面122调整激光图案的出射角度。
具体地,激光发射器11自出光面112发射激光L,出光面112与反射面122相对,也即是说,激光发射器11朝反射面122发射激光L,反射面122相对出光面112倾斜设置且反射面122设置有光栅微结构124,激光L经过光栅微结构124时会被扩束以形成激光图案,激光经反射面122反射后会改变出射角度,反射面122可通过设置反射镀膜以反射激光L,从而使得激光图案以预定的角度从投影模组10中射出。
本申请实施方式的投影模组10通过在反射式光栅12的反射面122设置光栅微结构124且将反射面122相对出光面112倾斜设置,反射式光栅12不仅可以对激光L进行扩束以生成激光图案,还可以调整激光L的反射角度,而无需单独设置一个棱镜去调整激光L的反射角度,不仅节省了棱镜所占的安装空间,还省去了一个棱镜的成本。
请继续参阅图1,投影模组10包括基板14、镜筒15、激光发射器11、及反射式光栅12。
基板14可以是柔性电路板、硬质电路板或软硬结合电路板中的至少一种。
镜筒15设置在基板14上并与基板14形成收容空间16,镜筒15与基板14的连接方式包括螺合、胶合、卡合、焊接等。激光发射器11与反射式光栅12均收容在收容空间16内。镜筒15对激光发射器11及反射式光栅12具有保护作用。
激光发射器11设置在基板14上。激光发射器11包括出光面112,激光从出光面112射出。出光面112与基板14垂直,且反射面122与出光面112相对,激光的出射方向基本与基板14平行,也即是说,激光发射器11为平躺放置(相对于竖直放置而言为倒放),使得投影模组10具有潜望式结构,从而缩短了投影模组10的高度。激光发射器11可以为边发射型激光器(例如为分布式反馈激光器(Distributed Feedback Laser,DFB))或垂直腔面发射激光器(Vertical-Cavity Surface-Emitting Laser,VCSEL)。边发射型激光器为单点发光结构,作为激光发射器11时无需设计阵列结构,制作简单,激光投射模组的激光发射器11成本较低,而且较垂直腔面发射激光器而言,边发射型激光器的温飘较小。采用垂直腔面发射激光器作为激光发射器11,则激光图案的不相关性会更高,有利于获取高精度的深度图像。
反射式光栅12设置在基板14上,反射式光栅12包括反射面122和安装面126,反射面122与安装面126相背。反射面122与出光面112相对且反射面122相对出光面112倾斜设置,通过控制反射面122相对出光面112的倾斜角度即可控制激光的反射角度,从出光面112射出的激光入射反射式光栅12的入射角度大于0度且小于90度,也即是说,激光的入射方向不能与反射面122平行或垂直,避免激光无法被反射或沿入射光路反射回去。例如,从出光面112射出的激光的入射角度可以为15度、30度、45度、65度等等,可根据激光图案的出射角度的要求确定。
反射面122设置有光栅微结构124,本申请实施方式的反射式光栅12通过在反射面122上设置光栅微结构124来实现衍射光学元件(Diffractive Optical Elements,DOE)的衍射作用,衍射光学元件是基于光的衍射原理,利用计算机辅助设计,并通过半导体芯片制造工艺,在基片上(或传统光学器件表面)刻蚀产生台阶型或连续浮雕结构(即光栅微结构124),形成同轴再现、且具有极高衍射效率的一类光学元件。激光通 过光栅微结构124时产生不同的光程差,满足布拉格衍射条件。通过不同的设计来控制激光的发散角和形成光斑的形貌,实现激光形成特定激光图案的功能。本申请实施方式的反射式光栅12的反射面122上设置有光栅微结构124,光栅微结构124为多个具有一定深度的台阶,相比于一般衍射光学结构的微米级别的光栅微结构124而言,本申请的反射式光栅12的光栅微结构124为纳米级光栅微结构124,纳米级光栅微结构124均匀分布在反射面122上,从而更加精确的控制激光的发散角和形成光斑的形貌,将一束激光扩束以形成特定的激光图案。而且,纳米级别的光栅微结构124的密度更大,相较于一般的微米级别的光栅微结构124,可以将一束激光扩束为更多束激光以形成精度更高的激光图案。
反射面122上设置有光栅微结构124的区域覆盖激光的发光视场范围,也即是说,所有激光均能照射在光栅微结构124上,保证激光都经过光栅微结构124调制,而不是直接反射出去,从而保证了出射的激光图案的精度。
反射式光栅12可为矩形体、圆柱体等任意合适的形状,在此不做限制。在某些实施方式中,投影模组10还包括固定件17。反射式光栅12的一端与基板14连接,固定件17设置在基板14上并与所述反射式光栅12连接于所述安装面126,也即是说,固定件17用于支撑反射式光栅12并使得反射面122保持在与出光面112相对的位置,反射式光栅12、基板14和固定件17组成类似三角形结构,反射式光栅12的一端与基板14的连接、固定件17与基板14的连接、以及固定件17与反射式光栅12的连接均可以为卡合、胶合、螺合等连接方式,从而使得固定件17、反射式光栅12和基板14牢固的连接在一起。
请参阅图2,在其他实施方式中,反射式光栅12为三角棱镜,反射式光栅12包括承载面121、反射面122及连接承载面121和反射面122的连接面123,承载面121设置在基板14上,承载面121可通过卡合、螺合、胶合等方式与基板14连接从而将反射式光栅12固定在基板14上。投影模组10可通过调整反射面122与承载面121的夹角保持反射面122与出光面112相对并调整激光的反射角度。反射式光栅12通过承载面121固定设置在基板14上,相较于通过固定件17(图1示)进行固定时,反射式光栅12的一端与基板14连接而言,接触面积较大,连接较为稳固,且无需额外设置一个固定件17进行支撑固定,集成度较高。
请参阅图3,在某些实施方式中,投影模组10还可包括收容在收容空间16内的准直透镜13和/或调节镜头13`。准直透镜13和调节镜头13`为透镜,可以为单独的透镜,该透镜为凸透镜或凹透镜;或者准直透镜13和调节镜头13`为多枚透镜,多枚透镜可均为凸透镜或凹透镜,或部分为凸透镜,部分为凹透镜。准直透镜13和调节镜头13` 的位置设置可以有多种情况,具体如下所述。
第一种情况:请参阅图3,准直透镜13设置在激光发射器11和反射式光栅12之间,且准直透镜13设置在激光的入射光路上,也即是说,准直透镜13可对出光面112射出的激光进行准直以形成准直光线并基本平行基板11地射向反射面122,保证所有激光均射入反射式光栅12,提高激光的利用率;
第二种情况:请参阅图4,调节镜头13`设置在激光图案的出射光路上,调节镜头13`对出射的激光图案进行光学性能调节,例如针对可能出现的对比度、失真以及视场角进行调节,从而能够调整激光图案的投射质量和效果。其中,所述调节镜头13`根据需要可以设置有不同的调节功能,本申请实施方式不做限制。
第三种情况:请参阅图5,投影模组10包括准直透镜13和调节镜头13`,其中准直透镜13设置在激光发射器11和反射式光栅12之间且位于在激光的入射光路上,该准直透镜13可以对激光发射器11发射的激光进行准直以使得激光发射器11发射的激光能够全部进入反射式光栅12,从而提高激光的利用率。调节镜头13`设置在激光图案的出射光路上,该调节镜头13`可对激光图案进行光学性能调节,从而能够调整激光图案的投射质量和效果。
本申请实施方式的投影模组10通过在反射式光栅12的反射面122设置光栅微结构124且将反射面122相对出光面112倾斜设置,光栅微结构124可以对激光进行扩束以生成激光图案,反射面122设置有反射镀膜可以调整激光的反射角度,而无需单独设置一个棱镜去调整激光的反射角度,不仅节省了棱镜所占的安装空间,还省去了一个棱镜的成本。
请参阅图6,本申请实施方式的结构光三维成像装置100包括投影模组10、相机模组20和处理器30。投影模组10用于朝目标物体发射激光图案。相机模组20用于接收经目标物体调制后的激光图案。处理器30用于根据相机模组20接收的激光图案以成像(深度图像)。
请一并参阅图5和图6,结构光三维成像装置100上形成有与投影模组10对应的投射窗口40,和与相机模组20对应的采集窗口50。投影模组10用于通过投射窗口40向目标空间投射激光图案,相机模组20用于接收经过目标物体反射后的激光图案以成像。在投影模组10发光时,激光发射器11发射激光,激光经过反射式光栅12反射后形成激光图案从投射窗口40射出。例如,投影模组10朝目标物体发射激光图案,该激光图案为散斑图案。相机模组20通过采集窗口50采集经目标物体反射回来的激光图案。处理器30与相机模组20及投影模组10均连接,处理器30用于处理上述激光图案以获得深度图像。具体地,处理器30通过将激光图案与参考图案进行比对,根据 该激光图案和参考图案的差异以生成深度图像。在其他实施方式中,该激光图案为具有特定的图案即具有特定编码的编码结构光图像,这时通过提取激光图案中的编码结构光图像,与参考图案进行对比从而获取深度图像。在得到深度图像后即可应用于人脸识别、3D建模等领域。
本申请实施方式的结构光三维成像装置100通过在反射式光栅12的反射面122设置光栅微结构124且将反射面122相对出光面112倾斜设置,光栅微结构124可以对激光进行扩束以生成激光图案,反射面122设置有反射镀膜可以调整激光的反射角度,而无需单独设置一个棱镜去调整激光的反射角度,不仅节省了棱镜所占的安装空间,还省去了一个棱镜的成本。另外,结构光三维成像装置100通过相机模组20及处理器30的配合,可以将经目标物体调制的激光图案进行接收以及处理以获取深度图像,从而可以应用在人脸识别、3D建模等领域。
请参阅图5和图7,本申请实施方式的电子设备1000包括壳体200和结构光三维成像装置100。电子设备1000可以是手机、监控相机、平板电脑、手提电脑、游戏机、头显设备、门禁系统、柜员机等,本申请实施例以电子设备1000是手机为例进行说明,可以理解,电子设备1000的具体形式可以是其他,在此不作限制。结构光三维成像装置100设置在壳体200上以获取图像,具体地,结构光三维成像装置100设置在壳体200内并从壳体200暴露,壳体200可以给结构光三维成像装置100提供防尘、防水、防摔等保护,壳体200上开设有与结构光三维成像装置100对应的孔,以使光线从孔中穿出或穿入壳体200。
本申请实施方式的电子设备1000通过在反射式光栅12的反射面122设置光栅微结构124且将反射面122相对出光面112倾斜设置,光栅微结构124可以对激光进行扩束以生成激光图案,反射面122设置有反射镀膜可以调整激光的反射角度,而无需单独设置一个棱镜去调整激光的反射角度,不仅节省了棱镜所占的安装空间,还省去了一个棱镜的成本。另外,电子设备1000通过相机模组20及处理器30的配合,可以将经目标物体调制的激光图案进行接收以及处理以获取深度图像,从而可以应用在人脸识别、3D建模等领域。
在本说明书的描述中,参考术语“某些实施方式”、“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个所述特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个,除非另有明确具体的限定。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (24)

  1. 一种投影模组,其特征在于,所述投影模组包括:
    激光发射器,所述激光发射器包括出光面,激光自所述出光面出射;和
    反射式光栅,所述反射式光栅包括反射面,所述反射面相对所述出光面倾斜设置,所述反射面上设置有光栅微结构,所述光栅微结构用于将所述激光扩束以形成激光图案,所述反射面用于调整所述激光图案的出射角度。
  2. 根据权利要求1所述的投影模组,其特征在于,所述激光发射器包括边发射型激光器或垂直腔面发射激光器。
  3. 根据权利要求1所述的投影模组,其特征在于,所述投影模组还包括基板,所述激光发射器设置在所述基板上,所述出光面与所述基板垂直。
  4. 根据权利要求3所述的投影模组,其特征在于,所述投影模组还包括固定件,所述固定件设置在所述基板上,所述反射式光栅包括与所述反射面相背的安装面,所述固定件与所述反射式光栅连接于所述安装面以固定所述反射式光栅。
  5. 根据权利要求3所述的投影模组,其特征在于,所述反射式光栅为三角棱镜,所述反射式光栅包括承载面、所述反射面、及连接所述承载面与所述反射面的连接面,所述承载面设置在所述基板上。
  6. 根据权利要求1所述的投影模组,其特征在于,所述光栅微结构为纳米级光栅微结构并均匀分布在所述反射面上。
  7. 根据权利要求1所述的投影模组,其特征在于,所述反射面上设置有所述光栅微结构的区域覆盖所述激光的发光视场范围。
  8. 根据权利要求1所述的投影模组,其特征在于,所述激光发射器和所述反射式光栅之间设置有准直透镜,且所述准直透镜位于所述激光的入射光路上,用于将激光发射器发出的光线变成准直光线后投射至反射式光栅;和/或
    所述激光图案的出射光路上设置有调节镜头,以调整出射光束的光学性能。
  9. 一种结构光三维成像装置,其特征在于,所述结构光三维成像装置包括:
    投影模组,所述投影模组用于朝目标物体发射所述激光图案;所述投影模组包括激光发射器和反射式光栅;所述激光发射器包括出光面,激光自所述出光面出射;所述反射式光栅包括反射面,所述反射面相对所述出光面倾斜设置,所述反射面上设置有光栅微结构,所述光栅微结构用于将所述激光扩束以形成激光图案,所述反射面用于调整所述激光图案的出射角度;和
    相机模组,所述相机模组用于接收经目标物体反射后的所述激光图案。
  10. 根据权利要求9所述的结构光三维成像装置,其特征在于,所述激光发射器包括边发射型激光器或垂直腔面发射激光器。
  11. 根据权利要求9所述的结构光三维成像装置,其特征在于,所述投影模组还包括基板,所述激光发射器设置在所述基板上,所述出光面与所述基板垂直。
  12. 根据权利要求11所述的结构光三维成像装置,其特征在于,所述投影模组还包括固定件,所述固定件设置在所述基板上,所述反射式光栅包括与所述反射面相背的安装面,所述固定件与所述反射式光栅连接于所述安装面以固定所述反射式光栅。
  13. 根据权利要求11所述的结构光三维成像装置,其特征在于,所述反射式光栅为三角棱镜,所述反射式光栅包括承载面、所述反射面、及连接所述承载面与所述反射面的连接面,所述承载面设置在所述基板上。
  14. 根据权利要求9所述的结构光三维成像装置,其特征在于,所述光栅微结构为纳米级光栅微结构并均匀分布在所述反射面上。
  15. 根据权利要求9所述的结构光三维成像装置,其特征在于,所述反射面上设置有所述光栅微结构的区域覆盖所述激光的发光视场范围。
  16. 根据权利要求9所述的结构光三维成像装置,其特征在于,所述激光发射器和所述反射式光栅之间设置有准直透镜,且所述准直透镜位于所述激光的入射光路上,用于将激光发射器发出的光线变成准直光线后投射至反射式光栅;和/或
    所述激光图案的出射光路上设置有调节镜头,以调整出射光束的光学性能。
  17. 一种电子设备,其特征在于,所述电子设备包括:
    壳体;和
    结构光三维成像装置,所述结构光三维成像装置设置在所述壳体上;所述结构光三维成像装置包括投影模组和相机模组;所述投影模组用于朝目标物体发射所述激光图案;所述投影模组包括激光发射器和反射式光栅;所述激光发射器包括出光面,激光自所述出光面出射;所述反射式光栅包括反射面,所述反射面相对所述出光面倾斜设置,所述反射面上设置有光栅微结构,所述光栅微结构用于将所述激光扩束以形成激光图案,所述反射面用于调整所述激光图案的出射角度;所述相机模组用于接收经目标物体反射后的所述激光图案。
  18. 根据权利要求17所述的电子设备,其特征在于,所述激光发射器包括边发射型激光器或垂直腔面发射激光器。
  19. 根据权利要求17所述的电子设备,其特征在于,所述投影模组还包括基板,所述激光发射器设置在所述基板上,所述出光面与所述基板垂直。
  20. 根据权利要求19所述的电子设备,其特征在于,所述投影模组还包括固定件,所述固定件设置在所述基板上,所述反射式光栅包括与所述反射面相背的安装面,所述固定件与所述反射式光栅连接于所述安装面以固定所述反射式光栅。
  21. 根据权利要求19所述的电子设备,其特征在于,所述反射式光栅为三角棱镜,所述反射式光栅包括承载面、所述反射面、及连接所述承载面与所述反射面的连接面,所述承载面设置在所述基板上。
  22. 根据权利要求17所述的电子设备,其特征在于,所述光栅微结构为纳米级光栅微结构并均匀分布在所述反射面上。
  23. 根据权利要求17所述的电子设备,其特征在于,所述反射面上设置有所述光栅微结构的区域覆盖所述激光的发光视场范围。
  24. 根据权利要求17所述的电子设备,其特征在于,所述激光发射器和所述反射 式光栅之间设置有准直透镜,且所述准直透镜位于所述激光的入射光路上,用于将激光发射器发出的光线变成准直光线后投射至反射式光栅;和/或
    所述激光图案的出射光路上设置有调节镜头,以调整出射光束的光学性能。
PCT/CN2019/090828 2018-09-14 2019-06-12 投影模组、结构光三维成像装置和电子设备 WO2020052300A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/043,954 US11467419B2 (en) 2018-09-14 2019-06-12 Projection module, structured light three-dimensional imaging device and electronic apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201821510410.0U CN208795953U (zh) 2018-09-14 2018-09-14 投影模组、结构光三维成像装置和电子设备
CN201811076642.4A CN110908131A (zh) 2018-09-14 2018-09-14 投影模组、结构光三维成像装置和电子设备
CN201821510410.0 2018-09-14
CN201811076642.4 2018-09-14

Publications (1)

Publication Number Publication Date
WO2020052300A1 true WO2020052300A1 (zh) 2020-03-19

Family

ID=69776902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/090828 WO2020052300A1 (zh) 2018-09-14 2019-06-12 投影模组、结构光三维成像装置和电子设备

Country Status (2)

Country Link
US (1) US11467419B2 (zh)
WO (1) WO2020052300A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022132047A1 (en) * 2020-12-17 2022-06-23 Ams Sensors Asia Pte. Ltd. Structured light generation

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004163652A (ja) * 2002-11-13 2004-06-10 Olympus Corp 光制御装置
CN105892257A (zh) * 2014-12-10 2016-08-24 青岛理工大学 正弦结构光记录全息图的方法及装置
CN106941241A (zh) * 2016-10-21 2017-07-11 武汉光迅科技股份有限公司 一种基于ebl的激光器加工方法及其应用方法
CN107167997A (zh) * 2017-06-05 2017-09-15 深圳奥比中光科技有限公司 激光投影模组及深度相机
CN108490636A (zh) * 2018-04-03 2018-09-04 Oppo广东移动通信有限公司 结构光投射器、光电设备及电子装置
CN108508621A (zh) * 2018-03-12 2018-09-07 广东欧珀移动通信有限公司 结构光投射模组、图像获取装置及电子设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE0002233L (sv) * 2000-06-15 2001-09-17 Multichannel Instr Ab Optiskt system för akromatisk avbildning, innefattande konkavspegel
US20020105725A1 (en) * 2000-12-18 2002-08-08 Sweatt William C. Electrically-programmable optical processor with enhanced resolution
US6795182B2 (en) * 2001-07-06 2004-09-21 Arroyo Optics, Inc. Diffractive fourier optics for optical communications
US7659987B2 (en) * 2004-09-16 2010-02-09 Canon Kabushiki Kaisha Device and method for acquiring information on objective substance to be detected by detecting a change of wavelength characteristics on the optical transmittance
US7330258B2 (en) * 2005-05-27 2008-02-12 Innovative Technical Solutions, Inc. Spectrometer designs
US8251517B2 (en) * 2007-12-05 2012-08-28 Microvision, Inc. Scanned proximity detection method and apparatus for a scanned image projection system
EP3141954B1 (en) * 2014-05-06 2024-04-24 Ningbo Sunny Opotech Co., Ltd. Light-deflection three-dimensional imaging device and projection device, and application thereof
US10620511B2 (en) * 2015-06-23 2020-04-14 Nec Corporation Projection device, projection system, and interface apparatus
DE102018208417A1 (de) * 2018-05-28 2019-11-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Projektionsvorrichtung und Projektionsverfahren

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004163652A (ja) * 2002-11-13 2004-06-10 Olympus Corp 光制御装置
CN105892257A (zh) * 2014-12-10 2016-08-24 青岛理工大学 正弦结构光记录全息图的方法及装置
CN106941241A (zh) * 2016-10-21 2017-07-11 武汉光迅科技股份有限公司 一种基于ebl的激光器加工方法及其应用方法
CN107167997A (zh) * 2017-06-05 2017-09-15 深圳奥比中光科技有限公司 激光投影模组及深度相机
CN108508621A (zh) * 2018-03-12 2018-09-07 广东欧珀移动通信有限公司 结构光投射模组、图像获取装置及电子设备
CN108490636A (zh) * 2018-04-03 2018-09-04 Oppo广东移动通信有限公司 结构光投射器、光电设备及电子装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022132047A1 (en) * 2020-12-17 2022-06-23 Ams Sensors Asia Pte. Ltd. Structured light generation

Also Published As

Publication number Publication date
US20210124181A1 (en) 2021-04-29
US11467419B2 (en) 2022-10-11

Similar Documents

Publication Publication Date Title
CN105319724B (zh) 一种便于集成的激光模组及图像信息处理装置
CN208795953U (zh) 投影模组、结构光三维成像装置和电子设备
CN208432844U (zh) 投影模组、光电装置和电子设备
CN208795952U (zh) 投射模组、成像装置及电子设备
US20170351110A1 (en) Laser Diode Collimator and a Pattern Projecting Device Using Same
WO2019174434A1 (zh) 结构光投射器、深度相机和电子设备
TWI771569B (zh) 鐳射投射模組、深度相機及電子裝置
WO2019201010A1 (zh) 激光投射器、相机模组和电子装置
CN110716377A (zh) 投影模组、光电装置和电子设备
US20170068098A1 (en) Optical apparatus
CN108646425B (zh) 激光投射器、图像获取装置及电子设备
US10895753B2 (en) Structured light generation device and diffractive optical element thereof
CN205356533U (zh) 结构紧凑的图像信息处理装置、激光模组及光路结构
WO2019233103A1 (zh) 衍射光学元件、光电模组、输入输出组件及电子设备
CN111694161A (zh) 光发射模组、深度相机及电子设备
CN208569285U (zh) 投影模组、光电装置及电子设备
TW201939108A (zh) 鐳射投射模組、深度相機和電子裝置
WO2020052300A1 (zh) 投影模组、结构光三维成像装置和电子设备
CN108388065B (zh) 结构光投射器、光电设备和电子装置
CN110908131A (zh) 投影模组、结构光三维成像装置和电子设备
CN108563032A (zh) 结构光投射器、摄像组件和电子设备
CN105319723B (zh) 一种图像信息处理装置
EP3567426B1 (en) Laser projection module, depth camera, and electronic device
CN108490595B (zh) 结构光投射模组、图像获取装置及电子设备
CN212647233U (zh) 光投射器、相机模组和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19860692

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19860692

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19860692

Country of ref document: EP

Kind code of ref document: A1