WO2023065117A1 - 扫描模组及测距装置 - Google Patents

扫描模组及测距装置 Download PDF

Info

Publication number
WO2023065117A1
WO2023065117A1 PCT/CN2021/124736 CN2021124736W WO2023065117A1 WO 2023065117 A1 WO2023065117 A1 WO 2023065117A1 CN 2021124736 W CN2021124736 W CN 2021124736W WO 2023065117 A1 WO2023065117 A1 WO 2023065117A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
protrusion
scanning module
protrusions
component
Prior art date
Application number
PCT/CN2021/124736
Other languages
English (en)
French (fr)
Inventor
周立奎
杨晶
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2021/124736 priority Critical patent/WO2023065117A1/zh
Publication of WO2023065117A1 publication Critical patent/WO2023065117A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems

Definitions

  • the present application relates to the technical field of laser ranging, in particular to a scanning module and a ranging device.
  • Distance measuring devices such as mechanical lidar
  • bearings containing lubricating grease are used.
  • the volatilization of the grease inside the bearing will be accelerated. If the volatilized grease is attached to the components related to the receiving and receiving optical circuit, it will affect the performance of the laser radar.
  • Embodiments of the present application provide a scanning module and a distance measuring device.
  • Embodiments of the present application provide a scanning module, and the scanning module includes a first component, a second component and a sealing component.
  • the second component is installed in the first component through a bearing, the bearing is located in the gap between the first component and the second component, and the second component can be opposite to the first component turn.
  • At least part of the sealing assembly is disposed adjacent to the bearing and located in the gap, the sealing assembly includes a fixed part and a movable part, the fixed part is installed on the inner side of the first component, and the movable part
  • the fixed part is installed on the outer side of the second component, and the fixed part is spaced opposite to the movable part and together form a bent channel.
  • Embodiments of the present application provide a distance measuring device, which includes the above-mentioned scanning module and distance measuring module.
  • the ranging module is used to emit light beams to the scanning module, and the scanning module is used to change the transmission direction of the light beams before emitting, and the light beams reflected by the object are incident on the scanning module after passing through the scanning module.
  • the distance measuring module is used for determining the distance of the object relative to the distance measuring device according to the reflected light beam.
  • a bearing is installed in the gap between the first component and the second component, and the second component and the first component can move relative to each other, and at least part of the sealing component is arranged adjacent to the bearing and Located in the gap, when the bearing rotates, the sealing assembly can block the volatilization of grease inside the bearing to a certain extent.
  • the fixed part and the movable part in the sealing assembly are arranged opposite to each other at intervals, and a bent channel is formed between the fixed part and the movable part, so that the grease is mainly confined in the channel, and the channel communicates with one side of the bearing, so that the bearing One side of the bearing forms a non-contact seal, which reduces the impact of volatilization of bearing grease on the range of the distance measuring device without increasing the rotational power of the bearing.
  • FIG. 1 is a schematic diagram of a three-dimensional structure of a distance measuring device in some embodiments of the present application
  • Fig. 2 is a schematic diagram of a distance measurement principle and a schematic diagram of a module of a distance measurement device according to some embodiments of the present application;
  • Fig. 3 is a schematic diagram of a scanning pattern of a ranging device in some embodiments of the present application.
  • Fig. 4 is a schematic structural diagram of a scanning module in some embodiments of the present application.
  • Fig. 5 is a schematic cross-sectional view of the scanning module shown in Fig. 4 along line V-V;
  • Fig. 6 is the enlarged schematic view of VI in the scanning module shown in Fig. 5;
  • Fig. 7 is an enlarged schematic view of VII in the scanning module shown in Fig. 6;
  • Fig. 8 is a three-dimensional structural schematic diagram of a movable part in the scanning module shown in Fig. 5;
  • Fig. 9 is a schematic plan view of the movable member shown in Fig. 8.
  • FIG. 10 is a schematic structural diagram of a scanning module in another embodiment of the present application.
  • Fig. 11 is an enlarged schematic view of XI in the scanning module shown in Fig. 10;
  • FIG. 12 is a schematic perspective view of the three-dimensional structure of the movable part in the scanning module shown in FIG. 10;
  • Fig. 13 is a schematic plan view of the movable member shown in Fig. 12;
  • Fig. 14 is a schematic structural diagram of a scanning module in some other embodiments of the present application.
  • Fig. 15 is an enlarged schematic view of XV in the scanning module shown in Fig. 14;
  • Fig. 16 is a schematic perspective view of a movable part in the scanning module shown in Fig. 14;
  • Fig. 17 is a schematic plan view of the movable member shown in Fig. 16;
  • Fig. 18 is a schematic perspective view of another movable part in the scanning module shown in Fig. 14;
  • Fig. 19 is a schematic plan view of the movable member shown in Fig. 18;
  • Fig. 20 is a schematic structural diagram of a scanning module in some other embodiments of the present application.
  • Fig. 21 is an enlarged schematic view of XXI in the scanning module shown in Fig. 20;
  • Fig. 22 is a three-dimensional structural schematic diagram of a movable part in the scanning module shown in Fig. 20;
  • Fig. 23 is a schematic plan view of the movable member shown in Fig. 22;
  • Fig. 24 is a schematic perspective view of another movable part in the scanning module shown in Fig. 20;
  • Fig. 25 is a schematic plan view of the movable element shown in Fig. 24 .
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • a feature defined as “first” or “second” may explicitly or implicitly include one or more of said features.
  • “plurality” means two or more, unless otherwise specifically defined.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected, or integrally connected; it can be mechanically connected, or electrically connected, or can communicate with each other; it can be directly connected, or indirectly connected through an intermediary, and it can be the internal communication of two components or the interaction of two components relation. Those of ordinary skill in the art can understand the specific meanings of the above terms in this application according to specific situations.
  • a first feature being "on” or “under” a second feature may include direct contact between the first and second features, and may also include the first and second features Not in direct contact but through another characteristic contact between them.
  • “above”, “above” and “above” the first feature on the second feature include that the first feature is directly above and obliquely above the second feature, or simply means that the first feature is horizontally higher than the second feature.
  • “Below”, “beneath” and “under” the first feature to the second feature include that the first feature is directly below and obliquely below the second feature, or simply means that the first feature has a lower level than the second feature.
  • an embodiment of the present application provides a distance measuring device 1000 .
  • the ranging device 1000 includes a scanning module 100 and a ranging module 300 .
  • the distance measuring module 300 is used to emit light beams to the scanning module 100, and the scanning module 100 is used to change the transmission direction of the light beams before emitting.
  • the distance module 300 is used to determine the distance of the object relative to the distance measuring device 1000 according to the reflected light beam.
  • the scanning module 100 provided by various embodiments of the present application can be applied to a distance measuring device 1000, and the distance measuring device 1000 can be an electronic device such as a laser radar or a laser distance measuring device.
  • the distance measuring device 1000 can be used to sense external environment information, for example, distance information, orientation information, reflection intensity information, speed information, etc. of environmental objects.
  • the distance measuring device 1000 can detect the distance from the object to the distance measuring device 1000 by measuring the time of light propagation between the distance measuring device 1000 and the object, that is, the time of flight (Time-of-Flight, TOF). distance.
  • the distance measuring device 1000 can also detect the distance from the object to the distance measuring device 1000 by other technologies, such as a distance measuring method based on phase shift (phase shift) measurement, or a distance measuring method based on frequency shift (frequency shift) measurement, There is no limitation here. For ease of understanding, the working process of distance measurement will be described below with reference to the distance measurement device 1000 shown in FIG. 2 .
  • the ranging device 1000 may include a transmitting circuit 310 , a receiving circuit 320 , a sampling circuit 330 and an arithmetic circuit 340 .
  • the transmitting circuit 310 may transmit a sequence of light pulses (eg, a sequence of laser pulses).
  • the receiving circuit 320 can receive the light pulse sequence reflected by the object to be detected, and perform photoelectric conversion on the light pulse sequence to obtain an electrical signal, and then output the electrical signal to the sampling circuit 330 after being processed.
  • the sampling circuit 330 can sample the electrical signal to obtain a sampling result.
  • the arithmetic circuit 340 can determine the distance between the distance measuring device 1000 and the detected object based on the sampling result of the sampling circuit 330 .
  • the distance measuring device 1000 may further include a control circuit 350, which can control other circuits, for example, control the working time of each circuit and/or set parameters for each circuit.
  • a control circuit 350 can control other circuits, for example, control the working time of each circuit and/or set parameters for each circuit.
  • the ranging device 1000 shown in FIG. 2(b) includes a transmitting circuit 310, a receiving circuit 320, a sampling circuit 330 and an arithmetic circuit 340 for emitting a light beam for detection
  • the implementation of the present application Examples are not limited thereto, the number of any one of the transmitting circuit 310, the receiving circuit 320, the sampling circuit 330, and the computing circuit 340 may also be at least two, for emitting at least two paths in the same direction or in different directions respectively.
  • Light beams; wherein, the at least two light paths can be emitted at the same time, or emitted at different times.
  • the light emitting chips in the at least two emitting circuits 310 are packaged in the same module.
  • each emitting circuit 310 includes a laser emitting chip, and the laser emitting chips in at least two emitting circuits 310 are packaged together and accommodated in the same packaging space.
  • the distance measuring device 1000 may further include a scanning module 100 for changing the propagation direction of at least one laser pulse sequence emitted by the transmitting circuit.
  • the module including the transmitting circuit 310, the receiving circuit 320, the sampling circuit 330 and the operation circuit 340 may be called as The ranging module 300 , the ranging module 300 may be independent of other modules, for example, independent of the scanning module 100 .
  • the distance measuring device 1000 may adopt a coaxial optical path, that is, the light beam emitted by the distance measuring device 1000 and the reflected light beam share at least part of the light path in the distance measuring device 1000 .
  • a coaxial optical path that is, the light beam emitted by the distance measuring device 1000 and the reflected light beam share at least part of the light path in the distance measuring device 1000 .
  • at least one laser pulse sequence emitted by the transmitting circuit 310 is transmitted through the scanning module 100 in a changed direction, and the laser pulse sequence reflected by the detected object enters the receiving circuit 320 after passing through the scanning module 100 .
  • the distance measuring device 1000 may also adopt an off-axis optical path, that is, the light beam emitted by the distance measuring device 1000 and the reflected light beam are respectively transmitted along different optical paths in the distance measuring device 1000 .
  • Fig. 2(a) shows a schematic diagram of an embodiment in which the distance measuring device 1000 of the present invention adopts a coaxial optical path.
  • the ranging device 1000 includes a ranging module 300, and the ranging module group 300 includes a transmitter 301 (which may include the above-mentioned transmitting circuit), a collimation element 302, and a detector 303 (which may include the above-mentioned receiving circuit 320, sampling circuit 330 and computing circuit 340) and the optical path changing element 304.
  • the ranging module 300 is used to emit light beams, receive the returned light, and convert the returned light into electrical signals.
  • the transmitter 301 can be used to transmit the light pulse sequence.
  • the transmitter 301 may emit a sequence of laser pulses.
  • the laser beam emitted by the transmitter 301 is a narrow-bandwidth beam whose wavelength is outside the range of visible light.
  • the collimating element 302 is arranged on the outgoing light path of the emitter 301 for collimating the light beam emitted from the emitter 301 , collimating the light beam emitted by the emitter 301 into parallel light and emitting to the scanning module 100 .
  • the collimation element 302 is also used for converging at least a part of the returned light reflected by the detected object.
  • the collimating element 302 may be a collimating lens or other elements capable of collimating light beams.
  • the transmitting optical path and the receiving optical path in the distance measuring device 1000 are combined before the collimation element 302 through the optical path changing element 304, so that the emitting optical path and the receiving optical path can share the same collimation
  • the element 302 makes the optical path more compact.
  • the emitter 301 and the detector 303 respectively use their own collimating elements, and the optical path changing element is arranged on the optical path after the collimating element.
  • the optical path changing element 304 can use a small area of reflection A mirror is used to combine the transmitting light path and the receiving light path.
  • the optical path changing element 304 may also use a reflector with a through hole, wherein the through hole is used to transmit the outgoing light of the emitter, and the reflector is used to reflect the return light to the detector. In this way, the shielding of the return light by the support of the small reflector in the case of using the small reflector can be reduced.
  • the optical path changing element 304 deviates from the optical axis of the collimating element 302 .
  • the optical path changing element may also be located on the optical axis of the collimating element.
  • the ranging device 1000 also includes a scanning module 100 .
  • the scanning module 100 is placed on the outgoing light path of the ranging module 300.
  • the scanning module 100 is used to change the transmission direction of the collimated light beam 305 emitted by the collimating element 302 and project it to the external environment, and project the return light to the collimated beam.
  • Straight element 302 The returning light is converged onto the detector 303 through the collimation element 302 .
  • the scanning module 100 may include at least one optical element for changing the propagation path of the beam, wherein the optical element may change the propagation path of the beam by reflecting, refracting, diffracting, etc. the beam.
  • the scanning module 100 includes lenses, mirrors, prisms, gratings, liquid crystals, optical phased arrays (Optical Phased Array), or any combination of the above optical elements.
  • at least part of the optical elements are movable, for example, driven by a driving module to move the at least part of the optical elements, and the moving optical elements can reflect, refract or diffract light beams to different directions at different times.
  • multiple optical elements of the scanning module 100 may rotate or vibrate around a common axis 101 , each rotating or vibrating optical element is used to continuously change the propagation direction of the incident light beam.
  • the multiple optical elements of the scanning module 100 may rotate at different rotational speeds, or vibrate at different speeds.
  • at least some of the optical elements of the scanning module set 100 can rotate at substantially the same rotational speed.
  • the plurality of optical elements of the scanning module 100 may also rotate around different axes.
  • the multiple optical elements of the scanning module 100 may also rotate in the same direction or in different directions; or vibrate in the same direction or in different directions, which is not limited here.
  • the scanning module 100 includes a first optical element 102 and a driver 104 connected to the first optical element 102, the driver 104 is used to drive the first optical element 102 to rotate around the rotation axis 101, so that the first optical element 102
  • the direction of the collimated light beam 305 is changed.
  • the first optical element 102 projects the collimated light beam 305 in different directions.
  • the angle between the direction of the collimated light beam 305 changed by the first optical element 102 and the rotation axis 101 changes as the first optical element 102 rotates.
  • the first optical element 102 includes a pair of opposing non-parallel surfaces through which the collimated light beam 305 passes.
  • the first optical element 102 comprises a prism whose thickness varies along at least one radial direction.
  • the first optical element 102 includes a wedge prism for refracting the collimated light beam 305 .
  • the scanning module 100 may further include a second optical element 103 , the second optical element 103 rotates around the rotation axis 101 , and the rotation speed of the second optical element 103 is different from that of the first optical element 102 .
  • the second optical element 103 is used to change the direction of the light beam projected by the first optical element 102 .
  • the second optical element 103 is connected with another driver 105, and the driver 105 drives the second optical element 103 to rotate.
  • the first optical element 102 and the second optical element 103 can be driven by the same or different drivers, so that the rotational speed and/or the direction of rotation of the first optical element 102 and the second optical element 103 are different, thereby projecting a collimated light beam 305 to the external space In different directions, a larger spatial range can be scanned.
  • the controller 106 controls the driver 104 and the driver 105 to drive the first optical element 102 and the second optical element 103 respectively.
  • the rotational speeds of the first optical element 102 and the second optical element 103 can be determined according to the area and pattern expected to be scanned in practical applications.
  • Drives 104 and 105 may include motors or other drives.
  • the second optical element 103 includes a pair of opposing non-parallel surfaces through which the light beam passes.
  • the second optical element 103 comprises a prism whose thickness varies along at least one radial direction.
  • the second optical element 103 comprises a wedge prism.
  • the scanning module 100 may further include a third optical element (not shown in the figure) and a driver for driving the movement of the third optical element.
  • the third optical element comprises a pair of opposite non-parallel surfaces through which the light beam passes.
  • the third optical element comprises a prism whose thickness varies along at least one radial direction.
  • the third optical element comprises a wedge prism. At least two of the first, second and third optical elements rotate at different rotational speeds and/or deflections.
  • FIG. 3 is a schematic diagram of a scanning pattern of the ranging device 1000 . It can be understood that when the speed of the optical elements in the scanning module 100 changes, the scanning pattern will also change accordingly.
  • the light 107 projected by the scanning module 100 hits the detected object 109 , a part of the light is reflected by the detected object 109 to the distance measuring device 1000 in a direction opposite to the projected light 107 .
  • the return light 108 reflected by the detection object 109 is incident to the collimation element 302 after passing through the scanning module 100 .
  • the detector 303 and the emitter 301 are placed on the same side of the collimation element 302, and the detector 303 is used to convert at least part of the return light passing through the collimation element 302 into an electrical signal.
  • each optical element is coated with an anti-reflection film.
  • the thickness of the anti-reflection film is equal to or close to the wavelength of the light beam emitted by the emitter 301, which can increase the intensity of the transmitted light beam.
  • a filter layer is coated on the surface of a component located on the beam propagation path in the distance measuring device 1000, or an optical filter is arranged on the beam propagation path, for at least transmitting the beam emitted by the transmitter 301. band, and reflect other bands to reduce the noise brought by ambient light to the receiver.
  • the transmitter 301 may include a laser diode, and the laser diode emits nanosecond-level laser pulses.
  • the laser pulse receiving time can be determined, for example, the laser pulse receiving time can be determined by detecting the rising edge time and/or falling edge time of the electrical signal pulse. In this way, the distance measuring device 1000 can calculate the TOF by using the pulse receiving time information and the pulse sending time information, so as to determine the distance from the detection object 109 to the distance measuring device 1000 .
  • the distance and orientation detected by the ranging device 1000 can be used for remote sensing, obstacle avoidance, surveying and mapping, modeling, navigation and so on.
  • the distance measuring device 1000 of the embodiment of the present invention can be applied to a mobile platform, and the distance measuring device 1000 can be installed on a platform body of the mobile platform.
  • the mobile platform with the distance measuring device 1000 can measure the external environment, for example, measure the distance between the mobile platform and obstacles for purposes such as obstacle avoidance, and perform two-dimensional or three-dimensional mapping of the external environment.
  • the mobile platform includes at least one of an unmanned aerial vehicle, an automobile, a remote control vehicle, a robot, and a camera.
  • the platform body When the ranging device 1000 is applied to an unmanned aerial vehicle, the platform body is the fuselage of the unmanned aerial vehicle.
  • the platform body When the distance measuring device 1000 is applied to a car, the platform body is the body of the car.
  • the car may be an automatic driving car or a semi-automatic driving car, which is not limited here.
  • the ranging device 1000 When the ranging device 1000 is applied to a remote control car, the platform body is the body of the remote control car.
  • the platform body When the ranging device 1000 is applied to a robot, the platform body is a robot.
  • the distance measuring device 1000 When the distance measuring device 1000 is applied to a camera, the platform body is the camera itself.
  • the scanning module 100 includes a first component 10 , a second component 30 and a sealing component 50 .
  • the second component 30 is installed in the first component 10 through the bearing 20 , the bearing 20 is located in the gap 40 between the first component 10 and the second component 30 , and the second component 30 and the first component 10 can rotate relative to each other.
  • At least part of the sealing assembly 50 is adjacent to the bearing 20 and located in the gap 40.
  • the sealing assembly 50 includes a fixed part 51 and a movable part 53.
  • the fixed part 51 is installed on the inner side 11 of the first assembly 10, and the movable part 53 is installed on the second On the outer side of the second assembly 30 , the fixed part 51 and the movable part 53 are opposite to each other at intervals and jointly form a bent channel 60 .
  • Distance measuring devices such as mechanical lidar
  • bearings containing lubricating grease are used.
  • the volatilization of the grease inside the bearing will be accelerated. If the volatilized grease is attached to the components related to the receiving and receiving optical circuit, it will affect the performance of the laser radar, such as ranging
  • the range of the device may be attenuated by more than 50%.
  • the scanning module 100 is applied in a mechanical laser radar, and a bearing 20 is installed in the gap 40 between the first component 10 and the second component 30, and the second component 30 and the first component 10 can move relative to each other. At least part of the sealing assembly 50 is adjacent to the bearing 20 and located in the gap 40. When the bearing 20 rotates, the sealing assembly 50 can block the volatilization of grease inside the bearing 20 to a certain extent. Moreover, the fixed piece 51 and the movable piece 53 in the sealing assembly 50 are arranged opposite to each other at intervals, and a bent channel 60 is formed between the fixed piece 51 and the movable piece 53, so that the grease is mainly confined in the channel 60, and the channel 60 is connected with the bearing.
  • One side of the bearing 20 is communicated, thereby forming a non-contact seal on one side of the bearing 20, without increasing the rotational power of the bearing 20, reducing the impact of the volatilization of the grease of the bearing 20 on the distance measuring device 1000 (shown in FIG. 1 ) The impact of scale.
  • the size of the gap 40 between the first assembly 10 and the second assembly 30 is related to the size between the inner ring 21 and the outer ring 23 of the bearing 20, so that the bearing 20 can be sleeved between the first assembly 10 and the second assembly. Between the components 30, there will be no detachment phenomenon during the rotation process.
  • the first assembly 10 may be a stator assembly
  • the second assembly 30 may be a rotor assembly
  • the gap 40 between the second assembly 30 and the first assembly 10 is installed with a bearing 20 .
  • the bearing 20 is sleeved outside the second component 30 (the inner ring 21 of the bearing 20 fits with the second component 30 and the inner ring 21 of the bearing 20 can rotate), and the first component 10 is sleeved outside the bearing 20 .
  • the second component 30 can rotate relative to the first component 10
  • the inner ring 21 of the bearing 20 follows the rotation of the second component 30 .
  • the first component 10 may be a rotor component
  • the second component 30 may be a stator component
  • the gap 40 between the second component 30 and the first component 10 is installed with the bearing 20 .
  • the bearing 20 is sleeved outside the second assembly 30 (the inner ring 21 of the bearing 20 fits with the second assembly 30 , and the outer ring 23 of the bearing 20 can rotate), and the first assembly 10 is sleeved outside the bearing 20 .
  • the first component 10 can rotate relative to the second component 30 , and the outer ring 23 of the bearing 20 follows the rotation of the first component 10 .
  • the structure of the scanning module 100 is described in detail by taking the first component 10 as a stator component and the second component 30 as a rotor component as an example.
  • the volatilized grease When the internal grease volatilizes during the rotation of the bearing 20, the volatilized grease will be thrown into the interior of the fixed part 51 due to the centrifugal force generated by the movable part 53 during the rotation of the movable part 53 following the second assembly 30. And because the fixed part 51 and the movable part 53 are opposite to each other and jointly form a bent passage 60, the passage 60 communicates with one side of the bearing 20, which increases the volatilization path of the grease, so that the rotation power of the bearing 20 is not increased. , can reduce the influence of volatilization of grease inside the bearing 20 on the measuring range of the distance measuring device 1000 .
  • the bearing 20 includes a first side 25 and a second side 27 opposite to each other.
  • the seal assembly 50 is disposed on the first side 25 and/or the second side 27 .
  • the scanning module 100 can also include a housing 70 , the window 71 of the housing 70 is equipped with a light-transmitting portion 73 , the first assembly 10 is fixed in the housing 70 , and the sealing assembly 50 is arranged on the bearing 20 and the light-transmitting portion 73 .
  • the window 71 can be set on the scanning module 100, the light beam emitted by the ranging module 300 passes through the scanning module 100 and then passes through the light-transmitting part 73 to the object to be detected. The light part 73 is incident into the housing 70 and reaches the distance measuring module 300 after passing through the scanning module 100.
  • a A sealing assembly 50 is provided. At this time, the first side 25 is closer to the side of the window 71 than the second side 27 , and the second side 27 is closer to the ranging module 30 than the first side 25 .
  • the sealing assembly 50 is disposed on the first side 25 of the bearing 20 . At this time, the sealing assembly 50 can prevent the grease volatilized from the inside of the bearing 20 from adhering to the window 71 . In another example, the sealing assembly 50 is disposed on the second side 27 of the bearing 20.
  • the sealing assembly 50 can prevent the grease volatilized from the bearing 20 Attached to the optical elements in the distance measuring module 300 to ensure the measurement accuracy of the distance measuring module 300 .
  • both the first side 25 and the second side 27 of the bearing 20 are provided with a seal assembly 50.
  • the seal assembly 50 can prevent the grease volatilized from the inside of the bearing 20 from adhering to the window 71, and can also prevent the bearing from 20 The volatilized grease adheres to the optical elements in the distance measuring module 300 to ensure the measurement accuracy of the distance measuring module 300 .
  • the first component 10 may include a mounting base 13 .
  • a hollow cavity 131 is defined in the mounting base 13 , and the fixing member 51 is disposed on an inner wall 1311 of the hollow cavity 131 .
  • the mounting seat 13 is used to fix the fixing member 51 , and the fixing member 51 can block part of the grease volatilized from the bearing 20 when the fixing member 51 does not affect the rotation of the bearing 20 .
  • the outer ring 23 of the bearing 20 abuts against the inner wall 1311 to limit the position of the bearing 20 .
  • the fixing member 51 is integrated with the mounting base 13 .
  • the fixing member 51 is a part of the mounting seat 13 extending from the inner wall 1311 toward the second component 30 , thereby making the structure of the first component 10 simple and easy to install.
  • the fixing member 51 and the mounting base 13 are separate structures, and the fixing member 51 can be fixed on the inner side wall 1311 by welding, gluing, etc., or the fixing member 51 can be detachably connected by screws. It is fixed on the inner wall 1311 to facilitate the replacement of the fixed part 51 and/or the movable part 53 after long-term use.
  • the first assembly 10 may further include a winding body 15 and a winding 17 .
  • the winding body 15 is installed on the inner wall 1311 of the hollow cavity 131 ; the winding 17 is wound on the winding body 15 .
  • the winding body 15 is a stator core, and the winding 17 is a coil.
  • the winding 17 can generate a specific magnetic field under the action of current, and the direction and strength of the magnetic field can be changed by changing the direction and strength of the current.
  • the second component 30 may include a yoke 31 and a magnet 33 .
  • the yoke 31 passes through the mounting seat 13 through the bearing 20 , and the movable member 53 is disposed on the outer peripheral wall 311 of the yoke 31 .
  • the magnet 33 is installed on the outer peripheral wall 311 of the yoke 31 and corresponds to the winding 17 .
  • the magnetic field generated by the magnet 33 interacts with the magnetic field generated by the winding 17 to generate a force. Since the winding 17 is fixed, the magnet 33 drives the yoke 31 to rotate under the force.
  • the receiving cavity 35 of the second component 30 is hollow, and the light beam emitted by the ranging module 300 (shown in FIG. 1 ) can pass through the receiving cavity 35 and pass through the scanning module 100 .
  • a prism 80 (that is, 102 or 103 in FIG. 2 ) may be provided in the housing cavity 35.
  • the prism 80 may be installed in cooperation with the inner peripheral wall 313 of the yoke 31 and fixed in the housing cavity 35.
  • the prism 80 is located at The outgoing light path and the return light path of the light beam emitted by the ranging module 300 .
  • the prism 80 can rotate synchronously with the second assembly 30 . When the prism 80 rotates, the transmission direction of the light beam passing through the prism 80 can be changed.
  • the movable part 53 and the magnetic yoke 31 are integrally structured, that is, the movable part 51 is a part of the structure extending from the outer peripheral wall 311 of the magnetic yoke 31 toward the first assembly 10, thereby reducing the number of connections between the movable part 53 and the magnetic yoke.
  • the assembly between 31 facilitates the installation of the second component 30 on the mounting base 13 .
  • the movable part 53 and the yoke 31 are separate structures.
  • the movable part 53 can be installed on the outer peripheral wall 311 of the magnetic yoke 31 first, and then the bearing 20 can be installed on the outer peripheral wall 311 of the magnetic yoke 31, and finally Then install the second assembly 30 with the movable member 53 and the bearing 20 on the mounting base 13 .
  • the movable part 53 and the magnetic yoke 31 are separated structures, it is convenient to replace the movable part 53 and/or the magnetic yoke 31 after long-term use.
  • both the fixed part 51 and the movable part 53 are an integral ring structure.
  • the sealing assembly 50 may further include an absorbing layer 55 disposed on the fixed part 51 and/or the movable part 53 and used to absorb grease volatilized from the bearing 20 .
  • the absorbing layer 55 is made of foam, oil-absorbing glue, and other materials that are compatible with grease, and is used to absorb the grease volatilized from the bearing 20 to the sealing assembly 50, and prevent it from adhering to the fixed part 51 and the movable part. 53 further volatilization of grease.
  • the absorbing layer 55 can be arranged on the surface of the fixed part 51, and when the movable part 53 rotates with the second assembly 30, the grease volatilized from the bearing 20 is thrown to the surface under the centrifugal force generated by the movable part 53.
  • the absorbing layer 55 on the fixing member 51 further prevents the grease volatilized from the bearing 20 from volatilizing to components other than the sealing assembly 50, so as to ensure that the measuring range of the distance measuring device 1000 (shown in FIG. 1 ) is not affected.
  • the absorbing layer 55 can be arranged on the surface of the movable member 53.
  • the absorbing layer 55 can be arranged on the surface of the movable member 53.
  • both the surface of the fixed part 51 and the surface of the movable part 53 are provided with an absorbing layer 55, and the grease volatilized when the bearing 20 rotates is absorbed when it adheres to the fixed part 51 and the movable part 53.
  • Layer 55 absorbs to prevent the grease attached to the fixed part 51 and the movable part 53 from volatilizing again, so that the grease volatilized in the bearing 20 is limited to the seal assembly 50 to the greatest extent, ensuring that other components in the scanning module 100 are not affected by the grease. , so as to ensure that the range of the distance measuring device 1000 is not affected.
  • the channel 60 formed between the fixed part 51 and the movable part 53 is stepped (shown in Fig. 6 and Fig. 7 ) or zigzag (shown in Fig. 10 ), during the rotation of the bearing 20, the grease volatilized from the bearing 20 can A stepped path or a zigzag path is followed within the channel 60 .
  • the sealing assembly 50 when the sealing assembly 50 is arranged on the first side 25, after the grease volatilized from the bearing 20 passes through the channel 60, the path of the volatilized grease from the bearing 20 to the window 71 is zigzag, and the closer to the first side 25 In the direction of direction, the less grease in the channel 60, the less grease is prevented from volatilizing onto the window 71, so that the light passing through the window 71 (including outgoing light and return light) will not be affected by the grease.
  • the fixing member 51 may include a plurality of first protrusions 511 spaced apart from each other, and a first space 513 is formed between two adjacent first protrusions 511 .
  • the movable element 53 includes a plurality of second protrusions 531 spaced apart from each other, and a second interval 533 is formed between two adjacent second protrusions 531 .
  • Each first protrusion 511 corresponds to a second protrusion 531 and forms a gap 52
  • the first interval 513 is opposite to the second interval 533 .
  • the first protrusion 511 extends a certain length from the inner side 11 of the first component 10 toward the second component 30
  • the second protrusion 531 extends from the outer peripheral wall 311 of the yoke 31 toward the first component 10 A certain length, so that the first protrusion 511 and the second protrusion 531 are spaced opposite each other, and the gap 52 between the first protrusion 511 and the second protrusion 531 ensures that the movable member 53 can rotate synchronously with the second assembly 30 and Not affected by the fixing piece 51.
  • a stepped channel 60 is formed between a plurality of spaced first protrusions 511 and a plurality of spaced second protrusions 531, so that the grease volatilized into the channel 60 cannot reach the window 71 or the optical element through a straight path , and the second protrusion 531 is spaced from the inner ring 21 of the bearing 20, so that the channel 60 communicates with the first side 25 of the bearing 20, and reduces the volatilization of grease inside the bearing 20 without affecting the rotational power of the bearing 20.
  • the influence of the range of the ranging device 1000 shown in FIG. 1 ).
  • the lengths of the multiple first protrusions 511 are all different; and/or, the lengths of the multiple second protrusions 531 are all different.
  • the lengths of the plurality of first protrusions 511 are different, while the lengths of the plurality of second protrusions 531 are the same.
  • the lengths of the plurality of second protrusions 531 are different, while the lengths of the plurality of first protrusions 511 are the same.
  • the lengths of the plurality of first protrusions 511 are all different, and the lengths of the plurality of second protrusions 531 are all different. It only needs to ensure that there is a gap 52 between the first protrusion 511 and its opposite second protrusion 531 .
  • the lengths of the plurality of first protrusions 511 increase sequentially, and the lengths of the plurality of second protrusions 531 The length decreases successively, so that the channel 60 formed between the fixed part 51 and the movable part 53 is a stepped labyrinth channel, and the first protrusion 511 and the second protrusion 531 arranged in this way are convenient for the fixed part 51 and the movable part. 53 installations.
  • the movable member 53 can be installed on the second assembly 30 first.
  • the outer peripheral wall 311, and then the first side 25 of the bearing 20 faces the movable member 53 and is installed on the outer peripheral wall 311 of the second assembly 30, and then the mounting seat 13 installed with the fixing member 51 is sleeved on the second assembly 30, the bearing 20 and the outer periphery of the movable member 53 form a whole, and the second protrusion 531 is opposite to the first protrusion 511 and separated from each other, and finally the whole body will be installed on the casing 70 of the scanning module 100 .
  • the channel 60 formed between the fixed part 51 and the movable part 53 is a stepped labyrinth channel.
  • the movable member 53 and the bearing 20 can be installed side by side on the outer peripheral wall 311 of the second assembly 30, wherein, the movable part 53 is located on the first side 25 of the bearing 20, and then the mounting seat 13 and the fixed part 51 are sleeved on the outer periphery of the bearing 20 to form an integral body with the outer periphery of the movable part 51, and the second protrusion 531 It is opposite to and spaced from the first protrusion 511 , and finally the whole is installed in the housing 70 .
  • the bearing 20 and the movable member 53 can be arranged in parallel on the outer periphery of the second assembly 30 wall 311, and make the first side 25 of the bearing 20 face the movable part 53, then install the fixing part 51 on the inner side wall 131 of the mounting seat 13, and then set the mounting seat 13 with the fixing part 51 on the bearing 20,
  • the outer periphery of the movable member 53 is formed as a whole, and the second protrusion 531 is opposite to and spaced from the first protrusion 511 , and finally the whole is installed in the casing 70 .
  • the width of the first protrusion 511 (in the direction from the second side 27 to the first side 25 of the bearing 20 ) is smaller than or equal to the width of the second protrusion 531 .
  • the width of the first protrusion 511 is b
  • the width of the second protrusion 531 is a
  • a>b thus, when the movable member 53 rotates synchronously with the second assembly 30, the second protrusion 531 is attached to the second protrusion.
  • the grease on the 531 is thrown into the first space 513 under the action of centrifugal force, preventing the grease adhering to the second protrusion 531 from volatilizing further to the window 71 or the optical element.
  • the height of the gap 52 between the first protrusion 511 and the second protrusion 531 ranges from [0.20 mm, 0.50 mm].
  • the height of the gap 52 can be 0.20mm, 0.22mm, 0.24mm, 0.26mm, 0.28mm, 0.30mm, 0.32mm, 0.34mm, 0.36mm, 0.38mm, 0.40mm, 0.42mm, 0.44mm, 0.46mm, Any one of 0.48mm and 0.50mm, as long as the height of the gap 52 is in the range of [0.20mm, 0.50mm].
  • the volatilization path width of the grease volatilized from the bearing 20 in the gap 52 that is, the height of the gap 52
  • the volatilization path width of the grease volatilized from the bearing 20 in the gap 52 can be effectively reduced, and the volatilization of the grease to the window 71 or other optical elements can be reduced. content, to reduce the impact of volatilization of grease inside the bearing 20 on the range of the distance measuring device 1000 (shown in FIG. 1 ).
  • the absorbing layer 55 in the sealing assembly 50 can be arranged on the side 5111 of the first protrusion 511 and/or the bottom 5131 of the first space 513, and is used to absorb the volatilized gas from the bearing 20 grease.
  • the absorbing layer 55 can be disposed on the side 5111 of the first protrusion 511, wherein the side 5111 includes three sides, namely the left side and the right side of the first protrusion 511 and the first protrusion 511 and the second protrusion. 531, thereby absorbing the grease volatilized from the bearing 20 over a larger area.
  • the absorbing layer 55 can be disposed on the bottom 5131 of the first compartment 513 , so that the grease adhering to the second protrusion 531 is directly thrown to the absorbing layer 55 on the bottom 5131 and absorbed by the absorbing layer 55 .
  • the absorbing layer 55 can be arranged on the side 5111 of the first protrusion 511 and the bottom 5131 of the first space 513, so as to absorb all the grease volatilized from the bearing 20 into the absorbing layer 55 and prevent the grease volatilized from the bearing 20 from passing through the channel. 60 evaporates onto the window 71 or other optical components.
  • the fixing member 51 includes a first body 519, a first protrusion 511 extends from the first body 519, and one of the first protrusions 511 interferes with the bearing 20 or the first body 519 and the bearing 20 interferes;
  • the movable member 53 may further include a second body 535 , the second protrusion 531 extends from the second body 535 , the second body 535 interferes with the bearing 20 or the second protrusion 531 interferes with the bearing 20 .
  • a bearing cover 29 is provided between the inner ring 21 of the bearing 20 and the outer ring 23 of the bearing 20.
  • the arrangement of the bearing cover 29 can ensure that the grease only lubricates the rolling elements of the bearing 20 without overflowing, as shown in Figure 6 and As shown in FIG. 7 , the second body 535 interferes with the inner ring 21 of the bearing 20 , and a first protrusion 511 close to the bearing 20 interferes with the outer ring 23 of the bearing 20 . Alternatively, the second body 535 interferes with the inner ring 21 of the bearing 20 , and the first body 519 interferes with the outer ring 23 of the bearing 20 .
  • the second protrusion 531 interferes with the inner ring 21 of the bearing 20, and the first protrusion 511 Conflicts with the outer ring 23 of the bearing 20 .
  • the second protrusion 531 interferes with the inner ring 21 of the bearing 20, and the first body 519 and the first body 519 The collision of the outer ring 23 of the bearing 20 makes the second protrusion 531 avoid the bearing cap 29 , thereby preventing the second protrusion 531 from damaging the bearing cap 29 during rotation and preventing the grease inside the bearing 20 from overflowing.
  • the channel 60 formed between the fixed part 51 and the movable part 53 is a staggered labyrinth channel.
  • the fixing member 51 includes a plurality of first protrusions 511 spaced apart from each other, and a first interval 513 is formed between two adjacent first protrusions 511 .
  • the movable member 53 includes a plurality of second protrusions 531 spaced apart from each other, a second space 533 is formed between two adjacent second protrusions 531 , and the first protrusions 511 and the second protrusions 531 are alternately arranged at intervals.
  • first protrusions 511 and the second protrusions 531 are alternately arranged at intervals, which means that part of the second protrusions 531 extends into the first space 513, and is connected to the bottom 5131 of the first space 513 and the side wall 5133 of the first space 513. Space; part of the first protrusion 511 extends into the second space 533 and is spaced from the bottom 5331 of the second space 533 and the sidewall 5333 of the second space 533 .
  • first protrusions 511 are located between two adjacent second protrusions 531; except for a second protrusion 531 away from the bearing 20, the rest The second protrusions 531 are located between two adjacent first protrusions 511 . Therefore, it is ensured that the second protrusion 531 will not collide with the first protrusion 511 during the synchronous rotation of the movable member 53 and the second component 30 .
  • a plurality of first protrusions 511 and second protrusions 531 arranged alternately at intervals jointly form a staggered labyrinth channel, increasing the tortuousness of the channel 60, so that the propagation path of the grease volatilized from the bearing 20 in the channel 60 is also tortuous , so that the grease volatilized from the bearing 20 can be effectively prevented from volatilizing to the window 71 or other optical components, and without affecting the rotational power of the bearing 20, the volatilization of the grease inside the bearing 20 can reduce the impact on the distance measuring device 1000 (shown in FIG. 1 Shown) the impact of the range.
  • the lengths of the plurality of first protrusions 511 are the same; and/or, the lengths of the plurality of second protrusions 531 are the same.
  • the lengths of the plurality of first protrusions 511 are the same, while the lengths of the plurality of second protrusions 531 are different.
  • the lengths of the plurality of second protrusions 531 are the same, while the lengths of the plurality of first protrusions 511 are different.
  • the lengths of the plurality of first protrusions 511 are the same, and the lengths of the plurality of second protrusions 531 are the same.
  • the plurality of first protrusions 511 do not interfere with the bottom 5331 of the second interval 533 and the sidewall 5333 of the second interval 533, and the plurality of second protrusions 531 do not interfere with the bottom 5131 and the bottom 5131 of the first interval 513
  • the sidewall 5133 of the first interval 513 is sufficient.
  • each first protrusion 511 and the length of the second protrusion 531 are the same, so that the distance between each first protrusion 511 and the bottom 5331 of the second interval 533
  • the distance between each second protrusion 531 and the bottom 5131 of the first space 513 is the same, so that the grease volatilized from the bearing 20 has the same path size when passing through these gaps, effectively inhibiting further volatilization of the grease .
  • the widths of the channels 60 formed between the first protrusions 511 and the second protrusions 531 that are alternately arranged at intervals are all the same, that is, the intervals between the first protrusions 511 and the second protrusions 531 are the same. .
  • the absorbing layer 55 (as shown in FIG. 14 ) in the sealing assembly 50 can be arranged on the side 5111 of the first protrusion 511 and/or the bottom 5131 of the first space 513, and is used to absorb the grease volatilized from the bearing 20 .
  • the channel 60 includes a space, which is the space between the absorbent layer 55 and the second protrusion 531 .
  • the absorbing layer 55 can be disposed on the side 5111 of the first protrusion 511 (that is, the side wall 5133 of the first compartment 513), wherein the side 5111 includes three sides, which are the left side and the right side of the first protrusion 511 respectively.
  • the absorbing layer 55 can be disposed on the bottom 5131 of the first compartment 513 , so that the grease adhering to the second protrusion 531 is directly thrown to the absorbing layer 55 on the bottom 5131 and absorbed by the absorbing layer 55 .
  • the absorbing layer 55 can be arranged on the side 5111 of the first protrusion 511 and the bottom 5313 of the first space 513, so as to absorb all the grease volatilized from the bearing 20 into the absorbing layer 55 and prevent the grease volatilized from the bearing 20 from passing through the channel. 60 evaporates onto the window 71 or other optical components.
  • the fixing member 51 includes a first body 519, a first protrusion 511 extends from the first body 519, and one of the first protrusions 511 interferes with the bearing 20 or the first body 519 and the bearing 20 interferes;
  • the movable member 53 may further include a second body 535 , the second protrusion 531 extends from the second body 535 , the second body 535 interferes with the bearing 20 or the second protrusion 531 interferes with the bearing 20 .
  • a bearing cover 29 is provided between the inner ring 21 of the bearing 20 and the outer ring 23 of the bearing 20.
  • the arrangement of the bearing cover 29 can ensure that the grease only lubricates the rolling elements of the bearing 20 without overflowing, as shown in FIG. 11
  • the second body 535 interferes with the inner ring 21 of the bearing 20
  • a first protrusion 511 close to the bearing 20 interferes with the outer ring 23 of the bearing 20
  • the second body 535 interferes with the inner ring 21 of the bearing 20
  • the first body 519 interferes with the outer ring 23 of the bearing 20 .
  • the part of the second protrusion 531 corresponding to the inner ring 21 of the bearing 20 is in conflict with the inner ring 21 of the bearing 20, the second protrusion 531 of the remaining part is spaced from the bearing cap 29, and the first protrusion 511 is in contact with the outer surface of the bearing 20.
  • Circle 23 conflicts.
  • the part of the second protrusion 531 corresponding to the inner ring 21 of the bearing 20 is in conflict with the inner ring 21 of the bearing 20
  • the remaining part of the second protrusion 531 is spaced from the bearing cover 29, and the first body 519 is in contact with the outer ring of the bearing 20.
  • 23 conflicts, so that the second protrusion 531 and the bearing cap 29 are avoided, thereby preventing the second protrusion 531 from damaging the bearing cap 29 during rotation, and preventing the grease inside the bearing 20 from overflowing.
  • the sealing method between the fixed part 51 and the movable part 53 is a centrifugal sealing method.
  • the fixing member 51 includes two first protrusions 511 , and a receiving space 515 is formed between the two first protrusions 511 .
  • the movable part 53 includes a second protrusion 531, and the second protrusion 531 is accommodated in the accommodating space 515.
  • the second protrusion 531 includes a plurality of fins 5311 spaced apart from each other. on the contrary.
  • the fixing member 51 includes a first body 519 , and a first protrusion 511 extends from the first body 519 , wherein one of the first protrusions 511 interferes with the bearing 20 or the first body 519 interferes with the bearing 20 .
  • the movable member 53 may further include a second body 535, the second protrusion 531 extends from the second body 535, the second body 535 interferes with the inner ring 21 of the bearing 20 or the second protrusion 531 interferes with the inner ring 21 of the bearing 20 .
  • a first protrusion 511 near the bearing 20 interferes with the outer ring 23 of the bearing 20
  • the second body 535 interferes with the inner ring 21 of the bearing 20 .
  • the first body 519 interferes with the outer ring 23 of the bearing 20
  • the second body 535 interferes with the inner ring 21 of the bearing 20
  • the part of the second protrusion 531 corresponding to the inner ring 21 of the bearing 20 is in conflict with the inner ring 21 of the bearing 20
  • the second protrusion 531 of the remaining part is spaced from the bearing cap 29, and the first protrusion 511 is in contact with the outer surface of the bearing 20.
  • Circle 23 conflicts.
  • the part of the second protrusion 531 corresponding to the inner ring 21 of the bearing 20 is in conflict with the inner ring 21 of the bearing 20, the remaining part of the second protrusion 531 is spaced from the bearing cover 29, and the first body 519 is in contact with the outer ring of the bearing 20. 23, so as to prevent the second protrusion 531 from damaging the bearing cap 29 during rotation, and prevent the grease inside the bearing 20 from overflowing.
  • the lengths of the two first protrusions 511 are different, and the length of a first protrusion 511 close to the bearing 20 is less than or equal to the radial length of the outer ring 23 of the bearing 20, so that the first protrusion 511 and the outer ring of the bearing 20 Ring 23 interferes and avoids with bearing cover 29.
  • the value range of the height of the gap 52 between the first protrusion 511 far away from the bearing 20 and the body 535 is [0.20mm, 0.50mm], so that after the grease inside the bearing 20 volatilizes into the receiving space 515, it is released from the receiving space 515 to volatilize to the window 71 or the light-emitting element again.
  • the structure of the movable member 53 is an annular structure with centrifugal fins 5311, and the orientation of the fins 5311 is opposite to the turning direction of the movable member 53.
  • the fins 5311 face counterclockwise (that is, the fins 5311 are curved back, similar to the orientation of the blades of a centrifugal fan, and in a centrifugal fan, the backward curved blades are its The bending direction of the blade is opposite to the rotation direction of the impeller, and the outlet installation angle is less than 90°).
  • the fin 5311 extends from the second body 535 in a counterclockwise direction and away from the center of the movable member 53 .
  • the fins 5311 face clockwise (that is, the fins 5311 are forward-curved, similar to the orientation of the blades of a centrifugal fan, in a centrifugal fan , the forward-bent blade has the same blade bending direction as the impeller rotation direction, and the outlet installation angle is greater than 90°)
  • the fin 5311 extends from the second body 535 in a clockwise direction and away from the center of the movable member 53.
  • the fins 5311 can generate radial airflow when the movable member 53 rotates, so that the grease volatilized from the bearing 20 is thrown to the bottom 5151 of the accommodation space 515 under the action of the radial airflow generated by the movable member 53 , at the same time, a first protrusion 511 far away from the bearing 20 can further prevent grease from spreading toward the window 71 , reducing the grease from volatilizing onto the window 71 .
  • the second protrusion 531 may also include a blocking sheet 5313, the blocking sheet 5313 includes a first surface 53131 and a second surface 53133 opposite to each other, the first surface 53131 faces the bearing 20, and a plurality of fins 5311 are installed on the first surface 53131, and located between the first surface 53131 and the bearing 20, the blocking piece 5313 can prevent the grease attached to the second protrusion 531 from volatilizing to the side where the second surface 53133 is located, and make the airflow generated by the fin 5311 as possible Most of the grease flows toward the radial direction of the movable member 53 , thereby throwing the grease attached to the fins 5311 to the bottom 5151 of the receiving space 515 .
  • the blocking sheet 5313 includes a first surface 53131 and a second surface 53133 opposite to each other, the first surface 53131 faces the bearing 20, and a plurality of fins 5311 are installed on the first surface 53131, and located between the first surface 53131 and the bearing 20, the blocking piece 5313 can prevent the grease attached to the second pro
  • the sealing assembly 50 may further include an absorbing layer 55 disposed in the receiving space 515 and attached to the bottom 5151 of the receiving space 515 , the absorbing layer 55 is used to absorb the grease volatilized from the bearing 20 .
  • the fins 5311 will generate a radial airflow during rotation, so that the grease contained in the radial airflow is absorbed by the absorbing layer 55 at the bottom 5151 of the housing space 515, preventing the grease from further volatilizing to the window 71 or other optical components to reduce the impact of the volatilization of grease inside the bearing 20 on the range of the distance measuring device 1000.
  • the sealing method between the fixed part 51 and the movable part 53 is a screw sealing method.
  • the fixing member 51 includes a first protrusion 511
  • an installation space 517 is formed between the first protrusion 511 and the bearing 20 .
  • the movable element 53 includes a second protrusion 531 received in the installation space 517 , and a plurality of spiral grooves 5317 are formed on the outer peripheral surface 5315 of the second protrusion 531 .
  • a plurality of spiral grooves 5317 can generate axial shear flow during the rotation of the movable member 53, so that the grease volatilized from the inside of the bearing 20 flows in the axial direction of the movable member 53 in the installation space 517, so that the inside of the bearing 20 The volatilized grease can flow back to the bearing 20 and is difficult to volatilize on the window 71 or other optical components.
  • the direction of rotation of the plurality of helical grooves 5317 is toward one side of the bearing 20 .
  • the spiral groove 5317 includes a first side 53171 and a second side 53173 opposite to each other, wherein the first side 53171 is closer to the bearing 20 than the second side 53173 .
  • the movable member 53 rotates clockwise (viewed from the first side 53171 to the second side 53173), The center line oo1 of the spiral groove 5317 rises gradually.
  • the fixing member 51 may further include a first body 519 , the first protrusion 511 extends from the first body 519 toward a side where the second component 30 is located, and the first body 519 interferes with the bearing 20 .
  • the movable element 53 may further include a second body 535 , the second protrusion 531 extends from the second body 535 toward a side where the first component 10 is located, and the second body 535 interferes with the bearing 20 . Therefore, the first protrusion 511 and the second protrusion 531 avoid the bearing cap 29 , thereby preventing the second protrusion 531 from damaging the bearing cap 29 during rotation, and preventing the grease inside the bearing cap 29 from overflowing.
  • the side of the first body 519 facing the second protrusion 531 can be provided with an absorbing layer 55 (shown in FIG. 15 ), and the absorbing layer 55 is spaced from the second protrusion 531 by a certain distance so that the volatilized from the inside of the bearing 20 Part of the grease is absorbed by the absorbing layer 55 , reducing the re-volatility of the grease between the first protrusion 511 and the second protrusion 531 .
  • the bearing 20 is installed in the gap 40 between the first component 10 and the second component 30, and the second component 30 and the first component 10 can move relatively, at least partially
  • the sealing assembly 50 is arranged adjacent to the bearing 20 and is located in the gap 40 .
  • the sealing assembly 50 can block the volatilization of grease inside the bearing 20 to a certain extent.
  • the fixed piece 51 and the movable piece 53 in the sealing assembly 50 are arranged opposite to each other at intervals, and a bent channel 60 is formed between the fixed piece 51 and the movable piece 53, so that the grease is mainly confined in the channel 60, and the channel 60 is connected with the bearing.
  • One side of the bearing 20 is communicated so as to form a non-contact seal on one side of the bearing 20, without increasing the rotational power of the bearing 20, and reducing the influence of the volatilization of the grease of the bearing 20 on the range of the distance measuring device 1000.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • the features defined as “first” and “second” may explicitly or implicitly include at least one of said features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Optics & Photonics (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种扫描模组(100)及测距装置(1000)。扫描模组(100)包括第一组件(10)、第二组件(30)及密封组件(50)。第二组件(30)通过轴承(20)安装于第一组件(10)内,轴承(20)位于第一组件(10)与第二组件(30)间的间隙(40)。密封组件(50)与轴承(20)相邻设置并位于间隙(40)内。

Description

扫描模组及测距装置 技术领域
本申请涉及激光测距技术领域,特别涉及一种扫描模组及测距装置。
背景技术
测距装置,例如机械式激光雷达,通常包含旋转部件,为了减小旋转部件在运动过程中的摩擦阻力以及摩擦磨损,会使用含润滑油脂的轴承。在激光雷达工作过程中,由于轴承的转动以及其他器件发热,将加速轴承内部的油脂的挥发,如果挥发的油脂附着到收发光路相关的元器件上,对激光雷达的性能产生影响。
发明内容
本申请的实施方式提供了一种扫描模组及测距装置。
本申请的实施方式提供一种扫描模组,所述扫描模组包括第一组件、第二组件及密封组件。所述第二组件通过轴承安装于所述第一组件内,所述轴承位于所述第一组件与所述第二组件之间的间隙内,所述第二组件与所述第一组件能够相对转动。至少部分所述密封组件与所述轴承相邻设置并位于所述间隙内,所述密封组件包括固定件及可动件,所述固定件安装于所述第一组件的内侧,所述可动件安装于所述第二组件的外侧,所述固定件与所述可动件间隔相对并共同形成弯折的通道。
本申请的实施方式提供一种测距装置,所述测距装置包括上述的扫描模组及测距模组。所述测距模组用于向所述扫描模组发射光束,所述扫描模组用于改变所述光束的传输方向后出射,被物体反射回的光束经过所述扫描模组后入射至所述测距模组,所述测距模组用于根据所述反射回的光束确定所述物体相对所述测距装置的距离。
本申请的扫描模组及测距装置中,在第一组件和第二组件之间的间隙安装有轴承,且第二组件与第一组件能够相对运动,至少部分密封组件与轴承相邻设置并位于间隙内,当轴承转动时,密封组件能够一定程度阻挡轴承内部的油脂的挥发。并且,密封组件中的固定件和可动件间隔相对设置,固定件和可动件之间共同形成弯折的通道,使得油脂主要限制在通道内,通道与轴承的一侧连通,从而在轴承的一侧形成非接触式密封,在不增加轴承的转动功率的情况下,减小轴承油脂的挥发对测距装置的量程的影响。
本申请的实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实施方式的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本申请某些实施方式的测距装置的立体结构示意图;
图2是本申请某些实施方式的测距装置的测距原理示意图和模块示意图;
图3是本申请某些实施方式的测距装置的一种扫描图案的示意图;
图4是本申请某些实施方式的扫描模组的结构示意图;
图5是图4所示的扫描模组沿V-V线的剖面示意图;
图6是图5所示的扫描模组中VI处的放大示意图;
图7是图6所示的扫描模组中VII处的放大示意图;
图8是图5所示的扫描模组中的可动件的立体结构示意图;
图9是图8所示的可动件的平面结构示意图;
图10是本申请另一些实施方式的扫描模组的结构示意图;
图11是图10所示的扫描模组中XI处的放大示意图;
图12是图10所示的扫描模组中的可动件的立体结构示意图;
图13是图12所示的可动件的平面结构示意图;
图14是本申请再一些实施方式的扫描模组的结构示意图;
图15是图14所示的扫描模组中XV处的放大示意图;
图16是图14所示的扫描模组中的一种可动件的立体结构示意图;
图17是图16所示的可动件的平面结构示意图;
图18是图14所示的扫描模组中的另一种可动件的立体结构示意图;
图19是图18所示的可动件的平面结构示意图;
图20是本申请又一些实施方式的扫描模组的结构示意图;
图21是图20所示的扫描模组中XXI处的放大示意图;
图22是图20所示的扫描模组中的一种可动件的立体结构示意图;
图23是图22所示的可动件的平面结构示意图;
图24是图20所示的扫描模组中的另一种可动件的立体结构示意图;
图25是图24所示的可动件的平面结构示意图。
具体实施方式
下面详细描述本申请的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
下文的公开提供了许多不同的实施方式或例子用来实现本申请的不同结构。为了简化本申请的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
请参阅图1,本申请实施方式提供一种测距装置1000。测距装置1000包括扫描模组100及测距模组300。测距模组300用于向扫描模组100发射光束,扫描模组100用于改变光束的传输方向后出射,被物体反射回的光束经过扫描模组100后入射至测距模组300,测距模组300用于根据反射回的光束确定物体相对测距装置1000的距离。
本申请各个实施例提供的扫描模组100可以应用于测距装置1000,该测距装置1000可以是激光雷达、激光测距设备等电子设备。在一种实施方式中,测距装置1000可用于感测外部环境信息,例如,环境目标的距离信息、方位信息、反射强度信息、速度信息等。在一种实施方式中,测距装置1000可 以通过测量测距装置1000和物体之间光传播的时间,即光飞行时间(Time-of-Flight,TOF),来探测物体到测距装置1000的距离。或者,测距装置1000也可以通过其他技术来探测物体到测距装置1000的距离,例如基于相位移动(phase shift)测量的测距方法,或者基于频率移动(frequency shift)测量的测距方法,在此不做限制。为了便于理解,以下将结合图2所示的测距装置1000对测距的工作流程进行举例描述。
如图2(b)所示,测距装置1000可以包括发射电路310、接收电路320、采样电路330和运算电路340。
发射电路310可以发射光脉冲序列(例如激光脉冲序列)。接收电路320可以接收经过被探测物反射的光脉冲序列,并对该光脉冲序列进行光电转换,以得到电信号,再对电信号进行处理之后可以输出给采样电路330。采样电路330可以对电信号进行采样,以获取采样结果。运算电路340可以基于采样电路330的采样结果,以确定测距装置1000与被探测物之间的距离。
可选地,该测距装置1000还可以包括控制电路350,该控制电路350可以实现对其他电路的控制,例如,可以控制各个电路的工作时间和/或对各个电路进行参数设置等。
应理解,虽然图2(b)示出的测距装置1000中包括一个发射电路310、一个接收电路320、一个采样电路330和一个运算电路340,用于出射一路光束进行探测,但是本申请实施例并不限于此,发射电路310、接收电路320、采样电路330、运算电路340中的任一种电路的数量也可以是至少两个,用于沿相同方向或分别沿不同方向出射至少两路光束;其中,该至少两束光路可以是同时出射,也可以是分别在不同时刻出射。一个示例中,该至少两个发射电路310中的发光芯片封装在同一个模块中。例如,每个发射电路310包括一个激光发射芯片,该至少两个发射电路310中的激光发射芯片中的封装到一起,容置在同一个封装空间中。
一些实现方式中,除了图2(b)所示的电路,测距装置1000还可以包括扫描模组100,用于将发射电路出射的至少一路激光脉冲序列改变传播方向出射。
其中,可以将包括发射电路310、接收电路320、采样电路330和运算电路340的模组,或者,包括发射电路310、接收电路320、采样电路330、运算电路340和控制电路350的模块称为测距模组300,该测距模组300可以独立于其他模块,例如,独立于扫描模组100。
测距装置1000中可以采用同轴光路,也即测距装置1000出射的光束和经反射回来的光束在测距装置1000内共用至少部分光路。例如,发射电路310出射的至少一路激光脉冲序列经扫描模组100改变传播方向出射后,经被探测物反射回来的激光脉冲序列经过扫描模组100后入射至接收电路320。或者,测距装置1000也可以采用异轴光路,也即测距装置1000出射的光束和经反射回来的光束在测距装置1000内分别沿不同的光路传输。图2(a)示出了本发明的测距装置1000采用同轴光路的一种实施例的示意图。
测距装置1000包括测距模组300,测距模块组300包括发射器301(可以包括上述的发射电路)、准直元件302、探测器303(可以包括上述的接收电路320、采样电路330和运算电路340)和光路改变元件304。测距模组300用于发射光束,且接收回光,将回光转换为电信号。其中,发射器301可以用于发射光脉冲序列。在一个实施例中,发射器301可以发射激光脉冲序列。可选的,发射器301发射出的激光束为波长在可见光范围之外的窄带宽光束。准直元件302设置于发射器301的出射光路上,用于准直从发射器301发出的光束,将发射器301发出的光束准直为平行光出射至扫描模组100。准直元件302还用于会聚经被探测物反射的回光的至少一部分。该准直元件302可以是准直透镜或者是其他能够准直光束的元件。
在图2(a)所示实施例中,通过光路改变元件304来将测距装置1000内的发射光路和接收光路在准直元件302之前合并,使得发射光路和接收光路可以共用同一个准直元件302,使得光路更加紧凑。在其他的一些实现方式中,也可以是发射器301和探测器303分别使用各自的准直元件,将光路改变元件设置在准直元件之后的光路上。
在图2(a)所示实施例中,由于发射器301出射的光束的孔径较小,测距装置1000所接收到的回光的孔径较大,所以光路改变元件304可以采用小面积的反射镜来将发射光路和接收光路合并。在其他的一些实现方式中,光路改变元件304也可以采用带通孔的反射镜,其中该通孔用于透射发射器的出射光,反射镜用于将回光反射至探测器。这样可以减小采用小反射镜的情况中小反射镜的支架会对回光的遮挡。
在图2(a)所示实施例中,光路改变元件304偏离了准直元件302的光轴。在其他的一些实现方式中, 光路改变元件也可以位于准直元件的光轴上。
测距装置1000还包括扫描模组100。扫描模组100放置于测距模组300的出射光路上,扫描模组100用于改变经准直元件302出射的准直光束305的传输方向并投射至外界环境,并将回光投射至准直元件302。回光经准直元件302汇聚到探测器303上。
在一个实施例中,扫描模组100可以包括至少一个光学元件,用于改变光束的传播路径,其中,该光学元件可以通过对光束进行反射、折射、衍射等方式来改变光束传播路径。例如,扫描模组100包括透镜、反射镜、棱镜、光栅、液晶、光学相控阵(Optical Phased Array)或上述光学元件的任意组合。一个示例中,至少部分光学元件是运动的,例如通过驱动模块来驱动该至少部分光学元件进行运动,该运动的光学元件可以在不同时刻将光束反射、折射或衍射至不同的方向。在一些实施例中,扫描模组100的多个光学元件可以绕共同的轴101旋转或振动,每个旋转或振动的光学元件用于不断改变入射光束的传播方向。在一个实施例中,扫描模组100的多个光学元件可以以不同的转速旋转,或以不同的速度振动。在另一个实施例中,扫描模块组100至少部分光学元件可以以基本相同的转速旋转。在一些实施例中,扫描模组100的多个光学元件也可以是绕不同的轴旋转。在一些实施例中,扫描模组100的多个光学元件也可以是以相同的方向旋转,或以不同的方向旋转;或者沿相同的方向振动,或者沿不同的方向振动,在此不作限制。
在一个实施例中,扫描模组100包括第一光学元件102和与第一光学元件102连接的驱动器104,驱动器104用于驱动第一光学元件102绕转动轴101转动,使第一光学元件102改变准直光束305的方向。第一光学元件102将准直光束305投射至不同的方向。在一个实施例中,准直光束305经第一光学元件102改变后的方向与转动轴101的夹角随着第一光学元件102的转动而变化。在一个实施例中,第一光学元件102包括相对的非平行的一对表面,准直光束305穿过该对表面。在一个实施例中,第一光学元件102包括厚度沿至少一个径向变化的棱镜。在一个实施例中,第一光学元件102包括楔角棱镜,对准直光束305进行折射。
在一个实施例中,扫描模组100还可包括第二光学元件103,第二光学元件103绕转动轴101转动,第二光学元件103的转动速度与第一光学元件102的转动速度不同。第二光学元件103用于改变第一光学元件102投射的光束的方向。在一个实施例中,第二光学元件103与另一驱动器105连接,驱动器105驱动第二光学元件103转动。第一光学元件102和第二光学元件103可以由相同或不同的驱动器驱动,使第一光学元件102和第二光学元件103的转速和/或转向不同,从而将准直光束305投射至外界空间不同的方向,可以扫描较大的空间范围。在一个实施例中,控制器106控制驱动器104和驱动器105,分别驱动第一光学元件102和第二光学元件103。第一光学元件102和第二光学元件103的转速可以根据实际应用中预期扫描的区域和样式确定。驱动器104和105可以包括电机或其他驱动器。
在一个实施例中,第二光学元件103包括相对的非平行的一对表面,光束穿过该对表面。在一个实施例中,第二光学元件103包括厚度沿至少一个径向变化的棱镜。在一个实施例中,第二光学元件103包括楔角棱镜。
一个实施例中,扫描模组100还可包括第三光学元件(图未示)和用于驱动第三光学元件运动的驱动器。可选地,该第三光学元件包括相对的非平行的一对表面,光束穿过该对表面。在一个实施例中,第三光学元件包括厚度沿至少一个径向变化的棱镜。在一个实施例中,第三光学元件包括楔角棱镜。第一、第二和第三光学元件中的至少两个光学元件以不同的转速和/或转向转动。
扫描模组100中的各光学元件旋转可以将光投射至不同的方向,例如方向107和108,如此对测距装置1000周围的空间进行扫描。如图3所示,图3为测距装置1000的一种扫描图案的示意图。可以理解的是,扫描模组100内的光学元件的速度变化时,扫描图案也会随之变化。
当扫描模组100投射出的光107打到被探测物109时,一部分光由被探测物109沿与投射的光107相反的方向反射至测距装置1000。被探测物109反射的回光108经过扫描模组100后入射至准直元件302。
探测器303与发射器301放置于准直元件302的同一侧,探测器303用于将穿过准直元件302的至少部分回光转换为电信号。
一个实施例中,各光学元件上镀有增透膜。可选的,增透膜的厚度与发射器301发射出的光束的波长相等或接近,能够增加透射光束的强度。
一个实施例中,测距装置1000中位于光束传播路径上的一个元件表面上镀有滤光层,或者在光束传播路径上设置有滤光器,用于至少透射发射器301所出射的光束所在波段,反射其他波段,以减少环境光给接收器带来的噪声。
在一些实施例中,发射器301可以包括激光二极管,通过激光二极管发射纳秒级别的激光脉冲。进一步地,可以确定激光脉冲接收时间,例如,通过探测电信号脉冲的上升沿时间和/或下降沿时间确定激光脉冲接收时间。如此,测距装置1000可以利用脉冲接收时间信息和脉冲发出时间信息计算TOF,从而确定探测物109到测距装置1000的距离。
测距装置1000探测到的距离和方位可以用于遥感、避障、测绘、建模、导航等。在一种实施方式中,本发明实施方式的测距装置1000可应用于移动平台,测距装置1000可安装在移动平台的平台本体。具有测距装置1000的移动平台可对外部环境进行测量,例如,测量移动平台与障碍物的距离用于避障等用途,和对外部环境进行二维或三维的测绘。在某些实施方式中,移动平台包括无人飞行器、汽车、遥控车、机器人、相机中的至少一种。当测距装置1000应用于无人飞行器时,平台本体为无人飞行器的机身。当测距装置1000应用于汽车时,平台本体为汽车的车身。该汽车可以是自动驾驶汽车或者半自动驾驶汽车,在此不做限制。当测距装置1000应用于遥控车时,平台本体为遥控车的车身。当测距装置1000应用于机器人时,平台本体为机器人。当测距装置1000应用于相机时,平台本体为相机本身。
请参阅图4至图6,本申请实施方式提供一种扫描模组100。扫描模组100包括第一组件10、第二组件30及密封组件50。第二组件30通过轴承20安装于第一组件10内,轴承20位于第一组件10与第二组件30之间的间隙40内,第二组件30与第一组件10能够相对转动。至少部分密封组件50与轴承20相邻设置并位于间隙40内,密封组件50包括固定件51及可动件53,固定件51安装于第一组件10的内侧11,可动件53安装于第二组件30的外侧,固定件51与可动件53间隔相对并共同形成弯折的通道60。
测距装置,例如机械式激光雷达包含旋转部件,为了减小旋转部件在运动过程中的摩擦阻力以及摩擦磨损,会使用含润滑油脂的轴承。在激光雷达工作过程中,由于轴承的转动以及其他器件发热,将加速轴承内部的油脂的挥发,如果挥发的油脂附着到收发光路相关的元器件上,对激光雷达的性能产生影响,如测距装置的量程可能会衰减超过50%。
本申请的扫描模组100中,扫描模组100应用于机械式激光雷达中,在第一组件10和第二组件30之间的间隙40安装有轴承20,且第二组件30与第一组件10能够相对运动,至少部分密封组件50与轴承20相邻设置并位于间隙40内,当轴承20转动时,密封组件50能够一定程度阻挡轴承20内部的油脂的挥发。并且,密封组件50中的固定件51和可动件53间隔相对设置,固定件51和可动件53之间共同形成弯折的通道60,使得油脂主要限制在通道60内,通道60与轴承20的一侧连通,从而在轴承20的一侧形成非接触式密封,在不增加轴承20的转动功率的情况下,减小轴承20油脂的挥发对测距装置1000(图1所示)的量程的影响。
其中,第一组件10和第二组件30之间的间隙40的大小与轴承20的内圈21和外圈23之间的大小相关,从而使得轴承20能够套设在第一组件10和第二组件30之间,并在转动过程中不会发生脱离现象。
请参阅图5及图6,在一个实施例中,第一组件10可以是定子组件,第二组件30可以是转子组件,第二组件30与第一组件10之间的间隙40安装有轴承20。例如,轴承20套设在第二组件30外(轴承20的内圈21与第二组件30配合,且轴承20的内圈21能够转动),第一组件10套设在轴承20外。其中,第二组件30能够相对第一组件10转动,且轴承20的内圈21跟随第二组件30转动。
在另一个实施例中,第一组件10可以是转子组件,第二组件30可以是定子组件,第二组件30与第一组件10之间的间隙40安装有轴承20。例如,轴承20套设在第二组件30外(轴承20的内圈21与第二组件30配合,且轴承20的外圈23能够转动),第一组件10套设在轴承20外。其中,第一组件10能够相对第二组件30转动,且轴承20的外圈23跟随第一组件10转动。
本申请中,以第一组件10为定子组件、第二组件30为转子组件为例对扫描模组100的结构进行详细说明。
轴承20转动过程中内部的油脂挥发出来时,在可动件53跟随第二组件30转动的过程中,挥发出来的油脂由于可动件53产生的离心力,将会被甩到固定件51内部,且由于固定件51与可动件53间隔 相对并共同形成弯折的通道60,通道60与轴承20的一侧连通,增加了油脂的挥发路径,从而在不增加轴承20的转动功率的情况下,能够减小轴承20内部油脂的挥发对测距装置1000的量程的影响。
请继续参阅图5及图6,轴承20包括相背的第一侧25及第二侧27。密封组件50设置于第一侧25和/或第二侧27。
请结合图4,具体地,扫描模组100还可包括壳体70,壳体70的窗口71安装有透光部73,第一组件10固定于壳体70内,密封组件50设于轴承20与透光部73之间。其中,窗口71可设置于扫描模组100,测距模组300发出的光束经过扫描模组100后穿过透光部73出射至被探测物,同时,经被探测物反射回来的光束经过透光部73入射至壳体70内,并经过扫描模组100后到达测距模组300中,为了防止轴承20挥发出来的油脂附着在透光部73上,在靠近透光部73的一侧设置有密封组件50。此时,第一侧25相较于第二侧27更接近窗口71的一侧,第二侧27相较于第一侧25更靠近测距模组30。在一个例子中,密封组件50设置在轴承20的第一侧25,此时,密封组件50能够防止轴承20内部挥发出来的油脂附着在窗口71。在另一个例子中,密封组件50设置在轴承20的第二侧27,由于测距模组300可包括光学元件(如收光光学元件),因此,密封组件50可防止轴承20挥发出来的油脂附着在测距模组300内的光学元件上,保证测距模组300的测量精度。在再一个例子中,轴承20的第一侧25和第二侧27均设置有密封组件50,此时,密封组件50既能够防止轴承20内部挥发出来的油脂附着在窗口71,还可防止轴承20挥发出来的油脂附着在测距模组300内的光学元件上,保证测距模组300的测量精度。
请参阅图5及图6,具体地,第一组件10可包括安装座13。安装座13中设有中空腔131,固定件51设置于中空腔131的内侧壁1311。
安装座13用于对固定件51进行固定,在固定件51不影响轴承20的转动的情况下,使得固定件51能够阻挡轴承20挥发出来的部分油脂。其中,如图6所示,轴承20的外圈23与内侧壁1311抵持,以对轴承20进行限位。
在一个实施例中,固定件51与安装座13为一体结构。例如,固定件51是安装座13的从内侧壁1311朝第二组件30延伸的一部分结构,由此使得第一组件10的结构简单,便于安装。在另一个实施例中,固定件51与安装座13为分体结构,固定件51可通过焊接、胶粘等连接方式固定于内侧壁1311,或者,固定件51通过螺钉连接的方式可拆卸地固定于内侧壁1311,方便更换长期使用后的固定件51和/或可动件53。
请继续参阅图5及图6,具体地,第一组件10还可包括绕组本体15和绕组17。绕组本体15安装于中空腔131的内侧壁1311;绕组17缠绕于绕组本体15。绕组本体15为定子铁芯,绕组17为线圈。绕组17在电流的作用下能够产生特定的磁场,通过改变电流的方向及强度可以改变磁场的方向和强度。第二组件30可包括磁轭31及磁铁33。磁轭31通过轴承20穿设于安装座13,可动件53设置于磁轭31的外周壁311。磁铁33安装于磁轭31的外周壁311并与绕组17对应。磁铁33产生的磁场与绕组17产生的磁场相互作用并产生作用力,由于绕组17被固定不动,则磁铁33在作用力下带动磁轭31转动。其中,第二组件30的收容腔35呈中空的形状,测距模组300(图1所示)发射的光束可以穿过收容腔35而从扫描模组100中穿过。
进一步地,收容腔35中可设置有棱镜80(也即图2中的102或103),例如,棱镜80可与磁轭31的内周壁313配合安装并固定于收容腔35内,棱镜80位于测距模组300发出的光束的出射光路以及回光光路上。棱镜80能够与第二组件30同步转动。棱镜80转动时可以改变经过棱镜80的光束的传输方向。
具体地,可动件53与磁轭31为一体结构,即可动件51为磁轭31的自外周壁311朝第一组件10延伸的一部分结构,由此,减少可动件53与磁轭31之间的装配,便于将第二组件30安装于安装座13。或者,可动件53与磁轭31为分体结构,此时,可先将可动件53安装于磁轭31的外周壁311,再将轴承20安装于磁轭31的外周壁311,最后再将安装有可动件53和轴承20的第二组件30和安装于安装座13。可动件53与磁轭31为分体结构时,方便更换长期使用后的可动件53和/或磁轭31。
在本申请的实施例中,固定件51和可动件53(如图8所示)均为一个整体的环形结构。
请参阅图14,在某些实施方式中,密封组件50还可包括吸收层55,吸收层55设置于固定件51和/或可动件53,并用于吸收从轴承20挥发出来的油脂。
具体地,吸收层55是由泡棉、吸油胶水等与油脂为亲和性的材料制成,用于将轴承20挥发到密封 组件50上的油脂吸收,抑制附着在固定件51和可动件53的油脂的进一步挥发。
在一个例子中,吸收层55可以设置于固定件51的表面,在可动件53随第二组件30转动时,使得轴承20挥发出来的油脂在可动件53产生的离心力的作用下甩到固定件51上的吸收层55,进一步防止轴承20挥发出来的油脂挥发到除密封组件50以外的器件上,保证测距装置1000(图1所示)的量程不受影响。
在另一个例子中,吸收层55可以设置于可动件53的表面,当轴承20转动时挥发出来的油脂挥发到可动件53时,可将部分油脂吸收于吸收层55中,有效避免在可动件53转动时,可动件53产生的离心力将附着在可动件53上的油脂甩到固定件51上,减少附着在固定件51上的油脂的含量,防止油脂在固定件51上再次挥发,保证测距装置1000的量程不受影响。
在另一个例子中,固定件51的表面与可动件53的表面均设置有吸收层55,当轴承20转动时挥发出来的油脂在附着于固定件51和可动件53时,便被吸收层55吸收,避免附着于固定件51和可动件53上的油脂再次挥发,使得轴承20内挥发出来的油脂最大程度限制在密封组件50内,保证扫描模组100中的其他部件不受到油脂的影响,从而保证测距装置1000的量程不受影响。
固定件51与可动件53之间形成的通道60呈阶梯形(图6和图7所示)或锯齿形(图10所示),在轴承20转动过程中,轴承20挥发出来的油脂能够在通道60内沿着阶梯形的路径或者锯齿形的路径行进。其中,当密封组件50设置于第一侧25时,轴承20挥发出来的油脂经过通道60后,使得轴承20挥发的油脂进到窗口71的路径是曲折状的,且在越靠近第一侧25的方向上,通道60内的油脂越少,防止油脂挥发到窗口71上,保证穿过窗口71的光线(包括出射光线以及回光)不会受到油脂的影响。
请参阅图6及图7,具体地,固定件51可包括相互间隔的多个第一凸起511,且相邻的两个第一凸起511之间形成第一间隔513。可动件53包括相互间隔的多个第二凸起531,且相邻的两个第二凸起531之间形成第二间隔533。每个第一凸起511对应一个第二凸起531并形成空隙52,且第一间隔513与第二间隔533相对。
更具体地,请结合图5,第一凸起511自第一组件10的内侧11朝第二组件30延伸一定长度,第二凸起531自磁轭31的外周壁311朝第一组件10延伸一定长度,以使第一凸起511与第二凸起531间隔相对,第一凸起511与第二凸起531之间的空隙52,保证可动件53能够与第二组件30同步转动而不受到固定件51的影响。多个间隔设置的第一凸起511和多个间隔设置的第二凸起531之间共同形成阶梯形通道60,使得挥发到通道60内的油脂无法通过直通的路径达到窗口71或光学元件上,且第二凸起531与轴承20的内圈21间隔,使得通道60与轴承20的第一侧25连通,在不影响轴承20的转动功率的情况下,减小轴承20内部油脂的挥发对测距装置1000(图1所示)的量程的影响。
其中,多个第一凸起511的长度均不相同;和/或,多个第二凸起531的长度均不相同。例如,多个第一凸起511的长度均不相同,而多个第二凸起531的长度均相同。或者,多个第二凸起531的长度均不相同,而多个第一凸起511的长度均相同。或者,如图6所示,多个第一凸起511的长度均不相同,且多个第二凸起531的长度均不相同。只要保证第一凸起511和其相对的第二凸起531之间存在空隙52即可。
如图6所示,在一个例子中,在远离轴承20的方向(从轴承20至窗口71的方向)上,多个第一凸起511的长度依次增大,多个第二凸起531的长度依次减小,从而使得固定件51与可动件53之间形成的通道60为阶梯形迷宫通道,且如此设置的第一凸起511和第二凸起531便于固定件51和可动件53的安装。若仅在轴承20的第一侧25安装有密封组件50,此时,在轴承20的第二侧27到第一侧25的方向上,可先将可动件53安装于第二组件30的外周壁311,再将轴承20的第一侧25朝向可动件53并安装于第二组件30的外周壁311,然后将安装有固定件51的安装座13套设在第二组件30、轴承20及可动件53外周以形成一个整体,且使第二凸起531与第一凸起511相对并间隔,最后再整体将安装于扫描模组100的壳体70。
在另一个例子中,在远离轴承20的方向(从轴承20至窗口71的方向)上,多个第一凸起511的长度依次减小,多个第二凸起531的长度依次增大,使得固定件51与可动件53之间形成的通道60为阶梯形迷宫通道。若仅在轴承20的第一侧25安装有密封组件50、固定件51与安装座13为一体结构时,可先将可动件53和轴承20并列安装于第二组件30的外周壁311,其中,可动件53位于轴承20的第一侧25,然后将安装座13和固定件51套设于轴承20的外周以与可动件51的外周形成一个整体,并使第 二凸起531与第一凸起511相对并间隔,最后再将整体安装于壳体70内。若仅在轴承20的第一侧25安装有密封组件50,且固定件51与安装座13为分体结构时,可先将轴承20和可动件53并列套设在第二组件30的外周壁311,并使轴承20的第一侧25朝向可动件53,然后将固定件51安装于安装座13的内侧壁131,再将安装有固定件51的安装座13套设在轴承20、可动件53的外周以形成一个整体,并使第二凸起531与第一凸起511相对并间隔,最后整体安装于壳体70内。
请结合图7,进一步地,第一凸起511的宽度(自轴承20的第二侧27至第一侧25的方向上)小于或等于第二凸起531的宽度。例如,第一凸起511的宽度为b,第二凸起531的宽度为a,则a>b,由此,当可动件53与第二组件30同步转动时,附着在第二凸起531上的油脂在离心力的作用下被甩到第一间隔513内,防止附着在第二凸起531上的油脂进一步挥发到窗口71或光学元件上。
其中,第一凸起511和第二凸起531的数量越多,密封组件50对油脂的密封效果越好。另外,第一凸起511与第二凸起531之间的空隙52的高度(自第二凸起531至第一凸起511的方向上)的取值范围为[0.20mm,0.50mm]。例如,空隙52的高度可为0.20mm、0.22mm、0.24mm、0.26mm、0.28mm、0.30mm、0.32mm、0.34mm、0.36mm、0.38mm、0.40mm、0.42mm、0.44mm、0.46mm、0.48mm、0.50mm中的任意一个,只要空隙52的高度取值在[0.20mm,0.50mm]范围即可。由此,能够保证可动件53旋转的前提下,能有效减小轴承20挥发出来的油脂在间隙52内的挥发路径宽度(即间隙52的高度),减少油脂挥发到窗口71或其他光学元件的含量,减小轴承20内部的油脂的挥发对测距装置1000(图1所示)的量程的影响。
请结合图7和图14,进一步地,密封组件50中的吸收层55可设置于第一凸起511的侧面5111和/或第一间隔513的底部5131,并用于吸收从轴承20挥发出来的油脂。例如,吸收层55可设置于第一凸起511的侧面5111,其中,侧面5111包括三面,分别为第一凸起511的左侧面、右侧面及第一凸起511与第二凸起531相对的一面,从而更大面积地吸收轴承20挥发出来的油脂。或者,吸收层55可设置于第一间隔513的底部5131,从而将附着在第二凸起531上的油脂直接甩到底部5131上的吸收层55并由吸收层55吸收。或者,吸收层55可设置于第一凸起511的侧面5111和第一间隔513的底部5131,从而将轴承20挥发出来的油脂全部吸收到吸收层55中,防止轴承20挥发出来的油脂通过通道60挥发到窗口71或其他光学元件上。
请参阅图6至图9,进一步地,固定件51包括第一本体519,第一凸起511自第一本体519延伸,其中一个第一凸起511与轴承20抵触或者第一本体519与轴承20抵触;可动件53还可包括第二本体535,第二凸起531自第二本体535延伸,第二本体535与轴承20抵触或第二凸起531与轴承20抵触。具体地,轴承20的内圈21与轴承20的外圈23之间设置有轴承盖29,轴承盖29的设置能够保证油脂仅对轴承20的滚动体起润滑作用而不溢出,如图6和图7所示,第二本体535与轴承20的内圈21抵触,靠近轴承20的一个第一凸起511与轴承20的外圈23抵触。或者,第二本体535与轴承20的内圈21抵触,第一本体519与轴承20的外圈23抵触。或者,在轴承20的第二侧27到第一侧25的方向上,第二凸起531的长度逐渐增大时,第二凸起531与轴承20的内圈21抵触,第一凸起511与轴承20的外圈23抵触。或者,在轴承20的第二侧27到第一侧25的方向上,第二凸起531的长度逐渐增大时,第二凸起531与轴承20的内圈21抵触,第一本体519与轴承20的外圈23抵触使得第二凸起531与轴承盖29避让开,从而防止第二凸起531转动过程中损坏轴承盖29,防止轴承20内部的油脂外溢。
请参阅图10,在另一个实施例中,固定件51与可动件53之间形成的通道60为交错形迷宫通道。具体地,固定件51包括相互间隔的多个第一凸起511,相邻两个第一凸起511之间形成第一间隔513。可动件53包括相互间隔的多个第二凸起531,相邻两个第二凸起531之间形成第二间隔533,第一凸起511与第二凸起531间隔交错设置。
其中,第一凸起511与第二凸起531间隔交错设置是指:部分第二凸起531伸入第一间隔513,并与第一间隔513的底部5131及第一间隔513的侧壁5133间隔;部分第一凸起511伸入第二间隔533,并与第二间隔533的底部5331及第二间隔533的侧壁5333间隔。例如,除了靠近轴承20的一个第一凸起511外,其余的第一凸起511均位于相邻两个第二凸起531之间;除了远离轴承20的一个第二凸起531外,其余的第二凸起531均位于相邻两个第一凸起511之间。从而保证可动件53与第二组件30同步转动过程中,第二凸起531不会碰撞到第一凸起511。多个间隔交错设置的第一凸起511与第二凸起531之间共同形成交错形迷宫通道,增加通道60的曲折性,使得轴承20挥发出来的油脂在通道60 内的传播路径也是曲折的,从而能够有效抑制轴承20挥发出来的油脂挥发到窗口71或其他光学元件上,在不影响轴承20的转动功率的情况下,减小轴承20内部油脂的挥发对测距装置1000(图1所示)的量程的影响。
具体地,多个第一凸起511的长度均相同;和/或,多个第二凸起531的长度均相同。例如,多个第一凸起511的长度均相同,而多个第二凸起531的长度均不相同。或者,多个第二凸起531的长度均相同,而多个第一凸起511的长度均不相同。或者,多个第一凸起511的长度均相同,且多个第二凸起531的长度均相同。只要保证多个第一凸起511均不抵触到第二间隔533的底部5331和第二间隔533的侧壁5333,和多个第二凸起531均不抵触到第一间隔513的底部5131和第一间隔513的侧壁5133即可。
请结合图11至图13,在一个例子中,每个第一凸起511的长度与第二凸起531的长度均相同,使得每个第一凸起511与第二间隔533的底部5331之间的距离均相同、每个第二凸起531与第一间隔513的底部5131之间的距离均相同,使得轴承20挥发出来的油脂经过这些间隙时的路径大小相同,有效抑制油脂的进一步挥发。进一步地,间隔交错设置的第一凸起511和第二凸起531之间形成的通道60各处的宽度均相同,即,第一凸起511与第二凸起531之间的间隔均相同。
进一步地,密封组件50中的吸收层55(如图14所示)可设置于第一凸起511的侧面5111和/或第一间隔513的底部5131,并用于吸收从轴承20挥发出来的油脂。此时,通道60包括间隔,间隔为吸收层55与第二凸起531之间的间隔。例如,吸收层55可设置于第一凸起511的侧面5111(即第一间隔513的侧壁5133),其中,侧面5111包括三面,分别为第一凸起511的左侧面、右侧面及第一凸起511与第二凸起531相对的一面,从而更大面积地吸收轴承20挥发出来的油脂。或者,吸收层55可设置于第一间隔513的底部5131,从而将附着在第二凸起531上的油脂直接甩到底部5131上的吸收层55并由吸收成55吸收。或者,吸收层55可设置于第一凸起511的侧面5111和第一间隔513的底部5313,从而将轴承20挥发出来的油脂全部吸收到吸收层55中,防止轴承20挥发出来的油脂通过通道60挥发到窗口71或其他光学元件上。
请参阅图10及图11,同样地,固定件51包括第一本体519,第一凸起511自第一本体519延伸,其中一个第一凸起511与轴承20抵触或者第一本体519与轴承20抵触;可动件53还可包括第二本体535,第二凸起531自第二本体535延伸,第二本体535与轴承20抵触或第二凸起531与轴承20抵触。具体地,轴承20的内圈21与轴承20的外圈23之间设置有轴承盖29,轴承盖29的设置能够保证油脂仅对轴承20的滚动体起润滑作用而不溢出,如图11所示,第二本体535与轴承20的内圈21抵触,靠近轴承20的一个第一凸起511与轴承20的外圈23抵触。或者,第二本体535与轴承20的内圈21抵触,第一本体519与轴承20的外圈23抵触。或者,与轴承20的内圈21对应的部分第二凸起531与轴承20的内圈21抵触,其余部分的第二凸起531与轴承盖29间隔,第一凸起511与轴承20的外圈23抵触。或者,与轴承20的内圈21对应的部分第二凸起531与轴承20的内圈21抵触,其余部分的第二凸起531与轴承盖29间隔,第一本体519与轴承20的外圈23抵触,使得第二凸起531与轴承盖29避让开,从而防止第二凸起531转动过程中损坏轴承盖29,防止轴承20内部的油脂外溢。
请参阅图14至图16,在再一个实施例中,固定件51与可动件53之间的密封方式为离心型密封方式。具体地,固定件51包括两个第一凸起511,两个第一凸起511之间形成收容空间515。可动件53包括第二凸起531,第二凸起531收容于收容空间515内,第二凸起531包括相互间隔的多个翅片5311,翅片5311的朝向与可动件53的转向相反。
同样地,固定件51包括第一本体519,第一凸起511自第一本体519延伸,其中一个第一凸起511与轴承20抵触或者第一本体519与轴承20抵触。可动件53还可包括第二本体535,第二凸起531自第二本体535延伸,第二本体535与轴承20的内圈21抵触或第二凸起531与轴承20的内圈21抵触。如图15所示,靠近轴承20一侧的一个第一凸起511与轴承20的外圈23抵触,第二本体535与轴承20的内圈21抵触。或者,第一本体519与轴承20的外圈23抵触,第二本体535与轴承20的内圈21抵触。或者,与轴承20的内圈21对应的部分第二凸起531与轴承20的内圈21抵触,其余部分的第二凸起531与轴承盖29间隔,第一凸起511与轴承20的外圈23抵触。或者,与轴承20的内圈21对应的部分第二凸起531与轴承20的内圈21抵触,其余部分的第二凸起531与轴承盖29间隔,第一本体519与轴承20的外圈23抵触,从而防止第二凸起531转动过程中损坏轴承盖29,防止轴承20内部的油脂外溢。两个第一凸起511的长度不相同,且靠近轴承20的一个第一凸起511的长度小于或等于轴承20 的外圈23的径向长度,使得第一凸起511与轴承20的外圈23抵触并与轴承盖29避让开。远离轴承20的一个第一凸起511与本体535之间的空隙52的高度的取值范围为[0.20mm,0.50mm],从而使得轴承20内部的油脂挥发到收容空间515后,从收容空间515中再次挥发到窗口71或发光元件上。
可动件53的结构为带有离心翅片5311的环形结构,且翅片5311的朝向与可动件53的转向相反,例如,如图16和17所示,当可动件53沿顺时针方向(图17中所示的箭头方向)转动时,翅片5311朝向逆时针方向(即翅片5311为后弯式,类似于离心风机的叶片朝向,在离心风机中,后弯式叶片为其叶片弯曲方向与叶轮旋转方向相反,出口安装角小于90°),翅片5311自第二本体535沿着逆时针方向并远离可动件53的圆心方向延伸。如图18和图19所示,当可动件53沿逆时针方向转动时,翅片5311朝向顺时针方向(即翅片5311为前弯式,类似于离心风机的叶片朝向,在离心风机中,前弯式叶片为其叶片弯曲方向与叶轮旋转方向相同,出口安装角大于90°),翅片5311自第二本体535沿着顺时针方向并远离可动件53的圆心方向延伸。由此,使得翅片5311能够在可动件53旋转运动时产生径向气流,从而使得轴承20挥发出来的油脂在可动件53产生的径向气流的作用下甩到收容空间515的底部5151,同时,远离轴承20的一个第一凸起511能够进一步阻挡油脂朝窗口71处传播,减少油脂挥发到窗口71上。
进一步地,第二凸起531还可包括阻挡片5313,阻挡片5313包括相背的第一面53131和第二面53133,第一面53131朝向轴承20,多个翅片5311安装于第一面53131,并位于第一面53131与轴承20之间,阻挡片5313能够阻挡附着在第二凸起531上的油脂挥发到第二面53133所在的一侧,且使得翅片5311产生的气流尽可能多地朝可动件53的径向流动,从而将附着在翅片5311上的油脂甩到收容空间515的底部5151。
进一步地,密封组件50还可包括吸收层55,吸收层55设置于收容空间515内并贴合于收容空间515的底部5151,吸收层55用于吸收从轴承20挥发出来的油脂。由于可动件53转动过程中,翅片5311在转动时将产生径向气流,使得径向气流中包含的油脂被收容空间515的底部5151处的吸收层55吸收掉,防止油脂进一步挥发到窗口71或其他光学元件上,减小轴承20内部的油脂的挥发对测距装置1000的量程的影响。
请参阅图20及图21,在又一个实施例中,固定件51与可动件53之间的密封方式为螺旋密封方式。具体地,固定件51包括第一凸起511,第一凸起511与轴承20之间形成安装空间517。可动件53包括第二凸起531,第二凸起531收容于安装空间517内,第二凸起531的外周面5315形成有多个螺旋槽5317。
多个螺旋槽5317在可动件53转动过程中能够产生轴向的剪切流,使得轴承20内部挥发出来的油脂在安装空间517内往可动件53的轴向方向流动,使得轴承20内部挥发出来的油脂能够回流到轴承20上,难以挥发到窗口71或其他光学元件上。
进一步地,多个螺旋槽5317的旋向朝向轴承20的一侧。例如,若螺旋槽5317包括相背的第一侧面53171和第二侧面53173,其中第一侧面53171相较于第二侧面53173更靠近轴承20。如图22和图23所示,自第一侧面53171至第二侧面53173的方向上,若可动件53沿顺时针方向(自第一侧面53171朝第二侧面53173方向上看)转动时,螺旋槽5317的中心线oo1逐渐上升。如图24和图25所示,自第一侧面53171至第二侧面53173的方向上,若可动件53沿逆时针方向转动,螺旋槽5317的中心线oo1逐渐下降。由此,使得螺旋槽5317产生的剪切流方向朝向轴承20所在的一侧,从而轴承20内部挥发出来的油脂能够回流到轴承20上,难以挥发到窗口71或其他光学元件上,既能保证轴承20的转动功率,也能保证测距装置1000原有的量程。
固定件51还可包括第一本体519,第一凸起511自第一本体519朝第二组件30所在的一侧延伸,第一本体519与轴承20抵触。可动件53还可包括第二本体535,第二凸起531自第二本体535朝第一组件10所在的一侧延伸,第二本体535与轴承20抵触。从而使得第一凸起511与第二凸起531与轴承盖29避让开,从而防止第二凸起531转动过程中损坏轴承盖29,防止轴承盖29内部的油脂外溢。
同样地,第一本体519朝向第二凸起531的一面可以设置有吸收层55(图15所示),且吸收层55与第二凸起531间隔一定距离,使得从轴承20内部挥发出来的油脂中的一部分被吸收层55吸收掉,减小油脂在第一凸起511与第二凸起531之间再次挥发。
本申请的扫描模组100及测距装置1000中,在第一组件10和第二组件30之间的间隙40安装有轴 承20,且第二组件30与第一组件10能够相对运动,至少部分密封组件50与轴承20相邻设置并位于间隙40内,当轴承20转动时,密封组件50能够一定程度阻挡轴承20内部的油脂的挥发。并且,密封组件50中的固定件51和可动件53间隔相对设置,固定件51和可动件53之间共同形成弯折的通道60,使得油脂主要限制在通道60内,通道60与轴承20的一侧连通,从而在轴承20的一侧形成非接触式密封,在不增加轴承20的转动功率的情况下,减小轴承20油脂的挥发对测距装置1000的量程的影响。
在本说明书的描述中,参考术语“某些实施方式”、“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个所述特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
尽管上面已经示出和描述了本申请的实施方式,可以理解的是,上述实施方式是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施方式进行变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (30)

  1. 一种扫描模组,其特征在于,包括:
    第一组件;
    第二组件,所述第二组件通过轴承安装于所述第一组件内,所述轴承位于所述第一组件与所述第二组件之间的间隙内,所述第二组件与所述第一组件能够相对转动;及
    密封组件,至少部分所述密封组件与所述轴承相邻设置并位于所述间隙内,所述密封组件包括固定件及可动件,所述固定件安装于所述第一组件的内侧,所述可动件安装于所述第二组件的外侧,所述固定件与所述可动件间隔相对并共同形成弯折的通道。
  2. 根据权利要求1所述的密封结构,其特征在于,所述轴承包括相背的第一侧及第二侧,所述密封组件设置于所述第一侧和/或所述第二侧。
  3. 根据权利要求1所述的密封结构,其特征在于,所述第一组件包括:
    安装座,所述安装座设有中空腔,所述固定件设置于所述中空腔的内侧壁。
  4. 根据权利要求3所述的密封结构,其特征在于,所述固定件与所述安装座为一体结构;或,
    所述固定件与所述安装座为分体结构。
  5. 根据权利要求3所述的密封结构,其特征在于,所述第一组件包括:
    绕组本体,所述绕组本体安装于所述中空腔的内侧壁;及
    绕组,所述绕组缠绕于所述绕组本体;
    所述第二组件包括:
    磁轭,所述磁轭通过所述轴承穿设于所述安装座,所述可动件设置于所述磁轭的外周壁;及
    磁铁,所述磁铁安装于所述磁轭的外周壁并与所述绕组对应。
  6. 根据权利要求5所述的密封结构,其特征在于,所述可动件与所述磁轭为一体结构;或,
    所述可动件与所述磁轭为分体结构。
  7. 根据权利要求1所述的密封结构,其特征在于,所述密封组件还包括吸收层,所述吸收层设置于所述固定件和/或所述可动件,并用于吸收从所述轴承挥发出的油脂。
  8. 根据权利要求1所述的扫描模组,其特征在于,所述轴承挥发出的油脂在所述通道内沿呈阶梯路径或锯齿形路径行进。
  9. 根据权利要求1所述的扫描模组,其特征在于,所述固定件包括相互间隔的多个第一凸起,相邻两个所述第一凸起之间形成第一间隔;
    所述可动件包括相互间隔的多个第二凸起,相邻两个所述第二凸起之间形成第二间隔;
    每个所述第一凸起对应一个所述第二凸起并形成一个空隙,所述第一间隔与所述第二间隔相对。
  10. 根据权利要求9所述的扫描模组,其特征在于,多个所述第一凸起的长度均不相同;和/或,
    多个所述第二凸起的长度均不相同。
  11. 根据权利要求9所述的扫描模组,其特征在于,在远离所述轴承的方向上,多个所述第一凸起的长度依次增大;或,
    多个所述第一凸起的长度依次减小。
  12. 根据权利要求9所述的扫描模组,其特征在于,所述第一凸起的宽度小于或等于所述第二凸起的宽度。
  13. 根据权利要求9所述的扫描模组,其特征在于,所述空隙的高度的取值范围为[0.20mm,0.50mm]。
  14. 根据权利要求9所述的扫描模组,其特征在于,所述密封组件还包括吸收层,所述吸收层设置于所述第一凸起的侧面和/或所述第一间隔的底部,并用于吸收从所述轴承挥发出的油脂。
  15. 根据权利要求1所述的扫描模组,其特征在于,所述固定件包括相互间隔的多个第一凸起,相邻两个所述第一凸起之间形成第一间隔;
    所述可动件包括相互间隔的多个第二凸起,相邻两个所述第二凸起之间形成第二间隔,所述第一凸起与所述第二凸起间隔交错设置。
  16. 根据权利要求15所述的扫描模组,其特征在于,部分所述第二凸起伸入所述第一间隔并与所述第一间隔的底部及侧壁间隔;
    部分所述第一凸起伸入所述第二间隔并与所述第二间隔的底部及侧壁间隔。
  17. 根据权利要求15所述的扫描模组,其特征在于,多个所述第一凸起的长度均相同;和/或,所述第二凸起的长度均相同。
  18. 根据权利要求15所述的扫描模组,其特征在于,所述第一凸起的长度与所述第二凸起的长度相同。
  19. 根据权利要求15所述的扫描模组,其特征在于,所述通道各处的宽度均相同。
  20. 根据权利要求15所述的扫描模组,其特征在于,所述密封组件还包括吸收层,所述吸收层设置于所述第一凸起的侧面和/或所述第一间隔的底部,并用于吸收从所述轴承挥发出的油脂。
  21. 根据权利要求1所述的扫描模组,其特征在于,所述固定件包括两个第一凸起,两个所述第一凸起之间形成收容空间;
    所述可动件包括第二凸起,所述第二凸起收容于所述收容空间内,所述第二凸起包括相互间隔的多个翅片,所述翅片的朝向与所述可动件的转向相反。
  22. 根据权利要求21所述的扫描模组,其特征在于,所述第二凸起还包括阻挡片,所述阻挡片包括相背的第一面和第二面,所述第一面朝向所述轴承,多个翅片安装于所述第一面。
  23. 根据权利要求21所述的扫描模组,其特征在于,所述密封组件还包括吸收层,所述吸收层设置于所述收容空间内并贴合于所述收容空间的底部,所述吸收层用于吸收从所述轴承挥发出的油脂。
  24. 根据权利要求9、15或21所述的扫描模组,其特征在于,所述固定件包括第一本体,所述第一凸起自所述第一本体延伸,所述第一本体与所述轴承抵触或其中一个所述第一凸起与所述轴承抵触;
    所述可动件包括第二本体,所述第二凸起自所述第二本体延伸,所述第二本体与所述轴承抵触或所述第二凸起与所述轴承抵触。
  25. 根据权利要求1所述的扫描模组,其特征在于,所述固定件包括第一凸起,所述第一凸起与所述轴承之间形成安装空间;
    所述可动件包括第二凸起,所述第二凸起收容于所述安装空间内,所述第二凸起的外周面形成有多个螺旋槽。
  26. 根据权利要求25所述的扫描模组,其特征在于,所述螺旋槽的旋向朝向所述轴承的一侧。
  27. 根据权利要求25所述的扫描模组,其特征在于,所述固定件还包括第一本体,所述第一凸起自所述第一本体延伸,所述第一本体与所述轴承抵触;
    所述可动件还包括第二本体,所述第二凸起自所述第二本体延伸,所述第二本体与所述轴承抵触。
  28. 根据权利要求1所述的扫描模组,其特征在于,所述扫描模组还包括壳体,所述壳体的窗口安装有透光部,所述第一组件固定于所述壳体内,所述密封组件设于所述轴承与所述透光部之间。
  29. 一种测距装置,其特征在于,包括:
    权利要求1-28任意一项所述的扫描模组;及
    测距模组,所述测距模组用于向所述扫描模组发射光束,所述扫描模组用于改变所述光束的传输方向后出射,经被探测物反射回的光束经过所述扫描模组后入射至所述测距模组,所述测距模组用于根据所述反射回的光束确定所述被探测物相对所述测距装置的距离。
  30. 根据权利要求29所述的测距装置,其特征在于,所述测距模组包括光学元件,所述密封组件设于所述轴承与所述光学元件之间。
PCT/CN2021/124736 2021-10-19 2021-10-19 扫描模组及测距装置 WO2023065117A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/124736 WO2023065117A1 (zh) 2021-10-19 2021-10-19 扫描模组及测距装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/124736 WO2023065117A1 (zh) 2021-10-19 2021-10-19 扫描模组及测距装置

Publications (1)

Publication Number Publication Date
WO2023065117A1 true WO2023065117A1 (zh) 2023-04-27

Family

ID=86057840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/124736 WO2023065117A1 (zh) 2021-10-19 2021-10-19 扫描模组及测距装置

Country Status (1)

Country Link
WO (1) WO2023065117A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0988964A (ja) * 1995-09-26 1997-03-31 Ntn Corp 動圧型軸受装置
CN109743912B (zh) * 2010-12-31 2014-05-14 上海宇航系统工程研究所 一种扫描驱动机构
CN209132509U (zh) * 2019-01-07 2019-07-19 武汉海达数云技术有限公司 转镜装置及三维激光扫描设备
CN209134203U (zh) * 2019-01-07 2019-07-19 武汉海达数云技术有限公司 电机及三维激光扫描仪

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0988964A (ja) * 1995-09-26 1997-03-31 Ntn Corp 動圧型軸受装置
CN109743912B (zh) * 2010-12-31 2014-05-14 上海宇航系统工程研究所 一种扫描驱动机构
CN209132509U (zh) * 2019-01-07 2019-07-19 武汉海达数云技术有限公司 转镜装置及三维激光扫描设备
CN209134203U (zh) * 2019-01-07 2019-07-19 武汉海达数云技术有限公司 电机及三维激光扫描仪

Similar Documents

Publication Publication Date Title
US11619713B2 (en) Laser detection and ranging device
WO2020124346A1 (zh) 激光测量装置及无人飞行器
CN112689786B (zh) 光扫描装置和激光雷达
CN111566510A (zh) 测距装置及其扫描视场的均衡方法、移动平台
KR20190143689A (ko) 이중 구조를 갖는 라이다 장치
CN210199305U (zh) 一种扫描模组、测距装置及可移动平台
CN209878990U (zh) 扫描模组、测距装置及移动平台
KR20190066349A (ko) 라이다 장치
CN209979845U (zh) 一种测距装置及移动平台
WO2023065117A1 (zh) 扫描模组及测距装置
CN111279219A (zh) 扫描模组、测距装置及移动平台
CN220271559U (zh) 激光雷达及移动设备
US20210333393A1 (en) Scanning module, distance measuring device and mobile platform
EP3364229B1 (en) Optical-scanning-type object detection device
JP6676974B2 (ja) 対象物検出装置
CN213581352U (zh) 测距装置及移动平台
WO2020142913A1 (zh) 驱动器、扫描模组及激光测量装置
WO2020142919A1 (zh) 一种测距装置及移动平台
WO2022141347A1 (zh) 激光测量装置及可移动平台
WO2021138752A1 (zh) 扫描模组、测距装置及移动平台
CN111381219A (zh) 一种激光发射接收组件以及激光雷达及其系统和扫描方法
CN111670383A (zh) 一种测距装置及移动平台
CN111670337B (zh) 测距装置及移动平台
WO2022198567A1 (zh) 扫描模组、测距装置以及移动平台
CN209842061U (zh) 激光雷达

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21960877

Country of ref document: EP

Kind code of ref document: A1