WO2020142913A1 - 驱动器、扫描模组及激光测量装置 - Google Patents

驱动器、扫描模组及激光测量装置 Download PDF

Info

Publication number
WO2020142913A1
WO2020142913A1 PCT/CN2019/070927 CN2019070927W WO2020142913A1 WO 2020142913 A1 WO2020142913 A1 WO 2020142913A1 CN 2019070927 W CN2019070927 W CN 2019070927W WO 2020142913 A1 WO2020142913 A1 WO 2020142913A1
Authority
WO
WIPO (PCT)
Prior art keywords
wall
assembly
ring
support assembly
rotor assembly
Prior art date
Application number
PCT/CN2019/070927
Other languages
English (en)
French (fr)
Inventor
周震昊
王昊
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201980005729.9A priority Critical patent/CN111670341B/zh
Priority to PCT/CN2019/070927 priority patent/WO2020142913A1/zh
Publication of WO2020142913A1 publication Critical patent/WO2020142913A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/02Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using mechanical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target

Definitions

  • the present application relates to the technical field of drivers, in particular to a driver, a scanning module and a laser measuring device.
  • the drive generally includes a stator assembly, a rotor assembly installed in the stator assembly, and a bearing installed between the stator assembly and the rotor assembly.
  • the stator assembly is used to drive the rotor assembly to rotate
  • the bearing is used to restrict the rotor assembly to rotate the rotor assembly about the rotating shaft . Due to the gap inside the bearing, when the rotor assembly is rotating, the rotor assembly is prone to sway.
  • the existing method to solve the sloshing of the rotor assembly during rotation is to apply a preload to the bearing through a strong magnet.
  • the iron debris in the bearing will gather on the bearing raceway under the action of the strong magnet, which aggravates the bearing's turning It is subject to wear and tear and leads to a lower service life of the bearing.
  • the embodiments of the present application need to provide a driver, a scanning module, and a laser measuring device.
  • the driver of the present application includes a stator assembly, a rotor assembly, a support assembly, a magnet, and a magnetically permeable code disk.
  • the rotor assembly is inserted into the stator assembly, and the stator assembly is used to drive the rotor assembly around the The rotation axis of the rotor assembly rotates; the support assembly is sleeved on the rotor assembly and radially bears against the stator assembly; the magnet is sleeved on the side of the rotor assembly along the direction of the rotation axis;
  • the code disk is sleeved outside the rotor assembly and is located between the support assembly and the magnet in the direction of the rotating shaft.
  • the scanning module of the present application includes a driver and a prism.
  • the driver includes a stator assembly, a rotor assembly, a support assembly, a magnet, and a code disk capable of magnetic conduction.
  • the rotor assembly passes through the stator assembly, and the stator assembly It is used to drive the rotor assembly to rotate around the rotation axis of the rotor assembly, the support assembly is sleeved on the rotor assembly and radially bears against the stator assembly, and the magnet is sleeved in the direction of the rotation axis
  • the code wheel is sleeved outside the rotor assembly and is located between the support assembly and the magnet in the direction of the rotating shaft; the prism is mounted on the rotor In the assembly, the driver is used to drive the prism to rotate to change the transmission direction of the laser pulse passing through the prism.
  • the laser measurement device of the present application includes a light transceiving module and a scanning module.
  • the light transceiving module is used to emit laser pulses and receive laser pulses reflected by the detection object;
  • the scanning module includes a driver and a prism.
  • the drive includes a stator assembly, a rotor assembly, a support assembly, a magnet, and a magnetically permeable code disk. The rotor assembly is inserted into the stator assembly, and the stator assembly is used to drive the rotor assembly around the rotor assembly.
  • the rotation shaft rotates, the support assembly is sleeved on the rotor assembly and radially bears against the stator assembly, the magnet is sleeved on the side of the rotor assembly in the direction of the rotation shaft, the code
  • the disk sleeve is arranged outside the rotor assembly and is located between the support assembly and the magnet in the direction of the rotating shaft;
  • the prism is installed in the rotor assembly;
  • the scanning module is arranged in the light On the light emitting optical path of the transceiver module, the driver is used to drive the prism to rotate to change the transmission direction of the laser pulse passing through the prism.
  • the laser measuring device, the scanning module and the driver of the present application reduce the strength of the magnetic field formed by the magnet at the support assembly by setting the code wheel as a magnet, and prevent the metal abrasive debris generated on the support assembly from collecting to the support assembly Inside, which reduces the wear and tear on the support assembly during rotation and increases the service life of the support assembly.
  • the driver of the present application includes a stator assembly, a rotor assembly, a support assembly, and an insulating ring.
  • the rotor assembly penetrates the stator assembly and is spaced apart from the stator assembly, and the stator assembly is used to drive the rotor assembly to rotate about the rotation axis of the rotor assembly; the support assembly is sleeved on the The rotor assembly is located between the rotor assembly and the stator assembly; the insulating ring is sleeved outside the support assembly and located between the support assembly and the stator assembly.
  • the scanning module of the present application includes a driver and a prism.
  • the driver includes a stator assembly, a rotor assembly, a support assembly, and an insulating ring.
  • the rotor assembly passes through the stator assembly and is spaced apart from the stator assembly.
  • the stator assembly is used to drive the rotor assembly to rotate around the rotation axis of the rotor assembly;
  • the support assembly is sleeved on the rotor assembly and is located between the rotor assembly and the stator assembly;
  • the insulation ring is sleeved Outside the support assembly and between the support assembly and the stator assembly;
  • the prism is installed in the rotor assembly, the driver is used to drive the prism to rotate to change the laser pulse passing through the prism The direction of transmission.
  • the laser measurement device of the present application includes a light transceiving module and a scanning module.
  • the light transceiving module is used to emit laser pulses and receive laser pulses reflected by the detection object;
  • the scanning module includes a driver and a prism;
  • the drive includes a stator assembly, a rotor assembly, a support assembly, and an insulating ring.
  • the rotor assembly is penetrated within the stator assembly and spaced apart from the stator assembly, and the stator assembly is used to drive the rotor assembly around the rotor
  • the rotating shaft of the assembly rotates;
  • the support assembly is sleeved on the rotor assembly and is located between the rotor assembly and the stator assembly;
  • the insulation ring is sleeved outside the support assembly and is located on the support assembly and
  • the prism is installed in the rotor assembly;
  • the scanning module is disposed on the light path of the light receiving and transmitting module, the driver is used to drive the prism to rotate to change the The propagation direction of the laser pulse of the prism.
  • the laser measuring device, the scanning module and the driver of the present application provide an insulating ring between the stator assembly and the support assembly, and the insulation ring isolates the electrical connection between the stator assembly and the support assembly, thereby avoiding the stator assembly, the rotor assembly and the
  • the support components together form a closed-loop circuit, thereby preventing the support components from being corroded during rotation and increasing the service life of the support components.
  • FIG. 1 is a schematic perspective view of a laser measuring device according to an embodiment of the present application.
  • FIG. 2 and 2 are schematic cross-sectional views of the laser measuring device in FIG. 1 along line II-II.
  • FIG. 3 is a schematic diagram of the magnetic field distribution of the existing driver.
  • FIG. 4 is a schematic diagram of the magnetic field distribution of the driver according to the embodiment of the present application.
  • FIG. 5 is a schematic cross-sectional view of the laser measuring device of FIG. 1 along line II-II.
  • FIG. 6 is a schematic diagram of a magnetic field distribution of a driver according to another embodiment of the present application.
  • FIG. 7 is a schematic perspective view of a laser measuring device according to another embodiment of the present application.
  • FIG. 8 is a schematic cross-sectional view of the laser measurement device in FIG. 7 along the line VIII-VIII.
  • FIG. 9 is a schematic block diagram of a light transceiver module of a laser measurement device according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of the ranging principle of the laser measuring device according to the embodiment of the present application.
  • FIG. 11 is a schematic cross-sectional view of the laser measuring device in FIG. 7 taken along the line VIII-VIII.
  • first and second are used for description purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated.
  • features defined as “first” and “second” may explicitly or implicitly include one or more of the features.
  • the meaning of “plurality” is two or more, unless otherwise specifically limited.
  • connection should be understood in a broad sense, for example, it can be fixed connection or detachable Connected, or integrally connected; may be mechanical, electrical, or may communicate with each other; may be directly connected, or may be indirectly connected through an intermediary, may be the connection between two elements or the interaction of two elements relationship.
  • the first feature “above” or “below” the second feature may include the direct contact of the first and second features, or may include the first and second features Not direct contact but contact through another feature between them.
  • the first feature is “above”, “above” and “above” the second feature includes that the first feature is directly above and obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • the first feature is “below”, “below” and “below” the second feature includes that the first feature is directly below and obliquely below the second feature, or simply means that the first feature is less horizontal than the second feature.
  • the drive 100 of the present application includes a stator assembly 10, a rotor assembly 20, a support assembly 30, a magnet 40 and a code disk 50 capable of magnetic conduction.
  • the rotor assembly 20 is passed through the stator assembly 10.
  • the stator assembly 10 is used to drive the rotor assembly 20 to rotate about the rotation axis OO1 of the rotor assembly 20.
  • the support assembly 30 is sleeved on the rotor assembly 20 and radially supports the stator assembly 10.
  • the magnet 40 is sleeved on the side outside the rotor assembly 20 in the direction of the rotating shaft OO1.
  • the code wheel 50 is sleeved outside the rotor assembly 20 and is located between the support assembly 30 and the magnet 40 in the direction of the rotating shaft OO1.
  • the rotor assembly 20 defines an accommodating through hole 214, and the accommodating through hole 214 can be used to mount an element to be driven (for example, the prism 80).
  • the maximum value of the magnetic field strength at the inner ring raceway 311 and the outer ring raceway 321 of the support assembly 30 is 0.1 Tesla.
  • the maximum value of the magnetic field strength at the inner ring raceway 311 and the outer ring raceway 321 of the support assembly 30 is 0.0167 Tesla.
  • the inner ring raceway 311 is a groove combined with the balls 33 on the inner ring
  • the outer ring raceway 321 is a groove combined with the balls 33 on the outer ring 32.
  • the drive 100 of the present embodiment reduces the strength of the magnetic field formed by the magnet 40 at the support assembly 30 by setting the code wheel 50 as a magnet, and prevents metal abrasive debris generated on the support assembly 30 from collecting on the support assembly 30 Internally, thereby reducing the wear that the support assembly 30 is subjected to when rotating, and increasing the service life of the support assembly 30.
  • the driver 100 includes a stator assembly 10, a rotor assembly 20, a support assembly 30 and an insulating ring 70.
  • the rotor assembly 20 passes through the stator assembly 10 and is spaced apart from the stator assembly 10.
  • the stator assembly 10 is used to drive the rotor assembly 20 to rotate around the rotation axis OO1 of the rotor assembly 20.
  • the support assembly 30 is sleeved on the rotor assembly 20 and is located between the rotor assembly 20 and the stator assembly 10.
  • the insulating ring 70 is sleeved outside the support assembly 30 and is located between the support assembly 30 and the stator assembly 10.
  • the rotor assembly 20 defines an accommodating through hole 214, and the accommodating through hole 214 can be used to mount an element to be driven (for example, the prism 80).
  • an insulating ring 70 is generally not provided between the support assembly 30 and the stator assembly 10. Due to the gap between the stator assembly 10 and the rotor assembly 20, there is a gap inside the support assembly 30, and the The gap is filled with lubricant (including lubricating oil and grease), so an equivalent capacitance will be formed between the stator assembly 10 and the rotor assembly 20 and defined as the first equivalent capacitance, and the support assembly 30 will form two equivalent capacitances and separate Defined as the second equivalent capacitance and the third equivalent capacitance, the induced electromotive force generated by the rotor assembly 20 forms a closed-loop equivalent circuit with the first equivalent capacitance, the second equivalent capacitance, and the third equivalent capacitance.
  • the gap in the support assembly 30 will change and cause the second equivalent capacitance or the third equivalent capacitance to discharge, resulting in the support assembly 30 being subject to electrical corrosion and affecting the service life of the support assembly 30 .
  • an equivalent capacitance is formed between the stator assembly 10 and the rotor assembly 20 in each drive 100 and is defined as the first equivalent capacitance
  • the support assembly 30 in each driver 100 forms two equivalent capacitances and is defined as With the second equivalent capacitance and the third equivalent capacitance
  • the induced electromotive force generated by the rotor assembly 20 forms a closed-loop equivalent circuit with the first equivalent capacitance, the second equivalent capacitance, and the third equivalent capacitance.
  • the driver 100 of this embodiment is provided with an insulating ring 70 between the stator assembly 10 and the support assembly 30, which isolates the electrical connection between the stator assembly 10 and the support assembly 30, thereby avoiding the stator assembly 10 and the rotor assembly 20 and the support assembly 30 together form a closed-loop circuit, thereby preventing the support assembly 30 from being corroded during rotation, and increasing the service life of the support assembly 30.
  • the scanning module 200 of the present application includes the driver 100 and the prism 80 of any of the above embodiments.
  • the prism 80 is installed in the rotor assembly 20.
  • the driver 100 is used to drive the prism 80 to rotate to change the laser pulse passing through the prism 80.
  • the prism 80 is installed in the receiving through hole 214.
  • the laser measurement device 300 of the present application includes a light transceiving module 90 and a scanning module 200 according to any one of the above embodiments.
  • the light transceiving module 90 is used to emit laser pulses and receive laser pulses reflected by the detected object.
  • the scanning module 200 is disposed on the light exiting optical path of the light transceiving module 90.
  • the scanning module 200 is used to change the transmission direction of the laser pulse passing through the prism 80.
  • the laser measuring device 300 and the driver 100 in the scanning module 200 of the embodiment of the present application reduce the strength of the magnetic field formed by the magnet 40 at the support assembly 30 by setting the code wheel 50 as a magnet, thereby avoiding the support assembly 30
  • the metal abrasive debris generated above gathers inside the support assembly 30, thereby reducing the wear that the support assembly 30 is subjected to when rotating, and increasing the service life of the support assembly 30.
  • an insulating ring 70 is provided between the stator assembly 10 and the support assembly 30, and the insulating ring 70 isolates the stator assembly 10 and the support assembly 30 Electrical connection, thereby avoiding that the stator assembly 10, the rotor assembly 20 and the support assembly 30 form a closed-loop circuit, thereby preventing the support assembly 30 from being corroded during rotation, and increasing the service life of the support assembly 30.
  • the drive 100 of the present application includes a stator assembly 10, a rotor assembly 20, a support assembly 30, a ring-shaped magnet 40 and a code disk 50 capable of magnetic conduction.
  • the stator assembly 10 includes a housing 11 and a winding 12.
  • the housing 11 includes a hollow outer wall 111 and an annular limiting wall 112.
  • the limiting wall 112 extends from the inner surface of the outer wall 111.
  • the outer wall 111 encloses an accommodating space 113, and the limiting wall 112 is located in the accommodating space 113 and divides the accommodating space 113 into a connected installation space 114 and accommodating space 115.
  • the winding 12 is installed in the housing space 115 and fixed on the inner wall of the housing 11.
  • the rotor assembly 20 is passed through the casing 11 and the winding 12.
  • the stator assembly 10 is used to drive the rotor assembly 20 to rotate around the rotation axis OO1 of the rotor assembly 20.
  • the rotor assembly 20 includes a yoke 21 and a ring-shaped magnet 22.
  • the yoke 21 includes an annular body 211 and an annular mounting wall 212.
  • a receiving hole 214 is formed inside the ring-shaped body 211.
  • the mounting wall 212 extends from the outer surface of the body 211.
  • the mounting wall 212 is located at the end of the body 211 away from the winding 12.
  • the mounting wall 212 includes a connected ring-shaped mounting portion 2121 and a ring-shaped resisting portion 2122.
  • the mounting portion 2121 and the resisting portion 2122 are distributed along the axial direction of the rotating shaft OO1, and the outer diameter of the resisting portion 2122 is smaller than that of the mounting portion 2121. Outer diameter.
  • the magnet 22 is sleeved on the end of the body 211 away from the mounting wall 212 and is accommodated in the accommodating space 115. The magnet 22 is opposed to the winding 12 and spaced apart.
  • the support assembly 30 is sleeved outside the body 211 and located at an end of the body 211 near the mounting wall 212.
  • the support assembly 30 and the magnet 22 are located on the same side of the mounting wall 212.
  • the support assembly 30 includes a bearing 30.
  • the bearing 30 includes an inner ring 31, an outer ring 32 and balls 33.
  • the inner ring 31 is sleeved outside the body 211 and can follow the body 211 to rotate, and one end of the inner ring 31 is in contact with the resisting portion 2122.
  • the outer ring 32 is fixed in the outer wall 111 and is fixed relative to the outer wall 111.
  • the outer ring 32 is sleeved outside the inner ring 31.
  • the end of the outer ring 32 away from the mounting wall 212 resists the limiting wall 112.
  • An inner ring raceway 311 is formed on the outer wall of the inner ring 31, and an outer ring raceway 321 is formed on the inner wall of the outer ring 32 and is opposed to the inner ring raceway 311.
  • the balls 33 are located between the inner ring 31 and the outer ring 32, and the balls 33 can roll in the inner ring raceway 311 and the outer ring raceway 321.
  • the number of the balls 33 is plural, and the plural balls 33 are arranged around the inner ring 31, and the plural balls 33 jointly define the rotation of the yoke 21 around the rotation axis OO1.
  • the magnet 40 is sleeved outside the body 211 and located on the side of the mounting wall 212 away from the support assembly 30.
  • the magnet 40 may be a permanent magnet.
  • the code wheel 50 is sleeved outside the body 211 and is located between the mounting wall 212 and the magnet 40. Specifically, the code wheel 50 is fixed to the mounting portion 2121 and the body 211.
  • the code wheel 50 is made of a magnetically conductive material, which includes 430 stainless steel.
  • the thickness of the code wheel 50 is 0.4 mm.
  • the code wheel 50 is generally used with an optical switch (not shown) and is commonly used to detect the rotation parameters of the yoke 21, and the rotation parameters include a rotation angle, a rotation speed, a rotation acceleration, and the like.
  • the maximum value of the magnetic field strength at the inner ring raceway 311 and the outer ring raceway 321 of the support assembly 30 is 0.1 Tesla.
  • the maximum value of the magnetic field strength at the inner ring raceway 311 and the outer ring raceway 321 of the support assembly 30 is 0.0167 Tesla.
  • the driver 100 of the present embodiment reduces the magnetic field strength generated by the magnet 40 at the inner ring raceway 311 and the outer ring raceway 321 of the support assembly 30 by setting the code wheel 50 as a magnetizer, thereby reducing the inside of the support assembly 30
  • the metal abrasive debris gathers on the inner ring raceway 311 and the outer ring raceway 321, thereby reducing the balls 33, the inner ring raceway 311 and the inner ring raceway 311 and the outer ring raceway 321 when the inner raceway
  • the wear on the outer ring raceway 321 increases the service life of the support assembly 30.
  • the yoke 21 includes an annular body 211, an annular mounting wall 212 and an annular positioning wall 213.
  • the mounting wall 212 extends from the outer surface of the body 211.
  • the mounting wall 212 is located at the end of the body 211 away from the winding 12. Specifically, the mounting wall 212 is located between the support assembly 30 and the code wheel 50.
  • the positioning wall 213 extends from the outer surface of the body 211 and is located between the mounting wall 212 and the support assembly 30.
  • the positioning wall 213 is spaced apart from the mounting wall 212 in the direction of the rotation axis OO1.
  • the positioning wall 213 and the inner ring 31 are away from the magnet 22 One end is in conflict.
  • the mounting wall 212 may include only the mounting portion 2121 and not the resisting portion 2122.
  • the driver 100 of this embodiment is equivalent to providing a magnetic isolation ring between the positioning wall 213 and the mounting wall 212 (As shown in Figure 5).
  • a magnetic isolation ring between the positioning wall 213 and the mounting wall 212 (As shown in Figure 5).
  • FIG. 6 when the code wheel 50 is magnetically conductive and the support assembly 30 and the mounting wall 212 are separated by air (or a magnetic isolation ring 60 is provided), the inner ring raceway 311 and the outer ring raceway of the support assembly 30
  • the maximum value of the magnetic field strength at 321 is 0.0133 Tesla.
  • the driver 100 of the present embodiment sets the code wheel 50 as a magnetizer and separates air between the support assembly 30 and the mounting wall 212, thereby reducing the magnet 40 rolling on the inner ring raceway 311 and the outer ring of the support assembly 30
  • the strength of the magnetic field generated at the track 321 reduces the concentration of metal abrasive debris in the support assembly 30 on the inner ring raceway 311 and the outer ring raceway 321, thereby reducing the balls 33 in the inner ring raceway 311 and the outer ring raceway
  • the wear of the balls 33, the inner ring raceway 311 and the outer ring raceway 321 during the inner raceway 321 increases the service life of the support assembly 30.
  • the drive 100 further includes a magnetic isolation ring 60.
  • the magnetic isolation ring 60 is sleeved outside the body 211 and is located between the support assembly 30 and the mounting wall 212. The opposing two of the magnetic isolation ring 60 The ends collide with the inner ring 31 and the mounting wall 212, respectively.
  • the mounting wall 212 may include only the mounting portion 2121 and not the resisting portion 2122.
  • the magnetic isolation ring 60 is made of a material with a low magnetic permeability.
  • the magnetic isolation ring 60 may be made of an aluminum alloy material.
  • the code wheel 50 when the code wheel 50 is magnetically conductive and the magnetic isolation ring 60 is provided between the support assembly 30 and the mounting wall 212, the magnetic field strength at the inner ring raceway 311 and the outer ring raceway 321 of the support assembly 30 The maximum value is 0.0133 Tesla.
  • the code wheel 50 is set as a magnetizer, and a magnetic isolation ring 60 is provided between the support assembly 30 and the mounting wall 212, thereby reducing the magnet 40 in the inner raceway 311 of the support assembly 30.
  • the strength of the magnetic field generated at the outer ring raceway 321 reduces the concentration of metal abrasive debris in the support assembly 30 on the inner ring raceway 311 and the outer ring raceway 321, thereby reducing the balls 33 in the inner ring raceway 311 and outside
  • the wear of the balls 33, the inner ring raceway 311 and the outer ring raceway 321 during the inner raceway of the ring raceway 321 increases the service life of the support assembly 30.
  • the driver 100 further includes an insulating ring 70.
  • the insulating ring 70 is sleeved outside the support assembly 30 and is located between the support assembly 30 and the stator assembly 10.
  • the insulating ring 70 includes an annular side wall 71 and an annular end wall 72.
  • the end wall 72 extends from one end of the side wall 71 toward the center of the side wall 71.
  • the insulating ring 70 is disposed in the installation space 114 and fixed on the outer wall 111, the end wall 72 abuts the limit wall 112, the outer ring 32 is disposed in the insulating ring 70, the end of the outer ring 70 away from the insulating ring 70 and the limit Wall 112 resists.
  • the insulating ring 70 is made of an insulating material. Generally, the yoke 21, the magnet 22, the winding 12, the outer case 11, the outer ring 32, the balls 33, and the inner ring 31 can all conduct electricity.
  • the insulating ring 70 is not provided between the support assembly 30 and the stator assembly 10, due to the gap between the magnet 22 and the winding 12, there is a gap between the outer ring raceway 321 and the ball 33, and between the inner ring raceway 311 and the ball 33 There is also a gap, the gap between the outer ring raceway 321 and the ball 33 is filled with lubricant, and the gap between the inner ring raceway 311 and the ball 33 is also filled with lubricant, so the magnet 22 and the winding 12 will form an equivalent capacitance It is defined as the first equivalent capacitance.
  • the outer ring 32 and the ball 33 form an equivalent capacitance and are defined as a second equivalent capacitance.
  • the inner ring 31 and the ball 33 form an equivalent capacitance and are defined as a third equivalent capacitance.
  • the induced electromotive force generated by the rotor assembly 20 forms a closed-loop equivalent circuit together with the first equivalent capacitance, the second equivalent capacitance, and the third equivalent capacitance.
  • the gap in the support assembly 30 will change and cause the second equivalent capacitance or the third equivalent capacitance to discharge, resulting in the inner ring raceway 311 and the outer ring raceway 321 being subject to electrical corrosion And affect the service life of the support assembly 30.
  • the driver 100 of this embodiment is provided with an insulating ring 70 between the outer wall 111 and the outer ring 32.
  • the insulating ring 70 separates the outer wall 111 from the outer ring 32 and isolates the electrical connection between the outer wall 111 and the outer ring 32, thereby avoiding
  • the stator assembly 10, the rotor assembly 20, and the support assembly 30 together form a closed-loop circuit, thereby preventing the support assembly 30 from being corroded during rotation, and increasing the service life of the support assembly 30.
  • the scanning module 200 of the present application includes the driver 100 and the prism 80 of the above embodiment.
  • the prism 80 is installed in the rotor assembly 20.
  • the driver 100 is used to drive the prism 80 to rotate to change the transmission of laser pulses passing through the prism 80. direction.
  • the prism 80 of this embodiment is a wedge-shaped body. Specifically, the prism 80 is approximately cylindrical, the bottom surface of the prism 80 is perpendicular to the axis of the prism 80, the top surface of the prism 80 is relatively inclined to the axis of the prism 80, and the thickness of the prism 80 Uneven.
  • the prism 80 is installed in the receiving through hole 214.
  • the axis of the prism 80 is parallel to the rotation axis OO1, and the driver 100 is used to drive the prism 80 to rotate around the rotation axis OO1.
  • the driver 100 is used to drive the prism 80 to rotate around the rotation axis OO1.
  • the drive 100 in the scanning module 200 of the present application reduces the magnetic field strength generated by the magnet 40 at the inner ring raceway 311 and the outer ring raceway 321 of the support assembly 30 by setting the code wheel 50 as a magnetizer, thereby reducing
  • the metal abrasive debris in the support assembly 30 gathers on the inner ring raceway 311 and the outer ring raceway 321, thereby reducing the balls 33, the inner ball raceway 311 and the outer ring raceway 321 when the ball 33, inner
  • the wear on the ring raceway 311 and the outer ring raceway 321 increases the service life of the support assembly 30.
  • the driver 100 in the scanning module 200 sets an insulating ring 70 between the outer wall 111 and the outer ring 32, the insulating ring 70 separates the outer wall 111 from the outer ring 32 and isolates the electrical property between the outer wall 111 and the outer ring 32
  • the connection prevents the stator assembly 10, the rotor assembly 20, and the support assembly 30 from forming a closed-loop circuit, thereby preventing the support assembly 30 from being corroded during rotation, and increasing the service life of the support assembly 30.
  • the laser measurement device 300 of the present application includes a light transceiving module 90 and the scanning module 200 of the above embodiment.
  • the light transceiver module 90 is used to emit laser pulses and receive laser pulses reflected back by the detection object.
  • the scanning module 200 is disposed on the light exiting optical path of the light transceiving module 90.
  • the scanning module 200 is used to change the transmission direction of the laser pulse passing through the prism 80.
  • the light transceiver module 90 is used to emit laser pulses to the scanning module 200.
  • the scanning module 200 is used to change the transmission direction of the laser pulses and then exit.
  • the laser pulses reflected by the detection object pass through the scanning module 200 and enter the light transceiver module Group, the light transceiver module 90 is used to determine the distance between the detected object and the laser measuring device 300 according to the reflected laser pulse.
  • Embodiments of the present application provide a light transceiver module 90 that can be used to determine the distance and/or direction of a detected object relative to the light transceiver module 90.
  • the light transceiver module 90 may be an electronic device such as a laser radar or a laser ranging device.
  • the light transceiver module 90 can be used to sense external environmental information, such as distance information, azimuth information, reflection intensity information, speed information, etc. of the environmental target.
  • the light transceiving module 90 can detect the time of light propagation between the light transceiving module 90 and the detection object, that is, time-of-light (TOF), to detect the detection object to light transceiving Module 90 distance.
  • TOF time-of-light
  • the light transceiving module 90 can also detect the distance between the detected object and the light transceiving module 90 through other techniques, such as a distance measurement method based on phase shift measurement, or a measurement based on frequency shift measurement The distance method is not limited here.
  • the distance and orientation detected by the light transceiver module 90 can be used for remote sensing, obstacle avoidance, mapping, modeling, navigation, etc.
  • the light transceiver module 90 may include a transmitting circuit 901, a receiving circuit 902, a sampling circuit 903, and an arithmetic circuit 904.
  • the transmission circuit 901 may transmit a sequence of light pulses (for example, a sequence of laser pulses).
  • the receiving circuit 902 can receive the optical pulse sequence reflected by the detected object, and photoelectrically convert the optical pulse sequence to obtain an electrical signal, which can be output to the sampling circuit 903 after processing the electrical signal.
  • the sampling circuit 903 can sample the electrical signal to obtain the sampling result.
  • the arithmetic circuit 904 may determine the distance between the detected object and the light transceiver module 90 based on the sampling result of the sampling circuit 903.
  • the light transceiver module 90 can also include a control circuit 905, which can control other circuits, for example, can control the working time of each circuit and/or set parameters for each circuit.
  • a control circuit 905 can control other circuits, for example, can control the working time of each circuit and/or set parameters for each circuit.
  • the light transceiver module 90 shown in FIG. 9 includes a transmitting circuit 901, a receiving circuit 902, a sampling circuit 903, and an arithmetic circuit 904, the embodiment of the present application is not limited thereto, and the transmitting circuit 901, The number of any of the receiving circuit 902, the sampling circuit 903, and the arithmetic circuit 904 may be at least two.
  • the light transceiver module 90 includes a light source 91, an optical path changing element 92, a collimating element 93, and a detector 94.
  • the light source 91 may be used to emit a sequence of light pulses.
  • the light beam emitted by the light source 91 is a narrow-bandwidth light beam with a wavelength outside the visible light range.
  • the light source 91 may include a laser diode (Laser diode) through which laser light in the nanosecond level is emitted.
  • the laser pulse emitted by the light source 91 lasts for 10 ns.
  • the transmission circuit 901 may include a light source 91.
  • the collimating element 93 is disposed on the light exiting light path of the light source 91, and is used to collimate the laser beam emitted from the light source 91, that is, collimate the laser beam emitted from the light source 91, and collimate the light pulse from the light source 91 to project Scanning module 200.
  • the collimating element 93 is located between the light source 91 and the scanning module 200.
  • the collimating element 93 is also used to converge at least a part of the return light reflected by the detection object and passing through the scanning module 200 to the detector 94.
  • the collimating element 93 may be a collimating lens or other element capable of collimating the light beam.
  • the collimating element 93 is coated with an AR coating, which can increase the intensity of the transmitted beam.
  • the optical path changing element 92 is provided on the light exiting optical path of the light source 91 for changing the optical path of the laser beam emitted by the light source 91, and for combining the exit optical path of the light source 91 and the receiving optical path of the detector 94. Specifically, the optical path changing element 92 is located on the side of the collimating element 93 opposite to the scanning module 200.
  • the optical path changing element 92 may be a mirror or a half mirror. In one example, the optical path changing element 92 is a small mirror, which can change the optical path direction of the laser beam emitted by the light source 91 by 90 degrees or other angles.
  • the detector 94 and the light source 91 are placed on the same side of the collimating element 93, wherein the detector 94 and the collimating element 93 are directly opposite.
  • the scanning module 200 can change the light pulse sequence to different transmission directions at different times to exit
  • the light pulse reflected by the detection object can be incident on the detector 94
  • the detector 94 can be used to convert at least part of the returned light passing through the collimating element 93 into an electrical signal.
  • the electrical signal may specifically be
  • the detector 94 may also determine the distance between the detection object and the laser measuring device 300 based on the electrical pulse.
  • the detector 94 may include a receiving circuit 902, a sampling circuit 903, an arithmetic circuit 904, and a control circuit 905.
  • the light source 91 emits a laser pulse, which is collimated by the collimating element 93 after the optical path changing element 92 changes the direction of the optical path (can be changed by 90 degrees or other angles), and the collimated laser pulse
  • the scanning module 200 changes the transmission direction, it is emitted and projected onto the detection object.
  • the laser pulse reflected by the detection object passes through the scanning module 200, at least a part of the returned light is condensed on the detector 94 by the collimating element 93.
  • the detector 94 converts at least a portion of the returned light passing through the collimating element 93 into an electrical signal pulse, and the laser measurement device 300 determines the laser pulse reception time by the rising edge time and/or the falling edge time of the electrical signal pulse. In this way, the laser measurement device 300 can calculate the time of flight using the pulse reception time information and the pulse emission time information, thereby determining the distance between the detected object and the laser measurement device 300.
  • the driver 100 in the laser measurement device 300 of the present application reduces the magnetic field strength generated by the magnet 40 at the inner ring raceway 311 and the outer ring raceway 321 of the support assembly 30 by setting the code wheel 50 as a magnetizer, thereby reducing
  • the metal abrasive debris in the support assembly 30 gathers on the inner ring raceway 311 and the outer ring raceway 321, thereby reducing the balls 33, the inner ball raceway 311 and the outer ring raceway 321 when the ball 33, inner
  • the wear on the ring raceway 311 and the outer ring raceway 321 increases the service life of the support assembly 30.
  • the scanning module 200 can increase the range of the laser measuring device 300 to measure the target in the scene.
  • the driver 100 in the laser measurement device 300 is provided with an insulating ring 70 between the outer wall 111 and the outer ring 32, the insulating ring 70 separates the outer wall 111 from the outer ring 32 and isolates the electric power between the outer wall 111 and the outer ring 32 To prevent the stator assembly 10, the rotor assembly 20, and the support assembly 30 from forming a closed loop circuit, thereby preventing the support assembly 30 from being corroded during rotation, and increasing the service life of the support assembly 30.
  • the number of scanning modules 200 in the laser measuring device 300 is at least two.
  • the at least two scanning modules 200 include a first scanning module 201 and a second scanning module 202 ,
  • the rotation axis OO1 of the first scanning module 201 is parallel to the rotation axis OO2 of the second scanning module 202, the magnet 40 (first magnet 41) of the first scanning module 201 and the magnet 40 (second) of the second scanning module 202
  • the magnets 42) are arranged oppositely and repel each other.
  • the mutually repelling magnetic force between the first magnet 41 and the second magnet 42 makes the first magnet 41 push the yoke 21 of the first scanning module 201 toward the support assembly 30 of the first scanning module 201 along the direction of the rotation axis OO1 Side movement, so that the yoke 21 drives the inner ring 31 of the support assembly 30 to move away from the first magnet 41. Since the movement of the outer ring 32 is restricted by the limit wall 112 and cannot move, the inner ring 31 can The ball 33 is pressed against the inner ring raceway 311 and the outer ring raceway 321, so that when the first scanning module 201 drives the rotor assembly 20 to rotate, the sway generated by the rotor assembly 20 is small.
  • the mutually repelling magnetic force between the first magnet 41 and the second magnet 42 also causes the second magnet 42 to push the yoke 21 of the second scanning module 202 toward the support assembly 30 of the second scanning module 202 along the direction of the rotation axis OO2 One side moves, so that the yoke 21 drives the inner ring 31 of the support assembly 30 to move away from the second magnet 42. Since the movement of the outer ring 32 is restricted by the limit wall 112, it cannot move, so the inner ring 31 The ball 33 can be pressed against the inner ring raceway 311 and the outer ring raceway 321, so that when the second scanning module 202 drives the rotor assembly 20 to rotate, the sway generated by the rotor assembly 20 is small.
  • the first scanning module 201 and the second scanning module 202 in the laser measurement device 300 of this embodiment each include an insulating ring 70.
  • neither the first scanning module 201 nor the second scanning module 202 in the laser measurement device 300 includes the insulating ring 70 (as shown in FIG. 5), or the first scanning module 201 and the second One of the scanning modules 202 includes an insulating ring 70 and the other does not include an insulating ring 70 (as shown in FIG. 11).
  • the number of scanning modules 200 in the laser measuring device 300 is at least two, and at least two scanning modules 200 further include a third scanning module 203, a third scanning module
  • the rotation axis OO3 of 203 is parallel to the rotation axis OO2 of the second scanning module 202.
  • the magnet 40 (third magnet 43) of the third scanning module 203 is located at the end of the third scanning module 203 near the second scanning module 202.
  • the third magnet 43 of the present embodiment makes the third magnet 43 move the yoke 21 of the third scanning module 203 toward the support assembly 30 side of the third scanning module 203 in the direction of the rotation axis OO3 under the action of the external magnetic field , So that the yoke 21 drives the inner ring 31 of the support assembly 30 to move away from the third magnet 43. Since the movement of the outer ring 32 is restricted by the limit wall 112 and cannot move, the inner ring 31 can move the balls 33 is pressed against the inner ring raceway 311 and the outer ring raceway 321, and then when the third scanning module 203 drives the rotor assembly 20 to rotate, the sway generated by the rotor assembly 20 is small.
  • a fourth magnet (not shown) is further provided on the housing 11 of the third scanning module 203.
  • the fourth magnet is located on the side of the third magnet 43 close to the second scanning module 203
  • the three magnets 43 oppose and repel each other.
  • the mutually repelling magnetic force of the third magnet 43 between the fourth magnets makes the third magnet 43 push the yoke 21 of the third scanning module 203 in the direction of the rotation axis OO3 toward the third scan
  • the supporting assembly 30 side of the module 203 is moved, so that the yoke 21 drives the inner ring 31 of the supporting assembly 30 to move away from the third magnet 43, because the movement of the outer ring 32 is restricted by the limiting wall 112 and cannot be The movement occurs, so the inner ring 31 can press the balls 33 against the inner ring raceway 311 and the outer ring raceway 321, and then when the third scanning module 203 drives the rotor assembly 20 to rotate, the rotor assembly 20 generates less vibration .

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)

Abstract

一种激光测量装置(300)、扫描模组(200)及驱动器(100)。驱动器(100)包括定子组件(10)、转子组件(20)、支撑组件(30)、磁体(40)及能够导磁的码盘(50),转子组件(20)穿设在定子组件(10)内,定子组件(10)用于驱动转子组件(20)绕转子组件(20)的转轴(OO1)转动;支撑组件(30)套设于转子组件(20)上并径向抵持于定子组件(10);磁体(40)沿转轴(OO1)的方向套设于转子组件(20)外的一侧;码盘(50)套设于转子组件(20)外并在转轴(OO1)的方向上位于支撑组件(30)及磁体(40)之间。

Description

驱动器、扫描模组及激光测量装置 技术领域
本申请涉及驱动器技术领域,特别涉及一种驱动器、扫描模组及激光测量装置。
背景技术
驱动器一般包括定子组件、安装在定子组件内的转子组件、以及安装在定子组件与转子组件之间的轴承,定子组件用于驱动转子组件转动,轴承用于限制转子组件以使转子组件绕转轴转动。由于轴承内部存在间隙,当转子组件在转动时,转子组件容易产生晃动。现有解决转子组件在转动时产生晃动的方法是通过强磁铁给轴承施加预紧力,然而,轴承中的铁屑在强磁铁的作用下会聚集到轴承的滚道上,加剧了轴承在转到时受到的磨损,并导致轴承的使用寿命较低。
发明内容
本申请的实施方式需要提供一种驱动器、扫描模组及激光测量装置。
本申请的驱动器包括定子组件、转子组件、支撑组件、磁体及能够导磁的码盘,所述转子组件穿设在所述定子组件内,所述定子组件用于驱动所述转子组件绕所述转子组件的转轴转动;所述支撑组件套设于所述转子组件上并径向抵持于所述定子组件;所述磁体沿所述转轴的方向套设于所述转子组件外的一侧;所述码盘套设于所述转子组件外并在所述转轴的方向上位于所述支撑组件及所述磁体之间。
本申请的扫描模组包括驱动器及棱镜,所述驱动器包括定子组件、转子组件、支撑组件、磁体及能够导磁的码盘,所述转子组件穿设在所述定子组件内,所述定子组件用于驱动所述转子组件绕所述转子组件的转轴转动,所述支撑组件套设于所述转子组件上并径向抵持于所述定子组件,所述磁体沿所述转轴的方向套设于所述转子组件外的一侧,所述码盘套设于所述转子组件外并在所述转轴的方向上位于所述支撑组件及所述磁体之间;所述棱镜安装在所述转子组件内,所述驱动器用于驱动所述棱镜转动以改变经过所述棱镜的激光脉冲的传输方向。
本申请的激光测量装置包括光线收发模组及扫描模组,所述光线收发模组用于发射激光脉冲及接收经探测物反射回的激光脉冲;所述扫描模组包括驱动器及棱镜,所述驱动器包括定子组件、转子组件、支撑组件、磁体及能够导磁的码盘,所述转子组件穿设在所述定子组件内,所述定子组件用于驱动所述转子组件绕所述转子组件的转轴转动,所述支撑组件套设于所述转子组件上并径向抵持于所述定子组件,所述磁体沿所述转轴的方向套设于所述转子组件外的一侧,所述码盘套设于所述转子组件外并在所述转轴的方向上位于所述支撑组件及所述磁体之间;所述棱镜安装在所述转子组件内;所述扫描模组设置在所述光线收发模组的出光光路上,所述驱动器用于驱动所述棱镜转动以改变经过所述棱镜的所述激光脉冲的传输方向。
本申请的激光测量装置、扫描模组及驱动器通过将码盘设置为导磁体,从而减小了磁体在支撑组件处形成的磁场的强度,避免了支撑组件上产生的金属磨屑聚集到支撑组件的内部,进而减小了支撑组件在转动时受到的磨损,提升了支撑组件的使用寿命。
本申请的驱动器包括定子组件、转子组件、支撑组件及绝缘环。所述转子组件穿设在所述定子组件内并与所述定子组件间隔设置,所述定子组件用于驱动所述转子组件绕所述转子组件的转轴转动;所述支撑组件套设于所述转子组件上并位于所述转子组件与所述定子组件之间;所述绝缘环套设于所述支撑组件外并位于所述支撑组件与所述定子组件之间。
本申请的扫描模组包括驱动器及棱镜,所述驱动器包括定子组件、转子组件、支撑组件及绝缘环,所述转子组件穿设在所述定子组件内并与所述定子组件间隔设置,所述定子组件用于驱动所述转子组件绕所述转子组件的转轴转动;所述支撑组件套设于所述转子组件上并位于所述转子组件与所述定子组件之间;所述绝缘环套设于所述支撑组件外并位于所述支撑组件与所述定子组件之间;所述棱镜安装在所述转子组件内,所述驱动器用于驱动所述棱镜转动以改变经过所述棱镜的激光脉冲的传输方向。
本申请的激光测量装置包括光线收发模组及扫描模组,所述光线收发模组用于发射激光脉冲及接收经探测物反射回的激光脉冲;所述扫描模组包括驱动器及棱镜;所述驱动器包括定子组件、转子组件、支撑组件及绝缘环,所述转子组件穿设在所述定子组件内并与所述定子组件间隔设置,所述定子组件用于驱动所述转子组件绕所述转子组件的转轴转动;所述支撑组件套设于所述转子组件上并位于所述转子组件与所述定子组件之间;所述绝缘环套设于所述支撑组件外并位于所述支撑组件与所述定子组件之间;所述棱镜安装在所述转子组件内;所述扫描模组设置在所述光线收发模组的出光光路上,所述驱动器用于驱动所述棱镜转动以改变经过所述棱镜的所述激光脉冲的传输方向。
本申请的激光测量装置、扫描模组及驱动器通过在定子组件与支撑组件之间设置绝缘环,绝缘环隔绝了定子组件与支撑组件之间的电性连接,从而避免了定子组件、转子组件与支撑组件共同形成闭环的电路,进而避免支撑组件在转动时受到电腐蚀,提升了支撑组件的使用寿命。
本申请的实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实施方式的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本申请实施方式的激光测量装置的立体结构示意图。
图2和是图1中激光测量装置沿II-II线的剖面示意图。
图3是现有的驱动器的磁场分布示意图。
图4是本申请实施方式的驱动器的磁场分布示意图。
图5是图1中激光测量装置沿II-II线的剖面示意图。
图6是本申请另一实施方式的驱动器的磁场分布示意图。
图7是本申请另一实施方式的激光测量装置的立体结构示意图。
图8是图7中激光测量装置沿VIII-VIII线的剖面示意图。
图9是本申请实施方式的激光测量装置的光线收发模组的模块示意图。
图10是本申请实施方式的激光测量装置的测距原理示意图。
图11是图7中激光测量装置沿VIII-VIII线的剖面示意图。
具体实施方式
下面详细描述本申请的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
下文的公开提供了许多不同的实施方式或例子用来实现本申请的不同结构。为了简化本申请的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。 此外,本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
请参与图1及图2,本申请的驱动器100包括定子组件10、转子组件20、支撑组件30、磁体40及能够导磁的码盘50。转子组件20穿设在定子组件10内,定子组件10用于驱动转子组件20绕转子组件20的转轴OO1转动。支撑组件30套设于转子组件20上并径向抵持于定子组件10。磁体40沿转轴OO1的方向套设于转子组件20外的一侧。码盘50套设于转子组件20外并在转轴OO1的方向上位于支撑组件30及磁体40之间。具体地,转子组件20开设有收容通孔214,收容通孔214可用于安装待驱动元件(例如棱镜80)。
由图3可以看出,当码盘50不导磁时,支撑组件30的内圈滚道311和外圈滚道321处的磁场强度的最大值为0.1特斯拉(tesla)。由图4可以看出,当码盘50导磁时,也即是当码盘50为导磁体,支撑组件30的内圈滚道311和外圈滚道321处的磁场强度的最大值为0.0167特斯拉。其中,内圈滚道311为内圈31上的与滚珠33相结合的沟槽,外圈滚道321为外圈32上的与滚珠33相结合的沟槽。
本实施方式的驱动器100通过将码盘50设置为导磁体,从而减小了磁体40在支撑组件30处形成的磁场的强度,避免了支撑组件30上产生的金属磨屑聚集到支撑组件30的内部,进而减小了支撑组件30在转动时受到的磨损,提升了支撑组件30的使用寿命。
请参阅图8,本申请另一实施方式的驱动器100包括定子组件10、转子组件20、支撑组件30及绝缘环70。转子组件20穿设在定子组件10内并与定子组件10间隔设置,定子组件10用于驱动转子组件20绕转子组件20的转轴OO1转动。支撑组件30套设于转子组件20上并位于转子组件20与定子组件10之间。绝缘环70套设于支撑组件30外并位于支撑组件30与定子组件10之间。具体地,转子组件20开设有收容通孔214,收容通孔214可用于安装待驱动元件(例如棱镜80)。
现有的驱动器100中,支撑组件30与定子组件10之间一般不设置绝缘环70,由于定子组件10与转子组件20之间存在间隙,支撑组件30的内部存在间隙,并且支撑组件30内的间隙填充有润滑剂(包括润滑油及润滑脂),因而定子组件10与转子组件20之间会形成等效电容并定义为第一等效电容,支撑组件30会形成两个等效电容并分别定义为第二等效电容及第三等效电容,则转子组件20产生的感应电动势与第一等效电容、第二等效电容及第三等效电容共同形成一个闭环的等效电路。当支撑组件30转动时,支撑组件30内的间隙会发生变化并导致第二等效电容或第三等效电容发生放电现象,从而导致支撑组件30会受到电腐蚀而影响支撑组件30的使用寿命。
转子组件20安装在定子组件10内一般会存在偏心问题,当转子组件20相对定子组件10转动时,由于转子组件20处于交变磁场中,因而转子组件20会产生交变的感应电动势。若支撑组件30与定子组件10之间不设置绝缘环70,由于定子组件10与转子组件20之间存在间隙,支撑组件30的内部也存在间隙,并且支撑组件30内的间隙填充有润滑剂,因而每个驱动器100中的定子组件10与转子组件 20之间会形成等效电容并定义为第一等效电容,每个驱动器100中的支撑组件30会形成两个等效电容并分别定义为第二等效电容及第三等效电容,则转子组件20产生的感应电动势与第一等效电容、第二等效电容及第三等效电容共同形成一个闭环的等效电路。当支撑组件30转动时,支撑组件30内的间隙会发生变化并导致第二等效电容或第三等效电容发生放电现象,从而导致支撑组件30会受到电腐蚀而影响支撑组件30的使用寿命。
本实施方式的驱动器100通过在定子组件10与支撑组件30之间设置绝缘环70,绝缘环70隔绝了定子组件10与支撑组件30之间的电性连接,从而避免了定子组件10、转子组件20与支撑组件30共同形成闭环的电路,进而避免支撑组件30在转动时受到电腐蚀,提升了支撑组件30的使用寿命。
请参阅图2,本申请的扫描模组200包括上述任意一实施方式的驱动器100及棱镜80,棱镜80安装在转子组件20内,驱动器100用于驱动棱镜80转动以改变经过棱镜80的激光脉冲的传输方向。具体地,棱镜80安装在收容通孔214内。
请参阅图2,本申请激光测量装置300包括光线收发模组90和上述任意一实施方式的扫描模组200,光线收发模组90用于发射激光脉冲及接收经探测物反射回的激光脉冲,扫描模组200设置在光线收发模组90的出光光路上,扫描模组200用于改变经过棱镜80的激光脉冲的传输方向。
本申请实施方式的激光测量装置300及扫描模组200中的驱动器100通过将码盘50设置为导磁体,从而减小了磁体40在支撑组件30处形成的磁场的强度,避免了支撑组件30上产生的金属磨屑聚集到支撑组件30的内部,进而减小了支撑组件30在转动时受到的磨损,提升了支撑组件30的使用寿命。或者,本申请实施方式的激光测量装置300及扫描模组200中的驱动器100通过在定子组件10与支撑组件30之间设置绝缘环70,绝缘环70隔绝了定子组件10与支撑组件30之间的电性连接,从而避免了定子组件10、转子组件20与支撑组件30共同形成闭环的电路,进而避免支撑组件30在转动时受到电腐蚀,提升了支撑组件30的使用寿命。
请参阅图2,本申请的驱动器100包括定子组件10、转子组件20、支撑组件30、环形的磁体40及能够导磁的码盘50。
定子组件10包括外壳11及绕组12,外壳11包括中空的外壁111环形限位壁112,限位壁112自外壁111的内表面延伸。外壁111围成有容置空间113,限位壁112位于容置空间113内并将容置空间113分隔成相连通的安装空间114及收容空间115。绕组12安装在收容空间115内并固定在外壳11的内壁上。
转子组件20穿设在外壳11及绕组12内,定子组件10用于驱动转子组件20绕转子组件20的转轴OO1转动。转子组件20包括磁轭21及环形的磁铁22。磁轭21包括环形的本体211及环形的安装壁212。环形的本体211的内部形成有收容通孔214。安装壁212自本体211的外表面延伸形成,安装壁212位于本体211的远离绕组12的一端。安装壁212包括相连接的环状的安装部2121及环状的抵持部2122, 安装部2121与抵持部2122沿转轴OO1的轴向分布,抵持部2122的外径小于安装部2121的外径。磁铁22套设于本体211的远离安装壁212的一端并收容在收容空间115内,磁铁22与绕组12相对并相间隔。
支撑组件30套设于本体211外并位于本体211的靠近安装壁212的一端,支撑组件30和磁铁22位于安装壁212的同一侧。支撑组件30包括轴承30。轴承30包括内圈31、外圈32和滚珠33。内圈31套设于本体211外并能够跟随本体211转动,内圈31的一端与抵持部2122抵触。外圈32固定在外壁111内并相对外壁111固定,外圈32套设于内圈31外,外圈32的远离安装壁212的一端与限位壁112抵持。内圈31的外壁形成有内圈滚道311,外圈32的内壁形成有外圈滚道321并与内圈滚道311相对。滚珠33位于内圈31与外圈32之间,滚珠33能够在内圈滚道311及外圈滚道321内滚动。滚珠33的数量为多个,多个滚珠33环绕内圈31设置,多个滚珠33共同限定磁轭21绕转轴OO1转动。
磁体40套设于本体211外并位于安装壁212的远离支撑组件30的一侧。磁体40可以为永磁体。
码盘50套设于本体211外并位于安装壁212与磁体40之间。具体地,码盘50固定在安装部2121及本体211上。码盘50由导磁材料制成,导磁材料包括430不锈钢。码盘50的厚度为0.4mm。码盘50一般配合光开关(图未示)使用并共同用于检测磁轭21的转动参数,转动参数包括转动角度、转速、转动加速度等。
由图3可以看出,当码盘50不导磁时,支撑组件30的内圈滚道311和外圈滚道321处的磁场强度的最大值为0.1特斯拉(tesla)。由图4可以看出,当码盘50导磁时,也即是当码盘50为导磁体,支撑组件30的内圈滚道311和外圈滚道321处的磁场强度的最大值为0.0167特斯拉。
本实施方式的驱动器100通过将码盘50设置为导磁体,从而减小了磁体40在支撑组件30的内圈滚道311和外圈滚道321处产生的磁场强度,减少了支撑组件30内的金属磨屑聚集到内圈滚道311及外圈滚道321上,进而减小了滚珠33在内圈滚道311及外圈滚道321内滚道时滚珠33、内圈滚道311及外圈滚道321受到的磨损,提升了支撑组件30的使用寿命。
请参阅图2,在某些实施方式中,磁轭21包括环形的本体211、环形的安装壁212及环形的定位壁213。安装壁212自本体211的外表面延伸形成,安装壁212位于本体211的远离绕组12的一端,具体地,安装壁212位于支撑组件30与码盘50之间。定位壁213自本体211的外表面延伸并位于安装壁212与支撑组件30之间,定位壁213在转轴OO1的方向上与安装壁212相间隔,定位壁213与内圈31的远离磁铁22的一端相抵触。此时,安装壁212可以仅包括安装部2121而不包括抵持部2122。
由于定位壁213与安装壁212在转轴OO1的方向上间隔,并且空气的导磁系数较小,因而,本实施方式的驱动器100相当于在定位壁213与安装壁212之间设置了隔磁环(如图5所示)。由图6可以看出,当码盘50导磁并且支撑组件30和安装壁212之间间隔空气(或设置有隔磁环60)时,支撑组件30的内圈滚道311和外圈滚道321处的磁场强度的最大值为0.0133特斯拉。本实施方式的驱动器100通过将码盘50设置为导磁体,并且在支撑组件30和安装壁212之间间隔空气,从而减小了磁体40在 支撑组件30的内圈滚道311和外圈滚道321处产生的磁场强度,减少了支撑组件30内的金属磨屑聚集到内圈滚道311及外圈滚道321上,进而减小了滚珠33在内圈滚道311及外圈滚道321内滚道时滚珠33、内圈滚道311及外圈滚道321受到的磨损,提升了支撑组件30的使用寿命。
请参阅图5,在某些实施方式中,驱动器100还包括隔磁环60,隔磁环60套设于本体211外并位于支撑组件30与安装壁212之间,隔磁环60的相对两端分别与内圈31及安装壁212抵触。此时,安装壁212可以仅包括安装部2121而不包括抵持部2122。隔磁环60由导磁系数较低的材料制成,例如,隔磁环60可以由铝合金材料制成。
由图6可以看出,当码盘50导磁并且支撑组件30和安装壁212之间设置有隔磁环60时,支撑组件30的内圈滚道311和外圈滚道321处的磁场强度的最大值为0.0133特斯拉。本实施方式的驱动器100通过将码盘50设置为导磁体,并且在支撑组件30和安装壁212之间设置隔磁环60,从而减小了磁体40在支撑组件30的内圈滚道311和外圈滚道321处产生的磁场强度,减少了支撑组件30内的金属磨屑聚集到内圈滚道311及外圈滚道321上,进而减小了滚珠33在内圈滚道311及外圈滚道321内滚道时滚珠33、内圈滚道311及外圈滚道321受到的磨损,提升了支撑组件30的使用寿命。
请参阅图7及图8,在某些实施方式中,驱动器100还包括绝缘环70,绝缘环70套设于支撑组件30外并位于支撑组件30与定子组件10之间。具体地,绝缘环70包括环形侧壁71及环形端壁72,端壁72自侧壁71的一端朝侧壁71的中心延伸。绝缘环70设置在安装空间114内并固定在外壁111上,端壁72与限位壁112抵持,外圈32设置在绝缘环70内,外圈70的远离绝缘环70的一端与限位壁112抵持。绝缘环70由绝缘材料制成。一般地,磁轭21、磁铁22、绕组12、外壳11、外圈32、滚珠33、内圈31均能够导电。
转子组件20安装在定子组件10内一般会存在偏心问题,当转子组件20相对定子组件10转动时,由于转子组件20处于交变磁场中,因而转子组件20会产生交变的感应电动势。若支撑组件30与定子组件10之间不设置绝缘环70,由于磁铁22与绕组12之间存在间隙,外圈滚道321与滚珠33之间存在间隙,内圈滚道311与滚珠33之间也存在间隙,外圈滚道321与滚珠33之间的间隙填充有润滑剂,内圈滚道311与滚珠33之间的间隙也填充有润滑剂,因而磁铁22与绕组12会形成等效电容并定义为第一等效电容,外圈32与滚珠33会形成等效电容并定义为第二等效电容,内圈31与滚珠33会形成等效电容并定义为第三等效电容,则转子组件20产生的感应电动势与第一等效电容、第二等效电容及第三等效电容共同形成一个闭环的等效电路。当支撑组件30转动时,支撑组件30内的间隙会发生变化并导致第二等效电容或第三等效电容发生放电现象,从而导致内圈滚道311及外圈滚道321会受到电腐蚀而影响支撑组件30的使用寿命。
本实施方式的驱动器100通过在外壁111与外圈32之间设置绝缘环70,绝缘环70使外壁111与外圈32分离并隔绝了外壁111与外圈32之间的电性连接,从而避免了定子组件10、转子组件20与支撑组件30共同形成闭环的电路,进而避免支撑组件30在转动时受到电腐蚀,提升了支撑组件30 的使用寿命。
请参阅图8,本申请的扫描模组200包括上述实施方式的驱动器100及棱镜80,棱镜80安装在转子组件20内,驱动器100用于驱动棱镜80转动以改变经过棱镜80的激光脉冲的传输方向。本实施方式的棱镜80为楔形体,具体地,棱镜80近似呈圆柱体状,棱镜80的底面与棱镜80的轴线相垂直,棱镜80的顶面与棱镜80的轴线相对倾斜,棱镜80的厚度不均匀。棱镜80安装在收容通孔214内。棱镜80的轴线与转轴OO1平行,驱动器100用于驱动棱镜80绕转轴OO1转动。当光线穿过棱镜80的顶面时,光线会发生折射并改变光线的传输方向。
本申请的扫描模组200中的驱动器100通过将码盘50设置为导磁体,从而减小了磁体40在支撑组件30的内圈滚道311和外圈滚道321处产生的磁场强度,减少了支撑组件30内的金属磨屑聚集到内圈滚道311及外圈滚道321上,进而减小了滚珠33在内圈滚道311及外圈滚道321内滚道时滚珠33、内圈滚道311及外圈滚道321受到的磨损,提升了支撑组件30的使用寿命。同时,扫描模组200中的驱动器100通过在外壁111与外圈32之间设置绝缘环70,绝缘环70使外壁111与外圈32分离并隔绝了外壁111与外圈32之间的电性连接,从而避免了定子组件10、转子组件20与支撑组件30共同形成闭环的电路,进而避免支撑组件30在转动时受到电腐蚀,提升了支撑组件30的使用寿命。
请参阅图8至图10,本申请的激光测量装置300包括光线收发模组90及上述实施方式的扫描模组200。光线收发模组90用于发射激光脉冲及接收经探测物反射回的激光脉冲。扫描模组200设置在光线收发模组90的出光光路上,扫描模组200用于改变经过棱镜80的激光脉冲的传输方向。
光线收发模组90用于向扫描模组200发射激光脉冲,扫描模组200用于改变激光脉冲的传输方向后出射,经探测物反射回的激光脉冲经过扫描模组200后入射至光线收发模组,光线收发模组90用于根据反射回的激光脉冲确定探测物与激光测量装置300之间的距离。
本申请实施方式提供一种光线收发模组90,该光线收发模组90可以用来确定探测物相对光线收发模组90的距离和/或方向。该光线收发模组90可以是激光雷达、激光测距设备等电子设备。在一种实施方式中,光线收发模组90可用于感测外部环境信息,例如,环境目标的距离信息、方位信息、反射强度信息、速度信息等。一种实现方式中,光线收发模组90可以通过测量光线收发模组90和探测物之间光传播的时间,即光飞行时间(Time-of-Flight,TOF),来探测探测物到光线收发模组90的距离。或者,光线收发模组90也可以通过其他技术来探测探测物到光线收发模组90的距离,例如基于相位移动(phase shift)测量的测距方法,或者基于频率移动(frequency shift)测量的测距方法,在此不做限制。光线收发模组90探测到距离和方位可以用于遥感、避障、测绘、建模、导航等。
为了便于理解,以下将结合图9所示的光线收发模组90对测距的工作流程进行举例描述。如图9所示,光线收发模组90可以包括发射电路901、接收电路902、采样电路903和运算电路904。
发射电路901可以发射光脉冲序列(例如激光脉冲序列)。接收电路902可以接收经过被探测物反射的光脉冲序列,并对该光脉冲序列进行光电转换,以得到电信号,再对电信号进行处理之后可以输出 给采样电路903。采样电路903可以对电信号进行采样,以获取采样结果。运算电路904可以基于采样电路903的采样结果,以确定被探测物与光线收发模组90之间的距离。
可选地,该光线收发模组90还可以包控制电路905,该控制电路905可以实现对其他电路的控制,例如,可以控制各个电路的工作时间和/或对各个电路进行参数设置等。
应理解,虽然图9示出的光线收发模组90中包括一个发射电路901、一个接收电路902、一个采样电路903和一个运算电路904,但是本申请实施例并不限于此,发射电路901、接收电路902、采样电路903、运算电路904中的任一种电路的数量也可以是至少两个。
上面对光线收发模组90的电路框架的一种实现方式进行了描述,下面将结合各个附图对光线收发模组90的结构的一些示例进行描述。
请参阅图10,光线收发模组90包括光源91、光路改变元件92、准直元件93、及探测器94。
光源91可以用于发射光脉冲序列,可选地,光源91发射出的光束为波长在可见光范围之外的窄带宽光束。在一些实施例中,光源91可以包括激光二极管(Laser diode),通过激光二极管发射纳秒级别的激光。例如,光源91发射的激光脉冲持续10ns。本实施方式中,发射电路901可包括光源91。
准直元件93设置在光源91的出光光路上,用于准直从光源91发出的激光光束,即,对光源91发出的激光光束准直,并将来自光源91的光脉冲准直后投射至扫描模组200。准直元件93位于光源91与扫描模组200之间。准直元件93还用于会聚经探测物反射、并经过扫描模组200的回光的至少一部分至探测器94。准直元件93可以是准直透镜或者是其他能够准直光束的元件。在一个实施例中,准直元件93上镀有增透膜,能够增加透射光束的强度。
光路改变元件92设置在光源91的出光光路上,用于改变光源91发出的激光光束的光路,及用于将光源91的出射光路和探测器94的接收光路合并。具体地,光路改变元件92位于准直元件93的与扫描模组200相背的一侧。光路改变元件92可以为反射镜或半反半透镜。在一个例子中,光路改变元件92为小反射镜,能够将光源91发出的激光光束的光路方向改变90度或其他角度。
探测器94与光源91放置于准直元件93的同一侧,其中,探测器94与准直元件93正对,可以理解,扫描模组200可以将光脉冲序列在不同时刻改变至不同传输方向出射,经探测物反射回的光脉冲经过扫描模组200后可入射至探测器94,而探测器94可用于将穿过准直元件93的至少部分回光转换为电信号,电信号具体可以为电脉冲,探测器94还可基于电脉冲确定探测物与激光测量装置300之间的距离。本实施方式中,探测器94可包括接收电路902、采样电路903、运算电路904和控制电路905。
激光测量装置300工作时,光源91发出激光脉冲,该激光脉冲经光路改变元件92改变光路方向(可以为改变90度或改变其他角度)后被准直元件93准直,准直后的激光脉冲被扫描模组200改变传输方向后出射并投射到探测物上,经探测物反射回的激光脉冲经过扫描模组200后至少一部分的回光被准直元件93会聚到探测器94上。探测器94将穿过准直元件93的至少部分回光转换为电信号脉冲,激光测量装置300通过该电信号脉冲的上升沿时间和/或下降沿时间确定激光脉冲接收时间。如此,激光测量装 置300可以利用脉冲接收时间信息和脉冲发出时间信息计算飞行时间,从而确定探测物到激光测量装置300的距离。
本申请的激光测量装置300中的驱动器100通过将码盘50设置为导磁体,从而减小了磁体40在支撑组件30的内圈滚道311和外圈滚道321处产生的磁场强度,减少了支撑组件30内的金属磨屑聚集到内圈滚道311及外圈滚道321上,进而减小了滚珠33在内圈滚道311及外圈滚道321内滚道时滚珠33、内圈滚道311及外圈滚道321受到的磨损,提升了支撑组件30的使用寿命。同时,由于棱镜80能够改变经过棱镜80的激光脉冲的传输方向,并且驱动器100能够驱动棱镜80绕转轴OO1转动,因而扫描模组200能够增大激光测量装置300测量场景中的目标的范围。进一步地,激光测量装置300中的驱动器100通过在外壁111与外圈32之间设置绝缘环70,绝缘环70使外壁111与外圈32分离并隔绝了外壁111与外圈32之间的电性连接,从而避免了定子组件10、转子组件20与支撑组件30共同形成闭环的电路,进而避免支撑组件30在转动时受到电腐蚀,提升了支撑组件30的使用寿命。
请参阅图8,在某些实施方式中,激光测量装置300中的扫描模组200的数量至少为两个,至少两个扫描模组200包括第一扫描模组201及第二扫描模组202,第一扫描模组201的转轴OO1平行于第二扫描模组202的转轴OO2,第一扫描模组201的磁体40(第一磁体41)与第二扫描模组202的磁体40(第二磁体42)相对设置并相互排斥。
第一磁体41与第二磁体42之间的相互排斥的磁力使得:第一磁体41推动第一扫描模组201的磁轭21沿转轴OO1的方向朝第一扫描模组201的支撑组件30一侧移动,从而使得磁轭21带动支撑组件30的内圈31朝远离第一磁体41的方向移动,由于外圈32的移动受到限位壁112的限制而不能够发生移动,因而内圈31能够将滚珠33压紧在内圈滚道311及外圈滚道321上,进而当第一扫描模组201驱动转子组件20转动时,转子组件20产生的晃动较小。第一磁体41与第二磁体42之间的相互排斥的磁力还使得:第二磁体42推动第二扫描模组202的磁轭21沿转轴OO2的方向朝第二扫描模组202的支撑组件30一侧移动,从而使得磁轭21带动支撑组件30的内圈31朝远离第二磁体42的方向移动,由于外圈32的移动受到限位壁112的限制而不能够发生移动,因而内圈31能够将滚珠33压紧在内圈滚道311及外圈滚道321上,进而当第二扫描模组202驱动转子组件20转动时,转子组件20产生的晃动较小。
本实施方式的激光测量装置300中的第一扫描模组201和第二扫描模组202均包括绝缘环70。在其他实施方式中,激光测量装置300中的第一扫描模组201和第二扫描模组202均不包括绝缘环70(如图5所示),或者,第一扫描模组201和第二扫描模组202中的一个包括绝缘环70另一个不包括绝缘环70(如图11所示)。
请参阅图11,在某些实施方式中,激光测量装置300中的扫描模组200的数量至少为两个,至少两个扫描模组200还包括第三扫描模组203,第三扫描模组203的转轴OO3平行于第二扫描模组202的转轴OO2,第三扫描模组203的磁体40(第三磁体43)位于第三扫描模组203的靠近第二扫描模组202 的一端。
本实施方式的第三磁体43在外界的磁场作用下使得:第三磁体43推动第三扫描模组203的磁轭21沿转轴OO3的方向朝第三扫描模组203的支撑组件30一侧移动,从而使得磁轭21带动支撑组件30的内圈31朝远离第三磁体43的方向移动,由于外圈32的移动受到限位壁112的限制而不能够发生移动,因而内圈31能够将滚珠33压紧在内圈滚道311及外圈滚道321上,进而当第三扫描模组203驱动转子组件20转动时,转子组件20产生的晃动较小。
在其他实施方式中,第三扫描模组203的外壳11上还设置有第四磁体(图未示),第四磁体位于第三磁体43的靠近第二扫描模组203的一侧并与第三磁体43相对并相互排斥,第三磁体43磁体在第四磁体之间的相互排斥的磁力使得:第三磁体43推动第三扫描模组203的磁轭21沿转轴OO3的方向朝第三扫描模组203的支撑组件30一侧移动,从而使得磁轭21带动支撑组件30的内圈31朝远离第三磁体43的方向移动,由于外圈32的移动受到限位壁112的限制而不能够发生移动,因而内圈31能够将滚珠33压紧在内圈滚道311及外圈滚道321上,进而当第三扫描模组203驱动转子组件20转动时,转子组件20产生的晃动较小。
在本说明书的描述中,参考术语“某些实施方式”、“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
尽管上面已经示出和描述了本申请的实施方式,可以理解的是,上述实施方式是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施方式进行变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (62)

  1. 一种驱动器,其特征在于,包括:
    定子组件;
    转子组件,所述转子组件穿设在所述定子组件内,所述定子组件用于驱动所述转子组件绕所述转子组件的转轴转动;
    支撑组件,所述支撑组件套设于所述转子组件上并径向抵持于所述定子组件;
    磁体,所述磁体沿所述转轴的方向套设于所述转子组件外的一侧;及
    能够导磁的码盘,所述码盘套设于所述转子组件外并在所述转轴的方向上位于所述支撑组件及所述磁体之间。
  2. 根据权利要求1所述的驱动器,其特征在于,所述转子组件包括磁轭,所述磁轭包括环形的本体及环形安装壁,所述安装壁自所述本体的外表面延伸并位于所述支撑组件与所述码盘之间,所述安装壁与所述支撑组件抵触。
  3. 根据权利要求1所述的驱动器,其特征在于,所述转子组件包括磁轭,所述磁轭包括环形的本体、环形安装壁及环形定位壁,所述安装壁自所述本体的外表面延伸并位于所述支撑组件与所述码盘之间,所述定位壁自所述本体的外表面延伸并位于所述安装壁与所述支撑组件之间,所述定位壁与所述支撑组件抵触并与所述安装壁相间隔。
  4. 根据权利要求1所述的驱动器,其特征在于,所述驱动器还包括隔磁环,所述隔磁环套设于所述转子组件外并位于所述支撑组件与所述码盘之间,所述隔磁环与所述支撑组件抵触。
  5. 根据权利要求4所述的驱动器,其特征在于,所述转子组件包括磁轭,所述磁轭包括环形的本体及环形安装壁,所述安装壁自所述本体的外表面延伸并位于所述隔磁环与所述码盘之间。
  6. 根据权利要求1所述的驱动器,其特征在于,所述驱动器还包括绝缘环,所述绝缘环套设于所述支撑组件外并位于所述支撑组件与所述定子组件之间。
  7. 根据权利要求6所述的驱动器,其特征在于,所述转子组件包括磁轭及套设于所述磁轭外的磁铁;所述定子组件包括外壳及绕组,所述绕组套设于所述磁铁外并与所述磁铁相间隔,所述外壳套设于所述绕组和所述支撑组件外;所述支撑组件和所述磁铁在所述磁轭的轴向上相间隔,所述绝缘环位于所述外壳与所述支撑组件之间。
  8. 根据权利要求7所述的驱动器,其特征在于,所述支撑组件包括轴承,所述轴承包括内圈、外圈和滚珠,所述内圈套设于所述磁轭外,所述外圈固定在所述外壳内并套设于所述内圈外,所述滚珠位于所述内圈与所述外圈之间。
  9. 根据权利要求8所述的驱动器,其特征在于,所述外壳包括中空的外壁及环形限位壁,所述限位壁自所述外壁的内表面延伸,所述限位壁和所述外壁共同围成安装空间;所述绝缘环包括环形侧壁及环形端壁,所述端壁自所述侧壁的一端朝所述侧壁的中心延伸,所述绝缘环设置在所述安装空间内,所述 端壁与所述限位壁抵持,所述外圈设置在所述绝缘环内,所述外圈的一端与所述限位壁抵持。
  10. 一种扫描模组,其特征在于,包括:
    驱动器,所述驱动器包括定子组件、转子组件、支撑组件、磁体及能够导磁的码盘,所述转子组件穿设在所述定子组件内,所述定子组件用于驱动所述转子组件绕所述转子组件的转轴转动,所述支撑组件套设于所述转子组件上并径向抵持于所述定子组件,所述磁体沿所述转轴的方向套设于所述转子组件外的一侧,所述码盘套设于所述转子组件外并在所述转轴的方向上位于所述支撑组件及所述磁体之间;及
    棱镜,所述棱镜安装在所述转子组件内,所述驱动器用于驱动所述棱镜转动以改变经过所述棱镜的激光脉冲的传输方向。
  11. 根据权利要求10所述的扫描模组,其特征在于,所述转子组件包括磁轭,所述磁轭包括环形的本体及环形安装壁,所述安装壁自所述本体的外表面延伸并位于所述支撑组件与所述码盘之间,所述安装壁与所述支撑组件抵触。
  12. 根据权利要求10所述的扫描模组,其特征在于,所述转子组件包括磁轭,所述磁轭包括环形的本体、环形安装壁及环形定位壁,所述安装壁自所述本体的外表面延伸并位于所述支撑组件与所述码盘之间,所述定位壁自所述本体的外表面延伸并位于所述安装壁与所述支撑组件之间,所述定位壁与所述支撑组件抵触并与所述安装壁相间隔。
  13. 根据权利要求10所述的扫描模组,其特征在于,所述驱动器还包括隔磁环,所述隔磁环套设于所述转子组件外并位于所述支撑组件与所述码盘之间,所述隔磁环与所述支撑组件抵触。
  14. 根据权利要求13所述的扫描模组,其特征在于,所述转子组件包括磁轭,所述磁轭包括环形的本体及环形安装壁,所述安装壁自所述本体的外表面延伸并位于所述隔磁环与所述码盘之间。
  15. 根据权利要求10所述的扫描模组,其特征在于,所述驱动器还包括绝缘环,所述绝缘环套设于所述支撑组件外并位于所述支撑组件与所述定子组件之间。
  16. 根据权利要求15所述的扫描模组,其特征在于,所述转子组件包括磁轭及套设于所述磁轭外的磁铁;所述定子组件包括外壳及绕组,所述绕组套设于所述磁铁外并与所述磁铁相间隔,所述外壳套设于所述绕组和所述支撑组件外;所述支撑组件和所述磁铁在所述磁轭的轴向上相间隔,所述绝缘环位于所述外壳与所述支撑组件之间。
  17. 根据权利要求16所述的扫描模组,其特征在于,所述支撑组件包括轴承,所述轴承包括内圈、外圈和滚珠,所述内圈套设于所述磁轭外,所述外圈固定在所述外壳内并套设于所述内圈外,所述滚珠位于所述内圈与所述外圈之间。
  18. 根据权利要求17所述的扫描模组,其特征在于,所述外壳包括中空的外壁及环形限位壁,所述限位壁自所述外壁的内表面延伸,所述限位壁和所述外壁共同围成安装空间;所述绝缘环包括环形侧壁及环形端壁,所述端壁自所述侧壁的一端朝所述侧壁的中心延伸,所述绝缘环设置在所述安装空间内, 所述端壁与所述限位壁抵持,所述外圈设置在所述绝缘环内,所述外圈的一端与所述限位壁抵持。
  19. 根据权利要求10所述的扫描模组,其特征在于,所述棱镜的厚度不均匀。
  20. 一种激光测量装置,其特征在于,包括:
    光线收发模组,所述光线收发模组用于发射激光脉冲及接收经探测物反射回的激光脉冲;及
    扫描模组,所述扫描模组包括驱动器及棱镜,所述驱动器包括定子组件、转子组件、支撑组件、磁体及能够导磁的码盘,所述转子组件穿设在所述定子组件内,所述定子组件用于驱动所述转子组件绕所述转子组件的转轴转动,所述支撑组件套设于所述转子组件上并径向抵持于所述定子组件,所述磁体沿所述转轴的方向套设于所述转子组件外的一侧,所述码盘套设于所述转子组件外并在所述转轴的方向上位于所述支撑组件及所述磁体之间;所述棱镜安装在所述转子组件内;所述扫描模组设置在所述光线收发模组的出光光路上,所述驱动器用于驱动所述棱镜转动以改变经过所述棱镜的所述激光脉冲的传输方向。
  21. 根据权利要求20所述的激光测量装置,其特征在于,所述转子组件包括磁轭,所述磁轭包括环形的本体及环形安装壁,所述安装壁自所述本体的外表面延伸并位于所述支撑组件与所述码盘之间,所述安装壁与所述支撑组件抵触。
  22. 根据权利要求20所述的激光测量装置,其特征在于,所述转子组件包括磁轭,所述磁轭包括环形的本体、环形安装壁及环形定位壁,所述安装壁自所述本体的外表面延伸并位于所述支撑组件与所述码盘之间,所述定位壁自所述本体的外表面延伸并位于所述安装壁与所述支撑组件之间,所述定位壁与所述支撑组件抵触并与所述安装壁相间隔。
  23. 根据权利要求20所述的激光测量装置,其特征在于,所述驱动器还包括隔磁环,所述隔磁环套设于所述转子组件外并位于所述支撑组件与所述码盘之间,所述隔磁环与所述支撑组件抵触。
  24. 根据权利要求23所述的激光测量装置,其特征在于,所述转子组件包括磁轭,所述磁轭包括环形的本体及环形安装壁,所述安装壁自所述本体的外表面延伸并位于所述隔磁环与所述码盘之间。
  25. 根据权利要求20所述的激光测量装置,其特征在于,所述驱动器还包括绝缘环,所述绝缘环套设于所述支撑组件外并位于所述支撑组件与所述定子组件之间。
  26. 根据权利要求25所述的激光测量装置,其特征在于,所述转子组件包括磁轭及套设于所述磁轭外的磁铁;所述定子组件包括外壳及绕组,所述绕组套设于所述磁铁外并与所述磁铁相间隔,所述外壳套设于所述绕组和所述支撑组件外;所述支撑组件和所述磁铁在所述磁轭的轴向上相间隔,所述绝缘环位于所述外壳与所述支撑组件之间。
  27. 根据权利要求26所述的激光测量装置,其特征在于,所述支撑组件包括轴承,所述轴承包括内圈、外圈和滚珠,所述内圈套设于所述磁轭外,所述外圈固定在所述外壳内并套设于所述内圈外,所述滚珠位于所述内圈与所述外圈之间。
  28. 根据权利要求27所述的激光测量装置,其特征在于,所述外壳包括中空的外壁及环形限位壁, 所述限位壁自所述外壁的内表面延伸,所述限位壁和所述外壁共同围成安装空间;所述绝缘环包括环形侧壁及环形端壁,所述端壁自所述侧壁的一端朝所述侧壁的中心延伸,所述绝缘环设置在所述安装空间内,所述端壁与所述限位壁抵持,所述外圈设置在所述绝缘环内,所述外圈的一端与所述限位壁抵持。
  29. 根据权利要求20所述的激光测量装置,其特征在于,所述棱镜的厚度不均匀。
  30. 根据权利要求20所述的激光测量装置,其特征在于,所述扫描模组的数量至少为两个,至少两个所述扫描模组包括第一扫描模组及第二扫描模组,所述第一扫描模组的所述转轴平行于所述第二扫描模组的所述转轴,所述第一扫描模组的所述磁体与所述第二扫描模组的所述磁体相对设置并相互排斥。
  31. 根据权利要求30所述的激光测量装置,其特征在于,至少两个所述扫描模组还包括第三扫描模组,所述第三扫描模组的所述转轴平行于所述第二扫描模组的所述转轴,所述第三扫描模组的所述磁体位于所述第三扫描模组的靠近所述第二扫描模组的一端。
  32. 一种驱动器,其特征在于,包括:
    定子组件;
    转子组件,所述转子组件穿设在所述定子组件内并与所述定子组件间隔设置,所述定子组件用于驱动所述转子组件绕所述转子组件的转轴转动;
    支撑组件,所述支撑组件套设于所述转子组件上并位于所述转子组件与所述定子组件之间;及
    绝缘环,所述绝缘环套设于所述支撑组件外并位于所述支撑组件与所述定子组件之间。
  33. 根据权利要求32所述的驱动器,其特征在于,所述转子组件包括磁轭及套设于所述磁轭外的磁铁;所述定子组件包括外壳及绕组,所述绕组套设于所述磁铁外并与所述磁铁相间隔,所述外壳套设于所述绕组和所述支撑组件外;所述支撑组件和所述磁铁在所述磁轭的轴向上相间隔,所述绝缘环位于所述外壳与所述支撑组件之间。
  34. 根据权利要求33所述的驱动器,其特征在于,所述支撑组件包括轴承,所述轴承包括内圈、外圈和滚珠,所述内圈套设于所述磁轭外,所述外圈固定在所述外壳内并套设于所述内圈外,所述滚珠位于所述内圈与所述外圈之间。
  35. 根据权利要求34所述的驱动器,其特征在于,所述外壳包括中空的外壁及环形限位壁,所述限位壁自所述外壁的内表面延伸,所述限位壁和所述外壁共同围成安装空间;所述绝缘环包括环形侧壁及环形端壁,所述端壁自所述侧壁的一端朝所述侧壁的中心延伸,所述绝缘环设置在所述安装空间内,所述端壁与所述限位壁抵持,所述外圈设置在所述绝缘环内,所述外圈的一端与所述限位壁抵持。
  36. 根据权利要求32所述的驱动器,其特征在于,所述驱动器还包括磁体及能够导磁的码盘,所述磁体套设于所述转子组件外并位于所述支撑组件的一侧,所述码盘套设于所述转子组件外并位于所述支撑组件及所述磁体之间。
  37. 根据权利要求36所述的驱动器,其特征在于,所述转子组件包括磁轭,所述磁轭包括环形的本体及环形安装壁,所述安装壁自所述本体的外表面延伸并位于所述隔磁环与所述磁体之间,所述安装壁 与所述支撑组件抵触。
  38. 根据权利要求36所述的驱动器,其特征在于,所述转子组件包括磁轭,所述磁轭包括环形的本体、环形安装壁及环形定位壁,所述安装壁自所述本体的外表面延伸并位于所述支撑组件与所述码盘之间,所述定位壁自所述本体的外表面延伸并位于所述安装壁与所述支撑组件之间,所述定位壁与所述支撑组件抵触并与所述安装壁相间隔。
  39. 根据权利要求36所述的驱动器,其特征在于,所述驱动器还包括隔磁环,所述隔磁环套设于所述转子组件外并位于所述支撑组件与所述码盘之间,所述隔磁环与所述支撑组件抵触。
  40. 根据权利要求39所述的驱动器,其特征在于,所述转子组件包括磁轭,所说出磁轭包括环形的本体及环形安装壁,所述安装壁自所述本体的外表面延伸并位于所述隔磁环与所述码盘之间。
  41. 一种扫描模组,其特征在于,包括:
    驱动器,所述驱动器包括定子组件、转子组件、支撑组件及绝缘环,所述转子组件穿设在所述定子组件内并与所述定子组件间隔设置,所述定子组件用于驱动所述转子组件绕所述转子组件的转轴转动;所述支撑组件套设于所述转子组件上并位于所述转子组件与所述定子组件之间;所述绝缘环套设于所述支撑组件外并位于所述支撑组件与所述定子组件之间;及
    棱镜,所述棱镜安装在所述转子组件内,所述驱动器用于驱动所述棱镜转动以改变经过所述棱镜的激光脉冲的传输方向。
  42. 根据权利要求41所述的扫描模组,其特征在于,所述转子组件包括磁轭及套设于所述磁轭外的磁铁;所述定子组件包括外壳及绕组,所述绕组套设于所述磁铁外并与所述磁铁相间隔,所述外壳套设于所述绕组和所述支撑组件外;所述支撑组件和所述磁铁在所述磁轭的轴向上相间隔,所述绝缘环位于所述外壳与所述支撑组件之间。
  43. 根据权利要求42所述的扫描模组,其特征在于,所述支撑组件包括轴承,所述轴承包括内圈、外圈和滚珠,所述内圈套设于所述磁轭外,所述外圈固定在所述外壳内并套设于所述内圈外,所述滚珠位于所述内圈与所述外圈之间。
  44. 根据权利要求43所述的扫描模组,其特征在于,所述外壳包括中空的外壁及环形限位壁,所述限位壁自所述外壁的内表面延伸,所述限位壁和所述外壁共同围成安装空间;所述绝缘环包括环形侧壁及环形端壁,所述端壁自所述侧壁的一端朝所述侧壁的中心延伸,所述绝缘环设置在所述安装空间内,所述端壁与所述限位壁抵持,所述外圈设置在所述绝缘环内,所述外圈的一端与所述限位壁抵持。
  45. 根据权利要求41所述的扫描模组,其特征在于,所述驱动器还包括磁体及能够导磁的码盘,所述磁体套设于所述转子组件外并位于所述支撑组件的一侧,所述码盘套设于所述转子组件外并位于所述支撑组件及所述磁体之间。
  46. 根据权利要求45所述的扫描模组,其特征在于,所述转子组件包括磁轭,所述磁轭包括环形的本体及环形安装壁,所述安装壁自所述本体的外表面延伸并位于所述隔磁环与所述磁体之间,所述安装 壁与所述支撑组件抵触。
  47. 根据权利要求45所述的扫描模组,其特征在于,所述转子组件包括磁轭,所述磁轭包括环形的本体、环形安装壁及环形定位壁,所述安装壁自所述本体的外表面延伸并位于所述支撑组件与所述码盘之间,所述定位壁自所述本体的外表面延伸并位于所述安装壁与所述支撑组件之间,所述定位壁与所述支撑组件抵触并与所述安装壁相间隔。
  48. 根据权利要求45所述的扫描模组,其特征在于,所述驱动器还包括隔磁环,所述隔磁环套设于所述转子组件外并位于所述支撑组件与所述码盘之间,所述隔磁环与所述支撑组件抵触。
  49. 根据权利要求48所述的扫描模组,其特征在于,所述转子组件包括磁轭,所说出磁轭包括环形的本体及环形安装壁,所述安装壁自所述本体的外表面延伸并位于所述隔磁环与所述码盘之间。
  50. 根据权利要求41所述的扫描模组,其特征在于,所述棱镜的厚度不均匀。
  51. 一种激光测量装置,其特征在于,包括:
    光线收发模组,所述光线收发模组用于发射激光脉冲及接收经探测物反射回的激光脉冲;及
    扫描模组,所述扫描模组包括驱动器及棱镜;所述驱动器包括定子组件、转子组件、支撑组件及绝缘环,所述转子组件穿设在所述定子组件内并与所述定子组件间隔设置,所述定子组件用于驱动所述转子组件绕所述转子组件的转轴转动;所述支撑组件套设于所述转子组件上并位于所述转子组件与所述定子组件之间;所述绝缘环套设于所述支撑组件外并位于所述支撑组件与所述定子组件之间;所述棱镜安装在所述转子组件内;所述扫描模组设置在所述光线收发模组的出光光路上,所述驱动器用于驱动所述棱镜转动以改变经过所述棱镜的所述激光脉冲的传输方向。
  52. 根据权利要求51所述的激光测量装置,其特征在于,所述转子组件包括磁轭及套设于所述磁轭外的磁铁;所述定子组件包括外壳及绕组,所述绕组套设于所述磁铁外并与所述磁铁相间隔,所述外壳套设于所述绕组和所述支撑组件外;所述支撑组件和所述磁铁在所述磁轭的轴向上相间隔,所述绝缘环位于所述外壳与所述支撑组件之间。
  53. 根据权利要求52所述的激光测量装置,其特征在于,所述支撑组件包括轴承,所述轴承包括内圈、外圈和滚珠,所述内圈套设于所述磁轭外,所述外圈固定在所述外壳内并套设于所述内圈外,所述滚珠位于所述内圈与所述外圈之间。
  54. 根据权利要求53所述的激光测量装置,其特征在于,所述外壳包括中空的外壁及环形限位壁,所述限位壁自所述外壁的内表面延伸,所述限位壁和所述外壁共同围成安装空间;所述绝缘环包括环形侧壁及环形端壁,所述端壁自所述侧壁的一端朝所述侧壁的中心延伸,所述绝缘环设置在所述安装空间内,所述端壁与所述限位壁抵持,所述外圈设置在所述绝缘环内,所述外圈的一端与所述限位壁抵持。
  55. 根据权利要求51所述的激光测量装置,其特征在于,所述驱动器还包括磁体及能够导磁的码盘,所述磁体套设于所述转子组件外并位于所述支撑组件的一侧,所述码盘套设于所述转子组件外并位于所述支撑组件及所述磁体之间。
  56. 根据权利要求55所述的激光测量装置,其特征在于,所述转子组件包括磁轭,所述磁轭包括环形的本体及环形安装壁,所述安装壁自所述本体的外表面延伸并位于所述隔磁环与所述磁体之间,所述安装壁与所述支撑组件抵触。
  57. 根据权利要求55所述的激光测量装置,其特征在于,所述转子组件包括磁轭,所述磁轭包括环形的本体、环形安装壁及环形定位壁,所述安装壁自所述本体的外表面延伸并位于所述支撑组件与所述码盘之间,所述定位壁自所述本体的外表面延伸并位于所述安装壁与所述支撑组件之间,所述定位壁与所述支撑组件抵触并与所述安装壁相间隔。
  58. 根据权利要求55所述的激光测量装置,其特征在于,所述驱动器还包括隔磁环,所述隔磁环套设于所述转子组件外并位于所述支撑组件与所述码盘之间,所述隔磁环与所述支撑组件抵触。
  59. 根据权利要求58所述的激光测量装置,其特征在于,所述转子组件包括磁轭,所说出磁轭包括环形的本体及环形安装壁,所述安装壁自所述本体的外表面延伸并位于所述隔磁环与所述码盘之间。
  60. 根据权利要求51所述的激光测量装置,其特征在于,所述棱镜的厚度不均匀。
  61. 根据权利要求51所述的激光测量装置,其特征在于,所述扫描模组的数量至少为两个,至少两个所述扫描模组包括第一扫描模组及第二扫描模组,所述第一扫描模组的所述转轴平行于所述第二扫描模组的所述转轴,所述第一扫描模组的所述磁体与所述第二扫描模组的所述磁体相对设置并相互排斥。
  62. 根据权利要求61所述的激光测量装置,其特征在于,至少两个所述扫描模组还包括第三扫描模组,所述第三扫描模组的所述转轴平行于所述第二扫描模组的所述转轴,所述第三扫描模组的所述磁体位于所述第三扫描模组的靠近所述第二扫描模组的一端。
PCT/CN2019/070927 2019-01-09 2019-01-09 驱动器、扫描模组及激光测量装置 WO2020142913A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980005729.9A CN111670341B (zh) 2019-01-09 2019-01-09 驱动器、扫描模组及激光测量装置
PCT/CN2019/070927 WO2020142913A1 (zh) 2019-01-09 2019-01-09 驱动器、扫描模组及激光测量装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/070927 WO2020142913A1 (zh) 2019-01-09 2019-01-09 驱动器、扫描模组及激光测量装置

Publications (1)

Publication Number Publication Date
WO2020142913A1 true WO2020142913A1 (zh) 2020-07-16

Family

ID=71520592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/070927 WO2020142913A1 (zh) 2019-01-09 2019-01-09 驱动器、扫描模组及激光测量装置

Country Status (2)

Country Link
CN (1) CN111670341B (zh)
WO (1) WO2020142913A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114623849A (zh) * 2022-03-10 2022-06-14 朝阳市加华电子有限公司 一种新型光电编码器模块化码盘

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001183444A (ja) * 1999-12-27 2001-07-06 Minolta Co Ltd 測距装置
CN204290620U (zh) * 2014-12-31 2015-04-22 深圳市大疆创新科技有限公司 电机、动力装置及使用该动力装置的飞行器
CN205469814U (zh) * 2016-03-31 2016-08-17 深圳市大疆创新科技有限公司 电机以及具有该电机的动力装置、无人飞行器
CN205602145U (zh) * 2016-01-19 2016-09-28 深圳市大疆创新科技有限公司 电机、动力装置及使用该动力装置的无人飞行器
CN106052723A (zh) * 2016-06-01 2016-10-26 江苏森尼克电子科技有限公司 一种磁编码器及其导磁码盘及导磁码盘的制备方法
CN108496298A (zh) * 2017-04-28 2018-09-04 深圳市大疆创新科技有限公司 驱动装置、激光测量装置及移动平台

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100574060C (zh) * 2006-03-02 2009-12-23 赵典军 车用缓速器
CN101572159B (zh) * 2009-02-26 2011-02-09 浙江工业大学 耐高压低惯量旋转电磁铁
CN101931300B (zh) * 2009-06-19 2012-07-04 建准电机工业股份有限公司 无刷直流马达及其定子
CN102868279B (zh) * 2012-09-12 2014-09-10 沈阳市蓝光自动化技术有限公司 低速电机磁旋转编码器
CN102928978B (zh) * 2012-11-02 2014-10-15 北京航空航天大学 一种基于旋转双楔镜的光束扫描机构
CN203166676U (zh) * 2013-04-14 2013-08-28 王必生 一种电机轴承室的绝缘结构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001183444A (ja) * 1999-12-27 2001-07-06 Minolta Co Ltd 測距装置
CN204290620U (zh) * 2014-12-31 2015-04-22 深圳市大疆创新科技有限公司 电机、动力装置及使用该动力装置的飞行器
CN205602145U (zh) * 2016-01-19 2016-09-28 深圳市大疆创新科技有限公司 电机、动力装置及使用该动力装置的无人飞行器
CN205469814U (zh) * 2016-03-31 2016-08-17 深圳市大疆创新科技有限公司 电机以及具有该电机的动力装置、无人飞行器
CN106052723A (zh) * 2016-06-01 2016-10-26 江苏森尼克电子科技有限公司 一种磁编码器及其导磁码盘及导磁码盘的制备方法
CN108496298A (zh) * 2017-04-28 2018-09-04 深圳市大疆创新科技有限公司 驱动装置、激光测量装置及移动平台

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114623849A (zh) * 2022-03-10 2022-06-14 朝阳市加华电子有限公司 一种新型光电编码器模块化码盘
CN114623849B (zh) * 2022-03-10 2023-09-15 朝阳市加华电子有限公司 一种光电编码器模块化码盘

Also Published As

Publication number Publication date
CN111670341B (zh) 2022-07-15
CN111670341A (zh) 2020-09-15

Similar Documents

Publication Publication Date Title
US11802762B2 (en) Laser-based measurement device and movable platform
US20210311173A1 (en) Laser measuring device and unmanned aerial vehicle
KR101820187B1 (ko) 광학적 측정 장치를 위한 편향 거울 부품 및 상응하는 광학적 측정 장치
EP3534175A1 (en) Time flight method-based laser radar system
JP6990864B2 (ja) 距離測定装置
US9804385B2 (en) Object detector and sensing apparatus
WO2017096321A1 (en) Compact wedge prism beam steering
CN109991617B (zh) 激光雷达
JP2005055226A (ja) スキャニング型レンジセンサ
KR20160111571A (ko) 3차원 레이저 스캐닝 시스템
US9429652B2 (en) Apparatus for measuring distance
WO2020142913A1 (zh) 驱动器、扫描模组及激光测量装置
US11567213B2 (en) Dual shaft axial flux motor for optical scanners
WO2022204642A1 (en) Optical sensor for mirror zero angle in a scanning lidar
CN110907913A (zh) 一种360度扫描的激光雷达
CN209483807U (zh) 深沟球轴承、驱动器、扫描模组及激光测量装置
KR20180003238A (ko) 라이다 장비의 광학계
CN209488391U (zh) 驱动器、扫描模组及激光测量装置
CN110609265A (zh) 一种用于激光雷达的轴承安装结构及激光雷达
US20220171033A1 (en) Small bearings for multi-element optical scanning devices, and associated systems and methods
CN115754986A (zh) 激光雷达光学扫描系统、激光雷达和飞行器
US20210333393A1 (en) Scanning module, distance measuring device and mobile platform
WO2021138752A1 (zh) 扫描模组、测距装置及移动平台
WO2023065117A1 (zh) 扫描模组及测距装置
CN214795195U (zh) 激光雷达及机器人

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19908150

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19908150

Country of ref document: EP

Kind code of ref document: A1