WO2020121672A1 - プライマー組成物 - Google Patents

プライマー組成物 Download PDF

Info

Publication number
WO2020121672A1
WO2020121672A1 PCT/JP2019/042543 JP2019042543W WO2020121672A1 WO 2020121672 A1 WO2020121672 A1 WO 2020121672A1 JP 2019042543 W JP2019042543 W JP 2019042543W WO 2020121672 A1 WO2020121672 A1 WO 2020121672A1
Authority
WO
WIPO (PCT)
Prior art keywords
primer composition
group
component
silane
examples
Prior art date
Application number
PCT/JP2019/042543
Other languages
English (en)
French (fr)
Inventor
裕仁 水野
岡村 直実
齋藤 知紀
Original Assignee
セメダイン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セメダイン株式会社 filed Critical セメダイン株式会社
Priority to KR1020217021937A priority Critical patent/KR20210110832A/ko
Priority to JP2020559791A priority patent/JPWO2020121672A1/ja
Priority to CN201980091393.2A priority patent/CN113396195A/zh
Publication of WO2020121672A1 publication Critical patent/WO2020121672A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/10Homopolymers or copolymers of methacrylic acid esters
    • C09D133/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D143/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing boron, silicon, phosphorus, selenium, tellurium, or a metal; Coating compositions based on derivatives of such polymers
    • C09D143/04Homopolymers or copolymers of monomers containing silicon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/002Priming paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic

Definitions

  • the present invention relates to a primer composition.
  • a primer is applied to the outer wall material adhered surface of the sealing material before it is applied.
  • a primer is applied to the adherend such as the outer wall material, the adhesiveness between the adherend and the sealing material can be improved, and the adherent with weak surface strength can be strengthened.
  • outer wall materials and sealing materials having high durability performance have been developed, and in accordance with this, high durability performance is also achieved for primers for construction sealing materials. Is required.
  • ceramic or wooden siding boards are often used as the outer wall material of wooden houses.Since these siding boards are porous, they are easily affected by moisture and the primer easily penetrates. .. Therefore, good adhesion durability, especially adhesion durability under wet conditions, was not always obtained because of the reason that the film-forming property of the primer deteriorated on the outer wall material adhered surface.
  • a primer composition containing a saturated hydrocarbon polymer having a hydroxyl group bonded to a silicon atom or a hydrolyzable group and having at least one silicon-containing group capable of being crosslinked by forming a siloxane bond Is known (for example, refer to Patent Document 1).
  • the primer composition according to Patent Document 1 can improve long-term adhesiveness.
  • a primer composition is known (for example, refer to Patent Document 2). It has been proposed that the primer composition according to Patent Document 2 can be used for a porous surface.
  • the sealing material after the sealing material is applied to the construction area such as the adherend, it may be necessary to repair the construction area due to deterioration of the sealing material.
  • the existing sealing material that is, the pre-sealed sealing material
  • a new sealing material post-sealed sealing material
  • the post-dried sealing material must be spliced to the pre-dried sealing material.
  • a primer is also used in.
  • a polyisocyanate having an isocyanurate ring b) an epoxysilane compound, c) an aminosilane compound having a structure represented by a predetermined formula, an aminosilane compound having a structure represented by a predetermined formula, and a predetermined
  • a modified silicone-based sealing material which is a condensate of at least one silane or a condensate of at least one epoxysilane represented by a given formula and at least one alkoxysilane represented by a given formula.
  • Primer compositions are known (for example, refer to Patent Document 3).
  • the primer composition is not a mere auxiliary material of the sealing material, and for example, reduction of leaching of water, alkali, etc. from the inside of the porous material to the sealing material adhesive surface, a plasticizer from the adherend or the sealing material, etc. There is also a demand for a role of reducing the shift of the above (see Non-Patent Document 1, for example).
  • the primer composition described in Patent Document 1 can improve the adhesiveness to glass and metal, it cannot exert a sufficient effect on porous building materials.
  • the primer composition described in Patent Document 2 is said to be applicable to a porous surface, it does not exhibit practically sufficient durability in terms of adhesion durability. In other words, due to recent technological innovations, optimization of materials, etc., simplification of manufacturing process, and/or shortening, etc., the properties required for the primer are also becoming more sophisticated. Is a primer composition that does not have a high level of adhesion (for example, initial adhesion, water-resistant adhesion, and heat-resistant adhesion) to various adherends such as ceramic siding boards and aluminum coated plates, and these characteristics Further improvement is required.
  • a high level of adhesion for example, initial adhesion, water-resistant adhesion, and heat-resistant adhesion
  • the splicing primer composition described in Patent Document 3 merely exerts splicing properties with aminosilane, and has high splicing properties (normal-state adhesiveness, water-resistant adhesiveness) and the like with respect to the pre-sealed sealing material. There is a need for further improvements in these properties of splicing primer compositions as they do not meet the standards. Further, the primer composition has a property that realizes reduction of leaching of water, alkali and the like from the inside of the porous material to the sealing material adhesive surface and reduction of migration of the plasticizer and the like from the adherend and the sealing material (hereinafter, referred to as the specification. In this, this property is also called "barrier property".
  • the object of the present invention is that the primer composition is difficult to penetrate into the porous building material even when applied to the porous building material, and high film forming properties can be exhibited, and the film strength after application is strong, Another object of the present invention is to provide a primer composition capable of favorably adhering a sealing material to a porous building material. Another object of the present invention is to provide a primer composition which is also excellent in splicing splicing when used for a precast sealing material.
  • the ratio of the methylmethacrylate contained in (A) resin is 80 weight% or more, and a weight average molecular weight is 60,000 or more, and a methyl methacrylate-type polymer
  • primer composition may further contain (C) an amino group-containing silane.
  • primer composition may further include (D) an epoxy resin.
  • the primer composition may include (E) a silane-based crosslinking agent.
  • the primer composition of the present invention even when applied to a porous building material, the primer composition hardly penetrates into the porous building material and can exhibit high film-forming property, and the film strength after application is strong. Therefore, it is possible to provide a primer composition which can adhere a sealing material to a porous building material satisfactorily and also has excellent splicing properties when used for a precast sealing material.
  • room temperature normal temperature
  • room temperature in the present specification is a temperature of 23°C.
  • solid at room temperature means that the substance of interest (eg, a given composition) is crystalline, partially crystalline, and/or glassy amorphous. It means that it is a quality and has a softening point (measured by the ring and ball method) or a melting point higher than 23°C.
  • the melting point is the maximum value of the curve measured during the heating operation by, for example, dynamic differential calorimetry (differential scanning calorimetry [DSC]), and the target material is transformed from the solid state to the liquid state. Is the temperature.
  • the weight average molecular weight can be measured, for example, using HLC-8220 (manufactured by Tosoh Corp.) under the following conditions using polystyrene as a standard substance.
  • Glass-transition temperature The glass transition temperature (hereinafter sometimes referred to as “Tg”) can be easily estimated from the type and amount of the monomer component using the following Fox equation.
  • Tg is, for example, the glass transition temperature (K) of the acrylic resin
  • W 1 , W 2 ,..., W n are the weight fractions of the respective monomers
  • Tg 1 , Tg 2, ⁇ ⁇ ⁇ , Tg n is the glass transition temperature of the homopolymer of each monomer.
  • the glass transition temperature of the homopolymer used in the Fox equation the value described in the literature can be used.
  • ⁇ Outline of primer composition> The present inventor has made various studies from the viewpoint of improving each property required for the primer composition. For example, although it is known that the use of aminosilane is excellent in compatibility with a modified silicone-based sealing material and that the splicing property with respect to the sealing material is improved, in the prior art, an acrylic component is used as a film-forming resin. (For example, Japanese Patent No. 4802448), there is no prior art in which the improvement of adhesion imparting property by the acrylic component is recognized. The present inventor has found out the adhesion-providing property of the acrylic component in the primer composition, and studied the constitution which maximizes the property.
  • the primer composition according to the present invention comprises (A) a methyl methacrylate polymer (hereinafter referred to as component (A)) and (B) an alkoxysilyl group-containing methyl methacrylate polymer (hereinafter referred to as component). (Hereinafter referred to as (B)). Further, the primer composition according to the present invention has (C) an amino group-containing silane (hereinafter referred to as component (C)), (D) epoxy resin (hereinafter referred to as component (D)), (E). A silane-based cross-linking agent (hereinafter referred to as component (E)) and/or other additives may be contained.
  • the primer composition according to the present invention contains (A) a methyl methacrylate polymer having a predetermined weight average molecular weight and (B) an alkoxysilyl group-containing methyl methacrylate polymer having a predetermined weight average molecular weight. Composed. Further, the primer composition according to the present invention is prepared by adding the component (C), the component (D), the component (E), and/or other additives to the component (A) and the component (B). You can also The primer composition according to the present invention has the property of being moisture-cured at room temperature.
  • the proportion of methyl methacrylate contained in the resin that is solid at room temperature is 80% by weight or more, and the weight average molecular weight Mw (GPC [gel permeation chromatography] method is used.
  • Mw weight average molecular weight
  • a resin having an apparent weight average molecular weight (converted to polymethyl methacrylate) of 60,000 or more is preferable.
  • the primer composition according to the present invention is applied to a porous building material by setting the proportion of methyl methacrylate contained in the resin to 80% by weight or more and the weight average molecular weight to 60,000 or more, the composition is porous. It becomes difficult for the primer composition to penetrate into the building material. As a result, the primer composition according to the present invention can exhibit high film-forming properties, the film strength after coating becomes strong, and excellent adhesiveness is exhibited.
  • the resin may be a homopolymer of methyl methacrylate, or methyl methacrylate and methyl acrylate, ethyl acrylate, butyl acrylate, acrylonitrile, acrylic acid, methacrylic acid, 2-hydroxy acrylate, maleic anhydride, styrene, or ⁇ -methyl styrene. And a copolymer with any one or more of the above copolymerizable monomers.
  • an alkyl acrylate having an alkyl group having 1 to 4 carbon atoms such as methyl acrylate, ethyl acrylate, and n-butyl acrylate, and (meth)acrylic acid are preferable, and methyl acrylate, ethyl acrylate, (Meth)acrylic acid is more preferable, and methyl acrylate and (meth)acrylic acid are further preferable.
  • the solubility of the component (A) in a solvent is increased, and at the same time, the viscosity of the primer composition according to the present invention becomes an appropriate viscosity (thickening), resulting in a porous building material. Hard to penetrate. Therefore, the primer composition according to the present invention can exhibit high film-forming property, the film strength after coating becomes strong, and excellent adhesiveness is exhibited.
  • the weight average molecular weight Mw of the component (A) is preferably 60,000 or more, more preferably 70,000 or more, further preferably 80,000 or more, particularly preferably 90,000 or more.
  • the weight average molecular weight Mw of the component (A) according to the present invention is usually preferably 200,000 or less, more preferably 180,000 or less, further preferably 160,000 or less, particularly preferably 140,000 or less. ..
  • the weight average molecular weight Mw of the component (A) is 60,000 or more, the barrier property of the primer composition, the adhesion durability, and the adhesion to the porous surface are increased, and the weight average molecular weight Mw is 200,000 or less. In that case, good adhesion durability, workability, and adhesion to a porous surface of the primer composition can be obtained.
  • the proportion of methyl methacrylate contained in the component (A) is preferably 80% by weight or more, more preferably 90% by weight or more, even more preferably 95% by weight or more.
  • the glass transition temperature of the component (A) is preferably 80°C or higher, more preferably 90°C or higher, further preferably 95°C or higher, preferably 140°C or lower, more preferably 120°C or lower, and further preferably 110°C or lower. ..
  • the amount of component (A) added to the primer composition is preferably 1% or more, more preferably 2% or more, further preferably 3% or more, preferably 20% or less, more preferably 15% or less, and 10% or less. More preferable. If the amount added to the primer composition exceeds 20%, the workability may decrease due to an increase in viscosity during coating work. If it is less than 1%, the primer composition is porous when applied to a porous building material. It may penetrate into building materials and fail to exhibit high film-forming properties. In addition, this addition amount shows the ratio when the mass of the entire primer composition is 100%.
  • the (B) alkoxysilyl group-containing methyl methacrylate-based polymer is a (meth)acrylic ester polymer having an alkoxysilyl group and containing methyl methacrylate, which is solid at room temperature, as an essential monomer.
  • the proportion of methyl methacrylate contained in the resin is less than 80% by weight, and the weight average molecular weight Mw (GPC [gel permeation chromatography] method is used.
  • Mw weight average molecular weight
  • a resin having a polystyrene-reduced apparent weight average molecular weight of less than 60,000 is preferable.
  • the primer composition exhibits excellent adhesiveness to the cured product of the sealing material (preliminary stamping material) and realizes good splicing properties. Further, when the component (B) and the component (C) described later are used in combination, superior adhesiveness to the cured product of the sealing material (preliminary punching sealing material) and good splicing are exhibited. Further, by curing the alkoxysilyl group of the component (B) and the alkoxysilyl group of the component (C) described later, excellent adhesiveness to the base material (siding board etc.) is exhibited. Further, the silyl group of the component (B) and the silyl group of the component (C) are crosslinked, whereby the hot water resistance to the substrate can be improved.
  • alkoxysilyl group of the component (B) is a group having an alkoxy group bonded to a silicon atom and capable of being crosslinked by a silanol condensation reaction.
  • alkoxysilyl group include groups represented by the following general formula (1).
  • R 1 is an alkyl group having 1 to 20 carbon atoms, a substituted alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a carbon atom.
  • the aralkyl groups of the formulas 7 to 20 are shown, and when two or more R 1 are present, they may be the same or different.
  • X represents an alkoxysilyl group, and when two or more X are present, they may be the same or different.
  • a represents 0, 1, 2, or 3.
  • In the alkoxysilyl group of the general formula (1), a is preferably 2 or 3. When a is 3, the curing speed is higher than when a is 2.
  • R 1 examples include an alkyl group such as a methyl group and an ethyl group, a substituted alkyl group such as a methoxymethyl group, and a cycloalkyl group such as a cyclohexyl group.
  • a methyl group is preferable, and a substituted alkyl group in which ⁇ carbon is substituted with a polar group is preferable from the viewpoint of increasing the curing rate.
  • the alkoxysilyl group represented by X is not particularly limited, and any conventionally known alkoxysilyl group may be used.
  • a group having a smaller number of carbons has higher reactivity, and the reactivity becomes lower as the number of carbons increases, as in the order of methoxy group>ethoxy group>propoxy group.
  • a methoxy group or an ethoxy group is usually used, although it can be selected according to the purpose or application.
  • a is preferably 2 or more in consideration of curability.
  • alkoxysilyl group examples include, for example, a trialkoxysilyl group such as a trimethoxysilyl group and a triethoxysilyl group (-Si(OR 2 ) 3 ); a dialkyl group such as a methyldimethoxysilyl group and a methyldiethoxysilyl group.
  • An alkoxysilyl group (—SiR 1 (OR 2 ) 2 ) can be mentioned.
  • R 1 is the same as above
  • R 2 is an alkyl group such as a methyl group or an ethyl group.
  • a trimethoxysilyl group and a triethoxysilyl group are preferable from the viewpoint of high reactivity, and a trimethoxysilyl group is more preferable. From the viewpoint of obtaining a cured product having flexibility, a methyldimethoxysilyl group and a methyldiethoxysilyl group are preferable.
  • alkoxysilyl groups can be used alone or in combination of two or more.
  • the alkoxysilyl group may be present in the main chain, the side chain, or both.
  • the number (average value) of the alkoxysilyl groups in the component (B) is preferably 0.3 or more, more preferably 0.5 or more, still more preferably 1 or more, and preferably 5 or less per molecule of the polymer. 3 or less are more preferable, and 2.5 or less are still more preferable. If the number of alkoxysilyl groups contained in the molecule is less than 0.3, the curability will be insufficient, and if it is too large, the network structure will be too dense and good mechanical properties will not be exhibited.
  • the method of copolymerizing (1) an unsaturated compound having an alkoxysilyl group is preferable from the viewpoint of easily introducing an alkoxysilyl group.
  • a method in which the method (1) and the method (2) are used in combination is also preferable.
  • a (meth)acrylic polymer is obtained.
  • the (meth)acrylic acid alkyl ester having an alkoxysilyl group and vinylsilane are preferable as the unsaturated compound having an alkoxysilyl group used for the copolymerization.
  • examples of such a compound include 3-(meth)acryloxypropyltrimethoxysilane, 3-(meth)acryloxypropylmethyldimethoxysilane, 3-(meth)acryloxypropyltriethoxysilane and the like.
  • Examples thereof include vinylalkoxysilane such as roxypropylalkoxysilane and vinyltriethoxysilane.
  • (meth)acrylic acid alkyl ester having an alkyl group having an alkoxysilyl group and a substituted alkyl group having 10 or less, preferably 3 or less carbon atoms is preferable.
  • R 3 represents a hydrogen atom or a methyl group
  • R 4 represents a hydrocarbon group which may have a substituent.
  • the (meth)acrylic acid ester means an acrylic acid ester and/or a methacrylic acid alkyl ester.
  • (meth)acrylic acid alkyl ester is preferable, and A (meth)acrylic acid alkyl ester having 1 to 30 carbon atoms is more preferable, and a (meth)acrylic acid alkyl ester having an alkyl group having 1 to 30 carbon atoms and having no substituent is particularly preferable.
  • Examples of the (meth)acrylic acid alkyl ester compound include known compounds. Examples thereof include methyl acrylate, ethyl (meth)acrylate, n-butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, lauryl (meth)acrylate, and stearyl (meth)acrylate. ..
  • 2-ethylhexyl (meth)acrylate 2-ethylhexyl (meth)acrylate, lauryl (meth)acrylate, An alkyl (meth)acrylate ester having an ester group having 8 or more carbon atoms such as stearyl (meth)acrylate is preferable.
  • n-butyl acrylate (Tg; -55°C), 2-ethylhexyl acrylate (Tg; -70°C), lauryl acrylate (Tg; -3°C) It is preferable to use (meth)acrylic acid alkyl ester having a glass transition temperature (Tg) of 0° C. or less.
  • Tg glass transition temperature
  • the hydrocarbon group such as the alkyl group of the (meth)acrylic acid ester may have a substituent such as a hydroxyl group, an alkoxy group, a halogen atom and an epoxy group.
  • examples of such compounds include (meth)acrylic acid ester having a hydroxyl group such as hydroxyethyl (meth)acrylate, (meth)acrylic acid ester having an alkoxy group such as methoxyethyl (meth)acrylate, and glycidyl (meth).
  • examples thereof include (meth)acrylic acid ester having an epoxy group such as acrylate and (meth)acrylic acid ester having an amino group such as diethylaminoethyl (meth)acrylate.
  • An unsaturated compound (macromonomer or macromer) having a polymer chain such as an acrylic ester having a polystyrene chain can also be used.
  • a repeating unit derived from a compound having a copolymerizability therewith is contained in addition to the repeating unit derived from the (meth)acrylic acid ester compound.
  • a repeating unit derived from a compound having a copolymerizability therewith is contained in addition to the repeating unit derived from the (meth)acrylic acid ester compound.
  • compounds having copolymerizability with (meth)acrylic acid ester compounds include acrylic acid such as (meth)acrylic acid; amide compounds such as (meth)acrylamide; vinyl ether compounds such as alkyl vinyl ether; other acrylonitrile, styrene, Examples include ⁇ -methylstyrene, vinyl chloride, vinyl acetate and the like.
  • the amount of methyl methacrylate in the polymer of the component (B) is less than 80% by weight, preferably 20% by weight or more, more preferably 30% by weight or more, still more preferably 40% by weight or more.
  • the use ratio of the compound having a copolymerizability with the (meth)acrylic acid ester compound is preferably 20% by mass or less, more preferably 10% by mass or less, and 5% by mass or less in the polymer of the component (B). More preferable.
  • the amount of the macromonomer in the polymer of the component (B) is preferably 10% by mass or less, more preferably 5% by mass or less, and 3% by mass or less. Is particularly preferable.
  • the component (B) has a glass transition temperature (Tg) of 0°C or higher and 120°C or lower.
  • the glass transition temperature is preferably 0°C or higher, more preferably 20°C or higher, even more preferably 40°C or higher. Further, it is preferably 120° C. or lower, more preferably 100° C. or lower, and further preferably 80° C. or lower. If the glass transition temperature is lower than 0°C, the adhesive strength immediately after bonding tends to be poor. Further, if the glass transition temperature exceeds 120° C., the viscosity becomes high, and it tends to be difficult to apply the primer to the adherend.
  • the glass transition temperature can be easily estimated using the Fox equation described above.
  • the weight average molecular weight (polystyrene-equivalent molecular weight measured by the GPC method) of the component (B) is preferably 1,000 or more, more preferably 2,000 or more, further preferably 3,000 or more, and more preferably 20,000 or less. Is preferable, 10,000 or less is more preferable, and 6,000 or less is still more preferable. If the weight average molecular weight is less than 1,000, the initial adhesive strength after coating is low, and if it exceeds 20,000, the viscosity during coating becomes too high and the workability deteriorates. Further, the polymer of the component (B) is preferably a solid at room temperature or has a Ring and Ball softening point of 80° C. or higher.
  • the amount of the component (B) added to the primer composition is preferably 5% or more, more preferably 10% or more, further preferably 20% or more, preferably 60% or less, more preferably 50% or less, and 40% or less. More preferable. If the amount added exceeds 60%, the viscosity during coating operation becomes too high, and the workability deteriorates. If it is less than 5%, good splicing properties cannot be realized. In addition, this addition amount shows the ratio when the mass of the entire primer composition is 100%.
  • a radical polymerization method can be used as the polymerization method of the component (B).
  • a radical polymerization method can be used as the polymerization method of the component (B).
  • a method of using a photopolymerization initiator and irradiating with light or radiation to perform polymerization can also be used.
  • a chain transfer agent such as lauryl mercaptan or 3-mercaptopropyltrimethoxysilane may be used in order to control the molecular weight.
  • a radical polymerization method using a thermal polymerization initiator can be used, and the polymer of the component (B) according to the present invention can be easily obtained by such a method.
  • Other polymerization methods such as the living radical polymerization method described in JP-A-2000-086998 may be used.
  • the primer composition according to the present invention further contains (C) an amino group-containing silane.
  • the amino group of the amino group-containing silane (C) include a monovalent functional group obtained by removing hydrogen from a primary amine or a secondary amine, and a ketimine group.
  • examples of the (C) amino group-containing silane according to the present invention include aminosilane and ketimine-based silane.
  • the ketimine silane is a silane compound that produces a predetermined amine by reaction with water, and in the present invention, the ketimine silane is also included in the component (C).
  • aminosilane examples include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-( ⁇ -aminoethyl)-3-aminopropyltrimethoxysilane, N-( ⁇ -aminoethyl)-3- Aminopropyltriethoxysilane, N-( ⁇ -aminoethyl)-3-aminopropylmethyldiethoxysilane and other mono-silylaminosilanes, bis-(trimethoxysilylpropyl)amine, bis-(triethoxysilylpropyl)amine, Bis-silylaminosilanes such as bis-(triethoxysilylpropyl)ethylenediamine, N-[2-(vinylbenzylamino)ethyl]-3-aminopropyltrimethoxysilane, and aminoethyl-aminopropyltrimethoxysilane
  • aminosilane a reaction product of the above-mentioned aminosilane and epoxysilane, a reaction product of aminosilane and a silane having a (meth)acryloyloxy group, aminosilane and an epoxy resin (bisphenol A diglycidyl ether, phenylglycidyl ether, etc.) Reaction product, aminosilane reaction product such as reaction product of aminosilane and polyacrylate; condensate obtained by partially condensing the above silanes (preferably partial condensation of the above aminosilane, aminosilane reaction product, and mixture of reaction products). Aminosilane condensate); derivatives obtained by modifying these are also included.
  • Examples of the ketimine silane include N-(1,3-dimethylbutylidene)-3-(trimethoxysilyl)-1-propanamine and N-(1,3-dimethylbutylidene)-3-(triethoxy). Silyl)-1-propanamine, N-(1,3-dimethylbutylidene)-3-(methyldimethoxysilyl)-1-propanamine, N-(1,3-dimethylbutylidene)-3-(methyldimethyl) Ethoxysilyl)-1-propanamine and the like.
  • the blending amount of the component (C) is preferably 0.1 part by mass or more, more preferably 0.5 part by mass or more, and more preferably 1 part by mass with respect to 100 parts by mass of the total amount of the component (A) and the component (B).
  • the above is more preferable, 20 parts by mass or less is preferable, 10 parts by mass or less is more preferable, and 5 parts by mass or less is further preferable.
  • the blending amount of the component (B) indicates the blending amount of the solid content obtained by removing the solvent component from the component (B).
  • the primer composition according to the present invention may further contain (D) an epoxy resin.
  • the (D) epoxy resin reacts with the (C) amino group-containing silane to strengthen the network structure obtained after the primer composition is cured, and has adhesiveness, water-resistant adhesiveness, and adhesion durability under high temperature and high humidity conditions. Improve sex.
  • the strong mesh structure enhances the barrier performance to prevent discoloration and deterioration of the sealing material adhering portion of the adherend and the peripheral portion.
  • the (D) epoxy resin prevents discoloration, deterioration, etc. due to a compound having a reactive active group with respect to an epoxy group such as an amine compound, by reacting with a compound having a reactive active group to suppress migration of the active compound. Exerts an excellent effect on.
  • epoxy resins can be used as the (D) epoxy resin.
  • SBR styrene butadiene rubber
  • NBR nitrile rubber
  • CTBN flame-retardant epoxy resin
  • epoxy resins bisphenol A-type epoxy resin, bisphenol F-type epoxy resin, bisphenol AD-type epoxy resin from the viewpoint of balance of workability, curability, adhesive strength, versatility of adherend, water resistance, durability, etc.
  • Resins, bisphenol S type epoxy resins and epoxy resins obtained by hydrogenating these are preferable, more preferable than bisphenol A type epoxy resins and bisphenol F type epoxy resins, and bisphenol A type epoxy resins are most preferable.
  • the molecular weight of component (D) is not particularly limited, but the weight average molecular weight is preferably 300 or more, more preferably 350 or more, preferably 1,000 or less, and 600 or less. More preferable. From the viewpoint of easy handling, it is preferable to use the (D) epoxy resin which is liquid at room temperature.
  • the molar ratio of the active hydrogen derived from the amino group of the epoxy group of the component (D) and the amino group (primary amine or secondary amine and ketimine group) (the ketimine group is active hydrogen after hydrolysis) (EP group/amino group).
  • the group-derived active hydrogen) is preferably 0.4 or more, more preferably 0.6 or more, further preferably 0.8 or more, preferably 3.0 or less, more preferably 2.0 or less, 1.0 or less Is more preferable.
  • the blending amount of the component (D) is preferably 0.1 parts by mass or more, more preferably 0.3 parts by mass or more, and 0.5 with respect to 100 parts by mass of the total amount of the components (A) and (B).
  • the amount is more preferably not less than 40 parts by mass, more preferably not more than 40 parts by mass, more preferably not more than 30 parts by mass, still more preferably not more than 20 parts by mass.
  • the blending amount of the component (B) indicates the blending amount of the solid content obtained by removing the solvent component from the component (B).
  • the primer composition according to the present invention may further contain (E) a silane-based crosslinking agent.
  • the (E) silane-based crosslinking agent include silane compounds having two or more alkoxysilyl groups excluding the component (C).
  • the (E) silane-based cross-linking agent has an effect of strengthening the network structure obtained after the primer composition is cured, and improving adhesiveness, water-resistant adhesiveness, and adhesive durability under high temperature and high humidity conditions. Further, the (E) silane-based cross-linking agent can also improve the barrier properties of the primer composition by promoting cross-linking. Therefore, from the viewpoint of improving the crosslink density, in the component (E), the number of alkoxysilyl groups is preferably 2 or more, more preferably 3 or more.
  • isocyanurate silane carbasilatrane, silane reaction product, silane condensate, etc. can be used.
  • Examples of the isocyanurate silane include tris-(trimethoxysilylpropyl) isocyanurate.
  • Examples of carbasilatrane include a reaction product of 1.0 mol of 3-aminopropyltrimethoxysilane and 2.0 mol of 3-glycidoxypropyltrimethoxysilane described in Japanese Patent No. 3831481.
  • silane reactant and a silane condensate As a silane reactant and a silane condensate (however, in this paragraph, compounds containing a primary amino group and a secondary amino group are excluded), a reaction product of aminosilane and epoxysilane, a reaction of aminosilane and isocyanate silane Substance, a reaction product of aminosilane and a silane having a (meth)acryloyloxy group, a reaction product of aminosilane and an epoxy resin (bisphenol A diglycidyl ether, phenylglycidyl ether, etc.), a reaction product of aminosilane and polyisocyanate, an aminosilane Aminosilane reaction product such as a reaction product with polyacrylate; a condensate obtained by partially condensing the above silanes (preferably aminosilane condensation obtained by partially condensing the above aminosilane, isocyanate silane, aminosilane reaction product, and a mixture of the reaction
  • the compounding amount of the (E) silane-based cross-linking agent is preferably 0.1 part by mass or more based on 100 parts by mass of the total amount of the component (A) and the component (B), and 1 part by mass. It is more preferably at least 2 parts by mass, more preferably at least 2 parts by mass, preferably at most 60 parts by mass, more preferably at most 30 parts by mass, still more preferably at most 15 parts by mass.
  • the blending amount of the component (B) indicates the blending amount of the solid content obtained by removing the solvent component from the component (B).
  • the primer composition of the present invention may contain other additives as required.
  • additives include solvents, condensation reaction accelerating catalysts, dehydrating agents, silane-based adhesion promoters, polyisocyanate compounds, chlorinated polymers, polyurethane-based resins, pigments, dyes, anti-aging agents, antistatic agents. , Flame retardants and the like.
  • solvent examples include aliphatic compounds (n-hexane, heptane, etc.), aromatic compounds (toluene, xylene, etc.), alcohols (methanol, ethanol, isopropyl alcohol, butanol, etc.), ketones (acetone, methyl ethyl ketone, etc.), esters (Ethyl acetate, butyl acetate, etc.), ether (tetrahydrofuran, butyl cellosolve, etc.), ligroin, and other organic solvents can be mentioned. These solvents may be used alone or in combination of two or more, and may be added in an appropriate amount to the primer composition according to the present invention.
  • methyl ethyl ketone and ethyl acetate are preferable from the viewpoint of better adhesion speed and workability.
  • the content of the solvent is preferably 40% or more and 90% or less, and more preferably 50% or more and 80% or less with respect to the total mass of the primer composition according to the present invention. When the content of the solvent is within this range, good coatability can be obtained. In addition, the content of the solvent in the primer composition according to the present invention can be appropriately changed depending on the use and purpose of the composition.
  • condensation reaction accelerator As the condensation reaction accelerating catalyst for the alkoxysilyl group, known curing catalysts can be widely used.
  • silanol condensation catalyst is preferably used.
  • silanol condensation catalysts include metal-based catalysts, tin-based catalysts, amine-based catalysts, and the like.
  • amine-based catalysts include organometallic compounds, amines (particularly, tertiary amines), and tertiary amines. Examples thereof include salts of carboxylic acids and the like.
  • organic metal compound examples include divalent organic tin compounds such as tin octylate; dibutyltin dilaurate, dibutyltin diacetate, dioctyltin dilaurate, and reaction products of dibutyltin oxide with phthalic acid ester.
  • divalent organic tin compounds such as tin octylate; dibutyltin dilaurate, dibutyltin diacetate, dioctyltin dilaurate, and reaction products of dibutyltin oxide with phthalic acid ester.
  • Tetravalent organic tin compounds such as dibutyltin bis (acetylacetonate), titanium tetrakis (acetylacetonate), aluminum tris (acetylacetonate) and acetylacetone bismuth
  • titanate esters such as tetrapropyl titanate And the like.
  • amines examples include primary and secondary amines such as octylamine; polyamines; cyclic amines such as N-methylmorpholine and 1,8-diazabicyclo[5,4,0]-7-undecene (DBU).
  • Amine compounds such as aminophenol compounds such as 2,4,6-tris(dimethylaminomethyl)phenol and carboxylic acid salts thereof; reaction products of excess polyamines and epoxy compounds. Further, these catalysts can be used alone or in combination of two or more kinds.
  • tin-based catalysts and amine-based catalysts are preferable, and tin-based catalysts are particularly preferable, from the viewpoint of having a large amount of large catalytic ability.
  • One or both of the tin-based catalyst and the amine-based catalyst may be used.
  • the tin-based catalyst either one of divalent or tetravalent can be used alone, or both can be used in combination.
  • the amine catalyst it is preferable to use tertiary amines.
  • the amount of the condensation reaction accelerating catalyst is preferably 0.01 parts by mass or more and 0.05 parts by mass with respect to 100 parts by mass of the total amount of the components (A) and (B). It is more preferably not less than 0.1 part by mass, more preferably not less than 0.1 part by mass, further preferably not more than 10 parts by mass, more preferably not more than 1 part by mass.
  • dehydrating agent examples include silane compounds such as vinyltrimethoxysilane, dimethoxydiphenylsilane, methyltrimethoxysilane, phenyltrimethoxysilane, tetraethoxysilane and tetramethoxysilane; ester compounds such as methyl orthoformate and ethyl orthoformate. be able to.
  • dehydrating agent can be used alone or in combination of two or more kinds.
  • the dehydrating agent is preferably a silane compound, more preferably dimethoxydiphenylsilane or phenyltrimethoxysilane.
  • the content of the dehydrating agent is preferably 0.1 parts by mass or more, more preferably 0.5 parts by mass or more, based on 100 parts by mass of the total amount of the component (A) and the component (B). 1 part by mass or more is more preferable, 20 parts by mass or less is preferable, 10 parts by mass or less is more preferable, and 5 parts by mass or less is further preferable.
  • silane-based adhesion promoter The silane-based adhesion-imparting agent can be added to the primer composition according to the present invention from the viewpoint of being excellent in the effect of improving the adhesiveness to the difficult-to-adhere coated surface.
  • silane-based adhesion imparting agent include epoxy silane, acrylic silane, mercapto silane, urea silane-based coupling agent, isocyanate silane and the like.
  • Examples of the epoxysilane include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, ⁇ -(3,4-epoxycyclohexyl)ethyltrimethoxysilane, and 3-glycidoxypropylmethyldiene. Examples thereof include ethoxysilane. Examples of the acrylic silane include 3-methacryloxypropyltrimethoxysilane and the like. Examples of the mercaptosilane include 3-mercaptopropyltrimethoxysilane and the like.
  • urea silane coupling agent examples include 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane and the like.
  • isocyanate silane examples include 3-isocyanatopropyltriethoxysilane.
  • epoxy silane acrylic silane-based silane, urea silane-based coupling agent, and isocyanate silane are preferable, and epoxy silane is more preferable.
  • the amount of the silane-based adhesion imparting agent blended is preferably 0.1 parts by mass or more based on 100 parts by mass of the total amount of the component (A) and the component (B), and 0.5 It is more preferably at least 1 part by mass, more preferably at least 1 part by mass, preferably at most 20 parts by mass, more preferably at most 10 parts by mass, still more preferably at most 5 parts by mass.
  • the primer composition according to the present invention may further contain a polyisocyanate compound.
  • the polyisocyanate compound is not particularly limited as long as it is a compound having two or more isocyanate groups in the molecule.
  • the polyisocyanate compound can exhibit high film forming properties, the film strength after coating becomes strong, and excellent adhesiveness is exhibited. Further, the isocyanate group is cured to exhibit excellent adhesiveness to the substrate (siding board etc.), and the isocyanate group is crosslinked, whereby the hot water resistance and the heat resistant adhesion to the substrate can be improved.
  • polyisocyanate compound examples include aromatic polyisocyanates such as tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), xylylene diisocyanate (XDI) and polymethylene polyphenyl isocyanate (polymeric MDI); hexamethylene diisocyanate (HDI).
  • aromatic polyisocyanates such as isophorone diisocyanate (IPDI); adducts using addition reaction products of these polyisocyanates such as trimethylolpropane and glycol; these isocyanurate-modified polyisocyanates; Alohanate modified polyisocyanate; burette modified polyisocyanate and the like.
  • IPDI isophorone diisocyanate
  • adducts using addition reaction products of these polyisocyanates such as trimethylolpropane and glycol
  • these isocyanurate-modified polyisocyanates Alohanate modified polyisocyanate
  • the polyisocyanate compound preferably has three or more isocyanate groups from the viewpoints of good film-forming property and better adhesion to a difficult-to-adhesive coated surface.
  • the polyisocyanate compound having three or more isocyanate groups for example, a polyisocyanate-adduct obtained by reacting the above polyisocyanate compound with a compound such as tris(phenylisocyanate)thiophosphate or trimethylolpropane (TMP)
  • TMP trimethylolpropane
  • an adduct of a polyisocyanate compound, a biuret body, an isocyanurate body and the like can be mentioned.
  • such a polyisocyanate compound is referred to as an “isocyanate adduct”. These may be used alone or in combination of two or more.
  • Examples of such isocyanate adducts include HDI-TMP adducts obtained by reacting HDI with TMP, XDI-TMP adducts obtained by reacting XDI with TMP, and TDI obtained by reacting TDI with TMP.
  • TDI-TMP adducts and isocyanurate modified products obtained by reacting TDI and TMP are preferable.
  • the polyisocyanate compound having an isocyanurate ring an isocyanurate-modified diisocyanate compound obtained by trimerizing a diisocyanate compound is preferable.
  • the diisocyanate compound include the aromatic polyisocyanates exemplified above.
  • the polyisocyanate compound having an isocyanurate ring obtained by reacting a mixture of TDI and HDI has a better initial adhesiveness to a difficult-to-adhesive coated surface and a hot water-resistant adhesiveness, and a sufficient adhesiveness is obtained. It is preferable from the viewpoint that it can be obtained.
  • polyisocyanate compounds examples include, for example, tris(phenylisocyanate)thiophosphate (Dismodur RFE, manufactured by Bayer), polyisocyanate compounds having an isocyanurate ring obtained by reacting a mixture of HDI and TDI (Dismodur HL, manufactured by Bayer Co., Ltd., polymethylene polyphenyl isocyanate (Sumijour 44V-10, manufactured by Sumika Bayer Urethane Co., Ltd.) and the like.
  • the chlorinated polymer can exhibit high film forming properties, the film strength after coating becomes strong, and excellent adhesiveness is exhibited.
  • Examples of the chlorinated polymer include chlorinated isoprene-based synthetic rubber, chlorinated polyethylene, chlorinated polypropylene, chlorinated polyethylene/propylene copolymer, chlorinated polybutadiene, chlorinated polystyrene, chlorinated polybutadiene/styrene copolymer, and chloro. Examples thereof include sulfonated polyethylene, chlorosulfonated polyethylene/vinyl acetate copolymer and the like.
  • the polyurethane-based resin can exhibit high film-forming property, the film strength after coating becomes strong, and excellent adhesiveness is exhibited.
  • the polyurethane-based resin is a compound in which monomers are copolymerized by a urethane bond in which an isocyanate group and an alcohol group are condensed.
  • As the polyurethane resin various polyurethane resins can be used as long as the effects of the present invention are exhibited.
  • the polyurethane resin those having a number average molecular weight of 3,000 or more and 60,000 or less are preferable from the viewpoint of the adhesiveness of the primer composition.
  • the polyurethane resin may be used alone or in combination of two or more kinds.
  • polyurethane resin polyurethane resin (Pandex (registered trademark) T-5205, number average molecular weight: 60,000, manufactured by DIC), polyurethane resin (Pandex (registered trademark) T-5201, number average molecular weight: 55) , 000, manufactured by DIC) or the like can be used.
  • the pigment examples include one or both of an inorganic pigment and an organic pigment.
  • an inorganic pigment titanium dioxide, zinc oxide, ultramarine, red iron oxide, lithopone, lead, cadmium, iron, cobalt, aluminum, hydrochloride, sulfate inorganic pigments, azo pigments, copper phthalocyanine pigments, and other organic pigments can be used.
  • dye A conventionally known dye can be used as the dye.
  • a black dye, a yellow dye, a red dye, a blue dye, a brown dye, etc. may be mentioned.
  • Anti-aging agent examples include hindered phenol compounds, hindered amine compounds, benzotriazole compounds, and the like.
  • Antistatic agent examples include hydrophilic compounds such as quaternary ammonium salt, polyglycol, and ethylene oxide derivative.
  • flame retardants examples include chloroalkyl phosphate, dimethyl methylphosphonate, bromine/phosphorus compound, ammonium polyphosphate, neopentyl bromide-polyether, brominated polyether and the like.
  • the method for preparing the primer composition according to the present invention is not particularly limited, but it can be produced, for example, by using a mixer capable of uniformly mixing liquids. For example, a predetermined amount of materials (component (A), component (B), component (C), component (D), component (E), and/or other additive) constituting the primer composition are weighed and weighed. It can be manufactured by mixing each of the materials described above using a stirrer with a uniaxial or biaxial shaft, or a tank having a pulsator or the like at the bottom. In particular, it is preferable to use a device equipped with a jacket and capable of variably adjusting the material temperature.
  • the method for applying the primer composition according to the present invention to the adherend is not particularly limited, but the following application method is preferable as an example.
  • the primer composition according to the present invention is lifted by using a brush, a brush or the like to drain the liquid so that the liquid does not drop, and then uniformly applied to the adherend at an application amount of 50 to 400 ml/m 2.
  • a sealing material is applied after 30 minutes to 8 hours have passed after application.
  • the primer composition according to the present invention can be suitably used for applications such as construction, civil engineering, concrete, wood, metal, glass, and plastic primer compositions, sealing materials, adhesives, and the like. ..
  • the primer composition according to the present invention is excellent in the splicing property with respect to the cured product of the sealing material, and thus can be suitably used particularly for the sealing material.
  • the primer composition according to the present invention can be suitably used as a primer for a coating material having poor adhesion.
  • the material of the coating composition having low adhesion which can use the primer composition according to the present invention include acrylic electrodeposition coating member, fluorine baking coating member, anodizing coating member and the like.
  • the primer composition according to the present invention can be used for members other than the difficult-to-adhesive coating member.
  • the primer composition according to the present invention comprises the component (A) and the component (B) containing an alkoxysilyl group, and the component (A) and/or the component (B) has a predetermined weight average molecular weight and/or Or, since it has a predetermined proportion of methyl methacrylate, the primer composition is porous even when applied or contacted with a porous building material (as an example, the surface of an edge such as a siding material) as an adherend. It exerts an effect that is difficult to penetrate into building materials. For this reason, the primer composition according to the present invention can exhibit high film-forming property, and can strengthen the film strength after coating.
  • the primer composition according to the present invention can be easily applied with a brush or the like and can exhibit high workability. Therefore, the primer composition according to the present invention can be applied to outer wall materials such as ceramic or wood-based siding boards, especially outer wall materials coated with a sealer or paint.
  • the primer composition according to the present invention has a high barrier property, it is possible to suppress the migration of the plasticizer or the like from the adherend or the sealing material, and to exhibit high adhesion durability for a long period of time. it can. And the primer composition which concerns on this invention can exhibit high adhesiveness also to a wet surface.
  • a (meth)acrylic polymer having a trimethoxysilyl group was obtained according to the method of Synthesis Example 4 of WO2015-088021 using 20.00 g of a benzoquinone solution (95% THF solution) as a polymerization terminator.
  • the ethyl acetate solution of the obtained reaction product was heated at 105° C. to obtain a solid content, which was 70.5%.
  • the polystyrene reduced molecular weight of the obtained polymer measured by gel permeation chromatography (GPC) was such that the weight average molecular weight (Mw) was 4,000 and the molecular weight distribution (Mw/Mn) was 2.4. ..
  • GPC gel permeation chromatography
  • Mw weight average molecular weight
  • Mw/Mn molecular weight distribution
  • 1 H-NMR measurement (measured in CDCl 3 solvent using NMR400 manufactured by Shimadzu Corporation) confirmed that the number of trimethoxysilyl groups contained was 2 per molecule.
  • the glass transition temperature was 61°C.
  • Examples and comparative examples For each of Examples 1 to 12 and Comparative Examples 1 to 3, Component (A), Component (A′), Component (B), Component (C), Component (D), Component (E), and other The additives were mixed in the mixing ratio shown in Table 1 and mixed by stirring. As a result, primer compositions according to Examples and Comparative Examples were obtained. Then, the following respective evaluations were carried out for each of the obtained primer compositions of Examples 1 to 12 and Comparative Examples 1 to 3. The results are shown in Table 1. In addition, in Table 1, the unit of the compounding amount of each compounding substance is "g".
  • the compounding amount of the component (B) in Table 1 is an amount including a solvent.
  • Component (A)) -Delpowder (registered trademark) 80NS: manufactured by Asahi Kasei, polymethylmethacrylate, MMA/MA 97.5/2.5 weight ratio, weight average molecular weight: 100,000, reduced viscosity: 0.54 deciliter/g, glass Transition temperature (Tg): 105°C -Dianal BR84: manufactured by Mitsubishi Rayon Co., polymethylmethacrylate, weight average molecular weight: 100,000, glass transition temperature (Tg): 105°C, acid value: 6.5 mgKOH/g
  • Component (C)) KBM903 manufactured by Shin-Etsu Chemical Co., Ltd., amine coupling agent, weight average molecular weight: 179, 3-aminopropyltrimethoxysilane.
  • Dynasylan 1124 manufactured by Evonik Co., weight average molecular weight: 343, amine coupling agent, bis(3- Trimethoxysilylpropyl)amine/ketimine coupling agent: N-(1,3-dimethylbutylidene)-3-(trimethoxysilyl)-1-propanamine, weight average molecular weight: 261
  • Component (E)) -X-12-965 Shin-Etsu Chemical Co., Ltd., isocyanurate coupling agent, weight average molecular weight: 616, number of Si groups: 3, tris-(trimethoxysilylpropyl) isocyanurate
  • the brush coatability and film forming property of the primer composition were evaluated. Specifically, regarding the brush coatability, first, the primer composition according to Example 1 was applied to the forefront surface of a siding material (Moensiding M, manufactured by Nichiha Co., Ltd.) using a brush. Similarly, for comparison, a primer composition for comparison (MP3000, manufactured by Cemedine Co., Ltd.) was used, and a brush was applied to the small surface of a siding material (Moen Siding M, manufactured by Nichiha Co., Ltd.).
  • the ease of coating at the time of coating the primer composition was evaluated by comparing the primer composition according to Example 1 with a comparative primer composition.
  • the evaluation criteria are as follows.
  • the condition of the film formed by the primer composition on the forefront surface was visually evaluated without the entire primer composition applied to the forehead surface soaking into the forehead surface.
  • the evaluation criteria are as follows.
  • the barrier property was evaluated as follows.
  • the surface of the stainless steel plate is coated with a chlorinated polypropylene coating agent (20% ethyl acetate solution of Super Clone 814HS (manufactured by Nippon Paper Industries Co., Ltd.)), and left standing at 23°C for 24 hours to obtain chlorinated polypropylene.
  • a stainless plate having a coating layer was obtained.
  • the primer according to Example 1 was applied (0.02 g/cm 2 ) on the coating layer of the obtained stainless steel plate, and dried for 1 hour in a 23° C. environment.
  • Sealing material (POS seal LM ultra-weather resistant) is placed on the dried primer in a bead shape, and cured for 3 days at 23°C 50%RH environment and 4 days at 50°C 40%RH environment for sealing material. Was cured. After further promoting heating for 3 days in an environment of 70° C., the sealing material was cut along the adhesive interface with a cutter, and the coating layer portion touched by the sealing material was observed to confirm the color change.
  • the evaluation criteria are as follows.
  • a backup material made of foamed polyethylene having a length of 50 mm, a width of 10 mm, and a thickness of 6 mm is placed on the lower surface of the gap between the small edge of the first siding board and the small edge of the second siding board.
  • the surface of No. 2 siding board was covered with masking tape.
  • the primer composition according to Example 1 is applied to a region in contact with the sealing material (that is, the forehead of the first siding board and the forehead of the second siding board), and the gap (joint) having a gap of 10 mm is sealed.
  • a material POS seal LM super weatherproof, manufactured by Cemedine Co., Ltd.
  • was filled with a thickness of 8 mm was filled with a thickness of 8 mm, and then the masking tape was removed to prepare a test sample.
  • test sample was aged in a 23° C. 50% RH environment for 1 week, and further cured in a 30° C. environment for 1 week, and then pulled at a pulling speed of 50 mm/min in a 23° C. environment.
  • An adhesion test was carried out. ("Tensile adhesiveness (normal state/Moen M)" in Table 1).
  • another test sample was aged in a 23° C. 50% RH environment for 1 week, further cured in a 30° C. environment for 1 week, and then cured in an 80° C. environment for 2 weeks.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Paints Or Removers (AREA)

Abstract

多孔質建材に適用してもプライマー組成物が多孔質建材に浸透し難く、高い造膜性を発揮することができると共に、塗布後の膜強度が強固であり、多孔質建材に対してもシーリング材を良好に接着でき、先打ちシーリング材に対して用いる場合の打ち継ぎ性にも優れるプライマー組成物を提供する。プライマー組成物は、(A)樹脂中に含まれるメチルメタクリレートの割合が80重量%以上であって、重量平均分子量が60,000以上であるメタクリル酸メチル系重合体と、(B)樹脂中に含まれるメチルメタクリレートの割合が80重量%未満であるアルコキシシリル基含有メタクリル酸メチル系重合体とを含有する。

Description

プライマー組成物
 本発明は、プライマー組成物に関する。
 従来、住宅建築において、シーリング材の外壁材被着面への施工前に当該被着面にプライマーが塗布されている。外壁材等の被着面にプライマーを塗布することにより、被着体とシーリング材との接着性を向上させ、表面強度の脆弱な被着面を強化することができる。そして、近年、住宅の長寿命化、メンテナンスフリー等の要求により、高耐久性能を有する外壁材及びシーリング材が開発され、これに合わせ、建築用シーリング材用のプライマーに対しても高耐久性能が要求されている。
 また、木造住宅の外壁材としては、窯業系又は木質系のサイディングボードが多く用いられているところ、これらのサイディングボードは多孔質であることから、水分の影響を受けやすいと共にプライマーが浸透しやすい。そのため、外壁材被着面においてプライマーの造膜性が低下する等の理由により、良好な接着耐久性、特に湿潤条件における接着耐久性が必ずしも得られなかった。
 そこで、(A)ケイ素原子に結合した水酸基又は加水分解性基を有し、シロキサン結合を形成することにより架橋し得るケイ素含有基を少なくとも1個有する飽和炭化水素系重合体を含有するプライマー組成物が知られている(例えば、特許文献1参照。)。特許文献1に係るプライマー組成物においては、長期の接着性を改善できる。また、(A)ケイ素原子に結合した水酸基若しくはアルコキシ基含有オルガノポリシロキサン樹脂、(B)アミノ基含有シラン化合物、(C)アルコキシシリル基含有イソブチレン系ポリマー、(D)触媒としてスズ(IV)化合物、及び(E)有機溶剤から成るプライマー組成物が知られている(例えば、特許文献2参照。)。特許文献2に係るプライマー組成物においては、多孔質面用として用い得ることが提案されている。
 一方、シーリング材を被着面等の施工部に施工した後に、当該シーリング材の劣化等により当該施工部を改修等する必要が生じる場合がある。この場合、既存のシーリング材、すなわち、先打ちシーリング材を除去した後に新規のシーリング材(後打ちシーリング材)を施工するところ、先打ちシーリング材を完全に除去できないことがある。この場合、先打ちシーリング材に後打ちシーリング材を打ち継がなければならない。このシーリング材の打ち継ぎにおいては、先打ちシーリング材及び後打ちシーリング材同士が良好な接着性を有することを要するところ、接着性が所望の目標まで及ばないことが多く、一般的に、打ち継ぎにおいてもプライマーが用いられる。
 ところが、シーリング材の打ち継ぎにおいて、プライマーを用いたとしても、これらのシーリング材同士の打ち継ぎ性が劣る、又は打ち継ぎできないという問題が生じる場合がある。
 そこで、a)イソシアヌレート環を有するポリイソシアネートと、b)エポキシシラン化合物と、c)所定の式で表される構造を有するアミノシラン化合物、所定の式で表される構造を有するアミノシラン化合物及び所定の式で表される構造を有するケチミンシラン化合物からなる群より選択される1種以上のシラン化合物と、d)造膜樹脂とを含有し、b)エポキシシラン化合物が、所定の式で表されるエポキシシランの少なくとも1種の縮合物、又は所定の式で表されるエポキシシランの少なくとも1種と所定の式で表されるアルコキシシランの少なくとも一種との縮合物である変性シリコーン系シーリング材の打ち継ぎ用プライマー組成物が知られている(例えば、特許文献3参照。)。
 更に、プライマー組成物は、シーリング材の単なる副資材ではなく、例えば、多孔質物質の内部からシーリング材接着面への水、アルカリ等の浸出低減や、被着体若しくはシーリング材からの可塑剤等の移行を低減する役割も求められている(例えば、非特許文献1参照。)。
特開平11-343429号公報 特開2000-86990号公報 特許4802448号公報
建築用シーリング材ハンドブック、日本シーリング材工業会、2017年、19
 しかし、特許文献1に記載のプライマー組成物は、ガラスや金属に対する接着性を改善できるものの、多孔質建材に対しては十分な効果を発揮できない。また、特許文献2に記載のプライマー組成物は、多孔質面に適用されることができるとされているものの、接着耐久性については実用上、十分な耐久性を発揮しない。すなわち、近年の技術革新、材料等の最適化、製造工程の簡素化、及び/又は短縮化等により、プライマーに要求される特性等も高度化しているところ、従来のプライマー(プライマー組成物)には、窯業系サイディングボードやアルミ塗板等の各種被着体に対する接着性(例えば、初期接着性、耐水接着性、及び耐熱接着性)等を高い水準で満たすプライマー組成物が存在せず、これら特性の更なる改善が求められている。
 また、特許文献3に記載の打ち継ぎ用プライマー組成物は、打ち継ぎ性をアミノシランにより発揮させているにすぎず、先打ちシーリング材に対する打ち継ぎ性(常態接着性、耐水接着性)等を高い水準では満たさないので、打ち継ぎ用のプライマー組成物のこれら特性の更なる改善が求められている。更に、プライマー組成物には多孔質物質内部からシーリング材接着面への水やアルカリ等の浸出低減や被着体やシーリング材からの可塑剤等の移行低減を実現する特性(以下、本明細書において、この特性を「バリア性」と称する。)も要求される。
 そこで、本発明の目的は、多孔質建材に適用してもプライマー組成物が多孔質建材に浸透し難く、高い造膜性を発揮することができると共に、塗布後の膜強度が強固であり、多孔質建材に対してもシーリング材を良好に接着できるプライマー組成物を提供することにある。更に、先打ちシーリング材に対して用いる場合の打ち継ぎ性にも優れるプライマー組成物を提供することにある。
 本発明は、上記目的を達成するため、(A)樹脂中に含まれるメチルメタクリレートの割合が80重量%以上であって、重量平均分子量が60,000以上であるメタクリル酸メチル系重合体と、(B)樹脂中に含まれるメチルメタクリレートの割合が80重量%未満であるアルコキシシリル基含有メタクリル酸メチル系重合体とを含有するプライマー組成物が提供される。
 また、上記プライマー組成物は、(C)アミノ基含有シランを更に含むこともできる。
 また、上記プライマー組成物は、(D)エポキシ樹脂を更に含むこともできる。
 更に、上記プライマー組成物は、(E)シラン系架橋剤を含むこともできる。
 本発明のプライマー組成物によれば、多孔質建材に適用してもプライマー組成物が多孔質建材に浸透し難く、高い造膜性を発揮することができると共に、塗布後の膜強度が強固であり、多孔質建材に対してもシーリング材を良好に接着でき、先打ちシーリング材に対して用いる場合の打ち継ぎ性にも優れるプライマー組成物を提供することができる。
<数値、及び用語の定義・意義>
 本明細書において用いる用語の定義・意義は以下のとおりである。
(室温の定義)
 本明細書における「室温(常温)」とは、23℃の温度である。
(用語の意義:室温で固体(状))
 本明細書において、「室温で固体(状)」という用語は、対象となる物質(例えば、所定の組成物)が結晶性の物質、部分的に結晶性の物質、及び/又はガラス状非晶質であって、23℃よりも高い軟化点(環球法による測定値)、若しくは融点を有することを意味する。ここで融点は、例えば、動的示差熱量測定(示差走査型熱量測定[DSC])によって、加熱操作中に測定した曲線の最大値であって、対象の材料が固体状態から液体状態に転移する温度である。
(重量平均分子量)
 本明細書において重量平均分子量は、例えば、HLC-8220(東ソー(株)製)を用い、ポリスチレンを標準物質として、下記の条件で測定することができる。
 使用カラム:TSKgel SuperMultiporeHZ-M×2本、TSKguardcolumn SuperMP(HZ)-M×1本、TSKgel SuperMultiporeHM-L×1本
 溶媒:THF
 流速:1.0ml/min
 測定温度:40℃
(ガラス転移温度)
 ガラス転移温度(以下、「Tg」と称する場合がある。)は単量体成分の種類や量から下記Fox式を用いて容易に推定することができる。
 1/Tg=W/Tg+W/Tg+・・・+W/Tg  (Fox式)
 上記Fox式中、Tgは、例えば、アクリル系樹脂のガラス転移温度(K)であり、W、W、・・・、Wは、各モノマーの重量分率であり、Tg、Tg、・・・、Tgは、各モノマーのホモポリマーのガラス転移温度である。なお、上記Fox式に用いるホモポリマーのガラス転移温度は、文献に記載されている値を用いることができ、例えば、三菱レイヨン株式会社のアクリルエステルカタログ(1997年度版)や北岡協三著、「新高分子文庫7 塗料用合成樹脂入門」、高分子刊行会、p168~p169等に記載されている。
<プライマー組成物の概要>
 プライマー組成物に要求される各特性を向上させる観点から、本発明者は種々検討した。例えば、アミノシランを用いることで変性シリコーン系シーリング材との相溶性に優れ、当該シーリング材に対する打ち継ぎ性が改善されることが知られているものの、従来技術においてはアクリル成分を造膜樹脂として用い(例えば、特許第4802448号)、アクリル成分による接着付与性向上の認識がされている従来技術はなかった。本発明者は、プライマー組成物におけるアクリル成分の接着付与性を見出し、その特性を最大限発揮させる構成を検討した。その結果、所定のアクリル系重合体と、シリル基含有重合体とを用いることで、多孔質建材に浸透し難く、高い造膜性を発揮し、塗布後の膜強度が強固であり、多孔質建材に対してもシーリング材を良好に接着でき、打ち継ぎ性にも優れるプライマー組成物を得ることができることを見出した。
 すなわち、本発明に係るプライマー組成物は、(A)メタクリル酸メチル系重合体(以下、成分(A)と称する。)と、(B)アルコキシシリル基含有メタクリル酸メチル系重合体(以下、成分(B)と称する。)とを含有する組成物である。また、本発明に係るプライマー組成物は、(C)アミノ基含有シラン(以下、成分(C)と称する。)、(D)エポキシ樹脂(以下、成分(D)と称する。)、(E)シラン系架橋剤(以下、成分(E)と称する。)、及び/又はその他の添加剤を含有してもよい。
<プライマー組成物の詳細>
 本発明に係るプライマー組成物は、所定の重量平均分子量の(A)メタクリル酸メチル系重合体と、所定の重量平均分子量の(B)アルコキシシリル基含有メタクリル酸メチル系重合体とを含有して構成される。また、成分(A)及び成分(B)に、成分(C)、成分(D)、成分(E)、及び/又はその他の添加剤を添加して本発明に係るプライマー組成物を調製することもできる。そして、本発明に係るプライマー組成物は、室温で湿気硬化する性質を有する。
<(A)メタクリル酸メチル系重合体>
 本発明に係る(A)メタクリル酸メチル系重合体としては、常温で固体の樹脂中に含まれるメチルメタクリレートの割合が80重量%以上で、重量平均分子量Mw(GPC[ゲル浸透クロマトグラフィー]法でのポリメチルメタクリレート換算見かけ重量平均分子量)が60,000以上である樹脂が好ましい。
 樹脂中に含まれるメチルメタクリレートの割合を80重量%以上、重量平均分子量を60,000以上にすることにより、本発明に係るプライマー組成物を多孔質建材に適用した場合であっても、多孔質建材にプライマー組成物が浸透し難くなる。その結果、本発明に係るプライマー組成物は高い造膜性を発揮することができ、塗布後の膜強度が強固になり、優れた接着性を発揮する。
 当該樹脂には、メチルメタクリレートの単独重合体、又はメチルメタクリレートとメチルアクリレート、エチルアクリレート、ブチルアクリレート、アクリロニトリル、アクリル酸、メタクリル酸、2-ヒドロキシアクリレート、無水マレイン酸、スチレン、若しくはα-メチルスチレン等の共重合可能なモノマーのいずれか一つ以上との共重合体等が含まれる。
 共重合可能なモノマーとしては、メチルアクリレ-ト、エチルアクリレート、n-ブチルアクリレート等のアルキル基の炭素数が1~4であるアルキルアクリレート、及び(メタ)アクリル酸が好ましく、メチルアクリレート、エチルアクリレート、(メタ)アクリル酸がより好ましく、メチルアクリレート、(メタ)アクリル酸が更に好ましい。メチルメタクリレートがこれらのモノマーと共重合することにより、成分(A)の溶剤に対する溶解性が増加すると共に、本発明に係るプライマー組成物の粘度が適度な粘度(増粘)になり、多孔質建材に浸透し難くなる。そのため、本発明に係るプライマー組成物は、高い造膜性を発揮することができ、塗布後の膜強度が強固になり、優れた接着性を発揮する。
 成分(A)の市販品としては、例えば、メチルアクリレートとの共重合体であるデルパウダ(登録商標)80N(旭化成工業製、ポリメタクリル酸メチル、メチルメタクリレート/メチルアクリレート=97.5/2.5重量比、重量平均分子量100,000、還元粘度0.54デシリットル/g、ガラス転移温度105℃)や、(メタ)アクリル酸との共重合体であるダイアナール(登録商標)BR-84(三菱レイヨン社製、ポリメタクリル酸メチル、重量平均分子量100,000、ガラス転移温度105℃、酸価:6.5mgKOH/g)等が挙げられる。
 成分(A)は、重量平均分子量Mwが、60,000以上が好ましく、70,000以上がより好ましく、80,000以上が更に好ましく、90,000以上が特に好ましい。また、本発明に係る成分(A)は、重量平均分子量Mwが、通常、200,000以下が好ましく、180,000以下がより好ましく、160,000以下が更に好ましく、140,000以下が特に好ましい。成分(A)の重量平均分子量Mwが60,000以上であると、プライマー組成物のバリア性、接着耐久性、及び多孔質面への接着性が増加し、重量平均分子量Mwが200,000以下であると、プライマー組成物の良好な接着耐久性、作業性、及び多孔質面への接着性が得られる。
 また、成分(A)中に含まれるメチルメタクリレートの割合は80重量%以上が好ましく、90重量%以上がより好ましく、95重量%以上が更に好ましい。そして、成分(A)のガラス転移温度は80℃以上が好ましく、90℃以上がより好ましく、95℃以上が更に好ましく、140℃以下が好ましく、120℃以下がより好ましく、110℃以下が更に好ましい。
 プライマー組成物に対する成分(A)の添加量は、1%以上が好ましく、2%以上がより好ましく、3%以上が更に好ましく、20%以下が好ましく、15%以下がより好ましく、10%以下が更に好ましい。プライマー組成物への添加量が20%を超えると、塗布作業時の粘度が高くなることで作業性が低下する場合があり、1%未満では多孔質建材への塗布時にプライマー組成物が多孔質建材に浸透し、高い造膜性を発揮することができない場合がある。なお、この添加量は、プライマー組成物全体の質量を100%とした場合の割合を示す。
<(B)アルコキシシリル基含有メタクリル酸メチル系重合体>
 (B)アルコキシシリル基含有メタクリル酸メチル系重合体は、アルコキシシリル基を有し、常温で固体のメタクリル酸メチルを必須モノマーとした(メタ)アクリルエステル重合体である。
 本発明に係る(B)アルコキシシリル基含有メタクリル酸メチル系重合体としては、樹脂中に含まれるメチルメタクリレートの割合が80重量%未満で、重量平均分子量Mw(GPC[ゲル浸透クロマトグラフィー]法でのポリスチレン換算見かけ重量平均分子量)が60,000未満である樹脂が好ましい。
 成分(B)によりプライマー組成物は、シーリング材の硬化物(先打ちシーリング材)への優れた接着性を発現し、良好な打ち継ぎ性を実現する。また、成分(B)と後述する成分(C)とを併用する場合、シーリング材の硬化物(先打ちシーリング材)に対するより優れた接着性と良好な打ち継ぎ性が発揮される。更に、成分(B)のアルコキシシリル基及び後述する成分(C)のアルコキシシリル基が硬化することで、基材(サイディングボード等)に対する優れた接着性を発現する。更に、成分(B)のシリル基と成分(C)のシリル基とが架橋することにより、基材に対する耐温水接着性を向上させることができる。
(アルコキシシリル基)
 成分(B)のアルコキシシリル基は、ケイ素原子に結合したアルコキシ基を有し、シラノール縮合反応により架橋し得る基である。アルコキシシリル基としては、下記一般式(1)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000001
 一般式(1)中、Rは、炭素数1~20のアルキル基、炭素数1~20の置換アルキル基、炭素数3~20のシクロアルキル基、炭素数6~20のアリール基、炭素数7~20のアラルキル基を示し、Rが2個以上存在するとき、それらは同一であってもよく、異なっていてもよい。Xはアルコキシシリル基を示し、Xが2個以上存在するとき、それらは同一であってもよく、異なっていてもよい。aは0、1、2、又は3を示す。一般式(1)のアルコキシシリル基においてaが2又は3である場合が好ましい。aが3の場合、aが2の場合よりも硬化速度が大きくなる。
 Rの具体例としては、例えば、メチル基、エチル基等のアルキル基、メトキシメチル基等の置換アルキル基、シクロヘキシル基等のシクロアルキル基等が挙げられる。これらの中ではメチル基が好ましく、硬化速度が大きくなる観点ではα炭素が極性基で置換された置換アルキル基が好ましい。
 Xで示されるアルコキシシリル基としては、特に限定されず、従来公知のアルコキシシリル基であればよい。アルコキシ基の中では炭素数の少ない基の方が反応性は高く、メトキシ基>エトキシ基>プロポキシ基の順のように炭素数が多くなる程に反応性が低くなる。目的や用途に応じて選択できるが、通常、メトキシ基やエトキシ基が用いられる。一般式(1)で示されるアルコキシシリル基の場合、硬化性を考慮するとaは2以上が好ましい。
 具体的に、アルコキシシリル基としては、例えば、トリメトキシシリル基、トリエトキシシリル基等のトリアルコキシシリル基(-Si(OR);メチルジメトキシシリル基、メチルジエトキシシリル基等のジアルコキシシリル基(-SiR(OR)が挙げられる。ここでRは前記と同じであり、Rはメチル基やエチル基のようなアルキル基である。アルコキシシリル基としては、反応性が高い点からトリメトキシシリル基、トリエトキシシリル基が好ましく、トリメトキシシリル基が更に好ましい。柔軟性を有する硬化物を得る観点からメチルジメトキシシリル基、メチルジエトキシシリル基が好ましい。
 また、アルコキシシリル基は単独で用いることも、2種以上を併用することもできる。アルコキシシリル基は、主鎖若しくは側鎖、又はいずれにも存在していてよい。
 成分(B)のアルコキシシリル基の数(平均値)は、重合体一分子あたり0.3個以上が好ましく、0.5個以上がより好ましく、1個以上が更に好ましく、5個以下が好ましく、3個以下がより好ましく、2.5個以下が更に好ましい。分子中に含まれるアルコキシシリル基の数が0.3個未満になると硬化性が不充分になり、また、多すぎると網目構造があまりに密となることから良好な機械特性を示さなくなる。
(アルコキシシリル基の導入方法)
 成分(B)の調製において、(メタ)アクリル酸エステル重合体へのアルコキシシリル基の導入は公知の種々の方法を用いることができる。例えば、アルコキシシリル基の導入方法の例として次の方法を挙げることができる。
(1)アルコキシシリル基を有する不飽和化合物を共重合する。
(2)アルコキシシリル基を有する開始剤や連鎖移動剤を用いて重合する。
(3)水酸基等の官能基を有する(メタ)アクリル酸エステル重合体にエポキシシラン等の当該官能基と反応し得る他の官能基とアルコキシシリル基とを有する化合物を反応させる。
 これらのアルコキシシリル基の導入方法のうち、アルコキシシリル基を容易に導入できる観点から、(1)アルコキシシリル基を有する不飽和化合物を共重合する方法が好ましい。また、(1)の方法と(2)の方法とを併用する方法も好ましい。例えば、メチルメタクリレート、2-エチルヘキシルメタクリレート、3-メタクリロキシプロピルトリメトキシシラン、金属触媒としてのチタノセンジクロリド、3-メルカプトプロピルトリメトキシシラン(チタノセンジクロリドの作用により開始剤として作用し、連鎖移動剤としても作用する。)、及び重合停止剤としてのベンゾキノン溶液を用い、WO2015-088021の合成例4に準じた合成方法を用いることで、アルコキシシリル基含有メタクリル酸メチル系重合体としてのトリメトキシシリル基含有(メタ)アクリル系重合体が得られる。
(アルコキシシリル基を有する不飽和化合物)
 共重合に用いるアルコキシシリル基を有する不飽和化合物としてはアルコキシシリル基を有する(メタ)アクリル酸アルキルエステルやビニルシランが好ましい。係る化合物としては、例えば、3-(メタ)アクリロキシプロピルトリメトキシシラン、3-(メタ)アクリロキシプロピルメチルジメトキシシラン、3-(メタ)アクリロキシプロピルトリエトキシシラン等の3-(メタ)アクリロキシプロピルアルコキシシラン、ビニルトリエトキシシラン等のビニルアルコキシシラン等が挙げられる。これらの中ではアルコキシシリル基を有するアルキル基の炭素数が10以下、好ましくは3以下の置換アルキル基を有する(メタ)アクリル酸アルキルエステルが好ましい。
(成分(B)に用いるアルコキシシリル基を有する単量体を除く他の単量体)
 本発明に係る成分(B)に用いるアルコキシシリル基を有する単量体を除く他の単量体としては、メタクリル酸メチルを必須のモノマー成分とする、一般式(2)で示される繰り返し単位を有するメタクリル酸メチル系ランダム共重合体が挙げられる。
 -CHC(R)(COOR)-    (2)
 一般式(2)中、Rは水素原子若しくはメチル基、Rは置換基を有してもよい炭化水素基を示す。なお、(メタ)アクリル酸エステルとは、アクリル酸エステル、及び/又はメタクリル酸アルキルエステルを示す。
 本発明に係る成分(B)の重合体の合成に用いるアルコキシシリル基を有する単量体及びメタクリル酸メチルを除く他の単量体としては、(メタ)アクリル酸アルキルエステルが好ましく、アルキル基の炭素数が1~30の(メタ)アクリル酸アルキルエステルが更に好ましく、アルキル基の炭素数が1~30で置換基を有しない(メタ)アクリル酸アルキルエステルが特に好ましい。
 (メタ)アクリル酸アルキルエステル化合物の例としては、公知の化合物が挙げられる。例えば、アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ステアリル等を挙げることができる。
 また、シーリング材硬化物(先打ちシーリング材)への優れた接着性を発現し、良好な打ち継ぎ性を実現する観点からは、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ステアリル等の炭素数が8以上のエステル基を有する(メタ)アクリル酸アルキルエステルが好ましい。成分(B)に可撓性を与える観点からは、アクリル酸n-ブチル(Tg;-55℃)、アクリル酸2-エチルヘキシル(Tg;-70℃)、アクリル酸ラウリル(Tg;-3℃)等のガラス転移温度(Tg)が0℃以下の(メタ)アクリル酸アルキルエステルを用いることが好ましい。なお、この段落におけるガラス転移温度はホモポリマーのガラス転移温度を示す。
 (メタ)アクリル酸エステルのアルキル基等の炭化水素基は、水酸基、アルコキシ基、ハロゲン原子、エポキシ基等の置換基を有していてもよい。このような化合物の例としては、ヒドロキシエチル(メタ)アクリレート等の水酸基を有する(メタ)アクリル酸エステル、メトキシエチル(メタ)アクリレート等のアルコキシ基を有する(メタ)アクリル酸エステル、グリシジル(メタ)アクリレート等のエポキシ基を有する(メタ)アクリル酸エステル、ジエチルアミノエチル(メタ)アクリレート等のアミノ基を有する(メタ)アクリル酸エステルを挙げることができる。なお、ポリスチレン鎖を有するアクリル酸エステル等の高分子鎖を有する不飽和化合物(マクロモノマー若しくはマクロマー)を用いることもできる。
 更に、成分(B)のアルコキシシリル基含メタクリル酸メチル系重合体中には、(メタ)アクリル酸エステル化合物由来の繰り返し単位に加えて、これらと共重合性を有する化合物由来の繰り返し単位を含んでもよい。(メタ)アクリル酸エステル化合物と共重合性を有する化合物の例としては、(メタ)アクリル酸等のアクリル酸;(メタ)アクリルアミド等のアミド化合物、アルキルビニルエーテル等のビニルエーテル化合物;その他アクリロニトリル、スチレン、α-メチルスチレン、塩化ビニル、酢酸ビニル等が挙げられる。
(単量体の使用比率)
 成分(B)の重合体中のメチルメタクリレート量は80重量%未満であり、20質量%以上が好ましく、30質量%以上がより好ましく、40質量%以上が更に好ましい。また、(メタ)アクリル酸エステル化合物と共重合性を有する化合物の使用比率は、成分(B)の重合体中に20質量%以下が好ましく、10質量%以下がより好ましく、5質量%以下が更に好ましい。ただし、マクロモノマーを用いる場合、マクロモノマーの量が成分(B)の重合体中に10質量%以下であることが好ましく、5質量%以下であることがより好ましく、3質量%以下であることが特に好ましい。
(ガラス転移温度)
 成分(B)は、0℃以上120℃以下のガラス転移温度(Tg)を有する。ガラス転移温度は、0℃以上であることが好ましく、20℃以上がより好ましく、40℃以上が更に好ましい。また、120℃以下であることが好ましく、100℃以下がより好ましく、80℃以下が更に好ましい。ガラス転移温度が0℃未満であると接着直後の接着強度が劣る傾向にある。また、ガラス転移温度が120℃を超えると粘度が高くなり、プライマーの被着体への塗布が困難になる傾向にある。ガラス転移温度は上述のFox式を用いて容易に推定できる。
 成分(B)の分子量は、重量平均分子量(GPC法で測定したポリスチレン換算分子量)で、1,000以上が好ましく、2,000以上がより好ましく、3,000以上が更に好ましく、20,000以下が好ましく、10,000以下がより好ましく、6,000以下が更に好ましい。重量平均分子量が1,000未満では、塗布後の初期接着力が低く、20,000を超えると、塗布作業時の粘度が高くなり過ぎ、作業性が低下する。また、成分(B)の重合体は室温では固体若しくは環球法軟化点が80℃以上であることが好ましい。
 プライマー組成物に対する成分(B)の添加量は、5%以上が好ましく、10%以上がより好ましく、20%以上が更に好ましく、60%以下が好ましく、50%以下がより好ましく、40%以下が更に好ましい。添加量が60%を超えると、塗布作業時の粘度が高くなり過ぎ、作業性が低下し、5%未満では良好な打ち継ぎ性を実現できない。なお、この添加量は、プライマー組成物全体の質量を100%とした場合の割合を示す。
(成分(B)の重合法)
 成分(B)の重合法としては、ラジカル重合方法を用いることができる。例えば、ベンゾイルパーオキサイド、アゾビスイソブチロニトリル等の熱重合開始剤を用いる通常の溶液重合方法や塊状重合方法を用いることができる。また、光重合開始剤を用い、光又は放射線を照射して重合する方法も用いることができる。ラジカル共重合においては、分子量を調節するために、例えば、ラウリルメルカプタンや3-メルカプトプロピルトリメトキシシラン等の連鎖移動剤を用いてもよい。また、熱重合開始剤を用いるラジカル重合方法を用いることができ、係る方法で本発明に係る成分(B)の重合体を容易に得ることができる。なお、特開2000-086998公報に記載されているようなリビングラジカル重合法等、他の重合方法を用いてもよい。
<(C)アミノ基含有シラン>
 基材(接着部材)に対する接着性を向上させるだけでなく、成分(B)との併用でシーリング材硬化物(先打ちシーリング材)との接着性をより向上させ、打継性に優れるという観点から、本発明に係るプライマー組成物は(C)アミノ基含有シランを更に含有することが好ましい。(C)アミノ基含有シランのアミノ基としては、第一級アミン又は第二級アミンから水素を除去した1価の官能基及びケチミン基が挙げられる。具体的に、本発明に係る(C)アミノ基含有シランとしては、アミノシラン及びケチミン系シランが挙げられる。なお、ケチミン系シランは、水分との反応により所定のアミンを生成するシラン化合物であり、本発明においては、ケチミン系シランも成分(C)に含まれるものとする。
 アミノシランとしては、例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-(β-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(β-アミノエチル)-3-アミノプロピルトリエトキシシラン、N-(β-アミノエチル)-3-アミノプロピルメチルジエトキシシラン等のモノ-シリルアミノシラン、ビス-(トリメトキシシリルプロピル)アミン、ビス-(トリエトキシシリルプロピル)アミン、ビス-(トリエトキシシリルプロピル)エチレンジアミン、N-[2-(ビニルベンジルアミノ)エチル]-3-アミノプロピルトリメトキシシラン、及びアミノエチル-アミノプロピルトリメトキシシラン等のビス-シリルアミノシランが挙げられる。
 更に、アミノシランとしては、上記のアミノシランとエポキシシランとの反応物、アミノシランと(メタ)アクリロイルオキシ基を有するシランとの反応物、アミノシランとエポキシ樹脂(ビスフェノールAジグリシジルエーテル、フェニルグリシジルエーテル等)との反応物、アミノシランとポリアクリレートとの反応物等のアミノシラン反応物;上記シラン類を部分的に縮合した縮合体(好ましくは上記のアミノシラン、アミノシラン反応物、及び反応物の混合物を部分的に縮合したアミノシラン縮合体);これらを変性した誘導体等も挙げられる。
 ケチミン系シランとしては、例えば、N-(1,3-ジメチルブチリデン)-3-(トリメトキシシリル)-1-プロパンアミン、N-(1,3-ジメチルブチリデン)-3-(トリエトキシシリル)-1-プロパンアミン、N-(1,3-ジメチルブチリデン)-3-(メチルジメトキシシリル)-1-プロパンアミン、N-(1,3-ジメチルブチリデン)-3-(メチルジエトキシシリル)-1-プロパンアミン等が挙げられる。
 成分(C)の配合量は、成分(A)及び成分(B)の合計量100質量部に対して、0.1質量部以上が好ましく、0.5質量部以上がより好ましく、1質量部以上が更に好ましく、20質量部以下が好ましく、10質量部以下がより好ましく、5質量部以下が更に好ましい。なお、成分(B)の配合量は、成分(B)から溶剤成分を除いた固形分の配合量を示す。
<(D)エポキシ樹脂>
 本発明に係るプライマー組成物は、(D)エポキシ樹脂を更に含有することができる。(D)エポキシ樹脂は、(C)アミノ基含有シランと反応し、プライマー組成物が硬化した後に得られる網目構造を強固にして、接着性、耐水接着性、及び高温高湿条件での接着耐久性を改善する。また、強固な網目構造によりバリア性能を高めて被着体のシーリング材接着箇所、及び周辺部の変色、劣化等を防止する。特に、(D)エポキシ樹脂は、反応活性基を有する化合物と反応して活性化合物の移行等を抑制することで、アミン化合物等のエポキシ基に対する反応活性基を有する化合物による変色、劣化等の防止に優れた効果を発揮する。
 (D)エポキシ樹脂としては、様々なエポキシ樹脂を用いることができる。例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ビスフェノールS型エポキシ樹脂やこれらを水添したエポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、脂環式エポキシ樹脂、脂肪族エポキシ樹脂、ノボラック型エポキシ樹脂、ウレタン結合を有するウレタン変性エポキシ樹脂、フッ素化エポキシ樹脂、ゴム変性エポキシ樹脂(例えば、ポリブタジエン、スチレンブタジエンゴム(SBR)、ニトリルゴム(NBR)、及びCTBNのいずれかのゴムで変性したエポキシ樹脂等)、テトラブロモビスフェノールAのグリシジルエーテル等の難燃型エポキシ樹脂等が挙げられる。これらのエポキシ樹脂は、単独で用いることも、2種以上併用することもできる。
 これらエポキシ樹脂の中では、作業性や硬化性、接着強度、被着体汎用性、耐水性、耐久性等のバランスの観点から、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ビスフェノールS型エポキシ樹脂やこれらを水添したエポキシ樹脂が好ましく、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂より好ましく、ビスフェノールA型エポキシ樹脂が最も好ましい。
 成分(D)の分子量に特に制限はないが、重量平均分子量が300以上であることが好ましく、350以上であることがより好ましく、1,000以下であることが好ましく、600以下であることがより好ましい。また、取り扱いやすさの観点からは、常温で液状の(D)エポキシ樹脂を用いることが好ましい。
 成分(D)のエポキシ基とアミノ基(第一級アミン又は第二級アミン及びケチミン基)のアミノ基由来の活性水素(ケチミン基は加水分解後の活性水素)のモル比(EP基/アミノ基由来の活性水素)は、0.4以上が好ましく、0.6以上がより好ましく、0.8以上が更に好ましく、3.0以下が好ましく、2.0以下がより好ましく、1.0以下が更に好ましい。
 成分(D)の配合量は、成分(A)及び成分(B)の合計量100質量部に対して、0.1質量部以上が好ましく、0.3質量部以上がより好ましく、0.5質量部以上が更に好ましく、40質量部以下が好ましく、30質量部以下がより好ましく、20質量部以下が更に好ましい。なお、成分(B)の配合量は、成分(B)から溶剤成分を除いた固形分の配合量を示す。
<(E)シラン系架橋剤>
 本発明に係るプライマー組成物は、(E)シラン系架橋剤を更に含有できる。(E)シラン系架橋剤としては、成分(C)を除く二個以上のアルコキシシリル基を有するシラン化合物が挙げられる。(E)シラン系架橋剤は、プライマー組成物が硬化した後に得られる網目構造を強固にして、接着性、耐水接着性、及び高温高湿条件での接着耐久性を改善する効果を有する。また、(E)シラン系架橋剤は、架橋を促進させることでプライマー組成物のバリア性を向上させることもできる。そこで、架橋密度を向上させる観点から、成分(E)において、アルコキシシリル基の数は2以上が好ましく、3以上がより好ましい。
 成分(E)としては、イソシアヌレートシラン、カルバシラトラン、シラン反応物、シラン縮合体等を用いることができる。
 イソシアヌレートシランとしては、トリス-(トリメトキシシリルプロピル)イソシアヌレート等が挙げられる。カルバシラトランとしては、特許第3831481号記載の3-アミノプロピルトリメトキシシラン1.0モル及び3-グリシドキシプロピルトリメトキシシラン2.0モルの反応物等が挙げられる。
 シラン反応物及びシラン縮合体としては(ただし、この段落においては、一級アミノ基、二級アミノ基を含有する化合物は除く。)、アミノシランとエポキシシランとの反応物、アミノシランとイソシアネートシランとの反応物、アミノシランと(メタ)アクリロイルオキシ基を有するシランとの反応物、アミノシランとエポキシ樹脂(ビスフェノールAジグリシジルエーテル、フェニルグリシジルエーテル等)との反応物、アミノシランとポリイソシアネートとの反応物、アミノシランとポリアクリレートとの反応物等のアミノシラン反応物;上記シラン類を部分的に縮合した縮合体(好ましくは上記のアミノシラン、イソシアネートシラン、アミノシラン反応物、及び反応物の混合物を部分的に縮合したアミノシラン縮合体);これらを変性した誘導体である、アミノ変性シリルポリマー、シリル化アミノポリマー等も挙げられる。
 成分(E)を用いる場合、(E)シラン系架橋剤の配合量は、成分(A)及び成分(B)の合計量100質量部に対して、0.1質量部以上が好ましく、1質量部以上がより好ましく、2質量部以上が更に好ましく、60質量部以下が好ましく、30質量部以下がより好ましく、15質量部以下が更に好ましい。なお、成分(B)の配合量は、成分(B)から溶剤成分を除いた固形分の配合量を示す。
<他の添加剤>
 本発明のプライマー組成物は、必要に応じて他の添加剤を含有することができる。このような添加剤としては、例えば、溶剤、縮合反応促進触媒、脱水剤、シラン系接着付与剤、ポリイソシアネート化合物、塩素化重合体、ポリウレタン系樹脂、顔料、染料、老化防止剤、帯電防止剤、難燃剤等が挙げられる。
(溶剤)
 溶剤としては、例えば、脂肪族化合物(n-ヘキサン、ヘプタン等)、芳香族化合物(トルエン、キシレン等)、アルコール(メタノール、エタノール、イソプロピルアルコール、ブタノール等)、ケトン(アセトン、メチルエチルケトン等)、エステル(酢酸エチル、酢酸ブチル等)、エーテル(テトラヒドロフラン、ブチルセロソルブ等)、リグロイン等の有機溶剤が挙げられる。溶剤は、これらの1種又は2種以上を用いることができ、本発明に係るプライマー組成物に適量添加することができる。
 これら溶剤の中では、接着速度と作業性とがより良好になるという観点から、メチルエチルケトン、酢酸エチルが好ましい。なお、上記溶剤は、十分に乾燥又は脱水してから用いることが好ましい。
 溶剤の含有量は、本発明に係るプライマー組成物の全質量に対し、40%以上90%以下であることが好ましく、50%以上80%以下であることが好ましい。溶剤の含有量がこの範囲であれば、良好な塗布性を得ることができる。なお、本発明に係るプライマー組成物中における溶剤の含有量は、組成物の用途、目的等に応じて、適宜、その含有量を変化させることができる。
(縮合反応促進剤)
 アルコキシシリル基の縮合反応促進触媒としては、公知の硬化触媒を広く用いることができ、例えば、シラノール縮合触媒を用いることが好ましい。シラノール縮合触媒としては、例えば、金属系触媒、錫系触媒、アミン系触媒等が挙げられ、アミン系触媒としては、有機金属化合物、アミン類(特に、第3級アミン類)、第3級アミン類とカルボン酸等との塩類等が挙げられる。
 具体的に、有機金属化合物としては、例えば、オクチル酸錫等の2価の有機錫化合物;ジブチル錫ジラウレート、ジブチル錫ジアセテート、ジオクチル錫ジラウレート、ジブチル錫オキサイドとフタル酸エステルとの反応物等の4価の有機錫化合物;ジブチル錫ビス(アセチルアセトナート)、チタンテトラキス(アセチルアセトナート)、アルミニウムトリス(アセチルアセトナート)、アセチルアセトンビスマス等の各種金属のキレート化合物;テトラプロピルチタネート等のチタン酸エステル類等が挙げられる。
 アミン類としては、例えば、オクチルアミン等の第1級、第2級アミン;ポリアミン;N-メチルモルホリン、1,8-ジアザビシクロ[5,4,0]-7-ウンデセン(DBU)等の環状アミン;2,4,6-トリス(ジメチルアミノメチル)フェノール等のアミノフェノール化合物等のアミン化合物及びそのカルボン酸塩;過剰のポリアミンとエポキシ化合物との反応生成物等が挙げられる。また、これらの触媒は、単独で用いることも、2種以上を併用することもできる。
 これらの中でも、微量で大きな触媒能を有するという観点から、錫系触媒、アミン系触媒が好ましく、特に錫系触媒が好ましい。錫系触媒とアミン系触媒とはどちらか一方又は両方を用いてもよい。錫系触媒としては、2価又は4価のどちらか一方を単独で用いることも、双方を併用することもできる。アミン系触媒としては、第3級アミン類を用いるのが好ましい。
 縮合反応促進触媒を用いる場合、縮合反応促進触媒の配合量は、成分(A)及び成分(B)成分の合計量100質量部に対して、0.01質量部以上が好ましく、0.05質量部以上がより好ましく、0.1質量部以上が更に好ましく、10質量部以下が好ましく、2質量部以下がより好ましく、1質量部以下が更に好ましい。
(脱水剤)
 脱水剤としては、ビニルトリメトキシシラン、ジメトキシジフェニルシラン、メチルトリメトキシシラン、フェニルトリメトキシシラン、テトラエトキシシラン、テトラメトキシシラン等のシラン化合物;オルトギ酸メチル、オルトギ酸エチル等のエステル化合物等を挙げることができる。これらの脱水剤は、単独で用いることも、2種以上を併用することもできる。なお、脱水剤としては、シラン化合物が好ましく、ジメトキシジフェニルシラン、フェニルトリメトキシシランがより好ましい。
 脱水剤を用いる場合、脱水剤の配合量は、成分(A)及び成分(B)の合計量100質量部に対して、0.1質量部以上が好ましく、0.5質量部以上がより好ましく、1質量部以上が更に好ましく、20質量部以下が好ましく、10質量部以下がより好ましく、5質量部以下が更に好ましい。
(シラン系接着付与剤)
 シラン系接着付与剤は、難接着性塗装面への接着性を向上させる効果に優れる観点から、本発明に係るプライマー組成物に添加することができる。シラン系接着付与剤としては、エポキシシラン、アクリルシラン、メルカプトシラン、尿素シラン系カップリング剤、イソシアネートシラン等が挙げられる。
 エポキシシランとしては、例えば、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン等が挙げられる。アクリルシランとしては、例えば、3-メタクリロキシプロピルトリメトキシシラン等が挙げられる。メルカプトシランとしては、例えば、3-メルカプトプロピルトリメトキシシラン等が挙げられる。尿素シラン系カップリング剤としては、例えば、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン等が挙げられる。イソシアネートシランとしては、3-イソシアネートプロピルトリエトキシシラン等が挙げられる。
 接着性の観点から、エポキシシラン、アクリルシラン系シラン、尿素シラン系カップリング剤、イソシアネートシランが好ましく、エポキシシランがより好ましい。
 シラン系接着付与剤を用いる場合、シラン系接着付与剤の配合量は、成分(A)及び成分(B)の合計量100質量部に対して、0.1質量部以上が好ましく、0.5質量部以上がより好ましく、1質量部以上が更に好ましく、20質量部以下が好ましく、10質量部以下がより好ましく、5質量部以下が更に好ましい。
(ポリイソシアネート化合物)
 本発明に係るプライマー組成物は、ポリイソシアネート化合物を更に含有できる。ポリイソシアネート化合物は、分子内にイソシアネート基を2個以上有する化合物であれば特に限定されない。ポリイソシアネート化合物は高い造膜性を発揮することができ、塗布後の膜強度が強固になり、優れた接着性を発揮する。また、イソシアネート基が硬化して基材(サイディングボード等)に対する優れた接着性を発現し、イソシアネート基が架橋することにより、基材に対する耐温水接着性及び耐熱接着性を向上させることができる。
 ポリイソシアネート化合物としては、例えば、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、キシリレンジイソシアネート(XDI)、ポリメチレンポリフェニルイソシアネート(ポリメリックMDI)等の芳香族ポリイソシアネート;ヘキサメチレンジイソシアネート(HDI)等の脂肪族ポリイソシアネート;イソホロンジイソシアネート(IPDI)等の脂環式ポリイソシアネート;これらポリイソシアネートの付加反応物、例えば、トリメチロールプロパンやグリコール等を用いたアダクト体;これらのイソシアヌレート変性ポリイソシアネート;アロハネート変性ポリイソシアネート;ビュレット変性ポリイソシアネート等が挙げられる。このようなポリイソシアネート化合物は、単独で用いることも、2種以上を併用して用いることもできる。
 造膜性が良く、難接着性の塗装面に対する接着性がより良好となるという観点から、ポリイソシアネート化合物は、イソシアネート基を3個以上有していることが好ましい。イソシアネート基を3個以上有するポリイソシアネート化合物としては、例えば、上記のポリイソシアネート化合物に、トリス(フェニルイソシアネート)チオホスフェート、トリメチロールプロパン(TMP)等の化合物を反応させて得られるポリイソシアネート-付加体及びポリイソシアネート化合物のアダクト、ビウレット体、イソシアヌレート体等も挙げられる。以下、このようなポリイソシアネート化合物を「イソシアネート付加体」という。これらは、単独で用いることも、2種以上を併用することもできる。
 このようなイソシアネート付加体としては、例えば、HDIをTMPに反応させて得られるHDI-TMP付加体、XDIをTMPに反応させて得られるXDI-TMP付加体、TDIをTMPに反応させて得られるTDI-TMP付加体、TMXDIをTMPに反応させて得られるTMXDI-TMP付加体、HXDIをTMPに反応させて得られるHXDI-TMP付加体、IPDIをTMPに反応させて得られるIPDI-TMP付加体、HDIのビウレット体、HDIのイソシアヌレート体、IPDIのイソシアヌレート体、TDIのイソシアヌレート体等が挙げられる。これらの中でも、TDIとTMPとを反応させて得られるTDI-TMP付加体及びイソシアヌレート変性体が好ましい。
 イソシアヌレート環を有するポリイソシアネート化合物としては、ジイソシアネート化合物を三量化して得られる、ジイソシアネート化合物のイソシアヌレート変性体が好ましい。ジイソシアネート化合物として、例えば、上記で例示した芳香族ポリイソシアネート等が挙げられる。これらのうち、TDIとHDIとの混合物を反応させて得られるイソシアヌレート環を有するポリイソシアネート化合物が、難接着性塗装面に対する初期接着性及び耐温水接着性がより良好となり十分な接着性が得られるという観点から好ましい。
 ポリイソシアネート化合物の市販品として、例えば、トリス(フェニルイソシアネート)チオホスフェート(ディスモジュールRFE、バイエル社製)、HDIとTDIとの混合物を反応させて得られるイソシアヌレート環を有するポリイソシアネート化合物(ディスモジュールHL、バイエル社製)、ポリメチレンポリフェニルイソシアネート(スミジュール44V-10、住化バイエルウレタン株式会社製)等が挙げられる。
(塩素化重合体)
 塩素化重合体は、高い造膜性を発揮することができ、塗布後の膜強度が強固になり、優れた接着性を発揮する。塩素化重合体としては、イソプレン系合成ゴムの塩素化物、塩素化ポリエチレン、塩素化ポリプロピレン、塩素化ポリエチレン・プロピレン共重合体、塩素化ポリブタジエン、塩素化ポリスチレン、塩素化ポリブタジエン・スチレン共重合体、クロロスルフォン化ポリエチレン、クロロスルフォン化ポリエチレン・酢酸ビニル共重合体等が挙げられる。
(ポリウレタン系樹脂)
 ポリウレタン系樹脂は、高い造膜性を発揮することができ、塗布後の膜強度が強固になり、優れた接着性を発揮する。ポリウレタン系樹脂は、イソシアネート基とアルコール基とが縮合したウレタン結合によってモノマーを共重合させた化合物である。ポリウレタン系樹脂としては、本発明の効果を奏する範囲で各種ポリウレタン系樹脂を用いることができる。ポリウレタン系樹脂としては、プライマー組成物の接着性の観点から、数平均分子量が3,000以上60,000以下のものが好ましい。ポリウレタン系樹脂は、単独で用いることも、2種以上を併用することもできる。
 ポリウレタン系樹脂としては、ポリウレタン樹脂(パンデックス(登録商標)T-5205、数平均分子量:60,000、DIC社製)、ポリウレタン樹脂(パンデックス(登録商標)T-5201、数平均分子量:55,000、DIC社製)等の市販品を用いることができる。
(顔料)
 顔料としては、無機顔料及び有機顔料の一方、若しくは双方が挙げられる。例えば、二酸化チタン、酸化亜鉛、群青、ベンガラ、リトポン、鉛、カドミウム、鉄、コバルト、アルミニウム、塩酸塩、硫酸塩の無機顔料、アゾ顔料、銅フタロシアニン顔料等の有機顔料等を用いることができる。
(染料)
 染料としては、従来公知の染料を用いることができる。例えば、黒色染料、黄色染料、赤色染料、青色染料、褐色染料等が挙げられる。
(老化防止剤)
 老化防止剤としては、例えば、ヒンダードフェノール系化合物、ヒンダードアミン系化合物、ベンゾトリアゾール系化合物等が挙げられる。
(帯電防止剤)
 帯電防止剤としては、例えば、第四級アンモニウム塩、ポリグリコール、エチレンオキサイド誘導体等の親水性化合物等が挙げられる。
(難燃剤)
 難燃剤としては、例えば、クロロアルキルホスフェート、ジメチル・メチルホスホネート、臭素・リン化合物、アンモニウムポリホスフェート、ネオペンチルブロマイド-ポリエーテル、臭素化ポリエーテル等が挙げられる。
<プライマー組成物の調製法>
 本発明に係るプライマー組成物の調整法に特に限定はないが、例えば、液体を均一に混合可能な混合機を用いて製造することができる。例えば、プライマー組成物を構成する材料(成分(A)、成分(B)、成分(C)、成分(D)、成分(E)、及び/又はその他の添加剤)を所定量秤量し、秤量した各材料を1軸若しくは2軸のシャフト付の攪拌機、又は底部にパルセーター等を有するタンクを用いて混合することによって製造できる。特に、ジャケットを備え、材料温度を可変調整できる装置を用いることが好ましい。
<プライマー組成物の塗布方法>
 本発明に係るプライマー組成物の被着体への塗布方法に特に限定はないが、一例として、以下の塗布方法が好ましい。まず、本発明に係るプライマー組成物を、例えば、刷毛、筆等を用いて、持ち上げて液が落ちないよう液切りした後、50~400ml/mの塗布量で被着面へ均一に塗布する。塗布後30分~8時間経過した後、シーリング材を施工する。なお、雨天時の施工及び被着体面に水滴等が残る環境下での使用は避けることが好ましく、5℃以上35℃以下の条件下で施工することが好ましい。
<用途>
 本発明に係るプライマー組成物は、建築用、土木用、コンクリート用、木材用、金属用、ガラス用、プラスチック用等のプライマー組成物、シーリング材、接着剤等の用途に好適に用いることができる。また、本発明に係るプライマー組成物は、シーリング材の硬化物に対する打ち継ぎ性に優れるため、特に、シーリング材用に好適に用いることができる。
 また、本発明に係るプライマー組成物は、難接着性塗装部材用のプライマーとしても好適に用いることができる。本発明に係るプライマー組成物を用いることができる難接着性塗装部材の材料としては、例えば、アクリル電着塗装部材、フッ素焼付け塗装部材、陽極酸化塗装部材等が挙げられる。また、本発明に係るプライマー組成物は、難接着性塗装部材以外の部材にも用いることができる。
<実施の形態の効果>
 本発明に係るプライマー組成物は、成分(A)とアルコキシシリル基を含有する成分(B)とを含んで構成され、成分(A)及び/又は成分(B)が所定の重量平均分子量及び/又は所定の割合のメチルメタクリレートを有するので、被着体としての多孔質建材(一例として、サイディング材等の小口等の表面)に塗布若しくは接触させた場合であっても、プライマー組成物が多孔質建材に浸透し難い効果を発揮する。このため、本発明に係るプライマー組成物は、高い造膜性を発揮することができる共に、塗布後の膜強度を強固にできる。また、本発明に係るプライマー組成物は、刷毛等によって塗布し易く、高い作業性を発揮することもできる。したがって、本発明に係るプライマー組成物は、窯業系又は木質系のサイディングボード等の外壁材、特にシーラーや塗料等が塗布された外壁材等にも施工することができる。
 更に、本発明に係るプライマー組成物は、高いバリア性を有するため、被着体又はシーリング材から可塑剤等が移行するのを抑制でき、また、長期間にわたる高い接着耐久性を発揮することができる。そして、本発明に係るプライマー組成物は、湿潤面に対しても高い接着性を発揮することができる。
 以下に実施例を挙げて更に具体的に説明する。なお、これらの実施例は例示であり、限定的に解釈されるべきでないことはいうまでもない。
(合成例1:アルコキシシリル基含有メタクリル樹脂)
 アルコキシシリル基含有メタクリル樹脂として、トリメトキシシリル基を有する(メタ)アクリル系重合体を合成した。具体的に、メチルメタクリレート70.00g、2-エチルヘキシルメタクリレート30.00g、3-メタクリロキシプロピルトリメトキシシラン12.00g、金属触媒としてのチタノセンジクロリド0.10g、3-メルカプトプロピルトリメトキシシラン8.60g、重合停止剤としてのベンゾキノン溶液(95%THF溶液)20.00gを用い、WO2015-088021の合成例4の方法に準じ、トリメトキシシリル基を有する(メタ)アクリル系重合体を得た。
 得られた反応物の酢酸エチル溶液を105℃で加熱により固形分を求めたところ、70.5%であった。また、得られた重合体についてゲルパーミッションクロマトグラフィー(GPC)により測定したポリスチレン換算分子量は、重量平均分子量(Mw)が4,000であり、分子量分布(Mw/Mn)が2.4であった。更に、H-NMR測定(島津製作所社製のNMR400を用いて、CDCl溶媒中で測定)により、含有されるトリメトキシシリル基が1分子あたり2個であることが確認された。また、ガラス転移温度は、61℃であった。
(実施例、比較例)
 実施例1~12、及び比較例1~3のそれぞれについて、成分(A)、成分(A’)、成分(B)、成分(C)、成分(D)、成分(E)、及びその他の添加剤を表1に示す配合割合にて混合し、撹拌混合した。これにより、実施例及び比較例に係るプライマー組成物を得た。そして、得られた実施例1~12、及び比較例1~3のプライマー組成物それぞれについて、下記の各評価を実施した。結果を表1に示す。なお、表1において、各配合物質の配合量の単位は「g」である。
Figure JPOXMLDOC01-appb-T000002
 表1に示す材料の詳細は以下のとおりである。なお、表1における成分(B)の配合量は、溶剤を含む量である。
(成分(A))
・デルパウダ(登録商標)80NS:旭化成工業製、ポリメタクリル酸メチル、MMA/MA=97.5/2.5重量比、重量平均分子量:100,000、還元粘度:0.54デシリットル/g、ガラス転移温度(Tg):105℃
・ダイアナールBR84:三菱レイヨン社製、ポリメタクリル酸メチル、重量平均分子量:100,000、ガラス転移温度(Tg):105℃、酸価:6.5mgKOH/g
(成分(A’))
・アルフォン(登録商標)UH-2170:東亞合成株式会社製、スチレン、アクリル、重量平均分子量:14,000、OH価:88mgKOH/g、ガラス転移温度(Tg):60℃/DSC
(成分(C))
・KBM903:信越化学社製、アミン系カップリング剤、重量平均分子量:179、3-アミノプロピルトリメトキシシラン
・Dynasylan1124:エボニック社製、重量平均分子量:343、アミン系カップリング剤、ビス(3-トリメトキシシリルプロピル)アミン
・ケチミン系カップリング剤:N-(1,3-ジメチルブチリデン)-3-(トリメトキシシリル)-1-プロパンアミン、重量平均分子量:261
(成分(D))
・jER828:三菱ケミカル社製、ビスフェノールA型エポキシ樹脂、液状、重量平均分子量:370、d=1.17、エポキシ当量:184~194
・EP1001:三菱ケミカル社製、エポキシ樹脂、固形、重量平均分子量:900、d=1.19、軟化点:97℃、エポキシ当量:450~500
(成分(E))
・X-12-965:信越化学社製、イソシアヌレート系カップリング剤、重量平均分子量:616、Si基の数:3、トリス-(トリメトキシシリルプロピル)イソシアヌレート
(脱水剤)
・KBM202SS:信越化学社製、フェニル系カップリング剤、ジフェニルジメトキシシラン
・A-1630:モメンティブ社製、カップリング剤、トリメトキシメチルシラン
(触媒)
・U-360:日東化成社製、メルカプト系触媒、ジブチルスズイソオクチルチオグリコレート
(評価方法:作業性)
 作業性の評価においては、プライマー組成物の刷毛塗り性及び造膜性を評価した。具体的に刷毛塗り性については、まず、実施例1に係るプライマー組成物を、サイディング材(モエンサイディングM、ニチハ株式会社製)の小口面に刷毛を用いて塗布した。同様に、比較対象として、比較用のプライマー組成物(MP3000、セメダイン株式会社製)を用い、サイディング材(モエンサイディングM、ニチハ株式会社製)の小口面に刷毛を用いて塗布した。
 そして、刷毛塗り性について、プライマー組成物の塗布時における塗り易さを、実施例1に係るプライマー組成物と比較用のプライマー組成物との対比により評価した。評価基準は以下のとおりである。
 「○」:MP3000と塗り易さが同等以上である。
 「×」:MP3000より塗りにくい。
 また、造膜性については、小口面に塗布したプライマー組成物の全てが小口面に浸み込むことがなく、小口面にプライマー組成物によって形成された皮膜の状態を目視で評価した。評価基準は以下のとおりである。
 「○」:均一な皮膜形成が観察される。
 「×」:まばらな(一部浸み込み、消失)皮膜形成が観察される。
 他の実施例、及び比較例についても同様に評価した。評価結果は表1に示す。
(評価方法:打継接着性)
 打継接着性については以下のように評価した。まず、先打ち用の被着体として変成シリコーン系シーリング材(セメダイン製「POSシールLM」)を23℃50%RH環境下で7日間硬化させた試料を準備した。次に、硬化させたシーリング材(被着体)の表面に実施例1に係るプライマー組成物を塗布し、23℃50%RH環境下で30分間放置した後、その上に打ち継ぎ用の変成シリコーン系シーリング材(セメダイン製「POSシールLM超耐候」)をビード状に打設して試験片とした。この試験片を23℃50%RH環境下で3日間硬化させ、続いて50℃40%RH環境下で4日間硬化させた後、接着界面部の一部(つまり、被着体と変成シリコーン系シーリング材との接着界面の部分の一部)をナイフでカットし、このカット部を手で剥離した。そして、その剥離状態を目視で観察することで、破壊状態を評価した。評価結果を表1の「打継接着性:POSシールLM」の欄に示す。なお、評価基準は以下のとおりである。
 「○」:先打ち、及び/又は後打ちシーリング材が凝集破壊している。
 「×」:先打ちシーリング材からプライマー組成物の硬化物が界面破壊している。
 また、先打ち用の被着体として変成シリコーン系シーリング材(セメダイン製「POSシールLM超耐候」)を23℃50%RH環境下で7日間硬化させた試料を準備した点を除き、上記と同様にして打継接着性を評価した。評価結果を表1の「打継接着性:POSシールLM超耐候」の欄に示す。更に、他の実施例、及び比較例についても同様に評価した。評価結果は表1に示す。
(評価方法:バリア性)
 バリア性については、以下のように評価した。ステンレス板の表面に、塩素化ポリプロピレン系のコーティング剤(スーパークロン814HS(日本製紙社製)の20%酢酸エチル溶液)を塗布し、23℃環境下で24時間放置することで、塩素化ポリプロピレンでコーティング層を形成したステンレス板を得た。得られたステンレス板のコーティング層上に実施例1に係るプライマーを塗布(0.02g/cm)し、23℃環境下で1時間乾燥させた。
 乾燥させたプライマー上にシーリング材(POSシールLM超耐候)をビード状に打設し、23℃50%RH環境下で3日間、50℃40%RH環境下で4日間養生させることでシーリング材を硬化させた。更に70℃環境下で3日間加熱促進させた後、シーリング材を接着界面に沿ってカッターで切り取り、シーリング材が触れていたコーティング層部分を観察し、色変化を確認した。評価基準は以下のとおりである。
 「◎」:変化なし
 「○」:ほぼ変化なし
 「△」:やや変化がみられる
 「×」:変化(変色)がみられる
 他の実施例、及び比較例についても同様に評価した。評価結果は表1に示す。
(評価方法:引張接着性)
 引張接着性の試験方法及び特性の測定方法については、NPO法人住宅外装テクニカルセンター規格「JTC S-0001 窯業系サイディング用シーリング材(2004年)」に準拠し、同規格の5.1.6に記載のI形試験体を作製して実施した。まず、サイディングボード(モエンサイディングM、ニチハ株式会社製)を縦50mm、横50mmの大きさに切断し、第1のサイディングボードと第2のサイディングボードとを作製した。そして、切断して得られた第1のサイディングボードと第2のサイディングボードとを間隔10mmで縦方向が相対するように、すなわち、第1のサイディングボードの小口と、第2のサイディングボードの小口とを小口間の距離が10mmになるように、小口同士を向かい合わせて固定した。そして、第1のサイディングボードの小口と第2のサイディングボードの小口との間の隙間の下面に縦50mm、横10mm、厚さ6mmの発泡ポリエチレン製バックアップ材を置き、第1のサイディングボード及び第2のサイディングボードの表面をマスキングテープで覆った。そして、シーリング材と接触する領域(すなわち、第1のサイディングボードの小口、及び第2のサイディングボードの小口)に実施例1に係るプライマー組成物を塗布し、間隔10mmの隙間(目地)にシーリング材(POSシールLM超耐候、セメダイン株式会社製)を8mmの厚さで充填した後、マスキングテープを除去し、試験サンプルを作成した。
 そして、常態接着性を評価するため、試験サンプルを23℃50%RH環境下で1週間養生後、更に30℃環境下で1週間養生した後、23℃環境下において引張速度50mm/minで引張接着性試験を実施した。(表1における「引張接着性(常態/モエンM)」)。また、耐熱接着性を評価するため、別の試験サンプルを23℃50%RH環境下で1週間養生後、更に30℃環境下で1週間養生した後、2週間80℃環境下で養生した。そして、各養生終了後、23℃環境下において引張速度50mm/minで引張接着性試験を実施した(表1における「引張接着性(80℃2w/モエンM)」)。更に、耐水接着性を評価するため、別の試験サンプルを23℃50%RH環境下で1週間養生後、更に30℃環境下で1週間養生した後、2週間60℃の温水に浸漬した。そして、各養生終了後、23℃環境下において引張速度50mm/minで引張接着性試験を実施した(表1における「引張接着性(60℃温水2w/モエンM)」)。引張接着性試験においては伸び率が50%時の荷重(MPa)、最大荷重(Tmax(MPa))、及び最大荷重時の伸び率(Emax(%))を測定した。なお、表1における「50%モジュラス」は、上記伸び率が50%時の荷重である。
 他の実施例、及び比較例についても同様に評価した。評価結果は表1に示す。
 表1を参照すると分かるように、実施例に係るプライマー組成物はいずれも、作業性、打継接着性、バリア性が優れ、各種条件における引張接着性についても実施例に係るプライマー組成物を用いた場合、良好な特性を発揮することが示された。実施例と比較例とを参照すると、成分(A)と成分(B)との組み合わせが、良好な作業性、打継接着性、及びバリア性を発現させることが分かる。
 以上、本発明の実施の形態及び実施例を説明したが、上記に記載した実施の形態及び実施例は特許請求の範囲に係る発明を限定するものではない。また、実施の形態及び実施例の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない点、及び本発明の技術思想から逸脱しない限り種々の変形が可能である点に留意すべきである。

Claims (4)

  1.  (A)樹脂中に含まれるメチルメタクリレートの割合が80重量%以上であって、重量平均分子量が60,000以上であるメタクリル酸メチル系重合体と、
     (B)樹脂中に含まれるメチルメタクリレートの割合が80重量%未満であるアルコキシシリル基含有メタクリル酸メチル系重合体と
    を含有するプライマー組成物。
  2.  (C)アミノ基含有シラン
    を更に含む請求項1に記載のプライマー組成物。
  3.  (D)エポキシ樹脂
    を更に含む請求項1又は2に記載のプライマー組成物。
  4.  (E)シラン系架橋剤
    を更に含む請求項1~3のいずれか1項に記載のプライマー組成物。
PCT/JP2019/042543 2018-12-13 2019-10-30 プライマー組成物 WO2020121672A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217021937A KR20210110832A (ko) 2018-12-13 2019-10-30 프라이머 조성물
JP2020559791A JPWO2020121672A1 (ja) 2018-12-13 2019-10-30 プライマー組成物
CN201980091393.2A CN113396195A (zh) 2018-12-13 2019-10-30 底漆组合物

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018233855 2018-12-13
JP2018-233855 2018-12-13
JP2019026583 2019-02-18
JP2019-026583 2019-11-29

Publications (1)

Publication Number Publication Date
WO2020121672A1 true WO2020121672A1 (ja) 2020-06-18

Family

ID=71075779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042543 WO2020121672A1 (ja) 2018-12-13 2019-10-30 プライマー組成物

Country Status (5)

Country Link
JP (1) JPWO2020121672A1 (ja)
KR (1) KR20210110832A (ja)
CN (1) CN113396195A (ja)
TW (1) TW202031813A (ja)
WO (1) WO2020121672A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024048649A1 (ja) * 2022-09-01 2024-03-07 恵和株式会社 構造物の被覆構造、塗料組成物及びその製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114106265B (zh) * 2021-12-17 2023-07-14 上海中南建筑材料有限公司 一种共聚物、其制备方法以及气凝胶组合物和界面涂料

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5723661A (en) * 1980-06-03 1982-02-06 Gen Electric Methacrylate-undercoated silicone finish-coated product and manufacture
JPH036282A (ja) * 1989-06-02 1991-01-11 Shin Etsu Chem Co Ltd プライマー組成物
JPH11209682A (ja) * 1998-01-23 1999-08-03 Kanegafuchi Chem Ind Co Ltd プライマー組成物
JP2001214122A (ja) * 2000-02-04 2001-08-07 Shin Etsu Chem Co Ltd 下塗り剤組成物及びコーティング方法
JP2002363484A (ja) * 2001-06-08 2002-12-18 Kanegafuchi Chem Ind Co Ltd プライマー組成物およびこれを用いた接着方法
JP2003026997A (ja) * 2001-07-11 2003-01-29 Jsr Corp 上塗り用コーティング組成物および硬化体

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS482448Y1 (ja) 1969-12-18 1973-01-22
JPH11343429A (ja) 1998-01-26 1999-12-14 Kanegafuchi Chem Ind Co Ltd プライマ―組成物および接着方法
JP3535978B2 (ja) 1998-09-11 2004-06-07 サンスター技研株式会社 ポリイソブチレン系シーリング材用プライマー組成物
US6677047B2 (en) * 2000-02-04 2004-01-13 Shin-Etsu Chemical Co., Ltd. Coating composition, coating method, and coated article
JP2001262051A (ja) * 2000-03-15 2001-09-26 Kanegafuchi Chem Ind Co Ltd プライマー組成物および接着方法
JP5423426B2 (ja) * 2010-01-26 2014-02-19 東亞合成株式会社 硬化性組成物
CN103260874A (zh) * 2010-12-21 2013-08-21 旭硝子株式会社 带硬涂膜的树脂基板及其制造方法
WO2012099125A1 (ja) * 2011-01-20 2012-07-26 旭硝子株式会社 ハードコート被膜付き樹脂基板およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5723661A (en) * 1980-06-03 1982-02-06 Gen Electric Methacrylate-undercoated silicone finish-coated product and manufacture
JPH036282A (ja) * 1989-06-02 1991-01-11 Shin Etsu Chem Co Ltd プライマー組成物
JPH11209682A (ja) * 1998-01-23 1999-08-03 Kanegafuchi Chem Ind Co Ltd プライマー組成物
JP2001214122A (ja) * 2000-02-04 2001-08-07 Shin Etsu Chem Co Ltd 下塗り剤組成物及びコーティング方法
JP2002363484A (ja) * 2001-06-08 2002-12-18 Kanegafuchi Chem Ind Co Ltd プライマー組成物およびこれを用いた接着方法
JP2003026997A (ja) * 2001-07-11 2003-01-29 Jsr Corp 上塗り用コーティング組成物および硬化体

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024048649A1 (ja) * 2022-09-01 2024-03-07 恵和株式会社 構造物の被覆構造、塗料組成物及びその製造方法

Also Published As

Publication number Publication date
CN113396195A (zh) 2021-09-14
TW202031813A (zh) 2020-09-01
JPWO2020121672A1 (ja) 2021-10-21
KR20210110832A (ko) 2021-09-09

Similar Documents

Publication Publication Date Title
JP5991523B2 (ja) 常温湿気硬化性接着剤組成物
JP6269828B2 (ja) プライマー組成物
WO2005007751A1 (ja) 硬化性樹脂組成物及び常温硬化接着剤
CN103649259A (zh) 粘合剂组合物及粘合片
US20220380591A1 (en) Curable compositions with acrylic and silicone resins
WO2020121672A1 (ja) プライマー組成物
JP6625457B2 (ja) 防水構造および防水構造の形成方法
JP5585329B2 (ja) プライマー組成物およびこれを用いる積層体
US7943698B2 (en) Moisture cure alpha-silane modified acrylic coatings
JP4802448B2 (ja) プライマー組成物
JP2013053272A (ja) 硬化性組成物
CN111117410A (zh) 一种用于硅烷改性类建筑密封胶的高耐水性底涂剂
JP2005281519A (ja) プライマー組成物
WO2020170616A1 (ja) プライマー組成物
KR20020003289A (ko) 수성 경화성 수지 조성물
JP2014025001A (ja) 硬化性組成物、この硬化性組成物からなる粘接着剤組成物、及びこれらの組成物を介して形成される床構造
JP5667854B2 (ja) 1液組成物
KR20140043884A (ko) 다액성 경화형 도료 조성물, 도막의 형성 방법 및 도장체
JP2005281529A (ja) 硬化性組成物
JP5924536B2 (ja) 金属用表面処理剤及び該表面処理剤で処理された金属材
JP4627143B2 (ja) 高耐候性の塗料用樹脂組成物
US20210324224A1 (en) Primer composition for bonding silicone resin and polyolefin resin, and method for bonding silicone resin and polyolefin resin
JP2005281503A (ja) 硬化性組成物
JP4457446B2 (ja) プライマー組成物
JP2005281495A (ja) 硬化性組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19896023

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020559791

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217021937

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19896023

Country of ref document: EP

Kind code of ref document: A1