WO2020085290A1 - 負極用樹脂集電体の製造方法、リチウムイオン電池用負極の製造方法、及び、リチウムイオン電池の製造方法 - Google Patents

負極用樹脂集電体の製造方法、リチウムイオン電池用負極の製造方法、及び、リチウムイオン電池の製造方法 Download PDF

Info

Publication number
WO2020085290A1
WO2020085290A1 PCT/JP2019/041282 JP2019041282W WO2020085290A1 WO 2020085290 A1 WO2020085290 A1 WO 2020085290A1 JP 2019041282 W JP2019041282 W JP 2019041282W WO 2020085290 A1 WO2020085290 A1 WO 2020085290A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
resin composition
producing
negative electrode
conductive resin
Prior art date
Application number
PCT/JP2019/041282
Other languages
English (en)
French (fr)
Inventor
亮介 草野
都藤 靖泰
恭資 丸山
一彰 大西
大澤 康彦
雄樹 草地
佐藤 一
赤間 弘
堀江 英明
Original Assignee
三洋化成工業株式会社
グンゼ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋化成工業株式会社, グンゼ株式会社 filed Critical 三洋化成工業株式会社
Priority to CN201980069397.0A priority Critical patent/CN112913054B/zh
Priority to US17/285,682 priority patent/US12015140B2/en
Priority to EP19877312.9A priority patent/EP3872898A4/en
Publication of WO2020085290A1 publication Critical patent/WO2020085290A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • B29C48/21Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/668Composites of electroconductive material and synthetic resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2505/00Use of metals, their alloys or their compounds, as filler
    • B29K2505/08Transition metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0003Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular electrical or magnetic properties, e.g. piezoelectric
    • B29K2995/0005Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • B29L2031/3468Batteries, accumulators or fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a negative electrode resin current collector, a method for producing a negative electrode for a lithium ion battery, and a method for producing a lithium ion battery.
  • a positive electrode or negative electrode active material or the like is applied to a positive electrode or negative electrode current collector using a binder to form an electrode.
  • one surface of the current collector is coated with a positive electrode active material or the like using a binder, and the other surface is coated with a negative electrode active material or the like using a binder.
  • a bipolar electrode having a negative electrode layer is formed.
  • a metal foil metal current collector foil
  • resin current collectors are made of a resin to which a conductive material is added instead of a metal foil.
  • Such a resin current collector is lighter in weight than the metal current collector foil, and is expected to improve the output per unit weight of the battery.
  • Patent Document 1 discloses a conductive resin film for a current collector of a secondary battery, which contains polymethylpentene and a conductive material and has a specific melt mass flow rate.
  • polymethylpentene has a low surface tension and has relatively poor adhesion to the active material layer, and is therefore presumed to have a high interfacial resistance.
  • Patent Document 2 discloses a resin current collector material containing a resin current collector dispersant, a resin and a conductive filler, and a resin current collector having the resin current collector material.
  • resin current collector material containing a resin current collector dispersant, a resin and a conductive filler, and a resin current collector having the resin current collector material.
  • polyethylene, polypropylene and the like are listed as the resin used for the material for the resin current collector.
  • the resin current collector is required to have a low resistance and be as thin as possible.
  • defects such as pinholes are easily generated. Therefore, it can be said that there is still room for improvement in order to obtain a thin resin current collector without pinholes.
  • An object of the present invention is to provide a method for manufacturing a thin negative electrode resin current collector having no pinhole. Another object of the present invention is to provide a method for producing a negative electrode for a lithium ion battery using the above-mentioned negative electrode resin current collector, and a method for producing a lithium ion battery.
  • the present invention comprises a laminating step of laminating three or more melts of a conductive resin composition containing a polyolefin and a conductive filler to obtain a multi-layer body, and each electro-conductivity constituting each layer of the multi-layer body.
  • the polyolefin contained in the resin composition is characterized by having a melt mass flow rate of 15 to 70 g / 10 min as measured by the method described in JIS K7210-1: 2014 under the conditions of a temperature of 230 ° C. and a load of 2.16 kg.
  • the present invention three or more layers of a melt of a conductive resin composition containing a polyolefin having a specific melt mass flow rate and a conductive filler are laminated to form a single integrated film.
  • the internal structure of the current collector can be multi-layered. By making the internal structure of the resin current collector multi-layered, it is possible to suppress the generation of pinholes even if the resin current collector is made thin. As a result, it is possible to obtain a negative electrode resin current collector having a low resistance and having no pinhole even if the film is thinned.
  • the method for producing a resin collector for a negative electrode of the present invention includes a laminating step of laminating three or more layers of a melt of a conductive resin composition containing a polyolefin and a conductive filler to obtain a multilayer body.
  • a conductive resin composition is obtained by mixing a polyolefin, a conductive filler, and, if necessary, other components.
  • a method of mixing a method of further mixing with a polyolefin after obtaining a masterbatch of conductive filler, a method of using a masterbatch of polyolefin, a conductive filler, and, if necessary, other components, and all raw materials
  • an appropriate known mixer for pelletized or powdered components such as a kneader, an internal mixer, a Banbury mixer, and a roll can be used.
  • the obtained mixture may be further pelletized or powdered using a pelletizer or the like.
  • a method for forming a film a known method that can be used for producing a film can be used. Specific examples include a co-extrusion method in which the respective conductive resin compositions forming each layer of the multilayer body are laminated in a die. The coextrusion method can be performed using a known method such as a T-die method or an inflation method.
  • the melt of the conductive resin composition that constitutes each layer of the multilayer body is co-extruded from the T-die and rolled (including compression by hot pressing) to obtain conductivity. Melts of the resin composition can be fused together to form a single integrated film.
  • the internal structure of the resin collector is formed by laminating three or more melts of the conductive resin composition to form a single integrated film. It can be multi-layered. By making the internal structure of the resin current collector multi-layered, when a film is formed, even if a pinhole occurs in one layer, the pinhole does not grow unless it overlaps with another layer at the same position. Generation of pinholes can be suppressed even if the thickness is reduced.
  • a multilayer body having three or more layers for example, three layers of the conductive resin composition may be laminated, or four layers of the conductive resin composition may be used.
  • the conductive resin composition may be laminated in five layers, or the conductive resin composition may be laminated in six or more layers.
  • conductive resin compositions having the same component composition and content ratio may be laminated, or conductive resin compositions having different component composition and content ratio may be laminated. May be. When laminating conductive resin compositions having different component compositions and content ratios, it is not necessary that the component compositions and content ratios of the conductive resin compositions are all different, and the conductive resin composition having the same component composition and content ratios is May be included.
  • the polyolefin contained in each conductive resin composition constituting each layer of the multilayer body is JIS K7210-1 under the conditions of a temperature of 230 ° C. and a load of 2.16 kg. :
  • the melt mass flow rate measured by the method described in 2014 is 15 to 70 g / 10 min.
  • the melt mass flow rate of the polyolefin contained in each conductive resin composition is preferably 20 to 40 g / 10 min.
  • the polyolefin contained in the conductive resin composition may be a mixture containing two or more kinds of polypropylene and the like. In this case, the melt mass flow rate of the polyolefin can be calculated and obtained as a weighted average value of the melt mass flow rates.
  • the melt mass flow rate (MFR) is an index showing the fluidity of a resin in a molten state, and the larger the value of MFR, the higher the fluidity.
  • a multilayer body is obtained by laminating three or more layers of the melt of the conductive resin composition and molding into one integrated film. Can be obtained.
  • a polyolefin having a melt mass flow rate of 15 to 50 g / 10 min for example, a film having an overall thickness of 90 ⁇ m or less can be favorably formed.
  • polystyrene resin composition examples include polyethylene (PE) and polypropylene (PP).
  • PE polyethylene
  • PP polypropylene
  • a polymer having an ⁇ -olefin having 4 to 30 carbon atoms (1-butene, isobutene, 1-hexene, 1-decene, 1-dodecene, etc.) as an essential constituent monomer may be used.
  • These polyolefins may be used alone or as a mixture of two or more.
  • polypropylene is preferable from the viewpoint of moisture resistance and mechanical strength.
  • examples of polypropylene include homopolypropylene, random polypropylene, block polypropylene, polypropylene having a long-chain branched structure, and acid-modified polypropylene.
  • Homopolypropylene is a homopolymer of propylene.
  • Random polypropylene is a copolymer containing randomly introduced small amounts (preferably 4.5% by weight or less) of ethylene units.
  • Block polypropylene is a composition in which ethylene propylene rubber (EPR) is dispersed in homopolypropylene, and has a "sea-island structure" in which "islands” containing EPR float in the "sea” of homopolypropylene.
  • EPR ethylene propylene rubber
  • Examples of polypropylene having a long-chain branched structure include polypropylene described in JP 2001-253910 A and the like.
  • the acid-modified polypropylene is a polypropylene having a carboxyl group introduced, and can be obtained by reacting an unsaturated carboxylic acid such as maleic anhydride and polypropylene with a known method such as reacting in the presence of an organic peroxide. .
  • the weight ratio of the polyolefin contained in each conductive resin composition constituting each layer of the multilayer body is from the viewpoint of the strength of the current collector, the respective conductivity.
  • the content is preferably 10 to 95% by weight, more preferably 25 to 85% by weight, based on the total weight of the polyolefin and the conductive filler contained in the resin composition.
  • the conductive filler contained in each conductive resin composition forming each layer of the multilayer body is selected from materials having conductivity, From the viewpoint of suppressing the permeation of ions in the body, it is preferable to use a material having no conductivity with respect to the ions used as the charge transfer medium.
  • the ions used as the charge transfer medium are lithium ions in the case of a lithium ion battery, for example.
  • the conductive filler include metals [nickel, aluminum, stainless steel (SUS), silver, copper and titanium], conductive carbon [graphite], carbon black (acetylene black, ketjen black, furnace black, channel). Black, thermal lamp black, etc.) and carbon nanotubes, etc.], and mixtures thereof, but not limited thereto.
  • the conductive filler may be formed by coating a particle-based ceramic material or a resin material with a conductive material (of the above-mentioned conductive fillers, a metal) by plating or the like. These conductive fillers may be used alone or in combination of two or more. Moreover, these alloys or metal oxides may be used.
  • metal and conductive carbon are preferable from the viewpoint of electrical stability.
  • metals nickel particles are preferred.
  • conductive carbons carbon black or a mixture of carbon black and carbon nanotubes is preferable, and acetylene black or a mixture of acetylene black and carbon nanotubes is more preferable.
  • the median diameter of the nickel particles is not particularly limited, but it is preferably 1 to 20 ⁇ m from the viewpoint of electric characteristics of the battery.
  • the median diameter is a median diameter based on volume distribution and is measured by a laser particle size distribution measuring device (LA-920: manufactured by Horiba, Ltd.).
  • the volume average particle diameter of the carbon black is not particularly limited, but it is preferably 3 to 500 nm from the viewpoint of electric characteristics of the battery.
  • the volume average particle diameter of conductive carbon such as carbon black means the particle diameter (Dv50) at an integrated value of 50% in the particle size distribution obtained by the Microtrac method (laser diffraction / scattering method).
  • the microtrack method is a method of obtaining a particle size distribution by utilizing scattered light obtained by irradiating particles with laser light. For measuring the volume average particle diameter, Microtrac manufactured by Nikkiso Co., Ltd. can be used.
  • the shape (form) of the conductive filler is not limited to the particle form, and may be a form other than the particle form, and may be a form that has been put into practical use as a so-called filler-based conductive material such as carbon nanotube.
  • the multilayer body includes at least two layers of a conductive resin composition containing polyolefin and nickel particles.
  • the conductive resin composition forming at least two layers of the multilayer body contains nickel particles as the conductive filler, the electrical stability of the resin current collector can be improved.
  • the conductive resin composition forming at least two layers of the multilayer body contains nickel particles as the conductive filler
  • the conductive resin composition forming the remaining layers of the multilayer body contains nickel particles as the conductive filler.
  • the conductive resin composition forming all the layers of the multilayer body may contain nickel particles as a conductive filler.
  • the conductive resin composition contains nickel particles as the conductive filler, the first conductive resin composition and the second conductive material in which the weight ratio of the nickel particles is lower than that of the first conductive resin composition.
  • the resin composition is preferably laminated so as to include a structure in which the first conductive resin composition, the second conductive resin composition, and the first conductive resin composition are laminated in this order. In this case, the contact resistance between the resin current collector and the active material layer can be reduced.
  • the conductive resin composition is the first conductive resin composition, the second conductive resin composition, and the first conductive resin composition in this order.
  • the first conductive resin composition, the second conductive resin composition, the second conductive resin composition, and the first conductive resin composition in this order When 5 layers of the composition are laminated, the first conductive resin composition, the second conductive resin composition, the first conductive resin composition, the second conductive resin composition, and the first conductive resin composition It is preferable to stack the conductive resin compositions in this order.
  • the number of the first conductive resin compositions is two or more, the component composition and the content ratio of each conductive resin composition may be the same, or different ones may be included.
  • the number of the second conductive resin compositions is two or more, the component composition and the content ratio of each conductive resin composition may be the same, or different ones may be included.
  • the multilayer body is a conductive resin composition in which the conductive filler is nickel particles and the conductive filler is conductive carbon. And a layer of material.
  • the multilayer body preferably includes at least two layers of the conductive resin composition in which the conductive filler is nickel particles.
  • the conductive filler is a conductive resin composition of nickel particles
  • the conductive filler is a conductive resin composition of nickel particles
  • the conductive filler is conductive carbon. It is preferable to laminate a certain conductive resin composition in this order.
  • the conductive resin composition in which the conductive filler is conductive carbon is preferably laminated on the outermost layer so as to form at least one main surface of the multilayer body.
  • the weight ratio of the conductive filler contained in each conductive resin composition forming each layer of the multilayer body is, from the viewpoint of conductivity, each conductive resin.
  • the content is preferably 5 to 90% by weight, and more preferably 15 to 75% by weight, based on the total weight of the polyolefin and the conductive filler contained in the composition.
  • the weight ratio of the nickel particles contained in the conductive resin composition is the total of the polyolefin and the nickel particles contained in the conductive resin composition. It is preferably 55 to 90% by weight, and more preferably 60 to 75% by weight based on the weight.
  • the weight ratio of the carbon black contained in the conductive resin composition is the sum of the polyolefin and the carbon black contained in the conductive resin composition. It is preferably 15 to 45% by weight, and more preferably 20 to 30% by weight, based on the weight.
  • the conductive filler contained in the conductive resin composition is a mixture of carbon black and carbon nanotubes
  • the ratio of the total weight of carbon black and carbon nanotubes contained in the conductive resin composition is The amount is preferably 10 to 40% by weight, more preferably 15 to 30% by weight, based on the total weight of the polyolefin, carbon black and carbon nanotubes contained in the resin composition.
  • the conductive resin composition contains, in a range not impairing the effects of the present invention, other components (dispersant, crosslinking accelerator) in addition to the polyolefin and the conductive filler.
  • additives, cross-linking agents, colorants, ultraviolet absorbers, plasticizers) and the like can be appropriately added.
  • the thickness of the multilayer body is not particularly limited, but is preferably 90 ⁇ m or less. By setting the thickness of the multilayer body to 90 ⁇ m or less, the resistance value of the resin current collector can be lowered. On the other hand, the thickness of the multilayer body may be 5 ⁇ m or more. The thickness of the multilayer body does not include the thickness of the metal layer described later.
  • the method for producing a negative electrode resin current collector of the present invention preferably further comprises a step of forming a metal layer on at least one of the two main surfaces of the multilayer body.
  • the metal layer is a layer that functions as a resistance reducing layer and can be formed by, for example, a method such as a sputtering method.
  • Examples of the type of metal forming the metal layer include copper and the like.
  • the thickness of the metal layer is not particularly limited, but is preferably 40 to 100 nm.
  • the method for producing a negative electrode for a lithium ion battery of the present invention comprises a step of producing a negative electrode resin current collector by the method described above and forming a negative electrode active material layer on either surface of the negative electrode resin current collector. And a process.
  • the negative electrode active material layer can be formed by using an additive such as a binder and a conductive additive, if necessary, together with the negative electrode active material.
  • the method for producing a lithium ion battery of the present invention is characterized by including a step of producing a negative electrode for a lithium ion battery by the method described above.
  • the method for manufacturing a lithium-ion battery of the present invention further includes a step of forming a positive electrode active material layer on the surface of the positive electrode current collector.
  • the positive electrode active material layer can be formed by using an additive such as a binder and a conductive additive, if necessary, together with the positive electrode active material. Then, a lithium ion battery is obtained by disposing a separator and adding an electrolytic solution.
  • a known material is used as a material for the negative electrode active material, the positive electrode active material, the electrolytic solution, the separator and the like.
  • the positive electrode active material and the negative electrode active material may be a coated active material coated with a resin such as an acrylic resin.
  • the positive electrode current collector may be a metal current collector foil or a resin current collector.
  • the electrolytic solution it is possible to use an electrolytic solution containing an electrolyte and a non-aqueous solvent, which is used for manufacturing a lithium ion battery.
  • the electrolyte those used in known electrolytic solutions can be used, and examples thereof include lithium salts of inorganic acids such as LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 and LiClO 4 , LiN (CF 3 SO 2 ). 2 , lithium salts of organic acids such as LiN (C 2 F 5 SO 2 ) 2 and LiC (CF 3 SO 2 ) 3 and the like.
  • LiPF 6 is preferable from the viewpoint of battery output and charge / discharge cycle characteristics.
  • non-aqueous solvent those used in known electrolytic solutions can be used, and examples thereof include ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate.
  • EC ethylene carbonate
  • PC propylene carbonate
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • a part means a weight part and% means weight%.
  • Polyolefin MFR describes the MFR of the mixture of PP1 and PP2.
  • the conductive resin composition (Z was prepared in the same manner as in Production Example 1 except that PP1 was changed to 26.1 parts, PP2 was changed to 6.5 parts, the dispersant was changed to 2.4 parts, and the nickel particles were changed to 65 parts. -2) was obtained.
  • a conductive resin composition (Z was prepared in the same manner as in Production Example 1 except that 33.6 parts of PP1, 8.4 parts of PP2, 3.0 parts of a dispersant and 55 parts of nickel particles were used. -4) was obtained.
  • a conductive resin composition (Z-5 was prepared in the same manner as in Production Example 1 except that PP1 was not used, and PP2 was changed to 32.7 parts, the dispersant was changed to 2.3 parts, and the nickel particles were changed to 65 parts. ) Got.
  • a conductive resin composition (Z-6) was obtained in the same manner as in Production Example 5, except that PP2 was changed to 21.5 parts, the dispersant was changed to 1.5 parts, and the nickel particles were changed to 77 parts.
  • ⁇ Production Example 7> Without using PP2, PP1 was 74.7 parts, dispersant was 5.3 parts, and conductive filler was acetylene black [trade name "Denka Black Li-400", manufactured by Denka Co., Ltd., volume average particle size: A conductive resin composition (Z-7) was obtained in the same manner as in Production Example 1 except that the content was changed to 48 nm and the specific surface area: 39 m 2 / g] 20 parts.
  • ⁇ Production Example 8> A conductive resin composition (Z-8) was obtained in the same manner as in Production Example 7, except that PP1 was changed to 70.0 parts, the dispersant was changed to 5.0 parts, and acetylene black was changed to 25 parts.
  • PP1 is 76.5 parts
  • dispersant is 5.5 parts
  • conductive filler is acetylene black [trade name "Denka Black Li-400", manufactured by Denka Co., Ltd., specific surface area: 39 m 2 / g , Average primary particle diameter: 48 nm] 10 parts
  • carbon nanotube trade name "1201YJE", manufactured by NANOSTRUCTURED & AMORPHOUS MATERIALS] (manufactured by CNT).
  • a conductive resin composition (Z-9) was obtained in the same manner as in 1.
  • Table 1 shows the penetration resistance values of the conductive resin compositions (Z-1) to (Z-9) measured by the following method.
  • Each conductive resin composition was extruded from a T die and rolled by a hot press machine to obtain a film for measurement having a film thickness of 120 ⁇ m.
  • the measurement film was cut into strips of 15 mm in diameter, and the resistance value of each measurement film was measured using an electric resistance meter [IMC-0240 type, manufactured by Imoto Machinery Co., Ltd.] and a resistance meter [RM3548, manufactured by HIOKI].
  • the resistance value of the measurement film was measured with a load of 2.16 kg applied to the electric resistance measuring device, and the value 60 seconds after the load of 2.16 kg was applied was taken as the resistance value of the measurement film. .
  • Penetration resistance value ( ⁇ ⁇ cm 2 ) resistance value ( ⁇ ) ⁇ 1.77 (cm 2 ).
  • Example 1 Three layers of the conductive resin composition (Z-1) / conductive resin composition (Z-2) / conductive resin composition (Z-2) are coextruded from a T-die to produce a conductive film, and the conductive film The film thickness measurement and the pinhole test of the film were performed by the following methods. The thickness of the conductive film is changed by changing the extrusion conditions, and the production of the conductive film and the pinhole test are repeated, and the thinnest conductive film (thickness 85 ⁇ m) with no pinhole is made of a resin current collector. It was set to (X-1).
  • Example 2 By co-extruding three layers of the conductive resin composition (Z-1) / conductive resin composition (Z-2) / conductive resin composition (Z-3) from a T die and rolling with a hot press machine. A conductive film was manufactured. The thinnest conductive film (thickness 70 ⁇ m) having no pinholes was used as in Example 1 to obtain a resin current collector (X-2).
  • Example 3 Three layers of the conductive resin composition (Z-3) / conductive resin composition (Z-3) / conductive resin composition (Z-3) were coextruded from a T die to produce a conductive film. In the same manner as in Example 1, the thinnest conductive film (film thickness 50 ⁇ m) without pinholes was used as the resin current collector (X-3).
  • Example 4 Conductive resin composition (Z-1) / conductive resin composition (Z-2) / conductive resin composition (Z-2) / conductive resin composition (Z-1) from a T-die to four layers
  • the conductive film was manufactured by extruding and rolling with a hot press.
  • the thinnest conductive film (thickness 90 ⁇ m) having no pinhole was used as the resin current collector (X-4).
  • Example 5 Three layers of the conductive resin composition (Z-3) / conductive resin composition (Z-3) / conductive resin composition (Z-7) were coextruded from a T die to produce a conductive film. In the same manner as in Example 1, the thinnest conductive film (thickness: 45 ⁇ m) without pinholes was used as the resin current collector (X-5).
  • Example 6 By co-extruding three layers of the conductive resin composition (Z-2) / conductive resin composition (Z-3) / conductive resin composition (Z-8) from a T die and rolling with a hot press machine. A conductive film was manufactured. In the same manner as in Example 1, the thinnest conductive film (thickness: 65 ⁇ m) with no pinhole was used as a resin current collector (X-6).
  • Example 7 By co-extruding three layers of the conductive resin composition (Z-2) / conductive resin composition (Z-3) / conductive resin composition (Z-9) from a T die and rolling with a hot press machine. A conductive film was manufactured. In the same manner as in Example 1, the thinnest conductive film (film thickness 60 ⁇ m) without pinholes was used as the resin current collector (X-7).
  • Example 8 Conductive resin composition (Z-1) / conductive resin composition (Z-2) / conductive resin composition (Z-1) / conductive resin composition (Z-2) / conductive resin composition (X-1) / conductive resin composition (Z-2) / conductive resin composition ( Five layers of Z-1) were coextruded from a T die and rolled by a hot press machine to produce a conductive film. In the same manner as in Example 1, the thinnest conductive film (thickness 90 ⁇ m) without pinholes was used as the resin current collector (X-8).
  • Example 9 Three layers of the conductive resin composition (Z-3) / conductive resin composition (Z-3) / conductive resin composition (Z-7) were coextruded from a T die to produce a conductive film. A copper film having a thickness of 40 nm was formed on the conductive resin composition (Z-3) side of a conductive film (thickness: 45 ⁇ m) which was the thinnest without pinholes in the same manner as in Example 1 by a sputtering method. Was used as a resin current collector (X-9).
  • ⁇ Comparative Example 1> By co-extruding three layers of the conductive resin composition (Z-5) / conductive resin composition (Z-6) / conductive resin composition (Z-5) from a T die and rolling with a hot press machine. A conductive film was manufactured. In the same manner as in Example 1, the thinnest conductive film without a pinhole (film thickness 120 ⁇ m) was used as a resin current collector (X′-1).
  • ⁇ Comparative example 4> One layer of the conductive resin composition (Z-5) was extruded from a T die and rolled by a hot press machine to produce a conductive film. In the same manner as in Example 1, the thinnest conductive film (film thickness 110 ⁇ m) without pinholes was used as the resin current collector (X′-4).
  • ⁇ Pinhole test> Prepare a container made of SUS with methanol having a thickness of about 1 to 2 mm, float the conductive film cut into 10 cm x 20 cm, and pay attention not to sink the conductive film. The upper surface was lightly tapped, and it was visually confirmed that methanol did not seep out on the surface of the resin. If methanol seeps out even in one place, it is considered that there is a pinhole.
  • the resin current collectors (X-1) to (X-9) and (X'-1) to (X'-4) were cut into strips of 15 mm in diameter, and an electric resistance measuring device [IMC-0240 type, Imoto Manufactured by Seisakusho Co., Ltd.] and a resistance meter [RM3548, manufactured by HIOKI] were used to measure the resistance value of each resin current collector.
  • the resistance value of the resin current collector is measured with a load of 2.16 kg applied to the electric resistance measuring instrument, and the value 60 seconds after the load of 2.16 kg is applied is the resistance value of the resin current collector.
  • Penetration resistance value ( ⁇ ⁇ cm 2 ) resistance value ( ⁇ ) ⁇ 1.77 (cm 2 ).
  • the reference of the penetration resistance value is ⁇ (good) when the resistance value is 200 ⁇ ⁇ cm 2 or less, and x (defective) when the resistance value exceeds 200 ⁇ ⁇ cm 2 .
  • Comparative Example 1 in which a resin current collector was manufactured by laminating three layers of a conductive resin composition containing a polyolefin having a melt mass flow rate of less than 15 g / 10 min and a conductive filler, a thickness at which pinholes were not generated Cannot be set to 90 ⁇ m or less.
  • a thickness at which pinholes do not occur Although the thickness can be set to 90 ⁇ m or less, in Comparative Example 3, the thickness at which pinholes are not generated cannot be set to 90 ⁇ m or less.
  • a thickness at which pinholes do not occur Cannot be set to 90 ⁇ m or less.
  • the method for producing the negative electrode resin current collector of the present invention is particularly useful as a method for producing a negative electrode current collector for a lithium-ion battery used for a mobile phone, a personal computer, a hybrid vehicle, and an electric vehicle.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本発明の目的は、ピンホールの無い薄い負極用樹脂集電体の製造方法を提供することである。本発明は、ポリオレフィンと導電性フィラーとを含む導電性樹脂組成物の溶融物を3層以上積層して多層体を得る積層工程を備え、上記多層体の各層を構成するそれぞれの導電性樹脂組成物に含まれる上記ポリオレフィンは、温度230℃、荷重2.16kgの条件下でJIS K7210-1:2014に記載の方法で測定されるメルトマスフローレートが15~70g/10minであることを特徴とするシート状の負極用樹脂集電体の製造方法である。

Description

負極用樹脂集電体の製造方法、リチウムイオン電池用負極の製造方法、及び、リチウムイオン電池の製造方法
本発明は、負極用樹脂集電体の製造方法、リチウムイオン電池用負極の製造方法、及び、リチウムイオン電池の製造方法に関する。
近年、環境保護のため、二酸化炭素排出量の低減が切に望まれている。自動車業界では、電気自動車(EV)やハイブリッド電気自動車(HEV)の導入による二酸化炭素排出量の低減に期待が集まっており、これらの実用化の鍵を握るモータ駆動用二次電池の開発が鋭意行われている。二次電池としては、高エネルギー密度、高出力密度が達成できるリチウムイオン電池に注目が集まっている。
リチウムイオン電池は、一般に、バインダを用いて正極または負極活物質等を正極用または負極用集電体にそれぞれ塗布して電極を構成している。また、双極型の電池の場合には、集電体の一方の面にバインダを用いて正極活物質等を塗布して正極層を、反対側の面にバインダを用いて負極活物質等を塗布して負極層を有する双極型電極を構成している。
このようなリチウムイオン電池においては、従来、集電体として金属箔(金属集電箔)が用いられてきた。近年、金属箔に代わって導電性材料が添加された樹脂から構成される、いわゆる樹脂集電体が提案されている。このような樹脂集電体は、金属集電箔と比較して軽量であり、電池の単位重量あたりの出力向上が期待される。
例えば、特許文献1には、ポリメチルペンテンと導電性材料とを含み、特定のメルトマスフローレートを有する二次電池の集電体用の導電性樹脂フィルムが開示されている。しかし、ポリメチルペンテンは表面張力が低く、活物質層との密着性が比較的悪いため、界面抵抗が高いと推定される。
特許文献2には、樹脂集電体用分散剤、樹脂及び導電性フィラーを含有する樹脂集電体用材料、並びに、該樹脂集電体用材料を有する樹脂集電体が開示されている。特許文献2には、樹脂集電体用材料に用いられる樹脂として、ポリエチレン、ポリプロピレン等が挙げられている。
特開2014-216296号公報 国際公開第2015/005116号
樹脂集電体には、抵抗値が低く、出来るだけ薄い性質が求められている。しかし、特許文献1等に記載の樹脂集電体は、薄膜化するとピンホール等の欠陥が生じやすい。そのため、ピンホールの無い薄い樹脂集電体を得るためには、未だ改善の余地があると言える。
本発明は、ピンホールの無い薄い負極用樹脂集電体の製造方法を提供することを目的とする。本発明はまた、上記負極用樹脂集電体を用いたリチウムイオン電池用負極の製造方法、及び、リチウムイオン電池の製造方法を提供することを目的とする。
本発明者らは、上記課題を解決するために鋭意検討した結果、本発明に到達した。
すなわち、本発明は、ポリオレフィンと導電性フィラーとを含む導電性樹脂組成物の溶融物を3層以上積層して多層体を得る積層工程を備え、上記多層体の各層を構成するそれぞれの導電性樹脂組成物に含まれる上記ポリオレフィンは、温度230℃、荷重2.16kgの条件下でJIS K7210-1:2014に記載の方法で測定されるメルトマスフローレートが15~70g/10minであることを特徴とするシート状の負極用樹脂集電体の製造方法;上記の方法により負極用樹脂集電体を作製する工程と、上記負極用樹脂集電体のどちらか一方の表面に、負極活物質層を形成する工程とを備えることを特徴とするリチウムイオン電池用負極の製造方法;上記の方法によりリチウムイオン電池用負極を作製する工程を備えることを特徴とするリチウムイオン電池の製造方法である。
本発明によれば、特定のメルトマスフローレートを有するポリオレフィンと導電性フィラーとを含む導電性樹脂組成物の溶融物を3層以上積層して1枚の一体化したフィルムに成形することにより、樹脂集電体の内部構造を多層化することができる。樹脂集電体の内部構造を多層化することにより、薄膜化してもピンホールの発生を抑制することができる。その結果、低抵抗であり、かつ薄膜化してもピンホールの無い負極用樹脂集電体を得ることが可能となる。
[負極用樹脂集電体の製造方法]
本発明の負極用樹脂集電体の製造方法は、ポリオレフィンと導電性フィラーとを含む導電性樹脂組成物の溶融物を3層以上積層して多層体を得る積層工程を備える。
まず、ポリオレフィンと導電性フィラー、及び、必要に応じてその他の成分を混合することにより、導電性樹脂組成物を得る。混合の方法としては、導電性フィラーのマスターバッチを得てからさらにポリオレフィンと混合する方法、ポリオレフィン、導電性フィラー、及び、必要に応じてその他の成分のマスターバッチを用いる方法、及び、全ての原料を一括して混合する方法等があり、その混合にはペレット状又は粉体状の成分を適切な公知の混合機、例えばニーダー、インターナルミキサー、バンバリーミキサー及びロール等を用いることができる。
混合時の各成分の添加順序には特に限定はない。得られた混合物は、さらにペレタイザー等を用いてペレット化又は粉末化してもよい。
その後、導電性樹脂組成物の溶融物を3層以上積層して1枚の一体化したフィルム状に成形することにより、多層体が得られる。フィルム状に成形する方法として、フィルムの製造に使用することのできる公知の方法を使用することができる。具体的には、多層体の各層を構成するそれぞれの導電性樹脂組成物をダイ内で積層する共押出法等が挙げられる。共押出法は、Tダイ法、インフレーション法等の公知の方法を用いて行うことができる。
例えば、Tダイ法による共押出法の場合、多層体の各層を構成する導電性樹脂組成物の溶融物をTダイから共押出して、圧延(熱プレスによる圧縮を含む)することにより、導電性樹脂組成物の溶融物同士を融着させて1枚の一体化したフィルムとすることができる。
本発明の負極用樹脂集電体の製造方法では、導電性樹脂組成物の溶融物を3層以上積層して1枚の一体化したフィルムに成形することにより、樹脂集電体の内部構造を多層化することができる。樹脂集電体の内部構造を多層化することにより、フィルムを成膜する際、ある1層でピンホールが発生しても、他の層と同じ位置で重ならない限りピンホールが成長しないため、薄膜化してもピンホールの発生を抑制することができる。
本発明の負極用樹脂集電体の製造方法においては、3層以上の多層体を得るために、例えば、導電性樹脂組成物を3層積層してもよいし、導電性樹脂組成物を4層積層してもよいし、導電性樹脂組成物を5層積層してもよいし、導電性樹脂組成物を6層以上積層してもよい。
本発明の負極用樹脂集電体の製造方法においては、成分組成及び含有比率が同じ導電性樹脂組成物を積層してもよいし、成分組成及び含有比率が異なる導電性樹脂組成物を積層してもよい。成分組成及び含有比率が異なる導電性樹脂組成物を積層する場合、導電性樹脂組成物の成分組成及び含有比率がすべて異なっている必要はなく、成分組成及び含有比率が同じ導電性樹脂組成物が含まれていてもよい。
本発明の負極用樹脂集電体の製造方法において、多層体の各層を構成するそれぞれの導電性樹脂組成物に含まれるポリオレフィンは、温度230℃、荷重2.16kgの条件下でJIS K7210-1:2014に記載の方法で測定されるメルトマスフローレートが15~70g/10minであることを特徴としている。それぞれの導電性樹脂組成物に含まれるポリオレフィンの上記メルトマスフローレートは、20~40g/10minであることが好ましい。
なお、導電性樹脂組成物に含まれるポリオレフィンは2種以上のポリプロピレン等を含む混合物であってもよい。この場合、ポリオレフィンのメルトマスフローレートは、それぞれのメルトマスフローレートの加重平均値として計算して得ることができる。
メルトマスフローレート(MFR)は、溶融状態にある樹脂の流動性を示す指標であり、MFRの値が大きいほど流動性が高い。
上述のように、本発明の負極用樹脂集電体の製造方法においては、導電性樹脂組成物の溶融物を3層以上積層して1枚の一体化したフィルムに成形することにより、多層体を得ることができる。メルトマスフローレートが15~50g/10minであるポリオレフィンを用いることにより、例えば、全体の厚さが90μm以下であるフィルムを良好に成膜することができる。
導電性樹脂組成物に含まれるポリオレフィンとしては、例えば、ポリエチレン(PE)、ポリプロピレン(PP)等が挙げられる。その他、炭素数4~30のα-オレフィン(1-ブテン、イソブテン、1-ヘキセン、1-デセン及び1-ドデセン等)を必須構成単量体とする重合体等でもよい。これらのポリオレフィンは、1種単独でもよいし、2種以上の混合物であってもよい。
ポリオレフィンの中でも、防湿特性や機械的強度の点で、ポリプロピレンが好ましい。ポリプロピレンとしては、例えば、ホモポリプロピレン、ランダムポリプロピレン、ブロックポリプロピレン、長鎖分岐構造を有するポリプロピレン及び酸変性ポリプロピレン等が挙げられる。ホモポリプロピレンは、プロピレンの単独重合体である。ランダムポリプロピレンは、不規則に導入された少量(好ましくは4.5重量%以下)のエチレン単位を含有する共重合体である。ブロックポリプロピレンは、ホモポリプロピレンの中にエチレンプロピレンゴム(EPR)が分散している組成物であり、ホモポリプロピレンの「海」の中にEPRを含む「島」が浮かぶ「海島構造」を有している。長鎖分岐構造を有するポリプロピレンとしては、特開2001-253910号公報等に記載されたポリプロピレン等が挙げられる。酸変性ポリプロピレンは、カルボキシル基を導入したポリプロピレンであり、無水マレイン酸等の不飽和カルボン酸とポリプロピレンとを有機過酸化物の存在下で反応する等の公知の方法で反応して得ることができる。
本発明の負極用樹脂集電体の製造方法において、多層体の各層を構成するそれぞれの導電性樹脂組成物に含まれるポリオレフィンの重量割合は、集電体の強度の観点から、それぞれの導電性樹脂組成物に含まれるポリオレフィンと導電性フィラーとの合計重量に基づいて10~95重量%であることが好ましく、25~85重量%であることがより好ましい。
本発明の負極用樹脂集電体の製造方法において、多層体の各層を構成するそれぞれの導電性樹脂組成物に含まれる導電性フィラーとしては、導電性を有する材料から選択されるが、集電体内のイオン透過を抑制する観点から、電荷移動媒体として用いられるイオンに関して伝導性を有さない材料を用いるのが好ましい。ここで、電荷移動媒体として用いられるイオンとは、例えばリチウムイオン電池であればリチウムイオンである。
導電性フィラーの材質としては、金属[ニッケル、アルミニウム、ステンレス(SUS)、銀、銅及びチタン等]、導電性カーボン[黒鉛(グラファイト)、カーボンブラック(アセチレンブラック、ケッチェンブラック、ファーネスブラック、チャンネルブラック、サーマルランプブラック等)及びカーボンナノチューブ等]、及びこれらの混合物等が挙げられるが、これらに限定されるわけではない。導電性フィラーは、粒子系セラミック材料や樹脂材料の周りに導電材料(上記した導電性フィラーのうち金属のもの)をめっき等でコーティングしたものでもよい。これらの導電性フィラーは1種単独で用いられてもよいし、2種以上併用してもよい。また、これらの合金又は金属酸化物が用いられてもよい。
導電性フィラーの中では、電気的安定性の観点から、金属及び導電性カーボンが好ましい。金属の中では、ニッケル粒子が好ましい。導電性カーボンの中では、カーボンブラック、又は、カーボンブラックとカーボンナノチューブとの混合物が好ましく、アセチレンブラック、又は、アセチレンブラックとカーボンナノチューブとの混合物がより好ましい。
導電性フィラーがニッケル粒子である場合、ニッケル粒子のメジアン径は特に限定されるものではないが、電池の電気特性の観点から、1~20μmであることが好ましい。
なお、メジアン径とは、体積分布に基づくメジアン径であり、レーザー式粒度分布測定装置(LA-920:(株)堀場製作所製)によって測定される。
また、導電性フィラーがカーボンブラックである場合、カーボンブラックの体積平均粒子径は特に限定されるものではないが、電池の電気特性の観点から、3~500nmであることが好ましい。
本明細書において、カーボンブラック等の導電性カーボンの体積平均粒子径は、マイクロトラック法(レーザー回折・散乱法)によって求めた粒度分布における積算値50%での粒径(Dv50)を意味する。マイクロトラック法とは、レーザー光を粒子に照射することによって得られる散乱光を利用して粒度分布を求める方法である。なお、体積平均粒子径の測定には、日機装(株)製のマイクロトラック等を用いることができる。
導電性フィラーの形状(形態)は、粒子形態に限られず、粒子形態以外の形態であってもよく、カーボンナノチューブ等、いわゆるフィラー系導電性材料として実用化されている形態であってもよい。
本発明の負極用樹脂集電体の製造方法においては、多層体が、ポリオレフィンとニッケル粒子とを含む導電性樹脂組成物の層を少なくとも2層含むことが好ましい。多層体の少なくとも2層を構成する導電性樹脂組成物が導電性フィラーとしてニッケル粒子を含有する場合、樹脂集電体の電気的安定性を向上させることができる。
多層体の少なくとも2層を構成する導電性樹脂組成物が導電性フィラーとしてニッケル粒子を含有する場合、多層体の残りの層を構成する導電性樹脂組成物は導電性フィラーとしてニッケル粒子を含有していなくてもよいし、多層体のすべての層を構成する導電性樹脂組成物が導電性フィラーとしてニッケル粒子を含有していてもよい。
導電性樹脂組成物が導電性フィラーとしてニッケル粒子を含有する場合、第1の導電性樹脂組成物と、上記第1の導電性樹脂組成物よりもニッケル粒子の重量割合の低い第2の導電性樹脂組成物とを、第1の導電性樹脂組成物、第2の導電性樹脂組成物、第1の導電性樹脂組成物の順に積層された構造を含むように積層することが好ましい。この場合、樹脂集電体と活物質層との接触抵抗を低くすることができる。
例えば、導電性樹脂組成物を3層積層する場合には、第1の導電性樹脂組成物、第2の導電性樹脂組成物、第1の導電性樹脂組成物の順に、導電性樹脂組成物を4層積層する場合には、第1の導電性樹脂組成物、第2の導電性樹脂組成物、第2の導電性樹脂組成物、第1の導電性樹脂組成物の順に、導電性樹脂組成物を5層積層する場合には、第1の導電性樹脂組成物、第2の導電性樹脂組成物、第1の導電性樹脂組成物、第2の導電性樹脂組成物、第1の導電性樹脂組成物の順に積層することが好ましい。第1の導電性樹脂組成物が2つ以上である場合、それぞれの導電性樹脂組成物の成分組成及び含有比率は同じであってもよいし、異なるものが含まれていてもよい。同様に、第2の導電性樹脂組成物が2つ以上である場合、それぞれの導電性樹脂組成物の成分組成及び含有比率は同じであってもよいし、異なるものが含まれていてもよい。
また、本発明の負極用樹脂集電体の製造方法においては、多層体が、導電性フィラーがニッケル粒子である導電性樹脂組成物の層と導電性フィラーが導電性カーボンである導電性樹脂組成物の層とを含むことが好ましい。この場合、多層体は、導電性フィラーがニッケル粒子である導電性樹脂組成物の層を少なくとも2層含むことが好ましい。導電性フィラーがニッケル粒子である導電性樹脂組成物と導電性フィラーが導電性カーボンである導電性樹脂組成物とを用いることにより、樹脂集電体全体の導電性フィラー密度を下げることができる。
例えば、導電性樹脂組成物を3層積層する場合、導電性フィラーがニッケル粒子である導電性樹脂組成物、導電性フィラーがニッケル粒子である導電性樹脂組成物、導電性フィラーが導電性カーボンである導電性樹脂組成物の順に積層することが好ましい。このように、導電性フィラーが導電性カーボンである導電性樹脂組成物は、多層体の少なくとも一方の主面を構成するように、最表層に積層することが好ましい。
本発明の負極用樹脂集電体の製造方法において、多層体の各層を構成するそれぞれの導電性樹脂組成物に含まれる導電性フィラーの重量割合は、導電性の観点から、それぞれの導電性樹脂組成物に含まれるポリオレフィンと導電性フィラーとの合計重量に基づいて5~90重量%であることが好ましく、15~75重量%であることがより好ましい。
導電性樹脂組成物に含まれる導電性フィラーがニッケル粒子である場合、該導電性樹脂組成物に含まれるニッケル粒子の重量割合は、該導電性樹脂組成物に含まれるポリオレフィンとニッケル粒子との合計重量に基づいて55~90重量%であることが好ましく、60~75重量%であることがより好ましい。
導電性樹脂組成物に含まれる導電性フィラーがカーボンブラックである場合、該導電性樹脂組成物に含まれるカーボンブラックの重量割合は、該導電性樹脂組成物に含まれるポリオレフィンとカーボンブラックとの合計重量に基づいて15~45重量%であることが好ましく、20~30重量%であることがより好ましい。また、導電性樹脂組成物に含まれる導電性フィラーがカーボンブラックとカーボンナノチューブとの混合物である場合、該導電性樹脂組成物に含まれるカーボンブラックとカーボンナノチューブとの合計重量の割合は、該導電性樹脂組成物に含まれるポリオレフィンとカーボンブラックとカーボンナノチューブとの合計重量に基づいて10~40重量%であることが好ましく、15~30重量%であることがより好ましい。
本発明の負極用樹脂集電体の製造方法において、導電性樹脂組成物には、本発明の効果を損なわない範囲において、ポリオレフィン及び導電性フィラーの他に、その他の成分(分散剤、架橋促進剤、架橋剤、着色剤、紫外線吸収剤、可塑剤)等を適宜添加することができる。
本発明の負極用樹脂集電体の製造方法において、多層体の厚さは特に限定されないが、90μm以下であることが好ましい。多層体の厚さを90μm以下とすることにより、樹脂集電体の抵抗値を低くすることができる。一方、多層体の厚さは、5μm以上であればよい。
なお、多層体の厚さは、後述する金属層の厚さを含まない厚さである。
本発明の負極用樹脂集電体の製造方法は、多層体が有する2つの主面のうち、少なくとも一方の主面に、金属層を形成する工程をさらに備えることが好ましい。金属層は、抵抗低減層をして機能する層であり、例えば、スパッタリング法等の方法により形成することができる。
金属層を構成する金属の種類としては、例えば、銅等が挙げられる。金属層の厚さは特に限定されないが、40~100nmであることが好ましい。
[リチウムイオン電池用負極の製造方法]
本発明のリチウムイオン電池用負極の製造方法は、上述した方法により負極用樹脂集電体を作製する工程と、上記負極用樹脂集電体のどちらか一方の表面に負極活物質層を形成する工程とを備えることを特徴とする。
本発明のリチウムイオン電池用負極の製造方法において、負極活物質層は、負極活物質とともに、必要に応じてバインダ、導電助剤等の添加剤を用いて形成することができる。
[リチウムイオン電池の製造方法]
本発明のリチウムイオン電池の製造方法は、上述した方法によりリチウムイオン電池用負極を作製する工程を備えることを特徴とする。
本発明のリチウムイオン電池の製造方法は、さらに、正極用集電体の表面に正極活物質層を形成する工程を備える。正極活物質層は、正極活物質とともに、必要に応じてバインダ、導電助剤等の添加剤を用いて形成することができる。そして、セパレータを配置し、電解液を加えることによって、リチウムイオン電池が得られる。
本発明のリチウムイオン電池用負極の製造方法、及び、本発明のリチウムイオン電池の製造方法において、負極活物質、正極活物質、電解液、セパレータ等の材料としては、公知の材料を使用することができる。正極活物質及び負極活物質は、アクリル系樹脂等の樹脂で被覆された被覆活物質であってもよい。正極用集電体は、金属集電箔であってもよいし、樹脂集電体であってもよい。
例えば、電解液としては、リチウムイオン電池の製造に用いられる、電解質及び非水溶媒を含有する電解液を使用することができる。電解質としては、公知の電解液に用いられているもの等が使用でき、例えば、LiPF、LiBF、LiSbF、LiAsF及びLiClO等の無機酸のリチウム塩、LiN(CFSO、LiN(CSO及びLiC(CFSO等の有機酸のリチウム塩等が挙げられる。これらのうち、電池出力及び充放電サイクル特性の観点から好ましいのはLiPFである。非水溶媒としては、公知の電解液に用いられているもの等が使用でき、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)等のカーボネート類が例示される。
以下、本発明を実施例によって具体的に説明するが、本発明の主旨を逸脱しない限り本発明は実施例に限定されるものではない。なお、特記しない限り、部は重量部、%は重量%を意味する。
<製造例1>
2軸押出機にて、高MFR成分のポリプロピレン(表1中、PP1で示す)[比重:0.9、MFR:60g/10min、融点:165℃]22.4部、低MFR成分のポリプロピレン(表1中、PP2で示す)[比重:0.9、MFR:8.2g/10min、融点:165℃]5.6部、分散剤[比重:0.95、MFR:230g/10min、酸価:26、融点:142℃]2.0部、及び、導電性フィラーのニッケル粒子[商品名「Type255」、Vale社製、メジアン径:20μm]70部を180℃、100rpm、滞留時間5分の条件で溶融混練して導電性樹脂組成物(Z-1)を得た。
表1の「ポリオレフィンMFR」には、PP1とPP2との混合物のMFRを記載している。
<製造例2>
PP1を26.1部、PP2を6.5部、分散剤を2.4部、ニッケル粒子を65部に変更したことを除いて、製造例1と同様の方法により導電性樹脂組成物(Z-2)を得た。
<製造例3>
PP1を29.9部、PP2を7.5部、分散剤を2.6部、ニッケル粒子を60部に変更したことを除いて、製造例1と同様の方法により導電性樹脂組成物(Z-3)を得た。
<製造例4>
PP1を33.6部、PP2を8.4部、分散剤を3.0部、ニッケル粒子を55部に変更したことを除いて、製造例1と同様の方法により導電性樹脂組成物(Z-4)を得た。
<製造例5>
PP1を用いず、PP2を32.7部、分散剤を2.3部、ニッケル粒子を65部に変更したことを除いて、製造例1と同様の方法により導電性樹脂組成物(Z-5)を得た。
<製造例6>
PP2を21.5部、分散剤を1.5部、ニッケル粒子を77部に変更したことを除いて、製造例5と同様の方法により導電性樹脂組成物(Z-6)を得た。
<製造例7>
PP2を用いず、PP1を74.7部、分散剤を5.3部、及び、導電性フィラーをアセチレンブラック[商品名「デンカブラックLi-400」、デンカ(株)製、体積平均粒子径:48nm、比表面積:39m/g]20部に変更したことを除いて、製造例1と同様の方法により導電性樹脂組成物(Z-7)を得た。
<製造例8>
PP1を70.0部、分散剤を5.0部、アセチレンブラックを25部に変更したことを除いて、製造例7と同様の方法により導電性樹脂組成物(Z-8)を得た。
<製造例9>
PP2を用いず、PP1を76.5部、分散剤を5.5部、導電性フィラーをアセチレンブラック[商品名「デンカブラックLi-400」、デンカ(株)製、比表面積:39m/g、平均一次粒子径:48nm]10部、及び、カーボンナノチューブ[商品名「1201YJE」、NANOSTRUCTURED & AMORPHOUS MATERIALS社製](表1中、CNTと表記)8部に変更したことを除いて、製造例1と同様の方法により導電性樹脂組成物(Z-9)を得た。
<貫通抵抗値の測定>
表1には、以下の方法により測定した導電性樹脂組成物(Z-1)~(Z-9)の貫通抵抗値を示している。
各導電性樹脂組成物をTダイから押し出し、熱プレス機により圧延することで、膜厚120μmの測定用フィルムをそれぞれ得た。
測定用フィルムを短冊φ15mmの試験片に裁断し、電気抵抗測定器[IMC-0240型、井元製作所(株)製]及び抵抗計[RM3548、HIOKI社製]を用いて各測定用フィルムの抵抗値を測定した。
電気抵抗測定器に2.16kgの荷重をかけた状態での測定用フィルムの抵抗値を測定し、2.16kgの荷重をかけてから60秒後の値をその測定用フィルムの抵抗値とした。下記の式に示すように、抵抗測定時の冶具の接触表面の面積(1.77cm)をかけた値を貫通抵抗値とした。
 貫通抵抗値(Ω・cm)=抵抗値(Ω)×1.77(cm
Figure JPOXMLDOC01-appb-T000001
<実施例1>
導電性樹脂組成物(Z-1)/導電性樹脂組成物(Z-2)/導電性樹脂組成物(Z-2)をTダイから3層共押出して導電性フィルムを製造し、導電性フィルムの膜厚測定とピンホール試験を下記の方法で行った。押出条件を変えることによって導電性フィルムの膜厚を変更して導電性フィルムの製造とピンホール試験とを繰り返し、ピンホールがなく最も薄く出来た導電性フィルム(膜厚85μm)を樹脂集電体(X-1)とした。
<実施例2>
導電性樹脂組成物(Z-1)/導電性樹脂組成物(Z-2)/導電性樹脂組成物(Z-3)をTダイから3層共押出して、熱プレス機により圧延することで導電性フィルムを製造した。実施例1と同様にしてピンホールがなく最も薄く出来た導電性フィルム(膜厚70μm)を樹脂集電体(X-2)とした。
<実施例3>
導電性樹脂組成物(Z-3)/導電性樹脂組成物(Z-3)/導電性樹脂組成物(Z-3)をTダイから3層共押出して導電性フィルムを製造した。実施例1と同様にしてピンホールがなく最も薄く出来た導電性フィルム(膜厚50μm)を樹脂集電体(X-3)とした。
<実施例4>
導電性樹脂組成物(Z-1)/導電性樹脂組成物(Z-2)/導電性樹脂組成物(Z-2)/導電性樹脂組成物(Z-1)をTダイから4層共押出して、熱プレス機により圧延することで導電性フィルムを製造した。実施例1と同様にしてピンホールがなく最も薄く出来た導電性フィルム(膜厚90μm)を樹脂集電体(X-4)とした。
<実施例5>
導電性樹脂組成物(Z-3)/導電性樹脂組成物(Z-3)/導電性樹脂組成物(Z-7)をTダイから3層共押出して導電性フィルムを製造した。実施例1と同様にしてピンホールがなく最も薄く出来た導電性フィルム(膜厚45μm)を樹脂集電体(X-5)とした。
<実施例6>
導電性樹脂組成物(Z-2)/導電性樹脂組成物(Z-3)/導電性樹脂組成物(Z-8)をTダイから3層共押出して、熱プレス機により圧延することで導電性フィルムを製造した。実施例1と同様にしてピンホールがなく最も薄く出来た導電性フィルム(膜厚65μm)を樹脂集電体(X-6)とした。
<実施例7>
導電性樹脂組成物(Z-2)/導電性樹脂組成物(Z-3)/導電性樹脂組成物(Z-9)をTダイから3層共押出して、熱プレス機により圧延することで導電性フィルムを製造した。実施例1と同様にしてピンホールがなく最も薄く出来た導電性フィルム(膜厚60μm)を樹脂集電体(X-7)とした。
<実施例8>
導電性樹脂組成物(Z-1)/導電性樹脂組成物(Z-2)/導電性樹脂組成物(Z-1)/導電性樹脂組成物(Z-2)/導電性樹脂組成物(Z-1)をTダイから5層共押出して、熱プレス機により圧延することで導電性フィルムを製造した。実施例1と同様にしてピンホールがなく最も薄く出来た導電性フィルム(膜厚90μm)を樹脂集電体(X-8)とした。
<実施例9>
導電性樹脂組成物(Z-3)/導電性樹脂組成物(Z-3)/導電性樹脂組成物(Z-7)をTダイから3層共押出して導電性フィルムを製造した。実施例1と同様にしてピンホールがなく最も薄く出来た導電性フィルム(膜厚45μm)の導電性樹脂組成物(Z-3)側に、厚さ40nmの銅膜をスパッタリング法により形成したものを樹脂集電体(X-9)とした。
<比較例1>
導電性樹脂組成物(Z-5)/導電性樹脂組成物(Z-6)/導電性樹脂組成物(Z-5)をTダイから3層共押出して、熱プレス機により圧延することで導電性フィルムを製造した。実施例1と同様にしてピンホールがなく最も薄く出来た導電性フィルム(膜厚120μm)を樹脂集電体(X´-1)とした。
<比較例2>
導電性樹脂組成物(Z-1)/導電性樹脂組成物(Z-4)をTダイから2層共押出して、熱プレス機により圧延することで導電性フィルムを製造した。実施例1と同様にしてピンホールがなく最も薄く出来た導電性フィルム(膜厚60μm)を樹脂集電体(X´-2)とした。
<比較例3>
導電性樹脂組成物(Z-1)/導電性樹脂組成物(Z-2)をTダイから2層共押出して、熱プレス機により圧延することで導電性フィルムを製造した。実施例1と同様にしてピンホールがなく最も薄く出来た導電性フィルム(膜厚100μm)を樹脂集電体(X´-3)とした。
<比較例4>
導電性樹脂組成物(Z-5)をTダイから1層押出して、熱プレス機により圧延することで導電性フィルムを製造した。実施例1と同様にしてピンホールがなく最も薄く出来た導電性フィルム(膜厚110μm)を樹脂集電体(X´-4)とした。
[導電性フィルムの試験方法]
<膜厚測定>
導電性フィルムの膜厚は、マイクロメーター[ミツトヨ社製]を用いて、各サンプル5か所測定し、その平均値をそのサンプルの膜厚とした。
<ピンホール試験>
SUS製の容器にメタノールを厚さ1~2mm程度入れたものを準備し、そこに10cm×20cmに裁断した導電性フィルムを浮かせて、導電性フィルムが沈まないように注意しながら導電性フィルムの上面を軽くたたき、樹脂の表面にメタノールが染み出てこないかを目視で確認した。1か所でもメタノールが染み出てきたらピンホールがあるとみなす。
[樹脂集電体の評価方法]
<薄膜化>
上記のピンホール試験においてピンホールがなく、最も薄く製造できた導電性フィルムの膜厚が90μm以下であった場合を○(良)、90μmを超えた場合を×(不良)とした。
<貫通抵抗値の測定>
樹脂集電体(X-1)~(X-9)及び(X´-1)~(X´-4)を短冊φ15mmの試験片に裁断し、電気抵抗測定器[IMC-0240型、井元製作所(株)製]及び抵抗計[RM3548、HIOKI社製]を用いて各樹脂集電体の抵抗値を測定した。
電気抵抗測定器に2.16kgの荷重をかけた状態での樹脂集電体の抵抗値を測定し、2.16kgの荷重をかけてから60秒後の値をその樹脂集電体の抵抗値とした。下記の式に示すように、抵抗測定時の冶具の接触表面の面積(1.77cm)をかけた値を貫通抵抗値とした。
 貫通抵抗値(Ω・cm)=抵抗値(Ω)×1.77(cm
貫通抵抗値の基準は、抵抗値が200Ω・cm以下である場合を○(良)、200Ω・cmを超える場合を×(不良)とする。
各評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
表2より、メルトマスフローレートが15~70g/10minであるポリオレフィンと導電性フィラーとを含む導電性樹脂組成物を3層以上積層して樹脂集電体を作製した実施例1~9では、貫通抵抗値が低く、かつ、厚さが90μm以下でもピンホールが生じないことが確認された。
一方、メルトマスフローレートが15g/10min未満であるポリオレフィンと導電性フィラーとを含む導電性樹脂組成物を3層積層して樹脂集電体を作製した比較例1では、ピンホールが生じない厚さを90μm以下とすることができていない。
メルトマスフローレートが15~70g/10minであるポリオレフィンと導電性フィラーとを含む導電性樹脂組成物を2層積層して樹脂集電体を作製した場合、比較例2では、ピンホールが生じない厚さを90μm以下とすることができているが、比較例3では、ピンホールが生じない厚さを90μm以下とすることができていない。
また、メルトマスフローレートが15~70g/10minであるポリオレフィンと導電性フィラーとを含む導電性樹脂組成物を1層にして樹脂集電体を作製した比較例4では、ピンホールが生じない厚さを90μm以下とすることができていない。
本発明の負極用樹脂集電体の製造方法は、特に、携帯電話、パーソナルコンピューター及びハイブリッド自動車、電気自動車用に用いられるリチウムイオン電池用の負極用集電体を製造する方法として有用である。

Claims (7)

  1. ポリオレフィンと導電性フィラーとを含む導電性樹脂組成物の溶融物を3層以上積層して多層体を得る積層工程を備え、
    前記多層体の各層を構成するそれぞれの導電性樹脂組成物に含まれる前記ポリオレフィンは、温度230℃、荷重2.16kgの条件下でJIS K7210-1:2014に記載の方法で測定されるメルトマスフローレートが15~70g/10minであることを特徴とするシート状の負極用樹脂集電体の製造方法。
  2. 前記多層体が、ポリオレフィンとニッケル粒子とを含む導電性樹脂組成物の層を少なくとも2層含む請求項1に記載の負極用樹脂集電体の製造方法。
  3. 前記多層体が、前記導電性フィラーがニッケル粒子である導電性樹脂組成物の層と前記導電性フィラーが導電性カーボンである導電性樹脂組成物の層とを含む請求項1に記載の負極用樹脂集電体の製造方法。
  4. 前記多層体の各層を構成するそれぞれの導電性樹脂組成物に含まれる前記導電性フィラーの重量割合が、それぞれの導電性樹脂組成物に含まれるポリオレフィンと導電性フィラーとの合計重量に基づいて15~75重量%である請求項1~3のいずれか1項に記載の負極用樹脂集電体の製造方法。
  5. 前記多層体が有する2つの主面のうち、少なくとも一方の主面に、金属層を形成する工程をさらに備える請求項1~4のいずれか1項に記載の負極用樹脂集電体の製造方法。
  6. 請求項1~5のいずれか1項に記載の方法により負極用樹脂集電体を作製する工程と、
    前記負極用樹脂集電体のどちらか一方の表面に、負極活物質層を形成する工程とを備えることを特徴とするリチウムイオン電池用負極の製造方法。
  7. 請求項6に記載の方法によりリチウムイオン電池用負極を作製する工程を備えることを特徴とするリチウムイオン電池の製造方法。
PCT/JP2019/041282 2018-10-22 2019-10-21 負極用樹脂集電体の製造方法、リチウムイオン電池用負極の製造方法、及び、リチウムイオン電池の製造方法 WO2020085290A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980069397.0A CN112913054B (zh) 2018-10-22 2019-10-21 负极用树脂集电体的制造方法、锂离子电池用负极的制造方法以及锂离子电池的制造方法
US17/285,682 US12015140B2 (en) 2018-10-22 2019-10-21 Method for producing resin collector for negative electrodes, method for producing negative electrode for lithium ion batteries, and method for producing lithium ion battery
EP19877312.9A EP3872898A4 (en) 2018-10-22 2019-10-21 METHOD FOR PRODUCTION OF RESIN COLLECTOR FOR NEGATIVE ELECTRODES, METHOD FOR PRODUCTION OF NEGATIVE ELECTRODE FOR LITHIUM-ION BATTERIES AND METHOD FOR PRODUCTION OF LITHIUM-ION BATTERY

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018198530A JP7145727B2 (ja) 2018-10-22 2018-10-22 負極用樹脂集電体の製造方法、リチウムイオン電池用負極の製造方法、及び、リチウムイオン電池の製造方法
JP2018-198530 2018-10-22

Publications (1)

Publication Number Publication Date
WO2020085290A1 true WO2020085290A1 (ja) 2020-04-30

Family

ID=70331454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/041282 WO2020085290A1 (ja) 2018-10-22 2019-10-21 負極用樹脂集電体の製造方法、リチウムイオン電池用負極の製造方法、及び、リチウムイオン電池の製造方法

Country Status (5)

Country Link
US (1) US12015140B2 (ja)
EP (1) EP3872898A4 (ja)
JP (1) JP7145727B2 (ja)
CN (1) CN112913054B (ja)
WO (1) WO2020085290A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022244759A1 (ja) * 2021-05-17 2022-11-24 Apb株式会社 積層シートの検査方法、積層シートの製造方法、及び、組電池の製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022081130A (ja) * 2020-11-19 2022-05-31 グンゼ株式会社 集電体
JP7047047B1 (ja) * 2020-11-19 2022-04-04 グンゼ株式会社 集電体
CN114361461B (zh) * 2022-01-10 2024-01-16 上海恩捷新材料科技有限公司 柔性集流体芯层、集流体、极片和电池及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4521359A (en) * 1981-12-04 1985-06-04 Exxon Research & Engineering Co. Method of coextruding plastics to form a composite sheet
JPS63224103A (ja) * 1987-03-12 1988-09-19 住友ベークライト株式会社 集電体フイルムの製造方法
JPH10100346A (ja) * 1996-09-26 1998-04-21 Mitsubishi Chem Corp 共押出成形フィルム及び食品包装袋
JP2001253910A (ja) 2000-03-13 2001-09-18 Japan Polychem Corp 長鎖分岐を有するポリプロピレン系樹脂組成物の製造方法
JP2002008665A (ja) * 2000-06-21 2002-01-11 Toray Ind Inc 導電性樹脂シートおよびその製造方法
JP2002124265A (ja) * 2000-10-18 2002-04-26 Toray Ind Inc 電池電極用導電性樹脂シートおよびその製造方法
JP2014529858A (ja) * 2011-08-22 2014-11-13 ゼットビービー エナジー コーポレーション コモンDCバスに接続されたZnBrフローバッテリーのための反転可能な極性動作およびスイッチング方法
JP2014216296A (ja) 2013-04-30 2014-11-17 信越ポリマー株式会社 二次電池の集電体用の導電性樹脂フィルム及びその製造方法
WO2015005116A1 (ja) 2013-07-08 2015-01-15 三洋化成工業株式会社 樹脂集電体用分散剤、樹脂集電体用材料及び樹脂集電体

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5430420B2 (ja) 2010-01-27 2014-02-26 電気化学工業株式会社 導電性樹脂組成物及び導電性シ−ト
WO2012046600A1 (ja) 2010-10-08 2012-04-12 株式会社クレハ 導電性架橋フィルム、該フィルムの製造方法および該フィルムの用途
JP5755975B2 (ja) * 2011-09-01 2015-07-29 昭和電工パッケージング株式会社 電池用外装材及びリチウム二次電池
JP2015201387A (ja) 2014-04-09 2015-11-12 凸版印刷株式会社 二次電池用外装材、二次電池、及び二次電池の製造方法
JP7089374B2 (ja) * 2017-02-22 2022-06-22 三洋化成工業株式会社 樹脂集電体、及び、リチウムイオン電池
JP7055059B2 (ja) * 2017-05-23 2022-04-15 三洋化成工業株式会社 樹脂集電体の製造方法、リチウムイオン電池用電極の製造方法、及び、リチウムイオン電池の製造方法
JP7055694B2 (ja) * 2017-05-23 2022-04-18 三洋化成工業株式会社 樹脂集電体、リチウムイオン電池用電極、及び、リチウムイオン電池
JP7010653B2 (ja) * 2017-10-17 2022-01-26 三洋化成工業株式会社 樹脂集電体、積層集電体、及び、リチウムイオン電池

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4521359A (en) * 1981-12-04 1985-06-04 Exxon Research & Engineering Co. Method of coextruding plastics to form a composite sheet
JPS63224103A (ja) * 1987-03-12 1988-09-19 住友ベークライト株式会社 集電体フイルムの製造方法
JPH10100346A (ja) * 1996-09-26 1998-04-21 Mitsubishi Chem Corp 共押出成形フィルム及び食品包装袋
JP2001253910A (ja) 2000-03-13 2001-09-18 Japan Polychem Corp 長鎖分岐を有するポリプロピレン系樹脂組成物の製造方法
JP2002008665A (ja) * 2000-06-21 2002-01-11 Toray Ind Inc 導電性樹脂シートおよびその製造方法
JP2002124265A (ja) * 2000-10-18 2002-04-26 Toray Ind Inc 電池電極用導電性樹脂シートおよびその製造方法
JP2014529858A (ja) * 2011-08-22 2014-11-13 ゼットビービー エナジー コーポレーション コモンDCバスに接続されたZnBrフローバッテリーのための反転可能な極性動作およびスイッチング方法
JP2014216296A (ja) 2013-04-30 2014-11-17 信越ポリマー株式会社 二次電池の集電体用の導電性樹脂フィルム及びその製造方法
WO2015005116A1 (ja) 2013-07-08 2015-01-15 三洋化成工業株式会社 樹脂集電体用分散剤、樹脂集電体用材料及び樹脂集電体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3872898A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022244759A1 (ja) * 2021-05-17 2022-11-24 Apb株式会社 積層シートの検査方法、積層シートの製造方法、及び、組電池の製造方法

Also Published As

Publication number Publication date
EP3872898A1 (en) 2021-09-01
US20210408525A1 (en) 2021-12-30
JP2020068065A (ja) 2020-04-30
US12015140B2 (en) 2024-06-18
CN112913054A (zh) 2021-06-04
EP3872898A4 (en) 2022-08-31
CN112913054B (zh) 2024-02-02
JP7145727B2 (ja) 2022-10-03

Similar Documents

Publication Publication Date Title
CN112913054B (zh) 负极用树脂集电体的制造方法、锂离子电池用负极的制造方法以及锂离子电池的制造方法
CN112292777B (zh) 树脂集电体和层叠型树脂集电体、以及具备其的锂离子电池
WO2010074151A1 (ja) 電池用セパレータおよび非水系リチウム電池
KR101515357B1 (ko) 유기 및 무기 혼합물 코팅층을 포함하는 분리막 및 이를 이용한 전지
WO2011062232A1 (ja) 電気化学セル用水性ペースト、該水性ペーストを塗布してなる電気化学セル用極板、および該極板を含む電池
KR20150063050A (ko) 집전체, 전극 구조체, 비수전해질 전지, 도전성 필러 및 축전부품
US9847518B2 (en) Separator with heat-resistant insulation layer
JP5422372B2 (ja) 電池用セパレータおよび非水系リチウム二次電池
CN111247675A (zh) 树脂集电体、层叠集电体和锂离子电池
JP7042700B2 (ja) リチウムイオン電池用電極、及び、リチウムイオン電池
JP5380993B2 (ja) 双極型二次電池用集電体
JP7055059B2 (ja) 樹脂集電体の製造方法、リチウムイオン電池用電極の製造方法、及び、リチウムイオン電池の製造方法
JP7089374B2 (ja) 樹脂集電体、及び、リチウムイオン電池
JP5500425B2 (ja) 非水系リチウム二次電池
JP5422374B2 (ja) 電池用セパレータおよび非水系リチウム二次電池
JP2013084587A (ja) 導電性接着組成物、導電性フィルム、電池用電極、並びに、導電性フィルム及び電池用電極の製造方法
JP7394580B2 (ja) 全固体リチウムイオン二次電池
JP7055694B2 (ja) 樹脂集電体、リチウムイオン電池用電極、及び、リチウムイオン電池
JP7194048B2 (ja) 樹脂集電体、及び、リチウムイオン電池
JP5422373B2 (ja) 電池用セパレータおよび非水系リチウム二次電池
JP5369863B2 (ja) 双極型電池用集電体
JP7148277B2 (ja) 樹脂集電体、及び、リチウムイオン電池
JP7148275B2 (ja) 樹脂集電体の製造方法
JP2007073344A (ja) リチウムイオン二次電池及びこれを用いた電気自動車

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19877312

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019877312

Country of ref document: EP

Effective date: 20210525