JP2022081130A - 集電体 - Google Patents
集電体 Download PDFInfo
- Publication number
- JP2022081130A JP2022081130A JP2020192478A JP2020192478A JP2022081130A JP 2022081130 A JP2022081130 A JP 2022081130A JP 2020192478 A JP2020192478 A JP 2020192478A JP 2020192478 A JP2020192478 A JP 2020192478A JP 2022081130 A JP2022081130 A JP 2022081130A
- Authority
- JP
- Japan
- Prior art keywords
- resin layer
- current collector
- conductive resin
- conductive
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011347 resin Substances 0.000 claims abstract description 141
- 229920005989 resin Polymers 0.000 claims abstract description 141
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 75
- 239000011231 conductive filler Substances 0.000 claims abstract description 50
- 229910052751 metal Inorganic materials 0.000 claims abstract description 37
- 239000002184 metal Substances 0.000 claims abstract description 36
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 33
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 25
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims abstract description 14
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 8
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 8
- 229910052802 copper Inorganic materials 0.000 claims abstract description 8
- 239000010949 copper Substances 0.000 claims abstract description 8
- 229910052709 silver Inorganic materials 0.000 claims abstract description 8
- 239000004332 silver Substances 0.000 claims abstract description 8
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 7
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910052737 gold Inorganic materials 0.000 claims abstract description 7
- 239000010931 gold Substances 0.000 claims abstract description 7
- 229910052697 platinum Inorganic materials 0.000 claims abstract description 7
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 7
- 239000010936 titanium Substances 0.000 claims abstract description 7
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 4
- 239000010959 steel Substances 0.000 claims abstract description 4
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 12
- 229910001416 lithium ion Inorganic materials 0.000 claims description 12
- 230000035515 penetration Effects 0.000 abstract description 43
- 239000010410 layer Substances 0.000 description 155
- 238000003825 pressing Methods 0.000 description 17
- -1 polypropylene Polymers 0.000 description 16
- 239000004743 Polypropylene Substances 0.000 description 13
- 229920001155 polypropylene Polymers 0.000 description 13
- 238000012360 testing method Methods 0.000 description 13
- 238000000034 method Methods 0.000 description 12
- 239000006232 furnace black Substances 0.000 description 11
- 238000005259 measurement Methods 0.000 description 11
- 239000002994 raw material Substances 0.000 description 11
- 229920000098 polyolefin Polymers 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 6
- 239000000203 mixture Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 229920005629 polypropylene homopolymer Polymers 0.000 description 4
- 229920000181 Ethylene propylene rubber Polymers 0.000 description 3
- 239000006229 carbon black Substances 0.000 description 3
- 239000011247 coating layer Substances 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 2
- AFFLGGQVNFXPEV-UHFFFAOYSA-N 1-decene Chemical compound CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 2
- CRSBERNSMYQZNG-UHFFFAOYSA-N 1-dodecene Chemical compound CCCCCCCCCCC=C CRSBERNSMYQZNG-UHFFFAOYSA-N 0.000 description 2
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 2
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000006230 acetylene black Substances 0.000 description 2
- 239000011149 active material Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical group C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000006231 channel black Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 229940069096 dodecene Drugs 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 239000006233 lamp black Substances 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 150000001451 organic peroxides Chemical class 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Cell Electrode Carriers And Collectors (AREA)
Abstract
【課題】プレス加工に起因する貫通抵抗値の上昇を抑制可能な集電体を提供する。【解決手段】集電体は、第1導電性樹脂層と、第2導電性樹脂層とを備える。第1導電性樹脂層は、第1導電性フィラーを含む。第2導電性樹脂層は、第1導電性樹脂層上に形成されており、第2導電性フィラーを含む。第1導電性フィラーは、導電性カーボンである。第2導電性フィラーは、白金、金、銀、銅、SUS(Stainless Used Steel)、ニッケル及びチタンが含まれる群から選択される少なくとも1種類の金属を含む。第2導電性樹脂層における金属の質量パーセント濃度は、60wt%以上である。【選択図】図1
Description
本発明は、集電体に関し、特に、リチウムイオン電池用の集電体に関する。
特開2018-55967号公報(特許文献1)は、第1導電性フィラーを含む第1導電性樹脂層と、第2導電性フィラーを含む第2導電性樹脂層とを備えるリチウムイオン電池用の集電体を開示する。このリチウムイオン電池用の集電体において、第1導電性フィラーは、導電性カーボンであり、第2導電性フィラーは、白金、金、銀、銅、ニッケル及びチタンが含まれる群から選択される少なくとも1種類の金属元素を含む。第1導電性フィラーとして導電性カーボンを用いることによって、第1導電性フィラーとして金属元素を用いる場合と比較して、集電体の軽量化を実現することができる(特許文献1参照)。
上記特許文献1に開示されているような集電体を用いたリチウムイオン電池の製造過程において、集電体にプレス加工が施される場合がある。上記特許文献1に開示されているような集電体にプレス加工を施すと、集電体の貫通抵抗値が上昇することを本発明者(ら)は見出した。
本発明は、このような問題を解決するためになされたものであって、その目的は、プレス加工に起因する貫通抵抗値の上昇を抑制可能な集電体を提供することである。
本発明に従う集電体は、リチウムイオン電池用の集電体である。この集電体は、第1導電性樹脂層と、第2導電性樹脂層とを備える。第1導電性樹脂層は、第1導電性フィラーを含む。第2導電性樹脂層は、第1導電性樹脂層上に形成されており、第2導電性フィラーを含む。第1導電性フィラーは、導電性カーボンである。第2導電性フィラーは、白金、金、銀、銅、SUS(Stainless Used Steel)、ニッケル及びチタンが含まれる群から選択される少なくとも1種類の金属を含む。第2導電性樹脂層における金属の質量パーセント濃度は、60wt%以上である。
本発明者(ら)は、第2導電性樹脂層における金属の質量パーセント濃度を高くする程、プレス加工に起因する集電体の貫通抵抗値の上昇を抑制可能であることを見出した。本発明に従う集電体においては、第2導電性樹脂層における金属の質量パーセント濃度が、60wt%以上である。したがって、この集電体によれば、第2導電性樹脂層における金属の質量パーセント濃度が比較的高いため、プレス加工に起因する集電体の貫通抵抗値の上昇を抑制することができる。
上記集電体において、第2導電性樹脂層における金属の質量パーセント濃度は、70wt%以上であってもよい。
上記集電体において、第2導電性樹脂層は、第1導電性樹脂層に近い第1層と、第1導電性樹脂層から遠い第2層とを含み、第2層における金属の質量パーセント濃度は、60wt%以上であってもよい。
上記集電体において、第2導電性フィラーはニッケルを含んでもよい。
上記集電体において、第1導電性樹脂層の厚みは、集電体の厚みの50%以上であってもよい。
本発明者(ら)は、第1導電性樹脂層の厚みを厚くすることによって、プレス加工に起因する集電体の貫通抵抗値の上昇を抑制可能であることを見出した。本発明に従う集電体においては、第1導電性樹脂層の厚みが、集電体の厚みの50%以上である。したがって、この集電体によれば、第1導電性樹脂層の厚みが比較的厚いため、プレス加工に起因する集電体の貫通抵抗値の上昇を抑制することができる。
本発明によれば、プレス加工に起因する貫通抵抗値の上昇を抑制可能な集電体を提供することができる。
以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一又は相当部分には同一符号を付してその説明は繰り返さない。
[1.集電体の構成]
図1は、本実施の形態に従う集電体10の断面を示す図である。集電体10は、例えば、リチウムイオン電池の負極用集電体に用いられる。図1に示されるように、集電体10は、第1導電性樹脂層100と、第2導電性樹脂層200とを含んでいる。
図1は、本実施の形態に従う集電体10の断面を示す図である。集電体10は、例えば、リチウムイオン電池の負極用集電体に用いられる。図1に示されるように、集電体10は、第1導電性樹脂層100と、第2導電性樹脂層200とを含んでいる。
リチウムイオン電池においては、第2導電性樹脂層200の上方に負極用の活物質が塗布され、第1導電性樹脂層100の下方に正極用集電体が配置される。リチウムイオン電池の製造過程においては、集電体10上に負極用の活物質が塗布された状態で、集電体10にプレス加工が施される。リチウムイオン電池においては、集電体10の貫通方向(図中上下方向)に電流が流れる。なお、第1導電性樹脂層100の厚さ(T1)は、集電体10の厚さ(T2)の50%以上、90%以下である。好ましくは、第1導電性樹脂層100の厚さ(T1)は集電体10の厚さ(T2)の67%以上であり、より好ましくは、第1導電性樹脂層100の厚さは集電体10の厚さの75%以上である。以下、各層について説明する。
<1-1.第1導電性樹脂層>
第1導電性樹脂層100は、ポリオレフィンと、導電性フィラーとを含んでいる。すなわち、第1導電性樹脂層100は、ポリオレフィンと導電性フィラーとを混合することによって形成されている。
第1導電性樹脂層100は、ポリオレフィンと、導電性フィラーとを含んでいる。すなわち、第1導電性樹脂層100は、ポリオレフィンと導電性フィラーとを混合することによって形成されている。
ポリオレフィンとしては、例えば、ポリプロピレン(PP)及びポリエチレン(PE)が挙げられる。また、炭素数4~30のα-オレフィン(1-ブテン、イソブテン、1-ヘキセン、1-デセン又は1-ドデセン等)を必須構成単量体とする重合体等がポリオレフィンとして用いられてもよい。これらのポリオレフィンは、1種単独であってもよいし、2種以上の混合物であってもよい。
ポリオレフィンの中でも、防湿特性及び機械的強度の観点で、ポリプロピレンが好ましい。ポリプロピレンとしては、例えば、ホモポリプロピレン、ランダムポリプロピレン、ブロックポリプロピレン、長鎖分岐構造を有するポリプロピレン及び酸変性ポリプロピレンが挙げられる。
ホモポリプロピレンは、プロピレンの単独重合体である。ランダムポリプロピレンは、不規則に導入された少量(好ましくは、4.5重量%以下)のエチレン単位を含む共重合体である。ブロックポリプロピレンは、ホモポリプロピレンの中にエチレンプロピレンゴム(EPR)が分散している組成物であり、ホモポリプロピレンの「海」の中にEPRを含む「島」が浮かぶ「海島構造」を有している。酸変性ポリプロピレンは、無水マレイン酸等の不飽和カルボン酸とポリプロピレンとを有機過酸化物の存在下で反応させる等の公知の方法を通じて得ることができる。
第1導電性樹脂層100に含まれる導電性フィラーとしては、導電性カーボンが挙げられる。導電性カーボンとしては、例えば、黒鉛(グラファイト)、カーボンブラック(アセチレンブラック、ケッチェンブラック、ファーネスブラック、チャンネルブラック、サーマルランプブラック等)、カーボンナノチューブ及びこれらの混合物が挙げられる。
導電性カーボンの中では、カーボンブラックが好ましく、アセチレンブラック、ファーネスブラック、又は、それらの混合物がより好ましい。カーボンブラックの体積平均粒子径は、特に限定されないが、集電体10が用いられるリチウムイオン電池の電気特性の観点から、3~500nmであることが好ましい。
上述のように、集電体10においては、第1導電性樹脂層100の厚さ(T1)が、集電体10の厚さ(T2)の50%以上である。このように、集電体10においては、第1導電性樹脂層100の厚さが比較的厚い。集電体の構成によっては、集電体にプレス加工が施されると、集電体の貫通抵抗値が上昇することに本発明者(ら)は気付いた。本発明者(ら)は、第1導電性樹脂層100の厚みを厚くすることによって、プレス加工に起因する集電体の貫通抵抗値の上昇を抑制可能であることを見出した。このような発見に基づき、集電体10においては、第1導電性樹脂層100の厚みが、集電体10の厚みの50%以上となっている。したがって、集電体10によれば、第1導電性樹脂層100の厚みが比較的厚いため、プレス加工に起因する集電体の貫通抵抗値の上昇を抑制することができる。
<1-2.第2導電性樹脂層>
第2導電性樹脂層200は、第1導電性樹脂層100上に形成されている。第2導電性樹脂層200は、ポリオレフィンと、導電性フィラーとを含んでいる。すなわち、第2導電性樹脂層200は、ポリオレフィンと導電性フィラーとを混合することによって形成されている。ポリオレフィンとしては、例えば、第1導電性樹脂層100の説明において例示したものを用いることができる。
第2導電性樹脂層200は、第1導電性樹脂層100上に形成されている。第2導電性樹脂層200は、ポリオレフィンと、導電性フィラーとを含んでいる。すなわち、第2導電性樹脂層200は、ポリオレフィンと導電性フィラーとを混合することによって形成されている。ポリオレフィンとしては、例えば、第1導電性樹脂層100の説明において例示したものを用いることができる。
第2導電性樹脂層200に含まれる導電性フィラーとしては、白金、金、銀、銅、ニッケル、SUS(Stainless Used Steel)、チタン及びこれらの混合物が挙げられる。すなわち、第2導電性樹脂層200に含まれる導電性フィラーは、白金、金、銀、銅、SUS、ニッケル及びチタンが含まれる群から選択される少なくとも1種類の金属を含む。なお、これらの中では、ニッケル粒子が導電性フィラーとしてより好ましい。
第2導電性樹脂層200においては、導電性フィラー(金属)の質量パーセント濃度が60wt%以上である。好ましくは、第2導電性樹脂層200においては、導電性フィラーの質量パーセント濃度が70wt%以上である。第2導電性樹脂層200において導電性フィラー(金属)の含有量が多い理由について次に説明する。
[2.第2導電性樹脂層において金属元素の含有量が多い理由]
上述のように、集電体の構成によっては、集電体にプレス加工が施されると、集電体の貫通抵抗値が上昇することに本発明者(ら)は気付いた。本発明者(ら)は、第2導電性樹脂層200における金属の質量パーセント濃度を高くする程、プレス加工に起因する集電体10の貫通抵抗値の上昇を抑制可能であることを見出した。集電体10においては、第2導電性樹脂層200における金属の質量パーセント濃度が、60wt%以上である。したがって、集電体10によれば、第2導電性樹脂層200における金属の質量パーセント濃度が比較的高いため、プレス加工に起因する集電体10の貫通抵抗値の上昇を抑制することができる。
上述のように、集電体の構成によっては、集電体にプレス加工が施されると、集電体の貫通抵抗値が上昇することに本発明者(ら)は気付いた。本発明者(ら)は、第2導電性樹脂層200における金属の質量パーセント濃度を高くする程、プレス加工に起因する集電体10の貫通抵抗値の上昇を抑制可能であることを見出した。集電体10においては、第2導電性樹脂層200における金属の質量パーセント濃度が、60wt%以上である。したがって、集電体10によれば、第2導電性樹脂層200における金属の質量パーセント濃度が比較的高いため、プレス加工に起因する集電体10の貫通抵抗値の上昇を抑制することができる。
また、本発明者(ら)は、第2導電性樹脂層200における金属の質量パーセント濃度を高めることによる他のメリットも見出した。一般的に、リチウムイオン電池の使用中に集電体の温度は上昇する。集電体の温度が上昇すると、集電体の貫通抵抗値も上昇する。本発明者(ら)は、第2導電性樹脂層200における金属の質量パーセント濃度を高めることによって、集電体10の温度上昇に伴なう集電体10の貫通抵抗値の上昇が抑制されることを見出した。また、本発明者(ら)は、第2導電性樹脂層200における金属の質量パーセント濃度を高めることによって、集電体10の表面抵抗値が低下することを見出した。これらについては、後述の実施例を通じて後程詳細に説明する。これらの観点から、集電体10においては、第2導電性樹脂層200における金属の質量パーセント濃度が、60wt%以上となっている。
[3.集電体の製造方法]
図2は、集電体10の製造装置500を模式的に示す図である。図2に示されるように、製造装置500は、Tダイ部510と、原料投入部520,540とを含んでいる。
図2は、集電体10の製造装置500を模式的に示す図である。図2に示されるように、製造装置500は、Tダイ部510と、原料投入部520,540とを含んでいる。
原料投入部520には、第2導電性樹脂層200を形成するための導電性樹脂原料が投入される。原料投入部540には、第1導電性樹脂層100を形成するための導電性樹脂原料が投入される。
Tダイ部510は、原料投入部520,540を介して投入された原料を共押出しすることによって、導電性樹脂原料の溶融物同士を融着させて1枚の一体化したフィルムとするように構成されている。すなわち、Tダイ部510は、原料投入部520,540を介して投入された原料に基づいて、フィルム状の集電体10を生成するように構成されている。このように、集電体10は、例えば、製造装置500によって、第1導電性樹脂層100及び第2導電性樹脂層200が積層されることによって製造される。
[4.特徴]
以上のように、本実施の形態に従う集電体10においては、第2導電性樹脂層200における金属の質量パーセント濃度が、60wt%以上である。したがって、集電体10によれば、第2導電性樹脂層200における金属の質量パーセント濃度が比較的高いため、プレス加工に起因する集電体10の貫通抵抗値の上昇を抑制することができる。
以上のように、本実施の形態に従う集電体10においては、第2導電性樹脂層200における金属の質量パーセント濃度が、60wt%以上である。したがって、集電体10によれば、第2導電性樹脂層200における金属の質量パーセント濃度が比較的高いため、プレス加工に起因する集電体10の貫通抵抗値の上昇を抑制することができる。
また、集電体10においては、第1導電性樹脂層100の厚みが、集電体10の厚みの50%以上である。したがって、集電体10によれば、第1導電性樹脂層100の厚みが比較的厚いため、プレス加工に起因する集電体10の貫通抵抗値の上昇を抑制することができる。
[5.変形例]
以上、実施の形態について説明したが、本発明は、上記実施の形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて、種々の変更が可能である。以下、変形例について説明する。
以上、実施の形態について説明したが、本発明は、上記実施の形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて、種々の変更が可能である。以下、変形例について説明する。
上記実施の形態においては、第2導電性樹脂層200が一層で構成されていた。しかしながら、第2導電性樹脂層200は、必ずしも一層で構成されていなくてもよい。第2導電性樹脂層200は、例えば、複数の層で構成されていてもよい。
図3は、変形例における、集電体10Aの断面を示す図である。図3に示されるように、集電体10Aは、第1導電性樹脂層100と、第2導電性樹脂層200Aとを含んでいる。第2導電性樹脂層200Aは、第1層210Aと、第2層220Aとを含んでいる。第1層210A及び第2層220Aの各々は、上記実施の形態における第2導電性樹脂層200と同様、ポリオレフィンと、導電性フィラーとを含んでいる。第1層210A及び第2層220Aにおいては、金属の質量パーセント濃度が異なっていてもよい。このような構成によれば、金属の質量パーセント濃度を層毎に適切に調節することができる。
また、上記実施の形態においては、第2導電性樹脂層200の上方及び第1導電性樹脂層100の下方に特に金属被膜層が形成されていなかった。しかしながら、第2導電性樹脂層200の上方及び第1導電性樹脂層100の下方の両方又は一方に金属被膜層が形成されてもよい。被覆層に使用される金属種としては、ニッケル、銅、銀、アルミニウムが挙げられる。または、それらの合金でもよい。また、被覆方法としては、蒸着法、スパッタ法、メッキ法、コーティングが挙げられる。
また、上記実施の形態において、集電体10は、共押出成形で製造された。しかしながら、集電体10の製造方法はこれに限定されない。例えば、集電体10は、張り合わせ及びキャスト法で製造されてもよい。
また、第1導電性樹脂層100に白金、金、銀、銅、SUS、ニッケル及びチタンが含まれる群から選択される少なくとも1種類の金属が混合されてもよく、第2導電性樹脂層200に導電性カーボンが混合されてもよい。
[6.実施例等]
<6-1.実施例>
実施例1-8及び比較例1の集電体を準備した。実施例2-4,6-7の各々の集電体は、図1に示されるような2層構成であった。実施例1,5,8及び比較例1の各々の集電体は、図3に示されるような3層構成であった。いずれの例においても、各層はポリプロピレン樹脂を含んでいた。
<6-1.実施例>
実施例1-8及び比較例1の集電体を準備した。実施例2-4,6-7の各々の集電体は、図1に示されるような2層構成であった。実施例1,5,8及び比較例1の各々の集電体は、図3に示されるような3層構成であった。いずれの例においても、各層はポリプロピレン樹脂を含んでいた。
(6-1-1.比較例1)
比較例1の集電体の厚みは、52.1μmであった。集電体の厚みに対する第1導電性樹脂層の厚みの割合は50%であった、第1層及び第2層の導電性フィラーとしてはニッケル(Ni)を用いた。第2層におけるニッケルの質量パーセント濃度は、50wt%であった。第1層におけるニッケルの質量パーセント濃度は、70wt%であった。第1導電性樹脂層の導電性フィラーとしてはファーネスブラックを用いた。第1導電性樹脂層におけるファーネスブラックの質量パーセント濃度は、26wt%であった。
比較例1の集電体の厚みは、52.1μmであった。集電体の厚みに対する第1導電性樹脂層の厚みの割合は50%であった、第1層及び第2層の導電性フィラーとしてはニッケル(Ni)を用いた。第2層におけるニッケルの質量パーセント濃度は、50wt%であった。第1層におけるニッケルの質量パーセント濃度は、70wt%であった。第1導電性樹脂層の導電性フィラーとしてはファーネスブラックを用いた。第1導電性樹脂層におけるファーネスブラックの質量パーセント濃度は、26wt%であった。
(6-1-2.実施例1)
実施例1の集電体の厚みは、53.2μmであった。集電体の厚みに対する第1導電性樹脂層の厚みの割合は50%であった。第1層及び第2層の導電性フィラーとしてはニッケル(Ni)を用いた。第2層におけるニッケルの質量パーセント濃度は、60wt%であった。第1層におけるニッケルの質量パーセント濃度は、70wt%であった。第1導電性樹脂層の導電性フィラーとしてはファーネスブラックを用いた。第1導電性樹脂層におけるファーネスブラックの質量パーセント濃度は、26wt%であった。
実施例1の集電体の厚みは、53.2μmであった。集電体の厚みに対する第1導電性樹脂層の厚みの割合は50%であった。第1層及び第2層の導電性フィラーとしてはニッケル(Ni)を用いた。第2層におけるニッケルの質量パーセント濃度は、60wt%であった。第1層におけるニッケルの質量パーセント濃度は、70wt%であった。第1導電性樹脂層の導電性フィラーとしてはファーネスブラックを用いた。第1導電性樹脂層におけるファーネスブラックの質量パーセント濃度は、26wt%であった。
(6-1-3.実施例2)
実施例2の集電体の厚みは、52.6μmであった。集電体の厚みに対する第1導電性樹脂層の厚みの割合は50%であった。第2導電性樹脂層の導電性フィラーとしてはニッケル(Ni)を用いた。第2導電性樹脂層におけるニッケルの質量パーセント濃度は、71wt%であった。第1導電性樹脂層の導電性フィラーとしてはファーネスブラックを用いた。第1導電性樹脂層におけるファーネスブラックの質量パーセント濃度は、30wt%であった。
実施例2の集電体の厚みは、52.6μmであった。集電体の厚みに対する第1導電性樹脂層の厚みの割合は50%であった。第2導電性樹脂層の導電性フィラーとしてはニッケル(Ni)を用いた。第2導電性樹脂層におけるニッケルの質量パーセント濃度は、71wt%であった。第1導電性樹脂層の導電性フィラーとしてはファーネスブラックを用いた。第1導電性樹脂層におけるファーネスブラックの質量パーセント濃度は、30wt%であった。
(6-1-4.実施例3)
実施例3の集電体の厚みは、52.4μmであった。集電体の厚みに対する第1導電性樹脂層の厚みの割合は50%であった。第2導電性樹脂層の導電性フィラーとしてはニッケル(Ni)を用いた。第2導電性樹脂層におけるニッケルの質量パーセント濃度は、72wt%であった。第1導電性樹脂層の導電性フィラーとしてはファーネスブラックを用いた。第1導電性樹脂層におけるファーネスブラックの質量パーセント濃度は、30wt%であった。
実施例3の集電体の厚みは、52.4μmであった。集電体の厚みに対する第1導電性樹脂層の厚みの割合は50%であった。第2導電性樹脂層の導電性フィラーとしてはニッケル(Ni)を用いた。第2導電性樹脂層におけるニッケルの質量パーセント濃度は、72wt%であった。第1導電性樹脂層の導電性フィラーとしてはファーネスブラックを用いた。第1導電性樹脂層におけるファーネスブラックの質量パーセント濃度は、30wt%であった。
(6-1-5.実施例4)
実施例4の集電体の厚みは、53.8μmであった。集電体の厚みに対する第1導電性樹脂層の厚みの割合は50%であった。第2導電性樹脂層の導電性フィラーとしてはニッケル(Ni)を用いた。第2導電性樹脂層におけるニッケルの質量パーセント濃度は、73wt%であった。第1導電性樹脂層の導電性フィラーとしてはファーネスブラックを用いた。第1導電性樹脂層におけるファーネスブラックの質量パーセント濃度は、30wt%であった。
実施例4の集電体の厚みは、53.8μmであった。集電体の厚みに対する第1導電性樹脂層の厚みの割合は50%であった。第2導電性樹脂層の導電性フィラーとしてはニッケル(Ni)を用いた。第2導電性樹脂層におけるニッケルの質量パーセント濃度は、73wt%であった。第1導電性樹脂層の導電性フィラーとしてはファーネスブラックを用いた。第1導電性樹脂層におけるファーネスブラックの質量パーセント濃度は、30wt%であった。
(6-1-6.実施例5)
実施例5の集電体の厚みは、56.6μmであった。集電体の厚みに対する第1導電性樹脂層の厚みの割合は50%であった。第1層及び第2層の導電性フィラーとしてはニッケル(Ni)を用いた。第2層におけるニッケルの質量パーセント濃度は、80wt%であった。第1層におけるニッケルの質量パーセント濃度は、70wt%であった。第1導電性樹脂層の導電性フィラーとしてはファーネスブラックを用いた。第1導電性樹脂層におけるファーネスブラックの質量パーセント濃度は、32wt%であった。
実施例5の集電体の厚みは、56.6μmであった。集電体の厚みに対する第1導電性樹脂層の厚みの割合は50%であった。第1層及び第2層の導電性フィラーとしてはニッケル(Ni)を用いた。第2層におけるニッケルの質量パーセント濃度は、80wt%であった。第1層におけるニッケルの質量パーセント濃度は、70wt%であった。第1導電性樹脂層の導電性フィラーとしてはファーネスブラックを用いた。第1導電性樹脂層におけるファーネスブラックの質量パーセント濃度は、32wt%であった。
(6-1-7.実施例6)
実施例6の集電体の厚みは、48.6μmであった。集電体の厚みに対する第1導電性樹脂層の厚みの割合は40%であった。第2導電性樹脂層の導電性フィラーとしてはニッケル(Ni)を用いた。第2導電性樹脂層におけるニッケルの質量パーセント濃度は、73wt%であった。第1導電性樹脂層の導電性フィラーとしてはファーネスブラックを用いた。第1導電性樹脂層におけるファーネスブラックの質量パーセント濃度は、30wt%であった。
実施例6の集電体の厚みは、48.6μmであった。集電体の厚みに対する第1導電性樹脂層の厚みの割合は40%であった。第2導電性樹脂層の導電性フィラーとしてはニッケル(Ni)を用いた。第2導電性樹脂層におけるニッケルの質量パーセント濃度は、73wt%であった。第1導電性樹脂層の導電性フィラーとしてはファーネスブラックを用いた。第1導電性樹脂層におけるファーネスブラックの質量パーセント濃度は、30wt%であった。
(6-1-8.実施例7)
実施例7の集電体の厚みは、50.6μmであった。集電体の厚みに対する第1導電性樹脂層の厚みの割合は67%であった。第2導電性樹脂層の導電性フィラーとしてはニッケル(Ni)を用いた。第2導電性樹脂層におけるニッケルの質量パーセント濃度は、73wt%であった。第1導電性樹脂層の導電性フィラーとしてはファーネスブラックを用いた。第1導電性樹脂層におけるファーネスブラックの質量パーセント濃度は、30wt%であった。
実施例7の集電体の厚みは、50.6μmであった。集電体の厚みに対する第1導電性樹脂層の厚みの割合は67%であった。第2導電性樹脂層の導電性フィラーとしてはニッケル(Ni)を用いた。第2導電性樹脂層におけるニッケルの質量パーセント濃度は、73wt%であった。第1導電性樹脂層の導電性フィラーとしてはファーネスブラックを用いた。第1導電性樹脂層におけるファーネスブラックの質量パーセント濃度は、30wt%であった。
(6-1-9.実施例8)
実施例8の集電体の厚みは、47.6μmであった。集電体の厚みに対する第1導電性樹脂層の厚みの割合は75%であった。第2導電性樹脂層の導電性フィラーとしてはニッケル(Ni)を用いた。第2層におけるニッケルの質量パーセント濃度は、75wt%であった。第1層におけるニッケルの質量パーセント濃度は、70wt%であった。第1導電性樹脂層の導電性フィラーとしてはファーネスブラックを用いた。第1導電性樹脂層におけるファーネスブラックの質量パーセント濃度は、30wt%であった。
実施例8の集電体の厚みは、47.6μmであった。集電体の厚みに対する第1導電性樹脂層の厚みの割合は75%であった。第2導電性樹脂層の導電性フィラーとしてはニッケル(Ni)を用いた。第2層におけるニッケルの質量パーセント濃度は、75wt%であった。第1層におけるニッケルの質量パーセント濃度は、70wt%であった。第1導電性樹脂層の導電性フィラーとしてはファーネスブラックを用いた。第1導電性樹脂層におけるファーネスブラックの質量パーセント濃度は、30wt%であった。
実施例1-8及び比較例1に関し、以下の表1にまとめる。
(6-2-1.プレス前後における抵抗値の比較)
各実施例における集電体の貫通抵抗値が集電体のプレス前後でどの程度変化するかに関し試験を行なった。具体的には、以下の手順で試験を行なった。まず、各実施例に関し、プレス前の貫通抵抗値を測定した。その後、各実施例に対して面プレスを行ない、各実施例に関しプレス後の貫通抵抗値を測定した。面プレスの方法は以下の通りである。プレス前における貫通抵抗値を測定したサンプルを大きさ100mm角、厚さ1.5mmの平滑なSUS板で挟み、圧力16.5kNにて10秒間プレスを行った[SA-401 テスター産業(株)製]。
プレス前後における貫通抵抗値の測定方法は以下の通りである。各集電体から7cm角サンプルを裁断して取り出し、電気抵抗測定器[IMC-0240型 井元製作所(株)製]及び抵抗計[RM3548 HIOKI製]を用いて集電体の厚み方向(貫通方向)の抵抗値を測定した。電気抵抗測定器に2.16kgの荷重をかけた状態で集電体の抵抗値を測定し、荷重をかけてから60秒後の値をその集電体の抵抗値とした。下記式(1)に示すように、抵抗測定時の治具の接触表面の面積(3.14cm2)を抵抗値に乗算した値を貫通抵抗値(Ω・cm2)とした。
貫通抵抗値(Ω・cm2)=抵抗値(Ω)×3.14(cm2)・・・(1)
なお、貫通抵抗値の測定方法は、他の試験においても共通である。
貫通抵抗値(Ω・cm2)=抵抗値(Ω)×3.14(cm2)・・・(1)
なお、貫通抵抗値の測定方法は、他の試験においても共通である。
(6-2-2.温度毎の抵抗値の比較)
各実施例における集電体の貫通抵抗値が周囲の温度変化によってどの程度影響を受けるかに関し試験を行なった。具体的には、以下の手順で試験を行なった。
各実施例における集電体の貫通抵抗値が周囲の温度変化によってどの程度影響を受けるかに関し試験を行なった。具体的には、以下の手順で試験を行なった。
(1)室温環境に集電体を2分間静置し、その後、集電体の貫通抵抗値を測定した。この測定結果を室温における抵抗値とした。
(2)60℃の恒温槽内に集電体を2分間静置し、その後、集電体を恒温槽から取り出し、貫通抵抗値を測定した。この測定結果を60℃における抵抗値とした。
(3)80℃の恒温槽内に集電体を2分間静置し、その後、集電体を恒温槽から取り出し、貫通抵抗値を測定した。この測定結果を80℃における抵抗値とした。
(4)100℃の恒温槽内に集電体を2分間静置し、その後、集電体を恒温槽から取り出し、貫通抵抗値を測定した。この測定結果を100℃における抵抗値とした。
(6-2-3.表面抵抗の測定)
実施例1-5の集電体に関し、貫通抵抗値を測定したサンプルの第2導電性樹脂層面において表面抵抗計[ロレスタAX MCP-T370日東精工アナリテック(株)製]にて表面抵抗値を測定した。なお、測定はアクリル板上にて行った。
実施例1-5の集電体に関し、貫通抵抗値を測定したサンプルの第2導電性樹脂層面において表面抵抗計[ロレスタAX MCP-T370日東精工アナリテック(株)製]にて表面抵抗値を測定した。なお、測定はアクリル板上にて行った。
(6-2-4.引裂強度の測定)
実施例4,6-8における集電体に関し、TD(Transverse Direction)について、引裂強度を測定した。引裂強度の測定は、JIS-K-6732に準拠した方法によって行なわれた。
実施例4,6-8における集電体に関し、TD(Transverse Direction)について、引裂強度を測定した。引裂強度の測定は、JIS-K-6732に準拠した方法によって行なわれた。
図4は、引裂き強度の測定に用いられた集電体10の試験片の形状を示す図である。引裂強度の測定においては、直角型引裂強さが測定された。具体的には、図4に示されるように切り出された試験片を引張試験機に試験片の軸方向と試験機のつかみ具方向とを一致させて正確に取り付けた。測定器としては、オートグラフ(島津精密万能試験機 オートグラフ AG-X 500N)が用いられた。試験速度は200mm/minとし、試験片切断時の強さが測定された。
<6-3.試験結果>
(6-3-1.プレス前後における抵抗値の比較結果)
表2は、実施例1-5に関し、プレス前後における抵抗値の変化をまとめたものである。なお、比較例1はプレス前の貫通抵抗が非常に高く、評価に値しなかった。
(6-3-1.プレス前後における抵抗値の比較結果)
表2は、実施例1-5に関し、プレス前後における抵抗値の変化をまとめたものである。なお、比較例1はプレス前の貫通抵抗が非常に高く、評価に値しなかった。
表3は、実施例4,6-8に関し、プレス前後における抵抗値の変化をまとめたものである。
(6-3-2.温度毎の抵抗値の比較結果)
表4は、実施例1-5に関し、温度毎での集電体の抵抗値の変化をまとめたものである。表5は、室温におけるデータを1.00とした場合に、温度毎で実施例1-5の各々の集電体の抵抗値がどのように変化するかをまとめたものである。
表4は、実施例1-5に関し、温度毎での集電体の抵抗値の変化をまとめたものである。表5は、室温におけるデータを1.00とした場合に、温度毎で実施例1-5の各々の集電体の抵抗値がどのように変化するかをまとめたものである。
表6は、実施例4,6-8に関し、温度毎での集電体の抵抗値の変化をまとめたものである。表7は、室温におけるデータを1.00とした場合に、温度毎で実施例4,6-8の各々の集電体の抵抗値がどのように変化するかをまとめたものである。
(6-3-3.表面抵抗の測定結果)
表8は、実施例1-5に関し、表面抵抗値をまとめたものである。
表8は、実施例1-5に関し、表面抵抗値をまとめたものである。
(6-3-4.引裂強度の測定結果)
表9は、実施例4,6-8に関し、引裂強度をまとめたものである。
表9は、実施例4,6-8に関し、引裂強度をまとめたものである。
10,10A 集電体、100 第1導電性樹脂層、200,200A 第2導電性樹脂層、210A 第1層、220A 第2層、500 製造装置、510 Tダイ、520,540 原料投入部。
Claims (5)
- リチウムイオン電池用の集電体であって、
第1導電性フィラーを含む第1導電性樹脂層と、
前記第1導電性樹脂層上に形成されており、第2導電性フィラーを含む第2導電性樹脂層とを備え、
前記第1導電性フィラーは、導電性カーボンであり、
前記第2導電性フィラーは、白金、金、銀、銅、SUS(Stainless Used Steel)、ニッケル及びチタンが含まれる群から選択される少なくとも1種類の金属を含み、
前記第2導電性樹脂層における前記金属の質量パーセント濃度は、60wt%以上である、集電体。 - 前記第2導電性樹脂層における前記金属の質量パーセント濃度は、70wt%以上である、請求項1に記載の集電体。
- 前記第2導電性樹脂層は、前記第1導電性樹脂層に近い第1層と、前記第1導電性樹脂層から遠い第2層とを含み、
前記第2層における前記金属の質量パーセント濃度は、60wt%以上である、請求項1に記載の集電体。 - 前記第2導電性フィラーはニッケルを含む、請求項1から請求項3のいずれか1項に記載の集電体。
- 前記第1導電性樹脂層の厚みは、前記集電体の厚みの50%以上である、請求項1から請求項4のいずれか1項に記載の集電体。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020192478A JP2022081130A (ja) | 2020-11-19 | 2020-11-19 | 集電体 |
CN202180078062.2A CN116491001A (zh) | 2020-11-19 | 2021-11-04 | 集电体 |
PCT/JP2021/040568 WO2022107605A1 (ja) | 2020-11-19 | 2021-11-04 | 集電体 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020192478A JP2022081130A (ja) | 2020-11-19 | 2020-11-19 | 集電体 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2022081130A true JP2022081130A (ja) | 2022-05-31 |
Family
ID=81708751
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020192478A Pending JP2022081130A (ja) | 2020-11-19 | 2020-11-19 | 集電体 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2022081130A (ja) |
CN (1) | CN116491001A (ja) |
WO (1) | WO2022107605A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024057827A1 (ja) * | 2022-09-13 | 2024-03-21 | グンゼ株式会社 | 導電性フィルム |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5488590B2 (ja) * | 2009-04-09 | 2014-05-14 | 日産自動車株式会社 | 二次電池用集電体及びこれを用いた二次電池 |
JP6785110B2 (ja) * | 2016-09-29 | 2020-11-18 | 三洋化成工業株式会社 | リチウムイオン電池用集電体及びリチウムイオン電池 |
JP7145727B2 (ja) * | 2018-10-22 | 2022-10-03 | 三洋化成工業株式会社 | 負極用樹脂集電体の製造方法、リチウムイオン電池用負極の製造方法、及び、リチウムイオン電池の製造方法 |
-
2020
- 2020-11-19 JP JP2020192478A patent/JP2022081130A/ja active Pending
-
2021
- 2021-11-04 CN CN202180078062.2A patent/CN116491001A/zh active Pending
- 2021-11-04 WO PCT/JP2021/040568 patent/WO2022107605A1/ja active Application Filing
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024057827A1 (ja) * | 2022-09-13 | 2024-03-21 | グンゼ株式会社 | 導電性フィルム |
Also Published As
Publication number | Publication date |
---|---|
CN116491001A (zh) | 2023-07-25 |
WO2022107605A1 (ja) | 2022-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10312524B2 (en) | Electrical connection structure | |
JP6998278B2 (ja) | 樹脂集電体、積層型樹脂集電体、及び、リチウムイオン電池 | |
JP5954318B2 (ja) | 複層導電性フィルム、これを用いた集電体、電池および双極型電池 | |
EP2572880B1 (en) | Laminated porous film, separator for lithium cell and cell | |
KR20170113145A (ko) | 전지용 세퍼레이터 및 그의 제조 방법 | |
CN110249449B (zh) | 电池用隔膜、电极体和非水电解质二次电池 | |
US12015140B2 (en) | Method for producing resin collector for negative electrodes, method for producing negative electrode for lithium ion batteries, and method for producing lithium ion battery | |
WO2022107605A1 (ja) | 集電体 | |
WO2022107603A1 (ja) | 集電体 | |
WO2005090452A1 (ja) | 導電性熱可塑性樹脂フィルム及び導電性熱可塑性樹脂積層フィルム | |
KR20200010110A (ko) | 연료 전지 셀의 제조 방법 및 연료 전지 셀 | |
JP7055059B2 (ja) | 樹脂集電体の製造方法、リチウムイオン電池用電極の製造方法、及び、リチウムイオン電池の製造方法 | |
JP7194048B2 (ja) | 樹脂集電体、及び、リチウムイオン電池 | |
JPWO2018124176A1 (ja) | 電池用セパレータ、電極体及び非水電解質二次電池 | |
WO2021084900A1 (ja) | リチウムイオン電池用集電体、及び、該集電体の製造方法 | |
JP2018137221A (ja) | 樹脂集電体、及び、リチウムイオン電池 | |
KR101464906B1 (ko) | 도전성 가교 필름, 그 필름의 제조 방법 및 그 필름의 용도 | |
JP7055694B2 (ja) | 樹脂集電体、リチウムイオン電池用電極、及び、リチウムイオン電池 | |
JP2019139915A (ja) | リチウムイオン電池用正極、及び、リチウムイオン電池 | |
JP2019110063A (ja) | 非水電解液二次電池 | |
WO2019097877A1 (ja) | 樹脂成形体およびタブリード | |
JP5207331B2 (ja) | 導電性熱可塑性樹脂フィルム | |
WO2024161851A1 (ja) | 導電性フィルム | |
JP2011006533A (ja) | 導電性重合体フィルム | |
JP2024024196A (ja) | 導電性フィルム、及び、導電性フィルムの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20210325 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20231115 |