WO2020083236A1 - 一种空气除尘系统及方法 - Google Patents

一种空气除尘系统及方法 Download PDF

Info

Publication number
WO2020083236A1
WO2020083236A1 PCT/CN2019/112312 CN2019112312W WO2020083236A1 WO 2020083236 A1 WO2020083236 A1 WO 2020083236A1 CN 2019112312 W CN2019112312 W CN 2019112312W WO 2020083236 A1 WO2020083236 A1 WO 2020083236A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric field
anode
dust
dust removal
cathode
Prior art date
Application number
PCT/CN2019/112312
Other languages
English (en)
French (fr)
Inventor
唐万福
段志军
邹永安
奚勇
Original Assignee
上海必修福企业管理有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海必修福企业管理有限公司 filed Critical 上海必修福企业管理有限公司
Priority to BR112021007612-3A priority Critical patent/BR112021007612A2/pt
Priority to JP2021546434A priority patent/JP2022508868A/ja
Priority to EP19875672.8A priority patent/EP3871779A4/en
Priority to CN201980069644.7A priority patent/CN113423506B/zh
Priority to US17/309,090 priority patent/US20220023877A1/en
Publication of WO2020083236A1 publication Critical patent/WO2020083236A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/06Plant or installations having external electricity supply dry type characterised by presence of stationary tube electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/10Filter screens essentially made of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D47/00Separating dispersed particles from gases, air or vapours by liquid as separating agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/346Controlling the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/38Removing components of undefined structure
    • B01D53/44Organic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/01Pretreatment of the gases prior to electrostatic precipitation
    • B03C3/011Prefiltering; Flow controlling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/017Combinations of electrostatic separation with other processes, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/08Plant or installations having external electricity supply dry type characterised by presence of stationary flat electrodes arranged with their flat surfaces parallel to the gas stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/09Plant or installations having external electricity supply dry type characterised by presence of stationary flat electrodes arranged with their flat surfaces at right angles to the gas stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/12Plant or installations having external electricity supply dry type characterised by separation of ionising and collecting stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/14Plant or installations having external electricity supply dry type characterised by the additional use of mechanical effects, e.g. gravity
    • B03C3/15Centrifugal forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/14Plant or installations having external electricity supply dry type characterised by the additional use of mechanical effects, e.g. gravity
    • B03C3/155Filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/16Plant or installations having external electricity supply wet type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/28Plant or installations without electricity supply, e.g. using electrets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/38Particle charging or ionising stations, e.g. using electric discharge, radioactive radiation or flames
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/41Ionising-electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • B03C3/47Collecting-electrodes flat, e.g. plates, discs, gratings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • B03C3/49Collecting-electrodes tubular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/60Use of special materials other than liquids
    • B03C3/62Use of special materials other than liquids ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/66Applications of electricity supply techniques
    • B03C3/68Control systems therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/66Applications of electricity supply techniques
    • B03C3/70Applications of electricity supply techniques insulating in electric separators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/74Cleaning the electrodes
    • B03C3/78Cleaning the electrodes by washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/86Electrode-carrying means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/88Cleaning-out collected particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/88Cleaning-out collected particles
    • B03C3/885Cleaning-out collected particles by travelling or oscillating electric fields, e.g. electric field curtains
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/05Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of air, e.g. by mixing exhaust with air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/02Air cleaners
    • F02M35/0217Air cleaners acting by electric discharge; Electrostatic precipitators therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/02Air cleaners
    • F02M35/08Air cleaners with means for removing dust, particles or liquids from cleaners; with means for indicating clogging; with by-pass means; Regeneration of cleaners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/28Arrangement or mounting of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/10Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering
    • F24F8/192Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering by electrical means, e.g. by applying electrostatic fields or high voltages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/30Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by ionisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/80Self-contained air purifiers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2247/00Details relating to the separation of dispersed particles from gases, air or vapours by liquid as separating agent
    • B01D2247/02Enhancing the particle separation by electrostatic or magnetic effects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/06Polluted air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/04Ionising electrode being a wire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/08Ionising electrode being a rod
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/12Cleaning the device by burning the trapped particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/22Details of magnetic or electrostatic separation characterised by the magnetic field, e.g. its shape or generation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/30Details of magnetic or electrostatic separation for use in or with vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/74Cleaning the electrodes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/01Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust by means of electric or electrostatic separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention belongs to the field of air purification, and relates to an air dust removal system and method.
  • the air is layered on the surface of the earth and is transparent and colorless and odorless. It is mainly composed of nitrogen and oxygen and has an important impact on human survival and production. With the continuous improvement of people's living standards, people gradually realized the importance of air quality. In the prior art, air is usually removed through a filter or the like. However, the dust removal effect of this method is unstable, the energy consumption is large, and it is easy to cause secondary pollution.
  • the object of the present invention is to provide an air dust removal system and method for solving the problem that the prior art cannot effectively perform air dust removal.
  • the present invention creatively uses the ionization dust removal method to remove dust from the air.
  • the method has no pressure difference, does not produce resistance to the air, and can collect a wide range of pollutants in the air, and has stronger dust removal capabilities and higher dust removal efficiency.
  • Example 1 provided by the present invention: An air dust removal system, the air dust removal system includes an inlet of the dust removal system, an outlet of the dust removal system, and an electric field device.
  • Example 2 provided by the present invention includes the above example 1, wherein the electric field device includes an electric field device inlet, an electric field device outlet, a dust removal electric field cathode and a dust removal electric field anode, the dust removal electric field cathode and the dust removal electric field anode are used for Generate an ionization dust removal electric field.
  • the electric field device includes an electric field device inlet, an electric field device outlet, a dust removal electric field cathode and a dust removal electric field anode, the dust removal electric field cathode and the dust removal electric field anode are used for Generate an ionization dust removal electric field.
  • Example 3 provided by the present invention: including the above example 2, wherein the dust-removing electric field anode includes a first anode portion and a second anode portion, the first anode portion is near the entrance of the electric field device, and the second anode portion is near At the outlet of the electric field device, at least one cathode support plate is provided between the first anode portion and the second anode portion.
  • Example 4 provided by the present invention includes the above example 3, wherein the electric field device further includes an insulating mechanism for achieving insulation between the cathode support plate and the anode of the dust removal electric field.
  • Example 5 provided by the present invention includes the above example 4, wherein an electric field flow path is formed between the dust removal electric field anode and the dust removal electric field cathode, and the insulation mechanism is provided outside the electric field flow path.
  • Example 6 provided by the present invention includes the above example 4 or 5, wherein the insulating mechanism includes an insulating portion and a heat insulating portion; the material of the insulating portion is a ceramic material or a glass material.
  • Example 7 provided by the present invention includes the above example 6, wherein the insulating portion is an umbrella-shaped string ceramic column, an umbrella-shaped string glass column, a column-shaped string ceramic column or a column-shaped glass column, and the glaze is hung on the inside or outside of the umbrella.
  • the insulating portion is an umbrella-shaped string ceramic column, an umbrella-shaped string glass column, a column-shaped string ceramic column or a column-shaped glass column, and the glaze is hung on the inside or outside of the umbrella.
  • Example 8 provided by the present invention includes the above example 7, wherein the distance between the outer edge of the umbrella-shaped string ceramic column or the umbrella-shaped string glass column and the anode of the dust-removing electric field is greater than 1.4 times the electric field distance, and the umbrella-shaped string ceramic column or The total length of the umbrella flanges of the umbrella-shaped string glass column is 1.4 times greater than the insulation spacing of the umbrella-shaped string ceramic column or umbrella-shaped string glass column. The insulation distance of the ceramic column or glass string with umbrella-shaped string is 1.4 times.
  • Example 9 provided by the present invention: including any one of the above examples 3 to 8, wherein the length of the first anode portion is 1/10 to 1/4, 1/4 of the length of the anode of the dust removal electric field To 1/3, 1/3 to 1/2, 1/2 to 2/3, 2/3 to 3/4, or 3/4 to 9/10.
  • Example 10 provided by the present invention includes any one of the above examples 3 to 9, wherein the length of the first anode portion is long enough to remove part of the dust and reduce accumulation in the insulating mechanism and the Describe the dust on the cathode support plate to reduce the electrical breakdown caused by the dust.
  • Example 11 provided by the present invention includes any one of the above examples 3 to 10, wherein the second anode portion includes a dust accumulation section and a reserved dust accumulation section.
  • Example 12 provided by the present invention: including any one of the above examples 2 to 11, wherein the dust-removing electric field cathode includes at least one electrode rod.
  • Example 13 provided by the present invention: including the above example 12, wherein the diameter of the electrode rod is not greater than 3 mm.
  • Example 14 provided by the present invention includes the above example 12 or 13, wherein the electrode rod has a needle shape, a polygonal shape, a burr shape, a threaded rod shape or a column shape.
  • Example 15 provided by the present invention includes any one of the above examples 2 to 14, wherein the dust-removing electric field anode is composed of a hollow tube bundle.
  • Example 16 provided by the present invention includes the above Example 15, wherein the hollow cross section of the anode tube bundle of the dust removal electric field adopts a circle or a polygon.
  • Example 17 provided by the present invention includes the above Example 16, wherein the polygon is a hexagon.
  • Example 18 provided by the present invention: including any one of the above examples 14 to 17, wherein the tube bundle of the anode of the dust-removing electric field has a honeycomb shape.
  • Example 19 provided by the present invention includes any one of the above examples 2 to 18, wherein the dedusting electric field cathode penetrates the dedusting electric field anode.
  • Example 20 provided by the present invention includes any one of the above examples 2 to 19, wherein, when the electric field accumulates dust to a certain degree, the electric field device performs a dust cleaning process.
  • Example 21 provided by the present invention includes the above Example 20, wherein the electric field device detects the electric field current to determine whether the dust is accumulated to a certain degree, and a dust removal process is required.
  • Example 22 provided by the present invention includes the above-mentioned Example 20 or 21, wherein the electric field device uses a raised electric field voltage to perform the dust cleaning process.
  • Example 23 provided by the present invention: includes the above example 20 or 21, wherein the electric field device performs a dust removal process using an electric field back-corona discharge phenomenon.
  • Example 24 provided by the present invention includes the above example 20 or 21, wherein the electric field device utilizes the electric field back-corona discharge phenomenon to increase the electric field voltage and limit the injection current to perform the dust removal process.
  • Example 25 provided by the present invention includes the above example 20 or 21, wherein the electric field device utilizes the electric field back-corona discharge phenomenon to increase the electric field voltage, limit the injection current, and cause the rapid discharge occurring at the position of the anode carbon deposit Plasma, which oxidizes the organic components of the dust deeply, breaks the polymer bonds, and forms small-molecule carbon dioxide and water for dust removal.
  • the electric field device utilizes the electric field back-corona discharge phenomenon to increase the electric field voltage, limit the injection current, and cause the rapid discharge occurring at the position of the anode carbon deposit Plasma, which oxidizes the organic components of the dust deeply, breaks the polymer bonds, and forms small-molecule carbon dioxide and water for dust removal.
  • Example 26 provided by the present invention includes any one of the above examples 2 to 25, wherein the electric field device further includes an auxiliary electric field unit for generating an auxiliary electric field that is not parallel to the ionization and dust removal electric field.
  • Example 27 provided by the present invention includes any one of the above examples 2 to 25, wherein the electric field device further includes an auxiliary electric field unit, the ionization and dust removal electric field includes a flow channel, and the auxiliary electric field unit is used to generate An auxiliary electric field that is not perpendicular to the flow channel.
  • Example 28 provided by the present invention includes the above example 26 or 27, wherein the auxiliary electric field unit includes a first electrode, and the first electrode of the auxiliary electric field unit is disposed at or near the inlet of the ionization and dust removal electric field.
  • Example 29 provided by the present invention: including the above example 28, wherein the first electrode is a cathode.
  • Example 30 provided by the present invention includes the above example 28 or 29, wherein the first electrode of the auxiliary electric field unit is an extension of the cathode of the dedusting electric field.
  • Example 32 provided by the present invention: including any one of the above examples 26 to 31, wherein the auxiliary electric field unit includes a second electrode, and the second electrode of the auxiliary electric field unit is disposed at or near the ionization dust removal The exit of the electric field.
  • Example 33 provided by the present invention: including the above example 32, wherein the second electrode is an anode.
  • Example 34 provided by the present invention includes the above example 32 or 33, wherein the second electrode of the auxiliary electric field unit is an extension of the anode of the dust removal electric field.
  • Example 36 provided by the present invention includes any one of the above examples 26 to 29, 32 and 33, wherein the electrode of the auxiliary electric field and the electrode of the ionization and dust removal electric field are provided independently.
  • Example 37 provided by the present invention includes any one of the above Examples 2 to 36, wherein the ratio of the dust accumulation area of the dust removal electric field anode to the discharge area of the dust removal electric field cathode is 1.667: 1-1680: 1.
  • Example 38 provided by the present invention: including any one of the above Examples 2 to 36, wherein the ratio of the dust accumulation area of the dust removal electric field anode to the discharge area of the dust removal electric field cathode is 6.67: 1-56.67: 1.
  • Example 39 provided by the present invention includes any one of the above examples 2 to 38, wherein the diameter of the dust-removing electric field cathode is 1-3 mm, and the pole spacing between the dust-removing electric field anode and the dust-removing electric field cathode is 2.5-139.9 mm; the ratio of the dust accumulation area of the dust-removing electric field anode to the discharge area of the dust-removing electric field cathode is 1.667: 1-1680: 1.
  • Example 40 provided by the present invention includes any one of the above examples 2 to 38, wherein the electrode separation between the dust removal electric field anode and the dust removal electric field cathode is less than 150 mm.
  • Example 41 provided by the present invention includes any one of the above examples 2 to 38, wherein the electrode separation between the anode of the dust removal electric field and the cathode of the dust removal electric field is 2.5-139.9 mm.
  • Example 42 provided by the present invention: including any one of the above examples 2 to 38, wherein the electrode separation between the anode of the dust removal electric field and the cathode of the dust removal electric field is 5-100 mm.
  • Example 43 provided by the present invention includes any one of the above examples 2 to 42, wherein the length of the anode of the dust-removing electric field is 10 to 180 mm.
  • Example 44 provided by the present invention: including any one of the above examples 2 to 42, wherein the length of the dust-removing electric field anode is 60-180 mm.
  • Example 45 provided by the present invention: including any one of the above examples 2 to 44, wherein the length of the dust-removing electric field cathode is 30-180 mm.
  • Example 46 provided by the present invention: including any one of the above examples 2 to 44, wherein the length of the dust-removing electric field cathode is 54-176 mm.
  • Example 47 provided by the present invention includes any one of the above examples 26 to 46, wherein, during operation, the number of couplings of the ionization and dust removal electric field is ⁇ 3.
  • Example 48 provided by the present invention includes any one of the above Examples 2 to 46, wherein the ratio of the dust accumulation area of the dust removal electric field anode to the discharge area of the dust removal electric field cathode, the dust removal electric field anode and The pole spacing between the cathodes of the dedusting electric field, the length of the anode of the dedusting electric field, and the length of the cathode of the dedusting electric field make the number of couplings of the ionizing dedusting electric field ⁇ 3.
  • Example 49 provided by the present invention includes any one of the above examples 2 to 48, wherein the value range of the electric field voltage of the ionization and dust removal is 1kv to 50kv.
  • Example 50 provided by the present invention includes any one of the above examples 2 to 49, wherein the electric field device further includes several connection housings, and the series electric field stages are connected through the connection housings.
  • Example 51 provided by the present invention includes the above example 50, wherein the distance between adjacent electric field levels is greater than 1.4 times the pole pitch.
  • Example 52 provided by the present invention includes any one of the above examples 2 to 51, wherein the electric field device further includes a front electrode, and the front electrode is at the entrance of the electric field device and the anode of the dust removal electric field Between the ionization and dust removal electric field formed by the cathode of the dust removal electric field.
  • Example 53 provided by the present invention includes the above example 52, wherein the front electrode is dot-shaped, wire-shaped, mesh-shaped, orifice-shaped, plate-shaped, needle-rod-shaped, ball cage-shaped, box-shaped, tubular, Material natural form, or material processing form.
  • Example 54 provided by the present invention includes the above example 52 or 53, wherein the front electrode is provided with a through hole.
  • Example 55 provided by the present invention includes the above example 54, wherein the through hole is polygonal, circular, elliptical, square, rectangular, trapezoidal, or rhombic.
  • Example 56 provided by the present invention: including the above example 54 or 55, wherein the size of the through hole is 0.1-3 mm.
  • Example 57 provided by the present invention: including any one of the above examples 52 to 56, wherein the front electrode is a combination of one or more forms of solid, liquid, gas molecular cluster, or plasma .
  • Example 58 provided by the present invention includes any one of the above examples 52 to 57, wherein the front electrode is a conductive mixed state substance, a biological natural mixed conductive substance, or an object is artificially processed to form a conductive substance.
  • Example 59 provided by the present invention includes any one of the above examples 52 to 58, wherein the front electrode is 304 steel or graphite.
  • Example 60 provided by the present invention: including any one of the above examples 52 to 58, wherein the front electrode is an ion-containing conductive liquid.
  • Example 61 provided by the present invention: including any one of the above examples 52 to 60, wherein, during operation, before the air with pollutants enters the ionization and dedusting electric field formed by the dedusting electric field cathode and the dedusting electric field anode, And when the air with pollutants passes through the front electrode, the front electrode charges the pollutants in the air.
  • Example 62 provided by the present invention includes the above example 61, in which when the air with pollutants enters the ionization dust removal electric field, the anode of the dust removal electric field exerts an attractive force on the charged pollutants to cause the pollutants to the The anode of the dedusting electric field moves until pollutants adhere to the anode of the dedusting electric field.
  • Example 63 provided by the present invention: includes the above example 61 or 62, wherein the front electrode introduces electrons into pollutants, and the electrons are between the pollutants between the front electrode and the anode of the dust removal electric field Transfer it to make more pollutants electrified.
  • Example 64 provided by the present invention includes any one of the above examples 61 to 63, wherein between the front electrode and the anode of the dust-removing electric field, electrons are conducted through pollutants and an electric current is formed.
  • Example 65 provided by the present invention includes any one of the above examples 61 to 64, wherein the front electrode charges the pollutant by contact with the pollutant.
  • Example 66 provided by the present invention includes any one of the above examples 61 to 65, wherein the front electrode charges the pollutants by means of energy fluctuation.
  • Example 67 provided by the present invention includes any one of the above examples 61 to 66, wherein the front electrode is provided with a through hole.
  • Example 68 provided by the present invention includes any one of the above examples 52 to 67, wherein the front electrode is linear and the dust-removing electric field anode is planar.
  • Example 69 provided by the present invention includes any one of the above examples 52 to 68, wherein the front electrode is perpendicular to the dedusting electric field anode.
  • Example 70 provided by the present invention includes any one of the above examples 52 to 69, wherein the front electrode is parallel to the dust removal electric field anode.
  • Example 71 provided by the present invention includes any one of the above examples 51 to 69, wherein the front electrode is curved or arc-shaped.
  • Example 72 provided by the present invention includes any one of the above examples 52 to 71, wherein the front electrode uses a wire mesh.
  • Example 73 provided by the present invention: including any one of the above examples 52 to 72, wherein the voltage between the front electrode and the anode of the dust removal electric field is different from the cathode of the dust removal electric field and the dust removal electric field The voltage between the anodes.
  • Example 74 provided by the present invention includes any one of the above examples 52 to 73, wherein the voltage between the front electrode and the anode of the dust removal electric field is less than the initial halo voltage.
  • Example 75 provided by the present invention includes any one of the above examples 52 to 74, wherein the voltage between the front electrode and the anode of the dust removal electric field is 0.1 kv-2 kv / mm.
  • Example 76 provided by the present invention includes any one of the above examples 52 to 75, wherein the electric field device includes a flow channel, the front electrode is located in the flow channel; the cross-sectional area of the front electrode The cross-sectional area ratio with the runner is 99% -10%, or 90-10%, or 80-20%, or 70-30%, or 60-40%, or 50%.
  • Example 77 provided by the present invention includes any one of Examples 2 to 76 above, wherein the electric field device includes an electret element.
  • Example 78 provided by the present invention includes the above example 77, wherein the electret element is in the ionization dust removal electric field when the anode of the dust removal electric field and the cathode of the dust removal electric field are powered on.
  • Example 79 provided by the present invention includes the above example 77 or 78, wherein the electret element is close to the exit of the electric field device, or the electret element is provided at the exit of the electric field device.
  • Example 80 provided by the present invention includes any one of the above examples 78 to 79, wherein the dust removal electric field anode and the dust removal electric field cathode form a flow channel, and the electret element is provided in the flow channel .
  • Example 81 provided by the present invention includes the above example 80, wherein the flow channel includes a flow channel outlet, the electret element is close to the flow channel outlet, or the electret element is provided on the Runner exit.
  • Example 82 provided by the present invention includes the above example 80 or 81, wherein the cross section of the electret element in the flow channel occupies 5% to 100% of the cross section of the flow channel.
  • Example 83 provided by the present invention: includes the above example 82, wherein the cross section of the electret element in the flow channel occupies 10% -90%, 20% -80%, or 40% of the flow channel cross section -60%.
  • Example 84 provided by the present invention includes any one of the above examples 77 to 83, wherein the ionization and dust removal electric field charges the electret element.
  • Example 85 provided by the present invention: includes any one of the above examples 77 to 84, wherein the electret element has a porous structure.
  • Example 86 provided by the present invention: including any one of the above examples 77 to 85, wherein the electret element is a fabric.
  • Example 87 provided by the present invention: including any one of the above examples 77 to 86, wherein the inside of the dust-removing electric field anode is tubular, the outside of the electret element is tubular, and the outside of the electret element is sleeved Set inside the anode of the dust removal electric field.
  • Example 88 provided by the present invention includes any one of the above examples 77 to 87, wherein the electret element and the dust-removing electric field anode are detachably connected.
  • Example 89 provided by the present invention: including any one of the above examples 77 to 88, wherein the material of the electret element includes an inorganic compound having electret properties.
  • Example 90 provided by the present invention includes the above Example 89, wherein the inorganic compound is selected from one or more combinations of oxygen-containing compounds, nitrogen-containing compounds, or glass fibers.
  • Example 91 provided by the present invention includes the above Example 90, wherein the oxygen-containing compound is selected from one or more combinations of metal-based oxides, oxygen-containing complexes, and oxygen-containing inorganic heteropoly acid salts.
  • Example 92 provided by the present invention: including the above example 91, wherein the metal-based oxide is selected from aluminum oxide, zinc oxide, zirconium oxide, titanium oxide, barium oxide, tantalum oxide, silicon oxide, lead oxide, tin oxide One or more combinations.
  • the metal-based oxide is selected from aluminum oxide, zinc oxide, zirconium oxide, titanium oxide, barium oxide, tantalum oxide, silicon oxide, lead oxide, tin oxide One or more combinations.
  • Example 93 provided by the present invention: including the above Example 91, wherein the metal-based oxide is alumina.
  • Example 94 provided by the present invention includes the above example 91, wherein the oxygen-containing composite is selected from one or more combinations of titanium zirconium composite oxide or titanium barium composite oxide.
  • Example 95 provided by the present invention includes the above Example 91, wherein the oxygen-containing inorganic heteropoly acid salt is selected from one or more combinations of zirconium titanate, lead zirconate titanate, or barium titanate.
  • Example 96 provided by the present invention includes the above Example 90, wherein the nitrogen-containing compound is silicon nitride.
  • Example 97 provided by the present invention: includes any one of the above examples 77 to 96, wherein the material of the electret element includes an organic compound having electret properties.
  • Example 98 provided by the present invention: including the above example 97, wherein the organic compound is selected from one or more combinations of fluoropolymer, polycarbonate, PP, PE, PVC, natural wax, resin, and rosin .
  • Example 99 provided by the present invention includes the above example 98, wherein the fluoropolymer is selected from one or more of polytetrafluoroethylene, polyperfluoroethylene propylene, soluble polytetrafluoroethylene, and polyvinylidene fluoridekinds of combinations.
  • Example 100 provided by the present invention: including the above example 98, wherein the fluoropolymer is polytetrafluoroethylene.
  • Example 101 includes any one of the above examples 1 to 100, and further includes a wind equalizing device.
  • Example 102 provided by the present invention includes the above example 101, wherein the wind equalization device is between the entrance of the dust removal system and the ionization and dust removal electric field formed by the anode of the dust removal electric field and the cathode of the dust removal electric field.
  • the air-equalizing device includes: an air inlet pipe provided on one side of the anode of the dust-removing electric field and an air outlet pipe provided on the other side; Opposite.
  • Example 103 provided by the present invention: includes the above example 101, wherein the air equalization device is between the entrance of the dust removal system and the ionization and dust removal electric field formed by the anode of the dust removal electric field and the cathode of the dust removal electric field.
  • the air-equalizing device is composed of several rotatable air-equating blades.
  • Example 104 provided by the present invention includes the above example 101, in which the first venturi plate air equalizing mechanism of the air equalizing device and the second venturi plate air equalizing mechanism provided at the outlet end of the anode of the dust removal field are The first venturi plate air distribution mechanism is provided with an air inlet hole, and the second venturi plate air distribution mechanism is provided with an air outlet hole, and the air inlet hole and the air outlet hole are arranged in a staggered arrangement, and the front air intake The air is emitted from the side to form a cyclone structure.
  • Example 105 provided by the present invention includes any one of the above examples 1 to 104, wherein it further includes an ozone removing device for removing or reducing the ozone generated by the electric field device. Between the outlet of the electric field device and the outlet of the dust removal system.
  • Example 106 provided by the present invention: includes the above example 105, wherein the ozone removing device further includes an ozone digester.
  • Example 107 provided by the present invention includes the above example 106, wherein the ozone digester is selected from at least one of an ultraviolet ozone digester and a catalytic ozone digester.
  • Example 108 provided by the present invention: includes any one of the above examples 1 to 107, and further includes a centrifugal separation mechanism.
  • Example 109 provided by the present invention includes the above example 108, wherein the centrifugal separation mechanism includes an airflow turning channel, and the airflow turning channel can change the flow direction of the airflow.
  • Example 110 provided by the present invention includes the above example 109, wherein the air flow turning channel can guide air to flow in a circumferential direction.
  • Example 111 provided by the present invention: including the above example 108 or 109, wherein the air flow turning channel is spiral or conical.
  • Example 112 provided by the present invention: including any one of the above examples 108 to 111, wherein the centrifugal separation mechanism includes a separation cylinder.
  • Example 113 provided by the present invention includes the above example 112, wherein the airflow turning channel is provided in the separation cylinder, and a dust outlet is provided at the bottom of the separation cylinder.
  • Example 114 provided by the present invention includes the above example 112 or 113, wherein an air inlet communicating with the first end of the air flow turning channel is provided on the side wall of the separation cylinder.
  • Example 115 provided by the present invention includes any one of the above examples 112 to 114, wherein the top of the separation cylinder is provided with an air outlet communicating with the second end of the flow-diverting channel.
  • Example 116 provided by the present invention: an air electric field dust removal method, including the following steps:
  • the dust-containing air passes through the ionization and dedusting electric field generated by the anode of the dedusting electric field and the cathode of the dedusting electric field;
  • Example 117 provided by the present invention: an air electric field dust removal method including Example 116, wherein the dust removal process is completed using an electric field back-corona discharge phenomenon.
  • Example 118 provided by the present invention: an air electric field dust removal method including Example 116, wherein the electric field reverse corona discharge phenomenon is used to increase the voltage, limit the injection current, and complete the dust removal process.
  • Example 119 provided by the present invention: an air electric field dust removal method including Example 116, in which the phenomenon of electric field reverse corona discharge is used to increase the voltage and limit the injection current, so that the rapid discharge occurring at the position of the anode dust generates plasma, so The plasma described above deeply oxidizes the organic components of the dust, breaks the polymer bonds, and forms small molecules of carbon dioxide and water to complete the dust removal process.
  • Example 120 provided by the present invention: the air electric field dust removal method including any one of Examples 116 to 119, wherein the dust removal electric field cathode includes at least one electrode rod.
  • Example 121 provided by the present invention: the air field dust removal method including Example 120, wherein the diameter of the electrode rod is not greater than 3 mm.
  • Example 122 provided by the present invention: The air field dust removal method including Example 120 or 121, wherein the shape of the electrode rod is needle-like, polygonal, burr-like, threaded rod-like or columnar.
  • Example 123 provided by the present invention: an air electric field dust removal method including any one of Examples 116 to 122, wherein the dust removal electric field anode is composed of a hollow tube bundle.
  • Example 124 provided by the present invention: the air field dust removal method including Example 123, wherein the hollow cross section of the anode tube bundle adopts a circle or a polygon.
  • Example 125 provided by the present invention: an air electric field dust removal method including Example 124, wherein the polygon is a hexagon.
  • Example 126 provided by the present invention: an air electric field dust removal method including any one of Examples 123 to 125, wherein the tube bundle of the anode of the dust removal electric field is honeycomb-shaped.
  • Example 127 provided by the present invention: the air field dust removal method including any one of Examples 116 to 126, wherein the dust removal electric field cathode penetrates the dust removal electric field anode.
  • Example 128 provided by the present invention: an air electric field dust removal method including any one of Examples 116 to 127, wherein when the detected electric field current increases to a given value, the dust removal process is performed.
  • Example 129 provided by the present invention: a method for adding oxygen to air, including the following steps:
  • An electric field is generated in the flow channel, the electric field is not perpendicular to the flow channel, and the electric field includes an inlet and an outlet.
  • Example 130 provided by the present invention: a method of adding oxygen to air including Example 129, wherein the electric field includes a first anode and a first cathode, the first anode and the first cathode forming the flow channel, so The flow path connects the inlet and the outlet.
  • Example 131 provided by the present invention: a method of adding oxygen to air including any one of Examples 129 to 130, wherein the first anode and the first cathode ionize oxygen in the air.
  • Example 132 provided by the present invention: the method for oxygenizing air including any one of Examples 129 to 131, wherein the electric field includes a second electrode disposed at or near the inlet.
  • Example 133 provided by the present invention: the method of adding oxygen to air including Example 132, wherein the second electrode is a cathode.
  • Example 134 provided by the present invention: the method of adding oxygen to air including any one of Examples 132 or 133, wherein the second electrode is an extension of the first cathode.
  • Example 136 provided by the present invention: the method for oxygenizing air including any one of Examples 129 to 135, wherein the electric field includes a third electrode disposed at or near the outlet.
  • Example 137 provided by the present invention: the method of adding oxygen to air including Example 136, wherein the third electrode is an anode.
  • Example 138 provided by the present invention: the method of adding oxygen to air including example 136 or 137, wherein the third electrode is an extension of the first anode.
  • Example 140 provided by the present invention: the method of adding oxygen to air including any one of Examples 134 to 139, wherein the third electrode is provided separately from the first anode and the first cathode.
  • Example 141 provided by the present invention: the method of adding oxygen to air including any one of Examples 132 to 140, wherein the second electrode is provided separately from the first anode and the first cathode.
  • Example 142 provided by the present invention: The method of adding oxygen to air including any one of Examples 130 to 141, wherein the first cathode includes at least one electrode rod.
  • Example 143 provided by the present invention: the method for oxygenizing air including any one of Examples 130 to 142, wherein the first anode is composed of a hollow tube bundle.
  • Example 144 provided by the present invention: a method for oxygenizing air including Example 143, wherein the hollow cross section of the anode tube bundle adopts a circular or polygonal shape.
  • Example 145 provided by the present invention: a method for oxygenizing air including Example 144, wherein the polygon is a hexagon.
  • Example 146 provided by the present invention: the method for oxygenizing air including any one of Examples 143 to 145, wherein the tube bundle of the first anode is honeycomb-shaped.
  • Example 147 provided by the present invention: The method for oxygenizing air including any one of Examples 130 to 146, wherein the first cathode penetrates the first anode.
  • Example 148 provided by the present invention: a method of adding oxygen to air including any one of Examples 130 to 147, wherein the electric field acts on oxygen ions in the flow channel to increase the flow of oxygen ions and increase the outlet air Oxygen content.
  • Example 149 provided by the present invention: a method for reducing the electric field coupling of dust removal, including the following steps:
  • Example 150 provided by the present invention: The method of reducing dust-removing electric field coupling including Example 149, which includes selecting a ratio of the dust-collecting area of the dust-removing electric field anode to the discharge area of the dust-removing electric field cathode.
  • Example 151 provided by the present invention: a method for reducing dust-removing electric field coupling including Example 150, wherein a ratio of a dust-receiving area including the anode of the dust-removing electric field to a discharge area of the cathode of the dust-removing electric field is 1.667: 1-1680 :1.
  • Example 152 provided by the present invention: a method for reducing coupling of a dust-removing electric field including Example 150, wherein a ratio of a dust-collecting area including the anode of the dust-removing electric field to a discharge area of the cathode of the dust-removing electric field is 6.67: 1-56.67 :1.
  • Example 153 provided by the present invention: A method for reducing coupling of a dust-removing electric field including any one of Examples 149 to 152, including selecting a cathode diameter of the dust-removing electric field of 1-3 mm, the anode of the dust-removing electric field and the dust-removing The pole spacing of the electric field cathode is 2.5-139.9 mm; the ratio of the dust accumulation area of the dedusting electric field anode to the discharge area of the dedusting electric field cathode is 1.667: 1-1680: 1.
  • Example 154 provided by the present invention: The method for reducing coupling of a dust-removing electric field including any one of Examples 149 to 153, which includes selecting a pole distance between the dust-removing electric field anode and the dust-removing electric field cathode to be less than 150 mm.
  • Example 155 provided by the present invention: The method for reducing coupling of a dust-removing electric field including any one of Examples 149 to 153, which includes selecting a pole interval of the dust-removing electric field anode and the dust-removing electric field cathode to be 2.5-139.9 mm.
  • Example 156 provided by the present invention: The method for reducing coupling of a dust-removing electric field including any one of Examples 149 to 153, which includes selecting a pole spacing of the dust-removing electric field anode and the dust-removing electric field cathode to be 5-100 mm.
  • Example 157 provided by the present invention: A method for reducing coupling of a dust-removing electric field including any one of Examples 149 to 156, which includes selecting the anode length of the dust-removing electric field to be 10-180 mm.
  • Example 158 provided by the present invention: The method for reducing dust-removing electric field coupling including any one of Examples 149 to 156, which includes selecting the length of the dust-removing electric field anode to be 60-180 mm.
  • Example 159 provided by the present invention: A method for reducing dust-removing electric field coupling including any one of Examples 149 to 158, which includes selecting a cathode length of the dust-removing electric field of 30 to 180 mm.
  • Example 160 provided by the present invention: The method for reducing dust-removing electric field coupling including any one of Examples 149 to 158, which includes selecting the length of the dust-removing electric field cathode to be 54-176 mm.
  • Example 161 provided by the present invention: The method for reducing coupling of a dust-removing electric field including any one of Examples 149 to 160, wherein the method includes selecting that the dust-removing electric field cathode includes at least one electrode rod.
  • Example 162 provided by the present invention: a method for reducing dust-removing electric field coupling including Example 161, which includes selecting that the diameter of the electrode rod is not greater than 3 mm.
  • Example 163 provided by the present invention: a method for reducing dust-removing electric field coupling including Example 161 or 162, which includes selecting the shape of the electrode rod to be needle-shaped, polygonal, burr-shaped, threaded rod-shaped, or columnar.
  • Example 164 provided by the present invention: The method for reducing coupling of a dust-removing electric field including any one of Examples 149 to 163, which includes selecting that the dust-removing electric field anode is composed of a hollow tube bundle.
  • Example 165 provided by the present invention: The method for reducing dust-removing electric field coupling including Example 164, wherein the hollow cross section including the anode tube bundle is selected to be circular or polygonal.
  • Example 166 provided by the present invention: The method for reducing dust-removing electric field coupling including Example 165, wherein the method includes selecting the polygon to be a hexagon.
  • Example 167 provided by the present invention: The method for reducing dust-removing electric field coupling including any one of Examples 164 to 166, wherein the tube bundle including selecting the dust-removing electric field anode is honeycomb-shaped.
  • Example 168 provided by the present invention: The method for reducing dust-removing electric field coupling including any one of Examples 149 to 167, which includes selecting the dust-removing electric field cathode to penetrate the dust-removing electric field anode.
  • Example 169 provided by the present invention: A method for reducing dust-removing electric field coupling including any one of Examples 149 to 168, wherein the size of the dust-removing electric field anode or / and the dust-removing electric field cathode is selected such that the number of electric field couplings is ⁇ 3.
  • Example 170 provided by the present invention: an air dust removal method, including the following steps:
  • Example 171 provided by the present invention The air dedusting method including Example 170, wherein the electret element is close to the outlet of the electric field device, or the electret element is provided at the outlet of the electric field device.
  • Example 172 provided by the present invention: The air dust removal method including Example 170, wherein the dust removal electric field anode and the dust removal electric field cathode form an air flow path, and the electret element is provided in the air flow path.
  • Example 173 provided by the present invention: The air dedusting method including Example 172, wherein the air flow path includes an air flow path outlet, the electret element is close to the air flow path outlet, or, the electret The body element is provided at the outlet of the air flow channel.
  • Example 174 provided by the present invention: The air dedusting method including any one of Examples 170 to 173, wherein when the ionizing dedusting electric field has no electrified driving voltage, the charged electret element is used to adsorb particulate matter in the air.
  • Example 175 provided by the present invention: The air dedusting method including Example 174, wherein after the charged electret element adsorbs certain particulate matter in the air, it is replaced with a new electret element.
  • Example 176 provided by the present invention: The air dedusting method including Example 175, wherein the ionization and dust removal electric field is restarted after being replaced with a new electret element to adsorb particulate matter in the air and charge the new electret element.
  • Example 177 provided by the present invention: the air dedusting method including any one of Examples 170 to 176, wherein the material of the electret element includes an inorganic compound having electret properties.
  • Example 178 provided by the present invention: The air dust removing method including Example 177, wherein the inorganic compound is selected from one or more combinations of oxygen-containing compounds, nitrogen-containing compounds, or glass fibers.
  • Example 179 provided by the present invention: The air dedusting method including Example 178, wherein the oxygen-containing compound is selected from one or more of metal-based oxides, oxygen-containing composites, and oxygen-containing inorganic heteropoly acid saltskinds of combinations.
  • Example 180 provided by the present invention: the air dedusting method including Example 179, wherein the metal-based oxide is selected from aluminum oxide, zinc oxide, zirconium oxide, titanium oxide, barium oxide, tantalum oxide, silicon oxide, and lead oxide , One or more combinations of tin oxide.
  • the metal-based oxide is selected from aluminum oxide, zinc oxide, zirconium oxide, titanium oxide, barium oxide, tantalum oxide, silicon oxide, and lead oxide , One or more combinations of tin oxide.
  • Example 181 provided by the present invention: the air dedusting method including Example 179, wherein the metal-based oxide is alumina.
  • Example 182 provided by the present invention: the air dedusting method including Example 179, wherein the oxygen-containing composite is selected from one or more combinations of titanium-zirconium composite oxide or titanium-barium composite oxide.
  • Example 183 provided by the present invention: the air dedusting method including Example 179, wherein the oxygen-containing inorganic heteropoly acid salt is selected from one or more of zirconium titanate, lead zirconate titanate, or barium titanate combination.
  • Example 184 provided by the present invention: the air dedusting method including Example 178, wherein the nitrogen-containing compound is silicon nitride.
  • Example 185 provided by the present invention: the air dedusting method including any one of Examples 170 to 176, wherein the material of the electret element includes an organic compound having electret properties.
  • Example 186 provided by the present invention: the air dedusting method including Example 185, wherein the organic compound is selected from one of fluoropolymer, polycarbonate, PP, PE, PVC, natural wax, resin, rosin or Various combinations.
  • the organic compound is selected from one of fluoropolymer, polycarbonate, PP, PE, PVC, natural wax, resin, rosin or Various combinations.
  • Example 187 provided by the present invention: the air dedusting method including Example 186, wherein the fluoropolymer is selected from one of polytetrafluoroethylene, polyperfluoroethylene propylene, soluble polytetrafluoroethylene, and polyvinylidene fluoride One or more combinations.
  • Example 188 provided by the present invention: an air dedusting method including Example 186, wherein the fluoropolymer is polytetrafluoroethylene.
  • Example 189 provided by the present invention: An air dedusting method, characterized in that it includes the following steps: the air is ionized and removed to reduce or reduce ozone generated by ionized dedusting.
  • Example 190 provided by the present invention: the air dust removal method including Example 189, wherein ozone generated by ionized dust removal is subjected to ozone digestion.
  • Example 191 provided by the present invention: the air dedusting method including Example 189, wherein the ozone digestion is selected from at least one of ultraviolet digestion and catalytic digestion.
  • air has a broad definition, including all gases.
  • FIG. 1 is a structural schematic diagram of an electric field device in an embodiment of the air dedusting system of the present invention.
  • FIG. 2 is a structural diagram of another embodiment of a first water filtering mechanism provided in an electric field device in an air dust removal system based on the present invention.
  • FIG. 3A is an implementation structure diagram of a wind equalizing device of an electric field device in the air dust removal system of the present invention.
  • FIG. 3B is another implementation structure diagram of the wind equalizing device of the electric field device in the air dust removal system of the present invention.
  • FIG. 3C is another embodiment structure diagram of the wind equalizing device of the electric field device in the air dust removal system of the present invention.
  • FIG. 3D is a top structural view of the middle and second venturi plate air-equalizing mechanism of the electric field device in the air dust removal system of the present invention.
  • FIG. 4 is a schematic diagram of an electric field device according to Embodiment 2 of the present invention.
  • FIG. 5 is a schematic diagram of an electric field device according to Embodiment 3 of the present invention.
  • FIG. 6 is a top view of the electric field device of FIG. 1 of the present invention.
  • FIG. 7 is a schematic view of the cross section of the electret element in the flow channel of the embodiment 3 occupying the cross section of the flow channel.
  • FIG. 8 is a schematic diagram of an air dedusting system according to Embodiment 4 of the present invention.
  • FIG. 9 is a schematic diagram of the structure of the electric field generating unit of the present invention.
  • Fig. 10 is an A-A view of the electric field generating unit of Fig. 9.
  • Fig. 11 is an A-A view of the electric field generating unit of Fig. 9 marked with length and angle.
  • FIG. 12 is a schematic diagram of the structure of an electric field device with two electric field levels.
  • Embodiment 17 is a schematic structural diagram of an electric field device in Embodiment 17 of the present invention.
  • Embodiment 19 is a schematic structural diagram of an electric field device in Embodiment 19 of the present invention.
  • Embodiment 15 is a schematic structural diagram of an electric field device in Embodiment 20 of the present invention.
  • Embodiment 16 is a schematic structural diagram of an electric field device in Embodiment 22 of the present invention.
  • the present invention provides an air dust removal system, including a dust removal system inlet, a dust removal system outlet, and an electric field device.
  • the air dedusting system includes a centrifugal separation mechanism.
  • the centrifugal separation mechanism includes an airflow turning channel, which can change the flow direction of the airflow.
  • the flow direction of the gas will change; and the particulate matter in the gas will continue to move in the original direction under the action of inertia until the side wall of the gas flow turning channel, that is, the centrifugal separation mechanism
  • the inner wall of the collision the particles can not continue to move in the original direction, and fall down under the action of gravity, so that the particles are separated from the gas.
  • the gas flow turning channel can guide the gas to flow in the circumferential direction.
  • the air flow turning channel can be spiral or conical.
  • the centrifugal separation mechanism includes a separation cylinder.
  • the air separation channel is provided in the separation cylinder, and a dust outlet can be provided at the bottom of the separation cylinder.
  • An air inlet communicating with the first end of the air flow steering channel may be provided on the side wall of the separation cylinder.
  • the top of the separation cylinder may be provided with an air outlet communicating with the second end of the air flow steering channel.
  • the air outlet is also called an exhaust port, and the size of the exhaust port can be set according to the required amount of intake air.
  • the gas After the gas flows into the separation cylinder from the air inlet and turns into the channel, the gas will change from linear motion to circular motion, and the particles in the gas will continue to move in a linear direction under the action of inertia until the particles collide with the inner wall of the separation cylinder
  • the particulate matter sinks under the force of gravity, so that the particulate matter is separated from the gas, and the particulate matter is finally discharged from the dust outlet at the bottom, and the gas is finally discharged from the exhaust outlet at the top.
  • the inlet of the electric field device communicates with the exhaust port of the centrifugal separation mechanism.
  • the gas outlet of the separation cylinder is located at the connection between the separation cylinder and the electric field device.
  • the centrifugal separation mechanism may have a bent structure.
  • the shape of the centrifugal separation mechanism may be one shape or a combination of multiple shapes among a ring shape, a zigzag shape, a cross shape, a T shape, an L shape, a concave shape, or a folded shape.
  • the air flow steering channel of the centrifugal separation mechanism has at least one turn. When the gas flows through the turn, the flow direction will change, and the particles in the gas will continue to move in the original direction under the inertia until the particles collide with the inner wall of the centrifugal separation mechanism. When sinking, the particles are detached from the gas and finally discharged from the powder outlet at the lower end, and the gas finally flows out from the exhaust outlet.
  • a first filter layer may be provided at the exhaust port of the centrifugal separation mechanism.
  • the first filter layer may include a metal mesh sheet, and the metal mesh sheet may be disposed perpendicular to the airflow direction. The metal mesh will filter the gas discharged from the exhaust port to filter out the particles that have not been separated from the gas.
  • the air dedusting system may include a wind equalizing device.
  • the wind equalizing device is arranged before the electric field device, and can evenly pass the airflow entering the electric field device.
  • the dust-removing electric field anode of the electric field device may be a cube
  • the air-equalizing device may include an air inlet pipe on one side of the cathode support plate and an air outlet pipe on the other side of the cathode support plate.
  • the intake end of the anode of the dust removal electric field; wherein, the side where the intake pipe is installed is opposite to the side where the outlet pipe is installed.
  • the air-equalizing device can make the airflow entering the electric field device evenly pass through the electrostatic field.
  • the anode of the dust-removing electric field may be a cylinder
  • the air-equalizing device is located between the entrance of the dust-removing system and the ionizing dust-removing electric field formed by the anode of the dust-removing electric field and the cathode of the dust-removing electric field. Fan blade rotating around the center of the inlet of the dust removal system.
  • the air-equalizing device can make all kinds of varying intake air evenly pass through the electric field generated by the anode of the dust removal electric field. At the same time, it can keep the internal temperature of the anode of the dust removal electric field constant and the oxygen is sufficient.
  • the air-equalizing device can make the airflow entering the electric field device evenly pass through the electrostatic field.
  • the air equalizing device includes an air inlet plate provided at the air inlet end of the anode of the dust removal electric field and an air outlet plate provided at the air outlet end of the anode of the dust removal electric field.
  • the air-equalizing device can make the airflow entering the electric field device evenly pass through the electrostatic field.
  • the air dust removal system may include a dust removal system inlet, a dust removal system outlet, and an electric field device.
  • the electric field device is also called an electric field device.
  • the electric field device may include an electric field device inlet, an electric field device outlet, and a front electrode between the electric field device inlet and the electric field device outlet. When gas flows from the electric field device inlet to the front electrode, the gas Particulate matter etc. will be charged.
  • the electric field device includes a front electrode between the entrance of the electric field device and the ionization and dust removal electric field formed by the anode of the dust removal electric field and the cathode of the dust removal electric field.
  • the shape of the front electrode may be dot-shaped, linear, mesh-shaped, orifice-shaped, plate-shaped, needle-rod-shaped, ball-cage-shaped, box-shaped, tubular, natural form of matter, or processed form of matter .
  • the front electrode has a hole structure, one or more air inlet through holes are provided on the front electrode.
  • the shape of the air intake through hole may be polygon, circle, ellipse, square, rectangle, trapezoid, or rhombus.
  • the outline size of the air intake through hole may be 0.1 to 3 mm, 0.1 to 0.2 mm, 0.2 to 0.5 mm, 0.5 to 1 mm, 1 to 1.2 mm, 1.2 to 1.5 mm, 1.5 to 2 mm, 2 to 2.5mm, 2.5 ⁇ 2.8mm, or 2.8 ⁇ 3mm.
  • the shape of the front electrode may be one or more of solid, liquid, gas molecular group, plasma, conductive mixed state substance, biological natural mixed conductive substance, or artificially processed object to form conductive substance Combinations of various forms.
  • the front electrode is solid, solid metal, such as 304 steel, or other solid conductors, such as graphite, can be used.
  • the front electrode is a liquid, it may be an ion-conducting liquid.
  • the front electrode charges the pollutants in the gas.
  • the anode of the dedusting electric field exerts an attractive force on the charged pollutants, so that the pollutants move toward the anode of the dedusting electric field until the pollutants adhere to the anode of the dedusting electric field.
  • the front electrode introduces electrons into the pollutants.
  • the electrons are transferred between the pollutants between the front electrode and the anode of the dust removal electric field, so that more pollutants are charged.
  • Between the front electrode and the anode of the dust-removing electric field electrons are conducted through pollutants and an electric current is formed.
  • the front electrode charges the pollutant by contacting the pollutant. In an embodiment of the invention, the front electrode charges the pollutants by means of energy fluctuations. In an embodiment of the present invention, the front electrode transfers electrons to the pollutant by contacting the pollutant and charges the pollutant. In an embodiment of the present invention, the front electrode transfers electrons to the pollutants by means of energy fluctuations, and charges the pollutants.
  • the front electrode is linear, and the anode of the dust removal electric field is planar. In an embodiment of the invention, the front electrode is perpendicular to the anode of the dust removal electric field. In an embodiment of the invention, the front electrode is parallel to the anode of the dust removal electric field. In an embodiment of the invention, the front electrode is curved or arc-shaped. In an embodiment of the invention, the front electrode uses a wire mesh. In an embodiment of the invention, the voltage between the front electrode and the anode of the dust removal electric field is different from the voltage between the cathode of the dust removal electric field and the anode of the dust removal electric field.
  • the voltage between the front electrode and the anode of the dust removal electric field is less than the initial halo voltage.
  • the initial halo voltage is the minimum value of the voltage between the cathode of the dust removal electric field and the anode of the dust removal electric field.
  • the voltage between the front electrode and the anode of the dedusting electric field may be 0.1-2 kV / mm.
  • the electric field device includes a flow channel, and the front electrode is located in the flow channel.
  • the ratio of the cross-sectional area of the front electrode to the cross-sectional area of the flow channel is 99% -10%, or 90-10%, or 80-20%, or 70-30%, or 60-40% , Or 50%.
  • the cross-sectional area of the front electrode refers to the total area of the front electrode along the solid part of the cross-section. In an embodiment of the invention, the front electrode has a negative potential.
  • the metal powder, mist, or aerosol pollutants with strong conductivity in the gas are in contact with the front electrode or with the front electrode
  • the distance reaches a certain range
  • all pollutants will enter the ionization dust removal electric field with the airflow.
  • the anode of the dust removal electric field exerts an attractive force on the negatively charged metal dust, mist droplets, or aerosol, so that the negatively charged
  • the pollutants move toward the anode of the dedusting electric field until the part of the pollutants adheres to the anode of the dedusting electric field to collect the part of the pollutants.
  • the ionizing dedusting electric field formed between the anode of the dedusting electric field and the cathode of the dedusting electric field passes through the Oxygen obtains oxygen ions, and the negatively charged oxygen ions, when combined with ordinary dust, make the ordinary dust negatively charged.
  • the anode of the dust removal electric field exerts an attractive force on the negatively charged dust and other pollutants, so that the dust and other pollutants
  • the anode of the dust removal electric field moves until the part of the pollutants adheres to the anode of the dust removal electric field, so
  • the pollutants are also collected, so that the more conductive and the less conductive pollutants in the gas are collected, and the anode of the dust removal electric field can collect a wider variety of pollutants in the gas, and the collection ability is stronger and the collection efficiency higher.
  • the inlet of the electric field device communicates with the exhaust port of the separation mechanism.
  • the electric field device may include a dust removal electric field cathode and a dust removal electric field anode, and an ionization dust removal electric field is formed between the dust removal electric field cathode and the dust removal electric field anode.
  • the oxygen ions in the gas will be ionized and form a large number of charged oxygen ions.
  • the oxygen ions are combined with the dust and other particles in the gas to charge the particles.
  • the adsorption force makes the particulate matter adsorbed on the anode of the dust removal electric field to remove the particulate matter in the gas.
  • the dust-removing electric field cathode includes a plurality of cathode wires.
  • the diameter of the cathode wire can be 0.1mm-20mm, and the size parameter can be adjusted according to the application and dust accumulation requirements. In an embodiment of the invention, the diameter of the cathode wire is not greater than 3 mm.
  • the cathode wire uses a metal wire or an alloy wire that is easy to discharge, is temperature resistant, can support its own weight, and is electrochemically stable.
  • the material of the cathode wire is titanium. The specific shape of the cathode wire is adjusted according to the shape of the anode of the dust removal electric field.
  • the cross section of the cathode wire is circular; if the dust collection surface of the anode of the dust removal electric field is an arc surface, the cathode wire Need to be designed as a polyhedron. The length of the cathode wire is adjusted according to the anode of the dust removal electric field.
  • the dust-removing electric field cathode includes a plurality of cathode rods.
  • the diameter of the cathode rod is not greater than 3 mm.
  • a metal rod or an alloy rod that is easy to discharge is used as the cathode rod.
  • the shape of the cathode rod may be needle-shaped, polygonal, burr-shaped, threaded rod-shaped, columnar or the like. The shape of the cathode rod can be adjusted according to the shape of the anode of the dust-removing electric field.
  • the cross-section of the cathode rod needs to be designed to be circular; if the dust-collecting surface of the anode of the dust-removing electric field is an arc surface , The cathode rod needs to be designed into a polyhedron shape.
  • the cathode of the dust-removing electric field is disposed in the anode of the dust-removing electric field.
  • the dust-removing electric field anode includes one or more hollow anode tubes arranged in parallel. When there are multiple hollow anode tubes, all the hollow anode tubes constitute a honeycomb-shaped dust-removing electric field anode.
  • the hollow anode tube may have a circular or polygonal cross section. If the cross section of the hollow anode tube is circular, a uniform electric field can be formed between the anode of the dedusting electric field and the cathode of the dedusting electric field, and the inner wall of the hollow anode tube is not easy to accumulate dust.
  • the cross section of the hollow anode tube is a triangular shape, three dust accumulation surfaces and three distant dust holding angles can be formed on the inner wall of the hollow anode tube.
  • This structure of the hollow anode tube has the highest dust holding rate. If the cross section of the hollow anode tube is quadrangular, 4 dust-collecting surfaces and 4 dust-holding angles can be obtained, but the grouping structure is unstable. If the cross section of the hollow anode tube is hexagonal, 6 dust accumulation surfaces and 6 dust accumulation angles can be formed, and the dust accumulation surface and the dust accumulation rate are balanced. If the cross section of the hollow anode tube is more polygonal, more dust accumulation edges can be obtained, but the dust holding rate is lost.
  • the diameter of the inscribed circle diameter of the hollow anode tube ranges from 5 mm to 400 mm.
  • the dust-removing electric field cathode is installed on a cathode support plate, and the cathode support plate and the dust-removing electric field anode are connected by an insulating mechanism.
  • the insulation mechanism is used to achieve insulation between the cathode support plate and the anode of the dust removal electric field.
  • the dust-removing electric field anode includes a first anode part and a second anode part, that is, the first anode part is close to the entrance of the electric field device, and the second anode part is close to the exit of the electric field device.
  • the cathode support plate and the insulation mechanism are between the first anode part and the second anode part, that is, the insulation mechanism is installed in the middle of the ionization electric field or the cathode of the dust removal electric field, which can play a good supporting role for the dust removal electric field cathode and the dust removal electric field
  • the cathode plays a fixed role with respect to the anode of the dust-removing electric field, so as to maintain a set distance between the cathode of the dust-removing electric field and the anode of the dust-removing electric field.
  • the support point of the cathode is at the end of the cathode, and it is difficult to maintain the distance between the cathode and the anode.
  • the insulation mechanism is provided outside the electric field flow path, that is, outside the electric field flow path, to prevent or reduce the accumulation of dust and the like in the gas on the insulation mechanism, resulting in breakdown or conduction of the insulation mechanism.
  • the insulation mechanism uses a high-pressure-resistant ceramic insulator to insulate the cathode of the dedusting electric field and the anode of the dedusting electric field.
  • the anode of the dust-removing electric field is also called a kind of housing.
  • the first anode portion is located before the first cathode support plate and the insulation mechanism in the gas flow direction, the first anode portion can remove water from the gas, prevent water from entering the insulation mechanism, and cause the insulation mechanism to short-circuit, Light a fire.
  • the first positive stage can remove a considerable part of the dust in the gas. When the gas passes through the insulation mechanism, a considerable part of the dust has been eliminated, reducing the possibility of the dust causing the insulation mechanism to short circuit.
  • the insulating mechanism includes an insulating ceramic post. The design of the first anode part is mainly to protect the insulating ceramic column from being contaminated by particulate matter in the gas.
  • the design of the first anode part can effectively reduce the pollution of the insulating ceramic column and improve the use time of the product.
  • the first anode part and the dust-removing electric field cathode first contact with the polluting gas, and the insulation mechanism contacts the gas to achieve the purpose of first removing dust and then passing through the insulation mechanism to reduce the pollution caused to the insulation mechanism. Extend the cleaning and maintenance cycle, and support the corresponding electrodes after use.
  • the length of the first anode portion is long enough to remove part of dust, reduce dust accumulated on the insulating mechanism and the cathode support plate, and reduce electrical breakdown caused by dust.
  • the length of the first anode portion accounts for 1/10 to 1/4, 1/4 to 1/3, 1/3 to 1/2, 1/2 to 2/3 of the total length of the anode of the dust removal electric field , 2/3 to 3/4, or 3/4 to 9/10.
  • the second anode portion is located behind the cathode support plate and the insulating mechanism in the gas flow direction.
  • the second anode part includes a dust accumulation section and a reserved dust accumulation section.
  • the dust accumulation section utilizes static electricity to adsorb particulate matter in the gas.
  • the dust accumulation section is used to increase the dust accumulation area and prolong the use time of the electric field device.
  • the reserved dust accumulation section can provide failure protection for the dust accumulation section.
  • the dust accumulation section is reserved to further increase the dust accumulation area and improve the dust removal effect under the premise of meeting the design dust removal requirements.
  • the dust accumulation section is reserved for supplementing the dust accumulation in the previous section.
  • different power sources can be used for the first anode portion and the second anode portion.
  • the insulation mechanism is provided between Outside the electric field flow path. Therefore, the insulation mechanism is suspended outside the anode of the dust removal electric field.
  • the insulating mechanism may use non-conductor temperature-resistant materials, such as ceramics and glass.
  • completely sealed air-free material insulation requires an insulation isolation thickness> 0.3 mm / kv; air insulation requirements> 1.4 mm / kv.
  • the insulation distance can be set according to 1.4 times the pole spacing between the cathode of the dust removal electric field and the anode of the dust removal electric field.
  • the insulating mechanism uses ceramics and the surface is glazed; the connection cannot be filled with glue or organic materials, and the temperature resistance is greater than 350 degrees Celsius.
  • the insulation mechanism includes an insulation portion and a heat insulation portion.
  • the material of the insulation part is ceramic material or glass material.
  • the insulating portion may be an umbrella-shaped string ceramic column or a glass column, and the umbrella is glazed inside and outside. The distance between the outer edge of the umbrella-shaped string ceramic column or the glass column and the anode of the dust removal electric field is greater than 1.4 times the electric field distance, that is, greater than 1.4 times the pole spacing. The sum of the umbrella flange spacing of the umbrella-shaped string ceramic column or glass column is greater than 1.4 times the insulation spacing of the umbrella-shaped string ceramic column.
  • the total length of the inner depth of the umbrella-shaped string ceramic column or glass column is 1.4 times greater than the insulation distance of the umbrella-shaped string ceramic column.
  • the insulating part can also be a columnar string ceramic column or a glass column with glaze inside and outside. In an embodiment of the present invention, the insulating portion may also have a tower shape.
  • a heating rod is provided in the insulating portion.
  • the heating rod is activated and heated. Due to the temperature difference between the inside and outside of the insulating part during use, condensation is likely to occur inside and outside of the insulating part and outside.
  • the outer surface of the insulation may spontaneously or be heated by gas to generate high temperature, which requires necessary isolation and protection to prevent burns.
  • the heat insulation part includes a protective baffle located outside the insulation part and a denitration purification reaction chamber.
  • the tail portion of the insulating portion needs to be insulated at the same location to prevent the environment and heat dissipation from heating the condensation component.
  • the lead wire of the power supply of the electric field device uses an umbrella-shaped string ceramic column or a glass column to pass through the wall connection, an elastic contact is used in the wall to connect the cathode support plate, and a sealed insulating protective terminal cap is used for plugging and unplugging outside the wall.
  • the insulation distance between the lead-out conductor and the wall is greater than that of the umbrella-shaped string ceramic column or glass column.
  • the high-voltage part is eliminated from the lead, and directly installed on the end to ensure safety.
  • the overall outer insulation of the high-voltage module is protected by ip68, and the medium is used for heat dissipation.
  • an asymmetric structure is adopted between the cathode of the dust removal electric field and the anode of the dust removal electric field.
  • polar particles are subjected to a force of the same size but in opposite directions, and polar particles reciprocate in the electric field; in an asymmetric electric field, polar particles are subjected to two forces of different sizes, and polar particles act Moving in the direction of high force can avoid coupling.
  • the ionization and dust removal electric field is formed between the dust removal electric field cathode and the dust removal electric field anode of the electric field device of the present invention.
  • the method of reducing the electric field coupling includes the following steps: selecting the ratio of the dust collecting area of the dedusting electric field anode to the discharge area of the dedusting electric field cathode so that the number of electric field couplings ⁇ 3 .
  • the ratio of the dust collection area of the anode of the dust removal electric field to the discharge area of the cathode of the dust removal electric field may be: 1.667: 1-1680: 1; 3.334: 1-113.34: 1; 6.67: 1-56.67: 1; 13.34: 1-28.33: 1.
  • the dust collecting area of the relatively large-area dust-removing electric field anode and the relatively small dust-removing electric field cathode discharge area are selected.
  • the above-mentioned area ratio can reduce the discharge area of the dust-removing electric field cathode, reduce suction, and expand the dust-removing electric field anode.
  • the dust collecting area increases the suction, that is, the asymmetric electrode suction between the cathode of the dust-removing electric field and the anode of the dust-removing electric field, so that the charged dust falls on the dust-collecting surface of the anode of the dust-removing electric field.
  • the dust collection area refers to the area of the anode working surface of the dust removal electric field.
  • the dust collection area is the inner surface area of the hollow regular hexagonal tube.
  • the dust collection area is also called dust accumulation. area.
  • the discharge area refers to the area of the working surface of the cathode of the dust removal electric field.
  • the cathode of the dust removal electric field is rod-shaped, the discharge area is the rod-shaped outer surface area.
  • the length of the anode of the dust removal electric field may be 10 to 180 mm, 10 to 20 mm, 20 to 30 mm, 60 to 180 mm, 30 to 40 mm, 40 to 50 mm, 50 to 60 mm, 60 to 70 mm, 70 to 80 mm, 80-90mm, 90-100mm, 100-110mm, 110-120mm, 120-130mm, 130-140mm, 140-150mm, 150-160mm, 160-170mm, 170-180mm, 60mm, 180mm, 10mm or 30mm.
  • the length of the anode of the dust removal electric field refers to the minimum length from one end to the other end of the working surface of the anode of the dust removal electric field. The selection of the length of the anode of the dust removal electric field can effectively reduce the electric field coupling.
  • the length of the anode of the dust removal electric field may be 10 to 90 mm, 15 to 20 mm, 20 to 25 mm, 25 to 30 mm, 30 to 35 mm, 35 to 40 mm, 40 to 45 mm, 45 to 50 mm, 50 to 55 mm, 55 ⁇ 60mm, 60 ⁇ 65mm, 65 ⁇ 70mm, 70 ⁇ 75mm, 75 ⁇ 80mm, 80 ⁇ 85mm or 85 ⁇ 90mm, the design of this length can make the dust removal electric field anode and electric field device have high temperature resistance, and make the electric field device It has high efficiency dust collection ability under high temperature impact.
  • the length of the dust-removing electric field cathode can be 30 to 180 mm, 54 to 176 mm, 30 to 40 mm, 40 to 50 mm, 50 to 54 mm, 54 to 60 mm, 60 to 70 mm, 70 to 80 mm, 80 to 90 mm, 90 to 100 mm, 100 to 110 mm, 110 to 120 mm, 120 to 130 mm, 130 to 140 mm, 140 to 150 mm, 150 to 160 mm, 160 to 170 mm, 170 to 176 mm, 170 to 180 mm, 54 mm, 180 mm, or 30 mm.
  • the length of the cathode of the dust removal electric field refers to the minimum length from one end to the other end of the working surface of the cathode of the dust removal electric field.
  • the selection of the cathode of the dust removal electric field can effectively reduce the electric field coupling.
  • the length of the dust-removing electric field cathode can be 10 to 90 mm, 15 to 20 mm, 20 to 25 mm, 25 to 30 mm, 30 to 35 mm, 35 to 40 mm, 40 to 45 mm, 45 to 50 mm, 50 to 55 mm, 55 ⁇ 60mm, 60 ⁇ 65mm, 65 ⁇ 70mm, 70 ⁇ 75mm, 75 ⁇ 80mm, 80 ⁇ 85mm or 85 ⁇ 90mm, the design of this length can make the dust removal electric field cathode and electric field device have high temperature resistance characteristics, and make the electric field device It has high efficiency dust collection ability under high temperature impact.
  • the distance between the anode of the dust-removing electric field and the cathode of the dust-removing electric field may be 5-30 mm, 2.5-139.9 mm, 9.9-139.9 mm, 2.5-9.9 mm, 9.9-20 mm, 20-30 mm, 30-40 mm , 40-50mm, 50-60mm, 60-70mm, 70-80mm, 80-90mm, 90-100mm, 100-110mm, 110-120mm, 120-130mm, 130-139.9mm, 9.9mm, 139.9mm, or 2.5 mm.
  • the distance between the anode of the dust-removing electric field and the cathode of the dust-removing electric field is also called the pole spacing.
  • the pole spacing specifically refers to the minimum vertical distance between the working surface of the anode of the dust removal electric field and the cathode of the dust removal electric field. This choice of pole spacing can effectively reduce electric field coupling and make the electric field device have high temperature resistance characteristics.
  • the diameter of the cathode of the dust-removing electric field is 1-3 mm, and the pole spacing between the anode of the dust-removing electric field and the cathode of the dust-removing electric field is 2.5-139.9 mm;
  • the discharge area ratio of the cathode of the dedusting electric field is 1.667: 1-1680: 1.
  • ionization dust removal can be applied to remove particulate matter in the gas.
  • the existing electric field dust removal device can only remove about 70% of the particulate matter, which cannot meet the needs of many industries.
  • the volume of the electric field dust removal device in the prior art is too large.
  • the inventor of the present invention has found that the disadvantages of the electric field dust removal device in the prior art are caused by electric field coupling.
  • the present invention can significantly reduce the size (ie, volume) of the electric field dust removal device by reducing the number of electric field couplings.
  • the size of the ionization and dust removal device provided by the present invention is about one fifth of the size of the existing ionization and dust removal device.
  • the current ionization dust removal device sets the gas flow rate to about 1 m / s, and the present invention can still obtain a higher gas flow rate when the gas flow rate is increased to 6 m / s. Particle removal rate.
  • the size of the electric field dust collector can be reduced.
  • the present invention can significantly improve the particle removal efficiency. For example, when the gas flow rate is about 1m / s, the prior art electric field dust removal device can remove about 70% of the particulate matter in the engine exhaust, but the present invention can remove about 99% of the particulate matter, even when the gas flow rate is 6m / s .
  • the present invention achieves the above unexpected results.
  • the ionization and dedusting electric field between the dedusting electric field anode and the dedusting electric field cathode is also called the first electric field.
  • a second electric field that is not parallel to the first electric field is formed between the anode of the dust removal electric field and the cathode of the dust removal electric field.
  • the second electric field is not perpendicular to the flow path of the ionization and dedusting electric field.
  • the second electric field is also called an auxiliary electric field and can be formed by one or two first auxiliary electrodes. When the second electric field is formed by a first auxiliary electrode, the first auxiliary electrode can be placed at the inlet or outlet of the ionization dust removal electric field.
  • the first auxiliary electrode may have a negative potential or a positive potential.
  • the second electric field is formed by two first auxiliary electrodes, one of the first auxiliary electrodes can have a negative potential and the other first auxiliary electrode can have a positive potential; one first auxiliary electrode can be placed at the entrance of the ionization electric field, and the other A first auxiliary electrode is placed at the exit of the ionization electric field.
  • the first auxiliary electrode may be a part of the dust-removing electric field cathode or the dust-removing electric field anode, that is, the first auxiliary electrode may be formed by an extension of the dust-removing electric field cathode or the dust-removing electric field anode. same.
  • the first auxiliary electrode may also be a separate electrode, that is to say, the first auxiliary electrode may not be part of the cathode of the dedusting electric field or the anode of the dedusting electric field. In this case, the voltage of the second electric field is different from the voltage of the first electric field. Working conditions are controlled individually.
  • the second electric field can apply a force toward the outlet of the ionized electric field between the anode of the dust-removing electric field and the cathode of the dust-removing electric field, so that the stream of negatively-charged oxygen ions between the anode of the dust-removing electric field and the cathode of the dust-removing electric field has an outlet.
  • Moving speed When the gas flows into the ionization electric field and flows toward the exit of the ionization electric field, the negatively charged oxygen ions also move toward the anode of the dust removal electric field and toward the exit of the ionization electric field, and the negatively charged oxygen ions move toward the anode of the dust removal electric field.
  • the collection rate of the electric field device for particles entering the electric field in the direction of ion flow is nearly double that of the particles entering the electric field in the direction of counter ion flow, thereby increasing the dust collection efficiency of the electric field and reducing the electric power consumption of the electric field.
  • the main reason for the low dust removal efficiency of the dust collection electric field in the prior art is that the direction of the dust entering the electric field is opposite to or perpendicular to the direction of the ion flow in the electric field, which causes the dust and ion flow to collide violently with each other and produce greater energy consumption. It also affects the charging efficiency, thereby reducing the electric field dust collection efficiency and increasing energy consumption in the prior art.
  • the electric field device collects the dust in the gas, the gas and dust enter the electric field along the ion flow direction, the dust is fully charged, and the electric field consumption is small; the unipolar electric field dust collection efficiency will reach 99.99%.
  • the gas and dust enter the electric field in the direction of ion flow the dust is not fully charged, the electric power consumption of the electric field will also increase, and the dust collection efficiency will be 40% -75%.
  • the ion flow formed by the electric field device is beneficial to the fluid delivery of unpowered fans, intake air oxygenation, or heat exchange.
  • the electric field device detects the electric field current and cleans the dust in any of the following ways:
  • the electric field reverse corona discharge phenomenon is used to increase the electric field voltage, limit the injection current, and complete the dust cleaning.
  • the electric field back-corona discharge phenomenon is used to increase the electric field voltage, limit the injection current, and cause a sudden discharge at the carbon deposit of the anode to generate plasma.
  • the plasma described above deeply oxidizes the organic components of the dust, breaks the polymer bonds, and forms small molecules of carbon dioxide and water to complete the dust cleaning.
  • the anode of the dust removal electric field and the cathode of the dust removal electric field are electrically connected to the two electrodes of the power source, respectively.
  • the voltage loaded on the anode of the dust-removing electric field and the cathode of the dust-removing electric field need to select an appropriate voltage level, and the specific voltage level to be selected depends on the volume, temperature resistance, and dust-holding rate of the electric field device.
  • the voltage is from 1kv to 50kv; the temperature resistance conditions are first considered in the design, the parameters of the pole spacing and temperature: 1MM ⁇ 30 degrees, the dust accumulation area is greater than 0.1 square / thousand cubic meters / hour, and the electric field length is greater than 5 Times, control the electric field air flow velocity to be less than 9 meters per second.
  • the anode of the dust removal electric field is composed of a first hollow anode tube and has a honeycomb shape.
  • the shape of the first hollow anode tube port may be circular or polygonal.
  • the value of the inscribed circle of the first hollow anode tube ranges from 5-400mm, the corresponding voltage is between 0.1-120kv, and the corresponding current of the first hollow anode tube is between 0.1-30A;
  • the tangent circle corresponds to different corona voltage, about 1KV / 1MM.
  • the electric field device includes a first electric field stage.
  • the first electric field stage includes a plurality of first electric field generating units, and there may be one or more first electric field generating units.
  • the first electric field generating unit is also called a first dust collecting unit.
  • the first dust collecting unit includes the above-mentioned anode of the dust removing electric field and the cathode of the dust removing electric field. There are one or more first dust collecting units.
  • the dust collection efficiency of the electric field device can be effectively improved.
  • the anodes of each dust removal electric field are of the same polarity
  • the cathodes of each dust removal electric field are of the same polarity.
  • the electric field device further includes a plurality of connecting housings, and the first electric field stages connected in series are connected through the connecting housings; the distance between the first electric field stages of two adjacent stages is greater than 1.4 times the pole spacing.
  • the electret material is charged with an electric field.
  • the electret material will be used to remove dust.
  • the electric field device includes an electret element.
  • the electret element is provided in the anode of the dust-removing electric field.
  • the anode of the dedusting electric field and the cathode of the dedusting electric field form an ionizing dedusting electric field when the power is turned on, and the electret element is in the ionizing dedusting electric field.
  • the electret element is close to the outlet of the electric field device, or the electret element is provided at the outlet of the electric field device.
  • the anode of the dedusting electric field and the cathode of the dedusting electric field form a flow channel, and the electret element is disposed in the flow channel.
  • the flow channel includes a flow channel outlet, the electret element is close to the flow channel outlet, or the electret element is provided at the flow channel outlet.
  • the cross section of the electret element in the flow channel occupies 5% to 100% of the cross section of the flow channel.
  • the cross section of the electret element in the flow channel occupies 10% -90%, 20% -80%, or 40% -60% of the flow channel cross section.
  • the ionization and dust removal electric field charges the electret element.
  • the electret element has a porous structure.
  • the electret element is a fabric.
  • the anode of the dedusting electric field is tubular, the outside of the electret element is tubular, and the outside of the electret element is sleeved inside the anode of the dusting electric field.
  • the electret element and the anode of the dust-removing electric field are detachably connected.
  • the material of the electret element includes an inorganic compound having electret properties.
  • the electret performance refers to that the electret element is charged after being charged by an external power source, and still retains a certain charge when completely disconnected from the power source, thereby acting as an electrode as an electric field electrode.
  • the inorganic compound is selected from one or more combinations of oxygen-containing compounds, nitrogen-containing compounds, or glass fibers.
  • the oxygen-containing compound is selected from one or more combinations of metal-based oxides, oxygen-containing composites, and oxygen-containing inorganic heteropoly acid salts.
  • the metal-based oxide is selected from one or more combinations of aluminum oxide, zinc oxide, zirconium oxide, titanium oxide, barium oxide, tantalum oxide, silicon oxide, lead oxide, and tin oxide .
  • the metal-based oxide is alumina.
  • the oxygen-containing composite is selected from one or more combinations of titanium-zirconium composite oxide or titanium-barium composite oxide.
  • the oxygen-containing inorganic heteropoly acid salt is selected from one or more combinations of zirconium titanate, lead zirconate titanate, or barium titanate.
  • the nitrogen-containing compound is silicon nitride.
  • the material of the electret element includes an organic compound having electret properties.
  • the electret performance refers to that the electret element is charged after being charged by an external power source, and still retains a certain charge when completely disconnected from the power source, thereby acting as an electrode as an electric field electrode.
  • the organic compound is selected from one or more combinations of fluoropolymer, polycarbonate, PP, PE, PVC, natural wax, resin, and rosin.
  • the fluoropolymer is selected from polytetrafluoroethylene (PTFE), polyperfluoroethylene propylene (Teflon-FEP), soluble polytetrafluoroethylene (PFA), and polyvinylidene fluoride (PVDF) One or more combinations.
  • PTFE polytetrafluoroethylene
  • Teflon-FEP polyperfluoroethylene propylene
  • PFA soluble polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • the fluoropolymer is polytetrafluoroethylene.
  • the ionization and dust removal electric field is generated under the condition of power-on driving voltage.
  • the ionization and dust removal electric field is used to ionize part of the object to be processed, adsorb the particulate matter in the air, and charge the electret element at the same time.
  • the charged electret element generates an electric field, and the electric field generated by the charged electret element absorbs particulate matter in the air, that is, the particulate matter can still be adsorbed in the event of a failure in the ionization and dust removal electric field.
  • the air dust removal system further includes an ozone removal device for removing or reducing ozone generated by the electric field device.
  • the ozone removal device is between the outlet of the electric field device and the outlet of the air dust removal system.
  • the ozone removing device includes an ozone digester.
  • the ozone digester is selected from at least one of an ultraviolet ozone digester and a catalytic ozone digester.
  • the air dedusting system of the present invention further includes an ozone removing device for removing or reducing ozone generated by the electric field device.
  • the present invention provides an air dust removal method, including the following steps:
  • the dust-containing air passes through the ionization and dedusting electric field generated by the anode of the dedusting electric field and the cathode of the dedusting electric field;
  • the dust removal process is performed.
  • the dust is cleaned in any of the following ways:
  • the dust is carbon black.
  • the dust-removing electric field cathode includes a plurality of cathode wires.
  • the diameter of the cathode wire can be 0.1mm-20mm, and the size parameter can be adjusted according to the application and dust accumulation requirements. In an embodiment of the invention, the diameter of the cathode wire is not greater than 3 mm.
  • the cathode wire uses a metal wire or an alloy wire that is easy to discharge, is temperature resistant, can support its own weight, and is electrochemically stable.
  • the material of the cathode wire is titanium. The specific shape of the cathode wire is adjusted according to the shape of the anode of the dust removal electric field.
  • the cross section of the cathode wire is circular; if the dust collection surface of the anode of the dust removal electric field is an arc surface, the cathode wire Need to be designed as a polyhedron. The length of the cathode wire is adjusted according to the anode of the dust removal electric field.
  • the dust-removing electric field cathode includes a plurality of cathode rods.
  • the diameter of the cathode rod is not greater than 3 mm.
  • a metal rod or an alloy rod that is easy to discharge is used as the cathode rod.
  • the shape of the cathode rod may be needle-shaped, polygonal, burr-shaped, threaded rod-shaped, columnar or the like. The shape of the cathode rod can be adjusted according to the shape of the anode of the dust-removing electric field.
  • the cross-section of the cathode rod needs to be designed to be circular; if the dust-collecting surface of the anode of the dust-removing electric field is an arc surface , The cathode rod needs to be designed into a polyhedron shape.
  • the cathode of the dust-removing electric field is disposed in the anode of the dust-removing electric field.
  • the dust-removing electric field anode includes one or more hollow anode tubes arranged in parallel. When there are multiple hollow anode tubes, all the hollow anode tubes constitute a honeycomb-shaped dust-removing electric field anode.
  • the hollow anode tube may have a circular or polygonal cross section. If the cross section of the hollow anode tube is circular, a uniform electric field can be formed between the anode of the dedusting electric field and the cathode of the dedusting electric field, and the inner wall of the hollow anode tube is not easy to accumulate dust.
  • the cross section of the hollow anode tube is a triangular shape, three dust accumulation surfaces and three distant dust holding angles can be formed on the inner wall of the hollow anode tube.
  • This structure of the hollow anode tube has the highest dust holding rate. If the cross section of the hollow anode tube is quadrangular, 4 dust-collecting surfaces and 4 dust-holding angles can be obtained, but the grouping structure is unstable. If the cross section of the hollow anode tube is hexagonal, 6 dust accumulation surfaces and 6 dust accumulation angles can be formed, and the dust accumulation surface and the dust accumulation rate are balanced. If the cross section of the hollow anode tube is more polygonal, more dust accumulation edges can be obtained, but the dust holding rate is lost.
  • the diameter of the inscribed circle diameter of the hollow anode tube ranges from 5 mm to 400 mm.
  • the present invention provides a method for accelerating air, including the following steps:
  • An electric field is generated in the flow channel, the electric field is not perpendicular to the flow channel, and the electric field includes an inlet and an outlet.
  • the electric field ionizes the air.
  • the electric field includes a first anode and a first cathode, the first anode and the first cathode form the flow channel, and the flow channel connects the inlet and the outlet.
  • the first anode and the first cathode ionize the air in the flow channel.
  • the electric field includes a second electrode, and the second electrode is disposed at or near the inlet.
  • the second electrode is a cathode and serves as an extension of the first cathode.
  • the second electrode is provided independently of the first anode and the first cathode.
  • the electric field includes a third electrode, and the third electrode is disposed at or near the inlet.
  • the third electrode is an anode, and the third electrode is an extension of the first anode.
  • the third electrode is provided independently of the first anode and the first cathode.
  • the first cathode includes a plurality of cathode wires.
  • the diameter of the cathode wire can be 0.1mm-20mm, and the size parameter can be adjusted according to the application and dust accumulation requirements. In an embodiment of the invention, the diameter of the cathode wire is not greater than 3 mm.
  • the cathode wire uses a metal wire or an alloy wire that is easy to discharge, is temperature resistant, can support its own weight, and is electrochemically stable.
  • the material of the cathode wire is titanium. The specific shape of the cathode wire is adjusted according to the shape of the first anode.
  • the cross section of the cathode wire is circular; if the dust collecting surface of the first anode is an arc surface, the cathode wire Need to be designed as a polyhedron. The length of the cathode wire is adjusted according to the first anode.
  • the first cathode includes a number of cathode rods.
  • the diameter of the cathode rod is not greater than 3 mm.
  • a metal rod or an alloy rod that is easy to discharge is used as the cathode rod.
  • the shape of the cathode rod may be needle-shaped, polygonal, burr-shaped, threaded rod-shaped, columnar or the like. The shape of the cathode rod can be adjusted according to the shape of the first anode.
  • the cross section of the cathode rod needs to be designed to be circular; if the dust collecting surface of the first anode is an arc surface , The cathode rod needs to be designed into a polyhedron shape.
  • the first cathode is disposed in the first anode.
  • the first anode includes one or more hollow anode tubes arranged in parallel. When there are multiple hollow anode tubes, all the hollow anode tubes constitute a honeycomb first anode.
  • the hollow anode tube may have a circular or polygonal cross section. If the cross section of the hollow anode tube is circular, a uniform electric field can be formed between the first anode and the first cathode, and the inner wall of the hollow anode tube is not prone to dust accumulation. If the cross section of the hollow anode tube is a triangular shape, three dust accumulation surfaces and three distant dust holding angles can be formed on the inner wall of the hollow anode tube.
  • This structure of the hollow anode tube has the highest dust holding rate. If the cross section of the hollow anode tube is quadrangular, 4 dust-collecting surfaces and 4 dust-holding angles can be obtained, but the grouping structure is unstable. If the cross section of the hollow anode tube is hexagonal, 6 dust accumulation surfaces and 6 dust accumulation angles can be formed, and the dust accumulation surface and the dust accumulation rate are balanced. If the cross section of the hollow anode tube is more polygonal, more dust accumulation edges can be obtained, but the dust holding rate is lost. In an embodiment of the present invention, the diameter of the inscribed circle diameter of the hollow anode tube ranges from 5 mm to 400 mm.
  • the present invention provides a method for reducing electric field coupling of air dedusting, including the following steps:
  • the anode of the dedusting electric field or / and the cathode of the dedusting electric field are selected.
  • the size of the anode of the dedusting electric field or / and the cathode of the dedusting electric field is selected such that the number of electric field couplings is ⁇ 3.
  • the ratio of the dust collection area of the dust removal electric field anode to the discharge area of the dust removal electric field cathode is selected.
  • the ratio of the dust accumulation area of the dust removal electric field anode to the discharge area of the dust removal electric field cathode is 1.667: 1-1680: 1.
  • the ratio of the dust accumulation area of the dust-removing electric field anode to the discharge area of the dust-removing electric field cathode is selected to be 6.67 to 56.67: 1.
  • the diameter of the cathode of the dust-removing electric field is 1-3 mm, and the pole spacing between the anode of the dust-removing electric field and the cathode of the dust-removing electric field is 2.5-139.9 mm;
  • the discharge area ratio of the cathode of the dedusting electric field is 1.667: 1-1680: 1.
  • the pole separation between the anode of the dust removal electric field and the cathode of the dust removal electric field is selected to be less than 150 mm.
  • the pole distance between the anode of the dust-removing electric field and the cathode of the dust-removing electric field is selected to be 2.5-139.9 mm. More preferably, the pole spacing between the anode of the dust-removing electric field and the cathode of the dust-removing electric field is selected to be 5.0-100 mm.
  • the length of the anode of the dust removal electric field is selected to be 10-180 mm. More preferably, the anode length of the dust removal electric field is selected to be 60-180 mm.
  • the cathode length of the dust removal electric field is selected to be 30-180 mm. More preferably, the cathode length of the dust removal electric field is selected to be 54-176 mm.
  • the dust-removing electric field cathode includes a plurality of cathode wires.
  • the diameter of the cathode wire can be 0.1mm-20mm, and the size parameter can be adjusted according to the application and dust accumulation requirements. In an embodiment of the invention, the diameter of the cathode wire is not greater than 3 mm.
  • the cathode wire uses a metal wire or an alloy wire that is easy to discharge, is temperature resistant, can support its own weight, and is electrochemically stable.
  • the material of the cathode wire is titanium. The specific shape of the cathode wire is adjusted according to the shape of the anode of the dust removal electric field.
  • the cross section of the cathode wire is circular; if the dust collection surface of the anode of the dust removal electric field is an arc surface, the cathode wire Need to be designed as a polyhedron. The length of the cathode wire is adjusted according to the anode of the dust removal electric field.
  • the dust-removing electric field cathode includes a plurality of cathode rods.
  • the diameter of the cathode rod is not greater than 3 mm.
  • a metal rod or an alloy rod that is easy to discharge is used as the cathode rod.
  • the shape of the cathode rod may be needle-shaped, polygonal, burr-shaped, threaded rod-shaped, columnar or the like. The shape of the cathode rod can be adjusted according to the shape of the anode of the dust-removing electric field.
  • the cross-section of the cathode rod needs to be designed to be circular; if the dust-collecting surface of the anode of the dust-removing electric field is an arc surface , The cathode rod needs to be designed into a polyhedron shape.
  • the cathode of the dust-removing electric field is disposed in the anode of the dust-removing electric field.
  • the dust-removing electric field anode includes one or more hollow anode tubes arranged in parallel. When there are multiple hollow anode tubes, all the hollow anode tubes constitute a honeycomb-shaped dust-removing electric field anode.
  • the hollow anode tube may have a circular or polygonal cross section. If the cross section of the hollow anode tube is circular, a uniform electric field can be formed between the anode of the dedusting electric field and the cathode of the dedusting electric field, and the inner wall of the hollow anode tube is not easy to accumulate dust.
  • the cross section of the hollow anode tube is a triangular shape, three dust accumulation surfaces and three distant dust holding angles can be formed on the inner wall of the hollow anode tube.
  • This structure of the hollow anode tube has the highest dust holding rate. If the cross section of the hollow anode tube is quadrangular, 4 dust-collecting surfaces and 4 dust-holding angles can be obtained, but the grouping structure is unstable. If the cross section of the hollow anode tube is hexagonal, 6 dust accumulation surfaces and 6 dust accumulation angles can be formed, and the dust accumulation surface and the dust accumulation rate are balanced. If the cross section of the hollow anode tube is more polygonal, more dust accumulation edges can be obtained, but the dust holding rate is lost.
  • the diameter of the inscribed circle diameter of the hollow anode tube ranges from 5 mm to 400 mm.
  • the present invention provides a method for removing air dust, including the following steps:
  • the electret element is close to the outlet of the electric field device, or the electret element is provided at the outlet of the electric field device.
  • the anode of the dedusting electric field and the cathode of the dedusting electric field form a flow channel, and the electret element is disposed in the flow channel.
  • the flow channel includes a flow channel outlet, the electret element is close to the flow channel outlet, or the electret element is provided at the flow channel outlet.
  • the charged electret element when there is no electrified driving voltage in the ionization and dust removal electric field, the charged electret element is used to adsorb particulate matter in the air.
  • the charged electret element adsorbs certain particulate matter in the air, it is replaced with a new electret element.
  • the ionization and dedusting electric field is restarted to adsorb the particulate matter in the air and charge the new electret element.
  • the material of the electret element includes an inorganic compound having electret properties.
  • the electret performance refers to that the electret element is charged after being charged by an external power source, and still retains a certain charge when completely disconnected from the power source, thereby acting as an electrode as an electric field electrode.
  • the inorganic compound is selected from one or more combinations of oxygen-containing compounds, nitrogen-containing compounds, or glass fibers.
  • the oxygen-containing compound is selected from one or more combinations of metal-based oxides, oxygen-containing composites, and oxygen-containing inorganic heteropoly acid salts.
  • the metal-based oxide is selected from one or more combinations of aluminum oxide, zinc oxide, zirconium oxide, titanium oxide, barium oxide, tantalum oxide, silicon oxide, lead oxide, and tin oxide .
  • the metal-based oxide is alumina.
  • the oxygen-containing composite is selected from one or more combinations of titanium-zirconium composite oxide or titanium-barium composite oxide.
  • the oxygen-containing inorganic heteropoly acid salt is selected from one or more combinations of zirconium titanate, lead zirconate titanate, or barium titanate.
  • the nitrogen-containing compound is silicon nitride.
  • the material of the electret element includes an organic compound having electret properties.
  • the electret performance refers to that the electret element is charged after being charged by an external power source, and still retains a certain charge when completely disconnected from the power source, thereby acting as an electrode as an electric field electrode.
  • the organic compound is selected from one or more combinations of fluoropolymer, polycarbonate, PP, PE, PVC, natural wax, resin, and rosin.
  • the fluoropolymer is selected from polytetrafluoroethylene (PTFE), polyperfluoroethylene propylene (Teflon-FEP), soluble polytetrafluoroethylene (PFA), and polyvinylidene fluoride (PVDF) One or more combinations.
  • PTFE polytetrafluoroethylene
  • Teflon-FEP polyperfluoroethylene propylene
  • PFA soluble polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • the fluoropolymer is polytetrafluoroethylene.
  • the present invention provides an air dedusting method, which includes the following steps: the air is ionized and dedusted by air to remove or reduce ozone generated by the air ionized dedusting.
  • ozone generated by air ionization and dust removal is subjected to ozone digestion.
  • the ozone digestion is selected from at least one of ultraviolet digestion and catalytic digestion.
  • FIG. 1 is a schematic structural diagram of an air dust removal system in an embodiment.
  • the air dedusting system 101 includes an electric field device inlet 1011, a centrifugal separation mechanism 1012, a first water filtering mechanism 1013, an electric field device 1014, an insulating mechanism 1015, an air distribution device, a second water filtering mechanism 1017, and / or an ozone mechanism 1018.
  • the first water filtering mechanism 1013 and / or the second water filtering mechanism 1017 are optional, that is, the air dedusting system provided by the present invention may include the first water filtering mechanism 1013 and / or the second water filtering mechanism 1017, The first water filtering mechanism 1013 and / or the second water filtering mechanism 1017 may not be included.
  • the inlet 1011 of the electric field device is disposed on the inlet wall of the centrifugal separation mechanism 1012 to receive the gas with particulate matter.
  • the centrifugal separation mechanism 1012 provided at the lower end of the air dust removal system 101 uses a conical cylinder.
  • the connection between the conical cylinder and the electric field device 1014 is an exhaust port, and a first filter layer for filtering particulate matter is provided on the exhaust port.
  • the bottom of the conical cylinder is provided with a powder outlet for receiving particulate matter.
  • the gas containing particulate matter enters the centrifugal separation mechanism 1012 from the inlet 1011 of the electric field device at a speed of 12-30 m / s, the gas will change from linear motion to circular motion.
  • the vast majority of the rotating airflow flows downward from the cylindrical body toward the cone along the wall of the vessel.
  • the particulate matter is thrown toward the inner wall of the separation mechanism under the action of centrifugal force.
  • the momentum of the downward axial velocity near the inner wall falls along the wall surface and is discharged from the powder outlet.
  • the externally swirling airflow continuously flows into the central part of the separation mechanism to form a centripetal radial airflow.
  • This part of the airflow constitutes an internal swirling flow that rotates upward.
  • the direction of rotation of the internal and external swirling flow is the same.
  • the first water filtering mechanism 1013 disposed in the centrifugal separation mechanism 1012 includes a first electrode disposed at the entrance 1011 of the electric field device is a conductive mesh plate, and the conductive mesh plate is used to conduct electrons after power on Give liquid water.
  • the second electrode for adsorbing charged liquid water is the anode dust collecting part of the electric field device 1014, that is, the dust removal electric field anode 10141.
  • FIG. 2 is a structural diagram of another embodiment of the first water filtering mechanism provided in the air dust removal system.
  • the first electrode 10131 of the first water filtering mechanism is disposed at the air inlet, and the first electrode 10131 is a conductive mesh plate with a negative potential.
  • the second electrode 10132 of the present embodiment is disposed in the air intake device in a net shape, and the second electrode 10132 has a positive potential.
  • the second electrode 10132 is also called a collector.
  • the second electrode 10132 is specifically planar and the first electrode 10131 is parallel to the second electrode 10132.
  • a mesh electric field is formed between the first electrode 10131 and the second electrode 10132.
  • the first electrode 10131 is a mesh structure made of metal wire, and the first electrode 10131 is composed of a wire mesh.
  • the area of the second electrode 10132 is larger than the area of the first electrode 10131.
  • the electric field device 1014 includes a dust-removing electric field anode 10141 and a dust-removing electric field cathode 10142 disposed in the dust-removing electric field anode 10141.
  • An asymmetric electrostatic field is formed between the dust-removing electric field anode 10141 and the dust-removing electric field cathode 10142.
  • the cathode 10142 of the dust removal electric field discharges, ionizes the gas, so that the particulate matter obtains a negative charge, moves toward the anode 10141 of the dust removal electric field, and deposits on the dust removal Electric field on anode 10141.
  • the inside of the dust removal electric field anode 10141 is composed of a honeycomb-shaped and hollow anode tube bundle group, and the shape of the anode tube bundle port is a hexagon.
  • the dust-removing electric field cathode 10142 includes a plurality of electrode rods, one for each anode tube bundle in the anode tube bundle group corresponding to each other, wherein the electrode rods are shaped like needles, polygons, burrs, and threads Rod-shaped or columnar.
  • the outlet end of the dust removal electric field cathode 10142 is lower than the outlet end of the dust removal electric field anode 10141, and the outlet end of the dust removal electric field cathode 10142 is flush with the inlet end of the dust removal electric field anode 10141 , So that an acceleration electric field is formed inside the electric field device 1014.
  • the insulation mechanism 1015 includes an insulation portion and a heat insulation portion.
  • the material of the insulating part is a ceramic material or a glass material.
  • the insulating part is an umbrella-shaped string ceramic column or glass column, or a column-shaped string ceramic column or glass column, and the inside and outside of the umbrella or the inside and outside of the column are glazed.
  • the dust removal electric field cathode 10142 is installed on a cathode support plate 10143, and the cathode support plate 10143 and the dust removal electric field anode 10141 are connected by an insulation mechanism 1015.
  • the insulation mechanism 1015 is used to achieve insulation between the cathode support plate 10143 and the anode 10141 of the dust removal electric field.
  • the dust-removing electric field anode 10141 includes a first anode portion 101412 and a second anode portion 101411, that is, the first anode portion 101412 is near the entrance of the electric field device, and the second anode portion 101411 is near the exit of the electric field device.
  • the cathode support plate and the insulation mechanism are between the first anode portion 101412 and the second anode portion 101411, that is, the insulation mechanism 1015 is installed in the middle of the ionization electric field or the dust removal electric field cathode 10142, which can play a good supporting role for the dust removal electric field cathode 10142 And it plays a fixed role with respect to the dust removal electric field cathode 10142 relative to the dust removal electric field anode 10141, so that the dust removal electric field cathode 10142 and the dust removal electric field anode 10141 maintain a set distance.
  • FIG. 3A, FIG. 3B and FIG. 3C are structural diagrams of three implementations of the air equalizing device.
  • the wind-equalizing device 1016 is formed at the inlet 1011 of the dust-removing system and formed with the anode of the dust-removing electric field and the cathode of the dust-removing electric field Between the ionization and dust removal electric field, and is composed of a number of uniform wind blades 10161 rotating around the center of the inlet 1011 of the dust removal system.
  • the air-equalizing device can make air evenly pass through the electric field generated by the anode of the dust-removing electric field.
  • the internal temperature of the anode of the dust removal electric field can be kept constant, and the oxygen is sufficient.
  • the wind equalizing device 1020 includes:
  • An air inlet pipe 10201 located on one side of the anode of the dedusting electric field.
  • An air outlet pipe 10202 provided on the other side of the anode of the dust removal electric field; wherein the side where the air inlet pipe 10201 is installed is opposite to the other side where the air outlet pipe 10202 is installed.
  • the air equalizing device 1026 may further include a first venturi plate air equalizing mechanism 1028 provided at the intake end of the anode of the dust removal electric field and a second venturi provided at the air outlet end of the anode of the dust removal electric field
  • the plate venting mechanism 1030 (the second venturi plate venting mechanism 1030 (as shown in the top view of the second venturi plate venting mechanism shown in FIG. 3D can be seen as a folded type), the first venturi plate venting mechanism
  • the second venturi plate air distribution mechanism is provided with an air outlet, the air inlet and the air outlet are arranged in a staggered arrangement, and the front air intake side is exhausted to form a cyclone structure.
  • a second filter screen is provided at the junction of the electric field device 1014 and the second water filtering mechanism 1017 for filtering fine particles with a small particle size that have not been treated by the electric field device 1014.
  • the second water filtering mechanism 1017 disposed at the air outlet includes a third filter screen, a rotating shaft, and a water blocking ball.
  • the third filter screen is inclinedly installed at the air outlet through a rotating shaft, wherein a water blocking ball is installed at a position corresponding to the third air filter and the air outlet.
  • the to-be-entered gas pushes the third filter screen to rotate around a rotating shaft, a water film is formed on the third filter screen, and the water blocking ball blocks the air outlet end to prevent water from rushing out.
  • the ozone mechanism 1018 provided at the outlet of the dust removal electric field system uses an ozone removal lamp.
  • the electric field device shown in FIG. 4 includes a dust removal electric field anode 10141, a dust removal electric field cathode 10142, and an electret element 205.
  • the dust removal electric field anode 10141 and the dust removal electric field cathode 10142 form an ionization dust removal electric field when the power is turned on.
  • the electret element 205 is provided in the ionization and dust removal electric field, and the direction of the arrow in FIG. 4 is the flow direction of the object to be treated.
  • the electret element is provided at the exit of the electric field device.
  • the ionization dust removal electric field charges the electret element.
  • the electret element has a porous structure, and the material of the electret element is alumina.
  • the anode of the dedusting electric field is tubular, the outside of the electret element is tubular, and the outside of the electret element is sleeved inside the anode of the dust removing electric field.
  • the electret element and the dust-removing electric field anode are detachably connected.
  • a method of air dust removal includes the following steps:
  • the electret element is provided at the exit of the electric field device; the material of the electret element is alumina; when the ionization and dust removal electric field has no electrified driving voltage, the charged electret element is used to adsorb particulate matter in the air; After the charged electret element adsorbs certain particulate matter in the air, replace it with a new electret element; after replacing with a new electret element, restart the ionization and dust removal electric field to adsorb particulate matter in the air and give new The electret element is charged.
  • the electric field device shown in FIGS. 5 and 6 includes a dust removal electric field anode 10141, a dust removal electric field cathode 10142, and an electret element 205.
  • the dust removal electric field anode 10141 and the dust removal electric field cathode 10142 form a flow channel 292.
  • the polar body element 205 is disposed in the flow channel 292, and the arrow direction in FIG. 5 is the flow direction of the object to be processed.
  • the flow channel 292 includes a flow channel outlet, and the electret element 205 is close to the flow channel outlet.
  • the cross section of the electret element in the flow channel occupies 10% of the cross section of the flow channel, as shown in FIG.
  • the first cross-sectional area of S2 is The cross-sectional area of the electret element in the flow channel
  • the sum of the first cross-sectional area of S1 and the second cross-sectional area of S2 is the cross-sectional area of the flow channel
  • the first cross-sectional area of S1 does not include the dust removal electric field cathode 10142 Cross-sectional area.
  • the anode of the dedusting electric field and the cathode of the dedusting electric field form an ionizing dedusting electric field when the power is turned on.
  • the ionization dust removal electric field charges the electret element.
  • the electret element has a porous structure, and the material of the electret element is polytetrafluoroethylene.
  • the anode of the dedusting electric field is tubular, the outside of the electret element is tubular, and the outside of the electret element is sleeved inside the anode of the dust removing electric field.
  • the electret element and the dust-removing electric field anode are detachably connected.
  • a method of air dust removal includes the following steps:
  • the electret element is close to the outlet of the flow channel; the material of the electret element is polytetrafluoroethylene; when the ionization and dust removal electric field has no electrified driving voltage, the charged electret element is used to absorb air After the charged electret element adsorbs a certain amount of particulate matter in the air, replace it with a new electret element; replace it with a new electret element and restart the ionization dust removal electric field to adsorb the particulate matter in the air, And charge the new electret element.
  • the air dust removal system includes an electric field device and an ozone removal device 206.
  • the electric field device includes a dust removal electric field anode 10141 and a dust removal electric field cathode 10142.
  • the ozone removal device is used to remove or reduce the generation of the electric field device
  • the ozone removal device is between the outlet of the electric field device and the outlet of the air dust removal system.
  • the dedusting electric field anode 10141 and the dedusting electric field cathode 10142 are used to generate an ionizing dedusting electric field.
  • the ozone removing device includes an ozone digester for digesting the ozone generated by the electric field device, the ozone digester is an ultraviolet ozone digester, and the arrow direction in the figure is the flow direction of the intake air.
  • An air dedusting method includes the following steps: the air is ionized and dedusted by air, and then the ozone generated by the ionized dedusting of the air is subjected to ozone digestion, and the ozone digestion is ultraviolet digestion.
  • the ozone removal device is used to remove or reduce the ozone generated by the electric field device. Ozone in the air participates in ionization to form ozone.
  • the electric field generating unit in this embodiment can be applied to an electric field device. As shown in FIG. 9, it includes a dust removing electric field anode 4051 and a dust removing electric field cathode 4052 for generating an electric field.
  • the dust removing electric field anode 4051 and the dust removing electric field cathode 4052 are respectively connected to the power supply The two electrodes are electrically connected.
  • the power supply is a DC power supply.
  • the anode 4051 of the dust removal electric field and the cathode 4052 of the dust removal electric field are electrically connected to the anode and the cathode of the DC power supply, respectively.
  • the anode 4051 of the dust removal electric field has a positive potential
  • the cathode 4052 of the dust removal electric field has a negative potential.
  • the DC power supply may specifically be a DC high-voltage power supply.
  • a discharge electric field is formed between the above-mentioned dedusting electric field anode 4051 and the dedusting electric field cathode 4052, and the discharge electric field is an electrostatic field.
  • the anode 4051 of the dust removal electric field in this embodiment is a hollow regular hexagonal tube
  • the cathode 4052 of the dust removal electric field is rod-shaped
  • the cathode 4052 of the dust removal electric field is inserted into the anode 4051 of the dust removal electric field.
  • the method of reducing electric field coupling includes the following steps: the ratio of the dust collecting area of the dust collecting anode 4051 to the discharge area of the dust removing electric field cathode 4052 is 6.67: 1, and the pole spacing between the dust removing electric field anode 4051 and the dust removing electric field cathode 4052 is 9.9mm, The length of the dust-removing electric field anode 4051 is 60 mm, and the length of the dust-removing electric field cathode 4052 is 54 mm.
  • the dust-removing electric field anode 4051 includes a fluid channel.
  • the fluid channel includes an inlet end and an outlet end.
  • the dust-removing electric field cathode 4052 is placed in the fluid channel
  • the dedusting electric field cathode 4052 extends in the direction of the dust collector fluid channel, the inlet end of the dedusting electric field anode 4051 is flush with the near inlet end of the dedusting electric field cathode 4052, and the outlet end of the dedusting electric field anode 4051 is close to the dedusting electric field cathode 4052
  • There is an angle ⁇ between the outlet ends, and ⁇ 118 °, and under the action of the dust-removing electric field anode 4051 and the dust-removing electric field cathode 4052, more substances to be treated can be collected, and the number of electric field couplings ⁇ 3 can be reduced Electric field coupling consumption of aerosol, water mist, oil mist, loose smooth particles can save electric energy of electric field by 30-50%.
  • the electric field device includes an electric field stage composed of a plurality of the above electric field generating units, and there are a plurality of the electric field stages, so as to effectively improve the dust collection efficiency of the electric field device by using a plurality of dust collection units.
  • the anode of each dust removal electric field is the same polarity
  • the cathode of each dust removal electric field is the same polarity.
  • the electric field stages of the multiple electric field stages are connected in series, and the series electric field stages are connected by a connecting shell.
  • the distance between the adjacent two electric field stages is greater than 1.4 times the pole spacing.
  • the electric field levels are two levels, that is, a first-level electric field and a second-level electric field, and the first-level electric field and the second-level electric field are connected in series through a connection housing.
  • the substance to be treated may be particulate dust or other impurities to be treated, such as aerosol, water mist, oil mist, etc.
  • the electric field generating unit in this embodiment can be applied to an electric field device. As shown in FIG. 9, it includes a dust removing electric field anode 4051 and a dust removing electric field cathode 4052 for generating an electric field.
  • the dust removing electric field anode 4051 and the dust removing electric field cathode 4052 are respectively connected to the power supply
  • the two electrodes are electrically connected, the power supply is a DC power supply, and the anode 4051 of the dust removal electric field and the cathode 4052 of the dust removal electric field are electrically connected to the anode and the cathode of the DC power supply, respectively.
  • the anode 4051 of the dust removal electric field has a positive potential
  • the cathode 4052 of the dust removal electric field has a negative potential.
  • the DC power supply may specifically be a DC high-voltage power supply.
  • a discharge electric field is formed between the above-mentioned dedusting electric field anode 4051 and the dedusting electric field cathode 4052, and the discharge electric field is an electrostatic field.
  • the anode 4051 of the dust removal electric field has a hollow regular hexagonal tube shape
  • the cathode 4052 of the dust removal electric field has a rod shape
  • the cathode 4052 of the dust removal electric field passes through the anode 4051 of the dust removal electric field.
  • the method for reducing electric field coupling includes the following steps: the ratio of the dust collecting area of the dust collecting field anode 4051 to the discharge area of the dust removing electric field cathode 4052 is 1680: 1, and the pole spacing between the dust removing electric field anode 4051 and the dust removing electric field cathode 4052 is 139.9mm, The length of the dust-removing electric field anode 4051 is 180 mm, and the length of the dust-removing electric field cathode 4052 is 180 mm.
  • the dust-removing electric field anode 4051 includes a fluid channel.
  • the fluid channel includes an inlet end and an outlet end.
  • the dust-removing electric field cathode 4052 is placed in the fluid channel
  • the dedusting electric field cathode 4052 extends in the direction of the dust collector fluid channel, the inlet end of the dedusting electric field anode 4051 is flush with the near inlet end of the dedusting electric field cathode 4052, and the outlet end of the dedusting electric field anode 4051 is close to the dedusting electric field cathode 4052
  • the outlet end is flush, and under the action of the dedusting electric field anode 4051 and the dedusting electric field cathode 4052, more materials to be treated can be collected, and the number of electric field couplings is ⁇ 3, which can reduce the electric field to aerosol, water mist, oil mist 3. Coupling consumption of loose and smooth particles saves 20-40% of electric energy in the electric field.
  • the substance to be treated may be particulate dust or other impurities to be treated, such as aerosol, water mist, oil mist, etc.
  • the electric field generating unit in this embodiment can be applied to an electric field device. As shown in FIG. 9, it includes a dust removal electric field anode 4051 and a dust removal electric field cathode 4052 for generating an electric field.
  • the dust removal electric field anode 4051 and the dust removal electric field cathode 4052 are respectively The two electrodes are electrically connected.
  • the power supply is a DC power supply.
  • the anode 4051 of the dust removal electric field and the cathode 4052 of the dust removal electric field are electrically connected to the anode and the cathode of the DC power supply, respectively.
  • the anode 4051 of the dust removal electric field has a positive potential
  • the cathode 4052 of the dust removal electric field has a negative potential.
  • the DC power supply may specifically be a DC high-voltage power supply.
  • a discharge electric field is formed between the above-mentioned dedusting electric field anode 4051 and the dedusting electric field cathode 4052, and the discharge electric field is an electrostatic field.
  • the anode 4051 of the dust removal electric field has a hollow regular hexagonal tube shape
  • the cathode 4052 of the dust removal electric field has a rod shape
  • the cathode 4052 of the dust removal electric field passes through the anode 4051 of the dust removal electric field.
  • the method of reducing electric field coupling includes the following steps: the ratio of the dust collecting area of the dust collecting field anode 4051 to the discharge area of the dust removing electric field cathode 4052 is 1.667: 1, the pole spacing between the dust removing electric field anode 4051 and the dust removing electric field cathode 4052 is 2.4 mm,
  • the dust removal field anode 4051 has a length of 30 mm and the dust removal field cathode 4052 has a length of 30 mm.
  • the dust removal field anode 4051 includes a fluid channel including an inlet end and an outlet end.
  • the dust removal field cathode 4052 is placed in the fluid channel
  • the dedusting electric field cathode 4052 extends in the direction of the dust collector fluid channel, the inlet end of the dedusting electric field anode 4051 is flush with the near inlet end of the dedusting electric field cathode 4052, and the outlet end of the dedusting electric field anode 4051 is close to the dedusting electric field cathode 4052
  • the outlet end is flush, and under the action of the dedusting electric field anode 4051 and the dedusting electric field cathode 4052, more materials to be treated can be collected, and the number of electric field couplings is ⁇ 3, which can reduce the electric field to aerosol, water mist, oil mist 1. Coupling consumption of loose and smooth particles, saving electric field electric energy by 10-30%.
  • the substance to be treated may be particulate dust or other impurities to be treated, such as aerosol, water mist, oil mist, etc.
  • the electric field generating unit in this embodiment can be applied to an electric field device. As shown in FIG. 9, it includes a dust removing electric field anode 4051 and a dust removing electric field cathode 4052 for generating an electric field.
  • the dust removing electric field anode 4051 and the dust removing electric field cathode 4052 are respectively connected to the power supply The two electrodes are electrically connected.
  • the power supply is a DC power supply.
  • the anode 4051 of the dust removal electric field and the cathode 4052 of the dust removal electric field are electrically connected to the anode and the cathode of the DC power supply, respectively.
  • the anode 4051 of the dust removal electric field has a positive potential
  • the cathode 4052 of the dust removal electric field has a negative potential.
  • the DC power supply may specifically be a DC high-voltage power supply.
  • a discharge electric field is formed between the above-mentioned dedusting electric field anode 4051 and the dedusting electric field cathode 4052, and the discharge electric field is an electrostatic field.
  • the anode 4051 of the dust removal electric field in this embodiment is a hollow regular hexagonal tube
  • the cathode 4052 of the dust removal electric field is rod-shaped
  • the cathode 4052 of the dust removal electric field is installed in the anode 4051 of the dust removal electric field.
  • the ratio of the dust collecting area of the anode 4051 to the discharge area of the cathode 4052 of the dedusting electric field is 6.67: 1, the pole spacing between the anode 4051 of the dedusting electric field and the cathode 4052 of the dedusting electric field is 9.9 mm, the length of the anode 4051 of the dedusting electric field is 60 mm, and the cathode of the dedusting electric field The length of 4052 is 54mm.
  • the anode 4051 of the dedusting electric field includes a fluid channel.
  • the fluid channel includes an inlet end and an outlet end.
  • the cathode 4052 of the dedusting electric field is placed in the fluid channel.
  • the cathode 4052 of the dedusting electric field is along the dust collector.
  • the direction of the fluid channel extends.
  • the inlet end of the anode 4051 of the dust removal electric field is flush with the near inlet end of the cathode 4052 of the dust removal electric field.
  • There is an angle ⁇ between the outlet end of the anode 4051 of the dust removal electric field and the near outlet end of the cathode 4052 of the dust removal electric field. 118 °, and under the action of the anode 4051 of the dust removal electric field and the cathode 4052 of the dust removal electric field, more substances to be treated can be collected to ensure the development of the electric field Means higher dust collecting efficiency, a typical exhaust particles pm0.23 dust collecting efficiency of 99.99%.
  • the electric field device includes an electric field stage composed of a plurality of the above electric field generating units, and there are a plurality of the electric field stages, so as to effectively improve the dust collection efficiency of the electric field device by using a plurality of dust collection units.
  • the anode of each dust removal electric field is the same polarity
  • the cathode of each dust removal electric field is the same polarity.
  • the multiple electric field stages are connected in series, and the series electric field stages are connected through the connecting shell.
  • the distance between the adjacent two electric field stages is greater than 1.4 times the pole spacing.
  • the electric field levels are two levels, that is, a first-level electric field 4053 and a second-level electric field 4054.
  • the first-level electric field 4053 and the second-level electric field 4054 are connected in series through a connection housing 4055.
  • the substance to be treated may be particulate dust or other impurities to be treated, such as aerosol, water mist, oil mist, etc.
  • the electric field generating unit in this embodiment can be applied to an electric field device. As shown in FIG. 9, it includes a dust removing electric field anode 4051 and a dust removing electric field cathode 4052 for generating an electric field.
  • the dust removing electric field anode 4051 and the dust removing electric field cathode 4052 are respectively connected to the power supply The two electrodes are electrically connected.
  • the power supply is a DC power supply.
  • the anode 4051 of the dust removal electric field and the cathode 4052 of the dust removal electric field are electrically connected to the anode and the cathode of the DC power supply, respectively.
  • the anode 4051 of the dust removal electric field has a positive potential
  • the cathode 4052 of the dust removal electric field has a negative potential.
  • the DC power supply may specifically be a DC high-voltage power supply.
  • a discharge electric field is formed between the above-mentioned dedusting electric field anode 4051 and the dedusting electric field cathode 4052, and the discharge electric field is an electrostatic field.
  • the dust-removing electric field anode 4051 is a hollow regular hexagonal tube, and the dust-removing electric field cathode 4052 is rod-shaped.
  • the dust-removing electric field cathode 4052 is interposed in the dust-removing electric field anode 4051.
  • the dust-collecting area of the dust-removing electric field anode 4051 and the dust-removing electric field cathode 4052 The discharge area ratio is 1680: 1, the pole spacing between the dedusting electric field anode 4051 and the dedusting electric field cathode 4052 is 139.9mm, the length of the dedusting electric field anode 4051 is 180mm, the length of the dedusting electric field cathode 4052 is 180mm, and the dedusting electric field anode 4051 includes A fluid channel including an inlet end and an outlet end, the dust-removing electric field cathode 4052 is placed in the fluid channel, the dust-removing electric field cathode 4052 extends in the direction of the dust collector fluid channel, and the inlet of the dust-removing electric field anode 4051 The end is flush with the near inlet end of the dedusting electric field cathode 4052, the exit end of the dedusting electric field anode 4051 is flush with the near exit end of the dedusting electric field cathode
  • the electric field device includes an electric field stage composed of a plurality of the above electric field generating units, and there are a plurality of the electric field stages, so as to effectively improve the dust collection efficiency of the electric field device by using a plurality of dust collection units.
  • the anode of each dust removal electric field is the same polarity
  • the cathode of each dust removal electric field is the same polarity.
  • the substance to be treated may be particulate dust or other impurities to be treated, such as aerosol, water mist, oil mist, etc.
  • the electric field generating unit in this embodiment can be applied to an electric field device. As shown in FIG. 9, it includes a dust removing electric field anode 4051 and a dust removing electric field cathode 4052 for generating an electric field.
  • the dust removing electric field anode 4051 and the dust removing electric field cathode 4052 are respectively connected to the power supply The two electrodes are electrically connected.
  • the power supply is a DC power supply.
  • the anode 4051 of the dust removal electric field and the cathode 4052 of the dust removal electric field are electrically connected to the anode and the cathode of the DC power supply, respectively.
  • the anode 4051 of the dust removal electric field has a positive potential
  • the cathode 4052 of the dust removal electric field has a negative potential.
  • the DC power supply may specifically be a DC high-voltage power supply.
  • a discharge electric field is formed between the above-mentioned dedusting electric field anode 4051 and the dedusting electric field cathode 4052, and the discharge electric field is an electrostatic field.
  • the dust-removing electric field anode 4051 is a hollow regular hexagonal tube, and the dust-removing electric field cathode 4052 is rod-shaped.
  • the dust-removing electric field cathode 4052 is interposed in the dust-removing electric field anode 4051.
  • the ratio of the discharge area is 1.667: 1, and the pole spacing between the dust-removing electric field anode 4051 and the dust-removing electric field cathode 4052 is 2.4 mm.
  • the dust removal field anode 4051 has a length of 30 mm and the dust removal field cathode 4052 has a length of 30 mm.
  • the dust removal field anode 4051 includes a fluid channel including an inlet end and an outlet end.
  • the dust removal field cathode 4052 is placed in the fluid channel
  • the dedusting electric field cathode 4052 extends in the direction of the dust collector fluid channel, the inlet end of the dedusting electric field anode 4051 is flush with the near inlet end of the dedusting electric field cathode 4052, and the outlet end of the dedusting electric field anode 4051 is close to the dedusting electric field cathode 4052
  • the outlet end is flush, and under the action of the dust removal electric field anode 4051 and the dust removal electric field cathode 4052, more materials to be treated can be collected to ensure a higher dust collection efficiency of the electric field device, and typical tail gas particles pm0.23 dust collection The efficiency is 99.99%.
  • the dust-removing electric field anode 4051 and the dust-removing electric field cathode 4052 constitute a dust collecting unit, and there are a plurality of dust collecting units, so as to effectively improve the dust collecting efficiency of the electric field device by using a plurality of dust collecting units.
  • the substance to be treated may be particulate dust or other impurities to be treated, such as aerosol, water mist, oil mist, etc.
  • the air dust removal system in this embodiment includes the electric field device in Embodiment 8, Embodiment 9 or Embodiment 10 described above.
  • the air needs to flow through the electric field device first, so that the electric field device can effectively remove the dust in the air waiting for the treatment substances to ensure that the air is cleaner and contains less impurities such as dust.
  • the electric field generating unit in this embodiment can be applied to an electric field device. As shown in FIG. 9, it includes a dust removing electric field anode 4051 and a dust removing electric field cathode 4052 for generating an electric field.
  • the dust removing electric field anode 4051 and the dust removing electric field cathode 4052 are respectively connected to the power supply The two electrodes are electrically connected.
  • the power supply is a DC power supply.
  • the anode 4051 of the dust removal electric field and the cathode 4052 of the dust removal electric field are electrically connected to the anode and the cathode of the DC power supply, respectively.
  • the anode 4051 of the dust removal electric field has a positive potential
  • the cathode 4052 of the dust removal electric field has a negative potential.
  • the DC power supply may specifically be a DC high-voltage power supply.
  • a discharge electric field is formed between the above-mentioned dedusting electric field anode 4051 and the dedusting electric field cathode 4052, and this discharge electric field is an electrostatic field.
  • the anode 4051 of the dust removal electric field has a hollow regular hexagonal tube shape
  • the cathode 4052 of the dust removal electric field has a rod shape.
  • the cathode 4052 of the dust removal electric field is installed in the anode 4051 of the dust removal electric field.
  • the anode 4051 of the dust removal electric field has a length of 5 cm, and the cathode 4052 of the dust removal electric field has 5cm, the dedusting electric field anode 4051 includes a fluid channel, the fluid channel includes an inlet end and an outlet end, the dedusting electric field cathode 4052 is placed in the fluid channel, the dedusting electric field cathode 4052 is along the dust collector fluid channel The direction extends, the inlet end of the dust removal electric field anode 4051 is flush with the near inlet end of the dust removal electric field cathode 4052, the outlet end of the dust removal electric field anode 4051 is flush with the near outlet end of the dust removal electric field cathode 4052, the dust removal electric field anode 4051 and the dust removal electric field
  • the pole spacing of the cathode 4052 is 9.9mm, and under the action of the dedusting electric field anode 4051 and the dedusting electric field cathode 4052, it makes it resistant to high temperature shock
  • the electric field device includes an electric field stage composed of a plurality of the above electric field generating units, and there are a plurality of the electric field stages, so as to effectively improve the dust collection efficiency of the electric field device by using a plurality of dust collection units.
  • the anode of each dust removal electric field is the same polarity
  • the cathode of each dust removal electric field is the same polarity.
  • the substance to be treated may be particulate dust.
  • the electric field generating unit in this embodiment can be applied to an electric field device. As shown in FIG. 9, it includes a dust removing electric field anode 4051 and a dust removing electric field cathode 4052 for generating an electric field.
  • the dust removing electric field anode 4051 and the dust removing electric field cathode 4052 are respectively connected to the power supply The two electrodes are electrically connected.
  • the power supply is a DC power supply.
  • the anode 4051 of the dust removal electric field and the cathode 4052 of the dust removal electric field are electrically connected to the anode and the cathode of the DC power supply, respectively.
  • the anode 4051 of the dust removal electric field has a positive potential
  • the cathode 4052 of the dust removal electric field has a negative potential.
  • the DC power supply may specifically be a DC high-voltage power supply.
  • a discharge electric field is formed between the above-mentioned dedusting electric field anode 4051 and the dedusting electric field cathode 4052, and the discharge electric field is an electrostatic field.
  • the anode 4051 of the dust removal electric field is a hollow regular hexagonal tube, and the cathode 4052 of the dust removal electric field is rod-shaped.
  • the cathode 4052 of the dust removal electric field is installed in the anode 4051 of the dust removal electric field.
  • the dust-removing electric field anode 4051 includes a fluid channel, the fluid channel includes an inlet end and an outlet end, the dust-removing electric field cathode 4052 is placed in the fluid channel, and the dust-removing electric field cathode 4052 is located along the dust collector fluid channel The direction extends, the inlet end of the dust removal electric field anode 4051 is flush with the near inlet end of the dust removal electric field cathode 4052, the outlet end of the dust removal electric field anode 4051 is flush with the near outlet end of the dust removal electric field cathode 4052, the dust removal electric field anode 4051 and the dust removal electric field
  • the pole spacing of the cathode 4052 is 139.9mm, and under the action of the dedusting electric field anode 4051 and the dedusting electric field cathode 4052, it makes it resistant to high temperature shocks, and can collect more to-be-processed materials to ensure the dust collection of the electric field generating unit higher efficiency.
  • the electric field device includes an electric field stage composed of a plurality of the above electric field generating units, and there are a plurality of the electric field stages, so as to effectively improve the dust collection efficiency of the electric field device by using a plurality of dust collection units.
  • the anode of each storage electric field is the same polarity
  • the cathode of each dust removal electric field is the same polarity.
  • the substance to be treated may be particulate dust.
  • the electric field generating unit in this embodiment can be applied to an electric field device. As shown in FIG. 9, it includes a dust removing electric field anode 4051 and a dust removing electric field cathode 4052 for generating an electric field.
  • the dust removing electric field anode 4051 and the dust removing electric field cathode 4052 are respectively connected to the power supply The two electrodes are electrically connected.
  • the power supply is a DC power supply.
  • the anode 4051 of the dust removal electric field and the cathode 4052 of the dust removal electric field are electrically connected to the anode and the cathode of the DC power supply, respectively.
  • the anode 4051 of the dust removal electric field has a positive potential
  • the cathode 4052 of the dust removal electric field has a negative potential.
  • the DC power supply may specifically be a DC high-voltage power supply.
  • a discharge electric field is formed between the above-mentioned dedusting electric field anode 4051 and the dedusting electric field cathode 4052, and the discharge electric field is an electrostatic field.
  • the anode 4051 of the dust removal electric field has a hollow regular hexagonal tube shape
  • the cathode 4052 of the dust removal electric field has a rod shape.
  • the cathode 4052 of the dust removal electric field is installed in the anode 4051 of the dust removal electric field.
  • the anode 4051 of the dust removal electric field has a length of 1 cm, and the cathode 4052 of the dust removal electric field has 1cm, the dedusting electric field anode 4051 includes a fluid channel, the fluid channel includes an inlet end and an outlet end, the dedusting electric field cathode 4052 is placed in the fluid channel, the dedusting electric field cathode 4052 is along the dust collector fluid channel The direction extends, the inlet end of the dust removal electric field anode 4051 is flush with the near inlet end of the dust removal electric field cathode 4052, the outlet end of the dust removal electric field anode 4051 is flush with the near outlet end of the dust removal electric field cathode 4052, the dust removal electric field anode 4051 and the dust removal electric field
  • the pole spacing of the cathode 4052 is 2.4mm, and under the action of the anode 4051 of the dust removal electric field and the cathode 4052 of the dust removal electric field, it makes it resistant to high
  • the electric field device includes an electric field stage composed of a plurality of the above electric field generating units, and there are a plurality of the electric field stages, so as to effectively improve the dust collection efficiency of the electric field device by using a plurality of dust collection units.
  • the anode of each dust removal electric field is the same polarity
  • the cathode of each dust removal electric field is the same polarity.
  • the electric field stages of the multiple electric field stages are connected in series, and the series electric field stages are connected by a connecting shell.
  • the distance between the adjacent two electric field stages is greater than 1.4 times the pole spacing.
  • the electric field levels are two levels, namely, the first level electric field and the second level electric field, and the first level electric field and the second level electric field are connected in series through the connection housing.
  • the substance to be treated may be particulate dust.
  • the electric field generating unit in this embodiment can be applied to an electric field device. As shown in FIG. 9, it includes a dust removing electric field anode 4051 and a dust removing electric field cathode 4052 for generating an electric field.
  • the dust removing electric field anode 4051 and the dust removing electric field cathode 4052 are respectively connected to the power supply The two electrodes are electrically connected.
  • the power supply is a DC power supply.
  • the anode 4051 of the dust removal electric field and the cathode 4052 of the dust removal electric field are electrically connected to the anode and the cathode of the DC power supply, respectively.
  • the anode 4051 of the dust removal electric field has a positive potential
  • the cathode 4052 of the dust removal electric field has a negative potential.
  • the DC power supply may specifically be a DC high-voltage power supply.
  • a discharge electric field is formed between the above-mentioned dedusting electric field anode 4051 and the dedusting electric field cathode 4052, and the discharge electric field is an electrostatic field.
  • the anode 4051 of the dust removal electric field in this embodiment is a hollow regular hexagonal tube
  • the cathode 4052 of the dust removal electric field is rod-shaped
  • the cathode 4052 of the dust removal electric field is interposed in the anode 4051 of the dust removal electric field. It is 3cm
  • the length of the dust removal electric field cathode 4052 is 2cm
  • the dust removal electric field anode 4051 includes a fluid channel
  • the fluid channel includes an inlet end and an outlet end
  • the dust removal electric field cathode 4052 is placed in the fluid channel
  • the dust removal electric field The cathode 4052 extends in the direction of the dust collector fluid channel.
  • the inlet end of the dust removal electric field anode 4051 is flush with the near inlet end of the dust removal electric field cathode 4052.
  • the dust collection efficiency corresponding to an electric field temperature of 200 ° C is 99.9%; the dust collection efficiency corresponding to an electric field temperature of 400 ° C is 90%; the dust collection efficiency corresponding to an electric field temperature of 500 ° C is 50%.
  • the electric field device includes an electric field stage composed of a plurality of the above electric field generating units, and there are a plurality of the electric field stages, so as to effectively improve the dust collection efficiency of the electric field device by using a plurality of dust collection units.
  • each dust collector has the same polarity and each discharge has the same polarity.
  • the electric field stages of the multiple electric field stages are connected in series, and the series electric field stages are connected by a connecting shell.
  • the distance between the adjacent two electric field stages is greater than 1.4 times the pole spacing.
  • the electric field levels are two levels, that is, a first-level electric field and a second-level electric field, and the first-level electric field and the second-level electric field are connected in series through a connection housing.
  • the substance to be treated may be particulate dust.
  • the air dust removal system in this embodiment includes the electric field device in Embodiment 12, Embodiment 13, Embodiment 14 or Embodiment 15 described above.
  • the air needs to flow through the electric field device first, in order to use the electric field device to effectively remove the dust in the air waiting for the processing material to ensure that the air is cleaner and contains less impurities such as dust.
  • the electric field device in this embodiment can be applied to an air dedusting system.
  • the dedusting electric field cathode 5081 and the dedusting electric field anode 5082 are electrically connected to the cathode and anode of the DC power supply, respectively, and the auxiliary electrode 5083 is electrically connected to the anode of the DC power supply.
  • the cathode 5081 of the dust removal electric field has a negative potential
  • the anode 5082 and the auxiliary electrode 5083 of the dust removal electric field have positive potentials.
  • the auxiliary electrode 5083 is fixed to the anode 5082 of the dust removal electric field. After the anode 5082 of the dust removal electric field is electrically connected to the anode of the DC power supply, the auxiliary electrode 5083 is also electrically connected to the anode of the DC power supply, and the auxiliary electrode 5083 and the anode of the dust removal electric field 5082 have the same positive potential.
  • the auxiliary electrode 5083 may extend in the front-rear direction, that is, the length direction of the auxiliary electrode 5083 may be the same as the length direction of the anode 5082 of the dust removal electric field.
  • the anode 5082 of the dust removal electric field has a tubular shape
  • the cathode 5081 of the dust removal electric field has a rod shape
  • the cathode 5081 of the dust removal electric field passes through the anode 5082 of the dust removal electric field.
  • the auxiliary electrode 5083 is also in the shape of a tube, and the auxiliary electrode 5083 and the anode 5082 of the dust removal electric field form an anode tube 5084.
  • the front end of the anode tube 5084 is flush with the cathode 5081 of the dedusting electric field, and the rear end of the anode tube 5084 exceeds the rear end of the cathode 5081 of the dedusting electric field.
  • the electrode 5083 that is, in this embodiment, the lengths of the dust-removing electric field anode 5082 and the dust-removing electric field cathode 5081 are the same, and the dust-removing electric field anode 5082 and the dust-removing electric field cathode 5081 are opposed to each other in the front-back direction; the auxiliary electrode 5083 is located behind the dust-removing electric field anode 5082 and the dust-removing electric field cathode 5081.
  • an auxiliary electric field is formed between the auxiliary electrode 5083 and the dedusting electric field cathode 5081.
  • the auxiliary electric field exerts a backward force on the negatively charged oxygen ion flow between the dedusting electric field anode 5082 and the dedusting electric field cathode 5081, so that the dedusting electric field anode 5082 and The flow of negatively charged oxygen ions between the cathode 5081 of the dust removal electric field has a backward moving speed.
  • the negatively charged oxygen ions will be combined with the material to be treated in the process of moving towards the anode 5082 of the dust removal electric field and backward, because the oxygen ions have a backward movement Speed, when oxygen ions are combined with the material to be processed, there will be no strong collision between the two, thereby avoiding greater energy consumption due to the stronger collision, making oxygen ions easily combined with the material to be processed, and
  • the charge efficiency of the material to be processed in the gas is higher, and then under the action of the anode 5082 and anode tube 5084 of the dust removal electric field, more material to be processed can be collected to ensure higher dust removal efficiency of the electric field device.
  • the dedusting electric field anode 5082, the auxiliary electrode 5083, and the dedusting electric field cathode 5081 constitute a dedusting unit, and there are a plurality of dedusting units to effectively improve the dedusting efficiency of the electric field device by using multiple dedusting units.
  • the substance to be treated may be particulate dust or other impurities to be treated.
  • the DC power supply may specifically be a DC high-voltage power supply.
  • a discharge electric field is formed between the above-mentioned dedusting electric field cathode 5081 and the dedusting electric field anode 5082.
  • the discharge electric field is an electrostatic field.
  • the ion flow in the electric field between the dedusting electric field cathode 5081 and the dedusting electric field anode 5082 is perpendicular to the electrode direction, and flows back and forth between the two electrodes, causing ions to flow back and forth between the electrodes.
  • the auxiliary electrode 5083 is used to shift the relative positions of the electrodes to form a relative imbalance between the dedusting electric field anode 5082 and the dedusting electric field cathode 5081. This imbalance causes the ion flow in the electric field to be deflected.
  • the electric field device uses the auxiliary electrode 5083 to form an electric field that can direct ion current.
  • the above-mentioned electric field device is also referred to as an acceleration direction electric field device.
  • the collection rate of the electric field device for the particulate matter entering the electric field in the direction of ion flow is nearly double that of the particulate matter entering the electric field in the direction of reverse ion flow, thereby improving the dust collection efficiency of the electric field and reducing the electric power consumption of the electric field.
  • the main reason for the low dust removal efficiency of the dust collection electric field in the prior art is that the direction of the dust entering the electric field is opposite to or perpendicular to the direction of the ion flow in the electric field, which causes the dust and ion flow to collide violently with each other and produce greater energy consumption. It also affects the charging efficiency, thereby reducing the electric field dust collection efficiency and increasing energy consumption in the prior art.
  • the electric field device when the electric field device is used to collect the dust in the gas, the gas and dust enter the electric field in the ion flow direction, the dust is fully charged, and the electric field consumption is small; the unipolar electric field dust collection efficiency will reach 99.99%.
  • the gas and dust enter the electric field in the direction of ion flow the dust is not fully charged, the electric power consumption of the electric field will also increase, and the dust collection efficiency will be 40% -75%.
  • the ion flow formed by the electric field device in this embodiment is beneficial to fluid transmission, oxygenation, heat exchange, etc. of the unpowered fan.
  • the electric field device in this embodiment can be applied to an air dedusting system.
  • the dedusting electric field cathode 5081 and the dedusting electric field anode 5082 are electrically connected to the cathode and anode of the DC power supply, respectively, and the auxiliary electrode 5083 is electrically connected to the cathode of the DC power supply.
  • both the auxiliary electrode 5083 and the dust removal electric field cathode 5081 have a negative potential
  • the dust removal electric field anode 5082 has a positive potential.
  • the auxiliary electrode 5083 can be fixedly connected to the cathode 5081 of the dust removal electric field. In this way, after the cathode 5081 of the dust removal electric field is electrically connected to the cathode of the DC power supply, the auxiliary electrode 5083 is also electrically connected to the cathode of the DC power supply. Meanwhile, in this embodiment, the auxiliary electrode 5083 extends in the front-rear direction.
  • the anode 5082 of the dust removal electric field has a tubular shape
  • the cathode 5081 of the dust removal electric field has a rod shape
  • the cathode 5081 of the dust removal electric field passes through the anode 5082 of the dust removal electric field.
  • the auxiliary electrode 5083 in this embodiment is also rod-shaped, and the auxiliary electrode 5083 and the dust-removing electric field cathode 5081 constitute a cathode rod.
  • the front end of the cathode rod extends forward beyond the front end of the anode 5082 of the dust removal electric field, and the portion of the cathode rod that extends forward compared to the anode 5082 of the dust removal electric field is the auxiliary electrode 5083.
  • the lengths of the dust-removing electric field anode 5082 and the dust-removing electric field cathode 5081 are the same, and the dust-removing electric field anode 5082 and the dust-removing electric field cathode 5081 are opposed in the front-back direction; the auxiliary electrode 5083 is located in front of the dust-removing electric field anode 5082 and the dust-removing electric field cathode 5081. In this way, an auxiliary electric field is formed between the auxiliary electrode 5083 and the dedusting electric field anode 5082.
  • the auxiliary electric field exerts a backward force on the negatively charged oxygen ion flow between the dedusting electric field anode 5082 and the dedusting electric field cathode 5081, so that the dedusting electric field anode 5082 and
  • the flow of negatively charged oxygen ions between the cathode 5081 of the dust removal electric field has a backward moving speed.
  • the dedusting electric field anode 5082, the auxiliary electrode 5083, and the dedusting electric field cathode 5081 constitute a dedusting unit, and there are a plurality of dedusting units to effectively improve the dedusting efficiency of the electric field device by using multiple dedusting units.
  • the substance to be treated may be particulate dust or other impurities to be treated.
  • the electric field device in this embodiment can be applied to an air dust removal system, and the auxiliary electrode 5083 extends in the left-right direction.
  • the longitudinal direction of the auxiliary electrode 5083 is different from the longitudinal direction of the dedusting electric field anode 5082 and the dedusting electric field cathode 5081.
  • the auxiliary electrode 5083 may be perpendicular to the anode 5082 of the dust removal electric field.
  • the dedusting electric field cathode 5081 and the dedusting electric field anode 5082 are electrically connected to the cathode and anode of the DC power supply, respectively, and the auxiliary electrode 5083 is electrically connected to the anode of the DC power supply.
  • the cathode 5081 of the dust removal electric field has a negative potential
  • the anode 5082 and the auxiliary electrode 5083 of the dust removal electric field have positive potentials.
  • the dust removal electric field cathode 5081 and the dust removal electric field anode 5082 are opposed to each other in the front-rear direction, and the auxiliary electrode 5083 is located behind the dust removal electric field anode 5082 and the dust removal electric field cathode 5081. In this way, an auxiliary electric field is formed between the auxiliary electrode 5083 and the dedusting electric field cathode 5081.
  • the auxiliary electric field exerts a backward force on the negatively charged oxygen ion flow between the dedusting electric field anode 5082 and the dedusting electric field cathode 5081, so that the dedusting electric field anode 5082 and The flow of negatively charged oxygen ions between the cathode 5081 of the dust removal electric field has a backward moving speed.
  • the negatively charged oxygen ions will be in phase with the substance to be processed in the process of moving toward the anode 5082 of the dedusting electric field and backward Combination, because the oxygen ions have a backward moving speed, when the oxygen ions are combined with the material to be processed, there will not be a strong collision between the two, thereby avoiding greater energy consumption due to the stronger collision, making the oxygen
  • the ions are easy to combine with the material to be processed, and make the charge efficiency of the material to be processed in the gas higher, and then under the action of the anode 5082 of the dust removal electric field, more material to be processed can be collected to ensure the dust removal of the electric field device higher efficiency.
  • the electric field device in this embodiment can be applied to an air dust removal system, and the auxiliary electrode 5083 extends in the left-right direction.
  • the longitudinal direction of the auxiliary electrode 5083 is different from the longitudinal direction of the dedusting electric field anode 5082 and the dedusting electric field cathode 5081.
  • the auxiliary electrode 5083 may be perpendicular to the cathode 5081 of the dust removal electric field.
  • the dedusting electric field cathode 5081 and the dedusting electric field anode 5082 are electrically connected to the cathode and anode of the DC power supply, respectively, and the auxiliary electrode 5083 is electrically connected to the cathode of the DC power supply.
  • the cathode 5081 of the dust removal electric field and the auxiliary electrode 5083 have a negative potential
  • the anode 5082 of the dust removal electric field has a positive potential.
  • the dust-removing electric field cathode 5081 and the dust-removing electric field anode 5082 are opposed in the front-rear direction, and the auxiliary electrode 5083 is located in front of the dust-removing electric field anode 5082 and the dust-removing electric field cathode 5081. In this way, an auxiliary electric field is formed between the auxiliary electrode 5083 and the dedusting electric field anode 5082.
  • the auxiliary electric field exerts a backward force on the negatively charged oxygen ion flow between the dedusting electric field anode 5082 and the dedusting electric field cathode 5081, so that the dedusting electric field anode 5082 and The flow of negatively charged oxygen ions between the cathode 5081 of the dust removal electric field has a backward moving speed.
  • the negatively charged oxygen ions will be in phase with the substance to be processed in the process of moving toward the anode 5082 of the dedusting electric field and backward Combination, because the oxygen ions have a backward moving speed, when the oxygen ions are combined with the material to be processed, there will not be a strong collision between the two, thereby avoiding greater energy consumption due to the stronger collision, making the oxygen
  • the ions are easy to combine with the material to be processed, and make the charge efficiency of the material to be processed in the gas higher, and then under the action of the anode 5082 of the dust removal electric field, more material to be processed can be collected to ensure the dust removal of the electric field device higher efficiency.
  • the air dedusting system in this embodiment includes the electric field device in the above embodiments 17, 18, 19, or 20.
  • the air needs to flow through the electric field device first, so that the electric field device can effectively remove the dust in the air waiting for the treatment substances to ensure that the air is cleaner and contains less impurities such as dust.
  • this embodiment provides an electric field device, including an electric field device inlet 3085, a flow channel 3086, an electric field flow channel 3087, and an electric field device outlet 3088 that are sequentially connected, and a pre-electrode 3083 is installed in the flow channel 3086.
  • the ratio of the cross-sectional area of the front electrode 3083 to the cross-sectional area of the flow channel 3086 is 99% -10%.
  • the electric field device also includes a dust-removing electric field cathode 3081 and a dust-removing electric field anode 3082. between.
  • the working principle of the electric field device of the present invention is as follows: the gas containing pollutants enters the flow channel 3086 through the entrance 3085 of the electric field device, and the front electrode 3083 installed in the flow channel 3086 conducts electrons to some pollutants. After the object enters the electric field flow path 3087 from the flow path 3086, the dust removal electric field anode 3082 exerts an attractive force on the charged pollutants, and the charged pollutants move toward the dust removal electric field anode 3082 until the part of the pollutant adheres to the dust removal electric field anode 3082. At the same time, an ionization and dedusting electric field is formed between the dedusting electric field cathode 3081 and the dedusting electric field anode 3082 in the electric field flow channel 3087.
  • This ionization and dedusting electric field will charge another part of the uncharged pollutants, so that the other part of the pollutants will also be dedusted after being charged.
  • the electric field device of the invention has higher collection efficiency of pollutants.
  • the cross-sectional area of the front electrode 3083 refers to the total area of the front electrode 3083 along the solid part of the cross-section.
  • the ratio of the cross-sectional area of the front electrode 3083 to the cross-sectional area of the flow channel 3086 may be 99% to 10%, or 90 to 10%, or 80 to 20%, or 70 to 30%, or 60 to 40%, or 50%.
  • the front electrode 3083 and the dust-removing electric field cathode 3081 are electrically connected to the cathode of the DC power supply, and the dust-removing electric field anode 3082 is electrically connected to the anode of the DC power supply.
  • both the front electrode 3083 and the dust-removing electric field cathode 3081 have a negative potential, and the dust-removing electric field anode 3082 has a positive potential.
  • the front electrode 3083 in this embodiment may be specifically mesh-shaped. In this way, when the gas flows through the flow channel 3086, the structure of the front electrode 3083 is used to facilitate the flow of gas and contaminants through the front electrode 3083, and the contaminants in the gas are more fully in contact with the front electrode 3083, thereby The front electrode 3083 can conduct electrons to more pollutants and make the pollutants more efficiently charged.
  • the anode 3082 of the dust removal electric field has a tubular shape
  • the cathode 3081 of the dust removal electric field has a rod shape
  • the cathode 3081 of the dust removal electric field passes through the anode 3082 of the dust removal electric field.
  • the anode 3082 of the dust removal electric field and the cathode 3081 of the dust removal electric field have an asymmetric structure.
  • the ionized electric field When gas flows into the dedusting electric field cathode 3081 and the dedusting electric field anode 3082, the ionized electric field will charge the pollutants, and under the attraction force exerted by the dedusting electric field anode 3082, the charged pollutants will be collected on the inner wall of the dedusting electric field anode 3082 on.
  • the dust-removing electric field anode 3082 and the dust-removing electric field cathode 3081 both extend in the front-rear direction, and the front end of the dust-removing electric field anode 3082 is located in front of the front end of the dust-removing electric field cathode 3081 in the front-rear direction.
  • the rear end of the dust removal electric field anode 3082 is located behind the rear end of the dust removal electric field cathode 3081 in the front-rear direction.
  • the length of the anode 3082 of the dust removal electric field is longer in the front-rear direction, so that the area of the adsorption surface on the inner wall of the anode 3082 of the dust removal electric field is larger, so that it is more attractive to pollutants with negative potential and can be collected More pollutants.
  • the dust-removing electric field cathode 3081 and the dust-removing electric field anode 3082 constitute an ionization unit, and there are multiple ionization units to collect more pollutants by using multiple ionization units, and make the electric field device The collection ability is stronger, and the collection efficiency is higher.
  • the above-mentioned pollutants include ordinary dust with weak conductivity, metal dust with strong conductivity, mist droplets, aerosol, and the like.
  • the electric field device collects ordinary dust with weak conductivity and pollutants with high conductivity as follows: when the gas flows into the flow channel 3086 through the inlet 3085 of the electric field device, the conductivity in the gas is stronger When metal pollutants such as metal dust, mist droplets, or aerosols are in contact with the front electrode 3083, or when the distance to the front electrode 3083 reaches a certain range, they are directly negatively charged, and then all the pollutants enter the electric field flow with the airflow In channel 3087, the anode 3082 of the dust removal electric field exerts an attractive force on negatively charged metal dust, mist droplets, or aerosols, and collects this part of the pollutants.
  • the anode 3082 of the dust removal electric field and the cathode 3081 of the dust removal electric field form an ionization electric field
  • the ionization electric field obtains oxygen ions by ionizing the oxygen in the gas, and after the negatively charged oxygen ions are combined with the ordinary dust, the ordinary dust is negatively charged.
  • the anode 3082 of the dust removal electric field exerts an attractive force on the negatively charged dust. And collect this part of the pollutants, so as to collect the more conductive and weak conductive pollutants in the gas, and make the electric field The type of home that can be collected for a broader and stronger collection.
  • the above-mentioned dust-removing electric field cathode 3081 is also referred to as a corona charging electrode.
  • the above DC power supply is specifically a DC high voltage power supply.
  • DC high voltage is passed between the front electrode 3083 and the anode 3082 of the dust removal electric field to form a conductive loop;
  • DC high voltage is passed between the cathode 3081 of the dust removal electric field and the anode 3082 of the dust removal electric field to form an ionization discharge corona electric field.
  • the front electrode 3083 is a densely distributed conductor.
  • the front electrode 3083 When the easily charged dust passes through the front electrode 3083, the front electrode 3083 directly supplies the electrons to the dust, and the dust is then charged by the heteropolar dust removal field anode 3082; at the same time, the uncharged dust passes through the dust removal field cathode 3081 and the dust removal field anode
  • the ionization zone formed by 3082, the ionized oxygen formed in the ionization zone will charge the electrons to the dust, so that the dust continues to be charged, and is adsorbed by the anode 3082 of the heteropolar dust removal electric field.
  • the electric field device can form two or more power-on modes.
  • the ionization discharge corona electric field formed between the cathode 3081 of the dust removal electric field and the anode 3082 of the dust removal electric field can be used to ionize oxygen to charge the pollutants, and then the anode 3082 of the dust removal electric field can be used to collect the pollutants
  • the front electrode 3083 is used to directly power the pollutants, so that the pollutants are fully charged and adsorbed by the anode 3082 of the dust removal electric field.
  • the above two charged electric fields are used to collect high-resistance dust that is easy to charge and low-resistance metal dust, aerosol, liquid mist, etc. that are easy to be charged.
  • the two power-on methods are used at the same time, and the application range of the electric field is expanded.
  • the present invention effectively overcomes various shortcomings in the prior art and has high industrial utilization value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Automation & Control Theory (AREA)
  • Ceramic Engineering (AREA)
  • Toxicology (AREA)
  • Electrostatic Separation (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Separating Particles In Gases By Inertia (AREA)

Abstract

一种空气除尘系统(101)及方法,包括除尘系统入口、除尘系统出口、电场装置(1014)。所述电场装置(1014)包括电场装置入口(1011)、电场装置出口、除尘电场阴极(10142)和除尘电场阳极(10141),所述除尘电场阴极(10142)和所述除尘电场阳极(10141)用于产生电离除尘电场。所述除尘电场阳极(10141)包括第一阳极部(101412)和第二阳极部(101411),所述第一阳极部(101412)靠近所述电场装置(1014)入口,第二阳极部(101411)靠近所述电场装置(1014)出口,所述第一阳极部(101412)和所述第二阳极部(101411)之间设置有至少一个绝缘机构(1015)。其能有效除去空气中的颗粒物。

Description

一种空气除尘系统及方法 技术领域
本发明属于空气净化领域,涉及一种空气除尘系统及方法。
背景技术
空气分层覆盖在地球表面,透明且无色无味,它主要由氮气和氧气组成,对人类的生存和生产有重要影响。随着人们生活水平的不断提高,人们逐步认识到了空气质量的重要性。现有技术中,通常通过滤网等方式进行空气的除尘。但是,该方式除尘效果不稳定,能耗大,且容易造成二次污染。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种空气除尘系统及方法,用于解决现有技术无法有效地进行空气除尘的问题。本发明创造性地使用电离除尘方法对空气进行除尘处理,该方法没有压差,对空气不会产生阻力,且可收集空气中污染物的种类广泛,且除尘能力更强,除尘效率更高。
为实现上述目的及其他相关目的,本发明提供以下示例:
1.本发明提供的示例1:一种空气除尘系统,所述空气除尘系统包括除尘系统入口、除尘系统出口、电场装置。
2.本发明提供的示例2:包括上述示例1,其中,所述电场装置包括电场装置入口、电场装置出口、除尘电场阴极和除尘电场阳极,所述除尘电场阴极和所述除尘电场阳极用于产生电离除尘电场。
3.本发明提供的示例3:包括上述示例2,其中,所述除尘电场阳极包括第一阳极部和第二阳极部,所述第一阳极部靠近所述电场装置入口,第二阳极部靠近所述电场装置出口,所述第一阳极部和所述第二阳极部之间设置有至少一个阴极支撑板。
4.本发明提供的示例4:包括上述示例3,其中,所述电场装置还包括绝缘机构,用于实现所述阴极支撑板和所述除尘电场阳极之间的绝缘。
5.本发明提供的示例5:包括上述示例4,其中,所述除尘电场阳极和所述除尘电场阴极之间形成电场流道,所述绝缘机构设置在所述电场流道外。
6.本发明提供的示例6:包括上述示例4或5,其中,所述绝缘机构包括绝缘部和隔热部;所述绝缘部的材料采用陶瓷材料或玻璃材料。
7.本发明提供的示例7:包括上述示例6,其中,所述绝缘部为伞状串陶瓷柱、伞状串玻璃柱、柱状串陶瓷柱或柱状玻璃柱,伞内外或柱内外挂釉。
8.本发明提供的示例8:包括上述示例7,其中,伞状串陶瓷柱或伞状串玻璃柱的外缘与所述除尘电场阳极的距离大于电场距离1.4倍,伞状串陶瓷柱或伞状串玻璃柱的伞突边间距总和大于伞状串陶瓷柱或伞状串玻璃柱的绝缘间距1.4倍,伞状串陶瓷柱或伞状串玻璃柱的伞边内深总长大于伞状串陶瓷柱或伞状串玻璃柱的绝缘距离1.4倍。
9.本发明提供的示例9:包括上述示例3至8中的任一项,其中,所述第一阳极部的长度是所述除尘电场阳极长度的1/10至1/4、1/4至1/3、1/3至1/2、1/2至2/3、2/3至3/4,或3/4至9/10。
10.本发明提供的示例10:包括上述示例3至9中的任一项,其中,所述第一阳极部的长度是足够的长,以清除部分灰尘,减少积累在所述绝缘机构和所述阴极支撑板上的灰尘,减少灰尘造成的电击穿。
11.本发明提供的示例11:包括上述示例3至10中的任一项,其中,所述第二阳极部包括积尘段和预留积尘段。
12.本发明提供的示例12:包括上述示例2至11中的任一项,其中,所述除尘电场阴极包括至少一根电极棒。
13.本发明提供的示例13:包括上述示例12,其中,所述电极棒的直径不大于3mm。
14.本发明提供的示例14:包括上述示例12或13,其中,所述电极棒的形状呈针状、多角状、毛刺状、螺纹杆状或柱状。
15.本发明提供的示例15:包括上述示例2至14中的任一项,其中,所述除尘电场阳极由中空的管束组成。
16.本发明提供的示例16:包括上述示例15,其中,所述除尘电场阳极管束的中空的截面采用圆形或多边形。
17.本发明提供的示例17:包括上述示例16,其中,所述多边形为六边形。
18.本发明提供的示例18:包括上述示例14至17中的任一项,其中,所述除尘电场阳极的管束呈蜂窝状。
19.本发明提供的示例19:包括上述示例2至18中的任一项,其中,所述除尘电场阴极穿射于所述除尘电场阳极内。
20.本发明提供的示例20:包括上述示例2至19中的任一项,其中,当电场积尘到一定程度时,所述电场装置进行清尘处理。
21.本发明提供的示例21:包括上述示例20,其中,所述电场装置检测电场电流以确定是否积尘到一定程度,需要进行清尘处理。
22.本发明提供的示例22:包括上述示例20或21,其中,所述电场装置利用增高电场电压来进行清尘处理。
23.本发明提供的示例23:包括上述示例20或21,其中,所述电场装置利用电场反电晕放电现象来进行清尘处理。
24.本发明提供的示例24:包括上述示例20或21,其中,所述电场装置利用电场反电晕放电现象,增高电场电压,限制入注电流,来进行清尘处理。
25.本发明提供的示例25:包括上述示例20或21,其中,所述电场装置利用电场反电晕放电现象,增高电场电压,限制入注电流,使发生在阳极积碳位置的急剧放电产生等离子,所述等离子使灰尘有机成分深度氧化,高分子键断裂,形成小分子二氧化碳和水,来进行清尘处理。
26.本发明提供的示例26:包括上述示例2至25中的任一项,其中,所述电场装置还包括辅助电场单元,用于产生与所述电离除尘电场不平行的辅助电场。
27.本发明提供的示例27:包括上述示例2至25中的任一项,其中,所述电场装置还包括辅助电场单元,所述电离除尘电场包括流道,所述辅助电场单元用于产生与所述流道不垂直的辅助电场。
28.本发明提供的示例28:包括上述示例26或27,其中,所述辅助电场单元包括第一电极,所述辅助电场单元的第一电极设置在或靠近所述电离除尘电场的进口。
29.本发明提供的示例29:包括上述示例28,其中,所述第一电极为阴极。
30.本发明提供的示例30:包括上述示例28或29,其中,所述辅助电场单元的第一电极是所述除尘电场阴极的延伸。
31.本发明提供的示例31:包括上述示例30,其中,所述辅助电场单元的第一电极与所述除尘电场阳极具有夹角α,且0°<α≤125°、或45°≤α≤125°、或60°≤α≤100°、或α=90°。
32.本发明提供的示例32:包括上述示例26至31中的任一项,其中,所述辅助电场单元包括第二电极,所述辅助电场单元的第二电极设置在或靠近所述电离除尘电场的出口。
33.本发明提供的示例33:包括上述示例32,其中,所述第二电极为阳极。
34.本发明提供的示例34:包括上述示例32或33,其中,所述辅助电场单元的第二电极是所述除尘电场阳极的延伸。
35.本发明提供的示例35:包括上述示例34,其中,所述辅助电场单元的第二电极与 所述除尘电场阴极具有夹角α,且0°<α≤125°、或45°≤α≤125°、或60°≤α≤100°、或α=90°。
36.本发明提供的示例36:包括上述示例26至29、32和33中的任一项,其中,所述辅助电场的电极与所述电离除尘电场的电极独立设置。
37.本发明提供的示例37:包括上述示例2至36中的任一项,其中,所述除尘电场阳极的积尘面积与所述除尘电场阴极的放电面积的比为1.667:1-1680:1。
38.本发明提供的示例38:包括上述示例2至36中的任一项,其中,所述除尘电场阳极的积尘面积与所述除尘电场阴极的放电面积的比为6.67:1-56.67:1。
39.本发明提供的示例39:包括上述示例2至38中的任一项,其中,所述除尘电场阴极直径为1-3毫米,所述除尘电场阳极与所述除尘电场阴极的极间距为2.5-139.9毫米;所述除尘电场阳极的积尘面积与所述除尘电场阴极的放电面积的比为1.667:1-1680:1。
40.本发明提供的示例40:包括上述示例2至38中的任一项,其中,所述除尘电场阳极和所述除尘电场阴极的极间距小于150mm。
41.本发明提供的示例41:包括上述示例2至38中的任一项,其中,所述除尘电场阳极与所述除尘电场阴极的极间距为2.5-139.9mm。
42.本发明提供的示例42:包括上述示例2至38中的任一项,其中,所述除尘电场阳极与所述除尘电场阴极的极间距为5-100mm。
43.本发明提供的示例43:包括上述示例2至42中的任一项,其中,所述除尘电场阳极长度为10~180mm。
44.本发明提供的示例44:包括上述示例2至42中的任一项,其中,所述除尘电场阳极长度为60~180mm。
45.本发明提供的示例45:包括上述示例2至44中的任一项,其中,所述除尘电场阴极长度为30~180mm。
46.本发明提供的示例46:包括上述示例2至44中的任一项,其中,所述除尘电场阴极长度为54~176mm。
47.本发明提供的示例47:包括上述示例26至46中的任一项,其中,当运行时,所述电离除尘电场的耦合次数≤3。
48.本发明提供的示例48:包括上述示例2至46中的任一项,其中,所述除尘电场阳极的积尘面积与所述除尘电场阴极的放电面积的比、所述除尘电场阳极与所述除尘电场阴极之间的极间距、所述除尘电场阳极长度以及所述除尘电场阴极长度使所述电离除尘电场的耦合次数≤3。
49.本发明提供的示例49:包括上述示例2至48中的任一项,其中,所述电离除尘电场电压的取值范围为1kv~50kv。
50.本发明提供的示例50:包括上述示例2至49中的任一项,其中,所述电场装置还包括若干连接壳体,串联电场级通过所述连接壳体连接。
51.本发明提供的示例51:包括上述示例50,其中,相邻的电场级的距离大于所述极间距的1.4倍。
52.本发明提供的示例52:包括上述示例2至51中的任一项,其中,所述电场装置还包括前置电极,所述前置电极在所述电场装置入口与所述除尘电场阳极和所述除尘电场阴极形成的电离除尘电场之间。
53.本发明提供的示例53:包括上述示例52,其中,所述前置电极呈点状、线状、网状、孔板状、板状、针棒状、球笼状、盒状、管状、物质自然形态、或物质加工形态。
54.本发明提供的示例54:包括上述示例52或53,其中,所述前置电极上设有通孔。
55.本发明提供的示例55:包括上述示例54,其中,所述通孔呈多角形、圆形、椭圆形、正方形、长方形、梯形、或菱形。
56.本发明提供的示例56:包括上述示例54或55,其中,所述通孔的大小为0.1-3毫米。
57.本发明提供的示例57:包括上述示例52至56中的任一项,其中,所述前置电极为固体、液体、气体分子团、或等离子体中的一种或多种形态的组合。
58.本发明提供的示例58:包括上述示例52至57中的任一项,其中,所述前置电极为导电混合态物质、生物体自然混合导电物质、或物体人工加工形成导电物质。
59.本发明提供的示例59:包括上述示例52至58中的任一项,其中,所述前置电极为304钢或石墨。
60.本发明提供的示例60:包括上述示例52至58中的任一项,其中,所述前置电极为含离子导电液体。
61.本发明提供的示例61:包括上述示例52至60中的任一项,其中,在工作时,在带污染物的空气进入所述除尘电场阴极、除尘电场阳极形成的电离除尘电场之前,且带污染物的空气通过所述前置电极时,所述前置电极使空气中的污染物带电。
62.本发明提供的示例62:包括上述示例61,其中,当带污染物的空气进入所述电离除尘电场时,所述除尘电场阳极给带电的污染物施加吸引力,使污染物向所述除尘电场阳极移动,直至污染物附着在所述除尘电场阳极上。
63.本发明提供的示例63:包括上述示例61或62,其中,所述前置电极将电子导入污染物,电子在位于所述前置电极和所述除尘电场阳极之间的污染物之间进行传递,使更多污染物带电。
64.本发明提供的示例64:包括上述示例61至63中的任一项,其中,所述前置电极和所述除尘电场阳极之间通过污染物传导电子、并形成电流。
65.本发明提供的示例65:包括上述示例61至64中的任一项,其中,所述前置电极通过与污染物接触的方式使污染物带电。
66.本发明提供的示例66:包括上述示例61至65中的任一项,其中,所述前置电极通过能量波动的方式使污染物带电。
67.本发明提供的示例67:包括上述示例61至66中的任一项,其中,所述前置电极上设有通孔。
68.本发明提供的示例68:包括上述示例52至67中的任一项,其中,所述前置电极呈线状,所述除尘电场阳极呈面状。
69.本发明提供的示例69:包括上述示例52至68中的任一项,其中,所述前置电极垂直于所述除尘电场阳极。
70.本发明提供的示例70:包括上述示例52至69中的任一项,其中,所述前置电极与所述除尘电场阳极相平行。
71.本发明提供的示例71:包括上述示例51至69中的任一项,其中,所述前置电极呈曲线状或圆弧状。
72.本发明提供的示例72:包括上述示例52至71中的任一项,其中,所述前置电极采用金属丝网。
73.本发明提供的示例73:包括上述示例52至72中的任一项,其中,所述前置电极与所述除尘电场阳极之间的电压不同于所述除尘电场阴极与所述除尘电场阳极之间的电压。
74.本发明提供的示例74:包括上述示例52至73中的任一项,其中,所述前置电极与所述除尘电场阳极之间的电压小于起始起晕电压。
75.本发明提供的示例75:包括上述示例52至74中的任一项,其中,所述前置电极与所述除尘电场阳极之间的电压为0.1kv-2kv/mm。
76.本发明提供的示例76:包括上述示例52至75中的任一项,其中,所述电场装置包括流道,所述前置电极位于所述流道中;所述前置电极的截面面积与流道的截面面积比为99%~10%、或90~10%、或80~20%、或70~30%、或60~40%、或50%。
77.本发明提供的示例77:包括上述示例2至76中的任一项,其中,所述电场装置包括驻极体元件。
78.本发明提供的示例78:包括上述示例77,其中,所述除尘电场阳极和所述除尘电场阴极接通电源时,所述驻极体元件在所述电离除尘电场中。
79.本发明提供的示例79:包括上述示例77或78,其中,所述驻极体元件靠近所述电场装置出口,或者,所述驻极体元件设于所述电场装置出口。
80.本发明提供的示例80:包括上述示例78至79中的任一项,其中,所述除尘电场阳极和所述除尘电场阴极形成流道,所述驻极体元件设于所述流道中。
81.本发明提供的示例81:包括上述示例80,其中,所述流道包括流道出口,所述驻极体元件靠近所述流道出口,或者,所述驻极体元件设于所述流道出口。
82.本发明提供的示例82:包括上述示例80或81,其中,所述驻极体元件于所述流道中的横截面占流道横截面5%~100%。
83.本发明提供的示例83:包括上述示例82,其中,所述驻极体元件于所述流道中的横截面占流道横截面10%-90%、20%-80%、或40%-60%。
84.本发明提供的示例84:包括上述示例77至83中的任一项,其中,所述电离除尘电场给所述驻极体元件充电。
85.本发明提供的示例85:包括上述示例77至84中的任一项,其中,所述驻极体元件具有多孔结构。
86.本发明提供的示例86:包括上述示例77至85中的任一项,其中,所述驻极体元件为织品。
87.本发明提供的示例87:包括上述示例77至86中的任一项,其中,所述除尘电场阳极内部为管状,所述驻极体元件外部为管状,所述驻极体元件外部套设于所述除尘电场阳极内部。
88.本发明提供的示例88:包括上述示例77至87中的任一项,其中,所述驻极体元件与所述除尘电场阳极为可拆卸式连接。
89.本发明提供的示例89:包括上述示例77至88中的任一项,其中,所述驻极体元件的材料包括具有驻极性能的无机化合物。
90.本发明提供的示例90:包括上述示例89,其中,所述无机化合物选自含氧化合物、含氮化合物或玻璃纤维中的一种或多种组合。
91.本发明提供的示例91:包括上述示例90,其中,所述含氧化合物选自金属基氧化 物、含氧复合物、含氧的无机杂多酸盐中的一种或多种组合。
92.本发明提供的示例92:包括上述示例91,其中,所述金属基氧化物选自氧化铝、氧化锌、氧化锆、氧化钛、氧化钡、氧化钽、氧化硅、氧化铅、氧化锡中的一种或多种组合。
93.本发明提供的示例93:包括上述示例91,其中,所述金属基氧化物为氧化铝。
94.本发明提供的示例94:包括上述示例91,其中,所述含氧复合物选自钛锆复合氧化物或钛钡复合氧化物中的一种或多种组合。
95.本发明提供的示例95:包括上述示例91,其中,所述含氧的无机杂多酸盐选自钛酸锆、锆钛酸铅或钛酸钡中的一种或多种组合。
96.本发明提供的示例96:包括上述示例90,其中,所述含氮化合物为氮化硅。
97.本发明提供的示例97:包括上述示例77至96中的任一项,其中,所述驻极体元件的材料包括具有驻极性能的有机化合物。
98.本发明提供的示例98:包括上述示例97,其中,所述有机化合物选自氟聚合物、聚碳酸酯、PP、PE、PVC、天然蜡、树脂、松香中的一种或多种组合。
99.本发明提供的示例99:包括上述示例98,其中,所述氟聚合物选自聚四氟乙烯、聚全氟乙丙烯、可溶性聚四氟乙烯、聚偏氟乙烯中的一种或多种组合。
100.本发明提供的示例100:包括上述示例98,其中,所述氟聚合物为聚四氟乙烯。
101.本发明提供的示例101:包括上述示例1至100中的任一项,其中,还包括均风装置。
102.本发明提供的示例102:包括上述示例101,其中,所述均风装置在所述除尘系统入口与所述除尘电场阳极和所述除尘电场阴极形成的电离除尘电场之间,当所述除尘电场阳极为四方体时,所述均风装置包括:设置于所述除尘电场阳极一侧边的进气管和设置于另一侧边的出气管;其中,所述进气管与所述出气管相对立。
103.本发明提供的示例103:包括上述示例101,其中,所述均风装置在所述除尘系统入口与所述除尘电场阳极和所述除尘电场阴极形成的电离除尘电场之间,当所述除尘电场阳极为圆柱体时,所述均风装置由若干可旋转的均风叶片组成。
104.本发明提供的示例104:包括上述示例101,其中,所述均风装置第一文氏板均风机构和设置于所述除尘电场阳极的出气端的第二文氏板均风机构,所述第一文氏板均风机构上开设有进气孔,所述第二文氏板均风机构上开设有出气孔,所述进气孔与所述出气孔错位排布,且正面进气侧面出气,形成旋风结构。
105.本发明提供的示例105:包括上述示例1至104中的任一项,其中,还包括除臭氧 装置,用于去除去或减少所述电场装置产生的臭氧,所述除臭氧装置在所述电场装置出口与所述除尘系统出口之间。
106.本发明提供的示例106:包括上述示例105,其中,所述除臭氧装置还包括臭氧消解器。
107.本发明提供的示例107:包括上述示例106,其中,所述臭氧消解器选自紫外线臭氧消解器和催化臭氧消解器中的至少一种。
108.本发明提供的示例108:包括上述示例1至107中的任一项,其中,还包括离心分离机构。
109.本发明提供的示例109:包括上述示例108,其中,所述离心分离机构包括气流转向通道,且气流转向通道能改变气流的流动方向。
110.本发明提供的示例110:包括上述示例109,其中,所述气流转向通道能引导空气沿圆周方向流动。
111.本发明提供的示例111:包括上述示例108或109,其中,所述气流转向通道呈螺旋形或圆锥形。
112.本发明提供的示例112:包括上述示例108至111中的任一项,其中,所述离心分离机构包括分离筒。
113.本发明提供的示例113:包括上述示例112,其中,所述分离筒中设有所述气流转向通道,所述分离筒的底部设有出尘口。
114.本发明提供的示例114:包括上述示例112或113,其中,所述分离筒侧壁上设有与所述气流转向通道的第一端相连通的进气口。
115.本发明提供的示例115:包括上述示例112至114中的任一项,其中,所述分离筒的顶部设有与所述流转向通道的第二端相连通的出气口。
116.本发明提供的示例116:一种空气电场除尘方法,包括以下步骤:
使含尘空气通过除尘电场阳极和除尘电场阴极产生的电离除尘电场;
电离除尘电场积尘时,进行清尘处理。
117.本发明提供的示例117:包括示例116的空气电场除尘方法,其中,利用电场反电晕放电现象完成清尘处理。
118.本发明提供的示例118:包括示例116的空气电场除尘方法,其中,利用电场反电晕放电现象,增高电压,限制入注电流,完成清尘处理。
119.本发明提供的示例119:包括示例116的空气电场除尘方法,其中,利用电场反电 晕放电现象,增高电压,限制入注电流,使发生在阳极积尘位置的急剧放电产生等离子,所述等离子使灰尘有机成分深度氧化,高分子键断裂,形成小分子二氧化碳和水,完成清尘处理。
120.本发明提供的示例120:包括示例116至119任一项的空气电场除尘方法,其中,所述除尘电场阴极包括至少一根电极棒。
121.本发明提供的示例121:包括示例120的空气电场除尘方法,其中,所述电极棒的直径不大于3mm。
122.本发明提供的示例122:包括示例120或121的空气电场除尘方法,其中,所述电极棒的形状呈针状、多角状、毛刺状、螺纹杆状或柱状。
123.本发明提供的示例123:包括示例116至122任一项的空气电场除尘方法,其中,所述除尘电场阳极由中空的管束组成。
124.本发明提供的示例124:包括示例123的空气电场除尘方法,其中,所述阳极管束的中空的截面采用圆形或多边形。
125.本发明提供的示例125:包括示例124的空气电场除尘方法,其中,所述多边形为六边形。
126.本发明提供的示例126:包括示例123至125任一项的空气电场除尘方法,其中,所述除尘电场阳极的管束呈蜂窝状。
127.本发明提供的示例127:包括示例116至126任一项的空气电场除尘方法,其中,所述除尘电场阴极穿射于所述除尘电场阳极内。
128.本发明提供的示例128:包括示例116至127任一项的空气电场除尘方法,其中,当检测到的电场电流增加到一个给定值时,进行清尘处理。
129.本发明提供的示例129:一种给空气增氧的方法,包括以下步骤:
使空气通过一个流道;
在流道中产生电场,所述电场不与所述流道垂直,所述电场包括进口和出口。
130.本发明提供的示例130:包括示例129的给空气增氧的方法,其中,所述电场包括第一阳极和第一阴极,所述第一阳极和第一阴极形成所述流道,所述流道接通所述进口和出口。
131.本发明提供的示例131:包括示例129至130任一项的给空气增氧的方法,其中,所述第一阳极和第一阴极电离所述空气中的氧气。
132.本发明提供的示例132:包括示例129至131任一项的给空气增氧的方法,其中, 所述电场包括第二电极,所述第二电极设置在或靠近所述进口。
133.本发明提供的示例133:包括示例132的给空气增氧的方法,其中,所述第二电极为阴极。
134.本发明提供的示例134:包括示例132或133任一项的给空气增氧的方法,其中,所述第二电极是所述第一阴极的延伸。
135.本发明提供的示例135:包括示例134的给空气增氧的方法,其中,所述第二电极与所述第一阳极具有夹角α,且0°<α≤125°、或45°≤α≤125°、或60°≤α≤100°、或α=90°。
136.本发明提供的示例136:包括示例129至135任一项的给空气增氧的方法,其中,所述电场包括第三电极,所述第三电极设置在或靠近所述出口。
137.本发明提供的示例137:包括示例136的给空气增氧的方法,其中,所述第三电极为阳极。
138.本发明提供的示例138:包括示例136或137的给空气增氧的方法,其中,所述第三电极是所述第一阳极的延伸。
139.本发明提供的示例139:包括示例138的给空气增氧的方法,其中,所述第三电极与所述第一阴极具有夹角α,且0°<α≤125°、或45°≤α≤125°、或60°≤α≤100°、或α=90°。
140.本发明提供的示例140:包括示例134至139任一项的给空气增氧的方法,其中,所述第三电极与所述第一阳极和第一阴极独立设置。
141.本发明提供的示例141:包括示例132至140任一项的给空气增氧的方法,其中,所述第二电极与所述第一阳极和第一阴极独立设置。
142.本发明提供的示例142:包括示例130至141任一项的给空气增氧的方法,其中,所述第一阴极包括至少一根电极棒。
143.本发明提供的示例143:包括示例130至142任一项的给空气增氧的方法,其中,所述第一阳极由中空的管束组成。
144.本发明提供的示例144:包括示例143的给空气增氧的方法,其中,所述阳极管束的中空的截面采用圆形或多边形。
145.本发明提供的示例145:包括示例144的给空气增氧的方法,其中,所述多边形为六边形。
146.本发明提供的示例146:包括示例143至145任一项的给空气增氧的方法,其中,所述第一阳极的管束呈蜂窝状。
147.本发明提供的示例147:包括示例130至146任一项的给空气增氧的方法,其中, 所述第一阴极穿射于所述第一阳极内。
148.本发明提供的示例148:包括示例130至147任一项的给空气增氧的方法,其中,所述电场作用于所述流道中的氧气离子,增加氧气离子流量,增加所述出口空气含氧量。
149.本发明提供的示例149:一种减少除尘电场耦合的方法,包括以下步骤:
选择除尘电场阳极参数或/和除尘电场阴极参数以减少电场耦合次数。
150.本发明提供的示例150:包括示例149的减少除尘电场耦合的方法,其中,包括选择所述除尘电场阳极的集尘面积与除尘电场阴极的放电面积的比。
151.本发明提供的示例151:包括示例150的减少除尘电场耦合的方法,其中,包括选择所述除尘电场阳极的积尘面积与所述除尘电场阴极的放电面积的比为1.667:1-1680:1。
152.本发明提供的示例152:包括示例150的减少除尘电场耦合的方法,其中,包括选择所述除尘电场阳极的积尘面积与所述除尘电场阴极的放电面积的比为6.67:1-56.67:1。
153.本发明提供的示例153:包括示例149至152任一项的减少除尘电场耦合的方法,其中,包括选择所述除尘电场阴极直径为1-3毫米,所述除尘电场阳极与所述除尘电场阴极的极间距为2.5-139.9毫米;所述除尘电场阳极的积尘面积与所述除尘电场阴极的放电面积的比为1.667:1-1680:1。
154.本发明提供的示例154:包括示例149至153任一项的减少除尘电场耦合的方法,其中,包括选择所述除尘电场阳极和所述除尘电场阴极的极间距小于150mm。
155.本发明提供的示例155:包括示例149至153任一项的减少除尘电场耦合的方法,其中,包括选择所述除尘电场阳极与所述除尘电场阴极的极间距为2.5-139.9mm。
156.本发明提供的示例156:包括示例149至153任一项的减少除尘电场耦合的方法,其中,包括选择所述除尘电场阳极与所述除尘电场阴极的极间距为5-100mm。
157.本发明提供的示例157:包括示例149至156任一项的减少除尘电场耦合的方法,其中,包括选择所述除尘电场阳极长度为10~180mm。
158.本发明提供的示例158:包括示例149至156任一项的减少除尘电场耦合的方法,其中,包括选择所述除尘电场阳极长度为60~180mm。
159.本发明提供的示例159:包括示例149至158任一项的减少除尘电场耦合的方法,其中,包括选择所述除尘电场阴极长度为30~180mm。
160.本发明提供的示例160:包括示例149至158任一项的减少除尘电场耦合的方法,其中,包括选择所述除尘电场阴极长度为54~176mm。
161.本发明提供的示例161:包括示例149至160任一项的减少除尘电场耦合的方法, 其中,包括选择所述除尘电场阴极包括至少一根电极棒。
162.本发明提供的示例162:包括示例161的减少除尘电场耦合的方法,其中,包括选择所述电极棒的直径不大于3mm。
163.本发明提供的示例163:包括示例161或162的减少除尘电场耦合的方法,其中,包括选择所述电极棒的形状呈针状、多角状、毛刺状、螺纹杆状或柱状。
164.本发明提供的示例164:包括示例149至163任一项的减少除尘电场耦合的方法,其中,包括选择所述除尘电场阳极由中空的管束组成。
165.本发明提供的示例165:包括示例164的减少除尘电场耦合的方法,其中,包括选择所述阳极管束的中空的截面采用圆形或多边形。
166.本发明提供的示例166:包括示例165的减少除尘电场耦合的方法,其中,包括选择所述多边形为六边形。
167.本发明提供的示例167:包括示例164至166任一项的减少除尘电场耦合的方法,其中,包括选择所述除尘电场阳极的管束呈蜂窝状。
168.本发明提供的示例168:包括示例149至167任一项的减少除尘电场耦合的方法,其中,包括选择所述除尘电场阴极穿射于所述除尘电场阳极内。
169.本发明提供的示例169:包括示例149至168任一项的减少除尘电场耦合的方法,其中,包括选择的所述除尘电场阳极或/和除尘电场阴极尺寸使电场耦合次数≤3。
170.本发明提供的示例170:一种空气除尘方法,包括如下步骤:
1)利用电离除尘电场吸附空气中的颗粒物;
2)利用电离除尘电场给驻极体元件充电。
171.本发明提供的示例171:包括示例170的空气除尘方法,其中,所述驻极体元件靠近电场装置出口,或者,所述驻极体元件设于电场装置出口。
172.本发明提供的示例172:包括示例170的空气除尘方法,其中,所述除尘电场阳极和所述除尘电场阴极形成空气流道,所述驻极体元件设于所述空气流道中。
173.本发明提供的示例173:包括示例172的空气除尘方法,其中,所述空气流道包括空气流道出口,所述驻极体元件靠近所述空气流道出口,或者,所述驻极体元件设于所述空气流道出口。
174.本发明提供的示例174:包括示例170至173任一项的空气除尘方法,其中,当电离除尘电场无上电驱动电压时,利用充电的驻极体元件吸附空气中的颗粒物。
175.本发明提供的示例175:包括示例174的空气除尘方法,其中,在充电的驻极体元 件吸附一定的空气中的颗粒物后,将其替换为新的驻极体元件。
176.本发明提供的示例176:包括示例175的空气除尘方法,其中,替换为新的驻极体元件后重新启动电离除尘电场吸附空气中的颗粒物,并给新的驻极体元件充电。
177.本发明提供的示例177:包括示例170至176任一项的空气除尘方法,其中,所述驻极体元件的材料包括具有驻极性能的无机化合物。
178.本发明提供的示例178:包括示例177的空气除尘方法,其中,所述无机化合物选自含氧化合物、含氮化合物或玻璃纤维中的一种或多种组合。
179.本发明提供的示例179:包括示例178的空气除尘方法,其中,所述含氧化合物选自金属基氧化物、含氧复合物、含氧的无机杂多酸盐中的一种或多种组合。
180.本发明提供的示例180:包括示例179的空气除尘方法,其中,所述金属基氧化物选自氧化铝、氧化锌、氧化锆、氧化钛、氧化钡、氧化钽、氧化硅、氧化铅、氧化锡中的一种或多种组合。
181.本发明提供的示例181:包括示例179的空气除尘方法,其中,所述金属基氧化物为氧化铝。
182.本发明提供的示例182:包括示例179的空气除尘方法,其中,所述含氧复合物选自钛锆复合氧化物或钛钡复合氧化物中的一种或多种组合。
183.本发明提供的示例183:包括示例179的空气除尘方法,其中,所述含氧的无机杂多酸盐选自钛酸锆、锆钛酸铅或钛酸钡中的一种或多种组合。
184.本发明提供的示例184:包括示例178的空气除尘方法,其中,所述含氮化合物为氮化硅。
185.本发明提供的示例185:包括示例170至176任一项的空气除尘方法,其中,所述驻极体元件的材料包括具有驻极性能的有机化合物。
186.本发明提供的示例186:包括示例185的空气除尘方法,其中,所述有机化合物选自氟聚合物、聚碳酸酯、PP、PE、PVC、天然蜡、树脂、松香中的一种或多种组合。
187.本发明提供的示例187:包括示例186的空气除尘方法,其中,所述氟聚合物选自聚四氟乙烯、聚全氟乙丙烯、可溶性聚四氟乙烯、聚偏氟乙烯中的一种或多种组合。
188.本发明提供的示例188:包括示例186的空气除尘方法,其中,所述氟聚合物为聚四氟乙烯。
189.本发明提供的示例189:一种空气除尘方法,其特征在于,包括以下步骤:所述空气经电离除尘后去除或减少电离除尘产生的臭氧。
190.本发明提供的示例190:包括示例189的空气除尘方法,其中,对电离除尘产生的臭氧进行臭氧消解。
191.本发明提供的示例191:包括示例189的空气除尘方法,其中,所述臭氧消解选自紫外线消解和催化消解中的至少一种。
在本申请中,“空气”有一个广泛的定义,包括所有气体。
附图说明
图1为本发明的空气除尘系统中电场装置于一实施例中的结构示意图。
图2为本发明基于的空气除尘系统中设置于电场装置内的第一滤水机构的另一实施例结构图。
图3A为本发明的空气除尘系统中电场装置的均风装置的一种实施结构图。
图3B为本发明的空气除尘系统中电场装置的均风装置的另一种实施结构图。
图3C为本发明的空气除尘系统中电场装置的均风装置的又一种实施结构图。
图3D为本发明的空气除尘系统中电场装置的中第二文氏板均风机构的俯视结构图。
图4为本发明是实施例2电场装置的示意图。
图5为本发明实施例3电场装置的示意图。
图6为本发明图1的电场装置的俯视图。
图7为实施例3驻极体元件于流道中的横截面占流道横截面的示意图。
图8为本发明实施例4空气除尘系统的示意图。
图9为本发明电场发生单元结构示意图。
图10为图9电场发生单元的A-A视图。
图11为标注长度和角度的图9电场发生单元的A-A视图。
图12为两个电场级的电场装置结构示意图。
图13为本发明实施例17中电场装置的结构示意图。
图14为本发明实施例19中电场装置的结构示意图。
图15为本发明实施例20中电场装置的结构示意图。
图16为本发明实施例22中电场装置的结构示意图。
具体实施方式
以下由特定的具体实施例说明本发明的实施方式,熟悉此技术的人士可由本说明书所揭露的内容轻易地了解本发明的其他优点及功效。
须知,本说明书所附图式所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本发明可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本发明所能产生的功效及所能达成的目的下,均应仍落在本发明所揭示的技术内容得能涵盖的范围内。同时,本说明书中所引用的如“上”、“下”、“左”、“右”、“中间”及“一”等的用语,亦仅为便于叙述的明了,而非用以限定本发明可实施的范围,其相对关系的改变或调整,在无实质变更技术内容下,当亦视为本发明可实施的范畴。
于本发明一实施例中,本发明提供一种空气除尘系统,包括除尘系统入口、除尘系统出口、电场装置。
于本发明的一实施例中的空气除尘系统包括离心分离机构。于本发明一实施例中离心分离机构包括气流转向通道,该气流转向通道能改变气流的流动方向。当含有颗粒物的气体流经气流转向通道时,气体的流动方向将发生改变;而气体中的颗粒物等将在惯性作用下继续沿原方向移动,直至与气流转向通道的侧壁、即离心分离机构的内壁发生碰撞,颗粒物无法沿原方向继续移动,且在重力作用下向下掉落,这样,颗粒物就从气体中分离出来。
于本发明一实施例中气流转向通道能引导气体沿圆周方向流动。于本发明一实施例中气流转向通道可以呈螺旋形或圆锥形。于本发明一实施例中离心分离机构包括分离筒。分离筒中设有所述气流转向通道,分离筒的底部可设有出尘口。分离筒侧壁上可设有与气流转向通道的第一端相连通的进气口。分离筒的顶部可设有与气流转向通道的第二端相连通的出气口。出气口也称作排气口,且排气口的大小可根据所需的进气量大小进行设置。气体由进气口流入分离筒的气流转向通道后,气体将由直线运动变为圆周运动,而气体中的颗粒物将在惯性作用下继续沿直线方向运动,直至颗粒物与分离筒的内壁碰撞,颗粒物不能随气体一起继续流动,颗粒物受重力作用下沉,这样,颗粒物就从气体中分离出来,且颗粒物最终由位于底部的出尘口排出,气体最终由位于顶部的排气口排出。于本发明一实施例中电场装置入口与离心分离机构的排气口相连通。分离筒的出气口位于分离筒与电场装置的连接处。
于本发明一实施例中离心分离机构可呈弯折型结构。离心分离机构的形状可以是环型、回字型、十字型、T字型、L字型、凹字型、或折型中的一种形状或多种形状的组合。离心分离机构的气流转向通道具有至少一个转弯。当气体流经该转弯处时,其流动方向将发生改变,而气体中的颗粒物将在惯性作用下继续沿原方向移动,直至颗粒物与离心分离机构的内壁相碰撞,碰撞后颗粒物将受重力作用下沉,颗粒物从气体中脱离出来,并最终由位于下端的出粉口排出,而气体最终由排气口流出。
于本发明一实施例中离心分离机构的排气口处可设置第一过滤层,第一过滤层可包括金属网片,该金属网片可垂直于气流方向设置。金属网片将对由排气口排出的气体进行过滤,以将气体中仍未分离的颗粒物过滤掉。
于本发明一实施例中空气除尘系统可包括均风装置。该均风装置设置在电场装置之前,能使进入电场装置中的气流均匀通过。
于本发明一实施例中电场装置的除尘电场阳极可为立方体,均风装置可包括位于阴极支撑板一侧边的进气管、及位于阴极支撑板另一侧边的出气管,阴极支撑板位于除尘电场阳极的进气端;其中,安装进气管的侧边与安装出气管的侧边相对立。均风装置能使进入电场装置的气流均匀通过静电场。
于本发明一实施例中除尘电场阳极可为圆柱体,均风装置位于所述除尘系统入口与所述除尘电场阳极和所述除尘电场阴极形成的电离除尘电场之间,且均风装置包括若干围绕除尘系统入口中心旋转的均风叶片。均风装置能够使各种变化的进气量均匀通过除尘电场阳极产生的电场,同时,能够保持除尘电场阳极内部温度恒定,氧气充足。均风装置能使进入电场装置的气流均匀通过静电场。
于本发明一实施例中均风装置包括设置于除尘电场阳极的进气端的进风板和设置于除尘电场阳极出气端的出风板,进风板上开设有进气孔,出风板上开设有出气孔,进气孔与出气孔错位排布,且正面进气、侧面出气,形成旋风结构。均风装置能使进入电场装置的气流均匀通过静电场。
于本发明一实施例中空气除尘系统可包括除尘系统入口、除尘系统出口和电场装置。所述电场装置也称为电场装置。且于本发明一实施例中电场装置可包括电场装置入口、电场装置出口、及位于电场装置入口和电场装置出口之间的前置电极,当气体由电场装置入口流经前置电极时,气体中的颗粒物等将带电。
于本发明一实施例中电场装置包括前置电极,该前置电极在电场装置入口与除尘电场阳极和除尘电场阴极形成的电离除尘电场之间。当气体由电场装置入口流经前置电极时,气体中的颗粒物等将带电。
于本发明一实施例中前置电极的形状可以为点状、线状、网状、孔板状、板状、针棒状、球笼状、盒状、管状、物质自然形态、或物质加工形态。当前置电极为有孔结构时,前置电极上设有一个或多个进气通孔。于本发明一实施例中进气通孔的形状可以为多角形、圆形、椭圆形、正方形、长方形、梯形、或菱形。于本发明一实施例中进气通孔的轮廓大小可以为0.1~3mm、0.1~0.2mm、0.2~0.5mm、0.5~1mm、1~1.2mm、1.2~1.5mm、1.5~2mm、2~2.5mm、 2.5~2.8mm、或2.8~3mm。
于本发明一实施例中前置电极的形态可以为固体、液体、气体分子团、等离子体、导电混合态物质、生物体自然混合导电物质、或物体人工加工形成导电物质中的一种或多种形态的组合。当前置电极为固体时,可采用固态金属,比如304钢,或其它固态的导体、比如石墨等。当前置电极为液体时,可以是含离子导电液体。
在工作时,在带污染物的气体进入除尘电场阳极和除尘电场阴极形成的电离除尘电场之前,且带污染物的气体通过前置电极时,前置电极使气体中的污染物带电。当带污染物的气体进入电离除尘电场时,除尘电场阳极给带电的污染物施加吸引力,使污染物向除尘电场阳极移动,直至污染物附着在除尘电场阳极上。
于本发明一实施例中前置电极将电子导入污染物,电子在位于前置电极和除尘电场阳极之间的污染物之间进行传递,使更多污染物带电。前置电极和除尘电场阳极之间通过污染物传导电子、并形成电流。
于本发明一实施例中前置电极通过与污染物接触的方式使污染物带电。于本发明一实施例中前置电极通过能量波动的方式使污染物带电。于本发明一实施例中前置电极通过与污染物接触的方式将电子转移到污染物上,并使污染物带电。于本发明一实施例中前置电极通过能量波动的方式将电子转移到污染物上,并使污染物带电。
于本发明一实施例中前置电极呈线状,除尘电场阳极呈面状。于本发明一实施例中前置电极垂直于除尘电场阳极。于本发明一实施例中前置电极与除尘电场阳极相平行。于本发明一实施例中前置电极呈曲线状或圆弧状。于本发明一实施例中前置电极采用金属丝网。于本发明一实施例中前置电极与除尘电场阳极之间的电压不同于除尘电场阴极和除尘电场阳极之间的电压。于本发明一实施例中前置电极与除尘电场阳极之间的电压小于起始起晕电压。起始起晕电压为除尘电场阴极和除尘电场阳极之间的电压的最小值。于本发明一实施例中前置电极与除尘电场阳极之间的电压可以为0.1-2kv/mm。
于本发明一实施例中电场装置包括流道,前置电极位于流道中。于本发明一实施例中前置电极的截面面积与流道的截面面积比为99%~10%、或90~10%、或80~20%、或70~30%、或60~40%、或50%。前置电极的截面面积是指前置电极沿截面上实体部分的面积之和。于本发明一实施例中前置电极带负电势。
于本发明一实施例中当气体通过电场装置入口流入流道中,气体中导电性较强的金属粉尘、雾滴、或气溶胶等污染物在与前置电极相接触时,或与前置电极的距离达到一定范围时会直接带负电,随后,全部污染物随气流进入电离除尘电场,除尘电场阳极给已带负电的金 属粉尘、雾滴、或气溶胶等施加吸引力,使已带负电的污染物向除尘电场阳极移动,直至该部分污染物附着在除尘电场阳极上,实现将该部分污染物收集起来,同时,除尘电场阳极与除尘电场阴极之间形成的电离除尘电场通过电离气体中的氧获得氧离子,且带负电荷的氧离子在与普通粉尘结合后,使普通粉尘带负电荷,除尘电场阳极给该部分带负电荷的粉尘等污染物施加吸引力,使粉尘等污染物向除尘电场阳极移动,直至该部分污染物附着在除尘电场阳极上,实现将该部分普通粉尘等污染物也收集起来,从而将气体中导电性较强和导电性较弱的污染物均收集起来,并使得除尘电场阳极能收集气体中污染物的种类更广泛,且收集能力更强,收集效率更高。
于本发明一实施例中电场装置入口与分离机构的排气口相连通。
于本发明一实施例中电场装置可包括除尘电场阴极和除尘电场阳极,除尘电场阴极与除尘电场阳极之间形成电离除尘电场。气体进入电离除尘电场,气体中的氧离子将被电离,并形成大量带有电荷的氧离子,氧离子与气体中粉尘等颗粒物结合,使得颗粒物荷电,除尘电场阳极给带负电荷的颗粒物施加吸附力,使得颗粒物被吸附在除尘电场阳极上,以清除掉气体中的颗粒物。
于本发明一实施例中,所述除尘电场阴极包括若干根阴极丝。阴极丝的直径可为0.1mm-20mm,该尺寸参数根据应用场合及积尘要求做调整。于本发明一实施例中阴极丝的直径不大于3mm。于本发明一实施例中阴极丝使用容易放电的金属丝或合金丝,耐温且能支撑自身重量,电化学稳定。于本发明一实施例中阴极丝的材质选用钛。阴极丝的具体形状根据除尘电场阳极的形状调整,例如,若除尘电场阳极的积尘面是平面,则阴极丝的截面呈圆形;若除尘电场阳极的积尘面是圆弧面,阴极丝需要设计成多面形。阴极丝的长度根据除尘电场阳极进行调整。
于本发明一实施例中,所述除尘电场阴极包括若干阴极棒。于本发明一实施例中,所述阴极棒的直径不大于3mm。于本发明一实施例中阴极棒使用容易放电的金属棒或合金棒。阴极棒的形状可以为针状、多角状、毛刺状、螺纹杆状或柱状等。阴极棒的形状可以根据除尘电场阳极的形状进行调整,例如,若除尘电场阳极的积尘面是平面,则阴极棒的截面需要设计成圆形;若除尘电场阳极的积尘面是圆弧面,则阴极棒需要设计成多面形。
于本发明一实施例中,除尘电场阴极穿设于除尘电场阳极内。
于本发明一实施例中,除尘电场阳极包括一个或多个并行设置的中空阳极管。当中空阳极管有多个时,全部中空阳极管构成蜂窝状的除尘电场阳极。于本发明一实施例中,中空阳极管的截面可呈圆形或多边形。若中空阳极管的截面呈圆形,除尘电场阳极和除尘电场阴极 之间能形成均匀电场,中空阳极管的内壁不容易积尘。若中空阳极管的截面为三边形时,中空阳极管的内壁上可以形成3个积尘面,3个远角容尘角,此种结构的中空阳极管的容尘率最高。若中空阳极管的截面为四边形,可以获得4个积尘面,4个容尘角,但拼组结构不稳定。若中空阳极管的截面为六边形,可以形成6个积尘面,6个容尘角,积尘面和容尘率达到平衡。若中空阳极管的截面呈更多边形时,可以获得更多的积尘边,但损失容尘率。于本发明一实施例中,中空阳极管的管内切圆直径取值范围为5mm-400mm。
于本发明一实施例中,除尘电场阴极安装在阴极支撑板上,阴极支撑板与除尘电场阳极通过绝缘机构相连接。所述绝缘机构用于实现所述阴极支撑板和所述除尘电场阳极之间的绝缘。于本发明一实施例中,除尘电场阳极包括第一阳极部和第二阳极部,即所述第一阳极部靠近电场装置入口,第二阳极部靠近电场装置出口。阴极支撑板和绝缘机构在第一阳极部和第二阳极部之间,即绝缘机构安装在电离电场中间、或除尘电场阴极中间,可以对除尘电场阴极起到良好的支撑作用,并对除尘电场阴极起到相对于除尘电场阳极的固定作用,使除尘电场阴极和除尘电场阳极之间保持设定的距离。而现有技术中,阴极的支撑点在阴极的端点,难以保持阴极和阳极之间的距离。于本发明一实施例中绝缘机构设置在电场流道外、即电场流道外,以防止或减少气体中的灰尘等聚集在绝缘机构上,导致绝缘机构击穿或导电。
于本发明一实施例中,绝缘机构采用耐高压陶瓷绝缘子,对除尘电场阴极和除尘电场阳极之间进行绝缘。除尘电场阳极也称作一种外壳。
于本发明一实施例中,第一阳极部在气体流动方向上位于第一阴极支撑板和绝缘机构之前,第一阳极部能够除去气体中的水,防止水进入绝缘机构,造成绝缘机构短路、打火。另外,第一阳级部能够除去气体中相当一部分的灰尘,当气体通过绝缘机构时,相当一部分的灰尘已被消除,减少灰尘造成绝缘机构短路的可能性。于本发明一实施例中绝缘机构包括绝缘瓷柱。第一阳极部的设计,主要是为了保护绝缘瓷柱不被气体中颗粒物等污染,一旦气体污染绝缘瓷柱将会造成除尘电场阳极和除尘电场阴极导通,从而使除尘电场阳极的积尘功能失效,故第一阳极部的设计,能有效减少绝缘瓷柱被污染,提高产品的使用时间。在气体流经电场流道过程中,第一阳极部和除尘电场阴极先接触具有污染性的气体,绝缘机构后接触气体,达到先除尘后经过绝缘机构的目的,减少对绝缘机构造成的污染,延长清洁维护周期,对应电极使用后绝缘支撑。所述第一阳极部的长度是足够的长,以清除部分灰尘,减少积累在所述绝缘机构和所述阴极支撑板上的灰尘,减少灰尘造成的电击穿。于本发明一实施例中第一阳极部长度占除尘电场阳极总长度的1/10至1/4、1/4至1/3、1/3至1/2、1/2至2/3、2/3至3/4,或3/4至9/10。
于本发明一实施例中,第二阳极部在气体流动方向上位于阴极支撑板和绝缘机构之后。第二阳极部包括积尘段和预留积尘段。其中积尘段利用静电吸附气体中的颗粒物,该积尘段是为了增加积尘面积,延长电场装置的使用时间。预留积尘段能为积尘段提供失效保护。预留积尘段是为了在满足设计除尘要求的前提下,进一步提高积尘面积,提高除尘效果。预留积尘段作为补充前段积尘使用。于本发明一实施例中,第一阳极部和第二阳极部可使用不同的电源。
于本发明一实施例中,由于除尘电场阴极和除尘电场阳极之间存在极高电位差,为了防止除尘电场阴极和除尘电场阳极导通,绝缘机构设置在除尘电场阴极和除尘电场阳极之间的电场流道之外。因此,绝缘机构外悬于除尘电场阳极的外侧。于本发明一实施例中绝缘机构可采用非导体耐温材料,比如陶瓷、玻璃等。于本发明一实施例中,完全密闭无空气的材料绝缘要求绝缘隔离厚度>0.3mm/kv;空气绝缘要求>1.4mm/kv。可根据除尘电场阴极和除尘电场阳极之间的极间距的1.4倍设置绝缘距离。于本发明一实施例中绝缘机构使用陶瓷,表面上釉;不能使用胶粘或有机材料填充连接,耐温大于350摄氏度。
于本发明一实施例中,绝缘机构包括绝缘部和隔热部。为了使绝缘机构具有抗污功能,绝缘部的材料采用陶瓷材料或玻璃材料。于本发明一实施例中,绝缘部可为伞状串陶瓷柱或玻璃柱,伞内外挂釉。伞状串陶瓷柱或玻璃柱的外缘与除尘电场阳极的距离大于电场距离的1.4倍、即大于极间距的1.4倍。伞状串陶瓷柱或玻璃柱的伞突边间距总和大于伞状串陶瓷柱的绝缘间距的1.4倍。伞状串陶瓷柱或玻璃柱的伞边内深总长大于伞状串陶瓷柱的绝缘距离1.4倍。绝缘部还可为柱状串陶瓷柱或玻璃柱,柱内外挂釉。于本发明一实施例中绝缘部还可呈塔状。
于本发明一实施例中,绝缘部内设置加热棒,当绝缘部周围温度接近露点时,加热棒启动并进行加热。由于使用中绝缘部的内外存在温差,绝缘部的内外、外部容易产生凝露。绝缘部的外表面可能自发或被气体加热产生高温,需要必要的隔离防护,防烫伤。隔热部包括位于绝缘部外部的防护围挡板、脱硝净化反应腔。于本发明一实施例中绝缘部的尾部需要凝露位置同样需要隔热,防止环境以及散热高温加热凝露组件。
于本发明一实施例中电场装置的电源的引出线使用伞状串陶瓷柱或玻璃柱过墙式连接,墙内使用弹性碰头连接阴极支撑板,墙外使用密闭绝缘防护接线帽插拔连接,引出线过墙导体与墙绝缘距离大于伞状串陶瓷柱或玻璃柱的陶瓷绝缘距离。于本发明一实施例中高压部分取消引线,直接安装在端头上,确保安全,高压模块整体外绝缘使用ip68防护,使用介质换热散热。
于本发明一实施例中除尘电场阴极和除尘电场阳极之间采用非对称结构。在对称电场中极性粒子受到一个相同大小而方向相反的作用力,极性粒子在电场中往复运动;在非对称电场中,极性粒子受到两个大小不同的作用力,极性粒子向作用力大的方向移动,可以避免产生耦合。
本发明的电场装置的除尘电场阴极和除尘电场阳极之间形成电离除尘电场。为了减少电离除尘电场发生电场耦合,于本发明一实施例中,减少电场耦合的方法包括如下步骤:选择除尘电场阳极的集尘面积与除尘电场阴极的放电面积的比,使电场耦合次数≤3。于本发明一实施例中除尘电场阳极的集尘面积与除尘电场阴极的放电面积的比可以为:1.667:1-1680:1;3.334:1-113.34:1;6.67:1-56.67:1;13.34:1-28.33:1。该实施例选择相对大面积的除尘电场阳极的集尘面积和相对极小的除尘电场阴极的放电面积,具体选择上述面积比,可以减少除尘电场阴极的放电面积,减小吸力,扩大除尘电场阳极的集尘面积,扩大吸力,即除尘电场阴极和除尘电场阳极间产生不对称的电极吸力,使荷电后粉尘落入除尘电场阳极的集尘表面,虽极性改变但无法再被除尘电场阴极吸走,并减少电场耦合,实现电场耦合次数≤3。即在电场极间距小于150mm时电场耦合次数≤3,电场能耗低,能够减少电场对气溶胶、水雾、油雾、松散光滑颗粒物的耦合消耗,节省电场电能30~50%。集尘面积是指除尘电场阳极工作面的面积,比如,若除尘电场阳极呈中空的正六边形管状,集尘面积即为中空的正六边形管状的内表面积,集尘面积也称作积尘面积。放电面积指除尘电场阴极工作面的面积,比如,若除尘电场阴极呈棒状,放电面积即为棒状的外表面积。
于本发明一实施例中除尘电场阳极的长度可以为10~180mm、10~20mm、20~30mm、60~180mm、30~40mm、40~50mm、50~60mm、60~70mm、70~80mm、80~90mm、90~100mm、100~110mm、110~120mm、120~130mm、130~140mm、140~150mm、150~160mm、160~170mm、170~180mm、60mm、180mm、10mm或30mm。除尘电场阳极的长度是指除尘电场阳极工作面的一端至另一端的最小长度。除尘电场阳极选择此种长度,可以有效减少电场耦合。
于本发明一实施例中除尘电场阳极的长度可以为10~90mm、15~20mm、20~25mm、25~30mm、30~35mm、35~40mm、40~45mm、45~50mm、50~55mm、55~60mm、60~65mm、65~70mm、70~75mm、75~80mm、80~85mm或85~90mm,此种长度的设计可以使除尘电场阳极及电场装置具有耐高温特性,并使得电场装置在高温冲击下具有高效率的集尘能力。
于本发明一实施例中除尘电场阴极的长度可以为30~180mm、54~176mm、30~40mm、40~50mm、50~54mm、54~60mm、60~70mm、70~80mm、80~90mm、90~100mm、100~110mm、110~120mm、120~130mm、130~140mm、140~150mm、150~160mm、160~170mm、170~176 mm、170~180mm、54mm、180mm、或30mm。除尘电场阴极的长度是指除尘电场阴极工作面的一端至另一端的最小长度。除尘电场阴极选择此种长度,可以有效减少电场耦合。
于本发明一实施例中除尘电场阴极的长度可以为10~90mm、15~20mm、20~25mm、25~30mm、30~35mm、35~40mm、40~45mm、45~50mm、50~55mm、55~60mm、60~65mm、65~70mm、70~75mm、75~80mm、80~85mm或85~90mm,此种长度的设计可以使除尘电场阴极及电场装置具有耐高温特性,并使得电场装置在高温冲击下具有高效率的集尘能力。
于本发明一实施例中除尘电场阳极和除尘电场阴极之间的距离可以为5~30mm、2.5~139.9mm、9.9~139.9mm、2.5~9.9mm、9.9~20mm、20~30mm、30~40mm、40~50mm、50~60mm、60~70mm、70~80mm、80~90mm、90~100mm、100~110mm、110~120mm、120~130mm、130~139.9mm、9.9mm、139.9mm、或2.5mm。除尘电场阳极和除尘电场阴极之间的距离也称作极间距。极间距具体是指除尘电场阳极、除尘电场阴极工作面之间的最小垂直距离。此种极间距的选择可以有效减少电场耦合,并使电场装置具有耐高温特性。
于本发明一实施例中,所述除尘电场阴极直径为1-3毫米,所述除尘电场阳极与所述除尘电场阴极的极间距为2.5-139.9毫米;所述除尘电场阳极的积尘面积与所述除尘电场阴极的放电面积的比为1.667:1-1680:1。
鉴于电离除尘的特有性能,电离除尘可适用去除气体中的颗粒物。但是,经过许多大学、研究机构、企业的多年的研究,现有电场除尘装置只能去除约70%的颗粒物,不能满足许多行业的需要。另外,现有技术中的电场除尘装置体积过于庞大。
本发明的发明人研究发现,现有技术中电场除尘装置的缺点是由电场耦合引起的。本发明通过减小电场耦合次数,可以显著减小电场除尘装置的尺寸(即体积)。比如,本发明提供的电离除尘装置的尺寸约为现有电离除尘装置尺寸的五分之一。原因是,为了获得可接受的颗粒去除率,现有电离除尘装置中将气体流速设为1m/s左右,而本发明在将气体流速提高到6m/s的情况下,仍能获得较高的颗粒去除率。当处理一给定流量的气体时,随着气体速度的提高,电场除尘装置的尺寸可以减小。
另外,本发明可以显著提高颗粒去除效率。例如,在气体流速为1m/s左右时,现有技术电场除尘装置可以去除发动机排气中大约70%的颗粒物,但是本发明可以去除大约99%的颗粒物,即使在气体流速为6m/s时。
由于发明人发现了电场耦合的作用,并且找到了减少电场耦合次数的方法,本发明获得了上述预料不到的结果。
除尘电场阳极和除尘电场阴极之间的电离除尘电场也称作第一电场。于本发明一实施例 中除尘电场阳极和除尘电场阴极之间还形成有与第一电场不平行的第二电场。于本发明另一实施例中,所述第二电场与所述电离除尘电场的流道不垂直。第二电场也称作辅助电场,可以通过一个或两个第一辅助电极形成当第二电场由一个第一辅助电极形成时,该第一辅助电极可以放在电离除尘电场的进口或出口,该第一辅助电极可以带负电势、或正电势。其中,当所述第一辅助电极为阴极时,设置在或靠近所述电离除尘电场的进口;所述第一辅助电极与所述除尘电场阳极具有夹角α,且0°<α≤125°、或45°≤α≤125°、或60°≤α≤100°、或α=90°。当所述第一辅助电极为阳极时,设置在或靠近所述电离除尘电场的出口;所述第一辅助电极与所述除尘电场阴极具有夹角α,且0°<α≤125°、或45°≤α≤125°、或60°≤α≤100°、或α=90°。当第二电场由两个第一辅助电极形成时,其中一个第一辅助电极可以带负电势,另一个第一辅助电极可以带正电势;一个第一辅助电极可以放在电离电场的进口,另一个第一辅助电极放在电离电场的出口。另外,第一辅助电极可以是除尘电场阴极或除尘电场阳极的一部分,即第一辅助电极可以是由除尘电场阴极或除尘电场阳极的延伸段构成,此时除尘电场阴极和除尘电场阳极的长度不一样。第一辅助电极也可以是一个单独的电极,也就是说第一辅助电极可以不是除尘电场阴极或除尘电场阳极的一部分,此时,第二电场的电压和第一电场的电压不一样,可以根据工作状况单独地控制。
第二电场能给除尘电场阳极和除尘电场阴极之间带负电荷的氧离子流施加朝向电离电场的出口的力,使得除尘电场阳极和除尘电场阴极之间带负电荷的氧离子流具有向出口的移动速度。在气体流入电离电场,并向电离电场的出口方向流动过程中,带负电荷的氧离子也在向除尘电场阳极且向电离电场的出口方向移动,且带负电荷的氧离子在向除尘电场阳极且向电离电场的出口移动过程中将与气体中的颗粒物等相结合,由于氧离子具有向出口的移动速度,氧离子在与颗粒物相结合时,两者间不会产生较强的碰撞,从而避免因较强碰撞而造成较大的能量消耗,保证氧离子易于与颗粒物相结合,并使得气体中的颗粒物的荷电效率更高,进而在除尘电场阳极的作用下,能将更多的颗粒物收集起来,保证电场装置的除尘效率更高。电场装置对顺离子流方向进入电场的颗粒物的收集率比对逆离子流方向进入电场的颗粒物的收集率提高近一倍,从而提高电场的积尘效率,减少电场电耗。另外,现有技术中集尘电场的除尘效率较低的主要原因也是粉尘进入电场方向与电场内离子流方向相反或垂直交叉,从而导致粉尘与离子流相互冲撞剧烈并产生较大能量消耗,同时也影响荷电效率,进而使现有技术中电场集尘效率下降,且能耗增加。电场装置在收集气体中的粉尘时,气体及粉尘顺离子流方向进入电场,粉尘荷电充分,电场消耗小;单极电场集尘效率会达到99.99%。当气体及粉尘逆离子流方向进入电场,粉尘荷电不充分,电场电耗也会增加,集尘效率会在40%-75%。 于本发明一实施例中电场装置形成的离子流有利于无动力风扇流体输送、进气增氧、或热量交换等。
随着,除尘电场阳极持续收集进气中的颗粒物等,颗粒物等在除尘电场阳极上堆积并形成灰尘,且灰尘厚度不断增加,使极间距减小。于本发明一实施例中,当电场积尘时,所述电场装置检测电场电流,并通过以下任一方式进行灰尘清洁:
(1)当所述电场装置检测到电场电流增加到一个给定值,增高电场电压。
(2)当所述电场装置检测到电场电流增加到一个给定值,利用电场反电晕放电现象完成灰尘清洁。
(3)当所述电场装置检测到电场电流增加到一个给定值,利用电场反电晕放电现象,增高电场电压,限制入注电流,完成灰尘清洁。
(4)当所述电场装置检测到电场电流增加到一个给定值,利用电场反电晕放电现象,增高电场电压,限制入注电流,使发生在阳极积碳位置的急剧放电产生等离子,所述等离子使灰尘有机成分深度氧化,高分子键断裂,形成小分子二氧化碳和水,完成灰尘清洁。
于本发明一实施例中除尘电场阳极和除尘电场阴极分别与电源的两个电极电性连接。加载在除尘电场阳极和除尘电场阴极上的电压需选择适当的电压等级,具体选择何种电压等级取决于电场装置的体积、耐温、容尘率等。例如,电压从1kv至50kv;设计时首先考虑耐温条件,极间距与温度的参数:1MM<30度,积尘面积大于0.1平方/千立方米/小时,电场长度大于单管内切圆的5倍,控制电场气流流速小于9米/秒。于本发明一实施例中除尘电场阳极由第一中空阳极管构成、并呈蜂窝状。第一中空阳极管端口的形状可以为圆形或多边形。于本发明一实施例中第一中空阳极管的管内切圆取值范围在5-400mm,对应电压在0.1-120kv之间,第一中空阳极管对应电流在0.1-30A之间;不同的内切圆对应不同的电晕电压,约为1KV/1MM。
于本发明一实施例中电场装置包括第一电场级,该第一电场级包括若干个第一电场发生单元,第一电场发生单元可以有一个或多个。第一电场发生单元也称作第一集尘单元,第一集尘单元包括上述除尘电场阳极和除尘电场阴极,第一集尘单元有一个或多个。第一电场级有多个时,能有效提高电场装置的集尘效率。同一第一电场级中,各除尘电场阳极为相同极性,各除尘电场阴极为相同极性。且第一电场级有多个时,各第一电场级之间串联。于本发明一实施例中电场装置还包括若干个连接壳体,串联第一电场级通过连接壳体连接;相邻两级的第一电场级的距离大于极间距的1.4倍。
于本发明一实施例中用电场充电驻极体材料。电场装置有故障时,充电驻极体材料会用 来除尘。
于本发明一实施例中,所述电场装置包括驻极体元件。
于本发明一实施例中,所述驻极体元件设于所述除尘电场阳极内。
于本发明一实施例中,所述除尘电场阳极和所述除尘电场阴极接通电源时形成电离除尘电场,所述驻极体元件在所述电离除尘电场中。
于本发明一实施例中,所述驻极体元件靠近电场装置出口,或者,所述驻极体元件设于电场装置出口。
于本发明一实施例中,所述除尘电场阳极和所述除尘电场阴极形成流道,所述驻极体元件设于所述流道中。
于本发明一实施例中,所述流道包括流道出口,所述驻极体元件靠近所述流道出口,或者,所述驻极体元件设于所述流道出口。
于本发明一实施例中,所述驻极体元件于所述流道中的横截面占流道横截面5%~100%。
于本发明一实施例中,所述驻极体元件于所述流道中的横截面占流道横截面10%-90%、20%-80%、或40%-60%。
于本发明一实施例中,所述电离除尘电场给所述驻极体元件充电。
于本发明一实施例中,所述驻极体元件具有多孔结构。
于本发明一实施例中,所述驻极体元件为织品。
于本发明一实施例中,所述除尘电场阳极内部为管状,所述驻极体元件外部为管状,所述驻极体元件外部套设于所述除尘电场阳极内部。
于本发明一实施例中,所述驻极体元件与所述除尘电场阳极为可拆卸式连接。
于本发明一实施例中,所述驻极体元件的材料包括具有驻极性能的无机化合物。所述驻极性能是指驻极体元件在外接电源充电后带有电荷,并在完全脱离电源的条件下,依然保持有一定的电荷,从而作为电极起到电场电极作用的能力。
于本发明一实施例中,所述无机化合物选自含氧化合物、含氮化合物或玻璃纤维中的一种或多种组合。
于本发明一实施例中,所述含氧化合物选自金属基氧化物、含氧复合物、含氧的无机杂多酸盐中的一种或多种组合。
于本发明一实施例中,所述金属基氧化物选自氧化铝、氧化锌、氧化锆、氧化钛、氧化钡、氧化钽、氧化硅、氧化铅、氧化锡中的一种或多种组合。
于本发明一实施例中,所述金属基氧化物为氧化铝。
于本发明一实施例中,所述含氧复合物选自钛锆复合氧化物或钛钡复合氧化物中的一种或多种组合。
于本发明一实施例中,所述含氧的无机杂多酸盐选自钛酸锆、锆钛酸铅或钛酸钡中的一种或多种组合。
于本发明一实施例中,所述含氮化合物为氮化硅。
于本发明一实施例中,所述驻极体元件的材料包括具有驻极性能的有机化合物。所述驻极性能是指驻极体元件在外接电源充电后带有电荷,并在完全脱离电源的条件下,依然保持有一定的电荷,从而作为电极起到电场电极作用的能力。
于本发明一实施例中,所述有机化合物选自氟聚合物、聚碳酸酯、PP、PE、PVC、天然蜡、树脂、松香中的一种或多种组合。
于本发明一实施例中,所述氟聚合物选自聚四氟乙烯(PTFE)、聚全氟乙丙烯(Teflon-FEP)、可溶性聚四氟乙烯(PFA)、聚偏氟乙烯(PVDF)中的一种或多种组合。
于本发明一实施例中,所述氟聚合物为聚四氟乙烯。
在上电驱动电压条件下产生电离除尘电场,利用电离除尘电场电离部分待处理物,吸附空气中的颗粒物,同时向驻极体元件进行充电,当电场装置出现故障时即无上电驱动电压时,充电的驻极体元件产生电场,利用充电的驻极体元件产生的电场吸附空气中的颗粒物,即在电离除尘电场出现故障情况下仍然可以进行颗粒物的吸附。
于本发明一实施例中,所述空气除尘系统还包括除臭氧装置,用于去除或减少所述电场装置产生的臭氧,所述除臭氧装置在电场装置出口与空气除尘系统出口之间。
于本发明一实施例中,所述除臭氧装置包括臭氧消解器。
于本发明一实施例中,所述臭氧消解器选自紫外线臭氧消解器和催化臭氧消解器中的至少一种。
本发明空气除尘系统还包括除臭氧装置,用于去除或减少所述电场装置产生的臭氧。
于本发明一实施例中,本发明提供一种空气除尘方法,包括以下步骤:
使含尘空气通过除尘电场阳极和除尘电场阴极产生的电离除尘电场;
电场积尘时,进行清尘处理。
于本发明一实施例中,当检测到的电场电流增加到一个给定值时,进行清尘处理。
于本发明一实施例中,当电场积尘时,通过以下任一方式进行灰尘清洁:
(1)利用电场反电晕放电现象完成清尘处理。
(2)利用电场反电晕放电现象,增高电压,限制入注电流,完成清尘处理。
(3)利用电场反电晕放电现象,增高电压,限制入注电流,使发生在阳极积尘位置的急剧放电产生等离子,所述等离子使灰尘有机成分深度氧化,高分子键断裂,形成小分子二氧化碳和水,完成清尘处理。
优选地,所述灰尘为炭黑。
于本发明一实施例中,所述除尘电场阴极包括若干根阴极丝。阴极丝的直径可为0.1mm-20mm,该尺寸参数根据应用场合及积尘要求做调整。于本发明一实施例中阴极丝的直径不大于3mm。于本发明一实施例中阴极丝使用容易放电的金属丝或合金丝,耐温且能支撑自身重量,电化学稳定。于本发明一实施例中阴极丝的材质选用钛。阴极丝的具体形状根据除尘电场阳极的形状调整,例如,若除尘电场阳极的积尘面是平面,则阴极丝的截面呈圆形;若除尘电场阳极的积尘面是圆弧面,阴极丝需要设计成多面形。阴极丝的长度根据除尘电场阳极进行调整。
于本发明一实施例中,所述除尘电场阴极包括若干阴极棒。于本发明一实施例中,所述阴极棒的直径不大于3mm。于本发明一实施例中阴极棒使用容易放电的金属棒或合金棒。阴极棒的形状可以为针状、多角状、毛刺状、螺纹杆状或柱状等。阴极棒的形状可以根据除尘电场阳极的形状进行调整,例如,若除尘电场阳极的积尘面是平面,则阴极棒的截面需要设计成圆形;若除尘电场阳极的积尘面是圆弧面,则阴极棒需要设计成多面形。
于本发明一实施例中,除尘电场阴极穿设于除尘电场阳极内。
于本发明一实施例中,除尘电场阳极包括一个或多个并行设置的中空阳极管。当中空阳极管有多个时,全部中空阳极管构成蜂窝状的除尘电场阳极。于本发明一实施例中,中空阳极管的截面可呈圆形或多边形。若中空阳极管的截面呈圆形,除尘电场阳极和除尘电场阴极之间能形成均匀电场,中空阳极管的内壁不容易积尘。若中空阳极管的截面为三边形时,中空阳极管的内壁上可以形成3个积尘面,3个远角容尘角,此种结构的中空阳极管的容尘率最高。若中空阳极管的截面为四边形,可以获得4个积尘面,4个容尘角,但拼组结构不稳定。若中空阳极管的截面为六边形,可以形成6个积尘面,6个容尘角,积尘面和容尘率达到平衡。若中空阳极管的截面呈更多边形时,可以获得更多的积尘边,但损失容尘率。于本发明一实施例中,中空阳极管的管内切圆直径取值范围为5mm-400mm。
于本发明一实施例中,本发明提供一种给空气加速的方法,包括以下步骤:
使空气通过一个流道;
在流道中产生电场,所述电场不与所述流道垂直,所述电场包括进口和出口。
其中,所述电场电离所述空气。
于本发明一实施例中,所述电场包括第一阳极和第一阴极,所述第一阳极和第一阴极形成所述流道,所述流道接通所述进口和出口。所述第一阳极和第一阴极电离所述流道中的空气。
于本发明一实施例中,所述电场包括第二电极,所述第二电极设于所述进口或靠近所述进口。
其中,所述第二电极为阴极,且作为所述第一阴极的延伸。优选地,所述第二电极与所述第一阳极具有夹角α,且0°<α≤125°、或45°≤α≤125°、或60°≤α≤100°、或α=90°。
于本发明一实施例中,所述第二电极与所述第一阳极和第一阴极独立设置。
于本发明一实施例中,所述电场包括第三电极,所述第三电极设于所述进口或靠近所述出口。
其中,所述第三电极为阳极,所述第三电极是所述第一阳极的延伸。优选地,所述第三电极与所述第一阴极具有夹角α,且0°<α≤125°、或45°≤α≤125°、或60°≤α≤100°、或α=90°。
于本发明一实施例中,所述第三电极与所述第一阳极和第一阴极独立设置。
于本发明一实施例中,所述第一阴极包括若干根阴极丝。阴极丝的直径可为0.1mm-20mm,该尺寸参数根据应用场合及积尘要求做调整。于本发明一实施例中阴极丝的直径不大于3mm。于本发明一实施例中阴极丝使用容易放电的金属丝或合金丝,耐温且能支撑自身重量,电化学稳定。于本发明一实施例中阴极丝的材质选用钛。阴极丝的具体形状根据第一阳极的形状调整,例如,若第一阳极的积尘面是平面,则阴极丝的截面呈圆形;若第一阳极的积尘面是圆弧面,阴极丝需要设计成多面形。阴极丝的长度根据第一阳极进行调整。
于本发明一实施例中,所述第一阴极包括若干阴极棒。于本发明一实施例中,所述阴极棒的直径不大于3mm。于本发明一实施例中阴极棒使用容易放电的金属棒或合金棒。阴极棒的形状可以为针状、多角状、毛刺状、螺纹杆状或柱状等。阴极棒的形状可以根据第一阳极的形状进行调整,例如,若第一阳极的积尘面是平面,则阴极棒的截面需要设计成圆形;若第一阳极的积尘面是圆弧面,则阴极棒需要设计成多面形。
于本发明一实施例中,第一阴极穿设于第一阳极内。
于本发明一实施例中,第一阳极包括一个或多个并行设置的中空阳极管。当中空阳极管有多个时,全部中空阳极管构成蜂窝状的第一阳极。于本发明一实施例中,中空阳极管的截面可呈圆形或多边形。若中空阳极管的截面呈圆形,第一阳极和第一阴极之间能形成均匀电场,中空阳极管的内壁不容易积尘。若中空阳极管的截面为三边形时,中空阳极管的内壁上 可以形成3个积尘面,3个远角容尘角,此种结构的中空阳极管的容尘率最高。若中空阳极管的截面为四边形,可以获得4个积尘面,4个容尘角,但拼组结构不稳定。若中空阳极管的截面为六边形,可以形成6个积尘面,6个容尘角,积尘面和容尘率达到平衡。若中空阳极管的截面呈更多边形时,可以获得更多的积尘边,但损失容尘率。于本发明一实施例中,中空阳极管的管内切圆直径取值范围为5mm-400mm。
于一实施例中,本发明提供一种减少空气除尘电场耦合的方法,包括以下步骤:
使空气通过除尘电场阳极和除尘电场阴极产生的电离除尘电场;
选择所述除尘电场阳极或/和除尘电场阴极。
于本发明一实施例中,选择的所述除尘电场阳极或/和除尘电场阴极尺寸使电场耦合次数≤3。
具体地,选择所述除尘电场阳极的集尘面积与除尘电场阴极的放电面积的比。优选地,选择所述除尘电场阳极的积尘面积与所述除尘电场阴极的放电面积的比为1.667:1-1680:1。
更为优选地,选择所述除尘电场阳极的积尘面积与所述除尘电场阴极的放电面积的比为6.67~56.67:1。
于本发明一实施例中,所述除尘电场阴极直径为1-3毫米,所述除尘电场阳极与所述除尘电场阴极的极间距为2.5-139.9毫米;所述除尘电场阳极的积尘面积与所述除尘电场阴极的放电面积的比为1.667:1-1680:1。
优选地,选择所述除尘电场阳极和所述除尘电场阴极的极间距小于150mm。
优选地,选择所述除尘电场阳极与所述除尘电场阴极的极间距为2.5~139.9mm。更为优选地,选择所述除尘电场阳极与所述除尘电场阴极的极间距为5.0~100mm。
优选地,选择所述除尘电场阳极长度为10~180mm。更为优选地,选择所述除尘电场阳极长度为60~180mm。
优选地,选择所述除尘电场阴极长度为30~180mm。更为优选地,选择所述除尘电场阴极长度为54~176mm。
于本发明一实施例中,所述除尘电场阴极包括若干根阴极丝。阴极丝的直径可为0.1mm-20mm,该尺寸参数根据应用场合及积尘要求做调整。于本发明一实施例中阴极丝的直径不大于3mm。于本发明一实施例中阴极丝使用容易放电的金属丝或合金丝,耐温且能支撑自身重量,电化学稳定。于本发明一实施例中阴极丝的材质选用钛。阴极丝的具体形状根据除尘电场阳极的形状调整,例如,若除尘电场阳极的积尘面是平面,则阴极丝的截面呈圆形;若除尘电场阳极的积尘面是圆弧面,阴极丝需要设计成多面形。阴极丝的长度根据除尘电场阳极 进行调整。
于本发明一实施例中,所述除尘电场阴极包括若干阴极棒。于本发明一实施例中,所述阴极棒的直径不大于3mm。于本发明一实施例中阴极棒使用容易放电的金属棒或合金棒。阴极棒的形状可以为针状、多角状、毛刺状、螺纹杆状或柱状等。阴极棒的形状可以根据除尘电场阳极的形状进行调整,例如,若除尘电场阳极的积尘面是平面,则阴极棒的截面需要设计成圆形;若除尘电场阳极的积尘面是圆弧面,则阴极棒需要设计成多面形。
于本发明一实施例中,除尘电场阴极穿设于除尘电场阳极内。
于本发明一实施例中,除尘电场阳极包括一个或多个并行设置的中空阳极管。当中空阳极管有多个时,全部中空阳极管构成蜂窝状的除尘电场阳极。于本发明一实施例中,中空阳极管的截面可呈圆形或多边形。若中空阳极管的截面呈圆形,除尘电场阳极和除尘电场阴极之间能形成均匀电场,中空阳极管的内壁不容易积尘。若中空阳极管的截面为三边形时,中空阳极管的内壁上可以形成3个积尘面,3个远角容尘角,此种结构的中空阳极管的容尘率最高。若中空阳极管的截面为四边形,可以获得4个积尘面,4个容尘角,但拼组结构不稳定。若中空阳极管的截面为六边形,可以形成6个积尘面,6个容尘角,积尘面和容尘率达到平衡。若中空阳极管的截面呈更多边形时,可以获得更多的积尘边,但损失容尘率。于本发明一实施例中,中空阳极管的管内切圆直径取值范围为5mm-400mm。
于一实施例中,本发明提供一种空气除尘的方法,包括如下步骤:
1)利用电离除尘电场吸附空气中的颗粒物;
2)利用电离除尘电场给驻极体元件充电。
于本发明一实施例中,所述驻极体元件靠近电场装置出口,或者,所述驻极体元件设于电场装置出口。
于本发明一实施例中,所述除尘电场阳极和所述除尘电场阴极形成流道,所述驻极体元件设于所述流道中。
于本发明一实施例中,所述流道包括流道出口,所述驻极体元件靠近所述流道出口,或者,所述驻极体元件设于所述流道出口。
于本发明一实施例中,当电离除尘电场无上电驱动电压时,利用充电的驻极体元件吸附空气中的颗粒物。
于本发明一实施例中,在充电的驻极体元件吸附一定的空气中的颗粒物后,将其替换为新的驻极体元件。
于本发明一实施例中,替换为新的驻极体元件后重新启动电离除尘电场吸附空气中的颗 粒物,并给新的驻极体元件充电。
于本发明一实施例中,所述驻极体元件的材料包括具有驻极性能的无机化合物。所述驻极性能是指驻极体元件在外接电源充电后带有电荷,并在完全脱离电源的条件下,依然保持有一定的电荷,从而作为电极起到电场电极作用的能力。
于本发明一实施例中,所述无机化合物选自含氧化合物、含氮化合物或玻璃纤维中的一种或多种组合。
于本发明一实施例中,所述含氧化合物选自金属基氧化物、含氧复合物、含氧的无机杂多酸盐中的一种或多种组合。
于本发明一实施例中,所述金属基氧化物选自氧化铝、氧化锌、氧化锆、氧化钛、氧化钡、氧化钽、氧化硅、氧化铅、氧化锡中的一种或多种组合。
于本发明一实施例中,所述金属基氧化物为氧化铝。
于本发明一实施例中,所述含氧复合物选自钛锆复合氧化物或钛钡复合氧化物中的一种或多种组合。
于本发明一实施例中,所述含氧的无机杂多酸盐选自钛酸锆、锆钛酸铅或钛酸钡中的一种或多种组合。
于本发明一实施例中,所述含氮化合物为氮化硅。
于本发明一实施例中,所述驻极体元件的材料包括具有驻极性能的有机化合物。所述驻极性能是指驻极体元件在外接电源充电后带有电荷,并在完全脱离电源的条件下,依然保持有一定的电荷,从而作为电极起到电场电极作用的能力。
于本发明一实施例中,所述有机化合物选自氟聚合物、聚碳酸酯、PP、PE、PVC、天然蜡、树脂、松香中的一种或多种组合。
于本发明一实施例中,所述氟聚合物选自聚四氟乙烯(PTFE)、聚全氟乙丙烯(Teflon-FEP)、可溶性聚四氟乙烯(PFA)、聚偏氟乙烯(PVDF)中的一种或多种组合。
于本发明一实施例中,所述氟聚合物为聚四氟乙烯。
于本发明一实施例中,本发明提供一种空气除尘方法,包括以下步骤:所述空气经空气电离除尘后去除或减少空气电离除尘产生的臭氧。
于本发明一实施例中,对空气电离除尘产生的臭氧进行臭氧消解。
于本发明一实施例中,所述臭氧消解选自紫外线消解和催化消解中的至少一种。
下面通过具体实施例来进一步阐述本发明的空气除尘系统及方法。
实施例1
请参阅图1,显示为空气除尘系统于一实施例中的结构示意图。所述空气除尘系统101包括电场装置入口1011、离心分离机构1012、第一滤水机构1013、电场装置1014、绝缘机构1015、均风装置、第二滤水机构1017和/或臭氧机构1018。
本发明中第一滤水机构1013和/或第二滤水机构1017是可选的,即本发明提供的空气除尘系统中可包括第一滤水机构1013和/或第二滤水机构1017,也可不包括第一滤水机构1013和/或第二滤水机构1017。
如图1所示,所述电场装置入口1011设置于所述离心分离机构1012的进气壁上,以接收带有颗粒物的气体。
设置于所述空气除尘系统101下端的离心分离机构1012采用圆锥形筒。圆锥形筒与电场装置1014的衔接处为一排气口,所述排气口上设置有用于过滤颗粒物的第一过滤层。所述圆锥形筒的筒底设置有接收颗粒物的出粉口。
具体地,含颗粒物的气体一般以12-30m/s速度由电场装置入口1011进入离心分离机构1012时,气体将由直线运动变为圆周运动。旋转气流的绝大部分,沿器壁自圆筒体呈螺旋形向下朝锥体流动。此外,颗粒物在离心力的作用下,被甩向分离机构的内壁,颗粒物一旦与内壁接触,靠内壁附近的向下轴向速度的动量沿壁面下落,由出粉口排出。旋转下降的外旋气流,在下降过程中不断向分离机构的中心部分流入,形成向心的径向气流,这部分气流就构成了旋转向上的内旋流。内、外旋流的旋转方向是相同的。最后净化气经排气口及第一过滤网(未予图示)排入所述电场装置1014,一部分未被分离下来的较细尘粒也未能逃逸。
设置于所述离心分离机构1012内的第一滤水机构1013包括设置于所述电场装置入口1011的第一电极为一导电网板,所述导电网板用于在上电后,将电子传导给液体水。用于吸附带电的液体水的第二电极于本实施例中为所述电场装置1014的阳极积尘部,即除尘电场阳极10141。
请参阅图2,显示为设置于所述空气除尘系统内的第一滤水机构的另一实施例结构图。所述第一滤水机构的第一电极10131设置于所述进气口,所述第一电极10131为一带有负电势导电网板。同时,本实施例的第二电极10132设置于所述进气装置内呈面网状,且第二电极10132带有正电势,该第二电极10132也称作收集极。本实施例中第二电极10132具体呈平面网状,且第一电极10131平行于第二电极10132。本实施例中第一电极10131和第二电极10132之间形成网面电场。另外,第一电极10131由金属丝制成的网状结构,该第一电极10131由金属丝网构成。本实施例中第二电极10132的面积大于第一电极10131的面积。所述电场装置1014包括除尘电场阳极10141和设置于除尘电场阳极10141内的除尘电场阴极 10142,除尘电场阳极10141与除尘电场阴极10142之间形成非对称静电场,其中,待含有颗粒物的气体通过所述排气口进入所述电场装置1014后,由于所述除尘电场阴极10142放电,电离所述气体,以使所述颗粒物获得负电荷,向所述除尘电场阳极10141移动,并沉积在所述除尘电场阳极10141上。
具体地,所述除尘电场阳极10141的内部由呈蜂窝状、且中空的阳极管束组组成,阳极管束的端口的形状为六边形。
所述除尘电场阴极10142包括若干根电极棒,其一一对应地穿设所述阳极管束组中的每一阳极管束,其中,所述电极棒的形状呈针状、多角状、毛刺状、螺纹杆状或柱状。
在本实施例中,所述除尘电场阴极10142的出气端低于所述除尘电场阳极10141的出气端,且所述除尘电场阴极10142的出气端与所述除尘电场阳极10141的进气端齐平,以使所述电场装置1014内部形成加速电场。
所述绝缘机构1015包括绝缘部和隔热部。所述绝缘部的材料采用陶瓷材料或玻璃材料。所述绝缘部为伞状串陶瓷柱或玻璃柱,或柱状串陶瓷柱或玻璃柱,伞内外或柱内外挂釉。
如图1所示,于本发明一实施例中,除尘电场阴极10142安装在阴极支撑板10143上,阴极支撑板10143与除尘电场阳极10141通过绝缘机构1015相连接。所述绝缘机构1015用于实现所述阴极支撑板10143和所述除尘电场阳极10141之间的绝缘。于本发明一实施例中,除尘电场阳极10141包括第一阳极部101412和第二阳极部101411,即所述第一阳极部101412靠近电场装置入口,第二阳极部101411靠近电场装置出口。阴极支撑板和绝缘机构在第一阳极部101412和第二阳极部101411之间,即绝缘机构1015安装在电离电场中间、或除尘电场阴极10142中间,可以对除尘电场阴极10142起到良好的支撑作用,并对除尘电场阴极10142起到相对于除尘电场阳极10141的固定作用,使除尘电场阴极10142和除尘电场阳极10141之间保持设定的距离。
请参阅图3A、图3B及图3C,显示为均风装置的三种实施结构图。
如图3A所示,均风装置1016当所述除尘电场阳极的外型呈圆柱体时,所述均风装置为位于所述除尘系统入口1011与所述除尘电场阳极和所述除尘电场阴极形成的电离除尘电场之间、且由若干围绕所述除尘系统入口1011中心旋转的均风叶片10161组成。所述均风装置能够使空气均匀通过所述除尘电场阳极产生的电场。同时能够保持所述除尘电场阳极内部温度恒定,氧气充足。
如图3B所示,当所述除尘电场阳极的外型呈立方体时,所述均风装置1020包括:
设置于位于所述除尘电场阳极一侧边的进气管10201;及
设置于所述除尘电场阳极另一侧边的出气管10202;其中,安装进气管10201的侧边与安装出气管10202的另一侧边相对立。
如图3C所示,所述均风装置1026还可以包括设置于所述除尘电场阳极的进气端的第一文氏板均风机构1028和设置于所述除尘电场阳极的出气端的第二文氏板均风机构1030(第二文氏板均风机构1030(如图3D所示的第二文氏板均风机构俯视图可以看出其呈折型),所述第一文氏板均风机构上开设与进气孔,所述第二文氏板均风机构上开设有出气孔,所述进气孔与所述出气孔错位排布,且正面进气侧面出气,形成旋风结构。
在本实施例中,所述电场装置1014与所述第二滤水机构1017的衔接处设置第二过滤网用于过滤未经所述电场装置1014处理过的粒径较小的细颗粒。
设置于所述出气端处的第二滤水机构1017包括:第三过滤网、转轴及阻水球。
所述第三过滤网通过转轴倾斜式安装于所述出气端处,其中,所述第三过滤网与所述出气口对应的位置处安装有阻水球。待进入的气体推动所述第三过滤网绕转轴旋转,所述第三过滤网上形成水膜,所述阻水球堵住所述出气端,以防止水份冲出。
设置于所述除尘电场系统出气端的所述臭氧机构1018采用除臭氧灯管。
实施例2
如图4所示的电场装置,包括除尘电场阳极10141、除尘电场阴极10142和驻极体元件205,所述除尘电场阳极10141和所述除尘电场阴极10142接通电源时形成电离除尘电场,所述驻极体元件205设于所述电离除尘电场中,图4中箭头方向为待处理物流动方向。所述驻极体元件设于电场装置出口。所述电离除尘电场给所述驻极体元件充电。所述驻极体元件具有多孔结构,所述驻极体元件的材料为氧化铝。所述除尘电场阳极内部为管状,所述驻极体元件外部为管状,所述驻极体元件外部套设于所述除尘电场阳极内部。所述驻极体元件与所述除尘电场阳极为可拆卸式连接。
一种空气除尘的方法,包括如下步骤:
a)利用电离除尘电场吸附空气中的颗粒物;
b)利用电离除尘电场给驻极体元件充电。
其中,所述驻极体元件设于电场装置出口;所述驻极体元件的材料为氧化铝;当电离除尘电场无上电驱动电压时,利用充电的驻极体元件吸附空气中的颗粒物;在充电的驻极体元件吸附一定的空气中的颗粒物后,将其替换为新的驻极体元件;替换为新的驻极体元件后重新启动电离除尘电场吸附空气中的颗粒物,并给新的驻极体元件充电。
实施例3
如图5和图6所示的电场装置,包括除尘电场阳极10141、除尘电场阴极10142和驻极体元件205,所述除尘电场阳极10141和所述除尘电场阴极10142形成流道292,所述驻极体元件205设于所述流道292中,图5中箭头方向为待处理物流动方向。所述流道292包括流道出口,所述驻极体元件205靠近所述流道出口。所述驻极体元件于所述流道中的横截面占流道横截面10%,如图7所示,即为S2/(S1+S2)*100%,其中S2第一横截面面积为所述驻极体元件于所述流道中的横截面面积,S1第一横截面面积和S2第二横截面面积的和为流道横截面面积,S1第一横截面面积不包括除尘电场阴极10142的横截面面积。所述除尘电场阳极和所述除尘电场阴极接通电源时形成电离除尘电场。所述电离除尘电场给所述驻极体元件充电。所述驻极体元件具有多孔结构,所述驻极体元件的材料为聚四氟乙烯。所述除尘电场阳极内部为管状,所述驻极体元件外部为管状,所述驻极体元件外部套设于所述除尘电场阳极内部。所述驻极体元件与所述除尘电场阳极为可拆卸式连接。
于本发明一实施例中,一种空气除尘的方法包括如下步骤:
1)利用电离除尘电场吸附空气中的颗粒物;
2)利用电离除尘电场给驻极体元件充电。
其中,所述驻极体元件靠近所述流道出口;所述驻极体元件的材料为聚四氟乙烯;当电离除尘电场无上电驱动电压时,利用充电的驻极体元件吸附空气中的颗粒物;在充电的驻极体元件吸附一定的空气中的颗粒物后,将其替换为新的驻极体元件;替换为新的驻极体元件后重新启动电离除尘电场吸附空气中的颗粒物,并给新的驻极体元件充电。
实施例4
如图8所示,所述空气除尘系统包括电场装置和除臭氧装置206,所述电场装置包括除尘电场阳极10141和除尘电场阴极10142,所述除臭氧装置用于去除或减少所述电场装置产生的臭氧,所述除臭氧装置在电场装置出口与空气除尘系统出口之间。所述除尘电场阳极10141和所述除尘电场阴极10142用于产生电离除尘电场。所述除臭氧装置包括臭氧消解器,用于消解所述电场装置产生的臭氧,所述臭氧消解器为紫外线臭氧消解器,图中箭头方向为进气流动方向。
一种空气除尘方法,包括以下步骤:所述空气经空气电离除尘,然后对空气电离除尘产生的臭氧进行臭氧消解,所述臭氧消解为紫外线消解。
所述除臭氧装置用于去除或减少所述电场装置产生的臭氧,由于空气中的氧气参与电离,形成臭氧。
实施例5
本实施例中电场发生单元可应用于电场装置,如图9所示,包括用于发生电场的除尘电场阳极4051和除尘电场阴极4052,所述除尘电场阳极4051和除尘电场阴极4052分别与电源的两个电极电性连接,所述电源为直流电源,所述除尘电场阳极4051和除尘电场阴极4052分别与直流电源的阳极和阴极电性连接。本实施例中除尘电场阳极4051具有正电势,除尘电场阴极4052具有负电势。
本实施例中直流电源具体可为直流高压电源。上述除尘电场阳极4051和除尘电场阴极4052之间形成放电电场,该放电电场是一种静电场。
如图9、图10和图11所示,本实施例中除尘电场阳极4051呈中空的正六边形管状,除尘电场阴极4052呈棒状,除尘电场阴极4052穿设在除尘电场阳极4051中。
减少电场耦合的方法,包括如下步骤:选择除尘电场阳极4051的集尘面积与除尘电场阴极4052的放电面积的比为6.67:1,除尘电场阳极4051和除尘电场阴极4052的极间距为9.9mm,除尘电场阳极4051长度为60mm,除尘电场阴极4052长度为54mm,所述除尘电场阳极4051包括流体通道,所述流体通道包括进口端与出口端,所述除尘电场阴极4052置于所述流体通道中,所述除尘电场阴极4052沿集尘极流体通道的方向延伸,除尘电场阳极4051的进口端与除尘电场阴极4052的近进口端齐平,除尘电场阳极4051的出口端与除尘电场阴极4052的近出口端之间具有夹角α,且α=118°,进而在除尘电场阳极4051和除尘电场阴极4052的作用下,能将更多的待处理物质收集起来,实现电场耦合次数≤3,能够减少电场对气溶胶、水雾、油雾、松散光滑颗粒物的耦合消耗,节省电场电能30~50%。
本实施例中电场装置包括由多个上述电场发生单元构成的电场级,所述电场级有多个,以利用多个集尘单元有效提高本电场装置的集尘效率。同一电场级中,各除尘电场阳极为相同极性,各除尘电场阴极为相同极性。
多个电场级中各电场级之间串联,串联电场级通过连接壳体连接,相邻两级的电场级的距离大于极间距的1.4倍。如图12所示,所述电场级为两级即第一级电场和第二级电场,第一级电场和第二级电场通过连接壳体串联连接。
本实施例中上述待处理物质可以是呈颗粒状的粉尘,也可以是其它需处理的杂质,如气溶胶、水雾、油雾等。
实施例6
本实施例中电场发生单元可应用于电场装置,如图9所示,包括用于发生电场的除尘电场阳极4051和除尘电场阴极4052,所述除尘电场阳极4051和除尘电场阴极4052分别与电源的两个电极电性连接,所述电源为直流电源,所述除尘电场阳极4051和除尘电场阴极4052 分别与直流电源的阳极和阴极电性连接。本实施例中除尘电场阳极4051具有正电势,除尘电场阴极4052具有负电势。
本实施例中直流电源具体可为直流高压电源。上述除尘电场阳极4051和除尘电场阴极4052之间形成放电电场,该放电电场是一种静电场。
本实施例中除尘电场阳极4051呈中空的正六边形管状,除尘电场阴极4052呈棒状,除尘电场阴极4052穿设在除尘电场阳极4051中。
减少电场耦合的方法,包括如下步骤:选择除尘电场阳极4051的集尘面积与除尘电场阴极4052的放电面积的比为1680:1,除尘电场阳极4051和除尘电场阴极4052的极间距为139.9mm,除尘电场阳极4051长度为180mm,除尘电场阴极4052长度为180mm,所述除尘电场阳极4051包括流体通道,所述流体通道包括进口端与出口端,所述除尘电场阴极4052置于所述流体通道中,所述除尘电场阴极4052沿集尘极流体通道的方向延伸,除尘电场阳极4051的进口端与除尘电场阴极4052的近进口端齐平,除尘电场阳极4051的出口端与除尘电场阴极4052的近出口端齐平,进而在除尘电场阳极4051和除尘电场阴极4052的作用下,能将更多的待处理物质收集起来,实现电场耦合次数≤3,能够减少电场对气溶胶、水雾、油雾、松散光滑颗粒物的耦合消耗,节省电场电能20~40%。
本实施例中上述待处理物质可以是呈颗粒状的粉尘,也可以是其它需处理的杂质,如气溶胶、水雾、油雾等。
实施例7
本实施例中电场发生单元可应用于电场装置,如图9所示,包括用于发生电场的除尘电场阳极4051和除尘电场阴极4052,所述除尘电场阳极4051和除尘电场阴极4052分别与电源的两个电极电性连接,所述电源为直流电源,所述除尘电场阳极4051和除尘电场阴极4052分别与直流电源的阳极和阴极电性连接。本实施例中除尘电场阳极4051具有正电势,除尘电场阴极4052具有负电势。
本实施例中直流电源具体可为直流高压电源。上述除尘电场阳极4051和除尘电场阴极4052之间形成放电电场,该放电电场是一种静电场。
本实施例中除尘电场阳极4051呈中空的正六边形管状,除尘电场阴极4052呈棒状,除尘电场阴极4052穿设在除尘电场阳极4051中。
减少电场耦合的方法,包括如下步骤:选择除尘电场阳极4051的集尘面积与除尘电场阴极4052的放电面积的比为1.667:1,除尘电场阳极4051和除尘电场阴极4052的极间距为2.4mm,除尘电场阳极4051长度为30mm,除尘电场阴极4052长度为30mm,所述除尘电场 阳极4051包括流体通道,所述流体通道包括进口端与出口端,所述除尘电场阴极4052置于所述流体通道中,所述除尘电场阴极4052沿集尘极流体通道的方向延伸,除尘电场阳极4051的进口端与除尘电场阴极4052的近进口端齐平,除尘电场阳极4051的出口端与除尘电场阴极4052的近出口端齐平,进而在除尘电场阳极4051和除尘电场阴极4052的作用下,能将更多的待处理物质收集起来,实现电场耦合次数≤3,能够减少电场对气溶胶、水雾、油雾、松散光滑颗粒物的耦合消耗,节省电场电能10~30%。
本实施例中上述待处理物质可以是呈颗粒状的粉尘,也可以是其它需处理的杂质,如气溶胶、水雾、油雾等。
实施例8
本实施例中电场发生单元可应用于电场装置,如图9所示,包括用于发生电场的除尘电场阳极4051和除尘电场阴极4052,所述除尘电场阳极4051和除尘电场阴极4052分别与电源的两个电极电性连接,所述电源为直流电源,所述除尘电场阳极4051和除尘电场阴极4052分别与直流电源的阳极和阴极电性连接。本实施例中除尘电场阳极4051具有正电势,除尘电场阴极4052具有负电势。
本实施例中直流电源具体可为直流高压电源。上述除尘电场阳极4051和除尘电场阴极4052之间形成放电电场,该放电电场是一种静电场。
如图9、图10和图11所示,本实施例中除尘电场阳极4051呈中空的正六边形管状,除尘电场阴极4052呈棒状,除尘电场阴极4052穿设在除尘电场阳极4051中,除尘电场阳极4051的集尘面积与除尘电场阴极4052的放电面积的比为6.67:1,所述除尘电场阳极4051和除尘电场阴极4052的极间距为9.9mm,除尘电场阳极4051长度为60mm,除尘电场阴极4052长度为54mm,所述除尘电场阳极4051包括流体通道,所述流体通道包括进口端与出口端,所述除尘电场阴极4052置于所述流体通道中,所述除尘电场阴极4052沿集尘极流体通道的方向延伸,除尘电场阳极4051的进口端与除尘电场阴极4052的近进口端齐平,除尘电场阳极4051的出口端与除尘电场阴极4052的近出口端之间具有夹角α,且α=118°,进而在除尘电场阳极4051和除尘电场阴极4052的作用下,能将更多的待处理物质收集起来,保证本电场发生单元的集尘效率更高,典型尾气颗粒pm0.23集尘效率为99.99%。
本实施例中电场装置包括由多个上述电场发生单元构成的电场级,所述电场级有多个,以利用多个集尘单元有效提高本电场装置的集尘效率。同一电场级中,各除尘电场阳极为相同极性,各除尘电场阴极为相同极性。
多个电场级中各电场级之间串联,串联电场级通过连接壳体连接,相邻两级的电场级的 距离大于极间距的1.4倍。如图12示,所述电场级为两级即第一级电场4053和第二级电场4054,第一级电场4053和第二级电场4054通过连接壳体4055串联连接。
本实施例中上述待处理物质可以是呈颗粒状的粉尘,也可以是其它需处理的杂质,如气溶胶、水雾、油雾等。
实施例9
本实施例中电场发生单元可应用于电场装置,如图9所示,包括用于发生电场的除尘电场阳极4051和除尘电场阴极4052,所述除尘电场阳极4051和除尘电场阴极4052分别与电源的两个电极电性连接,所述电源为直流电源,所述除尘电场阳极4051和除尘电场阴极4052分别与直流电源的阳极和阴极电性连接。本实施例中除尘电场阳极4051具有正电势,除尘电场阴极4052具有负电势。
本实施例中直流电源具体可为直流高压电源。上述除尘电场阳极4051和除尘电场阴极4052之间形成放电电场,该放电电场是一种静电场。
本实施例中除尘电场阳极4051呈中空的正六边形管状,除尘电场阴极4052呈棒状,除尘电场阴极4052穿设在除尘电场阳极4051中,除尘电场阳极4051的集尘面积与除尘电场阴极4052的放电面积的比为1680:1,所述除尘电场阳极4051和除尘电场阴极4052的极间距为139.9mm,除尘电场阳极4051长度为180mm,除尘电场阴极4052长度为180mm,所述除尘电场阳极4051包括流体通道,所述流体通道包括进口端与出口端,所述除尘电场阴极4052置于所述流体通道中,所述除尘电场阴极4052沿集尘极流体通道的方向延伸,除尘电场阳极4051的进口端与除尘电场阴极4052的近进口端齐平,除尘电场阳极4051的出口端与除尘电场阴极4052的近出口端齐平,进而在除尘电场阳极4051和除尘电场阴极4052的作用下,能将更多的待处理物质收集起来,保证本电场装置的集尘效率更高,典型尾气颗粒pm0.23集尘效率为99.99%。
本实施例中电场装置包括由多个上述电场发生单元构成的电场级,所述电场级有多个,以利用多个集尘单元有效提高本电场装置的集尘效率。同一电场级中,各除尘电场阳极为相同极性,各除尘电场阴极为相同极性。
本实施例中上述待处理物质可以是呈颗粒状的粉尘,也可以是其它需处理的杂质,如气溶胶、水雾、油雾等。
实施例10
本实施例中电场发生单元可应用于电场装置,如图9所示,包括用于发生电场的除尘电场阳极4051和除尘电场阴极4052,所述除尘电场阳极4051和除尘电场阴极4052分别与电 源的两个电极电性连接,所述电源为直流电源,所述除尘电场阳极4051和除尘电场阴极4052分别与直流电源的阳极和阴极电性连接。本实施例中除尘电场阳极4051具有正电势,除尘电场阴极4052具有负电势。
本实施例中直流电源具体可为直流高压电源。上述除尘电场阳极4051和除尘电场阴极4052之间形成放电电场,该放电电场是一种静电场。
本实施例中除尘电场阳极4051呈中空的正六边形管状,除尘电场阴极4052呈棒状,除尘电场阴极4052穿设在除尘电场阳极4051中,除尘电场阳极4051的集尘面积与除尘电场阴极4052的放电面积的比为1.667:1,所述除尘电场阳极4051和除尘电场阴极4052的极间距为2.4mm。除尘电场阳极4051长度为30mm,除尘电场阴极4052长度为30mm,所述除尘电场阳极4051包括流体通道,所述流体通道包括进口端与出口端,所述除尘电场阴极4052置于所述流体通道中,所述除尘电场阴极4052沿集尘极流体通道的方向延伸,除尘电场阳极4051的进口端与除尘电场阴极4052的近进口端齐平,除尘电场阳极4051的出口端与除尘电场阴极4052的近出口端齐平,进而在除尘电场阳极4051和除尘电场阴极4052的作用下,能将更多的待处理物质收集起来,保证本电场装置的集尘效率更高,典型尾气颗粒pm0.23集尘效率为99.99%。
本实施例中除尘电场阳极4051及除尘电场阴极4052构成集尘单元,且该集尘单元有多个,以利用多个集尘单元有效提高本电场装置的集尘效率。
本实施例中上述待处理物质可以是呈颗粒状的粉尘,也可以是其它需处理的杂质,如气溶胶、水雾、油雾等。
实施例11
本实施例中空气除尘系统,包括上述实施例8、实施例9或实施例10中的电场装置。空气需先流经该电场装置,以利用该电场装置有效地将空气中的粉尘等待处理物质清除掉,保证空气更加干净,所含粉尘等杂质较少。
实施例12
本实施例中电场发生单元可应用于电场装置,如图9所示,包括用于发生电场的除尘电场阳极4051和除尘电场阴极4052,所述除尘电场阳极4051和除尘电场阴极4052分别与电源的两个电极电性连接,所述电源为直流电源,所述除尘电场阳极4051和除尘电场阴极4052分别与直流电源的阳极和阴极电性连接。本实施例中除尘电场阳极4051具有正电势,除尘电场阴极4052具有负电势。
本实施例中直流电源具体可为直流高压电源。上述除尘电场阳极4051和除尘电场阴极 4052之间形成放电电场,该放电电场是一种静电场。
本实施例中除尘电场阳极4051呈中空的正六边形管状,除尘电场阴极4052呈棒状,除尘电场阴极4052穿设在除尘电场阳极4051中,除尘电场阳极4051长度为5cm,除尘电场阴极4052长度为5cm,所述除尘电场阳极4051包括流体通道,所述流体通道包括进口端与出口端,所述除尘电场阴极4052置于所述流体通道中,所述除尘电场阴极4052沿集尘极流体通道的方向延伸,除尘电场阳极4051的进口端与除尘电场阴极4052的近进口端齐平,除尘电场阳极4051的出口端与除尘电场阴极4052的近出口端齐平,所述除尘电场阳极4051和除尘电场阴极4052的极间距为9.9mm,进而在除尘电场阳极4051和除尘电场阴极4052的作用下,使得其耐高温冲击,而且能将更多的待处理物质收集起来,保证本电场发生单元的集尘效率更高。电场温度为200℃对应的集尘效率为99.9%;电场温度为400℃对应的集尘效率为90%;电场温度为500℃对应的集尘效率为50%。
本实施例中电场装置包括由多个上述电场发生单元构成的电场级,所述电场级有多个,以利用多个集尘单元有效提高本电场装置的集尘效率。同一电场级中,各除尘电场阳极为相同极性,各除尘电场阴极为相同极性。
本实施例中上述待处理物质可以是呈颗粒状的粉尘。
实施例13
本实施例中电场发生单元可应用于电场装置,如图9所示,包括用于发生电场的除尘电场阳极4051和除尘电场阴极4052,所述除尘电场阳极4051和除尘电场阴极4052分别与电源的两个电极电性连接,所述电源为直流电源,所述除尘电场阳极4051和除尘电场阴极4052分别与直流电源的阳极和阴极电性连接。本实施例中除尘电场阳极4051具有正电势,除尘电场阴极4052具有负电势。
本实施例中直流电源具体可为直流高压电源。上述除尘电场阳极4051和除尘电场阴极4052之间形成放电电场,该放电电场是一种静电场。
本实施例中除尘电场阳极4051呈中空的正六边形管状,除尘电场阴极4052呈棒状,除尘电场阴极4052穿设在除尘电场阳极4051中,除尘电场阳极4051长度为9cm,除尘电场阴极4052长度为9cm,所述除尘电场阳极4051包括流体通道,所述流体通道包括进口端与出口端,所述除尘电场阴极4052置于所述流体通道中,所述除尘电场阴极4052沿集尘极流体通道的方向延伸,除尘电场阳极4051的进口端与除尘电场阴极4052的近进口端齐平,除尘电场阳极4051的出口端与除尘电场阴极4052的近出口端齐平,所述除尘电场阳极4051和除尘电场阴极4052的极间距为139.9mm,进而在除尘电场阳极4051和除尘电场阴极4052的 作用下,使得其耐高温冲击,而且能将更多的待处理物质收集起来,保证本电场发生单元的集尘效率更高。电场温度为200℃对应的集尘效率为99.9%;电场温度为400℃对应的集尘效率为90%;电场温度为500℃对应的集尘效率为50%。
本实施例中电场装置包括由多个上述电场发生单元构成的电场级,所述电场级有多个,以利用多个集尘单元有效提高本电场装置的集尘效率。同一电场级中,各存储电场阳极为相同极性,各除尘电场阴极为相同极性。
本实施例中上述待处理物质可以是呈颗粒状的粉尘。
实施例14
本实施例中电场发生单元可应用于电场装置,如图9所示,包括用于发生电场的除尘电场阳极4051和除尘电场阴极4052,所述除尘电场阳极4051和除尘电场阴极4052分别与电源的两个电极电性连接,所述电源为直流电源,所述除尘电场阳极4051和除尘电场阴极4052分别与直流电源的阳极和阴极电性连接。本实施例中除尘电场阳极4051具有正电势,除尘电场阴极4052具有负电势。
本实施例中直流电源具体可为直流高压电源。上述除尘电场阳极4051和除尘电场阴极4052之间形成放电电场,该放电电场是一种静电场。
本实施例中除尘电场阳极4051呈中空的正六边形管状,除尘电场阴极4052呈棒状,除尘电场阴极4052穿设在除尘电场阳极4051中,除尘电场阳极4051长度为1cm,除尘电场阴极4052长度为1cm,所述除尘电场阳极4051包括流体通道,所述流体通道包括进口端与出口端,所述除尘电场阴极4052置于所述流体通道中,所述除尘电场阴极4052沿集尘极流体通道的方向延伸,除尘电场阳极4051的进口端与除尘电场阴极4052的近进口端齐平,除尘电场阳极4051的出口端与除尘电场阴极4052的近出口端齐平,所述除尘电场阳极4051和除尘电场阴极4052的极间距为2.4mm,进而在除尘电场阳极4051和除尘电场阴极4052的作用下,使得其耐高温冲击,而且能将更多的待处理物质收集起来,保证本电场发生单元的集尘效率更高。电场温度为200℃对应的集尘效率为99.9%;电场温度为400℃对应的集尘效率为90%;电场温度为500℃对应的集尘效率为50%。
本实施例中电场装置包括由多个上述电场发生单元构成的电场级,所述电场级有多个,以利用多个集尘单元有效提高本电场装置的集尘效率。同一电场级中,各除尘电场阳极为相同极性,各除尘电场阴极为相同极性。
多个电场级中各电场级之间串联,串联电场级通过连接壳体连接,相邻两级的电场级的距离大于极间距的1.4倍。所述电场级为两级即第一级电场和第二级电场,第一级电场和第 二级电场通过连接壳体串联连接。
本实施例中上述待处理物质可以是呈颗粒状的粉尘。
实施例15
本实施例中电场发生单元可应用于电场装置,如图9所示,包括用于发生电场的除尘电场阳极4051和除尘电场阴极4052,所述除尘电场阳极4051和除尘电场阴极4052分别与电源的两个电极电性连接,所述电源为直流电源,所述除尘电场阳极4051和除尘电场阴极4052分别与直流电源的阳极和阴极电性连接。本实施例中除尘电场阳极4051具有正电势,除尘电场阴极4052具有负电势。
本实施例中直流电源具体可为直流高压电源。上述除尘电场阳极4051和除尘电场阴极4052之间形成放电电场,该放电电场是一种静电场。
如图9和图10所示,本实施例中除尘电场阳极4051呈中空的正六边形管状,除尘电场阴极4052呈棒状,除尘电场阴极4052穿设在除尘电场阳极4051中,除尘电场阳极4051长度为3cm,除尘电场阴极4052长度为2cm,所述除尘电场阳极4051包括流体通道,所述流体通道包括进口端与出口端,所述除尘电场阴极4052置于所述流体通道中,所述除尘电场阴极4052沿集尘极流体通道的方向延伸,除尘电场阳极4051的进口端与除尘电场阴极4052的近进口端齐平,除尘电场阳极4051的出口端与除尘电场阴极4052的近出口端之间具有夹角α,且α=90°,所述除尘电场阳极4051和除尘电场阴极4052的极间距为20mm,进而在除尘电场阳极4051和除尘电场阴极4052的作用下,使得其耐高温冲击,而且能将更多的待处理物质收集起来,保证本电场发生单元的集尘效率更高。电场温度为200℃对应的集尘效率为99.9%;电场温度为400℃对应的集尘效率为90%;电场温度为500℃对应的集尘效率为50%。
本实施例中电场装置包括由多个上述电场发生单元构成的电场级,所述电场级有多个,以利用多个集尘单元有效提高本电场装置的集尘效率。同一电场级中,各集尘极为相同极性,各放电极为相同极性。
多个电场级中各电场级之间串联,串联电场级通过连接壳体连接,相邻两级的电场级的距离大于极间距的1.4倍。如图12所示,所述电场级为两级即第一级电场和第二级电场,第一级电场和第二级电场通过连接壳体串联连接。
本实施例中上述待处理物质可以是呈颗粒状的粉尘。
实施例16
本实施例中空气除尘系统,包括上述实施例12、实施例13、实施例14或实施例15中的电场装置。空气需先流经该电场装置,以利用该电场装置有效地将空气中的粉尘等待处理物 质清除掉,以保证空气更加干净,所含粉尘等杂质较少。
实施例17
本实施例中电场装置可应用于空气除尘系统,包括除尘电场阴极5081和除尘电场阳极5082分别与直流电源的阴极和阳极电性连接,辅助电极5083与直流电源的阳极电性连接。本实施例中除尘电场阴极5081具有负电势,除尘电场阳极5082和辅助电极5083均具有正电势。
同时,如图13所示,本实施例中辅助电极5083与除尘电场阳极5082固接。在除尘电场阳极5082与直流电源的阳极电性连接后,也实现了辅助电极5083与直流电源的阳极电性连接,且辅助电极5083与除尘电场阳极5082具有相同的正电势。
如图13所示,本实施例中辅助电极5083可沿前后方向延伸,即辅助电极5083的长度方向可与除尘电场阳极5082的长度方向相同。
如图13所示,本实施例中除尘电场阳极5082呈管状,除尘电场阴极5081呈棒状,除尘电场阴极5081穿设在除尘电场阳极5082中。同时本实施例中上述辅助电极5083也呈管状,辅助电极5083与除尘电场阳极5082构成阳极管5084。阳极管5084的前端与除尘电场阴极5081齐平,阳极管5084的后端向后超出了除尘电场阴极5081的后端,该阳极管5084相比于除尘电场阴极5081向后超出的部分为上述辅助电极5083。即本实施例中除尘电场阳极5082和除尘电场阴极5081的长度相同,除尘电场阳极5082和除尘电场阴极5081在前后方向上位置相对;辅助电极5083位于除尘电场阳极5082和除尘电场阴极5081的后方。这样,辅助电极5083与除尘电场阴极5081之间形成辅助电场,该辅助电场给除尘电场阳极5082和除尘电场阴极5081之间带负电荷的氧离子流施加向后的力,使得除尘电场阳极5082和除尘电场阴极5081间带负电荷的氧离子流具有向后的移动速度。当含有待处理物质的气体由前向后流入阳极管5084,带负电荷的氧离子在向除尘电场阳极5082且向后移动过程中将与待处理物质相结合,由于氧离子具有向后的移动速度,氧离子在与待处理物质相结合时,两者间不会产生较强的碰撞,从而避免因较强碰撞而造成较大的能量消耗,使得氧离子易于与待处理物质相结合,并使得气体中待处理物质的荷电效率更高,进而在除尘电场阳极5082及阳极管5084的作用下,能将更多的待处理物质收集起来,保证本电场装置的除尘效率更高。
另外,如图13所示,本实施例中阳极管5084的后端与除尘电场阴极5081的后端之间具有夹角α,且0°<α≤125°、或45°≤α≤125°、或60°≤α≤100°、或α=90°。
本实施例中除尘电场阳极5082、辅助电极5083、及除尘电场阴极5081构成除尘单元,且该除尘单元有多个,以利用多个除尘单元有效提高本电场装置的除尘效率。
本实施例中上述待处理物质可以是呈颗粒状的粉尘,也可以是其它需处理的杂质。
本实施例中直流电源具体可为直流高压电源。上述除尘电场阴极5081和除尘电场阳极5082之间形成放电电场,该放电电场是一种静电场。在无上述辅助电极5083的情况下,除尘电场阴极5081和除尘电场阳极5082之间电场中离子流沿垂直于电极方向,且在两电极间折返流动,并导致离子在电极间来回折返消耗。为此,本实施例利用辅助电极5083使电极相对位置错开,形成除尘电场阳极5082和除尘电场阴极5081间相对不平衡,这个不平衡会使电场中离子流发生偏转。本电场装置利用辅助电极5083形成能使离子流具有方向性的电场。本实施例中上述电场装置也称作一种有加速方向电场装置。本电场装置对顺离子流方向进入电场的颗粒物的收集率比对逆离子流方向进入电场的颗粒物的收集率提高近一倍,从而提高电场积尘效率,减少电场电耗。另外,现有技术中集尘电场的除尘效率较低的主要原因也是粉尘进入电场方向与电场内离子流方向相反或垂直交叉,从而导致粉尘与离子流相互冲撞剧烈并产生较大能量消耗,同时也影响荷电效率,进而使现有技术中电场集尘效率下降,且能耗增加。
本实施例中电场装置在用于收集气体中的粉尘时,气体及粉尘顺离子流方向进入电场,粉尘荷电充分,电场消耗小;单极电场集尘效率会达到99.99%。当气体及粉尘逆离子流方向进入电场,粉尘荷电不充分,电场电耗也会增加,集尘效率会在40%-75%。另外,本实施例中电场装置形成的离子流有利于无动力风扇流体输送、增氧、热量交换等。
实施例18
本实施例中电场装置可应用于空气除尘系统,包括除尘电场阴极5081和除尘电场阳极5082分别与直流电源的阴极和阳极电性连接,辅助电极5083与直流电源的阴极电性连接。本实施例中辅助电极5083和除尘电场阴极5081均具有负电势,除尘电场阳极5082具有正电势。
本实施例中辅助电极5083可与除尘电场阴极5081固接。这样,在实现除尘电场阴极5081与直流电源的阴极电性连接后,也实现了辅助电极5083与直流电源的阴极电性连接。同时,本实施例中辅助电极5083沿前后方向延伸。
本实施例中除尘电场阳极5082呈管状,除尘电场阴极5081呈棒状,除尘电场阴极5081穿设在除尘电场阳极5082中。同时本实施例中上述辅助电极5083也棒状,且辅助电极5083和除尘电场阴极5081构成阴极棒。该阴极棒的前端向前超出除尘电场阳极5082的前端,该阴极棒与除尘电场阳极5082相比向前超出的部分为上述辅助电极5083。即本实施例中除尘电场阳极5082和除尘电场阴极5081的长度相同,除尘电场阳极5082和除尘电场阴极5081 在前后方向上位置相对;辅助电极5083位于除尘电场阳极5082和除尘电场阴极5081的前方。这样,辅助电极5083与除尘电场阳极5082之间形成辅助电场,该辅助电场给除尘电场阳极5082和除尘电场阴极5081之间带负电荷的氧离子流施加向后的力,使得除尘电场阳极5082和除尘电场阴极5081间带负电荷的氧离子流具有向后的移动速度。当含有待处理物质的气体由前向后流入管状的除尘电场阳极5082,带负电荷的氧离子在向除尘电场阳极5082且向后移动过程中将与待处理物质相结合,由于氧离子具有向后的移动速度,氧离子在与待处理物质相结合时,两者间不会产生较强的碰撞,从而避免因较强碰撞而造成较大的能量消耗,使得氧离子易于与待处理物质相结合,并使得气体中待处理物质的荷电效率更高,进而在除尘电场阳极5082作用下,能将更多的待处理物质收集起来,保证本电场装置的除尘效率更高。
本实施例中除尘电场阳极5082、辅助电极5083、及除尘电场阴极5081构成除尘单元,且该除尘单元有多个,以利用多个除尘单元有效提高本电场装置的除尘效率。
本实施例中上述待处理物质可以是呈颗粒状的粉尘,也可以是其它需处理的杂质。
实施例19
如图14所示,本实施例中电场装置可应用于空气除尘系统,辅助电极5083沿左右方向延伸。本实施例中辅助电极5083的长度方向与除尘电场阳极5082和除尘电场阴极5081的长度方向不同。且辅助电极5083具体可与除尘电场阳极5082相垂直。
本实施例中除尘电场阴极5081和除尘电场阳极5082分别与直流电源的阴极和阳极电性连接,辅助电极5083与直流电源的阳极电性连接。本实施例中除尘电场阴极5081具有负电势,除尘电场阳极5082和辅助电极5083均具有正电势。
如图14所示,本实施例中除尘电场阴极5081和除尘电场阳极5082在前后方向上位置相对,辅助电极5083位于除尘电场阳极5082和除尘电场阴极5081的后方。这样,辅助电极5083与除尘电场阴极5081之间形成辅助电场,该辅助电场给除尘电场阳极5082和除尘电场阴极5081之间带负电荷的氧离子流施加向后的力,使得除尘电场阳极5082和除尘电场阴极5081间带负电荷的氧离子流具有向后的移动速度。当含有待处理物质的气体由前向后流入除尘电场阳极5082和除尘电场阴极5081之间的电场,带负电荷的氧离子在向除尘电场阳极5082且向后移动过程中将与待处理物质相结合,由于氧离子具有向后的移动速度,氧离子在与待处理物质相结合时,两者间不会产生较强的碰撞,从而避免因较强碰撞而造成较大的能量消耗,使得氧离子易于与待处理物质相结合,并使得气体中待处理物质的荷电效率更高,进而在除尘电场阳极5082的作用下,能将更多的待处理物质收集起来,保证本电场装置的除 尘效率更高。
实施例20
如图15所示,本实施例中电场装置可应用于空气除尘系统,辅助电极5083沿左右方向延伸。本实施例中辅助电极5083的长度方向与除尘电场阳极5082和除尘电场阴极5081的长度方向不同。且辅助电极5083具体可与除尘电场阴极5081相垂直。
本实施例中除尘电场阴极5081和除尘电场阳极5082分别与直流电源的阴极和阳极电性连接,辅助电极5083与直流电源的阴极电性连接。本实施例中除尘电场阴极5081和辅助电极5083均具有负电势,除尘电场阳极5082具有正电势。
如图15所示,本实施例中除尘电场阴极5081和除尘电场阳极5082在前后方向上位置相对,辅助电极5083位于除尘电场阳极5082和除尘电场阴极5081的前方。这样,辅助电极5083与除尘电场阳极5082之间形成辅助电场,该辅助电场给除尘电场阳极5082和除尘电场阴极5081之间带负电荷的氧离子流施加向后的力,使得除尘电场阳极5082和除尘电场阴极5081间带负电荷的氧离子流具有向后的移动速度。当含有待处理物质的气体由前向后流入除尘电场阳极5082和除尘电场阴极5081之间的电场,带负电荷的氧离子在向除尘电场阳极5082且向后移动过程中将与待处理物质相结合,由于氧离子具有向后的移动速度,氧离子在与待处理物质相结合时,两者间不会产生较强的碰撞,从而避免因较强碰撞而造成较大的能量消耗,使得氧离子易于与待处理物质相结合,并使得气体中待处理物质的荷电效率更高,进而在除尘电场阳极5082的作用下,能将更多的待处理物质收集起来,保证本电场装置的除尘效率更高。
实施例21
本实施例中空气除尘系统,包括上述实施例17、18、19、或20中的电场装置。空气需先流经该电场装置,以利用该电场装置有效地将空气中的粉尘等待处理物质清除掉,以保证空气更加干净,所含粉尘等杂质较少。
实施例22(前置电极)
如图16所示,本实施例提供一种电场装置,包括依次相通的电场装置入口3085、流道3086、电场流道3087、及电场装置出口3088,流道3086中安装有前置电极3083,前置电极3083的截面面积与流道3086的截面面积比为99%~10%,电场装置还包括除尘电场阴极3081和除尘电场阳极3082,电场流道3087位于除尘电场阴极3081和除尘电场阳极3082之间。本发明电场装置的工作原理为:含污染物的气体通过电场装置入口3085进入流道3086,安装在流道3086中的前置电极3083将电子传导给部分污染物,部分污染物带电,当污染物由 流道3086进入电场流道3087后,除尘电场阳极3082给已带电的污染物施加吸引力,带电的污染物向除尘电场阳极3082移动,直至该部分污染物附着在除尘电场阳极3082上,同时,电场流道3087中除尘电场阴极3081和除尘电场阳极3082之间形成电离除尘电场,该电离除尘电场将使另一部分未带电的污染物带电,这样另一部分污染物在带电后同样会受到除尘电场阳极3082施加的吸引力,并最终附着在除尘电场阳极3082,从而利用上述电场装置使污染物带电效率更高,带电更充分,进而保证除尘电场阳极3082能收集更多的污染物,并保证本发明电场装置对污染物的收集效率更高。
前置电极3083的截面面积是指前置电极3083沿截面上实体部分的面积之和。另外,前置电极3083的截面面积与流道3086的截面面积比可以为99%~10%、或90~10%、或80~20%、或70~30%、或60~40%、或50%。
如图16所示,本实施例中前置电极3083和除尘电场阴极3081均与直流电源的阴极电性连接,除尘电场阳极3082与直流电源的阳极电性连接。本实施例中前置电极3083和除尘电场阴极3081均具有负电势,除尘电场阳极3082具有正电势。
如图16所示,本实施例中前置电极3083具体可呈网状。这样,当气体流经流道3086时,利用前置电极3083呈网状的结构特点,便于气体及污染物流过前置电极3083,并使气体中污染物与前置电极3083接触更加充分,从而使前置电极3083能将电子传导给更多的污染物,并使污染物的带电效率更高。
如图16所示,本实施例中除尘电场阳极3082呈管状,除尘电场阴极3081呈棒状,除尘电场阴极3081穿设在除尘电场阳极3082中。本实施例中除尘电场阳极3082和除尘电场阴极3081呈非对称结构。当气体流入除尘电场阴极3081和除尘电场阳极3082之间形的电离电场将使污染物带电,且在除尘电场阳极3082施加的吸引力作用下,将带电的污染物收集在除尘电场阳极3082的内壁上。
另外,如图16所示,本实施例中除尘电场阳极3082和除尘电场阴极3081均沿前后方向延伸,除尘电场阳极3082的前端沿前后方向上位于除尘电场阴极3081的前端的前方。且如图16所示,除尘电场阳极3082的后端沿前后方向上位于除尘电场阴极3081的后端的后方。本实施例中除尘电场阳极3082沿前后方向上的长度更长,使得位于除尘电场阳极3082内壁上的吸附面面积更大,从而对带有负电势的污染物的吸引力更大,并能收集更多的污染物。
如图16所示,本实施例中除尘电场阴极3081和除尘电场阳极3082构成电离单元,电离单元有多个,以利用多个电离单元收集更多的污染物,并使得本电场装置对污染物的收集能力更强,且收集效率更高。
本实施例中上述污染物包括导电性较弱的普通粉尘等、及导电性较强的金属粉尘、雾滴、气溶胶等。本实施例中电场装置,对气体中导电性较弱的普通粉尘,及导电性较强的污染物的收集过程为:当气体通过电场装置入口3085流入流道3086中,气体中导电性较强的金属粉尘、雾滴、或气溶胶等污染物在与前置电极3083相接触时,或与前置电极3083的距离达到一定范围时会直接带负电,随后,全部污染物随气流进入电场流道3087,除尘电场阳极3082给已带负电的金属粉尘、雾滴、或气溶胶等施加吸引力,并将该部分污染物收集起来,同时,除尘电场阳极3082与除尘电场阴极3081形成电离电场,该电离电场通过电离气体中的氧获得氧离子,且带负电荷的氧离子在与普通粉尘结合后,使普通粉尘带负电荷,除尘电场阳极3082给该部分带负电荷的粉尘施加吸引力,并将该部分污染物收集起来,从而将气体中导电性较强和导电性较弱的污染物均收集起来,并使得本电场装置所能收集物质的种类更广泛,且收集能力更强。
本实施例中上述除尘电场阴极3081也称作电晕荷电电极。上述直流电源具体为直流高压电源。前置电极3083和除尘电场阳极3082之间通入直流高压,形成导电回路;除尘电场阴极3081和除尘电场阳极3082之间通入直流高压,形成电离放电电晕电场。本实施例中前置电极3083为密集分布的导体。当容易带电的粉尘经过前置电极3083时,前置电极3083直接将电子给粉尘,粉尘带电,随后被异极的除尘电场阳极3082吸附;同时未带电的粉尘经过除尘电场阴极3081和除尘电场阳极3082形成的电离区,电离区形成的电离氧会把电子荷电给粉尘,这样粉尘继续带电,并被异极的除尘电场阳极3082吸附。
本实施例中电场装置能形成两种及两种以上的上电方式。比如,在气体中氧气充足情况下,可利用除尘电场阴极3081和除尘电场阳极3082之间形成的电离放电电晕电场,电离氧,来使污染物荷电,再利用除尘电场阳极3082收集污染物;而在气体中氧气含量过低、或无氧状态、或污染物为导电尘雾等时,利用前置电极3083直接使污染物上电,让污染物充分带电后被除尘电场阳极3082吸附。本实施例采用上述两种带电方式的电场,可以同时收集容易荷电的高阻值粉尘以及容易上电的低阻值金属粉尘、气溶胶、液雾等。两种上电方式同时使用,电场适用范围扩大。
综上所述,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。例如,在本申请中,“空气”有一个广泛 的定义,包括所有气体,比如排气、废气。因此,本申请权利要求(比如,“空气除尘系统”、“空气电场除尘方法”、“空气增氧的方法”、“空气除尘方法”)的保护范围应包括所有”气体“。

Claims (8)

  1. 一种空气除尘系统,其特征在于,包括除尘系统入口、除尘系统出口、电场装置;所述电场装置包括电场装置入口、电场装置出口、除尘电场阴极和除尘电场阳极,所述除尘电场阴极和所述除尘电场阳极用于产生电离除尘电场;所述除尘电场阳极包括第一阳极部和第二阳极部,所述第一阳极部靠近所述电场装置入口,第二阳极部靠近所述电场装置出口,所述第一阳极部和所述第二阳极部之间设置有至少一个绝缘机构,用于实现所述除尘电场阴极和所述除尘电场阳极之间的绝缘。
  2. 根据权利要求1所述的空气除尘系统,其特征在于,所述除尘电场阳极和所述除尘电场阴极之间形成电场流道,所述绝缘机构设置在所述电场流道外。
  3. 根据权利要求1或2所述的空气除尘系统,其特征在于,所述绝缘机构包括绝缘部和隔热部;所述绝缘部的材料采用陶瓷材料或玻璃材料。
  4. 根据权利要求3所述的空气除尘系统,其特征在于,所述绝缘部为伞状串陶瓷柱、伞状串玻璃柱、柱状串陶瓷柱或柱状玻璃柱,伞内外或柱内外挂釉。
  5. 根据权利要求4所述的空气除尘系统,其特征在于,伞状串陶瓷柱或伞状串玻璃柱的外缘与所述除尘电场阳极的距离大于电场距离1.4倍,伞状串陶瓷柱或伞状串玻璃柱的伞突边间距总和大于伞状串陶瓷柱或伞状串玻璃柱的绝缘间距1.4倍,伞状串陶瓷柱或伞状串玻璃柱的伞边内深总长大于伞状串陶瓷柱或伞状串玻璃柱的绝缘距离1.4倍。
  6. 根据权利要求1至5任一项所述的空气除尘系统,其特征在于,所述第一阳极部的长度是所述除尘电场阳极长度的1/10至1/4、1/4至1/3、1/3至1/2、1/2至2/3、2/3至3/4,或3/4至9/10。
  7. 根据权利要求1至6任一项所述的空气除尘系统,其特征在于,所述第一阳极部的长度是足够的长,以清除部分灰尘,减少积累在所述绝缘机构和所述阴极支撑板上的灰尘,减少灰尘造成的电击穿。
  8. 根据权利要求1至7任一项所述的空气除尘系统,其特征在于,所述第二阳极部包括积尘段和预留积尘段。
PCT/CN2019/112312 2018-10-22 2019-10-21 一种空气除尘系统及方法 WO2020083236A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BR112021007612-3A BR112021007612A2 (pt) 2018-10-22 2019-10-21 sistema de despoeiramento de ar
JP2021546434A JP2022508868A (ja) 2018-10-22 2019-10-21 空気除塵システム及び方法
EP19875672.8A EP3871779A4 (en) 2018-10-22 2019-10-21 SYSTEM AND PROCESS FOR DEDUSTING AIR
CN201980069644.7A CN113423506B (zh) 2018-10-22 2019-10-21 一种空气除尘系统及方法
US17/309,090 US20220023877A1 (en) 2018-10-22 2019-10-21 Air dust removal system and method

Applications Claiming Priority (28)

Application Number Priority Date Filing Date Title
CN201811227573 2018-10-22
CN201811227550.1 2018-10-22
CN201811227550 2018-10-22
CN201811227573.2 2018-10-22
CN201811308119 2018-11-05
CN201811308119.X 2018-11-05
CN201811527816 2018-12-13
CN201811525874.3 2018-12-13
CN201811527816.4 2018-12-13
CN201811525874 2018-12-13
CN201811563797.0 2018-12-20
CN201811563797 2018-12-20
CN201910340445 2019-04-25
CN201910340445.7 2019-04-25
CN201910446294 2019-05-27
CN201910446294.3 2019-05-27
CN201910465124.X 2019-05-30
CN201910465124 2019-05-30
CN201910522488 2019-06-17
CN201910521796 2019-06-17
CN201910521793 2019-06-17
CN201910521796.8 2019-06-17
CN201910522488.7 2019-06-17
CN201910521793.4 2019-06-17
CN201910605156.5 2019-07-05
CN201910605156 2019-07-05
CN201910636710.6 2019-07-15
CN201910636710 2019-07-15

Publications (1)

Publication Number Publication Date
WO2020083236A1 true WO2020083236A1 (zh) 2020-04-30

Family

ID=70330273

Family Applications (36)

Application Number Title Priority Date Filing Date
PCT/CN2019/112355 WO2020083255A1 (zh) 2018-10-22 2019-10-21 一种空气除尘系统及方法
PCT/CN2019/112108 WO2020083142A1 (zh) 2018-10-22 2019-10-21 一种发动机进气除尘系统及方法
PCT/CN2019/112107 WO2020083141A1 (zh) 2018-10-22 2019-10-21 一种发动机进气除尘系统及方法
PCT/CN2019/112356 WO2020083256A1 (zh) 2018-10-22 2019-10-21 一种空气除尘系统及方法
PCT/CN2019/112311 WO2020083235A1 (zh) 2018-10-22 2019-10-21 一种空气除尘系统及方法
PCT/CN2019/112338 WO2020083245A1 (zh) 2018-10-22 2019-10-21 一种空气除尘系统及方法
PCT/CN2019/112358 WO2020083257A1 (zh) 2018-10-22 2019-10-21 一种空气除尘系统及方法
PCT/CN2019/112109 WO2020083143A1 (zh) 2018-10-22 2019-10-21 一种发动机进气除尘系统及方法
PCT/CN2019/112339 WO2020083246A1 (zh) 2018-10-22 2019-10-21 一种空气除尘系统及方法
PCT/CN2019/112111 WO2020083145A1 (zh) 2018-10-22 2019-10-21 一种发动机进气除尘系统及方法
PCT/CN2019/112092 WO2020083131A1 (zh) 2018-10-22 2019-10-21 一种发动机进气除尘系统及方法
PCT/CN2019/112352 WO2020083252A1 (zh) 2018-10-22 2019-10-21 一种空气除尘系统及方法
PCT/CN2019/112102 WO2020083138A1 (zh) 2018-10-22 2019-10-21 一种发动机进气除尘系统及方法
PCT/CN2019/112096 WO2020083134A1 (zh) 2018-10-22 2019-10-21 一种发动机进气除尘系统及方法
PCT/CN2019/112098 WO2020083135A1 (zh) 2018-10-22 2019-10-21 一种发动机进气除尘系统及方法
PCT/CN2019/112105 WO2020083140A1 (zh) 2018-10-22 2019-10-21 一种发动机进气除尘系统及方法
PCT/CN2019/112340 WO2020083247A1 (zh) 2018-10-22 2019-10-21 一种空气除尘系统及方法
PCT/CN2019/112329 WO2020083243A1 (zh) 2018-10-22 2019-10-21 一种空气除尘系统及方法
PCT/CN2019/112342 WO2020083248A1 (zh) 2018-10-22 2019-10-21 一种空气除尘系统及方法
PCT/CN2019/112312 WO2020083236A1 (zh) 2018-10-22 2019-10-21 一种空气除尘系统及方法
PCT/CN2019/112354 WO2020083254A1 (zh) 2018-10-22 2019-10-21 一种空气除尘系统及方法
PCT/CN2019/112115 WO2020083149A1 (zh) 2018-10-22 2019-10-21 一种发动机进气除尘系统及方法
PCT/CN2019/112113 WO2020083147A1 (zh) 2018-10-22 2019-10-21 一种发动机进气除尘系统及方法
PCT/CN2019/112327 WO2020083242A1 (zh) 2018-10-22 2019-10-21 一种空气除尘系统及方法
PCT/CN2019/112094 WO2020083132A1 (zh) 2018-10-22 2019-10-21 一种发动机进气除尘系统及方法
PCT/CN2019/112086 WO2020083127A1 (zh) 2018-10-22 2019-10-21 一种发动机进气除尘系统及方法
PCT/CN2019/112333 WO2020083244A1 (zh) 2018-10-22 2019-10-21 一种空气除尘系统及方法
PCT/CN2019/112320 WO2020083239A1 (zh) 2018-10-22 2019-10-21 一种空气除尘系统及方法
PCT/CN2019/112318 WO2020083238A1 (zh) 2018-10-22 2019-10-21 一种空气除尘系统及方法
PCT/CN2019/112120 WO2020083152A1 (zh) 2018-10-22 2019-10-21 一种发动机进气除尘系统及方法
PCT/CN2019/112347 WO2020083250A1 (zh) 2018-10-22 2019-10-21 一种空气除尘系统及方法
PCT/CN2019/112323 WO2020083241A1 (zh) 2018-10-22 2019-10-21 一种空气除尘系统及方法
PCT/CN2019/112353 WO2020083253A1 (zh) 2018-10-22 2019-10-21 一种空气除尘系统及方法
PCT/CN2019/112346 WO2020083249A1 (zh) 2018-10-22 2019-10-21 一种空气除尘系统及方法
PCT/CN2019/112317 WO2020083237A1 (zh) 2018-10-22 2019-10-21 一种空气除尘系统及方法
PCT/CN2019/112101 WO2020083137A1 (zh) 2018-10-22 2019-10-21 一种发动机进气除尘系统及方法

Family Applications Before (19)

Application Number Title Priority Date Filing Date
PCT/CN2019/112355 WO2020083255A1 (zh) 2018-10-22 2019-10-21 一种空气除尘系统及方法
PCT/CN2019/112108 WO2020083142A1 (zh) 2018-10-22 2019-10-21 一种发动机进气除尘系统及方法
PCT/CN2019/112107 WO2020083141A1 (zh) 2018-10-22 2019-10-21 一种发动机进气除尘系统及方法
PCT/CN2019/112356 WO2020083256A1 (zh) 2018-10-22 2019-10-21 一种空气除尘系统及方法
PCT/CN2019/112311 WO2020083235A1 (zh) 2018-10-22 2019-10-21 一种空气除尘系统及方法
PCT/CN2019/112338 WO2020083245A1 (zh) 2018-10-22 2019-10-21 一种空气除尘系统及方法
PCT/CN2019/112358 WO2020083257A1 (zh) 2018-10-22 2019-10-21 一种空气除尘系统及方法
PCT/CN2019/112109 WO2020083143A1 (zh) 2018-10-22 2019-10-21 一种发动机进气除尘系统及方法
PCT/CN2019/112339 WO2020083246A1 (zh) 2018-10-22 2019-10-21 一种空气除尘系统及方法
PCT/CN2019/112111 WO2020083145A1 (zh) 2018-10-22 2019-10-21 一种发动机进气除尘系统及方法
PCT/CN2019/112092 WO2020083131A1 (zh) 2018-10-22 2019-10-21 一种发动机进气除尘系统及方法
PCT/CN2019/112352 WO2020083252A1 (zh) 2018-10-22 2019-10-21 一种空气除尘系统及方法
PCT/CN2019/112102 WO2020083138A1 (zh) 2018-10-22 2019-10-21 一种发动机进气除尘系统及方法
PCT/CN2019/112096 WO2020083134A1 (zh) 2018-10-22 2019-10-21 一种发动机进气除尘系统及方法
PCT/CN2019/112098 WO2020083135A1 (zh) 2018-10-22 2019-10-21 一种发动机进气除尘系统及方法
PCT/CN2019/112105 WO2020083140A1 (zh) 2018-10-22 2019-10-21 一种发动机进气除尘系统及方法
PCT/CN2019/112340 WO2020083247A1 (zh) 2018-10-22 2019-10-21 一种空气除尘系统及方法
PCT/CN2019/112329 WO2020083243A1 (zh) 2018-10-22 2019-10-21 一种空气除尘系统及方法
PCT/CN2019/112342 WO2020083248A1 (zh) 2018-10-22 2019-10-21 一种空气除尘系统及方法

Family Applications After (16)

Application Number Title Priority Date Filing Date
PCT/CN2019/112354 WO2020083254A1 (zh) 2018-10-22 2019-10-21 一种空气除尘系统及方法
PCT/CN2019/112115 WO2020083149A1 (zh) 2018-10-22 2019-10-21 一种发动机进气除尘系统及方法
PCT/CN2019/112113 WO2020083147A1 (zh) 2018-10-22 2019-10-21 一种发动机进气除尘系统及方法
PCT/CN2019/112327 WO2020083242A1 (zh) 2018-10-22 2019-10-21 一种空气除尘系统及方法
PCT/CN2019/112094 WO2020083132A1 (zh) 2018-10-22 2019-10-21 一种发动机进气除尘系统及方法
PCT/CN2019/112086 WO2020083127A1 (zh) 2018-10-22 2019-10-21 一种发动机进气除尘系统及方法
PCT/CN2019/112333 WO2020083244A1 (zh) 2018-10-22 2019-10-21 一种空气除尘系统及方法
PCT/CN2019/112320 WO2020083239A1 (zh) 2018-10-22 2019-10-21 一种空气除尘系统及方法
PCT/CN2019/112318 WO2020083238A1 (zh) 2018-10-22 2019-10-21 一种空气除尘系统及方法
PCT/CN2019/112120 WO2020083152A1 (zh) 2018-10-22 2019-10-21 一种发动机进气除尘系统及方法
PCT/CN2019/112347 WO2020083250A1 (zh) 2018-10-22 2019-10-21 一种空气除尘系统及方法
PCT/CN2019/112323 WO2020083241A1 (zh) 2018-10-22 2019-10-21 一种空气除尘系统及方法
PCT/CN2019/112353 WO2020083253A1 (zh) 2018-10-22 2019-10-21 一种空气除尘系统及方法
PCT/CN2019/112346 WO2020083249A1 (zh) 2018-10-22 2019-10-21 一种空气除尘系统及方法
PCT/CN2019/112317 WO2020083237A1 (zh) 2018-10-22 2019-10-21 一种空气除尘系统及方法
PCT/CN2019/112101 WO2020083137A1 (zh) 2018-10-22 2019-10-21 一种发动机进气除尘系统及方法

Country Status (10)

Country Link
US (12) US20210379600A1 (zh)
EP (11) EP3871785A4 (zh)
JP (12) JP2022508869A (zh)
AU (5) AU2019364475A1 (zh)
BR (11) BR112021007614A2 (zh)
CA (4) CA3117260A1 (zh)
IL (5) IL282459A (zh)
MX (6) MX2021004497A (zh)
TW (17) TW202015787A (zh)
WO (36) WO2020083255A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220250087A1 (en) * 2018-10-22 2022-08-11 Shanghai Bixiufu Enterprise Management Co., Ltd. Engine exhaust dust removing system and method
CA3117260A1 (en) * 2018-10-22 2020-04-30 Shanghai Bixiufu Enterprise Management Co., Ltd. System and method for removing dust from air
CN113905826A (zh) * 2019-05-27 2022-01-07 上海必修福企业管理有限公司 一种电场装置
CN112774387B (zh) * 2021-01-21 2022-07-12 福建龙净环保股份有限公司 一种电袋复合除尘器
CN113500077B (zh) * 2021-05-28 2022-09-02 义乌市诚胜市政工程有限公司 一种封闭除尘节约水资源的除尘墙
CN113230808B (zh) * 2021-06-03 2022-02-01 濮阳职业技术学院 一种土木工程用道路粉尘吸收装置
CN114226012B (zh) * 2021-11-01 2022-11-25 陈宁 一种建筑工程检测用无尘碎石装置
CN114535240A (zh) * 2022-01-05 2022-05-27 月漪 一种用于新型高性能纤维制品生产中使用的除尘设备
IL298651A (en) * 2022-11-28 2024-06-01 Tadiran Consumer And Tech Products Ltd Air disinfection device for use in air conditioning systems
CN116764436B (zh) * 2023-06-26 2024-04-30 浙江大维高新技术股份有限公司 一种水泥窑烟气处理设备和处理工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1043632A (ja) * 1996-07-31 1998-02-17 Amano Corp 電気集塵機用集塵電極部
CN103817005A (zh) * 2014-03-06 2014-05-28 宜兴市化工成套设备有限公司 一种板管竖流湿式高效静电除尘器
CN203737400U (zh) * 2014-03-06 2014-07-30 双盾环境科技有限公司 一种板管竖流湿式高效静电除尘器
CN105233987A (zh) * 2015-11-19 2016-01-13 北京聚易蓝天环保科技有限公司 均流式静电除尘器
CN105536421A (zh) * 2016-03-09 2016-05-04 山东蓝博环保设备有限公司 湿式静电除尘器
CN105750081A (zh) * 2016-03-09 2016-07-13 徐�明 一种喷淋式高效静电除尘器
CN205412573U (zh) * 2016-03-09 2016-08-03 山东蓝博环保设备有限公司 湿式静电除尘器

Family Cites Families (205)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1393712A (en) * 1918-11-04 1921-10-11 Frank W Steere Process and means for removing suspended matter from gas
US2608266A (en) * 1946-09-24 1952-08-26 Research Corp Gas flow control for electrical precipitators and the like
US2555216A (en) * 1946-09-24 1951-05-29 Research Corp Electrical precipitator
US2563297A (en) * 1947-11-24 1951-08-07 Research Corp Electrical precipitator, including an electrode washing device
US3205160A (en) * 1961-10-19 1965-09-07 Petrolite Corp Electric treater for dispersions
DE1288077B (zh) * 1965-07-09
DE2134576C3 (de) * 1971-07-10 1975-10-30 Metallgesellschaft Ag, 6000 Frankfurt Röhre n-NaBelektroabscheider
US3747299A (en) * 1972-02-04 1973-07-24 Kuan Chiang Ta Electrostatic precipitator
CS178566B1 (en) * 1974-11-14 1979-05-15 Jan Skalny Method and device for continuous concentration lowering of polycyclic aromatic hydrocarbons in gas-flow
JPS52157651U (zh) * 1976-05-25 1977-11-30
JPS58501162A (ja) * 1981-07-24 1983-07-21 トル−ス ロドニイ ジヨン 静電集塵器の逆コロナを検出し適用する方法
DE3141156A1 (de) * 1981-10-16 1983-04-28 Robert Bosch Gmbh, 7000 Stuttgart Verfahren und vorrichtung zum entfernen von festen bestandteilen und aerosolen, insbesondere von russbestandteilen aus dem abgas von brennkraftmaschinen
US4853005A (en) * 1985-10-09 1989-08-01 American Filtrona Corporation Electrically stimulated filter method and apparatus
US4969328A (en) * 1986-10-21 1990-11-13 Kammel Refaat A Diesel engine exhaust oxidizer
US5003774A (en) * 1987-10-09 1991-04-02 Kerr-Mcgee Chemical Corporation Apparatus for soot removal from exhaust gas
EP0379760A1 (en) * 1989-01-26 1990-08-01 Univerzita Komenskeho Device for continuously reducing concentration of carbon monoxide and other harmful types of emission
JPH04122367A (ja) * 1990-09-14 1992-04-22 Matsushita Electric Ind Co Ltd 空気清浄器
US5403383A (en) * 1992-08-26 1995-04-04 Jaisinghani; Rajan Safe ionizing field electrically enhanced filter and process for safely ionizing a field of an electrically enhanced filter
US5395430A (en) * 1993-02-11 1995-03-07 Wet Electrostatic Technology, Inc. Electrostatic precipitator assembly
CN2158507Y (zh) * 1993-04-10 1994-03-09 杭州环境净化设备厂 室内空气清净器
JPH06343898A (ja) * 1993-06-03 1994-12-20 Sumitomo Heavy Ind Ltd 電気集塵機用回路
US5549735C1 (en) * 1994-06-09 2001-08-14 Coppom Technologies Electrostatic fibrous filter
CN2205248Y (zh) * 1994-09-13 1995-08-16 郑天安 高效静电除尘器
US5591253A (en) * 1995-03-07 1997-01-07 Electric Power Research Institute, Inc. Electrostatically enhanced separator (EES)
CN1138501A (zh) * 1995-06-20 1996-12-25 张明义 高效电子空气净化装置
JP3020872U (ja) * 1995-07-24 1996-02-06 一也 早川 静電式空気清浄装置
JP3526494B2 (ja) * 1995-09-30 2004-05-17 日本バイリーン株式会社 荷電式エアーフィルター装置
JP2698804B2 (ja) * 1995-10-24 1998-01-19 株式会社オーデン 電気的制御によるディーゼルエンジンの排気微粒子捕集装置
SE512593C2 (sv) * 1997-05-06 2000-04-10 Blue Air Ab Förfarande och anordning för rening av ett gasformigt medium
TW337731U (en) * 1997-12-29 1998-08-01 yong-xiang Lin Improved structure of an air cleaner
JP2000070627A (ja) * 1998-06-19 2000-03-07 Ebara Corp 異種膜材組み合わせエアフィルタ
DE19833226C1 (de) * 1998-07-23 2000-04-20 Steuler Industriewerke Gmbh Niederschlagsrohrbündel für Naßelektrofilter
US6156098A (en) * 1999-02-10 2000-12-05 Richards; Clyde N. Charged droplet gas scrubber apparatus and method
DE19946283C1 (de) * 1999-07-31 2000-09-28 Metallgesellschaft Ag Erdleiter für Erdungsanlagen
JP2001179127A (ja) * 1999-12-27 2001-07-03 Daikin Ind Ltd 電気集塵装置
JP3729403B2 (ja) * 2001-05-02 2005-12-21 ミドリ安全株式会社 樹脂電極及びそれを用いた静電式集塵装置
CN1332341A (zh) * 2001-07-06 2002-01-23 俞其进 空气净化机
WO2003095095A1 (en) * 2002-05-09 2003-11-20 Ohio University Membrane laminar wet electrostatic precipitator
FR2841484B1 (fr) * 2002-06-26 2004-09-10 Boucq De Beaudignies Ghisla Le Dispositif et procede de filtration de l'air et des gaz avec regeneration des particules captees
US20090071328A1 (en) * 2002-08-21 2009-03-19 Dunn John P Grid type electrostatic separator/collector and method of using same
US7585352B2 (en) * 2002-08-21 2009-09-08 Dunn John P Grid electrostatic precipitator/filter for diesel engine exhaust removal
US6773489B2 (en) * 2002-08-21 2004-08-10 John P. Dunn Grid type electrostatic separator/collector and method of using same
US6878192B2 (en) * 2002-12-09 2005-04-12 Ohio University Electrostatic sieving precipitator
US7514047B2 (en) * 2003-01-15 2009-04-07 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying apparatus
US6790259B2 (en) * 2003-01-16 2004-09-14 Blueair Ab Method and device for cleaning a gaseous fluid using a conductive grid between charging head and filter
JP4304238B2 (ja) * 2003-03-27 2009-07-29 いすゞ自動車株式会社 内燃機関の排気ガス浄化方法及びその装置
JP2004351310A (ja) * 2003-05-29 2004-12-16 Matsushita Electric Ind Co Ltd 空気浄化装置
JP2004360512A (ja) * 2003-06-03 2004-12-24 Hino Motors Ltd 排気浄化装置
US7025806B2 (en) * 2003-11-25 2006-04-11 Stri{dot over (o)}nAir, Inc. Electrically enhanced air filtration with improved efficacy
CN2770786Y (zh) * 2004-03-04 2006-04-12 何保海 电除尘器辅助电极
CN100418637C (zh) * 2004-06-10 2008-09-17 中钢集团天澄环保科技股份有限公司 泛比电阻电除尘器及除尘方法
JP4292511B2 (ja) * 2004-06-21 2009-07-08 トヨタ自動車株式会社 排ガス浄化装置
US7258729B1 (en) * 2004-08-04 2007-08-21 Air Ion Devices Inc. Electronic bi-polar electrostatic air cleaner
CN2770787Y (zh) * 2004-11-29 2006-04-12 张辛石 双荷电横向集尘极板滤尘器
EP1837489B9 (en) * 2004-12-17 2012-09-12 Usui Kokusai Sangyo Kaisha Limited Electric treating method for exhaust gas of diesel engine and its device
JP2006281135A (ja) * 2005-04-01 2006-10-19 Denso Corp 集塵装置
FR2903726B1 (fr) * 2006-07-12 2008-10-10 Renault Sas Dispositif et procede pour la capture et l'elimination des particules contenues dans les gaz d'echappement d'un moteur a combustion interne de vehicule automobile.
JP4287873B2 (ja) * 2006-08-31 2009-07-01 日立アプライアンス株式会社 空気調和機
US7815720B2 (en) * 2006-12-27 2010-10-19 Strionair, Inc. Dual-filter electrically enhanced air-filtration apparatus and method
CN201006047Y (zh) * 2007-03-30 2008-01-16 黄樟焱 多功能旋风式等离子空气处理机
TWM345972U (en) * 2008-02-22 2008-12-01 shi-zhen Lai Dust-collecting device for exhaust pipe and chimney
CN101269813B (zh) * 2008-04-15 2012-01-04 北京民海艳科技有限公司 微硅粉提纯回收工艺
US7883558B2 (en) * 2008-05-07 2011-02-08 United Technologies Corporation Electrostatic particulate separation for emission treatment systems
CN101274304B (zh) * 2008-05-07 2010-11-03 浙江大学 烟气多种污染物协同脱除复合静电除尘器
CN101347760B (zh) * 2008-08-29 2011-04-27 江苏中科节能环保技术有限公司 一种卧式电除尘器
WO2010134448A1 (ja) * 2009-05-19 2010-11-25 国立大学法人宇都宮大学 粒子状物質燃焼装置及び方法
JP2011003457A (ja) * 2009-06-19 2011-01-06 Tokyo Electron Ltd 荷電粒子選別装置及び荷電粒子照射装置
TWM372446U (en) * 2009-07-28 2010-01-11 Taiwan Chuan Jing Technology Co Ltd Air cleaner device with cation and anion
DE102009041091A1 (de) * 2009-09-14 2011-03-24 Emitec Gesellschaft Für Emissionstechnologie Mbh Vorrichtung zur Behandlung von Rußpartikel enthaltendem Abgas
DE102009041092A1 (de) * 2009-09-14 2011-03-24 Emitec Gesellschaft Für Emissionstechnologie Mbh Abgasbehandlungsvorrichtung mit zwei Wabenkörpern zur Erzeugung eines elektrischen Potentials
WO2011116174A1 (en) * 2010-03-17 2011-09-22 Isaac Ray Electrostatic filter and non-thermal plasma system for air pollution control of hydrocarbon combustion engines
CN201751006U (zh) * 2010-05-10 2011-02-23 杨莺 静电除尘专用高频电源控制器
CN102072055B (zh) * 2010-05-28 2012-11-28 宁波市镇海华泰电器厂 机动车进气除尘装置
CN101936202A (zh) * 2010-08-20 2011-01-05 陶显芳 一种汽车尾气电子净化装置
US20120103184A1 (en) * 2010-11-02 2012-05-03 Clarkson University Electrostatic filtration system
JP5693287B2 (ja) * 2011-02-21 2015-04-01 富士電機株式会社 電気集塵装置
US9039815B2 (en) * 2011-08-10 2015-05-26 John P. Dunn Vane electrostatic precipitator
US9238230B2 (en) * 2011-08-10 2016-01-19 John P. Dunn Vane electrostatic precipitator
US8894745B2 (en) * 2011-08-10 2014-11-25 John P. Dunn Vane electrostatic precipitator
US9073062B2 (en) * 2011-08-10 2015-07-07 John P. Dunn Vane electrostatic precipitator
CN202290305U (zh) * 2011-11-07 2012-07-04 福建省华澳环保科技有限公司 高效静电除尘器
EP2599556B1 (en) * 2011-11-29 2021-06-30 General Electric Technology GmbH A method for cleaning an electrostatic precipitator
CN102619653A (zh) * 2012-02-08 2012-08-01 宁波市镇海华泰电器厂 兼有节油功能的道路pm2.5清除装置
CN202621286U (zh) * 2012-04-05 2012-12-26 营口中润环境科技有限公司 立板式湿法静电除尘器
CN102974461B (zh) * 2012-04-12 2015-09-02 孙茂华 利用材料驻极体特性集尘的空气净化装置和空气净化方法
CN202606276U (zh) * 2012-04-12 2012-12-19 孙茂华 利用材料驻极体特性集尘的空气净化装置
CN202683348U (zh) * 2012-04-18 2013-01-23 北京博鹏北科科技有限公司 电除尘器
CN102896044B (zh) * 2012-10-26 2015-02-18 易敏红 静电除尘器
CN104226477A (zh) * 2013-06-18 2014-12-24 珠海格力电器股份有限公司 空气净化器及其净化方法
CN103316766A (zh) * 2013-06-27 2013-09-25 江苏中兴化工设备有限公司 静电捕集器
CN203525551U (zh) * 2013-11-15 2014-04-09 北京智成科技有限公司 一种用于烟气综合处理装置的静电除尘器
CN203525527U (zh) * 2013-11-15 2014-04-09 北京智成科技有限公司 一种除尘除雾脱硫脱硝脱汞烟气综合处理装置
CN204275723U (zh) * 2013-11-15 2015-04-22 北京科之建环保工程有限公司 一种用于烟气综合处理装置的静电除尘器
TWM476903U (en) * 2013-11-26 2014-04-21 Asia Ipam Co Ltd Improvements in air blower and filter assemblies
CN103752408A (zh) * 2014-01-24 2014-04-30 清华大学 空中净化装置
CN103817007B (zh) * 2014-03-05 2016-05-18 武汉钢铁(集团)公司 横向极板双极静电凝并除尘装置及其除尘方法
CN103925065B (zh) * 2014-04-04 2016-04-20 武汉杜曼智能科技有限公司 自动除尘发动机热管理控制驱动器、控制方法及系统
CN103990544A (zh) * 2014-05-07 2014-08-20 杭州玺清环保科技有限公司 一种电场收尘装置
CN203886670U (zh) * 2014-05-21 2014-10-22 国电环境保护研究院 电除尘器阴极线自张紧固定装置
CN104056720B (zh) * 2014-05-27 2017-10-10 华北电力大学(保定) 一种复合式除尘器
CN203899750U (zh) * 2014-05-27 2014-10-29 华北电力大学(保定) 一种复合式除尘器
CN204018023U (zh) * 2014-06-17 2014-12-17 北京光耀环境工程有限公司 一种电除尘器高效集尘与清灰装置
CN105221218A (zh) * 2014-06-26 2016-01-06 王绍坤 水层、静电分离式汽车尾气净化器
CN106999951B (zh) * 2014-10-16 2022-01-28 俄亥俄州立大学 湿式静电除尘器以及处理废气的方法
CN204227628U (zh) * 2014-10-24 2015-03-25 刘慧根 一体式静电除尘新风机
CN104437868A (zh) * 2014-11-11 2015-03-25 中国科学院过程工程研究所 一种横向极板绕流式湿式电除尘装置及湿式电除尘方法
JP6126068B2 (ja) * 2014-12-02 2017-05-10 トヨタ自動車株式会社 排ガス浄化装置
CN204593621U (zh) * 2015-01-27 2015-08-26 温州市骐邦环保科技有限公司 带除臭氧功能的空气净化装置
CN204816887U (zh) * 2015-01-28 2015-12-02 上海思奈环保科技有限公司 一种空气净化高压离子驻极体净化装置及空气净化装置
CN105983486B (zh) * 2015-01-28 2018-11-20 上海思奈环保科技有限公司 一种空气净化高压离子驻极体净化装置及空气净化装置
KR101651034B1 (ko) * 2015-02-02 2016-08-24 원효식 전기집진기 및 그 전기집진기를 포함하는 공기청정 시스템
TWM507273U (zh) * 2015-02-11 2015-08-21 Shanghai Cangqiong Environment Technology Co Ltd 高壓高頻圓管針極除菌除塵裝置
CN104689918A (zh) * 2015-03-23 2015-06-10 中冶赛迪工程技术股份有限公司 一种湿式电除尘器
CN204503331U (zh) * 2015-03-25 2015-07-29 郑尔历 消除和控制pm2.5-pm0.5范围颗粒物的装置
CN104785369B (zh) * 2015-04-07 2017-12-26 东莞市三叠环保科技有限公司 负离子沉降及高压静电吸附双效空气除尘净化器
CN105268268B (zh) * 2015-04-21 2017-03-15 四川展祥特种合金科技有限公司 一种立式组合高效脱硫脱氨除尘装置
CN204678558U (zh) * 2015-05-20 2015-09-30 董坤 一种静电喷雾新风净化装置
JP6290824B2 (ja) * 2015-05-22 2018-03-07 トヨタ自動車株式会社 排気浄化装置
CN204769149U (zh) * 2015-05-30 2015-11-18 山东国舜建设集团有限公司 湿式电除尘器电场阴极模块式固定装置
CN104841560B (zh) * 2015-05-30 2016-08-17 山东国舜建设集团有限公司 湿式电除尘器电场阴极模块式固定装置
CN104971823B (zh) * 2015-06-16 2018-04-13 东莞市长资实业有限公司 一种便于清洗的空气集尘设备及具有该设备的空气净化器
CN204866199U (zh) * 2015-06-16 2015-12-16 东莞市长资实业有限公司 一种便于清洗的空气集尘设备及具有该设备的空气净化器
CN104959236A (zh) * 2015-06-30 2015-10-07 国电环境保护研究院 湿式静电除尘器阴极与阳极配置结构
CN204996568U (zh) * 2015-08-07 2016-01-27 浙江大学 一种采用颗粒冲刷清灰的线管式高温静电除尘装置
CN105080715B (zh) * 2015-08-07 2017-04-19 浙江大学 采用颗粒冲刷清灰的线管式高温静电除尘装置及清灰方法
CN204911793U (zh) * 2015-08-27 2015-12-30 东方电气集团东方锅炉股份有限公司 一种湿式静电除尘器设备
CN205079356U (zh) * 2015-09-21 2016-03-09 新疆霭励志环保科技有限公司 对称轴向电离净尘装置
CN205199731U (zh) * 2015-10-19 2016-05-04 常州大学 一种覆铜介质阻挡电极和光触媒耦合静电除尘装置
CN105312155A (zh) * 2015-10-19 2016-02-10 常州大学 覆铜介质阻挡电极和光触媒耦合静电除尘装置
CN105149093A (zh) * 2015-10-29 2015-12-16 许玉蕊 三电极箱式电极电除尘装置
CN205191760U (zh) * 2015-11-02 2016-04-27 北京福兆朗风科技有限公司 利用静电驻极体绝缘材料为载体的强电场技术除尘新风机
CN105233611A (zh) * 2015-11-05 2016-01-13 周翠华 电场与电晕联用的光催化空气净化器
CN205164956U (zh) * 2015-11-19 2016-04-20 北京聚易蓝天环保科技有限公司 均流式静电除尘器
CN105505478B (zh) * 2015-11-30 2018-04-10 中国科学院广州能源研究所 一种电旋风流光电晕生物质气化粗燃气净化装置与方法
CN105312154B (zh) * 2015-12-07 2017-10-24 福建龙净环保股份有限公司 一种湿式电除尘器
CN105413869A (zh) * 2015-12-07 2016-03-23 北京国能中电节能环保技术有限责任公司 一种立齿湿式电除尘器中的阴极线
CN205550987U (zh) * 2015-12-08 2016-09-07 重庆本创机械有限公司 一种发动机曲轴表面除尘装置
US20170165680A1 (en) * 2015-12-09 2017-06-15 Michael Johnson Electrostatic media filter
CN205341044U (zh) * 2015-12-18 2016-06-29 河北宁泊环保有限公司 湿雾静电除尘器
JP6447486B2 (ja) * 2015-12-22 2019-01-09 株式会社デンソー 放電制御装置、ガス供給装置及び放電制御方法
WO2017114049A1 (zh) * 2015-12-31 2017-07-06 靳瑞廷 气体介质悬浮颗粒物净化系统
CN205591991U (zh) * 2016-03-28 2016-09-21 北京汽车股份有限公司 车辆排气管以及具有其的车辆
CN205627552U (zh) * 2016-04-09 2016-10-12 嘉兴天盾环保科技有限公司 一种高通量紧凑型电晕离子发生器
CN205587151U (zh) * 2016-04-15 2016-09-21 湖北强达环保科技股份有限公司 一种高效静电除尘器
CN105689140B (zh) * 2016-04-15 2018-04-10 湖北强达环保科技股份有限公司 一种高效静电除尘器
CN205667904U (zh) * 2016-05-09 2016-11-02 李爱云 一种管式静电除尘器
CN105920919B (zh) * 2016-05-17 2018-07-10 华南理工大学 一种用于净化pm2.5的超疏水驻极体滤材的制备及活化方法
CN105944838B (zh) * 2016-06-30 2018-07-06 广东佳德环保科技有限公司 湿式电除尘器用钛电极电离管
CN105921275A (zh) * 2016-06-30 2016-09-07 河北安维环境工程有限公司 湿式电除雾装置
CN205995620U (zh) * 2016-06-30 2017-03-08 河北安维环境工程有限公司 湿式电除雾装置
CN106247522A (zh) * 2016-07-07 2016-12-21 格林韦尔(北京)科技发展有限公司 新风空气净化方法及系统
US10828646B2 (en) * 2016-07-18 2020-11-10 Agentis Air Llc Electrostatic air filter
CN205966185U (zh) * 2016-08-10 2017-02-22 福建龙净环保股份有限公司 一种用于烟气净化的电除雾器
CN106269256A (zh) * 2016-08-10 2017-01-04 福建龙净环保股份有限公司 一种用于烟气净化的电除雾器
CN206008346U (zh) * 2016-08-31 2017-03-15 四川好时吉化工有限公司 一种用于制备复合水溶肥料的除尘器
CN206082846U (zh) * 2016-09-08 2017-04-12 佛山市科蓝环保科技股份有限公司 一种蜂巢电场结构
CN106492987B (zh) * 2016-11-15 2018-01-09 江门市科蓝环保设备有限公司 一种静电除尘器
CN106733198B (zh) * 2016-11-21 2018-08-21 深圳深亚能环保科技有限公司 一种具有自动清理功能的电场装置
CN206414910U (zh) * 2016-12-08 2017-08-18 中冶节能环保有限责任公司 一种对钢渣辊轧区含尘蒸汽进行超净排放处理的装置
CN106621661A (zh) * 2016-12-08 2017-05-10 中冶节能环保有限责任公司 一种对钢渣辊轧区含尘蒸汽进行超净排放处理的工艺方法和装置
CN106492988A (zh) * 2016-12-23 2017-03-15 福建省沃特宝环保科技有限公司 一种微通道阳极除水雾装置
CN206391818U (zh) * 2017-01-17 2017-08-11 天津市舒泰医疗器械有限公司 一种色谱仪尾气处理装置
KR101923446B1 (ko) * 2017-02-02 2018-11-30 한국철도기술연구원 미세먼지 집진시스템
CN106907215A (zh) * 2017-02-27 2017-06-30 上海必修福企业管理有限公司 一种处理发动机排放尾气的装置和方法
CN107029882A (zh) * 2017-03-23 2017-08-11 复旦大学 大面积电晕等离子体空气净化器
CN106733194B (zh) * 2017-03-31 2018-10-16 广东美的厨房电器制造有限公司 静电装置和油烟机
CN106964489A (zh) * 2017-05-13 2017-07-21 深圳天美净朗环保科技有限公司 一种静电除尘的方法及装置
CN206793910U (zh) * 2017-05-15 2017-12-26 江苏瑞洁环境工程科技有限责任公司 一种灰水自清理的湿式电除尘器
CN107051731B (zh) * 2017-05-22 2018-07-17 广东美的厨房电器制造有限公司 电极针板、静电装置和油烟机
CN107152332A (zh) * 2017-06-16 2017-09-12 苏州博菡环保科技有限公司 汽车尾气净化器
TWM549659U (zh) * 2017-08-03 2017-10-01 Xin-Xiong Fang 具自動關機功能之靜電集塵機控制裝置
CN207287763U (zh) * 2017-08-10 2018-05-01 环球国合(北京)低碳环保科技有限公司 一种复合式电子风除尘
CN107486334A (zh) * 2017-08-10 2017-12-19 环球国合(北京)低碳环保科技有限公司 一种离子风式电除尘
CN207287767U (zh) * 2017-08-10 2018-05-01 环球国合(北京)低碳环保科技有限公司 一种电磁清灰式离子风电除尘
CN107442278A (zh) * 2017-08-10 2017-12-08 环球国合(北京)低碳环保科技有限公司 板网收尘电极式电除尘
CN207287768U (zh) * 2017-08-10 2018-05-01 环球国合(北京)低碳环保科技有限公司 网板箱收尘电极式电除尘
CN108067354A (zh) * 2017-08-10 2018-05-25 莱芜万通电器有限公司 一种综合式静电除尘器
CN207287760U (zh) * 2017-08-10 2018-05-01 环球国合(北京)低碳环保科技有限公司 一种高效离子风式电除尘
CN107497603A (zh) * 2017-08-10 2017-12-22 环球国合(北京)低碳环保科技有限公司 一种复合式电除尘
CN207013155U (zh) * 2017-09-01 2018-02-16 无锡幸运环保设备有限公司 带有拉瓦尔喷嘴的新型静电除尘器
CN107377225A (zh) * 2017-09-06 2017-11-24 维睿空气系统产品(深圳)有限公司 微静电净化装置
CN107737670B (zh) * 2017-09-11 2024-06-28 广东美的制冷设备有限公司 静电除尘模块及空气调节装置
CN107716113B (zh) * 2017-10-31 2023-10-20 珠海格力电器股份有限公司 一种集尘净化结构及除尘机
CN107569913A (zh) * 2017-11-02 2018-01-12 无锡风正科技有限公司 一种新型驻极体滤材及其制备方法
TWM556634U (zh) * 2017-11-02 2018-03-11 Lu Wen Yu 除塵系統
CN207786180U (zh) * 2017-11-10 2018-08-31 苏州甫腾智能科技有限公司 一种便携式空气净化装置
CN107747774A (zh) * 2017-11-10 2018-03-02 苏州甫腾智能科技有限公司 一种室内空气净化装置
CN107965863A (zh) * 2017-11-10 2018-04-27 苏州甫腾智能科技有限公司 一种便携式空气净化装置
CN107930851A (zh) * 2017-11-23 2018-04-20 北京东方计量测试研究所 一种静电除尘装置
CN107842933B (zh) * 2017-12-07 2023-06-16 北京化工大学 一种基于微分毛刷摩擦起电原理的高效静电除尘装置
CN207815524U (zh) * 2017-12-26 2018-09-04 北京华钛高科科技有限公司 一种具有除臭氧功能的空气净化器
CN207929001U (zh) * 2017-12-27 2018-10-02 福建龙净环保股份有限公司 一种scr烟气脱硝装置
CN207907455U (zh) * 2018-01-26 2018-09-25 北京华清凯尔空气净化技术有限公司 一种风管、空气净化器及其集尘装置
CN207521163U (zh) * 2018-01-31 2018-06-22 北京华清凯尔空气净化技术有限公司 集尘装置及空气净化器
CN108201783A (zh) * 2018-02-01 2018-06-26 广州广大气治理工程有限公司 一种锅炉烟气多种污染物深度治理装置、系统及方法
CN108405184B (zh) * 2018-02-06 2020-05-26 常州大学 一种工业废气细颗粒物脱除装置
CN108480050B (zh) * 2018-02-09 2020-12-04 北京东方计量测试研究所 驻极体材料及静电除尘装置
CN108465297A (zh) * 2018-03-09 2018-08-31 欧阳业东 一种用于空气净化的超疏水驻极体滤材的制备方法
CN207941622U (zh) * 2018-03-19 2018-10-09 瀚沃环境技术(上海)有限公司 油烟异味净化处理设备
CN207887337U (zh) * 2018-05-05 2018-09-21 杨晓丽 一种智能化工业用焊锡烟气净化处理设备
CN208282274U (zh) * 2018-05-11 2018-12-25 澄迈中等职业技术学校 一种集净化消毒一体化的空气净化装置
CN113366198B (zh) * 2018-10-22 2023-08-15 上海必修福企业管理有限公司 一种发动机排放处理系统和方法
WO2020083096A1 (zh) * 2018-10-22 2020-04-30 上海必修福企业管理有限公司 一种发动机排放处理系统和方法
US20220250087A1 (en) * 2018-10-22 2022-08-11 Shanghai Bixiufu Enterprise Management Co., Ltd. Engine exhaust dust removing system and method
CA3117260A1 (en) * 2018-10-22 2020-04-30 Shanghai Bixiufu Enterprise Management Co., Ltd. System and method for removing dust from air

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1043632A (ja) * 1996-07-31 1998-02-17 Amano Corp 電気集塵機用集塵電極部
CN103817005A (zh) * 2014-03-06 2014-05-28 宜兴市化工成套设备有限公司 一种板管竖流湿式高效静电除尘器
CN203737400U (zh) * 2014-03-06 2014-07-30 双盾环境科技有限公司 一种板管竖流湿式高效静电除尘器
CN105233987A (zh) * 2015-11-19 2016-01-13 北京聚易蓝天环保科技有限公司 均流式静电除尘器
CN105536421A (zh) * 2016-03-09 2016-05-04 山东蓝博环保设备有限公司 湿式静电除尘器
CN105750081A (zh) * 2016-03-09 2016-07-13 徐�明 一种喷淋式高效静电除尘器
CN205412573U (zh) * 2016-03-09 2016-08-03 山东蓝博环保设备有限公司 湿式静电除尘器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3871779A4 *

Also Published As

Publication number Publication date
EP3871778A1 (en) 2021-09-01
IL282548A (en) 2021-06-30
WO2020083127A1 (zh) 2020-04-30
WO2020083252A1 (zh) 2020-04-30
EP3871787A4 (en) 2022-03-23
AU2019364474A1 (en) 2021-06-03
BR112021007616A2 (pt) 2021-07-27
TW202015809A (zh) 2020-05-01
EP3871780A1 (en) 2021-09-01
US20220016642A1 (en) 2022-01-20
AU2019364298A1 (en) 2021-06-03
TW202016467A (zh) 2020-05-01
WO2020083245A1 (zh) 2020-04-30
WO2020083137A1 (zh) 2020-04-30
EP3871790A4 (en) 2022-06-22
IL282466A (en) 2021-06-30
WO2020083143A1 (zh) 2020-04-30
WO2020083147A1 (zh) 2020-04-30
WO2020083253A1 (zh) 2020-04-30
TWI772694B (zh) 2022-08-01
TWI739177B (zh) 2021-09-11
WO2020083145A1 (zh) 2020-04-30
WO2020083243A1 (zh) 2020-04-30
US20210394201A1 (en) 2021-12-23
EP3871788A1 (en) 2021-09-01
US20210394200A1 (en) 2021-12-23
WO2020083131A1 (zh) 2020-04-30
EP3885048A1 (en) 2021-09-29
WO2020083140A1 (zh) 2020-04-30
WO2020083142A1 (zh) 2020-04-30
IL282549A (en) 2021-06-30
EP3871781A1 (en) 2021-09-01
EP3871785A4 (en) 2022-01-05
WO2020083134A1 (zh) 2020-04-30
WO2020083246A1 (zh) 2020-04-30
TW202015779A (zh) 2020-05-01
WO2020083132A1 (zh) 2020-04-30
BR112021007615A2 (pt) 2021-07-27
TW202015811A (zh) 2020-05-01
WO2020083254A1 (zh) 2020-04-30
TW202015786A (zh) 2020-05-01
WO2020083152A1 (zh) 2020-04-30
WO2020083237A1 (zh) 2020-04-30
EP3872318A1 (en) 2021-09-01
MX2021004499A (es) 2021-08-24
BR112021007614A2 (pt) 2021-07-27
WO2020083244A1 (zh) 2020-04-30
MX2021004577A (es) 2022-02-10
TW202015807A (zh) 2020-05-01
BR112021007612A2 (pt) 2021-07-27
AU2019364475A1 (en) 2021-06-10
US20210394199A1 (en) 2021-12-23
IL282459A (en) 2021-06-30
CA3117401A1 (en) 2020-04-30
MX2021004576A (es) 2021-09-08
JP2022509338A (ja) 2022-01-20
US20220023878A1 (en) 2022-01-27
US20220023877A1 (en) 2022-01-27
CA3117402A1 (en) 2020-04-30
BR112021007545A2 (pt) 2021-07-27
JP2022508870A (ja) 2022-01-19
WO2020083135A1 (zh) 2020-04-30
JP2022509339A (ja) 2022-01-20
EP3885048A4 (en) 2022-06-22
US20210394198A1 (en) 2021-12-23
TWI710405B (zh) 2020-11-21
TW202015812A (zh) 2020-05-01
JP2022508871A (ja) 2022-01-19
EP3871790A1 (en) 2021-09-01
EP3871786A4 (en) 2021-12-15
WO2020083242A1 (zh) 2020-04-30
TWI715256B (zh) 2021-01-01
WO2020083238A1 (zh) 2020-04-30
JP2022505941A (ja) 2022-01-14
WO2020083248A1 (zh) 2020-04-30
BR112021007586A2 (pt) 2021-07-27
WO2020083141A1 (zh) 2020-04-30
TWI730463B (zh) 2021-06-11
JP2022508869A (ja) 2022-01-19
JP2022505935A (ja) 2022-01-14
US20210308692A1 (en) 2021-10-07
EP3871779A1 (en) 2021-09-01
EP3913198A1 (en) 2021-11-24
TWI743578B (zh) 2021-10-21
WO2020083235A1 (zh) 2020-04-30
EP3871786A1 (en) 2021-09-01
BR112021007526A2 (pt) 2021-07-27
WO2020083241A1 (zh) 2020-04-30
TW202015784A (zh) 2020-05-01
AU2019365173A1 (en) 2021-06-10
US20220080431A1 (en) 2022-03-17
JP2022508868A (ja) 2022-01-19
TW202023687A (zh) 2020-07-01
TWI743577B (zh) 2021-10-21
BR112021007589A2 (pt) 2021-07-27
WO2020083149A1 (zh) 2020-04-30
EP3871787A1 (en) 2021-09-01
TW202015813A (zh) 2020-05-01
IL282573A (en) 2021-06-30
JP2022508873A (ja) 2022-01-19
TWI772695B (zh) 2022-08-01
TW202015787A (zh) 2020-05-01
WO2020083257A1 (zh) 2020-04-30
US20220212203A1 (en) 2022-07-07
WO2020083239A1 (zh) 2020-04-30
TW202015810A (zh) 2020-05-01
US20220016644A1 (en) 2022-01-20
EP3872318A4 (en) 2021-12-15
EP3871785A1 (en) 2021-09-01
JP2022509340A (ja) 2022-01-20
BR112021007585A2 (pt) 2021-07-27
MX2021004497A (es) 2021-08-24
BR112021007613A2 (pt) 2021-07-27
JP2022505961A (ja) 2022-01-14
WO2020083247A1 (zh) 2020-04-30
MX2021004572A (es) 2022-02-10
TWI715255B (zh) 2021-01-01
TW202031362A (zh) 2020-09-01
WO2020083249A1 (zh) 2020-04-30
WO2020083138A1 (zh) 2020-04-30
WO2020083250A1 (zh) 2020-04-30
TWI754846B (zh) 2022-02-11
JP2022512026A (ja) 2022-02-01
MX2021004575A (es) 2021-09-08
TWI743576B (zh) 2021-10-21
CA3117260A1 (en) 2020-04-30
WO2020083255A1 (zh) 2020-04-30
CA3117251A1 (en) 2020-04-30
BR112021007620A2 (pt) 2021-07-27
US20210379600A1 (en) 2021-12-09
EP3871779A4 (en) 2022-03-16
AU2019367071A1 (en) 2021-06-10
TW202015808A (zh) 2020-05-01
WO2020083256A1 (zh) 2020-04-30
TW202015785A (zh) 2020-05-01
TW202015814A (zh) 2020-05-01
TW202016468A (zh) 2020-05-01

Similar Documents

Publication Publication Date Title
WO2020083236A1 (zh) 一种空气除尘系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19875672

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021546434

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021007612

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2019875672

Country of ref document: EP

Effective date: 20210525

ENP Entry into the national phase

Ref document number: 112021007612

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210422