WO2010134448A1 - 粒子状物質燃焼装置及び方法 - Google Patents

粒子状物質燃焼装置及び方法 Download PDF

Info

Publication number
WO2010134448A1
WO2010134448A1 PCT/JP2010/057967 JP2010057967W WO2010134448A1 WO 2010134448 A1 WO2010134448 A1 WO 2010134448A1 JP 2010057967 W JP2010057967 W JP 2010057967W WO 2010134448 A1 WO2010134448 A1 WO 2010134448A1
Authority
WO
WIPO (PCT)
Prior art keywords
particulate matter
positive electrode
mesh
discharge
cylindrical
Prior art date
Application number
PCT/JP2010/057967
Other languages
English (en)
French (fr)
Inventor
武 長澤
Original Assignee
国立大学法人宇都宮大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人宇都宮大学 filed Critical 国立大学法人宇都宮大学
Priority to US13/321,308 priority Critical patent/US8966881B2/en
Priority to JP2011514386A priority patent/JP5572156B2/ja
Priority to EP10777681.7A priority patent/EP2434112A4/en
Publication of WO2010134448A1 publication Critical patent/WO2010134448A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/36Controlling flow of gases or vapour
    • B03C3/361Controlling flow of gases or vapour by static mechanical means, e.g. deflector
    • B03C3/363Controlling flow of gases or vapour by static mechanical means, e.g. deflector located before the filter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/12Plant or installations having external electricity supply dry type characterised by separation of ionising and collecting stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/41Ionising-electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • B03C3/49Collecting-electrodes tubular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/60Use of special materials other than liquids
    • B03C3/62Use of special materials other than liquids ceramics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/01Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust by means of electric or electrostatic separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/027Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/30Details of magnetic or electrostatic separation for use in or with vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/06Plant or installations having external electricity supply dry type characterised by presence of stationary tube electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/09Plant or installations having external electricity supply dry type characterised by presence of stationary flat electrodes arranged with their flat surfaces at right angles to the gas stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • B03C3/47Collecting-electrodes flat, e.g. plates, discs, gratings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0892Electric or magnetic treatment, e.g. dissociation of noxious components

Definitions

  • the present invention relates to a particulate matter combustion apparatus and method for efficiently burning particulate matter discharged from an internal combustion engine.
  • Patent Document 1 proposes a technique in which particulate matter is captured by a ceramic honeycomb filter, and when the captured particulate matter exceeds a preset allowable value, the temperature is increased and combustion is removed.
  • Patent Document 2 solves the problem that the ceramic honeycomb filter used in Patent Document 1 is expensive, easily damaged, and difficult to handle, and reduces the power consumption required for burning and removing particulate matter.
  • a combustion heater is disposed between a manufactured air-permeable filter and a heat insulating material, and the heater is heated and burned at a timing at which inflow of particulate matter-containing gas is suppressed.
  • Patent Documents 1 and 2 are techniques for capturing particulate matter with a heat-resistant filter and removing the particulate matter captured at an arbitrary timing by heating and burning, rapid temperature changes and local heating, etc.
  • Patent Document 3 discloses a means for thermally decomposing a filter that captures particulate matter without causing a rapid temperature change or local heating, and an oxidation means for oxidizing unburned particulate matter with ozone gas. A technique for using both of these methods has been proposed.
  • a manganese oxide-supporting base material is disposed in a gas flow path to oxidize and decompose the adsorbed particulate matter, and to make active species such as OH radicals, oxygen atoms, oxygen ions, ozone gas coexist.
  • active species such as OH radicals, oxygen atoms, oxygen ions, ozone gas coexist.
  • Patent Document 3 includes a filter that captures and decomposes a particulate matter by heating, and means for generating an oxidative decomposition gas such as ozone gas.
  • the apparatus configuration is complicated, becomes large and heavy, and mounting on a vehicle or the like becomes a problem from the viewpoint of energy saving.
  • the filter has problems such as clogging and heat deterioration
  • the oxidation catalyst also has problems such as catalyst life and heat deterioration.
  • all of the conventional techniques include a technique of thermally decomposing with a heater or the like, but high combustion efficiency cannot be obtained with heater heating. Therefore, the timing of combustion is controlled, the inflow of gas is controlled, The combustion is supplemented by an ozone generator or the like.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to efficiently burn particulate matter discharged from an internal combustion engine.
  • An object of the present invention is to provide an apparatus and method for burning particulate matter that does not become heavy.
  • the present inventor has developed means for increasing the time during which particulate matter receives discharge energy in order to efficiently perform combustion by silent discharge when burning particulate matter by silent discharge.
  • the present inventors have found an apparatus configuration that can realize efficient combustion, has a simple apparatus configuration and does not increase in size and weight, and has completed the present invention.
  • a particulate matter combustion apparatus for solving the above-described problems is an introduction unit that introduces particulate matter-containing gas discharged from an exhaust port connected to an exhaust port of an internal combustion engine, and the introduction A charging device provided on the downstream side of the unit and contacting the particulate matter-containing gas with all or a part of the particulate matter to charge a negative charge, and an insulating tube connected downstream of the charging device A discharge device that is provided in a part of which is charged with a negative charge, all or part of which is charged into a silent discharge region generated between a positive electrode and a negative electrode, and burns with an increased holding time; It has a discharge unit that is connected to the insulating pipe on the downstream side of the discharge device and discharges the gas after combustion, and a power supply device that applies an electric field to the charging device and the discharge device.
  • all or part of the particulate matter contained in the particulate matter-containing gas discharged from the internal combustion engine is charged with a negative charge by the charging device, and the particulate matter charged with the negative charge is silently sent downstream. Since it is introduced into the discharge region and electrically attracted or repelled by the constituent electrodes to decelerate and burn with increased retention time of the particulate matter in the silent discharge region, the combustion efficiency in the silent discharge region is improved. Can be increased. As a result, efficient combustion can be realized, and the apparatus can be reduced in size and weight with a simple apparatus configuration.
  • the particulate matter combustion apparatus takes the following three forms sharing the above technical features.
  • the introduction unit includes a gas flow conversion member that changes the flow of the particulate matter-containing gas into a spiral flow
  • the charging device is disposed on an inner periphery of the pipe through which the spiral flow flows.
  • a ring-shaped positive electrode provided along the tube, and the discharge device includes a cylindrical negative electrode provided on the inner wall of the insulating tube, and a cylindrical dielectric provided inside the negative electrode; And a cylindrical mesh-like positive electrode provided at a predetermined interval inside the dielectric.
  • the particulate matter in the gas flow converted into the spiral flow by the gas flow conversion member adheres negative air charges (negative charges) collected around the ring-shaped positive electrode.
  • Particulate matter with negative air charge is attracted by the electrostatic force to the cylindrical mesh positive electrode and enters the silent discharge region while flowing in the vicinity of the inner wall surface of the tube while riding on the spiral gas flow.
  • the flow of particulate matter entering the silent discharge region is decelerated by the Coulomb force of the silent discharge region extending in the longitudinal direction of the tube. As a result, a lot of discharge energy can be obtained and burned efficiently.
  • the charging device includes a planar mesh-like positive electrode provided so as to be orthogonal to the flow path of the particulate matter-containing gas
  • the discharge device includes the insulation
  • a cylindrical negative electrode provided on the inner wall side of the tube with a predetermined gap from the inner wall, a cylindrical dielectric provided on the inner side of the negative electrode, and a predetermined gap on the inner side of the dielectric
  • a cylindrical mesh-shaped positive electrode provided in a space, and particulate matter charged by the planar mesh-shaped positive electrode between the cylindrical dielectric and the cylindrical mesh-shaped positive electrode.
  • a gas flow conversion member that leads to the silent discharge region is provided.
  • the particulate matter in the gas flow adheres to the negative air charge collected around the positive electrode in the form of a planar mesh.
  • the particulate matter to which negative air charges are attached is guided to the silent discharge region extending in the longitudinal direction of the tube by the gas flow conversion member, and is decelerated by the Coulomb force of the silent discharge region. As a result, a lot of discharge energy can be obtained and burned efficiently.
  • the charging device has a planar mesh-like positive electrode provided so as to be orthogonal to the flow path of the particulate matter-containing gas
  • the discharge device includes the flow A planar mesh-shaped negative electrode provided so as to be orthogonal to the road, and a positive electrode provided facing the upstream side of the planar mesh-shaped negative electrode at a predetermined interval, the spacing being A silent discharge region is formed.
  • the particulate matter in the gas flow adheres to the negative air charge collected around the positive electrode in the form of a planar mesh.
  • the particulate matter to which negative air charges are attached passes through the positive electrode and is introduced into the silent discharge region.
  • the particulate matter is electrically repelled by the negative electrode in the form of a planar mesh and decelerated. As a result, a lot of discharge energy can be obtained and burned efficiently.
  • the particulate matter combustion method charges all or part of the particulate matter contained in the particulate matter-containing gas discharged from the internal combustion engine, thereby charging the negative charge.
  • the particulate matter is attracted or repelled electrically and decelerated, the time for holding the particulate matter in the silent discharge region is increased, and the application time of the discharge energy in the silent discharge region is extended.
  • the particulate matter is burned in a state in which the holding time in the silent discharge region is increased, so that the combustion efficiency in the silent discharge region can be increased. As a result, efficient combustion can be realized.
  • the particulate matter charged to the negative charge is electrostatically attracted to a mesh-like positive electrode provided on the downstream side, whereby the silent discharge region Characterized by increased retention time.
  • the particulate matter charged to the negative charge is sucked and deposited on the mesh-like positive electrode provided downstream and capable of capturing the particulate matter.
  • the holding time in the silent discharge region is increased.
  • the particulate matter charged to the negative charge is electrostatically repelled on the mesh-like negative electrode provided on the downstream side and deposited on the negative electrode.
  • the holding time in the silent discharge region is increased.
  • particulate matter combustion apparatus and method of the present invention all or part of the particulate matter contained in the particulate matter-containing gas discharged from the internal combustion engine is charged with a negative charge by the charging device, and the negative charge is charged.
  • the particulate matter is introduced into the silent discharge region, and the constituent electrodes are electrically attracted or repelled to decelerate and burn with increased retention time of the particulate matter in the silent discharge region.
  • the combustion efficiency in the region can be increased. As a result, efficient combustion can be realized, and the apparatus can be reduced in size and weight with a simple apparatus configuration.
  • FIG. 1 is a layout view of a particulate matter combustion apparatus according to the present invention. It is a typical lineblock diagram showing a 1st embodiment of a particulate matter combustion device concerning the present invention. It is a typical block diagram which shows an example of a gas flow conversion member. It is a typical block diagram which shows another example of a gas flow conversion member. It is a block diagram which shows an example of a ring-shaped positive electrode. It is a typical block diagram which shows an example of a discharge device. It is a typical block diagram which shows 2nd Embodiment of the particulate matter combustion apparatus which concerns on this invention. It is a typical block diagram which shows 3rd Embodiment of the particulate matter combustion apparatus which concerns on this invention. It is a typical block diagram which shows an example of the discharge device seen from the introduction part side.
  • the particulate matter combustion apparatus and method of the present invention employs means for increasing the time for receiving discharge energy in order to efficiently perform combustion in silent discharge when the particulate matter is burned by silent discharge. It is made.
  • the “silent discharge” is a discharge that occurs when one or both electrodes of a flat plate with a certain interval are covered with an insulator (dielectric) and an AC voltage is applied. Also called. Since the electrode is covered with an insulator, charge cannot flow into the electrode, and a large current does not flow. Therefore, there is no sound at the time of discharge like spark discharge or corona discharge, and therefore it is called silent discharge.
  • the basic configuration is that a part of the particulate matter contained in the particulate matter-containing gas discharged from the internal combustion engine is charged with a negative charge, and the particulate matter charged with the negative charge is electrically sucked.
  • it has a means of slowing down by repelling and increasing the time for holding the particulate matter in the silent discharge region.
  • the application time of the discharge energy in the silent discharge region can be extended for the particulate matter, so that the particulate matter can be burned with an increased holding time in the silent discharge region. .
  • the combustion efficiency in the silent discharge region can be increased, and efficient combustion can be realized.
  • a particulate matter combustion apparatus 10 according to the present invention is provided in the middle of a muffler 3 (for example, made of SUS) connected to an exhaust port 2 of an internal combustion engine (engine) 1 as shown in FIG. 1 and 2 and the like, the introduction part 8 is connected to the exhaust port 2 of the internal combustion engine 1, and the discharge part 9 is connected to the muffler 3.
  • the particulate matter combustion apparatus 10 wants to effectively use the residual heat from the engine 1, it is preferable that the particulate matter combustion apparatus 10 is connected to the vicinity of the engine 1 as shown in FIG. 1.
  • symbol 4 in FIG. 1 is a power supply device for applying a voltage to the discharge device which performs silent discharge.
  • the introduction of the particulate matter-containing gas 5 connected to the exhaust port 2 of the internal combustion engine 1 and discharged from the exhaust port 2 is introduced.
  • the part 8 and the downstream part of the introduction part 8 are contacted with the particulate matter-containing gas 5 to charge all or part of the particulate matter 6 contained in the particulate matter-containing gas 5 with a negative charge.
  • the present invention can be broadly classified into first to third modes as modes in which the particulate matter 6 'charged with a negative charge is attracted or repelled and decelerated.
  • the particulate matter 6 ′ charged to a negative charge is electrostatically applied to a cylindrical mesh-like positive electrode 133 provided on the downstream side.
  • the holding time in the silent discharge region A1 is increased.
  • the particulate matter combustion apparatus and method of the second embodiment are in the form of a cylindrical mesh in which a particulate matter 6 ′ charged with a negative charge is provided on the downstream side and can capture the particulate matter 6 ′.
  • the holding time in the silent discharge region A2 is increased.
  • the particulate matter 6 ′ charged with a negative charge is electrostatically applied to the negative electrode 331 having a planar mesh shape provided on the downstream side.
  • repelling and depositing on the negative electrode 331 the holding time in the silent discharge region A3 is increased.
  • the particulate matter combustion apparatus and method of the present invention all or part of the particulate matter 6 contained in the particulate matter-containing gas 5 discharged from the internal combustion engine 1 is charged by the charging device (11, 21, 31). A negative charge is charged, and the particulate matter 6 ′ charged with the negative charge is introduced into the silent discharge region (A1, A2, A3) and electrically supplied to the constituent electrodes (13, 23, 33 or 14, 24, 34). Decelerate by suction or repulsion. As a result, the retention time of the particulate matter 6 ′ in the silent discharge region (A 1, A 2, A 3) is increased and can be burned in that state. According to the present invention, the combustion efficiency in the silent discharge region (A1, A2, A3) can be increased to realize efficient combustion, and the apparatus can be reduced in size and weight with a simple apparatus configuration.
  • the particulate matter 6 ′ charged with a negative charge 122 is electrostatically applied to a cylindrical mesh-like positive electrode 133 provided on the downstream side.
  • the retention time in the silent discharge region A1 is increased by being attracted to and staying in the chamber.
  • it has an introduction unit 8, a charging device 11, a discharge device 15, a discharge unit 9, and a power supply device 4.
  • the particulate matter combustion apparatus 10 ⁇ / b> A includes an introduction portion 8, a charging device 11, a discharge device 15, and a discharge portion 9 in the insulating tube 100 in that order toward the downstream side. Although it is preferable, each part may be connected as a separate member in that order toward the downstream side.
  • the particulate matter combustion apparatus 10 ⁇ / b> A is preferably configured with a ceramic insulating tube 100 having heat insulation and electrical insulation as a base.
  • the upstream side is the internal combustion engine side or the introduction part side
  • the downstream side is the muffler side or the discharge part side.
  • the introduction unit 8 is connected to the exhaust port 2 of the internal combustion engine 1 and introduces the particulate matter-containing gas 5 discharged from the exhaust port 2 into the particulate matter combustion apparatus 10A.
  • the introduction portion 8 is preferably integral with an insulating tube 100 (for example, a ceramic tube) including the discharge device 15 and the charging device 11, but the introduction portion 8 is constituted by an introduction tube made of a separate member, It may be connected.
  • the particulate matter-containing gas 5 to be introduced contains particulate matter 6 to be processed.
  • the introduction unit 8 includes a gas flow conversion member 101 that changes the flow of the particulate matter-containing gas 5 into a spiral flow 107 as illustrated in FIGS. 3 and 4.
  • FIG. 3 is a schematic configuration diagram showing an example of a gas flow conversion member.
  • 3A is an overall configuration diagram
  • FIG. 3B is a diagram viewed from the upstream side
  • FIG. 3C is a diagram viewed from the downstream side.
  • a gas flow conversion member 101A shown in FIG. 3 is a gas flow conversion member that generates a spiral flow 107 by passing a gas flow through a plurality of twisted flow paths 104, and has the same number of outlets 103 as the plurality of inlets 102. And have.
  • the particulate matter-containing gas 5 entering from the inflow port 102 is converted into a spiral flow 107 when passing through the flow path 104 and exiting from the outflow port 103.
  • the number of the inlets 102 and the outlets 103 is not particularly limited, but is two or more, preferably three or four.
  • the flow path 104 is twisted clockwise or counterclockwise toward the outlet 103, and further, a predetermined angle ⁇ (for example, 15 ° to 45 °) so that the outlet 103 faces the inner wall surface of the insulating tube 100. °) is provided with a flow path 104.
  • the particulate matter-containing gas 5 is divided into four gas flows at the four inlets 102, passes through the flow path 104, and flows out as a spiral flow 107 from the outlet 103.
  • the inflow port 102 and the outflow port 103 are arranged at equal intervals.
  • the material of this member is preferably one having heat resistance and corrosion resistance.
  • the gas flow conversion member 101A having such a principle is not limited to the example shown in FIG.
  • FIG. 4 is a schematic configuration diagram showing another example of the gas flow conversion member.
  • a gas flow conversion member 101B shown in FIG. 4 is a gas flow conversion member that generates a spiral flow 107 by the rotation of the blades 106 attached to the propeller shaft 105.
  • the propeller shaft 105 may be freely rotated or may be rotationally driven. Usually, a device that rotates by driving is adopted.
  • the particulate matter-containing gas 5 is converted into a spiral flow 107 by the rotation of the propeller shaft 105 and the blades 106.
  • the number of blades 106 is not particularly limited, but is usually three or four.
  • the material of this member is preferably one having heat resistance and corrosion resistance.
  • the charging device 11 is provided on the downstream side of the introduction unit 8, contacts the particulate matter-containing gas 5, and negative air charges are present on all or part of the particulate matter 6 contained in the particulate matter-containing gas 5.
  • This is a device for charging 122 (also simply referred to as “negative charge”).
  • a ring-shaped positive electrode 121 provided along the inner periphery of the pipe through which the spiral flow 107 flows is preferably used. Specifically, the ring-shaped positive electrode 121 is provided at a predetermined interval from the inner peripheral surface of the tube perpendicular to the longitudinal direction of the tube. A ring-shaped positive electrode 121 shown in FIG.
  • the metal electrode body to be the ring-shaped positive electrode 121 is usually made of SUS (stainless steel) or the like and has a conductor diameter of about 1 mm, but is not particularly limited.
  • the particulate matter-containing gas 5 flowing along the inner wall of the tube as a spiral flow 107 comes into contact with the positive electrode 121.
  • the particulate matter-containing gas is contained.
  • the particulate matter 6 in the gas 5 has a negative charge 122 attached thereto, and the negatively charged particulate matter 6 ′ flows in the pipe as a spiral flow 107. Since the spiral flow 107 applies a centrifugal force to the particulate matter 6 ', a force directed toward the inner wall of the tube is applied to the particulate matter 6' and travels along the inner wall of the tube.
  • the discharge device 15 is provided in an insulating tube 100 connected to the downstream side of the charging device 11, and all or part of the particulate matter 6 ′ charged with a negative charge 122. Is introduced into the silent discharge region A1 generated between the positive electrode 133 and the negative electrode 131, and burned for a longer holding time.
  • the discharge device 15 includes a cylindrical negative electrode 131 provided on the inner wall of the insulating tube 100, a cylindrical dielectric 131 provided inside the negative electrode 131, A cylindrical mesh positive electrode 133 provided at a predetermined interval G is provided inside the dielectric 131.
  • the discharge device 15 is preferably provided in a ceramic insulating tube 100 having heat resistance, heat insulation, and insulation.
  • the above-described charging device 11 as well as the discharging device 15 is the same.
  • the discharging device 15 and the charging device 11 are provided in an integrated insulating tube 100 as shown in FIG. preferable.
  • the inner diameter of the insulating tube 100 is not particularly limited, but is usually within the range of about 20 to 100 mm in inner diameter.
  • a cylindrical negative electrode 131 is provided on the inner surface of the insulating tube 100.
  • the negative electrode 131 may be a stainless steel metal body having a thickness of about 0.1 mm, for example.
  • Insulating tubes 134 and 134 are provided at both ends in the longitudinal direction (upstream end and downstream end) of the cylindrical negative electrode 131.
  • the negative electrode 131 may be in close contact with the insulating tube 100, or may be arranged slightly apart as shown in FIG.
  • the cylindrical dielectric 132 is provided inside the cylindrical negative electrode 131 (center side of the tube; the same applies hereinafter).
  • the dielectric 132 is, for example, a ceramic dielectric having a thickness of about 1 mm, and is preferably made of a material such as alumina. Usually, it is provided in close contact with the negative electrode 131.
  • the positive electrode 133 having a cylindrical mesh shape is preferably disposed inside the cylindrical dielectric 132 with a gap G of, for example, about 1 mm between the dielectric 132.
  • the positive electrode 133 is a mesh structure having an opening enough to allow the particulate matter 6 ′ to enter.
  • the degree of the opening may be, for example, a size that allows the 2 ⁇ m particulate matter 6 to freely pass through, but the size is not particularly limited.
  • the material of the positive electrode 133 is not particularly limited, but a tungsten mesh having high heat resistance can be preferably used.
  • a tungsten mesh having a wire diameter of 0.4 mm and 20 mesh / inch can be exemplified.
  • a high voltage high frequency is applied from the power supply device 4, and silent discharge occurs. Since the particulate matter 6 ′ rides on the spiral flow 107 and flows in the vicinity of the inner wall of the tube, the action time for discharging in the silent discharge region A 1 becomes longer than when flowing straight in the tube. Furthermore, since the particulate matter 6 ′ flowing on the inner wall surface side of the tube by the centrifugal force due to the spiral flow 107 easily enters the silent discharge region A ⁇ b> 1 through the mesh opening of the positive electrode 133, it is susceptible to silent discharge.
  • the particulate matter 6 ′ is charged with a negative charge, it is attracted to the positive electrode 133 by Coulomb force and tends to stay in the silent discharge area A 1 for a long time. Due to this stay, the discharge energy of silent discharge is received for a long time, so that more efficient combustion occurs due to Joule heat due to a large amount of discharge energy and residual heat of combustion of the particulate matter 6 ′.
  • toxic gas components (NOx, SOx) contained in the particulate matter-containing gas 5 can also be modified and removed by a high electric field in the silent discharge region A1.
  • the power supply device 4 is a device that applies an electric field to the charging device 11 and the discharge device 15, and includes a high-voltage and high-frequency generator 141 and a power supply 142 as shown in FIGS.
  • the power source 142 may be a DC power source, an AC power source, or a battery (battery). From such a power source 142, a DC voltage or an AC voltage is sent to the high voltage high frequency generator 141.
  • the high-voltage and high-frequency generator 141 converts the voltage into a high-frequency high-frequency voltage or pulse voltage.
  • the positive voltage terminal of the high-voltage and high-frequency generator 141 is connected to the ring-shaped positive electrode 121 of the charging device 11 and the cylindrical mesh-shaped positive electrode 133 of the discharge device 15.
  • the negative voltage terminal is connected to the cylindrical negative electrode 131. Silent discharge occurs between the cylindrical mesh-shaped positive electrode 133 connected to the positive voltage terminal and the cylindrical negative electrode 131 connected to the negative voltage terminal. Further, the ring-shaped positive electrode 12 connected to the positive voltage terminal attracts negative air charges 122.
  • the discharge unit 9 is connected to the insulating tube 100 on the downstream side of the discharge device 15 and discharges the gas 151 after combustion.
  • “continuously connected to the insulating tube 100” may be a discharge member which is a separate member and is connected to the insulating tube 100 (see FIGS. 7 and 8). It is configured to be integrated with the insulating tube 100, and is used in a sense including a discharge end portion (see FIG. 2) at the downstream end.
  • the gas after the combustion treatment becomes exhaust gas 151 and is exhausted from the muffler 3 connected to the downstream side of the particulate matter combustion apparatus 10 as shown in FIG.
  • the particulate matter 6 in the gas flow converted into the spiral flow 107 by the gas flow conversion member 101 gathers around the ring-shaped positive electrode 121. Air charge 122 is deposited. The particulate matter 6 ′ with the negative air charge 122 attached thereto is attracted to the cylindrical mesh-like positive electrode 133 by electrostatic force while riding on the spiral flow 107 and flowing in the vicinity of the inner wall surface of the tube, and enters the silent discharge area A 1. . The flow of the particulate matter 6 'entering the silent discharge area A1 is decelerated by the Coulomb force of the silent discharge area A1 extending in the longitudinal direction of the tube. As a result, a lot of discharge energy can be obtained and burned efficiently.
  • the particulate matter combustion apparatus 10A is connected near the exhaust port 2 of the engine 1, covers the combustion portion with the insulating tube 100 to prevent heat loss, and applies a negative charge 122 to the particulate matter 6.
  • a negative charge 122 to the particulate matter 6.
  • the particulate matter combustion apparatus 10B has a cylindrical mesh shape in which particulate matter 6 ′ charged with a negative charge 222 is provided on the downstream side and can capture the particulate matter 6 ′.
  • the holding time in the silent discharge region A2 is increased.
  • an introduction unit 8 a charging device 21, a discharge device 25, a discharge unit 9, and a power supply device 4 are provided in that order toward the downstream side.
  • the charging device 21 and the discharging device 25 are integrally formed in the insulating tube 100, but are not necessarily integrated.
  • the introduction portion 8 is connected to the exhaust port 2 of the internal combustion engine 1 and introduces the particulate matter-containing gas 5 discharged from the exhaust port 2.
  • the discharge unit 9 is connected to the insulating tube 100 and discharges the gas 151 after combustion.
  • the coaxial ring 242 is an important member for securing a silent discharge area A2 and an inner wall surface flow path 243, which will be described later, and has a radial width sufficient to secure these flow paths.
  • the upstream side is the internal combustion engine (engine) 1 side shown in FIG. 1, and the downstream side is the muffler 3 side shown in FIG.
  • the tube 241 constituting the discharge portion 9 is provided so as to function as a support member for the cylindrical mesh positive electrode 233. Therefore, the tube 241 is preferably insulative.
  • the tube 201 constituting the introduction portion 8 may be a metal tube made of stainless steel or the like because it does not contact the electrode, but may be an insulating tube.
  • the mode of the introduction portion 8 and the discharge portion 9 is not limited to the illustrated tube connection example.
  • the tube 201 constituting the introduction portion 8 is connected to the insulating tube 100 constituting the charging device 21 and the discharge device 25.
  • the tube 241 constituting the discharge unit 9 is connected to the insulating tube 100 constituting the charging device 21 and the discharging device 25.
  • the tube 241 is configured with a smaller diameter, and the silent discharge region A2 and the inner wall flow path 243 are secured. However, it is not always necessary to secure these by employing the small diameter tube 241. Alternatively, another member may be employed.
  • the introduction unit 8 is not provided with a gas flow conversion member for converting the particulate matter-containing gas 5 as shown in FIGS. 3 and 4 into the spiral flow 107, but the flow of the introduced particulate matter-containing gas 5 is not provided.
  • a plate-like flow path regulating member 237 is provided as a gas flow conversion member that regulates the path.
  • the plate-like flow path regulating member 237 blocks the flow of the particulate matter-containing gas 5 flowing into the introduction portion 8 and moving in the longitudinal direction of the insulating tube 100, and the gas flow is reduced to the plate-like flow path regulating member.
  • 237 is a member that acts to flow into the silent discharge area A2 from the periphery of 237.
  • the plate-like flow path regulating member 237 preferably has a disk shape when the discharge device 25 has a circular cross-sectional shape, and preferably has a square shape when the discharge device 25 has a square shape.
  • the plate-like flow path regulating member 237 is supported by a column 238 extending from the center of a planar mesh-like positive electrode 221 described later.
  • the peripheral edge of the plate-shaped flow path regulating member 237 supports the upstream side of the cylindrical mesh-shaped positive electrode 233.
  • the downstream side of the cylindrical mesh-shaped positive electrode 233 is supported by an insulating tube 241 that constitutes the discharge unit 9.
  • the insulating tube 241 is fixed to the insulating tube 100 via a coaxial ring 242 fitted on the outer periphery thereof.
  • the material of the plate-shaped flow path regulating member 237 is not particularly limited, as shown in FIG. 7, a cylindrical mesh-shaped positive electrode 233 and a planar mesh-shaped positive electrode 221 disposed on the upstream side are electrically connected. In the case of connection, it may be made of metal such as stainless steel. At this time, the support 238 is also made of a conductive material. On the other hand, when a positive voltage is applied to the planar mesh-shaped positive electrode 221 by separate wiring, or the planar mesh-shaped positive electrode 221 does not act as an electrode, the plate-shaped channel regulating member 237 is supported from the upstream side. When it is used as a simple support member, it may be a metal mesh or an insulating mesh. At this time, the support 238 is made of an insulating material.
  • a planar mesh-like positive electrode 221 as the charging device 21 is orthogonal to the flow path of the particulate matter-containing gas 5. Is provided.
  • the planar mesh-shaped positive electrode 221 is supported so that the periphery thereof is fitted into the upstream end portion of the cylindrical dielectric 234.
  • a column 238 for supporting the plate-like flow path regulating member 237 disposed on the downstream side thereof is provided at the center of the planar mesh-like positive electrode 221.
  • the planar mesh-shaped positive electrode 221 brings the particulate matter-containing gas 5 into contact with each other and applies a negative charge 22 to all or part of the particulate matter 6 contained in the particulate matter-containing gas 5. A member to be charged. Therefore, it is preferable that a positive voltage is applied from the power supply device 4. Since negative space charges (negative charges) 222 are collected on the planar mesh-shaped positive electrode 221 to which a positive voltage is applied, the particles contained in the particulate matter-containing gas 5 passing through the planar mesh-shaped positive electrode 221.
  • the particulate matter 6 has a negative charge 222 attached thereto, becomes a negatively charged particulate matter 6 ′, and flows downstream.
  • the particulate matter 6 ′ that has flowed downstream is regulated by the plate-like flow path regulating member 237 and flows into the silent discharge region A ⁇ b> 2 so as to be electrically attracted to the cylindrical mesh-shaped positive electrode 233.
  • the planar mesh-like positive electrode 221 may have a mesh structure having an opening through which, for example, 2 ⁇ m of the particulate matter 6 can freely pass without resistance.
  • the material is not particularly limited, but is preferably a heat-resistant metal mesh.
  • a tungsten mesh or a tungsten alloy mesh is preferably used, but is not limited thereto.
  • a tungsten mesh having a wire diameter of 0.4 mm and 20 mesh / inch can be exemplified.
  • the discharge device 25 As shown in FIG. 7, the discharge device 25 according to the second embodiment is provided in an insulating tube 100 connected to the downstream side of the charging device 11, and all or part of the particulate matter is charged with a negative charge 222.
  • This is a device for introducing 6 'into the silent discharge region A2 generated between the positive electrode 233 and the negative electrode 235 to increase the holding time and burn it.
  • a cylindrical negative electrode 235 provided with a predetermined flow path 243 provided on the inner wall side of the insulating tube 100, a cylindrical dielectric 234 provided inside the negative electrode 235, and the dielectric
  • a cylindrical mesh-like positive electrode 233 is provided on the inner side of 234 with a predetermined gap (for example, a range of about 0.5 mm to 3 mm, though not limited thereto).
  • the cylindrical negative electrode 235 is provided on the inner wall side of the insulating tube 100 with a predetermined distance from the inner wall (not particularly limited, for example, in a range of about 1 mm to 10 mm). Any metal body made of stainless steel of about 5 mm may be used. In the example of FIG. 7, the negative electrode 235 is provided in close contact with the outer surface of a cylindrical dielectric 234 described below. A gas flow channel (inner wall channel) 243 is formed between the negative electrode 235 and the insulating tube 100.
  • the cylindrical dielectric 234 is provided inside the cylindrical negative electrode 235.
  • the dielectric 234 is fixed to the insulating tube 100 with a plurality of support bolts 236.
  • the dielectric 234 is a ceramic dielectric having a thickness of, for example, about 1 mm, and is preferably made of a material such as alumina.
  • the dielectric 234 fixed in the insulating tube with the support bolts 236 forms a space enough to form the inner wall flow path 243 with the insulating tube 100.
  • the positive electrode 233 having a cylindrical mesh is preferably a heat-resistant metal fiber mesh (for example, a wire diameter (20 ⁇ m), a porosity of 80%, and a thickness of 1.3 mm).
  • a heat-resistant metal fiber mesh for example, a wire diameter (20 ⁇ m), a porosity of 80%, and a thickness of 1.3 mm.
  • stainless steel is preferably used, but is not limited thereto.
  • the opening of the mesh may be of a size that can be captured without easily passing, for example, 0.1 ⁇ m of the particulate matter 6 ′.
  • the cylindrical mesh positive electrode 233 can capture the particulate matter 6 ′, the particulate matter 6 ′ guided to the silent discharge region A2 by the disc-shaped flow path regulating member 237 is captured by the mesh structure. In the meantime, sufficient discharge energy is given to the particulate matter 6 '. As a result, efficient combustion can be realized. After combustion, it becomes combustion gas 250, passes through the mesh, and is discharged from the discharge portion 9 as exhaust gas 151.
  • the predetermined gap (not particularly limited, for example, between the tubular dielectric 234 provided with the tubular negative electrode 235 on the insulating tube 100 side and the insulating tube 100, for example,
  • a flow path 243 having a range of about 1 mm to 10 mm.
  • the gas flow flowing through the inner wall surface flow path 243 is different from the gas flow guided to the silent discharge region A2 by the plate-shaped flow path regulating member 237.
  • the particulate matter-containing gas 5 flowing into the inner wall surface flow path 243 makes a U-turn (turns back) at the downstream end (U-turn portion, turn-back portion) 244 of the tube structure, and reaches the silent discharge region A2. .
  • the particulate matter 6 in the particulate matter-containing gas 5 reaching the silent discharge region A2 is captured without passing through the metal fiber mesh structure of the cylindrical mesh-shaped positive electrode 233, the particulate matter 6 is discharged while being captured. It will burn by receiving energy.
  • the particulate matter combustion apparatus 10B has such a double-pipe structure having a two-route flow path, so that the particulate metal combustion apparatus 10B is particulate from both the upstream side and the downstream side of the positive electrode 233 of the cylindrical metal fiber mesh. Since the flow path for guiding the substance is provided, the particulate substance can be deposited on the upper surface of the metal fiber mesh 233 without waste in the longitudinal direction of the cylindrical mesh-shaped positive electrode 233, and can be burned by applying discharge energy.
  • the particulate matter 6 in the gas flow adheres to the negative air charge 222 collected around the positive electrode 221 having a planar mesh shape.
  • the particulate matter 6 ′ with the negative air charge 222 attached is guided to the silent discharge area A 2 extending in the longitudinal direction of the tube 100 by the plate-like flow path regulating member 237, and is sucked by the Coulomb force of the silent discharge area A 2.
  • the holding time in the silent discharge area A2 increases. As a result, a lot of discharge energy can be obtained and burned efficiently.
  • the particulate matter combustion apparatus 10 ⁇ / b> C of the third embodiment is a planar metal fiber in which particulate matter 6 ′ charged to a negative space charge 322 among the particulate matter is provided on the downstream side. It is configured to increase the deposition effect on the negative electrode 331 and increase the combustion effect by the effect of electrostatic repulsion to the negative electrode 331 of the mesh and the trap effect of the planar metal fiber mesh constituting the negative electrode 331. It is a thing. Specifically, as shown in FIG. 8, an introduction unit 8, a charging device 31, a discharge device 35, a discharge unit 9, and a power supply device 4 are provided in that order toward the downstream side. In the example of FIG. 8, the charging device 31 is provided in the introduction portion 8, and the discharging device 35 is provided in the insulating rectangular column tube 100.
  • the introduction unit 8 is connected to the exhaust port 2 of the internal combustion engine 1 and introduces the particulate matter-containing gas 5 discharged from the exhaust port 2, but has a smaller diameter than the insulating tube 100. And is connected to the upstream side of the insulating tube 100.
  • the discharge unit 9 is connected to the insulating tube 100 and discharges the gas 151 after combustion.
  • the discharge unit 9 is composed of a tube 341 having a smaller diameter than the insulating tube 100, and the insulating rectangular column tube. 100 is connected to the downstream side.
  • the connection mode of the pipes 301 and 341 with respect to the insulating rectangular column pipe 100 is not particularly limited.
  • the upstream side is the engine 1 side shown in FIG. 1, and the downstream side is the muffler 3 side shown in FIG. Moreover, it is preferable that both the pipes 301 and 341 have insulation and heat resistance like a ceramic pipe. Further, the introduction portion 8 is not provided with a gas flow conversion member as shown in FIGS. 3, 4, and 7.
  • a flat mesh-like positive electrode 321 as the charging device 31 is provided on the downstream side of the introduction unit 8 so as to be orthogonal to the flow path of the particulate matter-containing gas 5.
  • the planar mesh-shaped positive electrode 321 is attached to the inner surface of the tube 301 by an attachment member (not shown).
  • the planar mesh-shaped positive electrode 321 is brought into contact with the particulate matter-containing gas 5 so that all or part of the particulate matter 6 contained in the particulate matter-containing gas 5 is negatively charged. Is a member for charging Therefore, it is preferable that a positive voltage is applied from the power supply device 4. Since negative space charges (negative charges) 322 gather on the planar mesh-shaped positive electrode 321 to which a positive voltage is applied, the particles contained in the particulate matter-containing gas 5 passing through the planar mesh-shaped positive electrode 321. Part of the particulate matter 6 has a negative charge 322 attached thereto, and becomes a negatively charged particulate matter 6 ′ that flows downstream.
  • the planar mesh-shaped positive electrode 321 may have a mesh structure having an opening through which, for example, a 2 ⁇ m particulate material 6 can freely pass without resistance.
  • the material is not particularly limited, but is preferably a heat-resistant metal mesh.
  • a tungsten mesh or a stainless steel mesh having a wire diameter of 0.4 mm and 20 mesh / inch is preferably employed, but is not limited thereto.
  • the distance between the positive electrode 321 and the negative electrode 331 provided on the downstream side of the positive electrode 321 is not particularly limited, but may usually be in the range of about 10 mm to 100 mm.
  • the discharge device 35 As shown in FIG. 8, the discharge device 35 according to the third embodiment is provided in an insulating quadrangular column tube (regular quadrangular column tube) 100 connected to the introduction portion 8. Then, a flat metal fiber mesh negative electrode 331 provided so as to be orthogonal to the flow path in the insulating rectangular column tube 100 and a predetermined interval (on the upstream side of the flat metal fiber mesh negative electrode 331 (although not particularly limited, for example, a dielectric-covered positive electrode 330 is provided so as to form a silent discharge region A3 facing each other with a gap of 0.5 mm to 3 mm, for example. Instead of the dielectric-coated positive electrode 330, a metal mesh coated with a dielectric may be used.
  • the discharge device 35 introduces particulate matter 6 ′, all or part of which is charged with a negative charge 322, into the silent discharge region A 3 generated between the dielectric-coated positive electrode 330 and burns the deposited particles. Can be made.
  • the dielectric-coated positive electrode 330 is a composite composed of a rod-shaped positive electrode 332 and a dielectric 333 that covers the periphery of the positive electrode 332.
  • the rod-shaped dielectric-covered positive electrodes 330 are equidistant (for example, the pitch is 2 to 6 mm and the gap is 0.5 mm to 3 mm), and have a certain distance from the negative electrode 331 of the planar metal fiber mesh. It is arranged in a strip shape so as to keep. All the dielectric-coated positive electrodes 330 are electrically connected. Particulate matter 6 ′ on the gas flow easily passes through the strip-shaped dielectric-coated positive electrode 330.
  • a dielectric-coated mesh electrode may be used instead of the dielectric-coated positive electrode.
  • the rod-shaped positive electrode 332 constituting the dielectric-coated positive electrode 330 is preferably a heat-resistant metal.
  • a tungsten rod or a stainless steel rod is preferably used, but is not limited thereto.
  • the diameter can illustrate a thing about 1 mm, for example.
  • a ceramic coated wire diameter of 2 mm, a metal wire diameter of 0.4 mm, and 10 mesh / inch can be exemplified.
  • Examples of the dielectric 333 covering the rod-like positive electrode 332 include ceramics.
  • the rod-shaped positive electrode 332 can be coated by a sputtering method or the like. Although the rod-shaped positive electrode 332 is covered here, a ceramic tube may be used as the dielectric 333 and the rod-shaped positive electrode 332 may be inserted into the ceramic tube.
  • the planar metal fiber mesh negative electrode 331 is preferably a heat-resistant metal mesh (for example, a wire diameter of 20 ⁇ m, a porosity of 83%, and a thickness of 1.3 mm).
  • a tungsten mesh or a tungsten alloy mesh is preferably used, but is not limited thereto.
  • the opening of the mesh may be of a size that can be captured without easily passing, for example, 0.1 ⁇ m of the particulate matter 6 ′.
  • the planar metal fiber mesh negative electrode 331 is held in an insulating rectangular column tube 100 by a holding member 336 as shown in the figure.
  • the negative electrode 331 of the planar metal fiber mesh can capture the particulate matter 6 ′, the particulate matter 6 ′ guided to the silent discharge region A3 is captured by the mesh structure while the particulate matter 6 ′ is captured. Sufficient discharge energy is given to 6 '. As a result, efficient combustion can be realized. After combustion, it becomes combustion gas 350, passes through the mesh, and is discharged from the discharge unit 9 as exhaust gas 151.
  • the negatively charged particulate matter 6 ′ is electrostatically attracted to the dielectric-coated positive electrode 330, passes through in a decelerated state, and the silent discharge region A3.
  • the particulate matter 6 ′ reaching the silent discharge region A3 is electrostatically repelled by the negative electrode 331 of the planar metal fiber mesh, the particulate matter 6 ′ is further decelerated in the silent discharge region A3, and the effect of depositing on the mesh is increased. Increase.
  • the negative electrode 331 of the planar metal fiber mesh is formed of a mesh that does not allow the particulate matter 6 to pass through regardless of the charge, the particulate matter 6 ′ is deposited on the mesh (reference numeral 335). reference).
  • the particulate matter 6 ′ is deposited on the mesh (reference numeral 335). reference).
  • the particulate matter combustion apparatus 10C As described above, in the particulate matter combustion apparatus 10C according to the third embodiment, particles are deposited on the mesh due to the trapping effect of the planar metal fiber mesh, but a part of the particulate matter 6 in the gas flow is planar mesh-like.
  • the negative air charge 322 collected around the positive electrode 321 is attached.
  • the particulate matter 6 ′ attached with the negative air charge 322 proceeds as it is, passes through the dielectric-covered positive electrode 330, is guided to the silent discharge region A 3, and is repelled by the electrostatic force of the silent discharge region A 3.
  • the particulate matter 6 ′ can be efficiently burned by obtaining a large amount of discharge energy by being deposited on the negative electrode 331 of the planar metal fiber mesh constituting the silent discharge region A3 by these two effects. .
  • Insulating tube circular tube, square tube, ceramic tube
  • Inlet 103
  • Outlet 104 Channel
  • Propeller shaft 106
  • Blade 107
  • Spiral flow 121
  • Ring-shaped positive electrode 122
  • Negative air charge (negative charge) 124
  • Support Member 125
  • Ring Member 131
  • Cylindrical Negative Electrode 132
  • Cylindrical Dielectric 133
  • Cylindrical Metal Fiber Mesh Positive Electrode 134 Insulating Tube 135 Particulate Matter
  • High Voltage High Frequency Generator 142
  • Power Supply 151 After Combustion Treatment Exhaust gas

Abstract

【課題】内燃機関から排出される粒子状物質を効率的に燃焼することができ、装置構成が簡単で大型化及び高重量化とならない粒子状物質燃焼装置及び方法を提供する。 【解決手段】内燃機関の排気口から排出された粒子状物質含有ガス(5)を導入する導入部(8)と、導入部(8)の下流側に設けられ、粒子状物質含有ガス(5)を接触させて粒子状物質(6)の全部又は一部に負電荷(122)を帯電させる帯電装置(11)と、帯電装置(11)の下流側に連設された絶縁管(100)内に設けられ、全部又は一部が負電荷を帯電した粒子状物質(6')を、正電極(133)と負電極(131)との間に生じさせた無声放電領域(A1)に導入して燃焼させる放電装置(15)と、放電装置(15)の下流側の絶縁管(100)に連設され、燃焼後の気体を排出する排出部(9)と、帯電装置(11)と放電装置(15)に電場を印加する電源装置(4)とを有する。

Description

粒子状物質燃焼装置及び方法
 本発明は、内燃機関から排出される粒子状物質を効率的に燃焼するための粒子状物質燃焼装置及び方法に関する。
 内燃機関から排出される排気ガス中の粒子状物質(PM:particulate matter)を除去する技術が種々研究されている。例えば特許文献1には、セラミックスのハニカムフィルタで粒子状物質を捕獲し、捕獲した粒子状物質が予め設定した許容値を超えたときに昇温して燃焼除去する技術が提案されている。また、特許文献2では、特許文献1で用いたセラミックスのハニカムフィルタが高価で破損し易く取り扱いが難しいという難点を解決するとともに、粒子状物質の燃焼除去に要する消費電力を低減するため、セラミックス繊維製の通気性フィルタと断熱材との間に燃焼用ヒータを配置し、粒子状物質含有ガスの流入を抑制したタイミングでヒータ加熱を行って燃焼する技術が提案されている。
 上記特許文献1,2の技術は、耐熱性フィルタで粒子状物質を捕獲し、任意のタイミングで捕獲した粒子状物質を加熱燃焼させて除去する技術であるため、急激な温度変化と局部加熱等によるフィルタ寿命の低下が懸念されている。こうした問題に対し、特許文献3では、粒子状物質を捕獲するフィルタに対して急激な温度変化や局部加熱を起こさせないで加熱分解する手段と、燃え残りの粒子状物質をオゾンガスで酸化する酸化手段とを併用する技術が提案されている。
 また、特許文献4では、ガス流路中に酸化マンガン担持基材を配置して吸着した粒子状物質を酸化分解するとともに、さらにOHラジカル、酸素原子、酸素イオン、オゾンガス等の活性種を共存させて粒子状物質の酸化分解を促進させる技術が提案されている。この技術では、プラズマ放電装置での放電時に発生した電子によって粒子状物質が帯電して酸化マンガン担持基板への付着が促進され、酸化マンガンの触媒作用による粒子状物質の酸化分解を効果的に行うことができ、さらに、プラズマ放電装置で発生させたOHラジカルやオゾンそれ自体が粒子状物質を酸化分解するので、粒子状物質の酸化除去を促進できるとされている。
特開2005-337153号公報 特開2008-64015号公報 特開2007-187136号公報 特開2009-50840号公報
 しかしながら、上記特許文献3の技術は、粒子状物質を捕獲して加熱分解するフィルタと、オゾンガス等の酸化分解ガスの発生手段とを備えるものであり、特許文献4の技術は、吸着した粒子状物質を加熱して酸化分解する触媒基材と、オゾンガス等の酸化分解ガスの発生手段とを備えるものであり、いずれもヒータ等の加熱装置と酸化分解ガス発生装置とを必要とする。そのため、装置構成が複雑で大型化・高重量化し、省エネルギーの観点から車両等への搭載が問題になる。また、フィルタは目詰まりと加熱劣化等の問題があり、酸化触媒も触媒寿命や加熱劣化等の問題がある。
 また、従来技術は、いずれもヒータ等で加熱分解する技術を含むものであるが、ヒータ加熱では高い燃焼効率が得られず、それ故、燃焼のタイミングを制御したり、ガスの流入を制御したり、オゾン発生装置等で燃焼を補完したりしているのである。
 本発明は、上記課題を解決するためになされたものであって、その目的は、内燃機関から排出される粒子状物質を効率的に燃焼することができ、装置構成が簡単で大型化及び高重量化とならない粒子状物質燃焼装置及び方法を提供することにある。
 本発明者は、粒子状物質を無声放電で燃焼させる際に、無声放電による燃焼を効率的に行うために、粒子状物質が放電エネルギーを受け取る時間を長くするための手段を開発したことにより、効率的な燃焼を実現でき、装置構成が簡単で大型化及び高重量化とならない装置構成を見出し、本発明を完成させた。
 すなわち、上記課題を解決するための本発明に係る粒子状物質燃焼装置は、内燃機関の排気口に連結して該排気口から排出された粒子状物質含有ガスを導入する導入部と、前記導入部の下流側に設けられ、前記粒子状物質含有ガスを接触させて該粒子状物質の全部又は一部に負電荷を帯電させる帯電装置と、前記帯電装置の下流側に連設された絶縁管内に設けられ、全部又は一部が負電荷を帯電した前記粒子状物質を、正電極と負電極との間に生じさせた無声放電領域に導入し且つ保持時間を増して燃焼させる放電装置と、前記放電装置の下流側の前記絶縁管に連設され、燃焼後の気体を排出する排出部と、前記帯電装置と前記放電装置に電場を印加する電源装置と、を有することを特徴とする。
 この発明によれば、内燃機関から排出された粒子状物質含有ガスが含む粒子状物質の全部又は一部に帯電装置で負電荷を帯電させ、負電荷を帯電した粒子状物質を下流側の無声放電領域に導入して構成電極に電気的に吸引又は反発させて減速し、その粒子状物質の無声放電領域内での保持時間を増した状態で燃焼させるので、無声放電領域での燃焼効率を高めることができる。その結果、効率的な燃焼を実現でき、しかも簡単な装置構成により装置の小型化と低重量化を実現できる。
 本発明に係る粒子状物質燃焼装置は、上記技術的特徴を共有する以下の3つの形態をとる。
 第1形態の粒子状物質燃焼装置は、前記導入部が、前記粒子状物質含有ガスの流れをスパイラル流に変えるガス流変換部材を有し、前記帯電装置が、前記スパイラル流が流れる管内周に沿って設けられたリング状の正電極を有し、前記放電装置が、前記絶縁管の内壁に設けられた筒状の負電極と、該負電極の内側に設けられた筒状の誘電体と、該誘電体の内側に所定の間隔を空けて設けられた筒メッシュ状の正電極とを有する、ように構成する。
 この第1形態の発明では、ガス流変換部材でスパイラル流に変換されたガス流中の粒子状物質は、リング状の正電極の周りに集まった負の空気電荷(負電荷)を付着する。負の空気電荷を付着した粒子状物質は、スパイラル状のガス流に乗って管内壁面近傍を流れる間に、筒メッシュ状の正電極に静電力で引かれて無声放電領域に入り込む。無声放電領域に入り込んだ粒子状物質の流れは、管の長手方向に延びる無声放電領域のクーロン力で減速する。その結果、多くの放電エネルギーを得て効率的に燃焼することができる。
 第2形態の粒子状物質燃焼装置は、前記帯電装置が、前記粒子状物質含有ガスの流路に直交するように設けられた平面メッシュ状の正電極を有し、前記放電装置が、前記絶縁管の内壁側に該内壁と所定の間隔を空けて設けられた筒状の負電極と、該負電極の内側に設けられた筒状の誘電体と、該誘電体の内側に所定の間隔を空けて設けられた筒メッシュ状の正電極とを有し、且つ、前記平面メッシュ状の正電極で帯電した粒子状物質を前記筒状の誘電体と前記筒メッシュ状の正電極との間の無声放電領域に導くガス流変換部材を有する、ように構成する。
 この第2形態の発明では、ガス流中の粒子状物質は、平面メッシュ状の正電極の周りに集まった負の空気電荷を付着する。負の空気電荷を付着した粒子状物質は、ガス流変換部材により管の長手方向に延びる無声放電領域に導かれ、無声放電領域のクーロン力で減速する。その結果、多くの放電エネルギーを得て効率的に燃焼することができる。
 第3形態の粒子状物質燃焼装置は、前記帯電装置が、前記粒子状物質含有ガスの流路に直交するように設けられた平面メッシュ状の正電極を有し、前記放電装置が、前記流路に直交するように設けられた平面メッシュ状の負電極と、該平面メッシュ状の負電極の上流側に所定の間隔を空けて対向して設けられた正電極とを有し、該間隔が無声放電領域を形成する、ように構成する。
 この第3形態の発明では、ガス流中の粒子状物質は、平面メッシュ状の正電極の周りに集まった負の空気電荷を付着する。負の空気電荷を付着した粒子状物質は、正電極を通過して無声放電領域に導入するが、平面メッシュ状の負電極により電気的に反発して減速する。その結果、多くの放電エネルギーを得て効率的に燃焼することができる。
 上記課題を解決するための本発明に係る粒子状物質燃焼方法は、内燃機関から排出された粒子状物質含有ガスが含む粒子状物質の全部又は一部に負電荷を帯電させ、負電荷を帯電した粒子状物質を電気的に吸引又は反発させて減速し、前記粒子状物質を無声放電領域に保持する時間を増し、該無声放電領域での放電エネルギーの印加時間を延ばすことを特徴とする。
 この発明によれば、粒子状物質を、無声放電領域内での保持時間を増した状態で燃焼させるので、無声放電領域での燃焼効率を高めることができる。その結果、効率的な燃焼を実現できる。
 第1形態の粒子状物質燃焼方法は、前記負電荷に帯電した粒子状物質が、下流側に設けられたメッシュ状の正電極に静電的に吸引されることにより、前記無声放電領域での保持時間が増すことに特徴を有する。
 第2形態の粒子状物質燃焼方法は、前記負電荷に帯電した粒子状物質が、下流側に設けられて該粒子状物質を捕獲できるメッシュ状の正電極に吸引し且つ該正電極上に堆積することにより、前記無声放電領域での保持時間が増すことに特徴を有する。
 第3形態の粒子状物質燃焼方法は、前記負電荷に帯電した粒子状物質が、下流側に設けられたメッシュ状の負電極に静電的に反発し且つ該負電極上に堆積することにより、前記無声放電領域での保持時間が増すことに特徴を有する。
 本発明に係る粒子状物質燃焼装置及び方法によれば、内燃機関から排出された粒子状物質含有ガスが含む粒子状物質の全部又は一部に帯電装置で負電荷を帯電させ、負電荷を帯電した粒子状物質を無声放電領域に導入して構成電極に電気的に吸引又は反発させて減速し、その粒子状物質の無声放電領域内での保持時間を増した状態で燃焼させるので、無声放電領域での燃焼効率を高めることができる。その結果、効率的な燃焼を実現でき、しかも簡単な装置構成により装置の小型化と低重量化を実現できる。
本発明に係る粒子状物質燃焼装置の配置図である。 本発明に係る粒子状物質燃焼装置の第1実施形態を示す模式的な構成図である。 ガス流変換部材の一例を示す模式的な構成図である。 ガス流変換部材の他の一例を示す模式的な構成図である。 リング状の正電極の一例を示す構成図である。 放電装置の一例を示す模式的な構成図である。 本発明に係る粒子状物質燃焼装置の第2実施形態を示す模式的な構成図である。 本発明に係る粒子状物質燃焼装置の第3実施形態を示す模式的な構成図である。 導入部側から見た放電装置の一例を示す模式的な構成図である。
 次に、本発明の実施の形態について説明する。なお、本発明は、その技術的思想を含む範囲を包含し、以下に示す説明及び図面等に限定されない。
 本発明の粒子状物質燃焼装置及び方法は、粒子状物質を無声放電で燃焼させる際に、無声放電での燃焼を効率的に行うために、放電エネルギーを受け取る時間を長くするための手段を採用してなるものである。なお、「無声放電」とは、一定の間隔をおいた平板の片方又は両方の電極を絶縁体(誘電体)で覆い、交流電圧をかけた場合に起こる放電のことであり、誘電体バリア放電ともいう。電極が絶縁体で覆われているために電極に電荷が流れ込むことができず、大きな電流が流れない。そのため、火花放電やコロナ放電のように放電時に音がせず、そのため無声放電と呼ばれる。
 その基本的な構成は、内燃機関から排出された粒子状物質含有ガスが含む粒子状物質の全部又は一部に負電荷を帯電させる手段と、負電荷を帯電した粒子状物質を電気的に吸引又は反発させて減速し、その粒子状物質を無声放電領域に保持する時間を増す手段とを有している。こうした手段により、粒子状物質に対し、無声放電領域での放電エネルギーの印加時間を延ばすことができるので、粒子状物質を、無声放電領域内での保持時間を増した状態で燃焼させることができる。その結果、無声放電領域での燃焼効率を高めることができ、効率的な燃焼を実現できるのである。
 本発明に係る粒子状物質燃焼装置10は、図1に示すように、内燃機関(エンジン)1の排気口2に連結するマフラー3(例えばSUS製)の途中に設けられるものであって、通常、図1及び図2等に示すような導入部8と排出部9とを有しており、その導入部8が内燃機関1の排気口2に連結し、排出部9がマフラー3に連結して設けられる。粒子状物質燃焼装置10は、エンジン1からの余熱も有効に利用したいので、図1に示すように、エンジン1の近傍に接続されていることが好ましい。なお、図1中の符号4は、無声放電を行う放電装置に電圧を印加するための電源装置である。
 具体的な装置構成としては、図2、図7及び図8に示すように、内燃機関1の排気口2に連結してその排気口2から排出された粒子状物質含有ガス5を導入する導入部8と、導入部8の下流側に設けられ、その粒子状物質含有ガス5を接触させてその粒子状物質含有ガス5に含まれる粒子状物質6の全部又は一部に負電荷を帯電させる帯電装置(11,21,31)と、帯電装置(11,21,31)の下流側に連設された絶縁管100内に設けられ、全部又は一部が負電荷を帯電した粒子状物質6’を、正電極と負電極との間に生じさせた無声放電領域(A1,A2,A3)に導入して保持時間を増して燃焼させる放電装置(15,25,35)と、放電装置(15,25,35)の下流側の絶縁管100に連設され、燃焼後のガス7を排出する排出部9と、帯電装置(11,21,31)と放電装置(15,25,35)に電場を印加する電源装置4と、を有している。
 本発明は、負電荷を帯電した粒子状物質6’を電気的に吸引又は反発させて減速する態様として第1~第3の3つの形態に大別できる。
 第1形態の粒子状物質燃焼装置及び方法は、図2に示すように、負電荷に帯電した粒子状物質6’が、下流側に設けられた筒メッシュ状の正電極133に静電的に吸引されて滞留することにより、その無声放電領域A1での保持時間が増すように構成したものである。
 第2形態の粒子状物質燃焼装置及び方法は、図7に示すように、負電荷に帯電した粒子状物質6’が、下流側に設けられて該粒子状物質6’を捕獲できる筒メッシュ状の正電極233に吸引し且つ該正電極233上に堆積することにより、その無声放電領域A2での保持時間が増すように構成したものである。
 第3形態の粒子状物質燃焼装置及び方法は、図8に示すように、負電荷に帯電した粒子状物質6’が、下流側に設けられた平面メッシュ状の負電極331に静電的に反発し且つ該負電極331上に堆積することにより、その無声放電領域A3での保持時間が増すように構成したものである。
 こうした本発明の粒子状物質燃焼装置及び方法によれば、内燃機関1から排出された粒子状物質含有ガス5が含む粒子状物質6の全部又は一部に帯電装置(11,21,31)で負電荷を帯電させ、負電荷を帯電した粒子状物質6’を無声放電領域(A1,A2,A3)に導入して構成電極(13,23,33又は14,24,34)に電気的に吸引又は反発させて減速させる。その結果、その粒子状物質6’の無声放電領域(A1,A2,A3)内での保持時間が増し、その状態で燃焼させることができる。こうした本発明によれば、無声放電領域(A1,A2,A3)での燃焼効率を高めて効率的な燃焼を実現でき、しかも簡単な装置構成により装置の小型化と低重量化を実現できる。
 以下、本発明に係る粒子状物質燃焼装置の代表的な3つの実施形態について、図面を参照しつつ詳しく説明する。
 [第1実施形態]
 第1実施形態の粒子状物質燃焼装置10Aは、図2に示すように、負電荷122に帯電した粒子状物質6’が、下流側に設けられた筒メッシュ状の正電極133に静電的に吸引されて滞留することにより、その無声放電領域A1での保持時間が増すように構成している。具体的には、図2に示すように、導入部8と、帯電装置11と、放電装置15と、排出部9と、電源装置4とを有している。
 粒子状物質燃焼装置10Aは、図2に示すように、導入部8と帯電装置11と放電装置15と排出部9とが絶縁管100内に、下流側に向かってその順で構成されていることが好ましいが、各部を別個の部材として下流側に向かってその順で連結したものであってもよい。粒子状物質燃焼装置10Aは、断熱性と電気絶縁性を有するセラミックス製の絶縁管100を基体として構成されていることが望ましい。なお、本願において、上流側とは内燃機関側又は導入部側のことであり、下流側とはマフラー側又は排出部側のことである。以下、各構成について説明する。
 (導入部)
 導入部8は、図1及び図2に示すように、内燃機関1の排気口2に連結してその排気口2から排出された粒子状物質含有ガス5を粒子状物質燃焼装置10A内に導入するものである。この導入部8は、放電装置15及び帯電装置11を含む絶縁管100(例えばセラミックス管)と一体であることが好ましいが、別部材からなる導入管で導入部8を構成し、絶縁管100に連結したものであってもよい。なお、導入される粒子状物質含有ガス5は、処理対象である粒子状物質6を含んでいる。
 この導入部8は、図3及び図4で例示するように、粒子状物質含有ガス5の流れをスパイラル流107に変えるガス流変換部材101を有している。
 図3は、ガス流変換部材の一例を示す模式的な構成図である。図3(A)は全体構成図であり、図3(B)は上流側から見た図であり、図3(C)は下流側から見た図である。図3に示すガス流変換部材101Aは、複数の捻れた流路104にガス流を通過させることによってスパイラル流107を生じさせるガス流変換部材であり、複数の流入口102と同数の流出口103とを有している。流入口102から入った粒子状物質含有ガス5は、流路104を通過して流出口103から出る際に、スパイラル流107に変換される。流入口102と流出口103の数は特に限定されないが、2つ以上で、3つ又は4つが好ましい。流路104は、流出口103に向かって右回り又は左回りに捻れるようになっており、さらに流出口103が絶縁管100の内壁面に向かうように所定の角度θ(例えば15°~45°)で流路104が設けられている。
 図3の例では、粒子状物質含有ガス5は4つの流入口102で4つのガス流に分けられ、流路104を通過して流出口103からスパイラル流107となって流出する。流入口102と流出口103はそれぞれ等間隔で配置されている。なお、この部材の材質は、耐熱性と耐食性を有するものが好ましい。こうした原理を有するガス流変換部材101Aであれば、図3に示す例に限定されない。
 図4は、ガス流変換部材の他の一例を示す模式的な構成図である。図4に示すガス流変換部材101Bは、プロペラ軸105に取り付けられた羽根106の回転によってスパイラル流107を生じさせるガス流変換部材である。プロペラ軸105は、自由回転するものであってもよいし、駆動回転するものであってもよい。通常は、駆動回転する装置が採用される。粒子状物質含有ガス5は、プロペラ軸105及び羽根106の回転によってスパイラル流107に変換される。羽根106の数は特に制限はないが、通常、3つか4つである。なお、この部材の材質も耐熱性と耐食性を有するものが好ましい。
 (帯電装置)
 帯電装置11は、導入部8の下流側に設けられ、その粒子状物質含有ガス5を接触させてその粒子状物質含有ガス5に含まれる粒子状物質6の全部又は一部に負の空気電荷122(単に「負電荷」ともいう。)を帯電させるための装置である。第1実施形態では、図2及び図5に示すように、スパイラル流107が流れる管内周に沿って設けられたリング状の正電極121が好ましく用いられる。リング状の正電極121は、具体的には、管の長手方向に直交する管内周面から所定の間隔を空けて設けられている。図5に示すリング状の正電極121は、リング状の細い金属電極体を4つの支持部材124でリング部材125に保持した態様である。その金属電極体には、電源装置4から正の高電圧を印加する。なお、リング状の正電極121となる金属電極体は、通常、SUS(ステンレススチール)等で構成され、1mm程度の導体径のものが用いられるが特に限定されない。
 リング状の正電極121の周りには負電荷122が集まるので、スパイラル流107となって管内壁に沿って流れる粒子状物質含有ガス5は正電極121に接触し、その結果、粒子状物質含有ガス5中の粒子状物質6は負電荷122を付着し、負に帯電した粒子状物質6’はスパイラル流107として管内を流れることになる。なお、スパイラル流107は粒子状物質6’に遠心力を与えるので、粒子状物質6’には管の内壁方向に向かう力が加わり、管の内壁沿って進むことになる。
 (放電装置)
 放電装置15は、図2及び図6に示すように、帯電装置11の下流側に連設された絶縁管100内に設けられ、全部又は一部が負電荷122を帯電した粒子状物質6’を、正電極133と負電極131との間に生じさせた無声放電領域A1に導入して保持時間を増して燃焼させるための装置である。詳しくは、放電装置15は、図6に示すように、絶縁管100の内壁に設けられた筒状の負電極131と、その負電極131の内側に設けられた筒状の誘電体131と、その誘電体131の内側に所定の間隔Gを空けて設けられた筒メッシュ状の正電極133とを有している。
 放電装置15は、耐熱性、断熱性及び絶縁性を有するセラミックス製の絶縁管100内に設けられていることが好ましい。なお、放電装置15のみならず、上述した帯電装置11も同様であり、好ましくは、放電装置15と帯電装置11とは図2に示すように一体の絶縁管100内に設けられていることが好ましい。絶縁管100の内径は特に限定されるものではないが、通常は、内径20~100mm程度の範囲内のものである。
 絶縁管100の内面には、筒状の負電極131が設けられており、その負電極131は、例えば厚さ0.1mm程度のステンレス製の金属体であればよい。この筒状の負電極131の長手方向の両端(上流側端と下流側端)には、絶縁管134,134が設けられている。負電極131は、絶縁管100に密着していてもよいし、図6に示すように少し離して配置してもよい。
 筒状の誘電体132は、上記筒状の負電極131の内側(管の中央側。以下同じ。)に設けられる。この誘電体132は、例えば厚さ1mm程度のセラミックス製の誘電体であり、詳しくは、アルミナ等の材質で構成されていることが好ましい。通常、負電極131に密着して設けられている。
 筒メッシュ状の正電極133は、上記筒状の誘電体132の内側であってその誘電体132との間に例えば約1mm程度の隙間Gを空けて配置されていることが好ましい。正電極133は、粒子状物質6’が進入することができる程度の開口部を持つメッシュ構造体である。その開口部の程度としては、例えば、2μmの粒子状物質6が自由に通過可能な大きさでればよいが、特にその大きさは限定されない。正電極133の材質は特に限定されないが、耐熱性の高いタングステン製メッシュを好ましく用いることができる。例えば、線径0.4mm、20メッシュ/インチのタングステン製メッシュを例示できる。
 負電極131と正電極133との間には、電源装置4から高電圧高周波が印加され、無声放電が起こる。粒子状物質6’は、スパイラル流107に乗って管の内壁近傍を流れるので、管内を真っ直ぐ流れる場合に比べて無声放電領域A1内で放電する作用時間が長くなる。さらに、そのスパイラル流107による遠心力で管の内壁面側を流れる粒子状物質6’は、正電極133のメッシュ開口部を通って無声放電領域A1に入り易いので、無声放電を受けやすい。さらに、粒子状物質6’は負電荷を帯電しているので、正電極133にクーロン力で引き寄せられ、且つ無声放電領域A1内に長く滞留し易い。この滞留により、無声放電の放電エネルギーを長い時間受けることになるので、多くの放電エネルギーによるジュール熱や、粒子状物質6’の燃焼の余熱によってより効率的な燃焼が起こる。
 なお、粒子状物質含有ガス5中に含まれる有毒ガス成分(NOx,SOx)も、無声放電領域A1の高電界で改質除去できる。
 (電源装置)
 電源装置4は、帯電装置11と放電装置15に電場を印加する装置であり、図2及び図6に示すように、高電圧高周波発生器141と電源142とを有している。電源142は、直流電源でも交流電源でもよいし、電池(バッテリー)であってもよい。こうした電源142からは、直流電圧又は交流電圧が高電圧高周波発生器141に送られる。高圧高周波発生器141では、高電圧の高周波電圧又はパルス電圧に変換される。
 高電圧高周波発生器141の正電圧端子を、帯電装置11のリング状の正電極121と放電装置15の筒メッシュ状の正電極133とに接続する。一方、負電圧端子を、筒状の負電極131に接続する。正電圧端子を接続した筒メッシュ状の正電極133と、負電圧端子を接続した筒状の負電極131と間で無声放電が起こる。また、正電圧端子を接続したリング状の正電極12は、負の空気電荷122を引き寄せる。
 (排出部)
 排出部9は、放電装置15の下流側の絶縁管100に連設され、燃焼後のガス151を排出する。ここで、「絶縁管100に連設され」とは、別部材の排出管で排出部を構成して絶縁管100に接続したものであってもよいし(図7及び図8を参照)、絶縁管100と一体のものとして構成され、その下流側の端部を排出部としたもの(図2参照)も含む意味で用いている。燃焼処理された後のガスは、排気ガス151となり、図1に示すように粒子状物質燃焼装置10の下流側に接続されたマフラー3から排気される。
 以上、第1形態の粒子状物質燃焼装置10Aでは、ガス流変換部材101でスパイラル流107に変換されたガス流中の粒子状物質6は、リング状の正電極121の周りに集まった負の空気電荷122を付着する。負の空気電荷122を付着した粒子状物質6’は、スパイラル流107に乗って管内壁面近傍を流れる間に、筒メッシュ状の正電極133にも静電力で引かれて無声放電領域A1に入り込む。無声放電領域A1に入り込んだ粒子状物質6’の流れは、管の長手方向に延びる無声放電領域A1のクーロン力で減速する。その結果、多くの放電エネルギーを得て効率的に燃焼することができる。
 こうした粒子状物質燃焼装置10Aは、エンジン1の排気口2の近くに接続していること、絶縁管100で燃焼部を覆って熱損失を防いでいること、粒子状物質6に負電荷122を与えてクーロン力で無声放電領域A1での保持時間を増していること、及び、高周波又はパルス放電を用いていること、によって、より省電力下での粒子状物質の燃焼を実現するものとなっている。さらに、粒子状物質含有ガス5中に含まれる他の有害物(NOxやSOx)をも分解除去することができる。こうした効率的な燃焼を実現できる本発明の粒子状物質燃焼装置10は、簡単で小型軽量なので、車等への搭載に適している。
 [第2実施形態]
 第2形態の粒子状物質燃焼装置10Bは、図7に示すように、負電荷222に帯電した粒子状物質6’が、下流側に設けられて該粒子状物質6’を捕獲できる筒メッシュ状の正電極233に吸引し且つ該正電極233上に堆積することにより、その無声放電領域A2での保持時間が増すように構成している。具体的には、図7に示すように、導入部8と、帯電装置21と、放電装置25と、排出部9と、電源装置4とを下流側に向かってその順で有している。なお、図7の例では帯電装置21と放電装置25とは絶縁管100内に一体的に構成されているが、必ずしも一体的でなくてもよい。
 導入部8は、第1形態と同様、内燃機関1の排気口2に連結してその排気口2から排出された粒子状物質含有ガス5を導入するが、図7の例では絶縁管100よりも小径の管201で構成され、前記絶縁管100の上流側端部に嵌め込むように接続されている。一方、排出部9も第1形態と同様、絶縁管100に連設されて燃焼後のガス151を排出するが、図7の例では絶縁管100及び管201よりもさらに小径の管241で構成され、前記絶縁管100の下流側端部に同軸リング242を介して嵌め込むように接続されている。この同軸リング242は、後述する無声放電領域A2と内壁面流路243を確保するために重要な部材であり、それらの流路を確保できるだけの径方向幅を持っている。
 なお、上流側とは、図1に示す内燃機関(エンジン)1の側であり、下流側とは図1に示すマフラー3の側である。また、図示の例では排出部9を構成する管241が筒メッシュ状の正電極233の支持部材として機能するように設けられているので、管241は絶縁性であることが好ましい。一方、導入部8を構成する管201は電極との接触がないのでステンレススチール製等の金属管であってもよいが、絶縁管であってもよい。
 この導入部8と排出部9の態様は図示した管接続の例に限定されず、要するに、導入部8を構成する管201は、帯電装置21と放電装置25とを構成する絶縁管100に接続されてさえいればよく、排出部9を構成する管241も、帯電装置21と放電装置25とを構成する絶縁管100に接続されてさえいればよい。図示の例では、管241をより小径なもので構成して、無声放電領域A2と内壁面流路243を確保しているが、それらの確保は必ずしも小径な管241を採用して行う必要はなく、別部材を採用して行ってもよい。
 導入部8には、図3及び図4に示すような粒子状物質含有ガス5をスパイラル流107に変換するガス流変換部材は設けられていないが、導入された粒子状物質含有ガス5の流路を規制するガス流変換部材として、板状の流路規制部材237が設けられている。この板状の流路規制部材237は、導入部8に流入して絶縁管100の長手方向に向かう粒子状物質含有ガス5の流れを堰き止めて、ガス流をその板状の流路規制部材237の周縁から無声放電領域A2に流入させるように作用する部材である。この板状の流路規制部材237の形状は、放電装置25の断面形状が円形の場合には円盤状が好ましく、四角形の場合には正四角形状が好ましい。
 板状の流路規制部材237は、後述する平面メッシュ状の正電極221の中央部から延びる支柱238で支持されている。一方、板状の流路規制部材237の周縁は、筒メッシュ状の正電極233の上流側を支持している。なお、その筒メッシュ状の正電極233の下流側は、排出部9を構成する絶縁管241で支持されている。絶縁管241は、その外周に嵌め込まれた同軸リング242を介して絶縁管100に固定されている。
 板状の流路規制部材237の材質は特に限定されないが、図7に示すように、筒メッシュ状の正電極233と、上流側に配置された平面メッシュ状の正電極221とを電気的に接続する場合には、例えばステンレススチール等の金属製であればよい。このとき、支柱238も導電材で構成される。一方、平面メッシュ状の正電極221に別配線で正電圧を印加する場合や、平面メッシュ状の正電極221を電極として作用させずに、板状の流路規制部材237を上流側から支持するための単なる支持部材として用いる場合には、金属製のメッシュであっても絶縁性のメッシュであってもよい。このとき、支柱238は絶縁材で構成される。
 板状の流路規制部材237の上流側であって導入部8の下流側には、帯電装置21としての平面メッシュ状の正電極221が、粒子状物質含有ガス5の流路に直交するように設けられている。この平面メッシュ状の正電極221は、その周囲が筒状の誘電体234の上流側端部に嵌め込まれるように支持されている。平面メッシュ状の正電極221の中央部には、その下流側に配置される前記板状の流路規制部材237を支持するための支柱238が設けられている。
 平面メッシュ状の正電極221は、上記第1形態と同様、粒子状物質含有ガス5を接触させてその粒子状物質含有ガス5に含まれる粒子状物質6の全部又は一部に負電荷22を帯電させる部材である。そのため、電源装置4から正電圧が印加されていることが好ましい。正電圧が印加された平面メッシュ状の正電極221には、負の空間電荷(負電荷)222が集まるので、その平面メッシュ状の正電極221を通過する粒子状物質含有ガス5に含まれる粒子状物質6は負電荷222を付着し、負に帯電した粒子状物質6’となって、下流側に流れる。下流側に流れた粒子状物質6’は、板状の流路規制部材237で流れが規制され、筒メッシュ状の正電極233に電気的に引き寄せられるようにして無声放電領域A2に流れ込む。
 平面メッシュ状の正電極221は、例えば2μmの粒子状物質6が抵抗なく自由に通過できる開口を持つメッシュ構造であればよい。材質は特に限定されないが、耐熱性の金属メッシュであることが好ましい。例えばタングステン製メッシュやタングステン合金製メッシュが好ましく採用されるが、これらに限定されない。例えば、線径0.4mm、20メッシュ/インチのタングステン製メッシュを例示できる。
 第2形態での放電装置25は、図7に示すように、帯電装置11の下流側に連設された絶縁管100内に設けられ、全部又は一部が負電荷222を帯電した粒子状物質6’を、正電極233と負電極235との間に生じさせた無声放電領域A2に導入して保持時間を増して燃焼させるための装置である。詳しくは、絶縁管100の内壁側に所定の流路243を空けて設けられた筒状の負電極235と、その負電極235の内側に設けられた筒状の誘電体234と、その誘電体234の内側に所定の間隔(特に限定されないが、例えば0.5mm~3mm程度の範囲)を空けて設けられた筒メッシュ状の正電極233とを有している。
 筒状の負電極235は、絶縁管100の内壁側にその内壁と所定の間隔(特に限定されないが、例えば1mm~10mm程度の範囲)を空けて設けられたものであって、例えば厚さ0.5mm程度のステンレス製の金属体であればよい。負電極235は、図7の例では、下記の筒状の誘電体234の外面に密着して設けられている。なお、負電極235と絶縁管100との間に、ガス流の流路(内壁面流路)243が形成されている。
 筒状の誘電体234は、上記筒状の負電極235の内側に設けられる。この誘電体234は、複数の支えボルト236で絶縁管100に固定されている。また、誘電体234は、例えば厚さ1mm程度のセラミックス製の誘電体であり、詳しくは、アルミナ等の材質で構成されていることが好ましい。支えボルト236で絶縁管内に固定された誘電体234は、絶縁管100との間で、内壁面流路243を形成できるだけの空間を作っている。
 円筒状メッシュの正電極233は、耐熱性の金属繊維メッシュ(例えば線径(20μm)、空隙率80%、厚さ1.3mm)であることが好ましい。例えばステンレス製が好ましく採用されるが、これらに限定されない。メッシュの開口は、例えば0.1μmの粒子状物質6’を容易に通過させずに捕獲できる大きさであればよい。
 この円筒状メッシュの正電極233は粒子状物質6’を捕獲できるので、円板状の流路規制部材237によって無声放電領域A2に導かれた粒子状物質6’がそのメッシュ構造で捕獲されている間に、その粒子状物質6’には十分な放電エネルギーが与えられる。その結果、効率的な燃焼を実現できる。燃焼後は、燃焼ガス250となってメッシュを通過し、排出部9から排気ガス151として排出される。
 図7に示すように、筒状の負電極235を絶縁管100の側に備えた筒状の誘電体234と、絶縁管100との間には、上記所定の隙間(特に限定されないが、例えば1mm~10mm程度の範囲)を持つ流路243がある。この内壁面流路243に流れるガス流は、板状の流路規制部材237で無声放電領域A2に導かれるガス流とは異なるものである。しかし、その内壁面流路243に流入した粒子状物質含有ガス5は、管構造の下流側端部(Uターン部、折り返し部)244でUターン(折り返し)して、無声放電領域A2に至る。
 無声放電領域A2に至った粒子状物質含有ガス5中の粒子状物質6は、筒メッシュ状の正電極233の金属繊維メッシュ構造を通過できずに捕獲されるので、捕獲されている間に放電エネルギーを受けて燃焼することになる。
 この第2形態の粒子状物質燃焼装置10Bは、こうした2ルートの流路を持つ2重管構造とすることにより、円筒状金属繊維メッシュの正電極233の上流側からも下流側からも粒子状物質を導く流路を有するので、筒メッシュ状の正電極233の長手方向に渡って無駄なく粒子状物質を金属繊維メッシュ233の上面に堆積し、放電エネルギーを与えて燃焼させることができる。
 なお、電源装置4は、第1形態と同様であるので説明を省略する。
 以上、第2形態の粒子状物質燃焼装置10Bにおいては、ガス流中の粒子状物質6は、平面メッシュ状の正電極221の周りに集まった負の空気電荷222を付着する。負の空気電荷222を付着した粒子状物質6’は、板状の流路規制部材237により管100の長手方向に延びる無声放電領域A2に導かれ、無声放電領域A2のクーロン力で吸引され且つ無声放電領域A2を構成する筒メッシュ状の正電極233に捕獲されることにより、無声放電領域A2内での保持時間が増す。その結果、多くの放電エネルギーを得て効率的に燃焼することができる。
 [第3実施形態]
 第3形態の粒子状物質燃焼装置10Cは、図8に示すように、粒子状物質のうち、負の空間電荷322に帯電した粒子状物質6’が、下流側に設けられた平面状金属繊維メッシュの負電極331に静電的に反発される効果とその負電極331を構成する平面状金属繊維メッシュのトラップ効果で、負電極331上の堆積を増大させ、燃焼効果を増大させるように構成したものである。具体的には、図8に示すように、導入部8と、帯電装置31と、放電装置35と、排出部9と、電源装置4とを下流側に向かってその順で有している。なお、図8の例では帯電装置31は導入部8に設けられ、放電装置35は絶縁性の四角柱管100内に設けられている。
 導入部8は、第1形態と同様、内燃機関1の排気口2に連結してその排気口2から排出された粒子状物質含有ガス5を導入するが、絶縁管100よりも小径の管301で構成され、前記絶縁管100の上流側に接続されている。一方、排出部9も第1形態と同様、絶縁管100に連設されて燃焼後のガス151を排出するが、絶縁管100よりも小径の管341で構成され、前記絶縁性の四角柱管100の下流側に接続されている。絶縁性の四角柱管100に対する管301,341の接続態様は特に限定されない。
 なお、上流側とは、図1に示すエンジン1の側であり、下流側とは図1に示すマフラー3の側である。また、いずれの管301,341も、セラミックス管のように絶縁性と耐熱性を持っていることが好ましい。また、導入部8には、図3、図4、図7に示すようなガス流変換部材は設けられていない。
 導入部8の下流側には、帯電装置31としての平面メッシュ状の正電極321が、粒子状物質含有ガス5の流路に直交するように設けられている。この平面メッシュ状の正電極321は、図示しない取付部材により、管301の内面に取り付けられている。
 平面メッシュ状の正電極321は、上記第1,2形態と同様、粒子状物質含有ガス5を接触させてその粒子状物質含有ガス5に含まれる粒子状物質6の全部又は一部に負電荷を帯電させる部材である。そのため、電源装置4から正電圧が印加されていることが好ましい。正電圧が印加された平面メッシュ状の正電極321には、負の空間電荷(負電荷)322が集まるので、その平面メッシュ状の正電極321を通過する粒子状物質含有ガス5に含まれる粒子状物質の一部6は負電荷322を付着し、負に帯電した粒子状物質6’となって、下流側に流れる。
 平面メッシュ状の正電極321は、例えば2μmの粒子状物質6が抵抗なく自由に通過できる開口を持つメッシュ構造であればよい。材質は特に限定されないが、耐熱性の金属メッシュであることが好ましい。例えば線径0.4mm、20メッシュ/インチのタングステン製メッシュやステンレス製メッシュが好ましく採用されるが、これらに限定されない。この正電極321と、その正電極321の下流側に設けられた負電極331との間の距離は、特に限定されないが、通常、10mm~100mm程度の範囲内であればよい。
 第3形態での放電装置35は、図8に示すように、導入部8に連設された絶縁性の四角柱管(正四角柱管)100内に設けられている。そして、絶縁性の四角柱管100内の流路に直交するように設けられた平面状金属繊維メッシュの負電極331と、その平面状金属繊維メッシュの負電極331の上流側に所定の間隔(特に限定されないが、例えば0.5mm~3mm)を空けて対向して無声放電領域A3を形成するように設けられた誘電体被覆正電極330とを有している。なお、誘電体被覆正電極330の代わりに金属メッシュを誘電体で被覆した物でもよい。この放電装置35によって、全部又は一部が負電荷322を帯電した粒子状物質6’を、誘電体被覆正電極330との間に生じさせた無声放電領域A3に導入して堆積した粒子を燃焼させることができる。
 誘電体被覆正電極330は、図8及び図9に示すように、棒状の正電極332と、その正電極332の周囲を被覆する誘電体333とで構成された複合体である。図示の例では、棒状の誘電体被覆正電極330は、等間隔(例えばピッチが2~6mmで隙間が0.5mm~3mm)で、それぞれ平面状金属繊維メッシュの負電極331と一定の距離を保つように、短冊状に配列されている。全ての誘電体被覆正電極330は、電気的に接続されている。ガス流に乗った粒子状物質6’は、この短冊状の誘電体被覆正電極330を容易に通過する。誘電体被覆正電極の代わりに誘電体被覆メッシュ電極でもよい。
 誘電体被覆正電極330を構成する棒状の正電極332は、耐熱性の金属であることが好ましい。例えばタングステン製棒やステンレス棒が好ましく採用されるが、これらに限定されない。その直径は例えば1mm程度のものを例示できる。なお、誘電体被覆メッシュ電極の場合は、セラミックス被覆線径2mm、金属線径0.4mm、10メッシュ/インチ程度のものが例示できる。
 棒状の正電極332を被覆する誘電体333は、例えばセラミックスを挙げることができる。棒状の正電極332への被覆は、スパッタリング法等で行うことができる。なお、ここでは、棒状の正電極332を被覆すると言っているが、セラミックス管を誘電体333として用い、棒状の正電極332をそのセラミックス管内に差し込んで構成してもよい。
 平面状金属繊維メッシュの負電極331は、耐熱性の金属メッシュ(例えば、線径20μm、空隙率83%、厚さ1.3mm)であることが好ましい。例えばタングステン製メッシュやタングステン合金製メッシュが好ましく採用されるが、これらに限定されない。メッシュの開口は、例えば0.1μmの粒子状物質6’を容易に通過させずに捕獲できる大きさであればよい。平面状金属繊維メッシュの負電極331は、図示のように、保持部材336で絶縁性の四角柱管100内に保持されている。
 この平面状金属繊維メッシュの負電極331は粒子状物質6’を捕獲できるので、無声放電領域A3に導かれた粒子状物質6’がそのメッシュ構造で捕獲されている間に、その粒子状物質6’には十分な放電エネルギーが与えられる。その結果、効率的な燃焼を実現できる。燃焼後は、燃焼ガス350となってメッシュを通過し、排出部9から排気ガス151として排出される。
 すなわち、誘電体被覆正電極330を通過した粒子のうち負に帯電した粒子状物質6’は、誘電体被覆正電極330に静電的に引き寄せられ、減速した状態で通過し、無声放電領域A3に至る。無声放電領域A3内に至った粒子状物質6’は、平面状金属繊維メッシュの負電極331に静電的に反発するので、その無声放電領域A3内でさらに減速し、メッシュへの堆積効果が増大する。しかも、平面状金属繊維メッシュの負電極331は、帯電には関係なく粒子状物質6を通過させない程度のメッシュで構成されているので、粒子状物質6’をメッシュ上に堆積する(符号335を参照)。その結果、帯電粒子及びび帯電しない粒子状物質は、メッシュ表面に堆積し、多くの放電エネルギーを受け、効率的な燃焼を実現できる。
 なお、電源装置4は、第1,2形態と同様であるので説明を省略する。
 以上、第3形態の粒子状物質燃焼装置10Cにおいては、平面状金属繊維メッシュのトラップ効果で粒子はメッシュに堆積するが、さらに、ガス流中の粒子状物質6の一部は、平面メッシュ状の正電極321の周りに集まった負の空気電荷322を付着する。負の空気電荷322を付着した粒子状物質6’は、そのまま進行し、誘電体被覆正電極330を通過して無声放電領域A3に導かれ、無声放電領域A3の静電気力で反発される。粒子状物質6’は、この2つの効果で無声放電領域A3を構成する平面状金属繊維メッシュの負電極331上に堆積することにより、多くの放電エネルギーを得て効率的に燃焼することができる。
 1 内燃機関
 2 排気口
 3 マフラー
 4 電源装置
 5 内燃機関から排出された粒子状物質含有ガス
 6 粒子状物質
 6’ 負電荷を全部又は一部帯電した粒子状物質
 8 導入部
 9 排出部
 10 粒子状物質燃焼装置
 10A 第1形態の粒子状物質燃焼装置
 10B 第2形態の粒子状物質燃焼装置
 10C 第3形態の粒子状物質燃焼装置
 11,21,31 帯電装置
 15,25,35 放電装置
 A1,A2,A3 無声放電領域
 100 絶縁管(円管又は正四角柱管、セラミックス管)
 101,101A,101B ガス流変換部材
 102 流入口
 103 流出口
 104 流路
 105 プロペラ軸
 106 羽根
 107 スパイラル流
 121 リング状の正電極
 122 負の空気電荷(負電荷)
 124 支持部材
 125 リング部材
 131 筒状の負電極
 132 筒状の誘電体
 133 円筒状金属繊維メッシュの正電極
 134 絶縁管
 135 燃焼中の粒子状物質
 141 高電圧高周波発生装置
 142 電源
 151 燃焼処理後の排気ガス
 201 導入管
 221 平面メッシュ状の正電極
 222 負の空気電荷(負電荷)
 233 円筒状金属繊維メッシュの正電極
 234 円筒状の誘電体(セラミックス管)
 235 円筒状の負電極
 236 支えボルト
 237 板状の流路規制部材
 238 支柱
 241 排出管
 242 同軸リング
 243 内壁面流路
 244 下流側端部(下流側のUターン部、折り返し部)
 250 燃焼ガス
 301 導入管
 321 平面メッシュ状の正電極
 322 負の空気電荷(負電荷)
 330 誘電体被覆正電極
 331 平面状金属繊維メッシュの負電極
 332 棒状の正電極
 333 誘電体
 335 堆積した粒子状物質
 336 負電極の保持部材
 341 排出管
 350 燃焼ガス

Claims (8)

  1.  内燃機関の排気口に連結して該排気口から排出された粒子状物質含有ガスを導入する導入部と、
     前記導入部の下流側に設けられ、前記粒子状物質含有ガスを接触させて該粒子状物質の全部又は一部に負電荷を帯電させる帯電装置と、
     前記帯電装置の下流側に連設された絶縁管内に設けられ、全部又は一部が負電荷を帯電した前記粒子状物質を、正電極と負電極との間に生じさせた無声放電領域に導入し且つ保持時間を増して燃焼させる放電装置と、
     前記放電装置の下流側の前記絶縁管に連設され、燃焼後の気体を排出する排出部と、
     前記帯電装置と前記放電装置に電場を印加する電源装置と、を有することを特徴とする粒子状物質燃焼装置。
  2.  請求項1に記載の粒子状物質燃焼装置において、
     前記導入部が、前記粒子状物質含有ガスの流れをスパイラル流に変えるガス流変換部材を有し、
     前記帯電装置が、前記スパイラル流が流れる管内周に沿って設けられたリング状の正電極を有し、
     前記放電装置が、前記絶縁管の内壁に設けられた筒状の負電極と、該負電極の内側に設けられた筒状の誘電体と、該誘電体の内側に所定の間隔を空けて設けられた筒メッシュ状の正電極とを有する、粒子状物質燃焼装置。
  3.  請求項1に記載の粒子状物質燃焼装置において、
     前記帯電装置が、前記粒子状物質含有ガスの流路に直交するように設けられた平面メッシュ状の正電極を有し、
     前記放電装置が、前記絶縁管の内壁側に該内壁と所定の間隔を空けて設けられた筒状の負電極と、該負電極の内側に設けられた筒状の誘電体と、該誘電体の内側に所定の間隔を空けて設けられた筒メッシュ状の正電極とを有し、且つ、前記平面メッシュ状の正電極で帯電した粒子状物質を前記筒状の誘電体と前記筒メッシュ状の正電極との間の無声放電領域に導くガス流変換部材を有する、粒子状物質燃焼装置。
  4.  請求項1に記載の粒子状物質燃焼装置において、
     前記帯電装置が、前記粒子状物質含有ガスの流路に直交するように設けられた平面メッシュ状の正電極を有し、
     前記放電装置が、前記流路に直交するように設けられた平面メッシュ状の負電極と、該平面メッシュ状の負電極の上流側に所定の間隔を空けて対向して設けられた正電極とを有し、該間隔が無声放電領域を形成する、粒子状物質燃焼装置。
  5.  内燃機関から排出された粒子状物質含有ガスが含む粒子状物質の全部又は一部に負電荷を帯電させ、負電荷を帯電した粒子状物質を電気的に吸引又は反発させて減速し、前記粒子状物質を無声放電領域に保持する時間を増し、該無声放電領域での放電エネルギーの印加時間を延ばすことを特徴とする粒子状物質燃焼方法。
  6.  請求項5に記載の粒子状物質燃焼方法において、
     前記負電荷に帯電した粒子状物質が、下流側に設けられたメッシュ状の正電極に静電的に吸引されることにより、前記無声放電領域での保持時間が増す、粒子状物質燃焼方法。
  7.  請求項5に記載の粒子状物質燃焼方法において、
     前記負電荷に帯電した粒子状物質が、下流側に設けられて該粒子状物質を捕獲できるメッシュ状の正電極に吸引し且つ該正電極上に堆積することにより、前記無声放電領域での保持時間が増す、粒子状物質燃焼方法。
  8.  請求項5に記載の粒子状物質燃焼方法において、
     前記負電荷に帯電した粒子状物質が、下流側に設けられたメッシュ状の負電極に静電的に反発し且つ該負電極上に堆積することにより、前記無声放電領域での保持時間が増す、粒子状物質燃焼方法。
PCT/JP2010/057967 2009-05-19 2010-05-11 粒子状物質燃焼装置及び方法 WO2010134448A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/321,308 US8966881B2 (en) 2009-05-19 2010-05-11 Device and method for combusting particulate substances
JP2011514386A JP5572156B2 (ja) 2009-05-19 2010-05-11 粒子状物質燃焼装置及び方法
EP10777681.7A EP2434112A4 (en) 2009-05-19 2010-05-11 DEVICE AND METHOD FOR COMBUSING PARTICULAR SUBSTANCES

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009120554 2009-05-19
JP2009-120554 2009-05-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/708,220 Continuation US8663098B2 (en) 2011-03-31 2012-12-07 Scanning endoscope apparatus

Publications (1)

Publication Number Publication Date
WO2010134448A1 true WO2010134448A1 (ja) 2010-11-25

Family

ID=43126129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/057967 WO2010134448A1 (ja) 2009-05-19 2010-05-11 粒子状物質燃焼装置及び方法

Country Status (4)

Country Link
US (1) US8966881B2 (ja)
EP (1) EP2434112A4 (ja)
JP (1) JP5572156B2 (ja)
WO (1) WO2010134448A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106111338A (zh) * 2016-07-22 2016-11-16 芜湖鼎瀚再制造技术有限公司 一种喷涂用静电吸附过滤网
CN108554638A (zh) * 2018-04-04 2018-09-21 昆山奕盛来环境科技有限公司 一种静电放电单元装置
WO2020083149A1 (zh) * 2018-10-22 2020-04-30 上海必修福企业管理有限公司 一种发动机进气除尘系统及方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013105951A1 (en) * 2012-01-11 2013-07-18 Halliburton Energy Services, Inc. Pipe in pipe downhole electric heater
KR101751984B1 (ko) * 2015-12-23 2017-06-30 한국기계연구원 화염 안정성 향상을 위한 스트리머 유도형 연소기
US9926825B2 (en) * 2016-04-19 2018-03-27 GM Global Technology Operations LLC Method and apparatus for exhaust purification for an internal combustion engine
CN108060953A (zh) 2016-11-08 2018-05-22 福特环球技术公司 气体处理系统、装置及方法
CN108704766B (zh) * 2018-05-11 2023-06-30 漳州蓝天美环保科技有限公司 一种内外嵌套圆筒式静电除尘设备
US20220250087A1 (en) * 2018-10-22 2022-08-11 Shanghai Bixiufu Enterprise Management Co., Ltd. Engine exhaust dust removing system and method
CN111715010A (zh) * 2019-03-21 2020-09-29 北京康孚科技股份有限公司 轴流旋风凝并式空气过滤方法和装置
WO2020238975A1 (zh) * 2019-05-27 2020-12-03 上海必修福企业管理有限公司 一种电场装置
CN113365404B (zh) * 2021-04-23 2023-11-24 安徽理工大学 介质阻挡放电等离子体辅助煤炭燃烧发生装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003172123A (ja) * 2001-09-28 2003-06-20 Toyota Central Res & Dev Lab Inc 排気浄化装置及び高電圧供給装置
JP2004514820A (ja) * 2000-11-21 2004-05-20 シーメンス アクチエンゲゼルシヤフト ディーゼルエンジンの炭素含有粒子排出物の低減方法
JP2005106022A (ja) * 2003-10-01 2005-04-21 Toyota Motor Corp 排ガス浄化装置
JP2005337153A (ja) 2004-05-28 2005-12-08 Toyota Motor Corp 内燃機関の排気浄化装置
JP2007021380A (ja) * 2005-07-15 2007-02-01 Setec:Kk 粒子充填層集塵装置
JP2007187136A (ja) 2006-01-16 2007-07-26 Ooden:Kk 粒子状物質除去装置及び粒子状物質除去方法
JP2008064015A (ja) 2006-09-07 2008-03-21 Nissin Electric Co Ltd 粒子状物質除去装置
JP2009050840A (ja) 2007-08-02 2009-03-12 Research Institute Of Innovative Technology For The Earth 粒子状含炭素物質除去装置およびそれを用いるガス処理方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3156185B2 (ja) 1991-10-08 2001-04-16 三井造船株式会社 排ガス処理方法及び装置
EP0713562B1 (en) * 1993-08-10 2001-06-27 Humberto Alexander Cravero Electronic purification of exhaust gases
JP3393270B2 (ja) * 1994-10-17 2003-04-07 増田 佳子 コロナ放電ユニット
JPH08260942A (ja) * 1995-03-28 1996-10-08 Hideo Yoshikawa 排気浄化装置
JP3108649B2 (ja) * 1997-04-18 2000-11-13 株式会社ヤマダコーポレーション 車両排ガス浄化装置
GB9924999D0 (en) * 1999-10-22 1999-12-22 Aea Technology Plc Reactor for the plasma treatment of gases
US6474060B2 (en) * 1999-11-17 2002-11-05 Southwest Research Institute Exhaust gas recirculation filtration system
JP2002263523A (ja) 2001-03-12 2002-09-17 Yamatake Corp 二段式電気集塵装置
US7585352B2 (en) * 2002-08-21 2009-09-08 Dunn John P Grid electrostatic precipitator/filter for diesel engine exhaust removal
FI118278B (fi) * 2003-06-24 2007-09-14 Dekati Oy Menetelmä ja anturilaite hiukkaspäästöjen mittaamiseksi polttomoottorin pakokaasuista
US7638104B2 (en) 2004-03-02 2009-12-29 Sharper Image Acquisition Llc Air conditioner device including pin-ring electrode configurations with driver electrode
US20060021503A1 (en) * 2004-07-30 2006-02-02 Caterpillar, Inc. Electrostatic precipitator particulate trap with impingement filtering element
JP4151645B2 (ja) 2004-11-29 2008-09-17 トヨタ自動車株式会社 排ガス浄化装置及びその制御方法
JP2007196100A (ja) * 2006-01-25 2007-08-09 Toyo Electric Mfg Co Ltd プラズマ式ガス処理装置
FR2903726B1 (fr) 2006-07-12 2008-10-10 Renault Sas Dispositif et procede pour la capture et l'elimination des particules contenues dans les gaz d'echappement d'un moteur a combustion interne de vehicule automobile.
CN105963749A (zh) 2006-09-05 2016-09-28 艾尔廸科技有限公司 扩散式等离子体处理和材料加工
JPWO2008062554A1 (ja) 2006-11-20 2010-03-04 株式会社東芝 ガス浄化装置、ガス浄化システムおよびガス浄化方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004514820A (ja) * 2000-11-21 2004-05-20 シーメンス アクチエンゲゼルシヤフト ディーゼルエンジンの炭素含有粒子排出物の低減方法
JP2003172123A (ja) * 2001-09-28 2003-06-20 Toyota Central Res & Dev Lab Inc 排気浄化装置及び高電圧供給装置
JP2005106022A (ja) * 2003-10-01 2005-04-21 Toyota Motor Corp 排ガス浄化装置
JP2005337153A (ja) 2004-05-28 2005-12-08 Toyota Motor Corp 内燃機関の排気浄化装置
JP2007021380A (ja) * 2005-07-15 2007-02-01 Setec:Kk 粒子充填層集塵装置
JP2007187136A (ja) 2006-01-16 2007-07-26 Ooden:Kk 粒子状物質除去装置及び粒子状物質除去方法
JP2008064015A (ja) 2006-09-07 2008-03-21 Nissin Electric Co Ltd 粒子状物質除去装置
JP2009050840A (ja) 2007-08-02 2009-03-12 Research Institute Of Innovative Technology For The Earth 粒子状含炭素物質除去装置およびそれを用いるガス処理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2434112A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106111338A (zh) * 2016-07-22 2016-11-16 芜湖鼎瀚再制造技术有限公司 一种喷涂用静电吸附过滤网
CN108554638A (zh) * 2018-04-04 2018-09-21 昆山奕盛来环境科技有限公司 一种静电放电单元装置
WO2020083149A1 (zh) * 2018-10-22 2020-04-30 上海必修福企业管理有限公司 一种发动机进气除尘系统及方法

Also Published As

Publication number Publication date
US8966881B2 (en) 2015-03-03
US20120124969A1 (en) 2012-05-24
JPWO2010134448A1 (ja) 2012-11-08
JP5572156B2 (ja) 2014-08-13
EP2434112A1 (en) 2012-03-28
EP2434112A4 (en) 2014-10-22

Similar Documents

Publication Publication Date Title
JP5572156B2 (ja) 粒子状物質燃焼装置及び方法
US7510600B2 (en) Gas purifying apparatus
JP4873564B2 (ja) 排ガス浄化装置
US8771600B2 (en) Electrostatic filter and non-thermal plasma system for air pollution control of hydrocarbon combustion engines
JP2012170869A (ja) 電気集塵装置
WO2006132103A1 (ja) 排ガス浄化方法及び排ガス浄化システム
JP4292511B2 (ja) 排ガス浄化装置
JP2006342730A (ja) 内燃機関の排気処理装置
JP2005098134A (ja) 排気浄化装置
KR20120053081A (ko) 매연 입자들을 함유한 배기 가스 처리 장치
JP4332847B2 (ja) 排ガス浄化装置
JP2014155917A (ja) 放電プラズマリアクタ
JP2002213228A (ja) 内燃機関の排気浄化装置
JP2006026483A (ja) 排ガス浄化装置
JP2006214392A (ja) 排ガス浄化装置
CN112512697A (zh) 用于净化载有颗粒的气态介质的装置
US8544257B2 (en) Electrically stimulated catalytic converter apparatus, and method of using same
WO2012056531A1 (ja) 電気加熱式触媒
JP7421793B2 (ja) 粒子状物質除去装置
JP2005256799A (ja) 排ガス浄化装置
JP2005036667A (ja) 排気浄化装置
JP2004239257A (ja) 排気ガス浄化装置
JP2007090255A (ja) 排ガス浄化装置
JP2006144570A (ja) 排ガス浄化装置
JP2006138227A (ja) 排ガス浄化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10777681

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011514386

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010777681

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13321308

Country of ref document: US