WO2020080148A1 - 準不燃性フェノール樹脂組成物及びそれから得られた準不燃材料 - Google Patents

準不燃性フェノール樹脂組成物及びそれから得られた準不燃材料 Download PDF

Info

Publication number
WO2020080148A1
WO2020080148A1 PCT/JP2019/039325 JP2019039325W WO2020080148A1 WO 2020080148 A1 WO2020080148 A1 WO 2020080148A1 JP 2019039325 W JP2019039325 W JP 2019039325W WO 2020080148 A1 WO2020080148 A1 WO 2020080148A1
Authority
WO
WIPO (PCT)
Prior art keywords
phenol resin
resin composition
flame retardant
incombustible
semi
Prior art date
Application number
PCT/JP2019/039325
Other languages
English (en)
French (fr)
Inventor
山田 修司
Original Assignee
旭有機材株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭有機材株式会社 filed Critical 旭有機材株式会社
Priority to EP19874001.1A priority Critical patent/EP3868826A4/en
Priority to CN201980060939.8A priority patent/CN112703225B/zh
Priority to JP2020553068A priority patent/JPWO2020080148A1/ja
Priority to KR1020227025043A priority patent/KR102605769B1/ko
Priority to KR1020217007485A priority patent/KR102469128B1/ko
Publication of WO2020080148A1 publication Critical patent/WO2020080148A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/016Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/009Use of pretreated compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0095Mixtures of at least two compounding ingredients belonging to different one-dot groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/143Halogen containing compounds
    • C08J9/144Halogen containing compounds containing carbon, halogen and hydrogen only
    • C08J9/145Halogen containing compounds containing carbon, halogen and hydrogen only only chlorine as halogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/143Halogen containing compounds
    • C08J9/144Halogen containing compounds containing carbon, halogen and hydrogen only
    • C08J9/146Halogen containing compounds containing carbon, halogen and hydrogen only only fluorine as halogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/149Mixtures of blowing agents covered by more than one of the groups C08J9/141 - C08J9/143
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • C08L61/12Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols with polyhydric phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/026Crosslinking before of after foaming
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • C08J2203/142Halogenated saturated hydrocarbons, e.g. H3C-CF3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/16Unsaturated hydrocarbons
    • C08J2203/162Halogenated unsaturated hydrocarbons, e.g. H2C=CF2
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/18Binary blends of expanding agents
    • C08J2203/182Binary blends of expanding agents of physical blowing agents, e.g. acetone and butane
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/052Closed cells, i.e. more than 50% of the pores are closed
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2361/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2361/04Condensation polymers of aldehydes or ketones with phenols only
    • C08J2361/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • C08J2361/08Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols with monohydric phenols
    • C08J2361/10Phenol-formaldehyde condensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2361/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2361/04Condensation polymers of aldehydes or ketones with phenols only
    • C08J2361/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • C08J2361/12Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols with polyhydric phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2427/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2427/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2427/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08J2427/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K2003/026Phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • C08K2003/321Phosphates
    • C08K2003/322Ammonium phosphate
    • C08K2003/323Ammonium polyphosphate

Definitions

  • the present invention relates to a quasi-incombustible phenolic resin composition and a quasi-incombustible material obtained therefrom, and in particular, a quasi-incombustible phenolic resin composition capable of advantageously forming a phenolic resin foam useful as a quasi-incombustible material (phenolic foam). And a semi-incombustible material obtained from such a phenolic resin composition.
  • a phenol resin foam obtained by foaming and curing a phenol resin composition containing a predetermined foaming agent has been recognized as having relatively high flame retardance, but as it is, ,
  • the building code of Japan which does not fully meet the safety standards required in the fields of construction, civil engineering, electrical products, electric and electronic parts, automobile parts, etc., and is evaluated by a heat generation test with a cone calorimeter. It did not give a material having the quasi-non-combustible property specified in 1.
  • a predetermined flame retardant is mixed with the phenol resin composition and cured to obtain the desired phenol resin foam.
  • the flammability has been improved.
  • a useful flame retardant is obtained by using a phosphorus compound, a sulfur compound or a boron compound as a flame retardant and blending them with a resin composition for producing a phenol resin foam. It has been shown that it is possible to produce a functional phenolic resin foam.
  • JP 2007-161810 A, JP 2007-70511 A, etc. aluminum hydroxide and water are used as inorganic fillers that are usually added to a resin composition for producing a phenol resin foam.
  • Hydroxides of metals such as magnesium oxide; oxides of metals such as calcium oxide and aluminum oxide; metal powders such as zinc dust; obtained by foaming by using carbonates of metals such as calcium carbonate and magnesium carbonate
  • carbonates of metals such as calcium carbonate and magnesium carbonate
  • JP-A-60-170636 and JP-A-8-176343 red phosphorus and ammonium polyphosphate are blended as a non-halogen flame retardant capable of imparting a high degree of flame retardancy to a resin. It has been clarified that a phenol resin foam excellent in flame retardancy can be obtained by preparing a phenol resin composition, and foaming and curing it.
  • the compounding amount of the above-mentioned known flame retardant is increased with respect to the phenol resin composition in order to obtain a quasi-incombustible property of not more than 1 / m 2 , the curing reaction of the phenol resin composition is hindered, and the purpose Therefore, it becomes impossible to obtain a phenol resin foam to be obtained, and problems such as deterioration of physical or mechanical properties such as thermal conductivity of the obtained phenol resin foam are caused. is there.
  • the semi-incombustible material satisfies the above total calorific value, and the maximum heat generation rate continuously exceeds 10 seconds. It is said that it does not exceed 200 kW / m 2 and that there are no cracks or holes penetrating to the back surface that are harmful to flame prevention.
  • the body material has not been able to fully meet the demand for such quasi-noncombustible performance while ensuring useful physical or mechanical properties as a phenol resin.
  • the present inventor uses a resol-type phenol resin, which is one of the phenol resins, and forms it by foaming and curing a foamable phenol resin composition that is formed by combining an acid curing agent, a foaming agent, and the like.
  • a resol-type phenol resin which is one of the phenol resins
  • the red phosphorus powder as a flame retardant was used as the first component, and a predetermined flame retardant was added thereto.
  • the problem to be solved by the present invention is to effectively secure the low thermal conductivity characteristics of the foam obtained from the expandable phenol resin composition containing the resol-type phenol resin as an essential component, while maintaining the flame retardant performance.
  • a quasi-incombustible phenolic resin composition capable of advantageously forming a quasi-incombustible material defined by the Building Standards Law of Japan by synergistically improving fireproof performance, and also By using such a semi-incombustible phenolic resin composition, it is advantageous to obtain a material having a semi-incombustible property defined by the Building Standard Law.
  • a flame retardant in order to solve such a problem, together with a resol-type phenol resin, a foaming agent and an acid curing agent, as a flame retardant, a first component consisting of red phosphorus powder, and other than red phosphorus.
  • Semi-incombustibility characterized by containing a second component consisting of at least one selected from the group consisting of phosphorus-based flame retardants, inorganic flame retardants, halogen-based flame retardants and graphite-based flame retardants.
  • the gist of the invention is a phenolic resin composition.
  • the flame retardant is 100 mass% of the resol-type phenolic resin in the total amount of the first component and the second component. 2 to 35 parts by mass relative to 100 parts by mass, and the first component and the second component constituting such a flame retardant are each 100 parts of the resol-type phenol resin. It is contained at a ratio of 1 to 30 parts by mass and 1 to 10 parts by mass with respect to parts by mass.
  • the red phosphorus powder is a surface formed of a metal oxide or hydroxide and / or a thermosetting resin. It has a coating layer, which allows a phenolic resin foam according to the invention with excellent properties to be advantageously formed.
  • ammonium polyphosphate powder having a surface coating layer is preferably used, and thus the phenol resin composition
  • the flame retardant performance or fireproof performance according to the present invention can be exhibited even more advantageously.
  • the surface coating layer of the ammonium polyphosphate powder is formed of a sparingly soluble thermosetting resin.
  • a sparingly soluble thermosetting resin a phenol resin, a melamine resin, or the like is used, and among them, a melamine resin is preferably used.
  • halogenated alkenes, or chlorinated aliphatic hydrocarbons and / or aliphatic hydrocarbons are preferably used, and among them, a mixture of isopentane and isopropyl chloride, It can be used advantageously.
  • the resol-type phenol resin used in the present invention is adjusted to have a viscosity of 2000 mPa ⁇ s or more at 25 ° C.
  • the present invention also includes a semi-incombustible material made of a foam obtained by foaming and curing the semi-incombustible phenol resin composition as described above.
  • the above-mentioned foam is generally heated at a radiant heat intensity of 50 kW / m 2 in accordance with the exothermic test method specified in ISO-5660. It has a characteristic that the total calorific value for 10 minutes after the start is 8.0 MJ / m 2 or less.
  • the first component consisting of red phosphorus powder, a phosphorus-based flame retardant other than red phosphorus, an inorganic flame retardant, a halogen-based flame retardant.
  • the second component consisting of at least one selected from the group consisting of the flame retardant and the graphite-based flame retardant is used in combination, the synergistic action of these two components causes such semi-incombustibility.
  • the flame-retardant performance and / or fire-prevention performance of the foam material obtained by foaming and curing the water-soluble phenolic resin composition can be effectively improved, and furthermore, a low thermal conductivity useful as a phenolic resin foam. Such characteristics can be advantageously provided.
  • a phenolic resin foam material as a quasi-incombustible material stipulated by the Building Standards Law of Japan can be easily and advantageously realized. It was decided.
  • the resol type phenolic resin used in the present invention as described above advantageously contains aldehydes in a ratio of about 1.0 to 3.0 mol, preferably 1.5 mol, relative to 1 mol of phenol. Used in a proportion of about 2.5 mol, reacted in the presence of an alkaline reaction catalyst, for example, at a temperature in the range of 50 ° C. to reflux temperature, then subjected to neutralization treatment, and then depressurized. Dehydration and concentration are performed under the following conditions so that a predetermined characteristic value, for example, a viscosity at 25 ° C. is 2000 mPa ⁇ s or more and a water content is 3 to 20% by mass, preferably 5 to 18% by mass. Thereafter, if necessary, it is desirable to add predetermined additives in the same manner as in the prior art to manufacture.
  • the thus obtained resol-type phenol resin has a viscosity at 25 ° C. of 2000 mPa ⁇ s or more, preferably 2000 to 100000 mPa ⁇ s, more preferably 3000 to 80000 mPa ⁇ s, and further preferably 4000 to 30000 mPa ⁇ s.
  • the viscosity of the resol-type phenol resin is less than 2000 mPa ⁇ s, the red phosphorus powder will be remarkably precipitated and its localization will be caused, resulting in unevenness in the formed phenol resin foam, which is sufficient. Flame resistance and low thermal conductivity cannot be obtained, and conversely, if the viscosity becomes too high, for example, to exceed 100,000 mPa ⁇ s, it will be difficult to obtain the desired phenol resin foam. Cause.
  • phenols which are one of the raw materials of the resol type phenol resin used in the present invention phenol, o-cresol, m-cresol, p-cresol, p-tert-butylphenol, m-xylenol, bisphenol F
  • examples thereof include bisphenol A
  • examples of the other raw material aldehyde used in combination with the phenols include formaldehyde, paraformaldehyde, trioxane, polyoxymethylene, and glyoxal.
  • examples of the reaction catalyst include potassium hydroxide, sodium hydroxide, barium hydroxide, calcium hydroxide, potassium carbonate, ammonia and the like.
  • any of these phenols, aldehydes and reaction catalysts is by no means limited to the above examples, and various known ones can be appropriately used, and they are respectively They can be used alone or in combination of two or more.
  • a predetermined foaming agent is appropriately selected from various conventionally known foaming agents together with the resol-type phenolic resin as described above, and used, whereby a phenol resin foam is obtained.
  • a phenolic resin composition for production is to be constituted, and as such a foaming agent, a chlorinated aliphatic hydrocarbon and / or an aliphatic carbonization having a low global warming potential is advantageously used. Hydrogen and halogenated alkenes will be used.
  • chlorinated aliphatic hydrocarbon as a foaming agent, generally, a chlorinated product of a linear or branched aliphatic hydrocarbon having about 2 to 5 carbon atoms is preferably used.
  • the number of bonded atoms is generally about 1 to 4.
  • Specific examples of such chlorinated aliphatic hydrocarbons include dichloroethane, propyl chloride, isopropyl chloride, butyl chloride, isobutyl chloride, pentyl chloride, isopentyl chloride and the like. These may be used alone or in combination of two or more. Among them, chloropropanes such as propyl chloride and isopropyl chloride are preferable, and isopropyl chloride is particularly preferably used. .
  • aliphatic hydrocarbon as the foaming agent, a conventionally known hydrocarbon-based foaming agent having about 3 to 7 carbon atoms can be appropriately selected and used.
  • a conventionally known hydrocarbon-based foaming agent having about 3 to 7 carbon atoms can be appropriately selected and used.
  • Propane, butane, pentane, isopentane, hexane, isohexane, neohexane, heptane, isoheptane, cyclopentane and the like can be mentioned, and from these, one kind or a combination of two or more kinds is used.
  • a mixed foaming agent obtained by combining the above-mentioned chlorinated aliphatic hydrocarbon and aliphatic hydrocarbon is also suitably used, and the mixing ratio thereof is, in terms of mass ratio, aliphatic hydrocarbon.
  • Chlorinated aliphatic hydrocarbon 25: 75 to 5:95, which is advantageously adopted.
  • a combination of such two kinds of foaming agents a combination of isopentane and isopropyl chloride is recommended, whereby the object of the present invention can be achieved even more advantageously.
  • a halogenated alkene is also advantageously used as a foaming agent, whereby the properties of the resulting phenol resin foam, particularly flame retardant properties or fire protection properties and low thermal conductivity, are improved. It can contribute to further improvement.
  • Halogenated alkenes exhibiting such properties include those called halogenated olefins and halogenated hydroolefins, and generally have chlorine or fluorine bonded and contained as halogens and have 2 carbon atoms.
  • a tetrahydrocarbon derivative having about 6 to about 6 unsaturated hydrocarbon derivatives for example, propene, butene, pentene and hexene having 3 to 6 fluorine substituents, substituted with halogen such as fluorine or chlorine
  • hydrofluoroolefin which is one of such halogenated alkenes (halogenated olefins)
  • halogenated olefins for example, pentafluoro such as 1,2,3,3,3-pentafluoropropene (HFO1225ye) is used.
  • Tetrafluoro such as propene, 1,3,3,3-tetrafluoropropene (HFO1234ze), 2,3,3,3-tetrafluoropropene (HFO1234yf), 1,2,3,3-tetrafluoropropene (HFO1234ye)
  • Propene trifluoropropene such as 3,3,3-trifluoropropene (HFO1243zf), tetrafluorobutene isomer (HFO1354), pentafluorobutene isomer (HFO1345), 1,1,1,4,4,4 4-hexafluoro-2-butene (HFO 336mzz) and other hexafluorobutene isomers (HFO1336), heptafluorobutene isomers (HFO1327), heptafluoropentene isomers (HFO1447), octafluoropentene isomers (HFO1438), nonafluoropen
  • hydrochlorofluoroolefin HCFO
  • 1-chloro-3,3,3-trifluoropropene HCFO-1233zd
  • 2-chloro-3,3,3-trifluoropropene HCFO-1233xf
  • Dichlorotrifluoropropene HCFO1223
  • 1-chloro-2,3,3-trifluoropropene HCFO-1233yd
  • 1-chloro-1,3,3-trifluoropropene HCFO-1233zb
  • 2-chloro- 1,3,3-trifluoropropene HCFO-1233xe
  • 2-chloro-2,2,3-trifluoropropene HCFO-1233xc
  • 3-chloro-1,2,3-trifluoropropene HCFO- 1233ye
  • 3-chloro-1,1,2-trifluoropropene HCF
  • the foaming agent contained in the phenolic resin composition according to the present invention that is, each foaming agent as described above, generally has a total amount of 1 to 30 parts by mass, preferably 100 parts by mass with respect to 100 parts by mass of the resol type phenolic resin. Will be used in the proportion of 5 to 25 parts by mass.
  • the blowing agent used in the present invention contains a chlorinated aliphatic hydrocarbon and / or an aliphatic hydrocarbon as described above, or a halogenated alkene, but is not limited thereto.
  • fluorinated hydrocarbons alternative CFCs
  • salts such as fluoroethane, fluorinated hydrocarbons, water, ether compounds such as isopropyl ether, gases such as nitrogen, argon, carbon dioxide, and air may be contained in appropriate proportions.
  • the acid curing agent used in the present invention is a component (curing catalyst) for accelerating the curing reaction of the resol type phenolic resin as described above, and a conventionally known acid curing agent is appropriately selected. , Will be used.
  • an acid curing agent include aromatic sulfonic acids such as benzenesulfonic acid, phenolsulfonic acid, cresolsulfonic acid, toluenesulfonic acid, xylenesulfonic acid and naphthalenesulfonic acid; methanesulfonic acid and trifluoromethanesulfonic acid.
  • inorganic acids such as sulfuric acid, phosphoric acid, polyphosphoric acid, borofluoric acid, etc., which may be used alone, or may be used in combination of two or more kinds.
  • inorganic acids such as sulfuric acid, phosphoric acid, polyphosphoric acid, borofluoric acid, etc.
  • phenol sulfonic acid, toluene sulfonic acid, and aromatic sulfonic acid such as naphthalene sulfonic acid can achieve an appropriate curing rate in the production of the phenol resin foam. Therefore, the balance between the curing of the resol-type phenol resin and the foaming by the foaming agent is further improved, and a desirable foamed structure can be realized, and therefore, it is particularly preferably used.
  • the combined use of para-toluene sulfonic acid and xylene sulfonic acid is recommended, as the usage ratio thereof, on a mass basis, the amount of para-toluene sulfonic acid used is the amount of xylene sulfonic acid used. It is desirable that the amount is larger, and specifically, in terms of mass ratio, paratoluenesulfonic acid: xylenesulfonic acid is advantageously used within the range of 51:49 to 95: 5.
  • the amount of such an acid curing agent to be used is appropriately set depending on the type and temperature conditions during mixing with the resol-type phenol resin, but in the present invention, the resol-type phenol is used. It is desirable that the amount is generally 1 to 50 parts by mass, preferably 5 to 30 parts by mass, and particularly preferably 7 to 25 parts by mass, relative to 100 parts by mass of the resin. If the amount used is less than 1 part by mass, the progress of curing will be slow, and if it exceeds 50 parts by mass, the curing speed will be too fast and it will be difficult to obtain the desired phenol resin foam advantageously. Cause problems.
  • the phenol resin composition for producing a phenol resin foam obtained by adding and containing the above-mentioned essential components, a phenol resin foam formed from the phenol resin composition, quasi non-combustible flame retardant properties
  • the first component composed of red phosphorus powder as a flame retardant so as to suppress or prevent an increase in the thermal conductivity while effectively imparting the Together with a phosphorus-based flame retardant other than red phosphorus, an inorganic flame retardant, a halogen-based flame retardant and a second component consisting of at least one selected from the group consisting of graphite-based flame retardants are combined and blended,
  • the flame retardant composed of two components was dispersed and contained in the phenol resin composition.
  • red phosphorus powder that is the first component of the flame retardant used here any known ones are publicly known and are usually selected appropriately from commercially available products. .
  • those sold under the names "NOVARED”, “NOVAEXCEL” manufactured by Rin Kagaku Kogyo Co., Ltd., “HISHIGUARD” manufactured by Nippon Kagaku Kogyo Co., Ltd., “EXOLIT” manufactured by Clariant Co., Ltd. may be mentioned.
  • red phosphorus powder improves the handleability or workability, enhances the dispersibility in the resin composition, and advantageously improves the addition effect thereof, and a coating layer is formed on the surface thereof.
  • the metal hydroxides include aluminum hydroxide, magnesium hydroxide, zinc hydroxide and titanium hydroxide, and aluminum oxide, magnesium oxide, zinc oxide and titanium oxide.
  • the red phosphorus powder obtained by forming a coating layer on the surface of the particles with an inorganic compound consisting of the metal oxide and / or a thermosetting resin such as phenol resin, furan resin, xylene / formaldehyde resin is preferably used. Becomes The coating layer is generally formed in a proportion of about 1 to 30 parts by mass with respect to 100 parts by mass of red phosphorus.
  • the amount of the red phosphorus powder used is generally 1 to 30 parts by mass, preferably 1 to 25 parts by mass, and more preferably 2 to 20 parts by mass with respect to 100 parts by mass of the resol-type phenol resin. It is decided within the range. This is because if the amount of the red phosphorus powder used is too small, it becomes difficult to sufficiently exert the effect of imparting flame retardancy or fire protection to the phenol resin foam, and if the amount used is too large, the warping Therefore, it becomes easier to burn, reduces flame retardant performance or fire prevention performance, deteriorates thermal conductivity, increases the viscosity of the composition to which it is added, and causes problems such as poor stirring. In addition to the above, problems such as difficulty in maintaining low thermal conductivity in the medium to long term are caused.
  • the average particle size of the red phosphorus powder is generally about 1 to 100 ⁇ m, preferably about 5 to 50 ⁇ m. If the particle size of this red phosphorus powder becomes too small, it causes problems such as difficulty in handling and uniform dispersion in the resin composition, and even if the particle size becomes too large, the resin composition It is difficult to obtain a uniform dispersion effect in the medium, which causes a problem that the object of the present invention cannot be sufficiently achieved.
  • any of the known And phosphorus-based flame retardants other than red phosphorus include, for example, various phosphoric acids and salts thereof, phenylphosphonic acid, phenylphosphinic acid, guanidine phosphate derivatives, carbamate phosphate derivatives, and aromatic phosphorus.
  • Acid esters, condensed aromatic phosphate esters, halogenated phosphate esters, ammonium phosphate, ammonium polyphosphate, ammonium polyphosphate having a surface coating layer, and the like can be used.
  • the ammonium polyphosphate powder generally inhibits the curing reaction of the phenol resin composition when the amount used is more than a few parts by mass relative to 100 parts by mass of the resol-type phenol resin, so that it is generally 1 It is necessary to keep the ratio to about 3 parts by mass, but by using the one in which a predetermined coating layer is formed on the surface of the ammonium polyphosphate powder, such a problem is advantageously solved.
  • it is possible to form a phenol resin foam which can effectively exhibit excellent flame retardant properties, compression strength, heat insulation performance and other properties while effectively promoting the curing reaction of the phenol resin composition.
  • ammonium polyphosphate powder having such a surface coating layer those obtained by coating or microencapsulating particles of ammonium polyphosphate with a thermosetting resin, melamine monomer, other nitrogen-containing organic compounds, etc.
  • examples thereof include those obtained by coating the surface of ammonium polyphosphate particles, those treated with a surfactant or silicon, etc., and they are usually selected appropriately from commercial products.
  • Exolit AP462 available from Clariant Chemicals Co., Ltd.
  • FR CROS486, FR CROS487 available from CBC
  • Terrage C30, Terrage C60, Terrage C70, Terrage C80, etc. can be mentioned.
  • the surface coating layer in such ammonium polyphosphate powder is preferably sparingly soluble in the liquid phenol resin composition, particularly, sparingly soluble in water.
  • the curable resin a phenol resin, a melamine resin or the like is used, and among them, the melamine resin is preferably used.
  • an easily soluble thermosetting resin can be advantageously used by advancing the curing reaction of the surface coating layer formed thereon to form a hardly soluble surface coating layer.
  • a surface coating layer made of such a sparingly soluble thermosetting resin it is possible to advantageously obtain a phenol resin foam having excellent properties such as compressive strength and heat insulation performance. is there.
  • inorganic flame retardants include metal hydroxides such as aluminum hydroxide and magnesium hydroxide; metal carbonates such as calcium carbonate, magnesium carbonate and barium carbonate; calcium oxide, magnesium oxide, aluminum oxide and zinc oxide.
  • Metal oxides such as; zinc salts of inorganic acids such as zinc borate, zinc stannate, zinc carbonate; antimony compounds such as antimony trioxide, antimony pentoxide; metal powders such as zinc dust; borax, boric acid, ammonium sulfate
  • zinc salts such as zinc borate and zinc stannate can be advantageously used.
  • halogen-based flame retardant vinyl chloride resin powder, polyvinyl bromide powder, powder of tetrachlorobisphenol A, tetrabromobisphenol A, decabromodiphenyl ether, etc. are advantageously used, and as the graphite-based flame retardant, Various natural and artificial graphites, and among them, expansive graphite powder is preferably used.
  • the second component of the flame retardant is constituted, and the total amount of the second component is 1 to 10 parts by mass with respect to 100 parts by mass of the resol-type phenol resin. In addition, it is preferably contained in a proportion of preferably 8 parts by mass or less. If the content of the second component is too small, it may be difficult to sufficiently achieve the synergistic improvement effect of the flame retardant performance or the fire preventive performance by the combined use with the first component (red phosphorus powder). If the content is too large, problems such as deterioration of the properties of the finally obtained phenol resin foam and inhibition of the foaming and curing reaction of the phenol resin composition are caused.
  • the total amount of the second component is 1 to 10 parts by mass with respect to 100 parts by mass of the resol-type phenol resin. In addition, it is preferably contained in a proportion of preferably 8 parts by mass or less. If the content of the second component is too small, it may be difficult to sufficiently achieve the synergistic improvement effect of the flame retardant performance or the fire prevent
  • the total amount of the first component and the second component constituting the flame retardant contained in the phenol resin composition according to the present invention is the phenol resin foam obtained by foaming and curing such a phenol resin composition.
  • the flame-retardant property or fire-preventive property required by the present invention is appropriately selected. Generally, it is about 2 to 35 parts by mass, preferably 3 to 30 parts by mass with respect to 100 parts by mass of the resol-type phenol resin. It will be appropriately determined within the range of about 5 parts by mass, more preferably about 5 to 20 parts by mass. Incidentally, if the total content of the first component and the second component is too small, it is difficult to achieve sufficient flame retardant properties or the effect of improving the fire protection properties, and the content is too large. Then, problems such as inhibiting the foaming and curing reaction of the phenol resin composition and lowering the properties such as low thermal conductivity of the obtained phenol resin foam are caused.
  • the quasi-incombustible phenol resin composition according to the present invention, a combination of a specific first component and a second component as a foaming agent and an acid curing agent, and as a flame retardant together with the resole type phenol resin as described above.
  • a specific first component and a second component as a foaming agent and an acid curing agent, and as a flame retardant together with the resole type phenol resin as described above.
  • it is added as an essential component, and is compounded, but if necessary, conventionally known foam stabilizers, plasticizers, urea, and further, the first component and the first component defined in the present invention. It is also possible to contain a flame retardant other than the two components.
  • the foam stabilizer among the additives to be added and contained as necessary, is used for assisting the mixing and emulsification of the mixed components in the phenol resin composition, dispersing the generated gas, stabilizing the foam cell membrane, and the like. It is mixed for the purpose.
  • various foam stabilizers conventionally used in the technical field will be selected and used, among them, poly Nonionic surfactants such as siloxane compounds, polyoxyethylene sorbitan fatty acid esters, alkylphenol ethylene oxide adducts, and castor oil ethylene oxide adducts are particularly preferably used. These foam stabilizers may be used alone or in combination of two or more.
  • the amount used is also not particularly limited, but it is generally used within a range of 0.5 to 10 parts by mass with respect to 100 parts by mass of the resol-type phenol resin.
  • the plasticizer is added advantageously in order to impart flexibility to the cell wall of the phenol resin foam and suppress deterioration of the heat insulating performance with time, and is the first component as a flame retardant. And, like the adoption of the second component, it can advantageously contribute to the realization of the object of the present invention.
  • the plasticizer is not particularly limited, and known plasticizers conventionally used in the production of phenol resin foams, such as triphenyl phosphate, dimethyl terephthalate, and dimethyl isophthalate, can be used. Further, the use of polyester polyol is also effective.
  • the polyester polyol since the polyester polyol has a structure containing an ester bond and a hydroxyl group, which are hydrophilic and have excellent surface activity, it has good compatibility with the hydrophilic phenol resin solution and should be mixed uniformly with the phenol resin. Can be done. Further, by using this polyester polyol, uneven distribution of air bubbles is avoided, the air bubbles are uniformly distributed throughout the foam, and a phenol resin foam (phenol foam) which is homogeneous in terms of quality is easily produced, which is preferable plasticization. It can be called an agent.
  • phenol resin foam phenol foam
  • the amount of such a plasticizer is usually 0.1 to 20 parts by mass, preferably 0.5 to 15 parts by mass, and more preferably 1 to 12 parts by mass with respect to 100 parts by mass of the resol-type phenol resin. It is used in the range, whereby the effect of imparting flexibility to the cell wall is exhibited well without impairing the other properties of the resulting phenol resin foam, and the object of the present invention is achieved even better. You will get it.
  • urea will be suitably added and contained in the quasi-incombustible phenol resin composition constituted according to the present invention.
  • the initial thermal conductivity of the obtained phenol resin foam can be effectively reduced, and further, the phenol resin foam having strength, particularly low brittleness, can be obtained. It also advantageously contributes to maintaining a low thermal conductivity over a long period of time, which makes it easy to obtain a phenolic resin foam having excellent thermal insulation performance over a long period of time.
  • the quasi-noncombustible phenol resin composition according to the present invention is, for example, the above-mentioned resol-type phenol resin, the specific first component and the second component as the flame retardant described above.
  • the mixture is mixed and mixed, and if necessary, the above-mentioned foam stabilizer, further a plasticizer, urea and the like are added and mixed, and the obtained mixture is added as a foaming agent, for example, the above-mentioned chlorinated aliphatic compound. It is possible to prepare by adding a hydrocarbon and / or an aliphatic hydrocarbon, or a halogenated alkene, and then feeding this together with an acid curing agent to a mixer and stirring.
  • a method for forming a desired phenol resin foam using the phenol resin composition thus prepared various conventionally known methods can be adopted. For example, (1) an endless conveyor Molding method in which the resin composition is allowed to flow out onto the belt and is foamed and cured, (2) Spot-filled and partially foamed and cured, and (3) Filled in a mold and foamed under pressure. A method of curing, (4) a method of forming a foam block by filling a predetermined large space, foaming and curing, and (5) a method of filling and foaming while press-fitting into a cavity. I can.
  • the phenol resin composition as described above is discharged onto a carrier that moves continuously, and the discharged material foams via a heating zone.
  • a method is employed in which it is pressed and molded to produce the desired phenolic resin foam.
  • the phenolic resin composition is discharged onto a face material on a conveyor belt, then the face material is placed on the upper surface of the resin material on the conveyor belt, and moved to a curing furnace, and a curing furnace.
  • press the other conveyor belt from above to adjust the resin material to a predetermined thickness, foam and cure it under the conditions of 60 to 100 ° C. for 2 to 15 minutes, and then cure it.
  • a phenol resin foam having a desired shape is produced.
  • the face material used here is not particularly limited, and generally, natural fibers, synthetic fibers such as polyester fibers and polyethylene fibers, non-woven fabrics such as inorganic fibers such as glass fibers, papers, aluminum Foil-clad non-woven fabrics, metal plates, metal foils and the like are used, but usually glass fiber non-woven fabrics, spunbonded non-woven fabrics, aluminum foil-clad non-woven fabrics, metal plates, metal foils, plywood, structural panels, particle boards, hard boards.
  • Wood cement board flexible board, perlite board, calcium silicate board, magnesium carbonate board, pulp cement board, seeding board, medium density fiberboard, gypsum board, lath sheet, volcanic vitreous composite board, natural stone, brick, tile , Glass molding, lightweight cellular concrete molding, cement mortar Body, molded bodies of water-curable cement hydrate glass fiber-reinforced cement moldings such as a binder component, and thus preferably used.
  • This face material may be provided on one side of the phenolic resin foam or on both sides without any problem. Further, when provided on both sides, the face materials may be the same or different. Further, it does not matter even if it is formed by laminating the face materials by using an adhesive later.
  • the phenol resin foam thus obtained has, as a flame retardant, a first component consisting of red phosphorus powder, a phosphorus flame retardant other than red phosphorus, an inorganic flame retardant, a halogen flame retardant and graphite. Since the second component consisting of at least one selected from the group consisting of flame retardants is dispersed and contained together, the flame retardant property or fireproof property of the foam as a whole is synergistic. Therefore, in a heat generation test using a corn calorimeter, it is advantageous in that it has the characteristics as a quasi-incombustible material defined by the Building Standards Law of Japan.
  • such phenolic resin foam materials are advantageously generally 0.0230 W / m ⁇ K (20 ° C.) or less, preferably 0.0200 W / m ⁇ K (20 ° C.) or less, more preferably 0. It has a low thermal conductivity of 0195 W / m ⁇ K (20 ° C.) or less, and can be easily produced. Further, the closed cell ratio thereof is generally 85% or more, preferably 90% or more. As a result, it is manufactured so as to advantageously exhibit excellent quasi-non-combustible properties and foam properties such as excellent low thermal conductivity properties.
  • the phenol resin foam obtained according to the present invention its density is 10 to 150 kg / m 3 , preferably 15 to 100 kg / m 3 , more preferably 15 to 70 kg / m 3 , and further preferably It is 20 to 50 kg / m 3 , and most preferably 20 to 40 kg / m 3 .
  • a phenol resin foam having a density lower than 10 kg / m 3 has low strength, and the foam (foam) may be damaged during transportation or construction. If the density is low, the bubble film tends to be thin.
  • the foaming agent in the foam is easily replaced with air, and the foam film is easily broken during foaming, which makes it difficult to obtain a high closed cell structure, and thus long-term Insulation performance tends to decrease.
  • the density exceeds 150 kg / m 3 , the thermal conductivity of the solid derived from the solid component such as the phenol resin is increased, so that the heat insulation performance of the phenol resin foam tends to be deteriorated.
  • Example 1 In a three-neck reaction flask equipped with a reflux condenser, a thermometer and a stirrer, 1600 parts of phenol, 2282 parts of 47% formalin and 41.6 parts of 50% sodium hydroxide aqueous solution were charged, and the temperature was 80 ° C. for 70 minutes. It was made to react. Then, after cooling to 40 ° C., it was neutralized with a 50% paratoluenesulfonic acid aqueous solution, and then dehydrated and concentrated to a water content of 10% under reduced pressure and heating to obtain a liquid resol-type phenol resin. .
  • the obtained phenol resin had the following properties: viscosity: 10000 mPa ⁇ s / 25 ° C., number average molecular weight: 380, free phenol content: 4.0%.
  • the foamable phenolic resin composition prepared in this way was preheated to 70 to 75 ° C. and placed in a mold having a length of 300 mm, a width of 300 mm and a thickness of 50 mm. After pouring, the mold was placed in a dryer at 70 to 75 ° C., foamed and cured for 10 minutes, and further heated at 70 ° C. for 12 hours in a heating furnace to be post-cured to obtain a phenol. A resin foam (phenol foam) was produced.
  • Example 2 a surface-coated red phosphorus powder which is the first component of the flame retardant and a surface-coated ammonium polyphosphate ammonium (Terage C80 sold by CBC Co., average particle size: 19 ⁇ m) which is the second component are respectively described below.
  • Various phenol resin foams were produced in the same manner as in Example 1 except that the addition amounts shown in Table 1 were used.
  • Example 1 the addition amount of the surface-coated red phosphorus powder, which is the first component in the flame retardant, and the second component, zinc borate, zinc stannate, aluminum hydroxide, polyvinyl chloride powder, tetrabromobisphenol A, or Various phenol resin foams were produced in the same manner as in Example 1 except that the amount of expandable graphite added was changed to the ratio shown in Table 1 below.
  • Example 11 In Example 2, the blowing agent was changed to hydrofluoroolefin (1,1,1,4,4,4-hexafluoro-2-butene: HFO-1336mzz, a product of Chemours), and the addition amount was 17.
  • a phenol resin foam was produced in the same manner as in Example 2 except that the amount was 5 parts.
  • Example 1 A phenol resin foam was obtained in the same manner as in Example 1 except that the first and second components as flame retardants were not added.
  • Example 1 As a flame retardant, FR CROS484 as a second component, Terarge C80, zinc borate, zinc stannate, aluminum hydroxide, polychlorinated without adding the surface-coated red phosphorus powder as the first component.
  • Various phenol resin foams were obtained in the same manner as in Example 1 except that only vinyl powder, tetrabromobisphenol A, or expandable graphite was used and the addition amount was changed to the ratios shown in Tables 2 and 3 below. I tried to make. However, in Comparative Examples 6, 8, 10 and 12, the curing reaction of the phenol resin composition did not proceed sufficiently, and a foam whose physical properties could be measured could not be obtained.
  • the phenol resin foams formed in Examples 1 to 11 all had a total calorific value of 8 MJ / m 2 or less in the combustion test (10 minutes). It was confirmed that it is useful as a quasi-incombustible material specified by the Building Standards Law of Japan because it has a maximum heat generation rate of less than the specified value. Moreover, the phenolic resin foams obtained in these examples have low initial thermal conductivity and sufficient compressive strength, and have a heat insulating property as well as physical or mechanical properties. Also in, it was confirmed that it was excellent.
  • Comparative Example 1 was the case where no flame retardant was added, and Comparative Examples 2 to 20 increased the amount of the first component alone or the amount of the second component alone used as the flame retardant.
  • All of the phenol resin foams obtained there have a total calorific value of more than 8 MJ / m 2 and are standards for quasi-incombustible materials specified by the Building Standards Law of Japan. It was found that the above was not satisfied.
  • Comparative Examples 6, 8, 10 and 12 the curing reaction of the phenol resin composition did not proceed smoothly because the amount of the second component used as the flame retardant was too large, and therefore the physical properties were measured. It was revealed that it was not possible to obtain a foam capable of

Abstract

レゾール型フェノール樹脂を必須成分とするフェノール樹脂組成物から得られる発泡体の有用な特性を確保しつつ、難燃性能乃至は防火性能を相乗的に向上せしめて、建築基準法にて規定される準不燃材料を有利に形成することの出来る、準不燃性フェノール樹脂組成物を提供する。 フェノール樹脂組成物において、レゾール型フェノール樹脂、発泡剤及び酸硬化剤と共に、難燃剤として、赤リン粉末からなる第一成分と、赤リン以外のリン系難燃剤、無機系難燃剤、ハロゲン系難燃剤及び黒鉛系難燃剤からなる群れより選ばれた少なくとも一つからなる第二成分とを組み合わせて、含有せしめた。

Description

準不燃性フェノール樹脂組成物及びそれから得られた準不燃材料
 本発明は、準不燃性フェノール樹脂組成物及びそれから得られた準不燃材料に係り、特に、準不燃材料として有用なフェノール樹脂発泡体(フェノールフォーム)を有利に形成し得る準不燃性フェノール樹脂組成物と、そのようなフェノール樹脂組成物から得られた準不燃材料に関するものである。
 従来から、所定の発泡剤を含むフェノール樹脂組成物を発泡、硬化させて得られるフェノール樹脂発泡体は、それ自体、比較的に難燃性の高いものとして認識されているのであるが、そのままでは、建築、土木、電気製品、電気電子部品、自動車部品等の分野において要求される安全性基準を充分に満たすものではなく、コーンカロリーメーターによる発熱性試験にて評価される、我国の建築基準法にて規定される準不燃特性を有する材料を与えるものではなかった。
 このため、そのようなフェノール樹脂発泡体の難燃特性の向上を図るべく、所定の難燃剤をフェノール樹脂組成物に配合して、それを硬化させることにより、目的とするフェノール樹脂発泡体の難燃性の向上が図られてきている。例えば、特開平2-49037号公報においては、難燃剤として、リン化合物、硫黄化合物又はホウ素化合物を用いて、それらをフェノール樹脂発泡体製造用の樹脂組成物に配合せしめることによって、有用な難燃性フェノール樹脂発泡体を製造し得ることが、明らかにされている。また、特開2007-161810号公報や特開2007-70511号公報等においても、フェノール樹脂発泡体製造用の樹脂組成物に、通常、配合せしめられることとなる無機フィラーとして、水酸化アルミニウム、水酸化マグネシウム等の金属の水酸化物;酸化カルシウム、酸化アルミニウム等の金属の酸化物;亜鉛末の如き金属粉末;炭酸カルシウム、炭酸マグネシウム等の金属の炭酸塩を用いることにより、発泡して得られるフェノール樹脂発泡体の難燃性乃至は耐火性を向上せしめ得ることが、明らかにされている。更に、特開昭60-170636号公報や特開平8-176343号公報においては、樹脂に高度の難燃性を付与し得る非ハロゲン系難燃剤として、赤リンやポリリン酸アンモニウムを配合せしめて、フェノール樹脂組成物を調製し、そしてそれを発泡、硬化せしめることにより、難燃性に優れたフェノール樹脂発泡体を得ることが出来ることが、明らかにされている。
 ところで、我国の建築基準法においては、材料の耐火・防火性能に関して、難燃材料、準不燃材料及び不燃材料に区分されて、難燃材料から、準不燃材料、更には不燃材料となる程、より厳しい防火性能が要求されているのであるが、フェノール樹脂の一つであるレゾール型フェノール樹脂を用い、これと、酸硬化剤や発泡剤等とを組み合わせて、発泡、硬化せしめることにより得られる、フェノール樹脂発泡体からなるフェノール樹脂材料に、高度の難燃性を付与せしめるべく、上記した公報に開示の如き難燃剤を用いたところで、不燃材料に次いで厳しい防火性能の要求される準不燃材料における準不燃性能を満たすことは、極めて困難なことであった。特に、かかる建築基準法にて規定される準不燃材料に要求される特性、即ち放射熱強度:50kW/m2 にて加熱したときに、加熱開始後から10分間の総発熱量が8.0MJ/m2 以下となる準不燃特性を得るために、フェノール樹脂組成物に対して、上記した公知の難燃剤の配合量を増加せしめたりすると、フェノール樹脂組成物の硬化反応が阻害されて、目的とするフェノール樹脂発泡体を得ることが出来なくなったり、また得られたフェノール樹脂発泡体の熱伝導率等の物理的乃至は機械的特性が悪化する等の問題が、惹起されるようになるのである。
 なお、前記建築基準法の規定(施行令第1条第五号)によれば、準不燃材料は、上記せる総発熱量を満たすものであると共に、最高発熱速度が、10秒を超えて連続して200kW/m2 を超えることがないこと、そして防炎上有害な、裏面まで貫通する亀裂及び穴がないこととされているのであるが、これまでの難燃剤を配合してなるフェノール樹脂発泡体材料は、フェノール樹脂としての有用な物理的乃至は機械的特性を確保しつつ、そのような準不燃性能の要請に充分に応え得るものではなかったのである。
 尤も、上記の特開昭60-170636号公報においては、赤リンを含有せしめてなるフェノール樹脂発泡体とすることにより、難燃性を超える準不燃性クラスの発泡体とすることが出来た、との指摘が為されているのであるが、本発明者が仔細に検討したところによると、かかる赤リンの配合によって、フェノール樹脂発泡体の難燃性能は有利に高められ得るものの、未だ、我国の建築基準法にて規定される準不燃材料に要求される防火性能を満たすことは出来ず、更に赤リンの配合量をより一層増大せしめても、その目的を達成し得ないことが、明らかとなった。しかも、そのような赤リンの配合量を増大せしめると、赤リン自体も燃焼するものであるために、反って難燃性能が低下するという問題を生じることも、明らかとなった。
特開平2-49037号公報 特開2007-161810号公報 特開2007-70511号公報 特開昭60-170636号公報 特開平8-176343号公報
 そこで、本発明者は、フェノール樹脂の一つであるレゾール型フェノール樹脂を用い、これに、酸硬化剤や発泡剤等を組み合わせて構成される発泡性フェノール樹脂組成物の発泡、硬化により、形成されるフェノール樹脂発泡体に対して、その難燃性能乃至は防火性能を更に向上せしめるべく鋭意検討した結果、難燃剤としての赤リン粉末を第一成分として、これに、所定の難燃剤からなる第二成分を組み合わせて、難燃剤組成物を構成し、フェノール樹脂組成物中に存在せしめることにより、その発泡、硬化によって形成されるフェノール樹脂発泡体において、発泡体としての低い熱伝導率等の特性を効果的に確保しつつ、その難燃性能乃至は防火性能を相乗的に向上せしめ得て、我国の建築基準法にて規定される準不燃材料を有利に得ることが出来ることを見出し、本発明を完成するに至ったのである。
 従って、本発明の解決課題とするところは、レゾール型フェノール樹脂を必須成分として含有する発泡性フェノール樹脂組成物から得られる発泡体の低い熱伝導率特性を効果的に確保しつつ、難燃性能乃至は防火性能を相乗的に向上せしめて、我国の建築基準法にて規定される準不燃材料を有利に形成することの出来る準不燃性フェノール樹脂組成物を提供することにあり、また、そのような準不燃性フェノール樹脂組成物を用いて、かかる建築基準法にて規定される準不燃特性を有する材料を、有利に得ることにある。
 そして、本発明にあっては、かくの如き課題を解決するために、レゾール型フェノール樹脂、発泡剤及び酸硬化剤と共に、難燃剤として、赤リン粉末からなる第一成分と、赤リン以外のリン系難燃剤、無機系難燃剤、ハロゲン系難燃剤及び黒鉛系難燃剤からなる群れより選ばれた少なくとも一つからなる第二成分とを組み合わせて、含有せしめたことを特徴とする準不燃性フェノール樹脂組成物を、その要旨とするものである。
 なお、かかる本発明に従う準不燃性フェノール樹脂組成物の好ましい態様の一つによれば、前記難燃剤は、前記第一成分と前記第二成分の合計量において、前記レゾール型フェノール樹脂の100質量部に対して、2~35質量部の割合となるように含有せしめられており、また、そのような難燃剤を構成する第一成分及び第二成分は、それぞれ、前記レゾール型フェノール樹脂の100質量部に対して、1~30質量部及び1~10質量部の割合となるように含有せしめられている。
 また、本発明に従う準不燃性フェノール樹脂組成物の望ましい態様の他の一つによれば、赤リン粉末は、金属の酸化物乃至は水酸化物及び/又は熱硬化性樹脂により形成された表面コーティング層を有しており、これによって、本発明に従う優れた特性を有するフェノール樹脂発泡体が、有利に形成され得ることとなる。
 さらに、本発明にあっては、有利には、前記赤リン以外のリン系難燃剤として、表面コーティング層が形成されてなるポリリン酸アンモニウム粉末が好適に用いられ、以て、フェノール樹脂組成物の硬化反応が効果的に進行せしめられ得ることとなることにより、本発明に従う難燃性能乃至は防火性能が、より一層有利に発揮せしめられ得ることとなるのである。
 なお、この本発明に従う準不燃性フェノール樹脂組成物の好ましい態様の別の一つによれば、前記ポリリン酸アンモニウム粉末の表面コーティング層は、難溶性熱硬化性樹脂にて形成されている。そのような難溶性熱硬化性樹脂としては、フェノール樹脂やメラミン樹脂等が用いられ、中でも、メラミン樹脂が好適に用いられることとなる。
 また、本発明にあっては、発泡剤としては、ハロゲン化アルケン、或は塩素化脂肪族炭化水素及び/又は脂肪族炭化水素が好適に用いられ、中でも、イソペンタンとイソプロピルクロリドとの混合物が、有利に用いられ得るのである。
 加えて、本発明において用いられるレゾール型フェノール樹脂は、25℃において、2000mPa・s以上の粘度を有するように調整されていることが、好ましい。
 そして、本発明にあっては、上述の如き準不燃性フェノール樹脂組成物を発泡、硬化させて得られる発泡体からなる準不燃材料をも、その要旨とするものである。
 また、そのような準不燃材料において、上記せる発泡体は、一般に、ISO-5660に規定される発熱性試験方法に準拠して、放射熱強度:50kW/m2 にて加熱したときに、加熱開始後10分間の総発熱量が8.0MJ/m2 以下である特性を有しているものである。
 このように、本発明に従う準不燃性フェノール樹脂組成物にあっては、難燃剤として、赤リン粉末からなる第一成分と、赤リン以外のリン系難燃剤、無機系難燃剤、ハロゲン系難燃剤及び黒鉛系難燃剤からなる群れより選ばれた少なくとも一つからなる第二成分とが併用されて、含有せしめられていることによって、それら二つの成分の相乗作用にて、そのような準不燃性フェノール樹脂組成物を発泡、硬化せしめて得られる発泡体材料の難燃性能乃至は防火性能が、効果的に向上せしめられ得たのであり、しかも、フェノール樹脂発泡体として有用な低い熱伝導率等の特性も、有利に具備させられ得ているのである。
 そして、そのような本発明に従う準不燃性フェノール樹脂組成物を用いることにより、我国の建築基準法にて規定される準不燃材料としてのフェノール樹脂発泡体材料が、容易に且つ有利に実現され得ることとなったのである。
 かくの如き本発明において使用されるレゾール型フェノール樹脂は、有利には、フェノール類の1モルに対して、アルデヒド類を、1.0~3.0モル程度の割合において、好ましくは1.5~2.5モル程度の割合において用い、それらを、アルカリ性の反応触媒の存在下において、例えば50℃~還流温度の範囲内の温度下において反応させた後、中和処理を実施し、次いで減圧下で、所定の特性値、例えば25℃での粘度が2000mPa・s以上であり、且つ含有水分量が3~20質量%、好ましくは5~18質量%となるように、脱水濃縮を行い、しかる後に、必要に応じて、所定の添加物を従来と同様に加えて、製造されることが望ましい。
 勿論、このようにして製造されるレゾール型フェノール樹脂の他、本発明においては、酸硬化剤によって硬化せしめられ得る、公知の各種のレゾール型フェノール樹脂も、適宜に採用され得るところであり、更には適当な変性剤によって変性されたレゾール型フェノール樹脂であっても、同様に用いることが出来る。
 そして、このようにして得られるレゾール型フェノール樹脂が、25℃において、2000mPa・s以上、好ましくは2000~100000mPa・s、より好ましくは3000~80000mPa・s、更に好ましくは4000~30000mPa・sの粘度を有していることにより、目的とする樹脂組成物の調製、中でも赤リン粉末の分散、含有をより効果的に実現せしめ、更にはその分散状態の安定性を有利に高め得ることとなるのであり、以て、難燃性並びに低い熱伝導率のより一層の向上を図り得ることとなるのである。なお、かかるレゾール型フェノール樹脂の粘度が2000mPa・s未満となると、赤リン粉末の沈降が著しくなって、その局在化が惹起され、形成されるフェノール樹脂発泡体にムラを生じさせて、充分な難燃性、低い熱伝導率が得られず、また逆に、粘度が高くなり過ぎて、例えば100000mPa・sを超えるようになると、目的とするフェノール樹脂発泡体を得ることが困難となる問題を惹起する。
 ところで、かかる本発明で用いられるレゾール型フェノール樹脂の一方の原料となるフェノール類としては、フェノール、o‐クレゾール、m‐クレゾール、p‐クレゾール、p‐tert‐ブチルフェノール、m‐キシレノール、ビスフェノールF、ビスフェノールA等を挙げることが出来、また、このフェノール類と組み合わせて用いられる、他方の原料であるアルデヒド類としては、ホルムアルデヒド、パラホルムアルデヒド、トリオキサン、ポリオキシメチレン、グリオキザール等を挙げることが出来る。更に、反応触媒としては、水酸化カリウム、水酸化ナトリウム、水酸化バリウム、水酸化カルシウム、炭酸カリウム、アンモニア等を挙げることが出来る。勿論、これらフェノール類、アルデヒド類及び反応触媒は、何れも、上例のものに限定されるものでは決してなく、公知の各種のものが、適宜に用いられ得るところであり、また、それらは、それぞれ単独において、或は2種以上を組み合わせて、用いられ得るものである。
 そして、本発明にあっては、上述の如きレゾール型フェノール樹脂と共に、所定の発泡剤が、従来から公知の各種の発泡剤の中から適宜に選択されて、用いられることにより、フェノール樹脂発泡体製造用のフェノール樹脂組成物が、構成されることとなるのであるが、そのような発泡剤としては、有利には、地球温暖化係数の低い、塩素化脂肪族炭化水素及び/又は脂肪族炭化水素や、ハロゲン化アルケンが用いられることとなる。なお、その中でも、塩素化脂肪族炭化水素やハロゲン化アルケンを用いることにより、本発明に従うフェノール樹脂組成物にて形成される発泡体の準不燃特性や低い熱伝導率をより一層高め得る特徴が、発揮されるのである。
 なお、そこにおいて、発泡剤としての塩素化脂肪族炭化水素は、一般に、炭素数が2~5個程度の直鎖状、分岐鎖状の脂肪族炭化水素の塩素化物が好ましく用いられ、その塩素原子の結合数としては、一般に、1~4個程度である。このような塩素化脂肪族炭化水素の具体例としては、ジクロロエタン、プロピルクロリド、イソプロピルクロリド、ブチルクロリド、イソブチルクロリド、ペンチルクロリド、イソペンチルクロリド等を挙げることが出来る。これらは、1種を単独で用いてもよく、2種以上を組み合わせてもよいが、それらの中でも、プロピルクロリドやイソプロピルクロリド等のクロロプロパン類が好ましく、特にイソプロピルクロリドが好適に用いられることとなる。
 また、発泡剤としての脂肪族炭化水素には、従来から公知の、炭素数が3~7個程度の炭化水素系発泡剤が、適宜に選択されて用いられ得るところであり、具体的には、プロパン、ブタン、ペンタン、イソペンタン、ヘキサン、イソヘキサン、ネオヘキサン、ヘプタン、イソヘプタン、シクロペンタン等を挙げることが出来、それらの中から、1種又は2種以上を組み合わせて、用いられることとなる。
 さらに、本発明にあっては、上記した塩素化脂肪族炭化水素と脂肪族炭化水素とを組み合わせてなる混合発泡剤も好適に用いられ、その混合比率としては、質量比において、脂肪族炭化水素:塩素化脂肪族炭化水素=25:75~5:95の範囲内において、有利に採用されることとなる。なお、そのような2種類の発泡剤の組み合わせとしては、イソペンタンとイソプロピルクロリドとの組み合わせが推奨され、これによって、本発明の目的がより一層有利に達成され得るのである。
 加えて、本発明にあっては、発泡剤として、ハロゲン化アルケンも有利に用いられ、それによって、得られるフェノール樹脂発泡体の特性、特に難燃特性乃至は防火特性や低い熱伝導率のより一層の向上に寄与せしめることが出来る。このような特性を発揮するハロゲン化アルケンは、ハロゲン化オレフィンやハロゲン化ハイドロオレフィンと称されるものをも含み、一般的に、ハロゲンとして塩素やフッ素を結合、含有せしめてなる、炭素数が2~6個程度の不飽和炭化水素誘導体であって、例えば、3~6個のフッ素置換基を有するプロペン、ブテン、ペンテン及びヘキセンに、ハロゲン、例えばフッ素や塩素を置換、含有させてなる、テトラフルオロプロペン、フルオロクロロプロペン、トリフルオロモノクロロプロペン、ペンタフルオロプロペン、フルオロクロロブテン、ヘキサフルオロブテンや、これらの2種以上の混合物を挙げることが出来る。
 具体的には、かかるハロゲン化アルケン(ハロゲン化オレフィン)の1つであるハイドロフルオロオレフィン(HFO)としては、例えば、1,2,3,3,3-ペンタフルオロプロペン(HFO1225ye)等のペンタフルオロプロペン、1,3,3,3-テトラフルオロプロペン(HFO1234ze)、2,3,3,3-テトラフルオロプロペン(HFO1234yf)、1,2,3,3-テトラフルオロプロペン(HFO1234ye)等のテトラフルオロプロペン、3,3,3-トリフルオロプロペン(HFO1243zf)等のトリフルオロプロペン、テトラフルオロブテン異性体(HFO1354)類、ペンタフルオロブテン異性体(HFO1345)類、1,1,1,4,4,4-ヘキサフルオロ-2-ブテン(HFO1336mzz)等のヘキサフルオロブテン異性体(HFO1336)類、ヘプタフルオロブテン異性体(HFO1327)類、ヘプタフルオロペンテン異性体(HFO1447)類、オクタフルオロペンテン異性体(HFO1438)類、ノナフルオロペンテン異性体(HFO1429)類等を挙げることが出来る。また、ハイドロクロロフルオロオレフィン(HCFO)としては、1-クロロ-3,3,3-トリフルオロプロペン(HCFO-1233zd)、2-クロロ-3,3,3-トリフルオロプロペン(HCFO-1233xf)、ジクロロトリフルオロプロペン(HCFO1223)、1-クロロ-2,3,3-トリフルオロプロペン(HCFO-1233yd)、1-クロロ-1,3,3-トリフルオロプロペン(HCFO-1233zb)、2-クロロ-1,3,3-トリフルオロプロペン(HCFO-1233xe)、2-クロロ-2,2,3-トリフルオロプロペン(HCFO-1233xc)、3-クロロ-1,2,3-トリフルオロプロペン(HCFO-1233ye)、3-クロロ-1,1,2-トリフルオロプロペン(HCFO-1233yc)等を挙げることが出来る。
 そして、本発明に従うフェノール樹脂組成物に含有せしめられる発泡剤、即ち上述の如き各発泡剤は、その合計量において、レゾール型フェノール樹脂の100質量部に対して、一般に1~30質量部、好ましくは5~25質量部の割合において、用いられることとなるのである。
 なお、本発明で使用される発泡剤には、上述の如き塩素化脂肪族炭化水素及び/又は脂肪族炭化水素、或はハロゲン化アルケンを含むことが推奨されるのであるが、これに限定されるものではなく、本発明の目的に悪影響をもたらさない限りにおいて、例えば、1,1,1,3,3-ペンタフルオロブタン等のフッ素化炭化水素(代替フロン)、トリクロロモノフルオロメタン、トリクロロトリフルオロエタン等の塩フッ素化炭化水素、水、イソプロピルエーテル等のエーテル化合物や、窒素、アルゴン、炭酸ガス等の気体、更には空気等を、適宜の割合において含有せしめることも可能である。
 また、本発明において用いられる酸硬化剤は、上述せる如きレゾール型フェノール樹脂の硬化反応を促進するための成分(硬化触媒)であって、従来から公知の酸硬化剤が、適宜に選択されて、用いられることとなる。そして、そのような酸硬化剤としては、例えばベンゼンスルホン酸、フェノールスルホン酸、クレゾールスルホン酸、トルエンスルホン酸、キシレンスルホン酸、ナフタレンスルホン酸等の芳香族スルホン酸;メタンスルホン酸、トリフルオロメタンスルホン酸等の脂肪族スルホン酸;硫酸、リン酸、ポリリン酸、ホウフッ化水素酸等の無機酸等が挙げられ、これらは、単独で用いられてもよく、また2種以上が組み合わされて用いられても、何等差し支えない。なお、これら例示の酸硬化剤の中でも、フェノールスルホン酸、トルエンスルホン酸、ナフタレンスルホン酸等の芳香族スルホン酸にあっては、フェノール樹脂発泡体の製造に際して、適度な硬化速度を実現することが出来るために、レゾール型フェノール樹脂の硬化と発泡剤による発泡とのバランスがより一層良好となり、以て、望ましい発泡構造を実現し得ることとなるところから、特に好適に用いられるものである。中でも、本発明にあっては、パラトルエンスルホン酸とキシレンスルホン酸との併用が推奨され、それらの使用割合としては、質量基準において、パラトルエンスルホン酸の使用量が、キシレンスルホン酸の使用量より多いことが望ましく、具体的には、質量比で、パラトルエンスルホン酸:キシレンスルホン酸が51:49~95:5の範囲内において、有利に採用されることとなる。
 さらに、そのような酸硬化剤の使用量としては、その種類や、前記レゾール型フェノール樹脂との混合時における温度条件等に応じて、適宜に設定されるものの、本発明においては、レゾール型フェノール樹脂の100質量部に対して、一般に1~50質量部、好ましくは5~30質量部、特に好ましくは7~25質量部とすることが望ましい。その使用量が1質量部未満では、硬化の進行が遅く、逆に50質量部を超えるようになると、硬化速度が速くなり過ぎて、目的とするフェノール樹脂発泡体を有利に得ることが困難となる問題を惹起する。
 そして、本発明に従って、上述の如き必須の成分を添加、含有せしめてなるフェノール樹脂発泡体製造用のフェノール樹脂組成物には、それから形成されるフェノール樹脂発泡体に、準不燃性の難燃特性を効果的に付与しつつ、熱伝導率の上昇を抑制乃至は阻止し、更にはフェノール樹脂からなる発泡体特性が有利に確保され得るように、難燃剤として、赤リン粉末からなる第一成分と共に、赤リン以外のリン系難燃剤、無機系難燃剤、ハロゲン系難燃剤及び黒鉛系難燃剤からなる群れより選ばれた少なくとも一つからなる第二成分とが組み合わされて配合せしめられ、それら二つの成分からなる難燃剤が、フェノール樹脂組成物中に分散、含有せしめられるようにしたのである。
 なお、ここで用いられる難燃剤の第一成分である赤リン粉末としては、公知のものが、何れも、その対象とされ、通常、市販品の中から適宜に選択して用いられることとなる。例えば、燐化学工業株式会社製の「NOVARED」,「NOVAEXCEL」、日本化学工業株式会社製の「HISHIGUARD」、クラリアント社製の「EXOLIT」等の名称にて販売されているものを、挙げることが出来る。中でも、そのような赤リン粉末は、取扱い性乃至は作業性の向上と共に、樹脂組成物中への分散性を高め、その添加効果を有利に向上せしめる上において、その表面にコーティング層が形成されているものであることが望ましく、具体的には、水酸化アルミニウム、水酸化マグネシウム、水酸化亜鉛、水酸化チタン等の金属の水酸化物や、酸化アルミニウム、酸化マグネシウム、酸化亜鉛、酸化チタン等の金属の酸化物からなる無機化合物、及び/又はフェノール樹脂、フラン樹脂、キシレン・ホルムアルデヒド樹脂等の熱硬化性樹脂による被覆層を粒子表面に形成してなる赤リン粉末が、有利に用いられることとなる。なお、かかる被覆層は、一般に、赤リンの100質量部に対して、1~30質量部程度の割合において、形成されている。
 また、このような赤リン粉末の使用量としては、レゾール型フェノール樹脂の100質量部に対して、一般に1~30質量部、好ましくは1~25質量部、更に好ましくは2~20質量部の範囲内において、決定される。この赤リン粉末の使用量が少なくなり過ぎると、フェノール樹脂発泡体に対する難燃性能乃至は防火性能の付与効果を充分に奏し難くなるからであり、また、その使用量が多くなり過ぎると、反って燃焼し易くなって、難燃性能乃至は防火性能を低下せしめ、また熱伝導率を悪化せしめたり、それが添加された組成物の粘度を上昇させ、撹拌不良等の問題を惹起するようになることに加えて、中長期における低い熱伝導率の維持が困難となる等の問題を惹起するようになる。
 さらに、かかる赤リン粉末の平均粒径は、一般に1~100μm程度、好ましくは5~50μm程度である。この赤リン粉末の粒径が小さくなり過ぎると、その取扱いや樹脂組成物中への均一な分散が困難となる等の問題を惹起し、またその粒径が大きくなり過ぎても、樹脂組成物中における均一な分散効果を得ることが難しく、そのために本発明の目的を充分に達成し得ない問題を惹起する。
 一方、本発明において、難燃剤の第二成分として用いられる、赤リン以外のリン系難燃剤、無機系難燃剤、ハロゲン系難燃剤及び黒鉛系難燃剤は、何れも、公知のものの中から適宜に選択され得るものであって、例えば、赤リン以外のリン系難燃剤としては、各種リン酸及びその塩、フェニルホスホン酸、フェニルホスフィン酸、リン酸グアニジン誘導体、リン酸カルバメート誘導体、芳香族リン酸エステル、芳香族縮合リン酸エステル、ハロゲン化リン酸エステル、リン酸アンモニウム、ポリリン酸アンモニウム、表面コーティング層を有するポリリン酸アンモニウム等を用いることが出来る。中でも、ポリリン酸アンモニウムの粉末は、その使用量がレゾール型フェノール樹脂の100質量部に対して数質量部以上となると、フェノール樹脂組成物の硬化反応を阻害するようになるところから、一般に、1~3質量部程度の割合にとどめる必要があるのであるが、ポリリン酸アンモニウム粉末の表面に、所定のコーティング層を形成してなるものを用いることによって、そのような問題が有利に解消され、これによって、フェノール樹脂組成物の硬化反応を効果的に進行せしめつつ、優れた難燃特性や圧縮強さ、断熱性能等の特性を有利に発揮し得るフェノール樹脂発泡体を、形成することが出来る。
 なお、かかる有利に用いられる表面コーティング層を有するポリリン酸アンモニウム粉末としては、ポリリン酸アンモニウムの粒子を熱硬化性樹脂で被覆若しくはマイクロカプセル化したものや、メラミンモノマーや他の含窒素有機化合物等でポリリン酸アンモニウム粒子の表面を被覆したもの、界面活性剤やシリコン処理を行ったもの等を挙げることが出来、通常、市販品の中から適宜に選択して用いられることとなる。例えば、クラリアントケミカルズ株式会社から入手可能なExolit AP462や、CBC株式会社から入手可能なFR CROS486、FR CROS487、テラージュC30、テラージュC60、テラージュC70、テラージュC80等を挙げることが出来る。また、そのようなポリリン酸アンモニウム粉末における表面コーティング層は、液状となるフェノール樹脂組成物に対して難溶性、特に、水に難溶性のものであることが望ましく、中でも、そのような難溶性熱硬化性樹脂としては、フェノール樹脂やメラミン樹脂等が用いられ、中でも、メラミン樹脂が好適に用いられることとなる。また、易溶性の熱硬化性樹脂であっても、それにて形成された表面コーティング層の硬化反応を進行せしめて、難溶性の表面コーティング層とすることにより、有利に用いられることとなる。そして、そのような難溶性の熱硬化性樹脂からなる表面コーティング層を有していることにより、圧縮強さや断熱性能等に優れた特性を有するフェノール樹脂発泡体を、有利に得ることが出来るのである。
 また、無機系難燃剤としては、例えば、水酸化アルミニウム、水酸化マグネシウム等の金属水酸化物;炭酸カルシウム、炭酸マグネシウム、炭酸バリウム等の金属炭酸塩;酸化カルシウム、酸化マグネシウム、酸化アルミニウム、酸化亜鉛等の金属酸化物;ホウ酸亜鉛、スズ酸亜鉛、炭酸亜鉛等の無機酸の亜鉛塩;三酸化アンチモン、五酸化アンチモン等のアンチモン化合物;亜鉛末等の金属粉;ホウ砂、ホウ酸、硫酸アンモニウム等を挙げることが出来、中でも、ホウ酸亜鉛、スズ酸亜鉛等の亜鉛塩が、有利に用いられることとなる。
 さらに、ハロゲン系難燃剤としては、塩化ビニル樹脂粉末、ポリ臭化ビニル粉末や、テトラクロロビスフェノールA、テトラブロモビスフェノールA、デカブロモジフェニルエーテル等の粉末が有利に用いられ、また黒鉛系難燃剤としては、天然及び人工の各種黒鉛類、中でも、膨張性黒鉛の粉末が好適に用いられることとなる。
 そして、本発明にあっては、上述の如き赤リン以外のリン系難燃剤、無機系難燃剤、ハロゲン系難燃剤及び黒鉛系難燃剤の中から選ばれた1つ又はその複数にて、難燃剤の第二成分が構成されることとなるのであるが、そのような第二成分は、合計量において、レゾール型フェノール樹脂の100質量部に対して、1~10質量部の割合となるように、好ましくは8質量部以下の割合となるように、含有せしめられることとなる。なお、そのような第二成分の含有量が少なくなり過ぎると、第一成分(赤リン粉末)との併用による難燃性能乃至は防火性能の相乗的な向上効果を充分に果たし難くなる恐れがあり、また、その含有量が多くなり過ぎると、最終的に得られるフェノール樹脂発泡体の特性を低下せしめたり、フェノール樹脂組成物の発泡硬化反応を阻害したりする等の問題が、惹起されるようになる。
 また、本発明に従うフェノール樹脂組成物に含有せしめられる難燃剤を構成する、第一成分と第二成分の合計量は、そのようなフェノール樹脂組成物を発泡、硬化せしめて得られるフェノール樹脂発泡体に要請される難燃特性乃至は防火特性に応じて、適宜に選定されるところであるが、一般に、レゾール型フェノール樹脂の100質量部に対して、2~35質量部程度、好ましくは3~30質量部程度、より好ましくは5~20質量部程度の範囲内において、適宜に決定されることとなる。なお、それら第一成分と第二成分の合計含有量が少なくなり過ぎると、充分な難燃特性乃至は防火特性の向上効果を達成し難くなるからであり、また、その含有量が多くなり過ぎると、フェノール樹脂組成物の発泡硬化反応を阻害したり、得られるフェノール樹脂発泡体の低い熱伝導率等の特性を低下せしめる等の問題が、惹起されることとなる。
 ところで、本発明に従う準不燃性フェノール樹脂組成物には、上述の如きレゾール型フェノール樹脂と共に、発泡剤及び酸硬化剤、更には難燃剤としての、特定の第一成分と第二成分との組み合わせが、必須の成分として添加、配合せしめられるものであるが、その他必要に応じて、従来から公知の整泡剤、可塑剤、尿素、更には、本発明にて規定される第一成分及び第二成分以外の他の難燃剤等を含有せしめることも可能である。
 ここで、かかる必要に応じて添加、含有せしめられる添加剤のうち、整泡剤は、フェノール樹脂組成物における混合成分の混合や乳化の補助、発生ガスの分散、フォームセル膜の安定化等を図るために配合せしめられるものである。そして、そのような整泡剤としては、特に限定されるものではなく、当該技術分野で従来から使用されてきた各種の整泡剤が、何れも選択使用されることとなるが、中でも、ポリシロキサン系化合物、ポリオキシエチレンソルビタン脂肪酸エステル、アルキルフェノールエチレンオキサイド付加物、ヒマシ油のエチレンオキサイド付加物等の非イオン系界面活性剤が、特に好ましく用いられる。なお、これらの整泡剤は、単独で用いられる他、その2種以上を組み合わせて、用いることも出来る。また、その使用量についても、特に制限は無いが、一般的には、レゾール型フェノール樹脂の100質量部に対して、0.5~10質量部の範囲内において、用いられることとなる。
 また、可塑剤は、フェノール樹脂発泡体の気泡壁に柔軟性を付与し、断熱性能の経時的な劣化を抑制するために、有利に添加されるものであって、難燃剤としての第一成分及び第二成分の採用と同様に、本発明の目的の実現に有利に寄与し得るものである。この可塑剤としては、特に制限はなく、従来からフェノール樹脂発泡体の製造に用いられている公知の可塑剤、例えば、リン酸トリフェニル、テレフタル酸ジメチル、イソフタル酸ジメチル等を用いることが出来、更にポリエステルポリオールの使用も有効である。特に、ポリエステルポリオールは、親水性且つ界面活性に優れるエステル結合及びヒドロキシル基を含む構造を有しているところから、親水性のフェノール樹脂液との相溶性がよく、フェノール樹脂と均一に混合することが出来る。また、このポリエステルポリオールを用いることにより、気泡の偏在を回避し、発泡体全体に気泡を均一に分布させ、品質的にも均質なフェノール樹脂発泡体(フェノールフォーム)が生成し易くなり、好ましい可塑剤ということが出来る。なお、このような可塑剤は、レゾール型フェノール樹脂の100質量部に対して、通常、0.1~20質量部、好ましくは0.5~15質量部、より好ましくは1~12質量部の範囲において用いられ、これによって、得られるフェノール樹脂発泡体の他の性能を損なうことなく、気泡壁に柔軟性を付与する効果が良好に発揮され、本発明の目的が、より一層良好に達成され得ることとなる。
 さらに、本発明に従って構成される準不燃性フェノール樹脂組成物には、尿素が好適に添加、含有せしめられることとなる。このような尿素の含有によって、得られるフェノール樹脂発泡体の初期熱伝導率を効果的に低下せしめることが出来、更には強度、特に低脆性のフェノール樹脂発泡体を得ることが出来ると共に、その中長期に亘る熱伝導率を低く維持することにも有利に寄与し、以て、優れた断熱性能を長期安定的に有するフェノール樹脂発泡体を得ることが容易となるのである。
 ところで、上述の如き配合成分を含有する、本発明に従う準不燃性フェノール樹脂組成物は、例えば、前述のレゾール型フェノール樹脂に、前記した難燃剤としての特定の第一成分と第二成分とを組み合わせて混合せしめ、更に必要に応じて、前記の整泡剤、更には可塑剤、尿素等を加えて混合し、そしてその得られた混合物に、発泡剤として、例えば、前記した塩素化脂肪族炭化水素及び/又は脂肪族炭化水素、或はハロゲン化アルケンを添加した後、これを、酸硬化剤と共に、ミキサに供給して、撹拌することにより、調製することが可能である。
 また、そのようにして調製されたフェノール樹脂組成物を用いて、目的とするフェノール樹脂発泡体を形成させる方法としては、従来から公知の各種の手法が採用され得、例えば、(1)エンドレスコンベアベルト上に樹脂組成物を流出させて、発泡、硬化させる成形方法、(2)スポット的に充填して部分的に発泡、硬化させる方法、(3)モールド内に充填して加圧状態で発泡、硬化させる方法、(4)所定の大きな空間内に充填して、発泡、硬化させることにより、発泡体ブロックを形成する方法、(5)空洞中に圧入しながら充填発泡させる方法を挙げることが出来る。
 そして、それら成形方法の中でも、上記(1)の成形方法によれば、前述の如きフェノール樹脂組成物は、連続的に移動するキャリア上に吐出され、この吐出物が加熱ゾーンを経由して発泡せしめられると共に成形されて、所望のフェノール樹脂発泡体が作製されるようにする方法が、採用される。具体的には、前記フェノール樹脂組成物を、コンベアベルト上の面材の上に吐出した後、かかるコンベアベルト上の樹脂材料の上面に面材を載せて、硬化炉に移動せしめ、そして硬化炉の中では、上から他のコンベアベルトで押さえて、かかる樹脂材料を所定の厚さに調整して、60~100℃程度、2~15分間程度の条件下で発泡、硬化せしめ、その後、硬化炉から取り出された発泡体を所定の長さに切断することにより、目的とする形状のフェノール樹脂発泡体が作製されるのである。
 なお、ここで用いられる面材としては、特に制限されることはなく、一般的には天然繊維、ポリエステル繊維やポリエチレン繊維等の合成繊維、ガラス繊維等の無機繊維等の不織布、紙類、アルミニウム箔張不織布、金属板、金属箔等が用いられるものであるが、通常、ガラス繊維不織布、スパンボンド不織布、アルミニウム箔張不織布、金属板、金属箔、合板、構造用パネル、パーティクルボード、ハードボード、木質系セメント板、フレキシブル板、パーライト板、珪酸カルシウム板、炭酸マグネシウム板、パルプセメント板、シージングボード、ミディアムデンシティーファイバーボード、石膏ボード、ラスシート、火山性ガラス質複合板、天然石、煉瓦、タイル、ガラス成形体、軽量気泡コンクリート成形体、セメントモルタル成形体、ガラス繊維補強セメント成形体等の水硬化性セメント水和物をバインダー成分とする成形体が、好適に用いられることとなる。そして、この面材は、フェノール樹脂発泡体の片面に設けてもよく、また両面に設けても、何等差支えない。また、両面に設けられる場合において、面材は同じものであってもよいし、異なるものであってもよい。更に、後から接着剤を用いて、面材を貼り合わせて形成されるものであっても、何等差支えない。
 かくして、かくの如くして得られるフェノール樹脂発泡体には、難燃剤として、赤リン粉末からなる第一成分と、赤リン以外のリン系難燃剤、無機系難燃剤、ハロゲン系難燃剤及び黒鉛系難燃剤からなる群れより選ばれた少なくとも一つからなる第二成分とが、共に分散、含有せしめられてなるものであるところから、発泡体全体としての難燃特性乃至は防火特性が相乗的に高められ得て、コーンカロリーメーターによる発熱性試験において、我国の建築基準法にて規定される準不燃材料としての特性を、有利に具備するものとなっているのである。具体的には、ISO-5660に規定される発熱性試験方法に準拠して、放射熱強度:50kW/m2 にて加熱したときに、加熱開始から10分間が経過するまでの総発熱量が8.0MJ/m2 以下である特性を有利に具備する難燃性材料となるのであり、これによって、準不燃材料として、各種の用途に有利に用いられ得ることとなったのである。
 また、そのようなフェノール樹脂発泡体材料は、有利には、一般に0.0230W/m・K(20℃)以下、好ましくは0.0200W/m・K(20℃)以下、更に好ましくは0.0195W/m・K(20℃)以下となる、低い熱伝導率を有するものとして、容易に製造され得るものであり、更に、その独立気泡率が、一般に85%以上、好ましくは90%以上であるように構成され、これによって、優れた準不燃特性と共に、優れた低熱伝導率特性等の発泡体特性を有利に発揮するものとして、製造されることとなる。
 さらに、本発明に従って得られるフェノール樹脂発泡体において、その密度は、10~150kg/m3 、好ましくは15~100kg/m3 であり、より好ましくは15~70kg/m3 であり、更に好ましくは20~50kg/m3 であり、最も好ましくは20~40kg/m3 である。なお、密度が10kg/m3 よりも低いフェノール樹脂発泡体は、強度が低く、運搬又は施工時にフォーム(発泡体)が破損する恐れがある。また、密度が低いと、気泡膜が薄くなる傾向がある。そして、気泡膜が薄いと、フォーム(発泡体)中の発泡剤が空気と置換し易くなったり、発泡時に気泡膜が破れ易くなることから、高い独立気泡構造を得ることが困難となり、長期の断熱性能が低下する傾向がある。その一方で、密度が150kg/m3 を超えるようになると、フェノール樹脂を始めとする固形成分由来の固体の熱伝導が大きくなるために、フェノール樹脂発泡体の断熱性能が低下する傾向がある。
 以下に、本発明の実施例を幾つか示し、比較例と対比することにより、本発明の特徴を更に具体的に明らかにすることとするが、本発明が、そのような実施例の記載によって、何等の制約をも受けるものでないことは、言うまでもないところである。また、本発明には、以下の実施例の他にも、更には上記した具体的記述以外にも、本発明の趣旨を逸脱しない限りにおいて、当業者の知識に基づいて、種々なる変更、修正、改良等を加え得るものであることが、理解されるべきである。なお、以下に示す百分率(%)及び部は、特に断りのない限り、何れも、質量基準にて示されるものである。
-実施例1-
 還流器、温度計及び撹拌機を備えた三つ口反応フラスコ内に、フェノール1600部、47%ホルマリン2282部及び50%水酸化ナトリウム水溶液41.6部を仕込み、80℃の温度下において70分間反応させた。次いで、40℃に冷却した後、50%パラトルエンスルホン酸水溶液で中和せしめ、その後、減圧・加熱下において、水分率:10%まで脱水濃縮することにより、液状のレゾール型フェノール樹脂を得た。この得られたフェノール樹脂は、粘度:10000mPa・s/25℃、数平均分子量:380、遊離フェノール含有量:4.0%の特性を有するものであった。
 そして、その得られた液状のレゾール型フェノール樹脂の100部に、整泡剤として、ヒマシ油エチレンオキサイド付加物(付加モル数22)の3部、及び添加剤として、尿素の5部を加えて、混合し、均一なフェノール樹脂混合物を得た。
 次いで、かかる得られたフェノール樹脂混合物の108部に対して、難燃剤として、第一成分である表面コート赤リン粉末(燐化学工業株式会社製ノーバエクセル140、平均粒径:25~35μm、表面コーティング処理)の5部及び第二成分であるポリリン酸アンモニウム粉末(CBC株式会社販売のFR CROS484、平均粒径:18μm)の1部と、発泡剤として、イソプロピルクロリド:イソペンタン=85:15の質量割合からなる混合物の9部と、硬化剤として、パラトルエンスルホン酸:キシレンスルホン酸=2:1(質量比)の混合物の16部とを、撹拌、混合せしめることにより、フェノール樹脂発泡体製造用のフェノール樹脂組成物を調製した。
 その後、かくの如くして調製された発泡性のフェノール樹脂組成物を用い、それを、予め70~75℃に加熱されてなる、縦:300mm、横:300mm、厚み:50mmの型枠内に注入した後、かかる型枠を70~75℃の乾燥機に収容して、10分間発泡硬化せしめ、更に70℃の温度で12時間、加熱炉内で加熱することにより、後硬化させて、フェノール樹脂発泡体(フェノールフォーム)を作製した。
-実施例2~4-
 実施例1において、難燃剤の第一成分である表面コート赤リン粉末と、第二成分である表面コートポリリン酸アンモニウム(CBC株式会社販売のテラージュC80、平均粒径:19μm)とを、それぞれ下記表1に示される添加量としたこと以外は、実施例1と同様にして、各種のフェノール樹脂発泡体を、それぞれ、作製した。
-実施例5~10-
 実施例1において、難燃剤における第一成分である表面コート赤リン粉末の添加量と、第二成分であるホウ酸亜鉛、スズ酸亜鉛、水酸化アルミニウム、ポリ塩化ビニルパウダ、テトラブロモビスフェノールA、又は膨張性黒鉛の添加量とを、下記表1に示す割合としたこと以外は、実施例1と同様にして、各種のフェノール樹脂発泡体を、それぞれ作製した。
-実施例11-
 実施例2において、発泡剤を、ハイドロフルオロオレフィン(1,1,1,4,4,4-ヘキサフルオロ-2-ブテン:HFO-1336mzz、Chemours社製品)に変更し、その添加量を17.5部としたこと以外は、実施例2と同様にして、フェノール樹脂発泡体を作製した。
-比較例1-
 実施例1において、難燃剤としての第一成分及び第二成分を全く添加しなかったこと以外は、実施例1と同様にして、フェノール樹脂発泡体を得た。
-比較例2~5-
 実施例1において、難燃剤として、表面コート赤リン粉末のみを用いると共に、その添加量を下記表2に示される割合としたこと以外は、実施例1と同様にして、各種のフェノール樹脂発泡体を、それぞれ作製した。
-比較例6~20-
 実施例1において、難燃剤として、第一成分である表面コート赤リン粉末を添加することなく、第二成分であるFR CROS484、テラージュC80、ホウ酸亜鉛、スズ酸亜鉛、水酸化アルミニウム、ポリ塩化ビニルパウダ、テトラブロモビスフェノールA、又は膨張性黒鉛のみを用い、その添加量を、下記表2及び表3に示される割合としたこと以外は、実施例1と同様にして、各種のフェノール樹脂発泡体の作製を試みた。しかしながら、比較例6、8、10及び12においては、フェノール樹脂組成物の硬化反応が充分に進行せず、物性測定が可能な発泡体を得ることが出来なかった。
 次いで、かくして得られた各種のフェノール樹脂発泡体(フェノールフォーム)を用いて、その密度、吸水量、初期熱伝導率、独立気泡率、圧縮強さ、及び準不燃性の評価のための燃焼試験(総発熱量、最大発熱速度、試験後の状況)について、それぞれ、以下の方法に従って測定乃至は評価して、それら得られた結果を、下記表1~表3及び表4~表6に示した。
(1)密度の測定
 JIS-A-9511(2003)における「5.6密度」の記載に従って、それぞれの発泡体の密度を測定した。
(2)吸水量の測定
 JIS A9511:2006Rにおける「5.14(測定方法A)」に従い、測定した。
(3)初期熱伝導率の測定
 300mm角のフェノール樹脂発泡体サンプルを用い、それを200mm角にカット(厚みは50mm)した後、低温板温度:10℃、高温板温度:30℃に設定して、JIS-A-1412-2(1999)に規定の「熱流計法」に従い、熱伝導率測定装置:HC-074 304(英弘精機株式会社製)を使用して、測定する。なお、ここでは、フェノール樹脂発泡体サンプルを、70℃の雰囲気下で4日間放置した後の熱伝導率を、初期熱伝導率として、測定した。
(4)独立気泡率の測定
 ASTM-D2856の規定に従って、フェノール樹脂発泡体サンプルの独立気泡率を測定した。
(5)圧縮強さの測定
 JIS-A-9511(2003)における「5.9圧縮強さ」の記載に従って、フェノール樹脂発泡体サンプルの圧縮強さを測定した。
(6)燃焼試験(準不燃性評価)
 各フェノール樹脂発泡体から、縦×横のサイズがそれぞれ99±1mmとなるように、試験体を切り出して、それぞれの試験体を準備した。なお、かかる試験体の厚みは50mmとした。次いで、それら試験体について、コーンカロリーメーター(株式会社東洋精機製作所製CONE III)を用いて、ISO-5660の規定に準拠した、(財)日本建築総合試験所編「防耐火性能試験・評価業務方法書 4.12.1発熱性試験・評価方法」に従って、加熱時間:10分における総発熱量及び最大発熱速度を、それぞれ測定した。測定結果としては、それぞれの発泡体から切り出した試験体の3個について測定を行い、その得られた測定値の平均値を採用した。また、評価試験後の試験体について観察して、裏面まで貫通する亀裂や穴の有無を調べた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 かかる表1及び表4の結果から明らかなように、実施例1~11において形成されたフェノール樹脂発泡体は、何れも、燃焼試験(10分)において、総発熱量が8MJ/m2 以下であり、且つ最大発熱速度も規定値以下であるところから、我国の建築基準法にて規定される準不燃材料として、有用なものであることを認めた。しかも、それら実施例で得られたフェノール樹脂発泡体は、低い初期熱伝導率を有するものであると共に、圧縮強さにおいても充分なものであって、断熱性と共に、物理的乃至は機械的物性においても、優れたものであることを認めた。
 これに対して、比較例1は、難燃剤無添加の場合であり、また比較例2~20は、難燃剤としての第一成分のみの使用量や第二成分のみの使用量を増大せしめた場合のものであるが、そこで得られたフェノール樹脂発泡体は、何れも、総発熱量が8MJ/m2 を超えるものであって、我国の建築基準法にて規定される準不燃材料の規格を満足するものではないことが、認められた。また、比較例6、8、10及び12においては、難燃剤としての第二成分の使用量が多くなり過ぎたために、フェノール樹脂組成物の硬化反応がスムーズに進行せず、そのために、物性測定が可能な発泡体を得ることが出来ないことが明らかとなった。
-難燃剤分散安定性試験-
 実施例1と同様にして得られたレゾール型フェノール樹脂を用い、これに、水を適宜添加して、下記表7に示される粘度を有する各種のレゾール型フェノール樹脂を作製した。ここで、各レゾール型フェノール樹脂の粘度は、JIS-K-7117-1に従い、ブルックフィールド形回転粘度計を用いて、試験温度:25℃で測定した。次いで、それらレゾール型フェノール樹脂の各々の100部と、実施例で用いた難燃剤である赤リン粉末の5部及びホウ酸亜鉛の5部とを混合せしめた後、容量110ml、胴径40mmのガラス製スクリュー管瓶に収容して、1週間室温で静置し、かかるスクリュー管瓶に生じる沈殿物の有無及び沈殿層の高さを評価した。なお、その評価に際しては、沈殿物を観察できない場合を○、沈殿層の高さが5mm以下の場合を△、沈殿層の高さが5mmを超えた場合を×とし、その結果を、下記表7に示した。
Figure JPOXMLDOC01-appb-T000007
 かかる表7に示される如く、レゾール型フェノール樹脂の粘度が1000mPa・s(25℃)である場合にあっては、赤リン粉末及びホウ酸亜鉛との混合によって、著しい沈殿が惹起され、高さの高い沈殿層の発生が認められた。これに対して、3000mPa・s(25℃)以上の粘度を有するレゾール型フェノール樹脂にあっては、赤リン粉末及びホウ酸亜鉛を混合せしめても、その沈殿物の発生は認められず、従って沈殿層の存在も確認されなかった。また、レゾール型フェノール樹脂の粘度が2000mPa・s(25℃)である場合にあっては、赤リン粉末及びホウ酸亜鉛の混合によって、或る程度の沈殿物の存在を確認することが出来たが、それは、実用上において問題のない程度のものであると判断された。

Claims (11)

  1.  レゾール型フェノール樹脂、発泡剤及び酸硬化剤と共に、難燃剤として、赤リン粉末からなる第一成分と、赤リン以外のリン系難燃剤、無機系難燃剤、ハロゲン系難燃剤及び黒鉛系難燃剤からなる群れより選ばれた少なくとも一つからなる第二成分とを組み合わせて、含有せしめたことを特徴とする準不燃性フェノール樹脂組成物。
  2.  前記難燃剤が、前記第一成分と前記第二成分の合計量において、前記レゾール型フェノール樹脂の100質量部に対して、2~35質量部の割合となるように含有せしめられている請求項1に記載の準不燃性フェノール樹脂組成物。
  3.  前記難燃剤を構成する前記第一成分及び前記第二成分が、それぞれ、前記レゾール型フェノール樹脂の100質量部に対して、1~30質量部及び1~10質量部の割合となるように含有せしめられている請求項1又は請求項2に記載の準不燃性フェノール樹脂組成物。
  4.  前記赤リン粉末が、金属の酸化物乃至は水酸化物及び/又は熱硬化性樹脂により形成されている表面コーティング層を有していることを特徴とする請求項1乃至請求項3の何れか1項に記載の準不燃性フェノール樹脂組成物。
  5.  前記赤リン以外のリン系難燃剤が、表面コーティング層の形成されてなるポリリン酸アンモニウム粉末である請求項1乃至請求項4の何れか1項に記載の準不燃性フェノール樹脂組成物。
  6.  前記ポリリン酸アンモニウム粉末の表面コーティング層が、難溶性熱硬化性樹脂にて形成されている請求項5に記載の準不燃性フェノール樹脂組成物。
  7.  前記発泡剤として、ハロゲン化アルケン、或は塩素化脂肪族炭化水素及び/又は脂肪族炭化水素が、含有せしめられている請求項1乃至請求項6の何れか1項に記載の準不燃性フェノール樹脂組成物。
  8.  前記発泡剤が、イソペンタンとイソプロピルクロリドとの混合物である請求項1乃至請求項6の何れか1項に記載の準不燃性フェノール樹脂組成物。
  9.  前記レゾール型フェノール樹脂が、25℃において、2000mPa・s以上の粘度を有するように調整されていることを特徴とする請求項1乃至請求項8の何れか1項に記載の準不燃性フェノール樹脂組成物。
  10.  請求項1乃至請求項9の何れか1項に記載の準不燃性フェノール樹脂組成物を発泡、硬化させて得られる発泡体からなる準不燃材料。
  11.  前記発泡体が、ISO-5660に規定される発熱性試験方法に準拠して、放射熱強度:50kW/m2 にて加熱したときに、加熱開始から10分間の総発熱量が8.0MJ/m2 以下であることを特徴とする請求項10に記載の準不燃材料。
PCT/JP2019/039325 2018-10-16 2019-10-04 準不燃性フェノール樹脂組成物及びそれから得られた準不燃材料 WO2020080148A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19874001.1A EP3868826A4 (en) 2018-10-16 2019-10-04 SEMI-NON-FLAMMABLE PHENOLIC RESIN COMPOSITION AND SEMI-NON-FLAMMABLE MATERIAL MADE THEREOF
CN201980060939.8A CN112703225B (zh) 2018-10-16 2019-10-04 准不燃性酚醛树脂组合物及由其得到的准不燃材料
JP2020553068A JPWO2020080148A1 (ja) 2018-10-16 2019-10-04 準不燃性フェノール樹脂組成物及びそれから得られた準不燃材料
KR1020227025043A KR102605769B1 (ko) 2018-10-16 2019-10-04 준불연성 페놀 수지 조성물 및 그것으로부터 얻어진 준불연 재료
KR1020217007485A KR102469128B1 (ko) 2018-10-16 2019-10-04 준불연성 페놀 수지 조성물 및 그것으로부터 얻어진 준불연 재료

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-194842 2018-10-16
JP2018194842 2018-10-16

Publications (1)

Publication Number Publication Date
WO2020080148A1 true WO2020080148A1 (ja) 2020-04-23

Family

ID=70284330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/039325 WO2020080148A1 (ja) 2018-10-16 2019-10-04 準不燃性フェノール樹脂組成物及びそれから得られた準不燃材料

Country Status (4)

Country Link
EP (1) EP3868826A4 (ja)
JP (1) JPWO2020080148A1 (ja)
KR (2) KR102469128B1 (ja)
WO (1) WO2020080148A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021186072A1 (en) * 2020-03-19 2021-09-23 Kingspan Holdings (Irl) Limited Phenolic foam and method of manufacture thereof
WO2022230956A1 (ja) * 2021-04-30 2022-11-03 株式会社カネカ 難燃性物品
WO2022255292A1 (ja) * 2021-05-31 2022-12-08 旭有機材株式会社 フェノールフォーム用樹脂組成物及び発泡体

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102478779B1 (ko) * 2020-02-11 2022-12-19 (주)엘엑스하우시스 열경화성 발포체 및 이의 제조방법
KR102383660B1 (ko) * 2021-07-12 2022-04-11 명일폼테크주식회사 준불연 페놀 발포폼 조성물
KR102644149B1 (ko) 2022-01-24 2024-03-06 (주)유시스템 압력 제어 시스템에서의 비례압력제어 밸브 제어 기준 값 설정 방법 및 그를 이용한 압력제어 시스템
KR102534859B1 (ko) * 2022-07-06 2023-05-26 명일폼테크주식회사 준불연 페놀 발포폼

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60170636A (ja) 1984-02-14 1985-09-04 Matsushita Electric Works Ltd フエノ−ル樹脂発泡体
JPH0249037A (ja) 1988-08-11 1990-02-19 Toyo Tire & Rubber Co Ltd 難燃性フエノール樹脂発泡体の製造方法
JPH07330995A (ja) * 1994-06-10 1995-12-19 Nippon Steel Chem Co Ltd スチレン系難燃性樹脂組成物
JPH08176343A (ja) 1994-12-22 1996-07-09 Mitsui Toatsu Chem Inc 難燃性樹脂組成物
JPH09169887A (ja) * 1995-12-21 1997-06-30 Sumitomo Bakelite Co Ltd フェノール樹脂組成物
JP2004307602A (ja) * 2003-04-04 2004-11-04 Kanegafuchi Chem Ind Co Ltd 熱可塑性樹脂発泡体及びその製造方法
WO2006043435A1 (ja) * 2004-10-22 2006-04-27 Takashi Fujimori 発泡体の製造方法
JP2007070511A (ja) 2005-09-08 2007-03-22 Nitto Boseki Co Ltd フェノール樹脂発泡体
JP2007161810A (ja) 2005-12-12 2007-06-28 Asahi Organic Chem Ind Co Ltd フェノール樹脂発泡体

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001005888A1 (fr) * 1999-07-16 2001-01-25 Polyplastics Co., Ltd. Composition de resine polyacetal et procede de production correspondant
JP5400485B2 (ja) * 2009-06-10 2014-01-29 旭有機材工業株式会社 発泡性レゾール型フェノール樹脂成形材料及びそれを用いてなるフェノール樹脂発泡体
JP5877913B1 (ja) * 2014-08-20 2016-03-08 旭化成建材株式会社 フェノール樹脂発泡体積層板及びその製造方法
EP3275927B1 (en) * 2015-03-24 2021-07-28 Sekisui Chemical Co., Ltd. Phenolic resin foam and method for producing phenolic resin foam
KR101792186B1 (ko) * 2017-05-24 2017-10-31 한국건설기술연구원 준불연성 수지 조성물을 이용한 건축용 외단열재 및 그 제조방법
KR20180054540A (ko) * 2018-05-11 2018-05-24 한국건설기술연구원 레졸형 페놀수지 조성물, 그의 제조방법 및 그를 사용하여 제조된 레졸형 페놀수지 발포체

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60170636A (ja) 1984-02-14 1985-09-04 Matsushita Electric Works Ltd フエノ−ル樹脂発泡体
JPH0249037A (ja) 1988-08-11 1990-02-19 Toyo Tire & Rubber Co Ltd 難燃性フエノール樹脂発泡体の製造方法
JPH07330995A (ja) * 1994-06-10 1995-12-19 Nippon Steel Chem Co Ltd スチレン系難燃性樹脂組成物
JPH08176343A (ja) 1994-12-22 1996-07-09 Mitsui Toatsu Chem Inc 難燃性樹脂組成物
JPH09169887A (ja) * 1995-12-21 1997-06-30 Sumitomo Bakelite Co Ltd フェノール樹脂組成物
JP2004307602A (ja) * 2003-04-04 2004-11-04 Kanegafuchi Chem Ind Co Ltd 熱可塑性樹脂発泡体及びその製造方法
WO2006043435A1 (ja) * 2004-10-22 2006-04-27 Takashi Fujimori 発泡体の製造方法
JP2007070511A (ja) 2005-09-08 2007-03-22 Nitto Boseki Co Ltd フェノール樹脂発泡体
JP2007161810A (ja) 2005-12-12 2007-06-28 Asahi Organic Chem Ind Co Ltd フェノール樹脂発泡体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3868826A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021186072A1 (en) * 2020-03-19 2021-09-23 Kingspan Holdings (Irl) Limited Phenolic foam and method of manufacture thereof
WO2022230956A1 (ja) * 2021-04-30 2022-11-03 株式会社カネカ 難燃性物品
WO2022255292A1 (ja) * 2021-05-31 2022-12-08 旭有機材株式会社 フェノールフォーム用樹脂組成物及び発泡体

Also Published As

Publication number Publication date
EP3868826A4 (en) 2022-06-22
KR102605769B1 (ko) 2023-11-24
CN112703225A (zh) 2021-04-23
KR20220108829A (ko) 2022-08-03
JPWO2020080148A1 (ja) 2021-09-16
EP3868826A1 (en) 2021-08-25
KR102469128B1 (ko) 2022-11-21
KR20210076898A (ko) 2021-06-24

Similar Documents

Publication Publication Date Title
WO2020080148A1 (ja) 準不燃性フェノール樹脂組成物及びそれから得られた準不燃材料
JP7289302B2 (ja) フェノールフォーム製造用樹脂組成物
JP7141983B2 (ja) フェノールフォーム製造用樹脂組成物並びにフェノールフォーム及びその製造方法
KR101792186B1 (ko) 준불연성 수지 조성물을 이용한 건축용 외단열재 및 그 제조방법
JP4756683B2 (ja) 発泡性レゾール型フェノール樹脂成形材料およびフェノール樹脂発泡体
JP5036021B2 (ja) フェノール樹脂発泡体
KR20110117076A (ko) 발포성 레졸형 페놀 수지 성형 재료 및 그 제조 방법 그리고 페놀 수지 발포체
JP7473476B2 (ja) 難燃性フェノール樹脂組成物及びそれから得られた難燃材料
CN112703225B (zh) 准不燃性酚醛树脂组合物及由其得到的准不燃材料
KR101866422B1 (ko) 화재에 안전한 발열패널
US11932733B2 (en) Phenolic resin foam laminate board
GB1604657A (en) Phenolic resins and products prepared therefrom
KR100637926B1 (ko) 난연성 레졸형 변성 페놀-멜라민 수지를 함유하는 발포폼조성물과 이를 이용한 발포폼의 제조방법
RU2791537C1 (ru) Ламинатная плита из вспененной фенольной смолы
JP2018123292A (ja) フェノール樹脂発泡体積層板及びその製造方法
JP2514879B2 (ja) 防火性フェノ―ル樹脂発泡性組成物及び発泡体の製造方法
JPH10139862A (ja) エポキシ樹脂系発泡体の製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19874001

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020553068

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019874001

Country of ref document: EP

Effective date: 20210517