WO2020079905A1 - 導電性材料、成型品及び電子部品 - Google Patents

導電性材料、成型品及び電子部品 Download PDF

Info

Publication number
WO2020079905A1
WO2020079905A1 PCT/JP2019/028333 JP2019028333W WO2020079905A1 WO 2020079905 A1 WO2020079905 A1 WO 2020079905A1 JP 2019028333 W JP2019028333 W JP 2019028333W WO 2020079905 A1 WO2020079905 A1 WO 2020079905A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive material
resin
plating
plating layer
alloy
Prior art date
Application number
PCT/JP2019/028333
Other languages
English (en)
French (fr)
Inventor
佐々木 康則
高広 川村
良聡 小林
相場 玲宏
Original Assignee
Jx金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx金属株式会社 filed Critical Jx金属株式会社
Priority to CN201980064776.0A priority Critical patent/CN112805413B/zh
Priority to KR1020217010424A priority patent/KR102497060B1/ko
Publication of WO2020079905A1 publication Critical patent/WO2020079905A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/615Microstructure of the layers, e.g. mixed structure
    • C25D5/617Crystalline layers
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49579Lead-frames or other flat leads characterised by the materials of the lead frames or layers thereon
    • H01L23/49582Metallic layers on lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/50Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor for integrated circuit devices, e.g. power bus, number of leads

Definitions

  • the present invention relates to conductive materials, molded products, and electronic parts.
  • Patent Documents 1 to 3 disclose a plating surface of a lead frame in order to improve adhesion between a lead frame and a molding resin in a resin-sealed semiconductor device. A roughening technique has been proposed.
  • Patent Document 4 proposes a technique focusing on the specific surface area and the oxide film thickness of the surface layer in order to improve the adhesion between metal and resin.
  • JEDEC-LEVEL1 in a high temperature and high humidity test, but in recent years, due to computerization of automobiles and the like, it may have durability in a more severe environment, for example, a heat cycle test. It is required, and there are some situations in which the characteristics cannot be said to be sufficient with the conventional technology.
  • the present invention has been made to solve the above problems, and provides a conductive material exhibiting excellent resin adhesion even in a harsh environment.
  • the inventors of the present invention have formed a metal surface on which a resin is molded or sealed with a resin, and by controlling the surface in a predetermined form, a conductive material that can solve the problem is obtained. It was found that it can be obtained.
  • the present invention completed based on the above findings is a conductive material in which a resin is molded on the surface or the surface is sealed with a resin,
  • the surface is made of a metal and is a conductive material satisfying the following conditions (1) and (2).
  • Arithmetic mean surface roughness height Sa is 0.25 to 0.4 ⁇ m
  • the arithmetic mean song Spc of the mountain peak is 30,000 to 60,000 (1 / mm).
  • the maximum surface roughness height Sz of the surface is 3.5 to 6.5 ⁇ m.
  • the conductive material includes a base material and a plating layer formed on the base material, and the surface is the plating layer.
  • the base material is made of any one of copper, copper alloy, aluminum, aluminum alloy, iron and iron alloy.
  • the plating layer is composed of one or more kinds of plating layers.
  • the plating layer has a first plating layer formed on the base material, and the first plating layer is copper, copper alloy, nickel and nickel alloy. It is composed of either.
  • the plating layer has a second plating layer formed on the first plating layer, and the second plating layer is palladium, a palladium alloy, gold and Composed of any of the gold alloys.
  • the total thickness of the plating layers formed of the one or more plating layers is 1 to 7 ⁇ m.
  • the conductive material of the present invention partially has a surface that satisfies the above conditions (1) and (2).
  • the present invention is a molded article comprising the conductive material of the present invention, wherein the surface is resin-molded or the surface is sealed with resin.
  • the present invention is an electronic component including the conductive material of the present invention.
  • FIG. 3 is a schematic cross-sectional view showing the configuration of a conductive material according to Embodiment 1.
  • FIG. 5 is a schematic cross-sectional view showing the configuration of a conductive material according to Embodiment 2.
  • FIG. 7 is a schematic cross-sectional view showing the configuration of a conductive material according to Embodiment 3.
  • the conductive material according to the embodiment of the present invention is a conductive material in which a resin is molded on the surface or the surface is sealed with a resin, and the surface is made of metal, and the following (1) and (2) Satisfy the condition of.
  • Arithmetic mean surface roughness height Sa is 0.25 to 0.4 ⁇ m
  • the arithmetic mean song Spc of the mountain peak is 30,000 to 60,000 (1 / mm).
  • the conductive material may be made of metal, details thereof will be described later, but the conductive material may be formed of one kind of metal material, and the base material and the metal layer on the surface may be formed. It may be formed separately.
  • the arithmetic average surface roughness height Sa of the surface of the conductive material according to the embodiment of the present invention is controlled to 0.25 to 0.4 ⁇ m. If Sa of the surface of the conductive material is less than 0.25 ⁇ m, the anchor effect becomes insufficient due to insufficient roughening of the surface, and the adhesiveness with the resin decreases. When Sa of the surface of the conductive material is more than 0.4 ⁇ m, the roughened tip portion of the surface of the conductive material is easily broken. Sa of the surface of the conductive material is preferably 0.27 to 0.38 ⁇ m, more preferably 0.3 to 0.35 ⁇ m.
  • the resin When the metal surface of the conductive material according to the embodiment of the present invention and the resin are in close contact with each other, the resin has a larger coefficient of thermal expansion than the metal, and therefore the thermal expansion of the resin needs to be suppressed by the metal anchor.
  • the arithmetic mean curve Spc at the peak of the surface of the conductive material is controlled to 30,000 to 60,000 (1 / mm) against the problem of difference in thermal expansion coefficient from the resin.
  • Spc represents the reciprocal of the average of the principal curvatures of the peaks of the surface. That is, the sharper the summit, the larger the Spc.
  • the arithmetic mean curve Spc of the peaks of the surface of the conductive material is less than 30,000 (1 / mm), the anchor effect becomes insufficient, and the thermal expansion coefficient may be lost, resulting in peeling from the resin. is there. If the Spc on the surface of the conductive material is too large, the tip may be too sharp and may be easily broken, which may rather lower the adhesion strength. From such a point of view, the Spc on the surface of the conductive material is effective in combination with the above-mentioned Sa so that no particular upper limit is set, but it is preferably 60,000 (1 / mm) or less.
  • the Spc of the surface of the conductive material is preferably 340000 to 550,000 (1 / mm), and more preferably 40,000 to 550,000 (1 / mm).
  • the maximum surface roughness height Sz (ISO25178-2: 2012) of the surface of the conductive material according to the embodiment of the present invention is preferably 3.5 to 6.5 ⁇ m. If the Sz of the surface of the conductive material is less than 3.5 ⁇ m, the anchoring effect becomes insufficient due to insufficient roughening of the surface, and the adhesion with the resin decreases. If the Sz of the surface of the conductive material is more than 6.5 ⁇ m, the resin may not easily enter the gap between the heights of the surface of the conductive material.
  • the Sa of the surface of the conductive material is preferably 3.7 to 6.0 ⁇ m, more preferably 4.5 to 5.0 ⁇ m.
  • the conductive material according to the embodiment of the present invention is not particularly limited as long as the surface has at least a metal, and includes the following three patterns (Embodiments 1 to 3).
  • FIG. 1 is a schematic cross-sectional view showing the configuration of a conductive material 10 according to Embodiment 1 of the present invention.
  • the conductive material 10 is made of a metal material and has a surface 11 that satisfies the above conditions (1) and (2).
  • An enlarged view of the portion surrounded by the dotted line frame 12 in FIG. 1 is shown in the right figure.
  • the right diagram of FIG. 1 shows an example of the roughened surface of the conductive material 10, and the roughened surface having such a shape is not limited. According to such a configuration, since the material forming the conductive material is one kind of metal material, the manufacturing efficiency or the manufacturing cost is improved.
  • the metal material of the conductive material 10 for example, any of copper, copper alloy, aluminum, aluminum alloy, iron, iron alloy, nickel, nickel alloy, palladium, palladium alloy, gold and gold alloy can be used. Further, between the metal and the resin, the resin has a larger coefficient of thermal expansion. At this time, if the metal (metal material of the conductive material 10) that adheres to the resin has a high thermal conductivity, the heat trapped in the resin can be efficiently released. As a result, the thermal expansion of the resin can be suppressed. From such a viewpoint, it is preferable that the conductivity of the conductive material 10 which is proportional to the thermal conductivity of the metal material is 10% IACS or more.
  • the conductive material 10 is prepared by preparing a predetermined metal material, and subjecting the surface of the metal material to etching treatment, blasting treatment, or transfer treatment with a rolling roll having an uneven surface to obtain the above (1) and (2). It is possible to form the surface 11 satisfying the condition (1).
  • the etching treatment include commercially available etching solutions such as CZ8101 (product name) manufactured by MEC Co., Ltd., CPE900 (product name) manufactured by Mitsubishi Gas Chemical Co., Inc., and NR1870 (product name) manufactured by MEC Co., Ltd. It can be used to control the desired shape.
  • As the etching method various methods such as an immersion method, a spray method, and an electrolytic method can be adopted.
  • FIG. 2 is a schematic cross-sectional view showing the configuration of the conductive material 20 according to Embodiment 2 of the present invention.
  • the conductive material 20 includes a base material 22 and a plating layer 23 formed on the base material 22, and the surface 21 that satisfies the above conditions (1) and (2) is the plating layer 23.
  • An enlarged view of the dotted frame 24 portion of FIG. 2 is shown in the right figure.
  • the right diagram of FIG. 2 shows an example of the roughened surface of the conductive material 20, and the roughened surface of such a shape is not limited. According to such a configuration, the surface satisfying the above conditions (1) and (2) can be controlled by the plating layer, and the thickness of the surface (surface layer, that is, plating layer) can be easily controlled. .
  • the base material 22 may be made of resin, and may be made of any metal of copper, copper alloy, aluminum, aluminum alloy, iron and iron alloy. Further, the base material 22 may be made of the same kind of metal as the metal of the plating layer 23.
  • the plating layer 23 may be made of any one of copper, copper alloy, nickel and nickel alloy. Further, if the metal (base material 22 of the conductive material 20) that indirectly adheres to the resin has a high thermal conductivity, the heat trapped in the resin can be efficiently released. As a result, the thermal expansion of the resin can be suppressed. From such a viewpoint, it is preferable that the conductivity of the conductive material 20 that is proportional to the thermal conductivity of the base material 22 is 10% IACS or more.
  • a base material 22 formed of a predetermined material is prepared, and a plating layer 23 is formed on the base material 22 under predetermined plating conditions.
  • the surface 21 satisfying the above conditions (1) and (2) can be formed by controlling the plating conditions such as the composition of the plating bath, the plating temperature, the current density, and the plating thickness.
  • FIG. 3 is a schematic cross-sectional view showing the configuration of the conductive material 30 according to the third embodiment of the present invention.
  • the conductive material 30 is composed of a base material 32 and two types of plating layers (first plating layer 33, second plating layer 34).
  • the first plating layer 33 is formed on the base material 32
  • the second plating layer 34 is formed on the first plating layer 33
  • the surface 31 satisfying the above conditions (1) and (2) is the second plating.
  • the layer 34 An enlarged view of the portion surrounded by the dotted line frame 35 in FIG. 3 is shown in the right figure.
  • the surface satisfying the above conditions (1) and (2) can be controlled by the plating layer, and the thickness of the surface (surface layer, that is, plating layer) can be easily controlled. .
  • the base material 32 may be made of resin, and may be made of any metal of copper, copper alloy, aluminum, aluminum alloy, iron and iron alloy. Further, the base material 32 may be made of the same kind of metal as the metal of the first plating layer 33.
  • the first plating layer 33 may be made of any one of copper, copper alloy, nickel and nickel alloy.
  • the second plating layer may be composed of any one of palladium, palladium alloy, gold and gold alloy.
  • the metal (base material 32 of the conductive material 30) that indirectly adheres to the resin has a high thermal conductivity, the heat trapped in the resin can be efficiently released. As a result, the thermal expansion of the resin can be suppressed. From such a viewpoint, it is preferable that the conductivity of the base material 32 of the conductive material 30 is 10% IACS or more, which is proportional to the thermal conductivity.
  • a base material 32 formed of a predetermined material is prepared, a first plating layer 33 is formed on the base material 32 under a predetermined plating condition, and then a second plating layer 34 is formed.
  • the surface 31 satisfying the above conditions (1) and (2) can be formed by controlling the plating conditions such as the composition of the plating bath, the plating temperature, the current density, and the plating thickness.
  • the first plating layer 33 satisfying the above conditions (1) and (2) is formed by controlling the plating conditions such as the composition of the plating bath, the plating temperature, the current density, and the plating thickness.
  • a thin second plating layer 34 is formed on the plating layer 33. As a result, the surface profile of the second plating layer 34 becomes substantially equal to the surface profile of the first plating layer 33. In this way, the surface 31 that satisfies the above conditions (1) and (2) may be formed.
  • the plating layer may be formed of one layer or two layers as in the second or third embodiment, or may be formed of three layers or four layers or more. Further, the outermost surfaces of the conductive materials 10, 20, 30 of Embodiments 1 to 3 should be treated with a phosphoric acid ester-based treatment liquid or the like as long as the above conditions (1) and (2) are satisfied. Then, the function related to the antioxidant of plating may be added. If necessary, a sealing treatment may be applied to suppress corrosion due to pinholes in plating.
  • the total thickness of the plating layers composed of one or more plating layers is 1 to 7 ⁇ m. If the total thickness of the plating layer is less than 1 ⁇ m, a roughened surface shape cannot be sufficiently formed, and diffusion of the base material components may easily proceed. If the total thickness of the plating layer is more than 7 ⁇ m, cracks may easily occur in the plating layer of the conductive material during pressing or bending.
  • the conductive material according to the embodiment of the present invention may partially have a surface that satisfies the above conditions (1) and (2).
  • the surface is partially provided, so that the resin can be easily removed from the portion where resin adhesion is unnecessary. can do.
  • the surface since the surface is partially provided, it is possible to easily remove the resin (burr) that has leaked from the target location.
  • a surface having a roughened shape that satisfies the above conditions (1) and (2) has a characteristic that the wire bonding property is deteriorated. Therefore, by partially providing the surface, the wire bonding property can be improved. The deterioration can be suppressed.
  • the partially provided surface may be stripe-shaped, spot-shaped, or ring-shaped.
  • the use of the conductive material according to the embodiment of the present invention is not particularly limited, but it can be used as a material of an electronic component that requires good adhesiveness with a resin, and is particularly protected from factors such as impact, temperature, and humidity. Therefore, it can be used as a material for an electronic component that is subjected to resin molding, resin sealing of which the surface is hardened with a resin, or molding. Examples of the electronic component include metal electronic components such as lead frames and buzz bar modules.
  • the conductive material according to the embodiment of the present invention has a very high adhesion between the surface of the conductive material and the resin, even if the surface is resin-molded, resin-sealed, or molded as such. Therefore, good durability can be expected even when used as a material for an electronic component used in a harsh environment such as a vehicle-mounted engine room, for example.
  • cathode electrolytic degreasing was performed at 5 A / dm 2 for 60 seconds in an alkaline degreasing bath containing 50 g / L of sodium hydroxide, and then 10%. Acid pickling was performed for 30 seconds with a pickling solution of sulfuric acid and ammonium fluoride of 50 g / L, and each plating step was performed.
  • cathodic electrolytic degreasing was carried out for 10 seconds at 5 A / dm 2 in the alkaline degreasing bath described above, followed by 10 seconds of acid cleaning with a 10% sulfuric acid and 50 g / L ammonium fluoride pickling solution, and then water.
  • a zinc substitution bath containing 50 g / L of sodium oxide, 5 g / L of zinc oxide, 2 g / L of ferric chloride and 50 g / L of Rochelle salt, treated at a bath temperature of 25 ° C. for a treatment time of 10 seconds.
  • Zinc substitution was carried out, and the above-mentioned acid cleaning and zinc substitution were repeated once again to shift to each plating step.
  • Each plating treatment was performed by electroplating by adjusting the composition of the plating bath, the temperature of the plating solution, the current density and the plating time.
  • Table 2 shows the electroplating conditions used in Examples 1 to 5, respectively.
  • the plating bath components were Ni metal content 130 g / L, boric acid 25 g / L, and pH 3.3.
  • the Ni metal component is composed of nickel sulfamate tetrahydrate and Ni chloride as Ni salts.
  • the surface plating of Examples 6 to 14 and 17 to 20, the conventional example 1 and the comparative examples 1 to 2, and the undercoating and the surface plating of Examples 15 to 16 were used in Table 2 of the above Examples 1 to 5. It was formed by adjusting the composition of the plating bath, the temperature of the plating solution, the current density, the plating time, and the degree of stirring, based on the plating conditions. At this time, the plating conditions used in Table 2 of Examples 1 to 5 and the evaluation results described below were referred to so that Sa, Spc, and Sz of the surface of the test piece of the conductive material would have desired values. Moreover, adjustment of each plating condition was performed based on the following knowledge.
  • Film thickness As the film thickness increases, the crystal grains preferentially grow in the film thickness direction (the growth speed in the film thickness direction is faster than in the horizontal direction), so Sa and Sz increase. On the other hand, with respect to Spc, the orientation becomes stronger due to the growth of crystal grains and the tip becomes sharper, and thus becomes larger.
  • Type of plating solution By increasing the chlorine concentration in the plating solution, that is, the Ni chloride concentration, the crystals are easily sharpened and the surface irregularities become large and sharp, so that Sa, Sz, and Spc increase, respectively.
  • Plating solution temperature If the solution temperature in the plating bath is high, crystals grow isotropically, crystal grains are likely to become large, and the tip tends to be sharp, so that Sa, Sz, and Spc increase.
  • a test piece of a conductive material was prepared under the following conditions based on the example of Patent Document 3. Specifically, in the Ni plating of Conventional Example 2, 260 g / L of nickel sulfate, 50 g / L of nickel chloride, 35 g / L of boric acid, pH 4.5, bath temperature 50 ° C., current density 5 A / dm 2 , It was produced under the condition that the plating time was 200 seconds.
  • a fluorescent X-ray film thickness meter (SFT9500 manufactured by Hitachi High-Tech Co., Ltd.) was used for arbitrary 5 points, and an average value at a collimator diameter of 0.2 mm and each film thickness measurement time of 30 seconds was calculated. did.
  • Example 21 after performing 6 ⁇ m Ni plating under the same conditions as in Example 1, etching was performed under the following conditions until the Ni plating thickness became 5 ⁇ m.
  • -Etching conditions Etching solution: NR1870 manufactured by MEC, etching solution temperature: 25 ° C, etching time: 30 seconds
  • the shear strength was measured by a pudding cup mold test using a resin-molded surface of a test piece of a conductive material as a sample.
  • the test conditions were resin: GE-7470LA resin manufactured by Hitachi Chemical Co., Ltd., pudding cup bottom surface area: 10 mm 2 , resin molding time: 120 seconds, mold cure: 175 ° C. for 8 hours, and 10 shear force measurements (N10).
  • the average value of was calculated as the shear strength (initial).
  • the shear was measured with a bond tester (Series 4000) manufactured by Daiji at a shear rate of 100 ⁇ m / sec.
  • the evaluation criteria are as follows. ⁇ : 20 kg or more ⁇ : 15 kg or more and less than 20 kg ⁇ : less than 15 kg
  • ⁇ Share strength (high temperature and high humidity test) The shear strength was similarly measured after the sample produced as described above was allowed to stand in an environment of a temperature of 85 ° C. and a humidity of 85% for 168 hours.
  • the evaluation criteria are as follows. ⁇ : No peeling ⁇ : Peeling rate less than 20% ⁇ : Peeling rate of 20% or more The peeling rate indicates the rate at which the surface of the conductive material and the resin are peeled from the image by ultrasonic flaw detection. Calculated and evaluated.
  • the surface of the conductive material satisfied the following conditions (1) and (2), so that the shear strength in both the initial and high temperature and high humidity tests was very good, and the heat cycle test was performed.
  • the evaluation criteria for the shear strength of are any of ⁇ , ⁇ , and ⁇ , and it was found that the resin exhibits excellent resin adhesion even in a harsh environment.
  • (1) Arithmetic mean surface roughness height Sa is 0.25 to 0.4 ⁇ m
  • Arithmetic mean song Spc of mountain top is 30,000 to 60,000 (1 / mm)
  • the surface of the conductive material did not satisfy at least one of the above conditions (1) and (2), at least the shear strength in the heat cycle test was poor. there were.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Laminated Bodies (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Lead Frames For Integrated Circuits (AREA)

Abstract

過酷な環境下においても優れた樹脂密着性を示す導電性材料を提供する。表面に樹脂を成型する、または、表面を樹脂で封止する導電性材料であって、表面が金属で構成され、下記(1)及び(2)の条件を満たす導電性材料。 (1)算術平均面粗さ高さSaが0.25~0.4μm、 (2)山頂点の算術平均曲Spcが3万~6万(1/mm)。

Description

導電性材料、成型品及び電子部品
 本発明は、導電性材料、成型品及び電子部品に関する。
 近年、金属と樹脂との密着性の改善要望が増加している。例えば、リードフレーム、バズバーモジュール等のような金属製の電子部品を衝撃、温度、湿度等の要因から守るために、当該電子部品の表面を樹脂で固める樹脂成型、樹脂封止、または、モールド成型等を施すことがある。このような場合、使用中に樹脂が剥離しないように当該電子部品の金属表面と樹脂とが優れた密着力で密着されている必要がある。特に、車載向けについては過酷な環境下にあるエンジンルーム周りでの電子化が進むことで、より一層の密着性の向上が求められている。
 金属と樹脂との密着性の向上を図った公知技術として特許文献1~3には、樹脂封止型半導体装置におけるリードフレームとモールド樹脂との密着性を高めるために、リードフレームのメッキ表面を粗化する技術が提案されている。
 また、最近の公知技術として特許文献4には、金属と樹脂との密着性の向上を図るために比表面積及び表層の酸化膜厚に着目した技術が提案されている。
特開平6-29439号公報 特開平10-27873号公報 特開2006-93559号公報 国際公開第2017/179447号
 従来、高温高湿試験において例えばJEDEC-LEVEL1等をクリアすることが求められてきたが、近年では自動車の電子化等によって、さらに過酷な環境下、例えばヒートサイクル試験等において耐久性を有することが要求されており、従来の技術では必ずしも特性が十分とはいえない状況が散見されている。
 本発明は上記の課題を解決するためになされたものであり、過酷な環境下においても優れた樹脂密着性を示す導電性材料を提供する。
 本発明者らは、鋭意検討の結果、樹脂を成型するまたは樹脂で封止する表面を金属で構成し、当該表面を所定の形態に制御することで、当該課題を解決し得る導電性材料が得られることを見出した。
 以上の知見を基礎として完成した本発明は一実施形態において、表面に樹脂を成型する、または、表面を樹脂で封止する導電性材料であって、
 前記表面が金属で構成され、下記(1)及び(2)の条件を満たす導電性材料である。
 (1)算術平均面粗さ高さSaが0.25~0.4μm、
 (2)山頂点の算術平均曲Spcが3万~6万(1/mm)。
 本発明の導電性材料は更に別の一実施形態において、前記表面の最大面粗さ高さSzが3.5~6.5μmである。
 本発明の導電性材料は更に別の一実施形態において、前記導電性材料が基材と前記基材上に形成されためっき層とを含み、前記表面が前記めっき層である。
 本発明の導電性材料は更に別の一実施形態において、前記基材が、銅、銅合金、アルミニウム、アルミニウム合金、鉄及び鉄合金のいずれかで構成されている。
 本発明の導電性材料は更に別の一実施形態において、前記めっき層が1種以上のめっき層で構成されている。
 本発明の導電性材料は更に別の一実施形態において、前記めっき層は前記基材上に形成された第1めっき層を有し、前記第1めっき層が銅、銅合金、ニッケル及びニッケル合金のいずれかで構成されている。
 本発明の導電性材料は更に別の一実施形態において、前記めっき層は前記第1めっき層上に形成された第2めっき層を有し、前記第2めっき層がパラジウム、パラジウム合金、金及び金合金のいずれかで構成されている。
 本発明の導電性材料は更に別の一実施形態において、前記1種以上のめっき層で構成された前記めっき層の厚みの総和が1~7μmである。
 本発明の導電性材料は更に別の一実施形態において、前記(1)及び(2)の条件を満たす表面を部分的に有する。
 本発明は更に別の一実施形態において、前記表面に樹脂が成型された、または、前記表面が樹脂で封止された本発明の導電性材料を備えた成型品である。
 本発明は更に別の一実施形態において、本発明の導電性材料を備えた電子部品である。
 本発明によれば、過酷な環境下においても優れた樹脂密着性を示す導電性材料を提供することができる。
実施形態1に係る導電性材料の構成を示す断面模式図である。 実施形態2に係る導電性材料の構成を示す断面模式図である。 実施形態3に係る導電性材料の構成を示す断面模式図である。
 <導電性材料>
 本発明の実施形態に係る導電性材料は、表面に樹脂を成型する、または、表面を樹脂で封止する導電性材料であって、表面が金属で構成され、下記(1)及び(2)の条件を満たす。
 (1)算術平均面粗さ高さSaが0.25~0.4μm、
 (2)山頂点の算術平均曲Spcが3万~6万(1/mm)。
 従来、金属と樹脂との密着性について、金属の線粗さ(Rz,Ra)を制御していたものの、より過酷な環境下で使用される電子部品での樹脂との密着性を制御するパラメータとしては不十分である。これに対し、詳細は後述するが、本発明では面における粗さとして、国際標準化機構ISO25178-2:2012に規定されるSa、Spcを導入することにより、従来よりも良好に樹脂との密着性を制御することができるようになった。
 本発明の実施形態に係る導電性材料は少なくとも表面が金属で構成されていればよいため、詳細は後述するが、1種類の金属材料で形成してもよく、基材と表面の金属層とに分けて形成してもよい。
 本発明の実施形態に係る導電性材料の表面の算術平均面粗さ高さSaは0.25~0.4μmに制御されている。導電性材料の表面のSaが0.25μm未満であると表面の粗化不足によりアンカー効果が不十分となって、樹脂との密着性が低下する。導電性材料の表面のSaが0.4μm超であると、導電性材料の表面の、粗化されて生じた先端部分が破断しやすくなる。導電性材料の表面のSaは、0.27~0.38μmであるのが好ましく、0.3~0.35μmであるのがより好ましい。
 本発明の実施形態に係る導電性材料の金属表面と樹脂とが密着するとき、樹脂の方が金属より熱膨張係数が大きいため、樹脂の熱膨張を金属アンカーによって抑制する必要がある。本発明では当該樹脂との熱膨張係数差の問題に対し、導電性材料の表面の山頂点の算術平均曲Spcが3万~6万(1/mm)に制御されている。なお、Spcは、表面の山頂点の主曲率の平均の逆数を表す。つまり、山頂が鋭くなるほど、Spcは大きくなる。導電性材料の表面の山頂点の算術平均曲Spcが3万(1/mm)未満であると、当該アンカー効果が不十分となり、熱膨張係数差に負けて、樹脂との剥離が生じるおそれがある。また、導電性材料の表面のSpcは大きすぎると、先端が鋭くなりすぎて折れやすくなり、却って密着強度が低下するおそれが生じる場合がある。このような観点から、導電性材料の表面のSpcは、前記Saとの組合せで効果を発揮するため特に上限は設けないが、6万(1/mm)以下であるのが好ましい。また、導電性材料の表面のSpcは、3.4万~5.5万(1/mm)であるのが好ましく、4万~5.5万(1/mm)であるのがより好ましい。
 本発明の実施形態に係る導電性材料の表面の最大面粗さ高さSz(ISO25178-2:2012)は3.5~6.5μmであるのが好ましい。導電性材料の表面のSzが3.5μm未満であると表面の粗化不足によりアンカー効果が不十分となって、樹脂との密着性が低下する。導電性材料の表面のSzが6.5μm超であると、導電性材料の表面の高低間の隙間に樹脂が入り込みにくくなるおそれがある。導電性材料の表面のSaは、3.7~6.0μmであるのが好ましく、4.5~5.0μmであるのがより好ましい。
 本発明の実施形態に係る導電性材料は、表面が少なくとも金属であればよく、特に限定されないが、以下の3パターンの形態(実施形態1~3)を含む。
 ・導電性材料の構成に係る実施形態1
 図1は、本発明の実施形態1に係る導電性材料10の構成を示す断面模式図である。導電性材料10は金属材料で構成されており、上記(1)及び(2)の条件を満たす表面11を有する。図1の点線枠12部分の拡大図が右図に示されている。なお図1の右図は導電性材料10の粗化表面の一例を示すものであり、このような形状の粗化表面に限定されるものではない。このような構成によれば、導電性材料を構成する材料が1種類の金属材料であるため、製造効率または製造コストが良好となる。導電性材料10の金属材料としては、例えば銅、銅合金、アルミニウム、アルミニウム合金、鉄、鉄合金、ニッケル、ニッケル合金、パラジウム、パラジウム合金、金及び金合金のいずれかで構成することができる。また、金属と樹脂とでは、樹脂の方が熱膨張係数が大きい。このとき、樹脂に密着する金属(導電性材料10の金属材料)の熱伝導率が高ければ、樹脂に籠っている熱を効率的に逃がすことができる。その結果、樹脂の熱膨張を抑えることができる。このような観点から、導電性材料10の金属材料の熱伝導率に比例する導電率は、10%IACS以上であることが好ましい。
 導電性材料10は、所定の金属材料を準備し、当該金属材料の表面に、エッチング処理、ブラスト処理、または、凹凸面を有する圧延ロールによる転写処理を施すことで、上記(1)及び(2)の条件を満たす表面11を形成することができる。エッチング処理としては、例えば、メック株式会社製 CZ8101(製品名)や三菱ガス化学株式会社製 CPE900(製品名)、さらにメック株式会社製 NR1870(製品名)など、各社より市販されているエッチング液を使用して所定の形状に制御することができる。なおエッチング方法としては、浸漬式、スプレー式、電解式など、さまざまな手法を採用することができる。
 ・導電性材料の構成に係る実施形態2
 図2は、本発明の実施形態2に係る導電性材料20の構成を示す断面模式図である。導電性材料20は、基材22と基材22上に形成されためっき層23とを含み、上記(1)及び(2)の条件を満たす表面21がめっき層23である。図2の点線枠24部分の拡大図が右図に示されている。なお図2の右図は導電性材料20の粗化表面の一例を示すものであり、このような形状の粗化表面に限定されるものではない。このような構成によれば、上記(1)及び(2)の条件を満たす表面をめっき層で制御することができ、当該表面(表層、すなわちめっき層)の厚みを容易に制御することができる。
 基材22は樹脂で構成されていてもよく、銅、銅合金、アルミニウム、アルミニウム合金、鉄及び鉄合金のいずれかの金属で構成されていてもよい。また、基材22がめっき層23の金属と同種類の金属で構成されていてもよい。めっき層23は銅、銅合金、ニッケル及びニッケル合金のいずれかで構成されていてもよい。また、樹脂に間接的に密着する金属(導電性材料20の基材22)の熱伝導率が高ければ、樹脂に籠っている熱を効率的に逃がすことができる。その結果、樹脂の熱膨張を抑えることができる。このような観点から、導電性材料20の基材22の熱伝導率に比例する導電率は、10%IACS以上であることが好ましい。
 導電性材料20は、所定の材料で形成された基材22を準備し、当該基材22上に所定のめっき条件でめっき層23を形成する。このとき、めっき浴の組成、めっき温度、電流密度、めっき厚等のめっき条件を制御することで、上記(1)及び(2)の条件を満たす表面21を形成することができる。
 ・導電性材料の構成に係る実施形態3
 図3は、本発明の実施形態3に係る導電性材料30の構成を示す断面模式図である。導電性材料30は、基材32と2種のめっき層(第1めっき層33、第2めっき層34)とで構成されている。第1めっき層33は基材32上に形成され、第2めっき層34は第1めっき層33上に形成されており、上記(1)及び(2)の条件を満たす表面31が第2めっき層34である。図3の点線枠35部分の拡大図が右図に示されている。なお図3の右図は導電性材料30の粗化表面の一例を示すものであり、このような形状の粗化表面に限定されるものではない。このような構成によれば、上記(1)及び(2)の条件を満たす表面をめっき層で制御することができ、当該表面(表層、すなわちめっき層)の厚みを容易に制御することができる。また、複層のめっき層を良好なコスト及び効率で製造することができる。
 基材32は樹脂で構成されていてもよく、銅、銅合金、アルミニウム、アルミニウム合金、鉄及び鉄合金のいずれかの金属で構成されていてもよい。また、基材32が第1めっき層33の金属と同種類の金属で構成されていてもよい。第1めっき層33は銅、銅合金、ニッケル及びニッケル合金のいずれかで構成されていてもよい。第2めっき層はパラジウム、パラジウム合金、金及び金合金のいずれかで構成されていてもよい。導電性材料30が例えばリードフレームの場合、第2めっき層の表面(導電性材料30の最表面)をこのように貴金属めっきにすることによって、半田付け性を高め、且つ、低接触抵抗を実現できる。また、樹脂に間接的に密着する金属(導電性材料30の基材32)の熱伝導率が高ければ、樹脂に籠っている熱を効率的に逃がすことができる。その結果、樹脂の熱膨張を抑えることができる。このような観点から、導電性材料30の基材32の熱伝導率に比例する導電率は、10%IACS以上であることが好ましい。
 導電性材料30は、所定の材料で形成された基材32を準備し、当該基材32上に所定のめっき条件で第1めっき層33を形成し、続いて第2めっき層34を形成する。このとき、めっき浴の組成、めっき温度、電流密度、めっき厚等のめっき条件を制御することで、上記(1)及び(2)の条件を満たす表面31を形成することができる。例えば、めっき浴の組成、めっき温度、電流密度、めっき厚等のめっき条件を制御することで上記(1)及び(2)の条件を満たす第1めっき層33を形成し、このような第1めっき層33上に薄い第2めっき層34を形成する。これにより、第2めっき層34の表面プロフィールは、第1めっき層33の表面プロフィールと略等しくなる。このようにして、上記(1)及び(2)の条件を満たす表面31を形成してもよい。
 めっき層は、実施形態2または3のように1層または2層で形成してもよく、3層または4層以上で形成してもよい。また、実施形態1~3の導電性材料10、20、30の最表面は、上記(1)及び(2)の条件を満たしている限り、リン酸エステル系の処理液等による処理を行うことで、めっきの酸化防止剤に係る機能を付与してもよい。また必要に応じて、めっきのピンホールによる腐食を抑制するための封孔処理を付与してもよい。
 本発明の実施形態に係る導電性材料は、1種以上のめっき層で構成されためっき層の厚みの総和が1~7μmであるのが好ましい。めっき層の厚みの総和が1μm未満であると、表面の粗化の形状を十分に形成できず、また基材成分の拡散が進行しやすくなるおそれがある。めっき層の厚みの総和が7μm超であると、プレス加工時や曲げ加工時に導電性材料のめっき層にクラックが生じやすくなるおそれがある。
 本発明の実施形態に係る導電性材料は、上記(1)及び(2)の条件を満たす表面を部分的に有してもよい。導電性材料の表面全体が上記(1)及び(2)の条件を満たす場合に対し、当該表面が部分的に設けられていることで、樹脂の密着が不要な部分については容易に樹脂を除去することができる。一例として、当該表面が部分的に設けられていることで、目的箇所から漏れた樹脂(バリ)を容易に除去することができる。また、上記(1)及び(2)の条件を満たすような粗化形状を有する表面は、ワイヤボンディング性が悪化するという特性を有するため、当該表面を部分的に設けることによって、ワイヤボンディング性の悪化を抑制できる。当該部分的に設けられた表面は、ストライプ状であってもよく、スポット状、さらにはリング状などであってもよい。
 <導電性材料の用途>
 本発明の実施形態に係る導電性材料の用途は特に限定しないが、樹脂との良好な密着性が必要な電子部品の材料として用いることができ、特に、衝撃、温度、湿度等の要因から守るために表面を樹脂で固める樹脂成型、樹脂封止、または、モールド成型等を施す電子部品の材料として用いることができる。当該電子部品としては例えば、リードフレーム、バズバーモジュール等のような金属製の電子部品が挙げられる。本発明の実施形態に係る導電性材料は、このような表面に樹脂成型、樹脂封止、または、モールド成型が施された成型品としても、導電性材料の表面と樹脂との密着性が非常に良好であるため、例えば車載向けのエンジンルーム周りという過酷な環境下で使用される電子部品の材料として用いた場合でも、良好な耐久性が期待できる。
 以下、本発明の実施例と比較例を共に示すが、これらは本発明をより良く理解するために提供するものであり、本発明が限定されることを意図するものではない。
 <導電性材料の作製>
 実施例1~14、17~21、従来例1、比較例1~2として、表1に示すように基材の表面に表層めっきを形成した。また、実施例15~16、従来例2として、表1に示すように基材表面に下地めっき及び表層めっきを形成し、導電性材料の試験片を作製した。各基材の面積は50mm×50mm、板厚は0.4mmとした。なお、表1に示す基材の種類は以下の通りである。
 C11000:99.9%Cu
 C10200:99.9%Cu
 C19400:Cu-2.2%Fe-0.15%Zn-0.03%P
 C70250:Cu-3%Ni-0.65%Si-0.15%Mg
 A5052:Al-2.5%Mg-0.4%Fe-0.25%Si-0.25%Cr-0.1%Cu-0.1%Mn-0.1%Zn
 42アロイ:Fe-42%Ni
 各めっきを行う前の前処理条件としては、A5052以外の各基材については、水酸化ナトリウムが50g/Lのアルカリ脱脂浴にてカソード電解脱脂を5A/dm2で60秒実施後、10%硫酸およびフッ化アンモニウム50g/Lの酸洗溶液にて30秒酸洗浄し、各めっき工程へ移行した。
 またA5052においては、前記のアルカリ脱脂浴にてカソード電解脱脂を5A/dm2で10秒実施後、10%硫酸およびフッ化アンモニウム50g/Lの酸洗溶液にて10秒酸洗浄した後、水酸化ナトリウムを50g/L、酸化亜鉛を5g/L、塩化第二鉄を2g/L、ロッシェル塩を50g/Lをそれぞれ含有した亜鉛置換浴で、浴温25℃、処理時間10秒処理して亜鉛置換を実施し、もう一度前記の酸洗浄と亜鉛置換を繰り返して各めっき工程へ移行した。
 各めっき処理は、電気めっきにて、めっき浴の組成、めっき液の温度、電流密度及びめっき時間を調製することで行った。表2に実施例1~5でそれぞれ用いた電気めっき条件を示す。めっき浴成分は、Niメタル分130g/L、ホウ酸25g/LでpH3.3であった。ここで、Niメタル分は、Ni塩としてスルファミン酸ニッケル四水和物及び塩化Niで構成されている。より具体的には、スルファミン酸ニッケル四水和物:Ni(NH2SO32・4H2O=294g/L(約300g/L)、Ni量で53.5g/L、塩化ニッケル六水和物:NiCl2・6H2O=約310g/L、Ni量で76.5g/Lである。
 実施例6~14及び17~20、従来例1、比較例1~2の表層めっき、及び、実施例15~16の下地めっき及び表層めっきは、上記実施例1~5の表2で用いためっき条件に基づき、めっき浴の組成、めっき液の温度、電流密度及びめっき時間、さらに撹拌の程度をそれぞれ調整することで形成した。このとき、導電性材料の試験片の表面のSa、Spc、Szが所望の数値となるように、上記実施例1~5の表2で用いためっき条件と後述の評価結果を参考にした。また、各めっき条件の調整は以下の知見に基づいて行った。
 膜厚:膜厚が増加すると、結晶粒が膜厚方向に優先的に成長する(水平方向よりも膜厚方向への成長速度が速い)ため、Sa、Szは大きくなる。一方、Spcについては、結晶粒の成長により配向が強くなり、先端は鋭くなることから、大きくなる。
 めっき液種類:めっき液中の塩素濃度、すなわち塩化Ni濃度を大きくすることで、結晶が尖りやすく、また表面の凹凸が大きく鋭くなるため、Sa、Sz、Spcがそれぞれ増大する。
 めっき液温度:めっき浴の液温が高いと、結晶が等方的に成長し、結晶粒が大きくなりやすく、また先端も尖りやすくなるため、Sa、Sz、Spcはそれぞれ増加する。一方で、60℃を超えると結晶粒粗大化が進行し、極大値を55℃近辺でとってやがて低下する。
 電流密度:電流密度が高くなると、核生成数が多くなるため、膜厚が薄い場合と厚い場合に分けて考えられる。概ね3μm前後で差があり、3μm以下であれば電流密度が高いとSa、Szは微細析出が優先となり小さくなる傾向にあり、また突起の数は多くなるが、微細析出が進むため曲率は小さくなる(つまり、Spcは大きくなる)傾向にある。一方で、膜厚が厚いとSa、Szは上記膜厚上昇と同じ要因で増加し、Spcについては結晶粒の成長により配向が強くなり、先端は鋭くなることから、大きくなる傾向にある。
 なお、従来例2は、特許文献3の実施例に基づき、以下の条件で導電性材料の試験片を作製した。具体的には、従来例2のNiめっきは、硫酸ニッケルを260g/L、塩化ニッケルを50g/L、ホウ酸を35g/L、pH4.5、浴温50℃、電流密度5A/dm2、めっき時間200秒の条件で作製した。
 さらに実施例15、16および従来例2に記載のAuめっきについては、シアン化金カリウムを20g/L、クエン酸カリウムを50g/L、pH5、浴温60℃、電流密度1A/dm2で所定の膜厚になるようにめっき時間を調整し、またPdめっきにおいては、ジアンミンジクロロパラジウムをPd成分として20g/L、塩化アンモニウムを75g/L、pH9、浴温40℃、電流密度1.5A/dm2で所定の膜厚になるようにめっき時間を調整して作製した。従来例2のめっき厚は1μmとした。
 なお、めっき厚の確認については、任意の5点について蛍光X線膜厚計(日立ハイテク社製 SFT9500)を使用し、コリメータ径0.2mm、各膜厚測定時間30秒での平均値について算出した。
 実施例21については、実施例1と同じ条件で6μmのNiめっきを行った後、Niめっき厚を5μmとなるまで以下の条件にてエッチングした。
 ・エッチング条件
 エッチング液:メック社製NR1870、エッチング液温:25℃、エッチング時間:30秒
 <評価>
 ・表面のSa、Spc、Sz
 導電性材料の試験片の表面のSa、Spc、Szは、キーエンス社製レーザー顕微鏡(VK-X150)を使用し、観察倍率1000倍、スポット径φ0.8mm、測定面積100μm×100μmで測定した。5回の測定(N5)の平均値を算出し、導電性材料の試験片の表面のSa、Spc、Szの値とした。
 ・シェア強度(初期)
 導電性材料の試験片の表面に樹脂成型したものをサンプルとして、プリンカップモールド試験にてシェア強度を測定した。試験条件は、樹脂:日立化成社製GE-7470LA樹脂、プリンカップ底面の面積:10mm2、樹脂成型時間:120秒、モールドキュア:175℃で8時間とし、10回のせん断力測定(N10)の平均値を算出し、シェア強度(初期)とした。シェアはデイジ社製 ボンドテスター(Series4000)にて、シェア速度100μm/秒にて測定した。評価基準は以下の通りとした。
 ◎:20kg以上
 〇:15kg以上20kg未満
 ×:15kg未満
 ・シェア強度(高温高湿試験)
 また、上記のように作製したサンプルを、温度85℃、湿度85%の環境下で168時間放置した後、上記シェア強度を同様に測定した。評価基準は以下の通りとした。
 ◎:剥離無し
 〇:剥離率20%未満
 ×:剥離率20%以上
 当該剥離率は、超音波探傷による画像から、導電性材料の表面と樹脂とがどのような割合で剥離しているのかを計算して評価した。
 ・シェア強度(ヒートサイクル試験)
 さらに、上記のように作製したサンプルを、125℃で30分間保持した後、-40℃で30分間保持することを1サイクルとして、これを500サイクル連続で繰り返した。その後、上記シェア強度を同様に測定した。評価基準は以下の通りとした。
 ◎:剥離無し
 〇:剥離率10%未満
 △:剥離率10%以上20%未満
 ×:剥離率20%以上
 当該剥離率は、超音波探傷による画像から、導電性材料の表面と樹脂とがどのような割合で剥離しているのかを計算して評価した。
 上記試験条件及び評価結果を表1、2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 実施例1~21は、いずれも導電性材料の表面が下記(1)及び(2)の条件を満たしたため、初期、高温高湿試験のいずれのシェア強度も非常に良好であり、ヒートサイクル試験のシェア強度は評価基準が△、〇、◎のいずれかであり、過酷な環境下においても優れた樹脂密着性を示すことがわかった。
 (1)算術平均面粗さ高さSaが0.25~0.4μm、
 (2)山頂点の算術平均曲Spcが3万~6万(1/mm)
 従来例1、2及び比較例1、2は、いずれも導電性材料の表面が上記(1)及び(2)の条件の少なくとも1つを満たさなかったため、少なくともヒートサイクル試験のシェア強度が不良であった。
10、20、30 導電性材料
11、21、31 表面
12、24、35 点線枠
22、32 基材
23 めっき層
33 第1めっき層
34 第2めっき層

Claims (11)

  1.  表面に樹脂を成型する、または、表面を樹脂で封止する導電性材料であって、
     前記表面が金属で構成され、下記(1)及び(2)の条件を満たす導電性材料。
     (1)算術平均面粗さ高さSaが0.25~0.4μm、
     (2)山頂点の算術平均曲Spcが3万~6万(1/mm)。
  2.  前記表面の最大面粗さ高さSzが3.5~6.5μmである請求項1に記載の導電性材料。
  3.  前記導電性材料が基材と前記基材上に形成されためっき層とを含み、
     前記表面が前記めっき層である請求項1または2に記載の導電性材料。
  4.  前記基材が、銅、銅合金、アルミニウム、アルミニウム合金、鉄及び鉄合金のいずれかで構成された請求項3に記載の導電性材料。
  5.  前記めっき層が1種以上のめっき層で構成された請求項3または4に記載の導電性材料。
  6.  前記めっき層は前記基材上に形成された第1めっき層を有し、前記第1めっき層が銅、銅合金、ニッケル及びニッケル合金のいずれかで構成された請求項5に記載の導電性材料。
  7.  前記めっき層は前記第1めっき層上に形成された第2めっき層を有し、前記第2めっき層がパラジウム、パラジウム合金、金及び金合金のいずれかで構成された請求項6に記載の導電性材料。
  8.  前記1種以上のめっき層で構成された前記めっき層の厚みの総和が1~7μmである請求項5~7のいずれか一項に記載の導電性材料。
  9.  前記(1)及び(2)の条件を満たす表面を部分的に有する請求項1~8のいずれか一項に記載の導電性材料。
  10.  前記表面に樹脂が成型された、または、前記表面が樹脂で封止された請求項1~9のいずれか一項に記載の導電性材料を備えた成型品。
  11.  請求項1~9のいずれかに記載の導電性材料を備えた電子部品。
PCT/JP2019/028333 2018-10-18 2019-07-18 導電性材料、成型品及び電子部品 WO2020079905A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980064776.0A CN112805413B (zh) 2018-10-18 2019-07-18 导电性材料、成型品以及电子部件
KR1020217010424A KR102497060B1 (ko) 2018-10-18 2019-07-18 도전성 재료, 성형품 및 전자 부품

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018196988A JP6805217B2 (ja) 2018-10-18 2018-10-18 導電性材料、成型品及び電子部品
JP2018-196988 2018-10-18

Publications (1)

Publication Number Publication Date
WO2020079905A1 true WO2020079905A1 (ja) 2020-04-23

Family

ID=70283861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/028333 WO2020079905A1 (ja) 2018-10-18 2019-07-18 導電性材料、成型品及び電子部品

Country Status (4)

Country Link
JP (1) JP6805217B2 (ja)
KR (1) KR102497060B1 (ja)
CN (1) CN112805413B (ja)
WO (1) WO2020079905A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09148508A (ja) * 1995-11-29 1997-06-06 Nippon Denkai Kk 半導体装置用リードフレーム及びこれを用いた樹脂封止型半導体装置
JPH10265991A (ja) * 1997-03-24 1998-10-06 Nikko Kinzoku Kk 樹脂密着性に優れためっき材
JP2004339584A (ja) * 2003-05-16 2004-12-02 Mitsui High Tec Inc リードフレーム及びそのめっき方法
JP2010236058A (ja) * 2009-03-31 2010-10-21 Mitsui Mining & Smelting Co Ltd 粗化処理銅箔、粗化処理銅箔の製造方法及び銅張積層板
JP2012116126A (ja) * 2010-12-01 2012-06-21 Hitachi Ltd 金属樹脂複合構造体及びその製造方法、並びにバスバ、モジュールケース及び樹脂製コネクタ部品
JP2013111881A (ja) * 2011-11-29 2013-06-10 Polyplastics Co 金属部品の製造方法、及び複合成形体
JP2017055044A (ja) * 2015-09-11 2017-03-16 古河電気工業株式会社 リードフレーム
WO2017077903A1 (ja) * 2015-11-05 2017-05-11 古河電気工業株式会社 リードフレーム材およびその製造方法
WO2018123708A1 (ja) * 2016-12-27 2018-07-05 古河電気工業株式会社 リードフレーム材およびその製造方法ならびに半導体パッケージ

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3228789B2 (ja) 1992-07-11 2001-11-12 新光電気工業株式会社 樹脂用インサート部材の製造方法
JPH1027873A (ja) 1996-07-11 1998-01-27 Nippon Koujiyundo Kagaku Kk 半導体装置用リードフレーム
JP2006093559A (ja) 2004-09-27 2006-04-06 Sumitomo Metal Mining Package Materials Co Ltd リードフレームおよびその製造方法
JP5614538B2 (ja) * 2010-09-30 2014-10-29 アイテック株式会社 複合めっき被膜の形成方法
JP6171275B2 (ja) * 2012-07-02 2017-08-02 大日本印刷株式会社 透明フィルム及びその製造方法
US20150279824A1 (en) * 2014-03-28 2015-10-01 Vijay K. Nair Electronic package and method of forming an electronic package
JP5927637B1 (ja) * 2015-06-19 2016-06-01 Hoya株式会社 プレス成形用ガラス素材、プレス成形用ガラス素材の製造方法、及び光学素子の製造方法
JP7133923B2 (ja) * 2015-06-25 2022-09-09 大塚製薬株式会社 成形型、光学素子、及び光学素子の製造方法
MY186397A (en) * 2015-07-29 2021-07-22 Namics Corp Roughened copper foil, copper-clad laminate, and printed wiring board
CN107849721B (zh) * 2015-09-01 2020-11-17 古河电气工业株式会社 耐热性优异的镀覆材料及其制造方法
WO2017179447A1 (ja) 2016-04-12 2017-10-19 古河電気工業株式会社 リードフレーム材およびその製造方法
JP6615350B2 (ja) * 2016-12-27 2019-12-04 古河電気工業株式会社 表面処理材およびこれを用いて作製した部品

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09148508A (ja) * 1995-11-29 1997-06-06 Nippon Denkai Kk 半導体装置用リードフレーム及びこれを用いた樹脂封止型半導体装置
JPH10265991A (ja) * 1997-03-24 1998-10-06 Nikko Kinzoku Kk 樹脂密着性に優れためっき材
JP2004339584A (ja) * 2003-05-16 2004-12-02 Mitsui High Tec Inc リードフレーム及びそのめっき方法
JP2010236058A (ja) * 2009-03-31 2010-10-21 Mitsui Mining & Smelting Co Ltd 粗化処理銅箔、粗化処理銅箔の製造方法及び銅張積層板
JP2012116126A (ja) * 2010-12-01 2012-06-21 Hitachi Ltd 金属樹脂複合構造体及びその製造方法、並びにバスバ、モジュールケース及び樹脂製コネクタ部品
JP2013111881A (ja) * 2011-11-29 2013-06-10 Polyplastics Co 金属部品の製造方法、及び複合成形体
JP2017055044A (ja) * 2015-09-11 2017-03-16 古河電気工業株式会社 リードフレーム
WO2017077903A1 (ja) * 2015-11-05 2017-05-11 古河電気工業株式会社 リードフレーム材およびその製造方法
WO2018123708A1 (ja) * 2016-12-27 2018-07-05 古河電気工業株式会社 リードフレーム材およびその製造方法ならびに半導体パッケージ

Also Published As

Publication number Publication date
CN112805413A (zh) 2021-05-14
CN112805413B (zh) 2024-01-12
JP2020063493A (ja) 2020-04-23
JP6805217B2 (ja) 2020-12-23
KR20210056399A (ko) 2021-05-18
KR102497060B1 (ko) 2023-02-07

Similar Documents

Publication Publication Date Title
CN108026657B (zh) 引线框材料及其制造方法
JP2003293187A (ja) めっきを施した銅または銅合金およびその製造方法
WO2009123144A1 (ja) 耐摩耗性、挿入性及び耐熱性に優れた銅合金すずめっき条
JP2009057630A (ja) Snメッキ導電材料及びその製造方法並びに通電部品
TW200934892A (en) Electrolytic copper foil and circuit board
TW201803065A (zh) 引線框架材及其製造方法
WO2020079904A1 (ja) 導電性材料、成型品及び電子部品
JP4887533B2 (ja) 銀めっき金属部材およびその製造法
KR20170120547A (ko) 전자 부품용 Sn 도금재
WO2020079905A1 (ja) 導電性材料、成型品及び電子部品
JP5766318B2 (ja) リードフレーム
JP4611419B2 (ja) はんだ濡れ性、挿抜性に優れた銅合金すずめっき条
JP2019204913A (ja) リードフレーム及びその製造方法
JP2014123760A5 (ja)
JP7366480B1 (ja) リードフレーム材およびその製造方法、ならびにリードフレーム材を用いた半導体パッケージ
JP2022148743A (ja) 導電性材料、成型品及び電子部品
JP5508329B2 (ja) リードフレーム
JP6827150B1 (ja) リードフレーム材およびその製造方法ならびにリードフレームおよび電気電子部品
TWI788542B (zh) 引線框架材料及其製造方法、以及使用此引線框架材料之半導體封裝體
JP2022085602A (ja) めっき材料及び電子部品
JP5637965B2 (ja) リードフレーム用アルミニウム板条及びリードフレーム板条
JPS59140342A (ja) リ−ドフレ−ム用銅合金
JPH02104654A (ja) 耐食性,めっき性及びはんだ性にすぐれた高性能リードフレーム用表面処理鋼板の製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19872364

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217010424

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19872364

Country of ref document: EP

Kind code of ref document: A1