WO2020078480A1 - 一种开放式连续生长碳纳米材料的设备及制备方法 - Google Patents

一种开放式连续生长碳纳米材料的设备及制备方法 Download PDF

Info

Publication number
WO2020078480A1
WO2020078480A1 PCT/CN2019/121124 CN2019121124W WO2020078480A1 WO 2020078480 A1 WO2020078480 A1 WO 2020078480A1 CN 2019121124 W CN2019121124 W CN 2019121124W WO 2020078480 A1 WO2020078480 A1 WO 2020078480A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
cvd
metal foil
roller
furnace
Prior art date
Application number
PCT/CN2019/121124
Other languages
English (en)
French (fr)
Inventor
钟国仿
张灿
Original Assignee
深圳市纳设智能装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市纳设智能装备有限公司 filed Critical 深圳市纳设智能装备有限公司
Priority to JP2021546443A priority Critical patent/JP7427683B2/ja
Priority to US17/285,132 priority patent/US11473192B2/en
Priority to EP19874362.7A priority patent/EP3896033A4/en
Publication of WO2020078480A1 publication Critical patent/WO2020078480A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/186Preparation by chemical vapour deposition [CVD]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/164Preparation involving continuous processes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0254Physical treatment to alter the texture of the surface, e.g. scratching or polishing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • C23C16/0281Deposition of sub-layers, e.g. to promote the adhesion of the main coating of metallic sub-layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4409Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber characterised by sealing means
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4418Methods for making free-standing articles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45519Inert gas curtains
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • C23C16/545Apparatus specially adapted for continuous coating for coating elongated substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation

Definitions

  • This application relates to the field of chemical vapor deposition (CVD) equipment for growing carbon nanomaterials (such as graphene or carbon nanotubes, etc.), in particular to a continuous input of metal foil from the atmosphere to the equipment under micro-positive or positive pressure conditions Belt, after the CVD process, the metal foil belt is continuously output, and the surface of the output foil belt has grown an open type continuous growth carbon nano material device and a preparation method of the desired product.
  • CVD chemical vapor deposition
  • Graphene and carbon nanotubes like diamond and graphite, are allotropes of carbon.
  • Graphene can be visually understood as a two-dimensional crystal extracted from a single-crystal graphite crystal with a thickness of only one atom. Without strict conditions, nanomaterials composed of a few layers of graphene are also called graphene.
  • Carbon nanotubes are divided into single-wall carbon nanotubes and multi-wall carbon nanotubes.
  • the single-walled carbon nanotube can be understood as a seamless tube with a nanometer diameter scale formed by winding a single layer of graphene in a certain direction.
  • Multi-walled carbon nanotubes can be understood as carbon nanotubes made of two or more single-walled carbon nanotubes of different diameters nested with each other like a Russian matryoshka, and the spacing between layers is close to that of graphite. Since carbon nanomaterials have extremely excellent chemical and physical properties, they have extremely broad application prospects in many fields such as mechanics, optics, electricity, and thermals.
  • CVD is considered to be the most promising method for preparing high-quality carbon nanomaterials.
  • CVD is Chemical Vapor
  • the abbreviation of Deposition refers to the gas phase reaction at high temperature, for example, the thermal decomposition of metal halides, organic metals, hydrocarbons, etc., the reduction of hydrogen or the chemical reaction of its mixed gas at high temperature to precipitate
  • Methods of inorganic materials such as metals, oxides, carbides, etc., are currently widely used in the purification of high-purity metals, powder synthesis, semiconductor thin films, etc., which is a characteristic technical field.
  • the traditional CVD method is to place the substrate material in a closed cavity, heat the sample under vacuum, low pressure or normal pressure, and then introduce hydrogen gas and carbon-containing gas diluted or not diluted by the carrier gas.
  • the desired carbon nanomaterial is grown on the bottom surface, and finally cooled and the sample is taken out. Due to the limited substrate size, long heating and cooling process, the production efficiency is extremely low, which also severely restricts the application of carbon nanomaterials.
  • the roll-to-roll equipment must still be a closed system working at low pressure and normal pressure. After a roll is produced, it must be stopped and replaced. The production efficiency is still limited, and continuous open-end production of graphene under the atmosphere cannot be achieved. Not to mention integration with graphene end product production lines.
  • the purpose of this application is to overcome the deficiencies described in the prior art, thereby providing an open continuous growth device and method for carbon nanomaterials, which can not only continuously grow high-quality large-area carbon nanomaterials on a large scale, Really continuous uninterrupted growth 24 hours a day, greatly improving production efficiency, and can also be integrated into the production line of application products, reduce the damage of carbon nanomaterials in the intermediate process, and improve the yield; this method will carbon nanomaterials from growth to processing Until the end product is prepared to form a continuous production line, it can be continuously produced without having to be in a sealed space, and the production efficiency is high.
  • An open-type equipment for continuously growing carbon nanomaterials including a metal foil tape feeding system, a CVD system, and a collection system all in an open gas;
  • the metal foil tape feeding system is used to transport the metal foil tape from the atmosphere To the CVD system;
  • the CVD system is used to react to generate carbon nanomaterials, and the metal foil tape enters the collection system after attaching carbon nanomaterials in the CVD system;
  • the CVD system includes a CVD furnace and a control system, the CVD furnace is in signal connection with the control system, and a slit coupler is sealed and coupled at the inlet and outlet of the CVD furnace, respectively.
  • a slit coupler is sealed and coupled at the inlet and outlet of the CVD furnace, respectively.
  • at least one slit connected to the CVD furnace at one end and open to the atmosphere at the other end is provided, and the slits on the two slit couplers correspond to each other in one-to-one correspondence.
  • the slit enters and exits the CVD furnace;
  • Each of the slit couplers is provided with at least one cooling circuit.
  • the cooling circuit is composed of cooling water inlet and outlet pipes arranged around the slit, and cooling water is provided in the cooling water inlet and outlet pipes Slit coupling for cooling;
  • Each of the slit couplers is also provided with a plurality of air inlet pipes, and the end of each air inlet pipe is sealed and leads to different parts of the CVD furnace, the carrier gas required by the CVD system and The reaction gas passes through the gas inlet pipe into various parts of the CVD furnace, and keeps the inside of the CVD furnace in a positive or slightly positive pressure state.
  • the gas inlet pipe is configured to provide the CVD furnace with the required The only channel for carrier gas and reaction gas;
  • a protective gas injection port communicating with the slit is also opened on the slit coupler, and the protective gas required by the CVD system is directly led to the slit coupler through the protective gas injection port In the slit; the exhaust gas generated inside the CVD system is discharged through the slits at both ends, and mixed with the shielding gas in the slit, and then ejected from the open end of the slit, the exhaust gas and the shielding gas The effect of erupting to the outside of the slits keeps all the slits dynamically sealed at all times to prevent air leakage or penetration into the CVD furnace through the slits.
  • each of the slit couplers is provided with a plurality of slits, and each slit on the two slit couplers corresponds one-to-one.
  • an online quality monitoring feedback device is also provided in the CVD system, the online quality monitoring feedback device is in signal connection with the control system, and the online quality monitoring feedback device is used for online monitoring of the passage of the metal foil tape
  • the CVD system generates the status of the carbon nanomaterial, and feeds back a signal to the control system, and the control system controls the growth conditions of the carbon nanomaterial in the CVD furnace according to the signal.
  • the CVD system is located in a fume hood, the exhaust pipe of the fume hood is connected to the exhaust gas treatment unit, and the exhaust volume of the fume hood is much greater than the total exhaust gas of the CVD system the amount.
  • a safety monitoring control subsystem is provided in the control system, and the safety monitoring control subsystem controls the flow rates of the carrier gas, the reaction gas and the shielding gas.
  • the safety monitoring control subsystem controls the flow rates of the carrier gas, the reaction gas and the shielding gas.
  • the airflow sensor reports to the safety
  • the monitoring and control system sends a signal, and after receiving the signal, the safety monitoring and control system forcibly cuts off the heating power of the CVD furnace and the carrier gas and the reaction gas in the intake pipe and issues an alarm;
  • a gas concentration sensor is also provided in the CVD system, and the gas concentration sensor is in signal connection with the safety monitoring control subsystem for monitoring the concentration of combustible and explosive gas discharged from the slit of the CVD furnace;
  • the safety monitoring control subsystem for monitoring the concentration of combustible and explosive gas discharged from the slit of the CVD furnace;
  • a second gas concentration sensor may be additionally provided in the workshop where the fume hood is located, and the second gas concentration sensor is connected to the safety monitoring and control subsystem signal to monitor the combustible and explosive gas, oxygen and carbon monoxide in the workshop Concentration, when the second gas concentration sensor detects that the concentration of the combustible and explosive gas is close to the lower explosion limit, when the concentration of oxygen decreases to the warning concentration or the concentration of carbon monoxide exceeds the standard, a danger signal is sent to the safety monitoring control subsystem After receiving the danger signal, the safety monitoring control subsystem forcibly cuts off the flow of the combustible and explosive gas or even the carrier gas and the protective gas, and at the same time turns off the heating power of the CVD system and alarms.
  • the metal foil tape feeding system includes a discharge roller, a drive roller and a guide roller; the discharge roller is used to support the metal foil tape; the drive roller is used to drive the The metal foil belt moves forward; the guide roller is used to adjust the movement trajectory of the metal foil belt; a collecting roller is provided in the collection system, and the collecting roller is used to attach the carbon nanomaterial The metal foil tape is collected by winding, and the unwinding roller, the driving roller, the guide roller and the receiving roller are respectively connected to the control system in signal;
  • the adjacent unwinding rollers, drive rollers, guide rollers and take-up rollers are asynchronous rollers; and at least a stress sensor and / or on A torque sensor is provided on the feed roller, the drive roller, the guide roller and the take-up roller, and the stress sensor and / or the torque sensor are respectively connected to the control system signal, and the control system is based on The signals transmitted by the stress sensor and / or the torque sensor regulate the rotation speed and torque of the unwinding roller, the driving roller, the guide roller, and the receiving roller.
  • the metal foil tape roll feeding system further includes a pretreatment system, which is provided on the running track of the metal foil tape and is used for cleaning, polishing and / or cleaning the metal foil tape Or coating a surface catalyst;
  • the cleaning includes but not limited to surface degreasing, removing impurities and removing oxides;
  • the polishing includes but not limited to one or more of mechanical polishing, chemical polishing or electrolytic polishing;
  • the method of coating the surface catalyst includes, but is not limited to, one or more of physical coating, chemical coating, or electrochemical coating.
  • the CVD furnace is a high temperature heating furnace with a closed inlet and outlet
  • the high temperature heating furnace is an integrated furnace with independent control of multiple sections
  • at least one temperature sensor is provided in each section of the CVD furnace
  • the temperature sensor is signal-connected to the control system, and the control system adjusts the temperature of different sections of the CVD furnace and the heating or cooling rate during the heating or cooling process according to the signals transmitted by the temperature sensor.
  • the collection system is further provided with a post-processing system, and the post-processing system is disposed between the second slit coupler and the take-up roller.
  • a method for continuously growing graphene by using the equipment includes the following steps:
  • Argon gas or nitrogen gas is introduced into the CVD furnace as a carrier gas and a protective gas, and hydrogen gas and at least one carbon-containing gas are introduced into the CVD system as the reaction gas of the CVD furnace, while controlling the CVD
  • the growth temperature of the furnace is 500-1200 ° C; after the graphene is generated on the surface of the metal foil belt, it is sent to the collection system for output.
  • a method for continuously growing carbon nanotubes using the equipment in an open manner includes the following steps:
  • the catalyst-coated metal foil tape is continuously transported to the CVD system through the metal foil tape feeding system, and argon or nitrogen gas is introduced into the CVD system as the Carrier gas and protective gas of the CVD furnace, and hydrogen gas and at least one carbon-containing gas are introduced into the CVD system as the reaction gas of the CVD furnace, and the growth temperature of the CVD furnace is controlled to 400-1000 ° C; After the carbon nanotubes are generated on the surface of the metal foil belt, they are sent to the collection system for output, and
  • the catalyst is a nano film or nano particles composed of one or more of iron, cobalt and nickel, or a nano film or nano particles of oxides and salts thereof; the catalyst can pass through the pretreatment system
  • the metal foil tape is pre-treated, and the pretreatment includes the steps of directly coating the catalyst on the surface of the metal foil tape, or first coating the transition layer on the surface of the metal foil tape, and then coating the catalyst.
  • the slit coupler of the present application can achieve reliable sealed coupling with the CVD furnace to form a whole, in which the slit coupler simultaneously plays a guiding role on the metal foil tape, a blocking effect on air and a cooling effect, CVD
  • the carrier gas and reaction gas used in the furnace can only be conducted to different parts in the CVD furnace through the air inlet pipe on the slit coupler, and the protective gas is directly filled in each slit.
  • the gas in the CVD furnace is full At positive pressure or slightly positive pressure, the resulting exhaust gas is mixed with the protective gas in the slit and finally passes through
  • the slits of the slit coupler at both ends of the CVD furnace are erupted at high speed to the outside world.
  • the CVD system is installed in the fume hood. After the exhaust gas is discharged into the fume hood, it is discharged through the exhaust device of the fume hood. It is precisely because of the role of exhaust gas and protective gas erupting outside the slit that the slit is always maintained Dynamic sealing to prevent air leakage or penetration into the CVD furnace through the slit, so the metal foil tape feeding system, CVD system and collection system can be placed in the atmosphere without being isolated from the air, so as to pass through the metal foil tape.
  • the feeding system continuously feeds to the CVD system, the collection system can form the finished carbon nanomaterials out of the warehouse without interruption, and finally achieve real continuous growth 24 hours a day, greatly improving the production efficiency of the product. Reduce the damage to products caused by the intermediate process and further improve the yield;
  • This application also provides an online quality monitoring feedback system and a safety monitoring subsystem that are respectively connected to the control system signal, which can maximize the protection of personal and property safety, and the quality inspection results of the online quality monitoring feedback system can be fed back to the control system , So as to automatically adjust the flow rate and ratio of various gases and the temperature in the CVD furnace to achieve the optimal control of the quality of carbon nanomaterials; on the one hand, the safety monitoring subsystem will be based on the signal sent by the gas concentration sensor installed in the CVD system.
  • Combustible and explosive gases such as hydrogen and carbon-containing gases are diluted by the carrier gas and protective gas to a concentration below the explosion limit.
  • the heating power of the CVD furnace is turned off and the combustible and explosive gas is cut off. Gas and even carrier gas and protective gas flow rate and alarm.
  • FIG. 1 is a schematic structural diagram of an embodiment of the present application
  • FIG. 2 is a partial schematic diagram of a CVD system according to an embodiment of this application.
  • Example 3 is a Raman spectrum of graphene and copper foil tape prepared in Example 2 of the present application.
  • Figure 5 is the graphene prepared in Example 2 transferred to 300nm Optical micrograph on SiO2 / Si;
  • Figure 6 is the transfer of graphene prepared in Example 2 to 300nm Raman spectrum on SiO2 / Si;
  • Example 7 is a Raman spectrum of continuous multilayer graphene grown on a nickel foil tape in Example 3.
  • Example 8 is an electron micrograph of carbon nanotubes grown on both sides of an aluminum foil tape in Example 4.
  • Discharging roller 2. Metal foil belt; 3. Guide roller or driving roller; 4. Fume hood; 5. Slot coupler; 6. CVD furnace; 7. Exhaust pipe of fume hood; 8. Airflow sensor; 9. Online quality monitoring feedback system; 10. Receiving roller; 11. Pretreatment system; 12. Slit; 13. Intake pipe; 14. Cooling water pipe; 15. Protective gas injection port; 16. Post-processing system.
  • connection should be understood in a broad sense, for example, it can be fixed or detachable Connected, or connected integrally; either mechanically or electrically; directly connected, or indirectly connected through an intermediary, or internally connected between two components.
  • installation should be understood in a broad sense, for example, it can be fixed or detachable Connected, or connected integrally; either mechanically or electrically; directly connected, or indirectly connected through an intermediary, or internally connected between two components.
  • the present application provides an apparatus for continuously growing carbon nanomaterials, including a metal foil tape feeding system I, a CVD system II, and a collection system III all in an open gas; the metal foil tape feeding
  • the system I is used to transfer the metal foil tape 2 from the atmosphere to the CVD system II;
  • the CVD system II is used to react to generate carbon nanomaterials.
  • the metal foil tape 2 is attached to the carbon nanomaterial in the CVD system II and enters the collection system III; wherein,
  • the CVD system II includes a CVD furnace 6 and a control system (not shown in the figure).
  • the CVD furnace 6 is in signal connection with the control system.
  • a slit coupler 5 is sealed and coupled to the inlet and outlet of the CVD furnace 6
  • the slit coupler 5 has at least one slit 12 connected to the CVD furnace 6 at one end and open to the atmosphere at the other end in the axial direction, and each slit 12 on the two slit couplers 5 corresponds to each other, and the metal foil tape 2 Only enter and exit the CVD furnace 6 through each pair of slits 12; each slit coupler 5 is provided with a cooling circuit, which is composed of a cooling water inlet and outlet pipe 14 provided around the slit 12 The cooling water inlet and outlet pipes 14 are provided with cooling water for the slit coupler 5 Cooling; each slit coupler 5 is also provided with a plurality of air inlet pipes 13, the end of each air inlet pipe 13 leads to different parts of the CVD furnace 6, the carrier gas required by the CVD system II and The reaction gas passes into various parts of the CVD furnace 6 through the gas inlet pipe 13 and keeps the CVD furnace 6 in a
  • the gas inlet pipe 13 constitutes the carrier gas and the reaction gas required to supply the CVD furnace 6
  • the only channel of the slit coupler 5 is also provided with a shield gas injection port 15 communicating with the slit 12, the shielding gas required by the CVD system II is directly led to the slit coupler 5 through the shield gas injection port 15 In the slit; the exhaust gas generated in the CVD system II is discharged through the slit 12 at both ends, and mixed with the shielding gas in the slit 12 and is ejected from the open end of the slit 12, the exhaust gas and the shielding gas are erupted outside the slit 12 The effect of this is to keep all slits 12 dynamically sealed at all times to prevent air leakage or penetration into the CVD furnace 6 through the slits 12.
  • the slit coupler 5 of the present application can achieve reliable sealed coupling with the CVD furnace 6 to form a whole, in which the slit coupler 5 simultaneously guides the metal foil tape 2, blocks air, and cools,
  • the carrier gas and reaction gas used in the CVD furnace 6 can only be conducted to different parts in the CVD furnace 6 through the gas inlet pipe 13 on the slit coupler 5, the protective gas is directly filled to the open end of each slit 12, when When the gas in the CVD furnace 6 is filled with positive pressure or micro-positive pressure, the generated exhaust gas is mixed with the shielding gas in the slit and finally erupts at high speed through the slit 12 of the slit coupler 5 at both ends of the CVD furnace 6
  • the CVD system II can be installed in the fume hood 4, after the exhaust gas is discharged to the fume hood 4, and then through the exhaust device of the fume hood 4 to the exhaust gas treatment unit, in the exhaust gas treatment unit After being harmlessly treated and discharged into
  • the metal foil tape feeding system 1 includes a discharge roller 1, a drive roller 3, and a guide roller 3; the discharge roller 1 is used to support the rolled metal foil tape 2, and the drive roller 3 Used to drive the metal foil belt 2 forward; the guide roller 3 is used to adjust the movement trajectory of the metal foil belt 2; of course, the metal foil belt feeding system I can also include a pretreatment system 11, which can be provided on the metal foil The running track of the belt 2 is used for cleaning, polishing and / or coating the surface catalyst on the metal foil belt 2.
  • cleaning includes but is not limited to surface degreasing, impurity removal and oxide removal, etc .
  • polishing includes but not limited to mechanical polishing, chemical polishing, electrolytic polishing and their comprehensive polishing
  • catalyst coating includes but not limited to physical coating, Chemical coating, electrochemical coating and its comprehensive coating.
  • the metal foil tape feeding system I integrated with the pretreatment system 11 is preferably adopted, so as to further improve the quality of the prepared carbon nanomaterial product or further reduce the cost. For example, it is reported in the literature that by cleaning and polishing, the quality of graphene prepared on the copper foil tape can be significantly improved.
  • the metal foil tape 2 refers to a foil that can be wound with a thickness ranging from micrometers to millimeters, a width ranging from millimeters to meters, and a length ranging from meters to kilometers or even infinitely long Band welded together).
  • Metals include but are not limited to aluminum, copper, iron, cobalt, nickel, and alloys or coatings thereof.
  • the required metal foil tape can also be prepared by electroplating or chemically plating a copper film or other metal film on the low-cost metal foil tape 2, such as an iron foil tape.
  • the optimal temperature for growing graphene on a copper foil tape is close to the melting point of copper, if the graphene is grown on a roll-to-roll basis, the growth temperature must be appropriately lowered, otherwise the copper foil tape may be easily pulled during the growth process. Break.
  • a copper film is chemically coated or electrochemically coated on the surface of the iron foil tape, so as to achieve the growth of graphene at the optimal temperature.
  • the price of iron foil tape is significantly better than that of copper foil tape, if the process control is reasonable, it may further reduce costs.
  • Carbon nanomaterials include but are not limited to graphene and carbon nanotubes.
  • Graphene includes but is not limited to discontinuous graphene, continuous graphene, single-layer graphene, multi-layer graphene and mixtures thereof.
  • Carbon nanotubes include but are not limited to single-walled carbon nanotubes, multi-walled carbon nanotubes and mixtures thereof.
  • the carbon nanotubes may be an array of carbon nanotubes perpendicular to the surface of the metal foil tape 2, or may be randomly oriented.
  • the CVD system II can be either a vertical layout, a horizontal layout, or a 0-90o tilt layout.
  • the system is installed in the fume hood 4 in whole or in part.
  • the metal foil tape 2 can enter and exit the CVD furnace 6 either from top to bottom or from bottom to top.
  • This embodiment is preferably a vertical layout.
  • the guide roller 3 and the driving roller 3 can be separately provided between the CVD system II and the metal foil belt feeding system I, and also between the CVD system II and the collection system III The guide roller 3 and the driving roller 3 are separately provided. Due to the effects of thermal expansion and contraction, the metal foil tape 2 will have different sizes of deformation at different temperatures.
  • all rollers include a discharge roller 1, a driving roller 3, a guide roller 3, and the one provided in the collection system III
  • the receiving rollers 10 are all asynchronous rollers; at least one temperature sensor (not shown in the figure) is provided in the CVD system II, and at least one stress sensor (not shown in the figure) is provided on the metal foil strip 2 (Shown), or at least one torque sensor (not shown in the figure), temperature sensor and stress sensor on the discharge roller 1, drive roller 3, guide roller 3 and take-up roller 10 respectively And / or torque sensors are connected to the signal of the control system respectively, the control system will adjust the torque of each roller according to the real-time feedback signal of the stress sensor and or torque sensor, or control the different sections of the CVD furnace 6 according to the signal transmitted by the temperature sensor The temperature and the heating or cooling rate during the heating or cooling process prevent the metal foil strip 2 from wrinkling or sagging due to high-temperatur
  • the CVD furnace 6 can be an integrated furnace with single-zone independent control or an integrated furnace with multi-zone independent control, or a combined furnace composed of multiple single-zone independent control CVD furnaces. If multiple furnaces are used, the furnace Use sealed pipeline connection with the furnace.
  • the CVD furnace 6 in this embodiment is preferably a tube-type (quartz tube, corundum tube) high-temperature heating furnace, and more preferably a multi-zone independently controlled quartz tube-type high-temperature heating integrated furnace, so as to realize annealing of the metal foil strip 2 in different sections , Carbon nanomaterial growth, etc. The specific situation depends on the production requirements.
  • the CVD furnace 6 may be composed of a metal foil belt preheating annealing furnace and a growth furnace or an integrated furnace that can be divided into at least two independent sections, and the atmosphere and temperature in each section Independent controllable, so as to achieve preheating annealing and growth in different sections.
  • the present application adopts a scheme of providing a plurality of slits 12 on the slit coupler 5, wherein the slits 12 on the two oppositely arranged slit couplers 5
  • the shielding gas is directly led into each slit 12 through the shielding gas injection port 15.
  • a plurality of slits 12 can simultaneously enter and exit a plurality of metal foil tapes 2, thereby simultaneously growing carbon nanomaterials on the plurality of metal foil tapes 2 in the CVD furnace 6 and improving mass production.
  • the cross-section of the slit 12 may be, but not limited to, rectangular, trapezoidal, or other more complex shapes, as long as it facilitates the guidance, cooling, and air barrier of the metal foil strip 2, for example, the cross-section is a toothed quadrilateral, and the longitudinal cross-section (with metal The movement direction of the foil belt is the same).
  • the reaction gases used in the present application include but are not limited to hydrogen, carbon-containing gases such as methane, ethane, ethylene, acetylene, alcohol (vaporization), etc. and mixtures thereof.
  • the type of shielding gas is similar to the carrier gas, and the same gas as the carrier gas can be selected, or different gases can be selected.
  • the carrier gas and shielding gas include but are not limited to argon, helium, nitrogen, etc. and their mixed gases. From the standpoint of the preparation quality of the carbon nanomaterials alone, the carrier gas and the shielding gas are preferably argon; in consideration of cost, nitrogen gas from vaporization of liquid nitrogen is preferable.
  • the carbon-containing gas depends on which carbon nanomaterial is prepared. For example, methane is preferred for preparing single-layer high-quality continuous graphene.
  • the low temperature deposited multilayer graphene is preferably acetylene or ethylene.
  • an online quality monitoring feedback device 9 is also provided in the CVD system II of the present application.
  • the online quality monitoring feedback device 9 is in signal connection with the control system.
  • the online quality monitoring feedback device 9 is used to online monitor the metal foil strip 2 in the CVD furnace 6
  • the growth status of the carbon nanomaterials, and the quality inspection results are fed back to the control system.
  • the control system adjusts the flow rate and ratio of various gases and the temperature of the CVD furnace 6 according to the signals to achieve optimal control of the quality of the carbon nanomaterials.
  • this application installs the CVD system II in the fume hood 4, and connects the exhaust pipe of the fume hood 4 to the exhaust gas treatment unit (not shown in the figure), and is also installed in the control system Safety monitoring and control subsystem (not shown in the figure), by setting various airflow sensors, cooling water flow sensors, gas concentration sensors (not shown in the figure) in the CVD system and workshop, and setting in the fume hood 4 Airflow sensor 8, etc., and connect various sensors to the control system signal, the safety monitoring and control subsystem can form three safety protection barriers:
  • the flow rate of combustible and explosive gas (hydrogen, methane, etc.), carrier gas and protective gas into the CVD furnace is controlled by a gas flow sensor (such as a mass flow meter), and the dilution effect of the carrier gas and protective gas, Reduce the concentration of combustible and explosive gas discharged from the slit of the CVD furnace below the explosion limit to form the first safety protection barrier; when the flow rate of the carrier gas is insufficient to dilute the combustible and explosive gas below the explosion limit, the CVD furnace cannot be started 6 or automatically turn off the heating power of the running CVD furnace 6, cut off the flow of combustible gas and alarm.
  • a gas flow sensor such as a mass flow meter
  • the combustible and explosive gas concentration sensor, cooling water sensor and fume hood 4 provided in the CVD system form a second safety guarantee.
  • the combustible and explosive gas sensor provided in the CVD system is used to monitor the combustible and combustible gas discharged from the slit in the CVD furnace The concentration of the explosive gas.
  • the airflow sensor 8 in the fume hood 4 is used to monitor the exhaust volume of the fume hood.
  • the exhaust volume of the fume hood 4 is designed to be much larger than the total discharge of various gases in the CVD system.
  • the gas is collected by the fume hood 4 and discharged to the exhaust gas treatment unit by the fume hood exhaust pipe 7.
  • the concentration of combustible and explosive gas exceeds the standard, the cooling water flow rate is abnormally reduced, and the airflow sensor 8 detects that the airflow does not reach the safety threshold, the CVD furnace 6 cannot be started or the power supply of the CVD furnace 6 that is already in operation is forcibly turned off to cut off the combustible gas And alarm.
  • a second gas concentration sensor (not shown in the figure) is installed in the workshop where the fume hood is located to form a third safety barrier.
  • the second gas concentration sensor is used to monitor the concentration of combustible and explosive gases oxygen and carbon monoxide in the workshop.
  • the safety monitoring control subsystem will also turn off the heating power of the CVD furnace 6, cut off all carriers, and protect the gas And alarm the flow rate of the reaction gas. Specifically, if there is a decrease in oxygen content or an increase in carbon monoxide, it means that the previous safety protection measures have failed for some reason, resulting in lack of oxygen.
  • the fume hood 4 has not exhausted all the gas, but has been discharged to the workshop. Therefore, it is necessary to cut off all gases to prevent the oxygen concentration from further decreasing.
  • the problems related to explosion generally only the flow of combustible and explosive gas is cut off, and the residual combustible and explosive gas is further diluted by continuing to discharge protective gas and carrier gas.
  • the collection system III is used to directly wind the metal foil tape 2 grown with carbon nanomaterials onto the take-up roller 10 without any post-processing, or a post-processing system 16 can also be provided in the collection system III through integration
  • the post-processing system 16 performs post-processing and even directly produces carbon nanomaterial end products, thereby forming a complete continuous production line including carbon nanomaterial growth, addition, and end product preparation.
  • the post-processing includes separating and processing the grown carbon nanomaterial from the metal foil tape 2 into an end product, or further strengthening the adhesion of the carbon nanomaterial to the surface of the metal foil tape 2.
  • the graphene is separated from the metal foil tape 2 in the post-processing process, and electronic devices based on graphene, such as touch screens and sensors, are produced.
  • the carbon nanotubes it may be necessary to perform a gluing process through post-processing to fill the gaps between the carbon nanotubes and significantly strengthen the adhesion between the carbon nanotubes and the metal foil tape 2.
  • the metal foil tape feeding system is shown in FIG. 1 and does not include the pretreatment system 11.
  • the CVD system II is not equipped with an online quality monitoring system 9.
  • the CVD furnace 6 is a vertical single-zone quartz tube type single heating furnace with a diameter of 25 mm and only one slit 12 per slit coupler.
  • the collection system III does not include the post-processing system 16.
  • the carrier gas and shielding gas are both argon, and the reaction gases are hydrogen and methane.
  • the concentration of hydrogen and methane is diluted by argon below the explosion limit.
  • methane can also be replaced by ethane, acetylene, ethylene, (vaporized) alcohol and many more.
  • gases are high-purity gases, which are transported by pipeline to the equipment room through centralized gas supply.
  • the flow of gas is controlled by a mass flow meter,
  • the temperature of the CVD furnace 6 is monitored by thermocouples and regulated by a power supply with PID function.
  • Hydrogen and methane gas are mixed with the carrier gas at a rate of 80-150 sccm and 0.5-5 sccm through a mass flowmeter, and then passed into the quartz tube from the slit coupler.
  • the power supply of the copper foil belt can be stopped (including the unwinding roller 1, the receiving roller 10 and all driving rollers 3, the guide roller 3), manually replace a new roll of raw copper foil tape and weld it with the copper foil tape that is about to be used up.
  • Restarting the power supply of the copper foil tape can smoothly import and export the new copper foil tape into and out of the CVD system II.
  • the power supply of the copper foil tape can be stopped again, the copper foil tape is cut at the welding place, the copper foil tape roll where the graphene has been grown is taken out, and the new copper foil tape is wound onto the newly replaced receiving roller 10, and start the copper foil belt to deliver power again. This process can be automated in the future.
  • Embodiment 2 uses the equipment described in Embodiment 1 to grow a multilayer continuous graphene film on a nickel foil tape.
  • the difference from Embodiment 2 is that:
  • Metal foil tape 2 adopts nickel foil tape (11mm wide, 25 ⁇ m thick, purity 99.9%).
  • the conveying speed of nickel foil belt is 300-600mm / min.
  • the set temperature range for growth is 500-900 ° C, preferably 750-900 ° C.
  • the higher the temperature the faster the growth rate and the faster the conveying speed of the nickel foil tape.
  • the conveying speed is the same, the slower the conveying speed of the nickel foil tape, the more layers of graphene; or the higher the temperature, the more the number of graphene layers when the conveying speed of the nickel foil tape is constant.
  • Embodiment 2 uses the equipment described in Embodiment 1 plus a metal foil tape pretreatment system to grow an array of carbon nanotubes on a metal aluminum foil tape.
  • the difference from Embodiment 2 is that:
  • a layer of catalyst is applied to the surface of the metal aluminum foil 2 by adding a pretreatment system 11.
  • the catalyst may be a nano film or nano particles composed of one or more of iron, cobalt and nickel, or a nano film or nano particles of oxides and salts thereof.
  • ferrous chloride is used as
  • the specific implementation is to add a ferrous chloride solution pool between the discharge roller 1 and the CVD system II. A certain concentration of ferrous chloride is pre-dispensed in the pool. Its concentration is monitored by the liquid concentration sensor. When the concentration decreases The solvent is added automatically to keep the concentration constant.
  • the metal foil tape 2 passes through the discharge roller 1 and passes through the solution pool (immersed in the solution pool); after exiting from the solution pool, a ferrous chloride film is formed on the surface of the metal aluminum foil tape 2 by drying during the traveling process;
  • the size of the iron concentration depends on the performance of the desired carbon nanotube growth, the speed at which the metal aluminum foil tape 2 travels, and the total length of the immersion in the solution pool. Since an aluminum oxide passivation layer is inherent on the surface of the metal aluminum foil tape 2 and functions as a transition layer, it is not necessary to apply a transition layer between the metal foil tape 2 and the catalyst in this embodiment. Of course, for other metal foil tapes, you can also apply a transition layer on the surface of the metal foil tape 2 before applying the catalyst. The transition layer helps prevent the catalyst from reacting with the metal foil tape during the carbon nanotube growth process and promotes the catalyst. Particle formation, improve the stability of the catalyst particles, thereby promoting the growth of carbon nanotubes;
  • the carrier gas and the protective gas introduced into the CVD system II are both argon or nitrogen, and the reaction gas of the CVD furnace is hydrogen and at least one carbon-containing gas , such as methane, ethane, acetylene, ethylene, (vaporized) alcohol, etc., in this embodiment, acetylene is taken as an example;
  • the growth temperature of the CVD furnace 6 is 580-600 °C, in which ferrous chloride is reduced by a high-temperature reducing gas And forming iron nanoparticles, and further reacting with acetylene to form carbon nanotubes on the iron nanoparticles, thereby generating the carbon nanotube array in the metal foil tape 2 in the CVD system II (as shown in FIG. 8), and then Collected or processed directly through the collection system III for output as end products.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

一种开放式连续生长碳纳米材料的设备及制备方法,其中设备包括金属箔带进料系统(I)、CVD系统(II)和收集系统(III)。方法是将经过预处理或者未经任何预处理的金属箔带通过金属箔带进料系统(I)连续输送进入CVD系统(II),在该系统中经化学气相沉积方法在金属箔带表面沉积所需的碳纳米材料,然后通过收集系统(III)直接收集或者通过集成到后处理系统(16)中,直接对碳纳米材料进行后处理,甚至直接生产碳纳米材料终端产品。

Description

一种开放式连续生长碳纳米材料的设备及制备方法
相关申请
本申请要求:2018年10月19日申请的、申请号为201811222119.8、名称为“一种开放式连续生长碳纳米材料的设备及制备方法”的中国专利申请的优先权,在此将其引入作为参考。
技术领域
本申请涉及碳纳米材料(例如石墨烯或碳纳米管等)生长的化学气相沉积(CVD)设备领域,尤其涉及一种在微正压或者正压条件下,从大气往设备中连续输入金属箔带,经过CVD过程后连续输出该金属箔带,且输出的箔带表面已经生长了所需产品的开放式连续生长碳纳米材料的设备及制备方法。
背景技术
石墨烯、碳纳米管与金刚石、石墨一样,都是由碳的同素异形体。石墨烯可以形象地理解成从单晶石墨晶体中抽出来的一层仅有一个原子厚度的二维晶体。在不严格的情况下,由少数几层石墨烯组成的纳米材料也称为石墨烯。碳纳米管分为单壁碳纳米管和多壁碳纳米管。单壁碳纳米管可以理解为由单层石墨烯按一定方向卷绕而成的具有纳米直径尺度的无缝管。多壁碳纳米管则可理解成像俄罗斯套娃一样由两根或多根不同直径单壁碳纳米管相互套嵌而成的碳纳米管,层与层之间的间距与石墨的层间距接近。由于碳纳米材料具有极其优异的化学和物理性能,因此其在力学、光学、电学、热学等诸多领域都具有极其广阔的应用前景。
碳纳米材料的制备方法有多种,目前CVD法被认为是制备高质量碳纳米材料最具前景的方法,CVD是Chemical Vapor Deposition(化学气相沉积)的简称,是指高温下的气相反应,例如,金属卤化物、有机金属、碳氢化合物等的热分解,氢还原或使它的混合气体在高温下发生化学反应以析出金属、氧化物、碳化物等无机材料的方法,目前广泛应用于高纯度金属的精制、粉末合成、半导体薄膜等,是一个颇具特征的技术领域。虽然CVD法优于其他方法,但是快速、连续、大规模地制备高质量碳纳米材料的设备和工艺一直没有取得突破。传统的CVD方法是将衬底材料放置到密闭的腔体内,在真空、低压或者常压下加热样品,然后引入被载体气体稀释或未经载体气体稀释的氢气和含碳气体,通过CVD在衬底表面生长出所需的碳纳米材料,最后冷却并取出样品。由于有限的衬底尺寸、长时间的加热及冷却过程,因此生产效率极低,这也使得碳纳米材料的应用受到了严重制约。
为提高生产效率,尤其是石墨烯的生产效率,近几年来,有人尝试一次加热一卷或多卷金属箔带,每层金属箔带之间用特殊夹具隔开,例如专利CN94477898B;也有少数机构和个人开始研发卷对卷石墨烯的CVD设备和工艺,但是其质量或效率还是远没达到应用的要求。后者比较典型的有日本索尼公司开发的卷对卷石墨烯制备设备,采用电加热衬底的方法制备石墨烯。因加热方式及均匀性问题等原因,只能制备不连续的石墨烯。美国麻省理工学院开发的卷对卷设备通过将金属箔带缠绕在石英管上来提高加热效率,从而实现快速生长,但是石墨烯的质量依然很不理想。国内也有类似专利,例如97201405A、CN92976318B、CN93305806B等。更为突出的是,在石墨烯的生长过程中,氢气和含碳气体的浓度往往远高于爆炸限。
技术问题:
相关技术中,卷对卷设备仍然必须是一个工作在低压和常压下的封闭系统,生产完一卷后必须停工换卷,生产效率依旧有限,无法实现大气下开放式的石墨烯连续生产,更不要说与石墨烯终端产品生产线集成。
技术解决方案:
本申请的目的在于克服现有技术中所述的缺陷,从而提供一种开放式连续生长碳纳米材料的设备及方法,该设备不仅可以连续大规模地生长高质量大面积的碳纳米材料,实现真正每天24小时连续不间断生长,极大地提高生产效率,而且还能集成到应用产品的生产线上,减少中间过程对碳纳米材料的破坏,提高成品率;该方法将碳纳米材料从生长到加工直至终端产品制备形成连续的生产线,无需在密封的空间即可连续生产,生产效率高。
为了实现上述目的,本申请提供如下技术方案:
一种开放式连续生长碳纳米材料的设备,包括均处于开放气体中的金属箔带进料系统、CVD系统和收集系统;所述金属箔带进料系统用于将金属箔带从大气中传送至所述CVD系统;所述CVD系统用于反应生成碳纳米材料,所述金属箔带在所述CVD系统内附着碳纳米材料后进入所述收集系统;
其中,所述CVD系统包括CVD炉和控制系统,所述CVD炉与所述控制系统信号连接,所述CVD炉的进出口处分别密封耦合有一个狭缝耦合器,所述狭缝耦合器的轴向上至少设有一条一端连通于所述CVD炉、另一端开放于大气的狭缝,且两个所述狭缝耦合器上的各狭缝一一对应,所述金属箔带仅通过各对狭缝进出于所述CVD炉;
每个所述狭缝耦合器上均至少设有一条冷却回路,所述冷却回路由设于所述狭缝周边的冷却水进出管道组成,所述冷却水进出管道内通设冷却水以对狭缝耦合器进行冷却;
每个所述狭缝耦合器上还均设有多条进气管道,每条所述进气管道的末端密封导通至所述CVD炉的不同部位,所述CVD系统所需的载体气体和反应气体通过所述进气管道通入所述CVD炉的各个部位,并使所述CVD炉内始终处于正压或微正压状态,所述进气管道构成向所述CVD炉提供所需的载体气体和反应气体的唯一通道;
所述狭缝耦合器上还开设有与所述狭缝相连通的保护气注入口,所述CVD系统所需的保护气体通过所述保护气注入口直接通导到所述狭缝耦合器的狭缝中;所述CVD系统内部产生的尾气通过两端的狭缝排出,并在所述狭缝中与所述保护气混合后由所述狭缝的开放端喷出,所述尾气和保护气向所述狭缝外部喷发的作用,使所有所述狭缝始终保持动态密封,避免空气通过所述狭缝泄露或渗透到所述CVD炉内。
可选地:每个所述狭缝耦合器均设有多条狭缝,且两个所述狭缝耦合器上的各狭缝一一对应。
可选地:所述CVD系统内还设有在线质量监测反馈装置,所述在线质量监测反馈装置与所述控制系统信号连接,所述在线质量监测反馈装置用以在线监测所述金属箔带通过所述CVD系统生成碳纳米材料的状况,并将信号反馈至所述控制系统,所述控制系统根据所述信号控制所述CVD炉内碳纳米材料的生长条件。
可选地:所述CVD系统设于通风橱内,所述通风橱的排气管与尾气处理单元相连接,且所述通风橱的排气量远大于所述CVD系统中各气体的排出总量。
进一步地:所述控制系统内设有安全监测控制子系统,所述安全监测控制子系统控制所述载体气体、反应气体和保护气体的流量,通过调控所述载体气体和保护气体的流量将从所述狭缝中排出的可燃可爆气体浓度降低到爆炸限以下;所述通风橱的排气管中设有气流传感器,所述气流传感器与所述安全监测控制子系统信号连接,用于监测所述CVD炉内排出到所述通风橱内气流的大小,当所述通风橱内的气流达不到安全阈值或者在运行过程中气流降低到安全阈值以下时,所述气流传感器向所述安全监测控制系统发送信号,所述安全监测控制系统接收所述信号后强制切断所述CVD炉的加热电源以及所述进气管道内载体气体和反应气体的输送并发出警报;
所述CVD系统内还设置有气体浓度传感器,所述气体浓度传感器与所述安全监测控制子系统信号连接,用于监测所述所述CVD炉从狭缝排出的可燃可爆气体浓度;当所述气体浓度传感器检测到所述可燃可爆气体的浓度接近于爆炸下限时,向所述安全监测控制子系统发送危险信号,所述安全监测控制子系统接受所述危险信号后强制切断所述可燃可爆气体的流量,同时关闭CVD系统的加热电源并报警;
所述通风橱所在的车间内还可以另外设置第二气体浓度传感器,所述第二气体浓度传感器与安全监测控制子系统信号连接,用于监测所述车间内可燃可爆气体、氧气以及一氧化碳的浓度,当所述第二气体浓度传感器检测到所述可燃可爆气体的浓度接近于爆炸下限时,氧气的浓度降低到警戒浓度或者一氧化碳浓度超标时,向所述安全监测控制子系统发送危险信号,所述安全监测控制子系统接受所述危险信号后强制切断所述可燃可爆气体甚至所述载体气体和保护气体的流量,同时关闭CVD系统的加热电源并报警。
可选地:所述金属箔带进料系统包括放料辊轮、驱动辊轮和导向辊轮;所述放料辊轮用于支撑所述金属箔带;所述驱动辊轮用于带动所述金属箔带前行;所述导向辊轮用于调整所述金属箔带的运动轨迹;所述收集系统内设有收料辊轮,所述收料辊轮用于将附着有碳纳米材料的金属箔带绕卷收集,所述放料辊轮、驱动辊轮、导向辊轮和收料辊轮分别与所述控制系统信号连接;
相邻的所述放料辊轮、驱动辊轮、导向辊轮和收料辊轮之间互为异步辊轮;且至少在所述金属箔带上设有一个应力感应器和/或在放料辊轮、驱动辊轮、导向辊轮和收料辊轮上设置一个扭矩感应器,所述应力感应器和/或所述扭矩感应器分别与所述控制系统信号连接,所述控制系统根据所述应力感应器和/或所述扭矩感应器传输的信号调控所述放料辊轮、驱动辊轮、导向辊轮和收料辊轮的转速及扭矩。
可选地:所述金属箔带卷进料系统还包括预处理系统,所述预处理系统设于所述金属箔带的运行轨迹上,用于对所述金属箔带进行清洗、抛光和/或涂覆表面催化剂;所述清洗包括但不局限于表面脱脂、去除杂质和去除氧化物;所述抛光包括但不局限于机械抛光、化学抛光或电解抛光中的一种或几种;所述涂覆表面催化剂的方式包括但不局限于物理涂覆、化学涂覆或电化学涂覆中的一种或几种。
可选地:所述CVD炉为具有封闭式进出口的高温加热炉,所述高温加热炉为多区段独立控制的一体炉,所述CVD炉内每个区段中至少设有一个温度传感器,所述温度传感器与所述控制系统信号连接,所述控制系统根据5 所述温度传感器传输的信号调控所述CVD炉内不同区段的温度以及升温或降温过程中的加热或冷却速率。
可选地:所述收集系统内还设有后处理系统,所述后处理系统设于所述第二狭缝耦合器与所述收料辊轮之间。
一种采用所述设备开放式连续生长石墨烯的方法,包括以下步骤:
将金属箔带置入所述金属箔带进料系统中,在所述金属箔带进料系统的传动作用下连续输送至所述CVD系统中,根据不同特性石墨烯的需要向所述CVD系统内通入氩气或氮气作为所述CVD炉的载体气体和保护气体,并向所述CVD系统内通入氢气以及至少一种含碳气体作为所述CVD炉的反应气体,同时控制所述CVD炉的生长温度至500-1200℃;待所述金属箔带表面生成所述石墨烯后传送至收集系统进行输出,即可。
一种采用所述设备开放式连续生长碳纳米管的方法,包括以下步骤:
将涂覆有催化剂的金属箔带通过所述金属箔带进料系统连续输送至所述CVD系统中,根据不同特性碳纳米管的需要向所述CVD系统内通入氩气或氮气作为所述CVD炉的载体气体和保护气体,并向所述CVD系统内通入氢气以及至少一种含碳气体作为所述CVD炉的反应气体,同时控制所述CVD炉的生长温度至400-1000℃;待所述金属箔带表面生成所述碳纳米管后传送至收集系统进行输出,即可;
其中所述催化剂为由铁、钴、镍中的一种或几种构成的纳米薄膜或纳米颗粒,或者其氧化物、盐类的纳米薄膜或纳米颗粒;所述催化剂可通过所述预处理系统对金属箔带进行预处理实现,所述预处理包括直接在金属箔带的表面涂覆催化剂,或者先在金属箔带表面涂覆过渡层、然后涂覆催化剂的步骤。
有益效果:
与现有技术相比,本申请具有以下有益效果:
(1)本申请的狭缝耦合器能与CVD炉实现可靠的密封耦合,形成一个整体,其中狭缝耦合器同时起到对金属箔带的导向作用、对空气的阻隔作用以及冷却作用,CVD炉所用的载体气体和反应气体只能经由狭缝耦合器上的进气管道通导到CVD炉内不同的部位,保护气体直接填充到每个狭缝中,当CVD炉内的气体溢满为正压或微正压时,所产生的尾气在狭缝中与保护气体混合后最终都经由 CVD 炉两端狭缝耦合器的狭缝高速喷发至外界,当然考虑到环境保护因素,可以将 CVD 系统设置于通风橱内,尾气排放至通风橱后,再经由通风橱的排气装置进行排放,正是由于尾气和保护气体向所述狭缝外部喷发的作用,使得所述狭缝始终保持动态密封,避免空气通过所述狭缝泄露或渗透到所述CVD炉内,因此金属箔带进料系统、CVD系统和收集系统完全可以置于大气中无需与空气隔绝,从而实现通过金属箔带进料系统连续不断地向CVD系统进料,收集系统可以毫无间断的将制成的碳纳米材料形成成品出库,最终实现真正每天24小时连续不间断生长,极大地提高产品的生产效率,减少因中间过程导致的对产品的破坏,进一步提高成品率;
(2)本申请还设有分别与控制系统信号连接的在线质量监测反馈系统和安全监测子系统,可最大限度保障人身、财产安全,其中在线质量监测反馈系统的质检结果可以反馈给控制系统,从而自动调节各种气体的流量和配比、CVD炉内的温度,以实现碳纳米材料质量的最优控制;安全监测子系统一方面根据安装于CVD系统内的气体浓度传感器发送的信号将氢气和含碳气体等可燃可爆气体由载体气体及保护气体稀释到其浓度低于爆炸限。通过流量监测反馈,当载体气体的流量不足以将可燃可爆气体稀释到爆炸限以下时拒绝启动CVD炉;或者在运行过程中当载体气体的流量异常时自动关闭CVD炉的加热电源、切断可燃气体的流量并报警。另一方面,所有排出的气体经由通风橱排气管排放到尾气处理单元,排气管中安装有气流传感器,当气流达不到安全阈值时不能启动CVD炉;或者在运行过程中当气流降低到安全阈值以下时强制关闭 CVD 炉的电源,切断可燃性气体的流量并报警。此外,当冷却水流量异常降低,室内可燃可爆气体的浓度异常增加时,或者氧气含量异常降低时,或者检测到一氧化碳达到的危险浓度时,也会关闭CVD炉的加热电源、切断可燃可爆气体甚至载体气体和保护气体的流量并报警。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本申请一个实施例的结构示意图;
图2为本申请中一个实施例的 CVD 系统的局部示意图;
图3为采用本申请实施例二制备的石墨烯连同铜箔带的拉曼谱;
图4为由实施例二制备的石墨烯连同铜箔带的电子显微照片;
图5为由实施例二制备的石墨烯转移到300nm SiO2/Si 上的光学显微照片;
图6为由实施例二制备的石墨烯转移到300nm SiO2/Si上的拉曼谱;
图7为实施例三在镍箔带上生长的连续多层石墨烯的拉曼谱;
图8为实施例四在铝箔带上双面生长的碳纳米管的电子显微照片。
附图标号说明:
I、金属箔带放料系统;II、CVD系统;III、收集系统;
1、放料辊轮;2、金属箔带;3、导向辊轮或驱动辊轮;4、通风橱;5、狭缝耦合器;6、CVD炉;7、通风橱排气管;8、气流传感器;9、在线质量监测反馈系统;10、收料辊轮;11、预处理系统;12、狭缝;13、进气管道;14、冷却水管道;15、保护气注入口;16、后处理系统。
本申请的实施方式
下面将结合附图对本申请的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
此外,下面所描述的本申请不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
实施例一
如图1所示,本申请提供了一种开放式连续生长碳纳米材料的设备,包括均处于开放气体中的金属箔带进料系统I、CVD系统II和收集系统III;金属箔带进料系统I用于将金属箔带2从大气中传送至CVD系统II;CVD系统II用于反应生成碳纳米材料,金属箔带2在CVD系统II内附着碳纳米材料后进入收集系统III;其中,CVD系统II包括CVD炉6和控制系统(未在图中示出),CVD炉6与控制系统信号连接,CVD炉6的进出口处分别密封耦合有一个的狭缝耦合器5,每个狭缝耦合器5的轴向上至少设有一条一端连通于CVD炉6、另一端开放于大气的狭缝12,且两个狭缝耦合器5上的各狭缝12一一对应,金属箔带2仅通过各对狭缝12进出于所述CVD炉6;每个狭缝耦合器5上均设有冷却回路,冷却回路由设于所述狭缝12周边的冷却水进出管道14组成,所述冷却水进出管道14内通设冷却水以对狭缝耦合器5进行冷却;每个狭缝耦合器5上还均设有多条进气管道13,每条进气管道13的末端密封导通至CVD炉6的不同部位,CVD系统II所需的载体气体和反应气体通过进气管道13通入CVD炉6的各个部位,并使CVD炉6内始终处于正压或微正压状态,进气管道13构成向CVD炉6提供所需的载体气体和反应气体的唯一通道;狭缝耦合器5上还开设有与狭缝12相连通的保护气注入口15,CVD系统II所需的保护气体通过保护气注入口15直接通导到狭缝耦合器5的狭缝中;CVD系统II内部产生的尾气通过两端的狭缝12排出,并在狭缝12中与保护气混合后由狭缝12的开放端喷出,尾气和保护气向狭缝12外部喷发的作用,使所有狭缝12始终保持动态密封,避免空气通过狭缝12泄露或渗透到所述CVD炉6内。
本申请的狭缝耦合器5能与CVD炉6实现可靠的密封耦合,形成一个整体,其中狭缝耦合器5同时起到对金属箔带2的导向作用、对空气的阻隔作用以及冷却作用,CVD炉6所用的载体气体和反应气体只能经由狭缝耦合器5上的进气管道13通导到CVD炉6内不同的部位,保护气体直接填充到每个狭缝12的开放端,当CVD炉6内的气体溢满为正压或微正压时,所产生的尾气在狭缝中与保护气体混合后最终都经由CVD炉6两端狭缝耦合器5的狭缝12高速喷发至大气中,当然考虑到环境保护因素,可以将CVD系统II设置于通风橱4内,尾气排放至通风橱4后,再经由通风橱4的排气装置通导到尾气处理单元,在尾气处理单元进行无害化处理后排放至大气中,正是由于尾气和保护气体向所述狭缝12外部喷发的作用力,使得所述狭缝12始终保持动态密封,避免空气通过狭缝12泄露或渗透到CVD炉6内,因此金属箔带进料系统I、CVD系统II和收集系统III完全可以置于大气中无需与空气隔绝从而实现通过金属箔带进料系统I连续不断的向CVD系统II进料,收集系统III可以毫无间断的将制成的碳纳米材料形成成品出库,最终实现真正每天24小时连续不间断生长,极大地提高碳纳米材料的生产效率,减少因中间过程导致的对碳纳米材料的破坏,进一步提高成品率。
在本实施例中,金属箔带进料系统I包括放料辊轮1、驱动辊轮3和导向辊轮3;放料辊轮1用于支撑成卷的金属箔带2,驱动辊轮3用于带动金属箔带2前行;导向辊轮3用于调整金属箔带2的运动轨迹;当然金属箔带进料系统I还可以包括预处理系统11,预处理系统11可设于金属箔带2的运行轨迹上,用于对金属箔带2进行清洗、抛光和/或涂覆表面催化剂。其中,清洗包括但不局限于表面脱脂、去杂质和去氧化物等;抛光包括但不局限于机械抛光、化学抛光、电解抛光及其综合抛光;催化剂涂覆包括但不局限于物理涂覆、化学涂覆、电化学涂覆及其综合涂覆。本申请优选采用集成预处理系统11的金属箔带进料系统I,从而进一步提高所制备碳纳米材料产品的质量或进一步降低成本。例如文献报道通过清洗和抛光,可显著提高铜箔带上所制备的石墨烯的质量。
在本申请中金属箔带2是指能够卷绕,厚度从微米级到毫米级,宽度从毫米级到米级,长度从米级到千米级甚至无穷长(人工或自动将有限长度的箔带焊接起来)。金属包括但不局限于铝、铜、铁、钴、镍及其合金或涂层。为降低成本或增强金属箔带的强度也可以通过在低成本金属箔带2例如铁箔带上电镀或化学镀一层铜膜或其他的金属薄膜的方法来制备所需的金属箔带。例如,由于在铜箔带上生长石墨烯的最佳温度接近铜的熔点,因此若用铜箔带卷对卷生长石墨烯,生长温度必须适当降低,否则铜箔带容易在生长的过程中拉断。但是通过清洗抛光铁箔带,在铁箔带表面通过化学涂覆或电化学涂覆一层铜膜,从而实现在最佳温度生长石墨烯。另外由于铁箔带的价格明显优于铜箔带,如果工艺控制合理,还有可能进一步降低成本。碳纳米材料包括但不局限于石墨烯和碳纳米管。石墨烯包括但不局限于不连续石墨烯、连续石墨烯,单层石墨烯、多层石墨烯及其混合物。碳纳米管包括但不局限于单壁碳纳米管、多壁碳纳米管及其混合物。碳纳米管可以是垂直于金属箔带2表面的碳纳米管阵列,也可以是杂乱取向的。
CVD系统II既可以是立式布局,也可是卧式布局,还可以是0-90º倾斜式布局。该系统整体或者局部安装在通风橱4中。当采用立式布局或倾斜式布局时,金属箔带2既可是从上到下,也可是从下到上的方式进出CVD炉6。本实施例优选立式布局。
为了保证金属箔带2传输的稳定性,可以在CVD系统II与金属箔带进料系统I之间单独设置导向辊轮3和驱动辊轮3,同时在CVD系统II与收集系统III之间也单独设置导向辊轮3和驱动辊轮3。由于热胀冷缩效应,金属箔带2在不同温度将产生大小不一的形变。为避免因热膨胀导致金属箔带2弯曲变形或因冷却导致金属箔带2收缩拉断,所有辊轮包括放料辊轮1、驱动辊轮3、导向辊轮3和设于收集系统III内的收料辊轮10均采用异步辊轮;并在CVD系统II中至少设有一个温度传感器(未在图中示出),在金属箔带2上至少设有一个应力感应器(未在图中示出),或者在放料辊轮1、驱动辊轮3、导向辊轮3和收料辊轮10上分别至少设置一个扭矩感应器(未在图中示出),温度传感器、应力感应器和/或扭矩传感器分别与控制系统信号连接,控制系统会根据应力感应器和或扭矩传感器实时反馈的信号调控各辊轮的扭矩,或者根据温度传感器传输的信号调控CVD炉6内不同区段的温度以及升温或降温过程中的加热或冷却速率,防止金属箔带2在所述CVD炉6内因高温膨胀而皱褶或下垂,因停机冷却收缩或扭矩过大而拉断。
其中CVD炉6可以是单区段独立控制的一体炉或者是具有多区段独立控制的一体炉,也可以是多个单区段独立控制CVD炉组成的组合炉,如果采用多个炉子,炉子与炉子之间采用密封管道连接。本实施例中的CVD炉6优选管式(石英管、刚玉管)高温加热炉,进一步优选多区段独立控制的石英管式高温加热一体炉,从而在不同区段实现金属箔带2的退火、碳纳米材料生长等等。具体情况取决于生产要求。以生长石墨烯为例,优选CVD炉6可以由金属箔带预热退火炉及生长炉两个炉子组成或者是可以分隔成至少两个独立区段的一体炉,各个区段内的气氛及温度独立可控,从而在不同区段分别实现预热退火及生长。
为进一步提高开放式连续生长碳纳米材料的生产效率,本申请采用在狭缝耦合器5上设置多个狭缝12的方案,其中两个相对设置的狭缝耦合器5上的狭缝12一一对应,保护气体直接通过保护气注入口15通导到每个狭缝12中。通过多条狭缝12可同时进出多条金属箔带2,从而在CVD炉6内在多条金属箔带2上同时实现碳纳米材料的生长,提高量产。只要有利于金属箔带2的导向、冷却和空气的阻隔,狭缝12的截面可以是但不局限于长方形、梯形或者其它更复杂的形状,例如横截面为齿状四边形,纵截面(与金属箔带运动方向一致)为沙漏形。
本申请所用的反应气体包括但不局限于氢气、含碳气体例如甲烷、乙烷、乙烯、乙炔、酒精(汽化)等及其混合气体。保护气体的种类与载体气体类似,可以选与载体气体相同的气体,也可选不同气体。载体气体和保护气体包括但不局限于氩气、氦气、氮气等及其混合气体。单从碳纳米材料的制备质量来考虑,载体气体和保护气体优选氩气;在兼顾成本的情况下优选由液氮汽化而来的氮气。含碳气体取决于制备何种碳纳米材料。例如,制备单层高质量连续石墨烯优选甲烷。低温沉积多层石墨烯优选乙炔或乙烯。
另外,本申请的CVD系统II内还设有在线质量监测反馈装置9,在线质量监测反馈装置9与控制系统信号连接,在线质量监测反馈装置9用以在线监测CVD炉6中金属箔带2的碳纳米材料的生长状况,并将质检结果反馈至控制系统,控制系统根据所述信号调节各种气体的流量和配比以及CVD炉6的温度,实现碳纳米材料质量的最优控制。
为确保安全同时维护环境,本申请将CVD系统II设置于通风橱4内,并将通风橱4的排气管与尾气处理单元(未在图中示出)连接,另外还在控制系统内设置安全监测控制子系统(未在图中示出),通过在CVD系统和车间内设置各种气流传感器、冷却水流量传感器、气体浓度传感器(未在图中示出)、在通风橱4内设置气流传感器8等,并将各种传感器与控制系统信号连接,安全监测控制子系统能够形成三道安全防护屏障:
首先,通过气体流量传感器(例如质量流量计)来控制通入CVD炉内的可燃可爆气体(氢气、甲烷等)、载体气体和保护气体的流量,并通过载体气体和保护气体的稀释作用,将CVD炉从狭缝排出的可燃可爆气体的浓度降低到爆炸限以下,形成第一道安全防护屏障;当载体气体的流量不足以将可燃可爆气体稀释到爆炸限以下时不能启动CVD炉6或者自动关闭正在运行的CVD炉6的加热电源、切断可燃气体的流量并报警。
其次,CVD系统内设置的可燃可爆气体浓度传感器、冷却水传感器和通风橱4形成第二道安全保障,CVD系统内设置的可燃可爆气体传感器用于监测CVD炉从狭缝排出的可燃可爆气体的浓度,通风橱4内的气流传感器8用于监测通风橱的排气量,通风橱4的排气量设计为远大于CVD系统中各种气体的排出总量,CVD系统所有排出的气体经通风橱4收集后由通风橱排气管7排放到尾气处理单元。当可燃可爆气体的浓度超标时、冷却水流量异常降低时、气流传感器8监测到气流达不到安全阈值时不能启动CVD炉6或者强制关闭已在运行CVD炉6的电源,切断可燃性气体的流量并报警。
最后,在通风橱所在车间内设置第二气体浓度传感器(未在图中示出)形成第三道安全屏障,第二气体浓度传感器用于监测车间的可燃可爆气体氧气以及一氧化碳的浓度等。当室内可燃可爆气体的浓度异常增加时,或者氧气含量异常降低时,或者监测到的一氧化碳达到危险浓度时,安全监测控制子系统也会关闭CVD炉6的加热电源、切断所有载体、保护气体和反应气体的流量并报警。具体地,如果出现氧气含量降低或一氧化碳增加,意味着前面的安全防护措施因某种原因失效,导致缺氧,通风橱4没有抽走所有气体,反而排放到车间了。因此要切断所有气体,防止氧气浓度进一步降低。至于与爆炸相关的问题,一般只切断可燃可爆气体的流量,通过继续排放保护气体和载体气体来进一步稀释残余可燃可爆气体。
最后,收集系统III用于将生长了碳纳米材料的金属箔带2不需经过任何后处理直接卷绕到收料辊轮10上,或者收集系统III中还可以设置后处理系统16,通过集成后处理系统16进行后处理甚至直接生产碳纳米材料终端产品,从而形成完整的包括碳纳米材料生长、加过、终端产品制备的连续生产线。该后处理包括将生长的碳纳米材料与金属箔带2分离并加工为终端产品,或者进一步加强碳纳米材料与金属箔带2表面的附着力。例如将石墨烯在后处理过程中与金属箔带2分离,并生产出基于石墨烯的电子器件,例如触摸屏、传感器等。而对于碳纳米管来说,可能需要通过后处理进行灌胶处理,将碳纳米管之间的缝隙填满并显著强化碳纳米管与金属箔带2的附着力。
实施例二
下面给出采用上述设备在铜箔带上生长单层、连续、高质量石墨烯薄膜的方法:
需要说明的是,该方法采用最简单的设备。金属箔带进料系统如图1所示,不包括预处理系统11。CVD系统II没有安装在线质量监测系统9,CVD炉6为立式单区段石英管式单体加热炉,石英管直径为25mm,每个狭缝耦合器只有一个狭缝12。收集系统III不包括后处理系统16。载体气体和保护气体都采用氩气,反应气体采用氢气和甲烷气,氢气和甲烷气的浓度被氩气稀释到爆炸限以下,当然甲烷也可以置换为乙烷、乙炔、乙烯、(汽化)酒精等等。如不作特别说明,所有气体都是高纯气,通过集中供气的方式由管道输送到设备间。气体的流量由质量流量计控制, CVD 炉 6 的温度由热电偶监测并通过具有PID功能电源调控。
具体实施步骤为:
1、打开通风橱4的工作电源,确保通风橱排气管7排中安装的气流传感器8的指示灯为绿色,表明流量足够大,远大于后面步骤中所提载体气体、保护气体及反应气体的总流量。
2、将购买的适于石墨烯生长的铜箔带卷(11mm宽,40µm厚,纯度99.98%)安装到放料辊轮1上,手动经导向辊轮3及驱动辊轮3由第一狭缝耦合器5上的狭缝12进入CVD炉6的石英管中,并由第二狭缝耦合器9上的狭缝12导出并卷绕到收集系统III的收料辊轮10上。
3、开通两个狭缝耦合器的冷却水,通过质量流量计将氩气以5-9slm的流量从狭缝耦合器通入到石英管中,同时将适量保护气体通入到两个狭缝耦合器的狭缝12中,所有气体从两端狭缝12排出,经由通风橱5排出到尾气处理系统。此过程持续3-5分钟。
4、打开石英管加热炉的电源,设定加热温度为900-1000℃之间,以20℃/min的加热速率升温,直到温度稳定并保持在设定加热温度。
5、通过质量流量计将氢气和甲烷气分别以80-150sccm和0.5-5sccm的速率与载体气混合后从狭缝耦合器通入到石英管中。
6、通入氢气和甲烷气大约20分钟后,开启放料辊轮1、收料辊轮10和所有导向辊轮及驱动辊轮3的电源,使铜箔带以5-9mm/min的速率通过CVD炉。
7、当放料辊轮1上的铜箔带将要用完时,可停止铜箔带输送的电源(包括放料辊轮1、收料滚辊轮10和所有驱动辊轮3、导向辊轮3),手动换上一卷新的原料铜箔带,并与即将用完的铜箔带焊接在一起。重新启动铜箔带输送的电源就可顺利将新的铜箔带顺利导入导出CVD系统II。此时可再次停止铜箔带输送的电源,将铜箔带在焊接处切断,取出已经生长了石墨烯的铜箔带卷,将新的铜箔带卷绕到新换上的收料辊轮10上,并再次启动铜箔带输送电源。将来这个过程可实现自动化。
8、如果重复过程7,可实现24小时连续生长(换料时会有短时停顿)。
9、需要停止石墨烯生长时,首先停止铜箔带的输送电源,然后关闭甲烷气体,关闭CVD炉6的加热电源。当CVD炉6的温度降低到室温后,关闭狭缝耦合器上的冷却水,关闭氢气、所有载体气体和保护气体。最后关闭通风橱4的电源。
10、取出已经生长有石墨烯的铜箔卷,并剪下一段用于表征。表征结果见图3-6,由图3可以看出位于2700cm -1附近的2D峰的强度达1590cm -1附近的G峰的2倍左右,另外不能明显观察到1350cm -1左右的D峰,表明所制备的石墨烯是较高质量的单层石墨烯;由图4观测表明石墨烯是连续的单层石墨烯;由图5可以看出所制备的石墨烯是均匀连续的单层石墨烯;由图6可以看出所制得的石墨烯的确是较高质量的单层石墨烯;表明所制备的是较单层、连续、高质量的石墨烯。
实施例三
本实施例采用实施例一所述的设备在镍箔带上生长多层连续石墨烯薄膜,与实施例二不同之处在于:
1、金属箔带2采用镍箔带(11mm宽,25µm厚,纯度99.9%)。
2、镍箔带的输送速度为300-600mm/min。
3、生长设定温度范围为500-900℃,优选750-900℃,温度越高,生长速度越快,镍箔带的输送速度越快。输送速度一样的情况下,镍箔带输送速度越慢,石墨烯的层数越多;或者在镍箔带输送速度不变的情况下,温度越高,石墨烯的层数越多。
4、激光拉曼表征结果见图7,由图7可以看出2D峰的强度低于G峰,表明所制备的石墨烯是多层石墨烯。
实施例四
本实施例采用实施例一所述的设备外加金属箔带预处理系统,在金属铝箔带上生长碳纳米管阵列,与实施例二不同之处在于:
1、本实施案例通过增加预处理系统11来给金属铝箔2带表面涂附一层催化剂。该催化剂可以为由铁、钴、镍中的一种或几种构成的纳米薄膜或纳米颗粒,或者其氧化物、盐类的纳米薄膜或纳米颗粒,在本实施例中以氯化亚铁为例,具体实施方式是在放料辊轮1与CVD系统II之间增加一个氯化亚铁溶液池,池内预先配好一定浓度的氯化亚铁,其浓度由液体浓度传感器监控,当浓度降低时自动添加溶剂以保持浓度恒定。金属箔带2经由放料辊轮1,途径溶液池(浸入溶液池中);从溶液池出来后在行进过程中经干燥在金属铝箔带2表面形成一层氯化亚铁薄膜;氯化亚铁浓度的大小取决于所需生长碳纳米管的性能、金属铝箔带2行进的速度以及浸入溶液池中的总长度。由于金属铝箔带2的表面固有一层氧化铝钝化层,起到过渡层的作用,因此本实施案例不必在金属箔带2与催化剂之间涂敷过渡层。当然针对其它金属箔带根据需要还可以在涂附催化剂之前,先在金属箔带2表面涂附过渡层,过渡层在碳纳米管生长过程中有助于防止催化剂与金属箔带反应,促进催化剂颗粒形成,增进催化剂颗粒的稳定性,从而促进碳纳米管生长;
2、根据要制备的碳纳米管的特性,向所述CVD系统II内通入的载体气体和保护气体均为氩气或氮气,所述CVD炉的反应气体为氢气以及至少一种含碳气体,例如甲烷、乙烷、乙炔、乙烯、(汽化)酒精等等,本实施例中以乙炔为例;CVD炉6的生长温度为580-600℃,其中氯化亚铁经高温还原性气体还原并形成铁纳米颗粒,并进一步与乙炔反应在铁纳米颗粒上形成碳纳米管,从而将所述金属箔带2在所述CVD系统II中生成碳纳米管阵列(如图8所示),之后通过所述收集系统III直接收集或加工为终端产品输出。
以上所述仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种开放式连续生长碳纳米材料的设备,其中,包括均处于开放气体中的金属箔带进料系统、CVD系统和收集系统;所述金属箔带进料系统用于将金属箔带从大气中传送至所述CVD 系统;所述CVD 系统用于反应生成碳纳米材料,所述金属箔带在所述CVD 系统内附着碳纳米材料后进入所述收集系统;
    其中,所述CVD系统包括CVD炉和控制系统,所述CVD炉与所述控制系统信号连接,所述CVD炉的进出口处分别密封耦合有一个狭缝耦合器,所述狭缝耦合器的轴向上至少设有一条一端连通于所述CVD 炉、另一端开放于大气的狭缝,且两个所述狭缝耦合器上的各狭缝一一对应,所述金属箔带仅通过各对狭缝进出于所述CVD炉;
    每个所述狭缝耦合器上均至少设有一条冷却回路,所述冷却回路由设于所述狭缝周边的冷却水进出管道组成,所述冷却水进出管道内通设冷却水以对狭缝耦合器进行冷却;
    每个所述狭缝耦合器上还均设有多条进气管道,每条所述进气管道的末端密封导通至所述CVD炉的不同部位,所述CVD系统所需的载体气体和反应气体通过所述进气管道通入所述CVD炉的各个部位,并使所述CVD炉内始终处于正压或微正压状态,所述进气管道构成向所述CVD炉提供所需的载体气体和反应气体的唯一通道;
    所述狭缝耦合器上还开设有与所述狭缝相连通的保护气注入口,所述CVD系统所需的保护气体通过所述保护气注入口直接通导到所述狭缝耦合器的狭缝中;所述CVD系统内部产生的尾气通过两端的狭缝排出,并在所述狭缝中与所述保护气混合后由所述狭缝的开放端喷出,所述尾气和保护气向所述狭缝外部喷发的作用,使所有所述狭缝始终保持动态密封,避免空气通过所述狭缝泄露或渗透到所述CVD炉内。
  2. 根据权利要求1所述的设备,其中,所述CVD系统内还设有在线质量监测反馈装置,所述在线质量监测反馈装置与所述控制系统信号连接,所述在线质量监测反馈装置用以在线监测所述金属箔带通过所述CVD系统生成碳纳米材料的状况,并将信号反馈至所述控制系统,所述控制系统根据所述信号控制所述CVD炉内碳纳米材料的生长条件。
  3. 根据权利要求1所述的设备,其中,所述CVD系统设于通风橱内,所述通风橱的排气管与尾气处理单元相连接,且所述通风橱的排气量远大于所述CVD系统中各气体的排出总量。
  4. 根据权利要求3所述的设备,其中,所述控制系统内设有安全监测控制子系统,所述安全监测控制子系统控制所述载体气体、反应气体和保护气体的流量,通过调控所述载体气体和保护气体的流量将从所述狭缝中排出的可燃可爆气体浓度降低到爆炸限以下;所述通风橱的排气管中设有气流传感器,所述气流传感器与所述安全监测控制子系统信号连接,用于监测所述CVD炉内排出到所述通风橱内气流的大小,当所述通风橱内的气流达不到安全阈值或者在运行过程中气流降低到安全阈值以下时,所述气流传感器向所述安全监测控制系统发送信号,所述安全监测控制系统接收所述信号后强制切断所述CVD炉的加热电源以及所述进气管道内载体气体和反应气体的输送并发出警报;
    所述CVD系统内还设置有气体浓度传感器,所述气体浓度传感器与所述安全监测控制子系统信号连接,用于监测所述CVD炉从狭缝排出的可燃可爆气体浓度;当所述气体浓度传感器检测到所述可燃可爆气体的浓度接近于爆炸下限时,向所述安全监测控制子系统发送危险信号,所述安全监测控制子系统接受所述危险信号后强制切断所述可燃可爆气体的流量,同时关闭CVD系统的加热电源并报警;
    所述通风橱所在的车间内还可以另外设置第二气体浓度传感器,所述第二气体浓度传感器与安全监测控制子系统信号连接,用于监测所述车间内可燃可爆气体、氧气以及一氧化碳的浓度,当所述第二气体浓度传感器检测到所述可燃可爆气体的浓度接近于爆炸下限时,氧气浓度降低到警戒浓度或者一氧化碳浓度超标时,向所述安全监测控制子系统发送危险信号,所述安全监测控制子系统接受所述危险信号后强制切断所述可燃可爆气体甚至所述载体气体和保护气体的流量,同时关闭CVD系统的加热电源并报警。
  5. 根据权利要求1所述的设备,其中,所述金属箔带进料系统包括放料辊轮、驱动辊轮和导向辊轮;所述放料辊轮用于支撑所述金属箔带;所述驱动辊轮用于带动所述金属箔带前行;所述导向辊轮用于调整所述金属箔带的运动轨迹;所述收集系统内设有收料辊轮,所述收料辊轮用于将附着有碳纳米材料的金属箔带绕卷收集,所述放料辊轮、驱动辊轮、导向辊轮和收料辊轮分别与所述控制系统信号连接;
    相邻的所述放料辊轮、驱动辊轮、导向辊轮和收料辊轮之间互为异步辊轮;且至少在所述金属箔带上设有一个应力感应器和/或在放料辊轮、驱动辊轮、导向辊轮和收料辊轮上设置一个扭矩感应器,所述应力感应器和/或所述扭矩感应器分别与所述控制系统信号连接,所述控制系统根据所述应力感应器和/或所述扭矩感应器传输的信号调控所述放料辊轮、驱动辊轮、导向辊轮和收料辊轮的转速及扭矩。
  6. 根据权利要求1所述的设备,其中,所述金属箔带进料系统还包括预处理系统,所述预处理系统设于所述金属箔带的运行轨迹上,用于对所述金属箔带进行清洗、抛光和/或涂覆表面催化剂;所述清洗包括但不局限于表面脱脂、去除杂质和去除氧化物;所述抛光包括但不局限于机械抛光、化学抛光或电解抛光中的一种或几种;所述涂覆表面催化剂的方式包括但不局限于物理涂覆、化学涂覆或电化学涂覆中的一种或几种。
  7. 根据权利要求5所述的设备,其中,所述金属箔带进料系统还包括预处理系统,所述预处理系统设于所述金属箔带的运行轨迹上,用于对所述金属箔带进行清洗、抛光和/或涂覆表面催化剂;所述清洗包括但不局限于表面脱脂、去除杂质和去除氧化物;所述抛光包括但不局限于机械抛光、化学抛光或电解抛光中的一种或几种;所述涂覆表面催化剂的方式包括但不局限于物理涂覆、化学涂覆或电化学涂覆中的一种或几种。
  8. 根据权利要求1所述的设备,其中,所述CVD炉为具有封闭式进出口的高温加热炉,所述高温加热炉为多区段独立控制的一体炉,所述CVD炉内每个区段中至少设有一个温度传感器,所述温度传感器与所述控制系统信号连接,所述控制系统根据所述温度传感器传输的信号调控所述CVD炉内不同区段的温度以及升温或降温过程中的加热或冷却速率。
  9. 根据权利要求1所述的设备,其中,所述收集系统内还设有后处理系统,所述后处理系统设于所述第二狭缝耦合器与所述收料辊轮之间。
  10. 一种采用如权利要求1所述设备制备石墨烯的方法,其中,包括以下步骤:
    将金属箔带置入所述金属箔带进料系统中,在所述金属箔带进料系统的传动作用下连续输送至所述CVD系统中,根据不同特性石墨烯的需要向所述CVD系统内通入氩气或氮气作为所述CVD炉的载体气体和保护气体,并向所述CVD系统内通入氢气以及至少一种含碳气体作为所述CVD炉的反应气体,同时控制所述CVD炉的生长温度至500-1200℃;待所述金属箔带表面生成所述石墨烯后传送至收集系统进行输出,即可。
  11. 根据权利要求10所述的设备制备石墨烯的方法,其中,所述CVD系统内还设有在线质量监测反馈装置,所述在线质量监测反馈装置与所述控制系统信号连接,所述在线质量监测反馈装置用以在线监测所述金属箔带通过所述CVD系统生成碳纳米材料的状况,并将信号反馈至所述控制系统,所述控制系统根据所述信号控制所述CVD炉内碳纳米材料的生长条件。
  12. 根据权利要求10所述的设备制备石墨烯的方法,其中,所述CVD系统设于通风橱内,所述通风橱的排气管与尾气处理单元相连接,且所述通风橱的排气量远大于所述CVD系统中各气体的排出总量。
  13. 根据权利要求10所述的设备制备石墨烯的方法,其中,所述控制系统内设有安全监测控制子系统,所述安全监测控制子系统控制所述载体气体、反应气体和保护气体的流量,通过调控所述载体气体和保护气体的流量将从所述狭缝中排出的可燃可爆气体浓度降低到爆炸限以下;所述通风橱的排气管中设有气流传感器,所述气流传感器与所述安全监测控制子系统信号连接,用于监测所述CVD炉内排出到所述通风橱内气流的大小,当所述通风橱内的气流达不到安全阈值或者在运行过程中气流降低到安全阈值以下时,所述气流传感器向所述安全监测控制系统发送信号,所述安全监测控制系统接收所述信号后强制切断所述CVD炉的加热电源以及所述进气管道内载体气体和反应气体的输送并发出警报;
    所述CVD系统内还设置有气体浓度传感器,所述气体浓度传感器与所述安全监测控制子系统信号连接,用于监测所述CVD炉从狭缝排出的可燃可爆气体浓度;当所述气体浓度传感器检测到所述可燃可爆气体的浓度接近于爆炸下限时,向所述安全监测控制子系统发送危险信号,所述安全监测控制子系统接受所述危险信号后强制切断所述可燃可爆气体的流量,同时关闭CVD系统的加热电源并报警;
    所述通风橱所在的车间内还可以另外设置第二气体浓度传感器,所述第二气体浓度传感器与安全监测控制子系统信号连接,用于监测所述车间内可燃可爆气体、氧气以及一氧化碳的浓度,当所述第二气体浓度传感器检测到所述可燃可爆气体的浓度接近于爆炸下限时,氧气浓度降低到警戒浓度或者一氧化碳浓度超标时,向所述安全监测控制子系统发送危险信号,所述安全监测控制子系统接受所述危险信号后强制切断所述可燃可爆气体甚至所述载体气体和保护气体的流量,同时关闭CVD系统的加热电源并报警。
  14. 根据权利要求10所述的设备制备石墨烯的方法,其中,所述金属箔带进料系统包括放料辊轮、驱动辊轮和导向辊轮;所述放料辊轮用于支撑所述金属箔带;所述驱动辊轮用于带动所述金属箔带前行;所述导向辊轮用于调整所述金属箔带的运动轨迹;所述收集系统内设有收料辊轮,所述收料辊轮用于将附着有碳纳米材料的金属箔带绕卷收集,所述放料辊轮、驱动辊轮、导向辊轮和收料辊轮分别与所述控制系统信号连接;
    相邻的所述放料辊轮、驱动辊轮、导向辊轮和收料辊轮之间互为异步辊轮;且至少在所述金属箔带上设有一个应力感应器和/或在放料辊轮、驱动辊轮、导向辊轮和收料辊轮上设置一个扭矩感应器,所述应力感应器和/或所述扭矩感应器分别与所述控制系统信号连接,所述控制系统根据所述应力感应器和/或所述扭矩感应器传输的信号调控所述放料辊轮、驱动辊轮、导向辊轮和收料辊轮的转速及扭矩。
  15. 根据权利要求10所述的设备制备石墨烯的方法,其中,所述金属箔带进料系统还包括预处理系统,所述预处理系统设于所述金属箔带的运行轨迹上,用于对所述金属箔带进行清洗、抛光和/或涂覆表面催化剂;所述清洗包括但不局限于表面脱脂、去除杂质和去除氧化物;所述抛光包括但不局限于机械抛光、化学抛光或电解抛光中的一种或几种;所述涂覆表面催化剂的方式包括但不局限于物理涂覆、化学涂覆或电化学涂覆中的一种或几种。
  16. 根据权利要求10所述的设备制备石墨烯的方法,其中,所述CVD炉为具有封闭式进出口的高温加热炉,所述高温加热炉为多区段独立控制的一体炉,所述CVD炉内每个区段中至少设有一个温度传感器,所述温度传感器与所述控制系统信号连接,所述控制系统根据所述温度传感器传输的信号调控所述CVD炉内不同区段的温度以及升温或降温过程中的加热或冷却速率。
  17. 根据权利要求10所述的设备制备石墨烯的方法,其中,所述收集系统内还设有后处理系统,所述后处理系统设于所述第二狭缝耦合器与所述收料辊轮之间。
  18. 一种采用如权利要求6所述设备制备碳纳米管的方法,其中,包括以下步骤:
    将涂覆有催化剂的金属箔带通过所述金属箔带进料系统连续输送至所述CVD系统中,根据不同特性碳纳米管的需要向所述CVD系统内通入氩气或氮气作为所述CVD炉的载体气体和保护气体,并向所述CVD系统内通入氢气以及至少一种含碳气体作为所述CVD炉的反应气体,同时控制所述CVD炉的生长温度至400-1000℃;待所述金属箔带表面生成所述碳纳米管后传送至收集系统进行输出,即可;
    其中所述催化剂为由铁、钴、镍中的一种或几种构成的纳米薄膜或纳米颗粒,或者其氧化物、盐类的纳米薄膜或纳米颗粒;所述催化剂可通过所述预处理系统对金属箔带进行预处理实现,所述预处理包括直接在金属箔带的表面涂覆催化剂,或者先在金属箔带表面涂覆过渡层、然后涂覆催化剂的步骤。
  19. 根据权利要求18所述设备制备碳纳米管的方法,其中,所述CVD炉为具有封闭式进出口的高温加热炉,所述高温加热炉为多区段独立控制的一体炉,所述CVD炉内每个区段中至少设有一个温度传感器,所述温度传感器与所述控制系统信号连接,所述控制系统根据所述温度传感器传输的信号调控所述CVD炉内不同区段的温度以及升温或降温过程中的加热或冷却速率。
  20. 根据权利要求18所述设备制备碳纳米管的方法,其中,所述收集系统内还设有后处理系统,所述后处理系统设于所述第二狭缝耦合器与所述收料辊轮之间。
PCT/CN2019/121124 2018-10-19 2019-11-27 一种开放式连续生长碳纳米材料的设备及制备方法 WO2020078480A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021546443A JP7427683B2 (ja) 2018-10-19 2019-11-27 開放式炭素ナノ材料連続成長の装置および作製方法
US17/285,132 US11473192B2 (en) 2018-10-19 2019-11-27 Method for openly and continuously growing carbon nanomaterials
EP19874362.7A EP3896033A4 (en) 2018-10-19 2019-11-27 DEVICE FOR OPEN CONTINUOUS GROWTH OF CARBON NANOMATERIAL AND METHOD OF MANUFACTURE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811222119.8 2018-10-19
CN201811222119.8A CN109336096B (zh) 2018-10-19 2018-10-19 一种开放式连续生长碳纳米材料的设备及制备方法

Publications (1)

Publication Number Publication Date
WO2020078480A1 true WO2020078480A1 (zh) 2020-04-23

Family

ID=65310452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/121124 WO2020078480A1 (zh) 2018-10-19 2019-11-27 一种开放式连续生长碳纳米材料的设备及制备方法

Country Status (5)

Country Link
US (1) US11473192B2 (zh)
EP (1) EP3896033A4 (zh)
JP (1) JP7427683B2 (zh)
CN (1) CN109336096B (zh)
WO (1) WO2020078480A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114433627A (zh) * 2022-01-26 2022-05-06 重庆墨希科技有限公司 一种连续制备高导电石墨烯金属复合材料的方法及装置
CN116332160A (zh) * 2023-04-07 2023-06-27 重庆中润新材料股份有限公司 一种碳纳米管的合成装置及合成方法
CN114433627B (zh) * 2022-01-26 2024-05-17 重庆墨希科技有限公司 一种连续制备高导电石墨烯金属复合材料的方法及装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109336096B (zh) * 2018-10-19 2023-09-26 深圳市纳设智能装备有限公司 一种开放式连续生长碳纳米材料的设备及制备方法
CN109898054A (zh) * 2019-03-25 2019-06-18 杭州英希捷科技有限责任公司 一种基于碳纳米管阵列的新型芯片热界面材料的制备方法
CN109775690A (zh) * 2019-03-25 2019-05-21 杭州英希捷科技有限责任公司 一种连续制备碳纳米管阵列的方法
CN110629191A (zh) * 2019-11-01 2019-12-31 北京大学 一种石墨烯薄膜卷对卷生产装置及方法
CN115108546A (zh) * 2022-04-27 2022-09-27 东南大学 一种有机固废高聚物连续制备碳材料联产氢的系统和方法

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1201405A (zh) 1995-11-01 1998-12-09 旭化成工业株式会社 再活化钌催化剂的方法
CN1305806A (zh) 2001-01-04 2001-08-01 中国人民解放军军事医学科学院毒物药物研究所 难溶性药物的口服固体制剂
CN1477898A (zh) 2002-08-01 2004-02-25 知名弘 全指向性背面负载喇叭式扬声器
CN2723423Y (zh) * 2004-03-15 2005-09-07 西安交通大学 制备碳纳米管薄膜的等离子体增强光热化学气相沉积设备
CN1976318B (zh) 2005-11-30 2011-06-29 阿尔卡特公司 加权公平带宽分配系统
KR20110124041A (ko) * 2010-05-10 2011-11-16 삼성전자주식회사 탄소나노튜브 섬유의 연속 제조장치 및 제조방법
CN102732834A (zh) * 2012-06-18 2012-10-17 徐明生 一种制备二维纳米薄膜的设备
CN103466594A (zh) * 2013-08-27 2013-12-25 西北工业大学 一种控温cvd炉及采用控温cvd炉可控制备单壁碳纳米管的方法
CN103469308A (zh) * 2013-08-30 2013-12-25 中国科学院过程工程研究所 一种二维原子晶体材料、其连续化生产方法及生产线
US8828523B2 (en) * 2012-05-15 2014-09-09 Lg Electronics Inc. Method for manufacturing graphene using light and graphene manufactured using the same
CN207030958U (zh) * 2017-06-27 2018-02-23 山西中兴环能科技有限公司 一种连续化制备纳米碳材料的装置
CN108423660A (zh) * 2018-06-01 2018-08-21 常州华凯石墨烯应用科技有限公司 石墨烯加工装置
CN207918437U (zh) * 2018-01-31 2018-09-28 信阳学院 一种用于cvd连续制备石墨烯的设备
CN109336096A (zh) * 2018-10-19 2019-02-15 钟国仿 一种开放式连续生长碳纳米材料的设备及制备方法
CN209113493U (zh) * 2018-10-19 2019-07-16 深圳市纳设智能装备有限公司 一种开放式连续生长碳纳米材料的设备

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60024524T2 (de) * 1999-06-04 2006-08-31 Goodrich Corp. Verfahren und Vorrichtung zum Kühlen von einem CVI/CVD-Ofen
US7183228B1 (en) * 2001-11-01 2007-02-27 The Board Of Trustees Of The Leland Stanford Junior University Carbon nanotube growth
JP2004332093A (ja) 2003-05-08 2004-11-25 Hiroshi Ashida 連続cvd製造装置
US8709374B2 (en) * 2007-02-07 2014-04-29 Seldon Technologies, Llc Methods for the production of aligned carbon nanotubes and nanostructured material containing the same
US10886126B2 (en) * 2010-09-03 2021-01-05 The Regents Of The University Of Michigan Uniform multilayer graphene by chemical vapor deposition
EP2718228A1 (en) * 2011-06-13 2014-04-16 University of Dayton Receptor-catalyst growth process for carbon nanotubes
WO2013103886A1 (en) * 2012-01-06 2013-07-11 Ut-Battelle, Llc High quality large scale single and multilayer graphene production by chemical vapor deposition
US9085464B2 (en) * 2012-03-07 2015-07-21 Applied Nanostructured Solutions, Llc Resistance measurement system and method of using the same
CN102976318B (zh) 2012-12-21 2015-04-15 重庆墨希科技有限公司 卷对卷石墨烯制备设备
US9593019B2 (en) * 2013-03-15 2017-03-14 Guardian Industries Corp. Methods for low-temperature graphene precipitation onto glass, and associated articles/devices
WO2014208097A1 (ja) * 2013-06-27 2014-12-31 日本ゼオン株式会社 カーボンナノチューブの製造方法
CN103305806B (zh) 2013-06-28 2015-06-03 重庆墨希科技有限公司 一种高温下连续生长石墨烯的装置
US20150140211A1 (en) * 2013-11-19 2015-05-21 Cvd Equipment Corporation Scalable 2D-Film CVD Synthesis
CN104477898B (zh) 2014-12-12 2016-08-24 中国科学院重庆绿色智能技术研究院 一种卷状生长石墨烯的夹具以及卷状生长石墨烯制备方法
CN105329885B (zh) * 2015-11-26 2017-09-15 北京大学 一种cvd石墨烯向塑料基底卷对卷转移的方法及装置
WO2017143027A1 (en) * 2016-02-16 2017-08-24 Ohio University Roll-to-roll graplhene production, transfer of graphene, and substrate recovery
US10273574B2 (en) 2016-03-18 2019-04-30 Honda Motor Co., Ltd. Method for continuous production of high quality graphene
CN206607315U (zh) * 2017-04-19 2017-11-03 中国科学院物理研究所 多功能电感耦合等离子体增强化学气相沉积系统

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1201405A (zh) 1995-11-01 1998-12-09 旭化成工业株式会社 再活化钌催化剂的方法
CN1305806A (zh) 2001-01-04 2001-08-01 中国人民解放军军事医学科学院毒物药物研究所 难溶性药物的口服固体制剂
CN1477898A (zh) 2002-08-01 2004-02-25 知名弘 全指向性背面负载喇叭式扬声器
CN2723423Y (zh) * 2004-03-15 2005-09-07 西安交通大学 制备碳纳米管薄膜的等离子体增强光热化学气相沉积设备
CN1976318B (zh) 2005-11-30 2011-06-29 阿尔卡特公司 加权公平带宽分配系统
KR20110124041A (ko) * 2010-05-10 2011-11-16 삼성전자주식회사 탄소나노튜브 섬유의 연속 제조장치 및 제조방법
US8828523B2 (en) * 2012-05-15 2014-09-09 Lg Electronics Inc. Method for manufacturing graphene using light and graphene manufactured using the same
CN102732834A (zh) * 2012-06-18 2012-10-17 徐明生 一种制备二维纳米薄膜的设备
CN103466594A (zh) * 2013-08-27 2013-12-25 西北工业大学 一种控温cvd炉及采用控温cvd炉可控制备单壁碳纳米管的方法
CN103469308A (zh) * 2013-08-30 2013-12-25 中国科学院过程工程研究所 一种二维原子晶体材料、其连续化生产方法及生产线
CN207030958U (zh) * 2017-06-27 2018-02-23 山西中兴环能科技有限公司 一种连续化制备纳米碳材料的装置
CN207918437U (zh) * 2018-01-31 2018-09-28 信阳学院 一种用于cvd连续制备石墨烯的设备
CN108423660A (zh) * 2018-06-01 2018-08-21 常州华凯石墨烯应用科技有限公司 石墨烯加工装置
CN109336096A (zh) * 2018-10-19 2019-02-15 钟国仿 一种开放式连续生长碳纳米材料的设备及制备方法
CN209113493U (zh) * 2018-10-19 2019-07-16 深圳市纳设智能装备有限公司 一种开放式连续生长碳纳米材料的设备

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114433627A (zh) * 2022-01-26 2022-05-06 重庆墨希科技有限公司 一种连续制备高导电石墨烯金属复合材料的方法及装置
CN114433627B (zh) * 2022-01-26 2024-05-17 重庆墨希科技有限公司 一种连续制备高导电石墨烯金属复合材料的方法及装置
CN116332160A (zh) * 2023-04-07 2023-06-27 重庆中润新材料股份有限公司 一种碳纳米管的合成装置及合成方法
CN116332160B (zh) * 2023-04-07 2023-09-12 重庆中润新材料股份有限公司 一种碳纳米管的合成装置及合成方法

Also Published As

Publication number Publication date
JP7427683B2 (ja) 2024-02-05
CN109336096A (zh) 2019-02-15
CN109336096B (zh) 2023-09-26
EP3896033A1 (en) 2021-10-20
EP3896033A4 (en) 2023-03-29
US20210348268A1 (en) 2021-11-11
US11473192B2 (en) 2022-10-18
JP2022524301A (ja) 2022-05-02

Similar Documents

Publication Publication Date Title
WO2020078480A1 (zh) 一种开放式连续生长碳纳米材料的设备及制备方法
US9862604B2 (en) Boron nitride nanotubes and process for production thereof
TWI498206B (zh) 連續式合成碳薄膜或無機材料薄膜之設備與方法
Zhang et al. Preparation of few-layer graphene nanosheets by radio-frequency induction thermal plasma
JP6059089B2 (ja) カーボンナノファイバ集合体の製造方法及び製造装置、並びに導電線の製造方法及び製造装置
US9359207B2 (en) Augmented reactor for chemical vapor deposition of ultra-long carbon nanotubes
US8048485B2 (en) Method and apparatus for the production of carbon nanostructures
CN106957051B (zh) 一种超长单壁碳纳米管水平阵列、制备方法及反应装置
CN108408716B (zh) 碳纳米管制备系统
CN209113493U (zh) 一种开放式连续生长碳纳米材料的设备
KR101238450B1 (ko) 양면형 그래핀 제조장치 및 제조방법
JP5980327B2 (ja) ナノスケールで配向したカーボンナノチューブのためのシステムおよび方法
CN103469308A (zh) 一种二维原子晶体材料、其连续化生产方法及生产线
US20210309522A1 (en) Carbon nanotube composite assembled wire, heat-treated body of carbon nanotube composite assembled wire, method for manufacturing carbon nanotube composite assembled wire, and method for manufacturing heat-treated body of carbon nanotube composite assembled wire
JPWO2020078480A5 (zh)
CN204198848U (zh) 基于管式炉的卷对卷气相沉积装置
CN111014336A (zh) 一种生产高纯纳米级氧化亚铜包裹层杜美丝的放丝系统
TWM541472U (zh) 一種連續式成長大面積石墨烯透明導電膜之裝置
JPWO2020050140A1 (ja) カーボンナノチューブ複合体、その製造方法、及び、精製カーボンナノチューブの製造方法
TW201510249A (zh) 氧化矽的製造裝置及製造方法
KR20190016451A (ko) 탄소 나노 구조체 성장용 cvd 장치 및 탄소 나노 구조체의 제조 방법
JP2011184709A (ja) Cvd装置
JP5921400B2 (ja) カーボンナノチューブの製造装置
TW201617476A (zh) 合成高品質碳薄膜或無機材料薄膜之設備與方法
JPS63104671A (ja) 金属コ−テイング用ノズル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19874362

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021546443

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019874362

Country of ref document: EP

Effective date: 20210519