WO2020077790A1 - 变容压缩机运行模式判断方法、设备、变容压缩机及空调 - Google Patents

变容压缩机运行模式判断方法、设备、变容压缩机及空调 Download PDF

Info

Publication number
WO2020077790A1
WO2020077790A1 PCT/CN2018/121200 CN2018121200W WO2020077790A1 WO 2020077790 A1 WO2020077790 A1 WO 2020077790A1 CN 2018121200 W CN2018121200 W CN 2018121200W WO 2020077790 A1 WO2020077790 A1 WO 2020077790A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
operation mode
switching
mode
variable
Prior art date
Application number
PCT/CN2018/121200
Other languages
English (en)
French (fr)
Inventor
刘华
李龙飞
薛寒冬
倪毅
傅英胜
戎耀鹏
张仲秋
刘群波
许克
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Priority to JP2021519589A priority Critical patent/JP7165263B2/ja
Priority to KR1020217014283A priority patent/KR102547287B1/ko
Priority to US17/285,802 priority patent/US11808261B2/en
Priority to EP18937304.6A priority patent/EP3848647A4/en
Publication of WO2020077790A1 publication Critical patent/WO2020077790A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B51/00Testing machines, pumps, or pumping installations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B25/00Multi-stage pumps
    • F04B25/005Multi-stage pumps with two cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • F04B49/065Control using electricity and making use of computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/06Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for stopping, starting, idling or no-load operation
    • F04C28/065Capacity control using a multiplicity of units or pumping capacities, e.g. multiple chambers, individually switchable or controllable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/08Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by varying the rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/28Safety arrangements; Monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2203/00Motor parameters
    • F04B2203/02Motor parameters of rotating electric motors
    • F04B2203/0201Current
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2203/00Motor parameters
    • F04B2203/02Motor parameters of rotating electric motors
    • F04B2203/0204Frequency of the electric current
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B41/00Pumping installations or systems specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/05Speed
    • F04C2270/051Controlled or regulated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/07Electric current
    • F04C2270/075Controlled or regulated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/09Electric current frequency
    • F04C2270/095Controlled or regulated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/18Pressure
    • F04C2270/185Controlled or regulated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/02Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for several pumps connected in series or in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/10Kind or type
    • F05B2210/14Refrigerants with particular properties, e.g. HFC-134a

Definitions

  • the present disclosure relates to the field of compressors, and in particular, to a method, equipment, variable volume compressor, and air conditioner for judging the operation mode of a variable volume compressor.
  • variable volume compressor includes more than two cylinders, and its application has the following problems:
  • the compressor has only one rotor for compression, and the rotor rotation is an eccentric rotation.
  • the rotor force is constantly changing, so if you give the rotor a stable amount of driving force, The force of the compressor rotor is unstable, which will cause the compressor to shake greatly and cause the copper pipe to break, the noise is large, the service life is short, and the reliability is low.
  • you need to stabilize the force of the rotor you need to adjust the current according to the pressure of the compression chamber to balance the force of the rotor.
  • One of the purposes of the present disclosure is to propose a method and device for determining the operation mode of a variable-capacity compressor, a variable-capacity compressor, and an air conditioner, so as to improve the accuracy of determining whether the compressor operation mode is successfully switched.
  • the method for determining the operation mode of the variable-capacity compressor includes: before switching the operation mode of the compressor, detecting the current value of the current compressor as A1; switching the operation mode of the compressor, and reaching a preset After the time, the current value of the current compressor is detected as A2; compare A1 and A2, when the ratio relationship between A1 and A2 meets the preset condition, it is judged that the operation mode of the compressor is successfully switched; otherwise, it is judged that the operation mode of the compressor is switched failure.
  • the difference P0 between the discharge pressure P1 and the suction pressure P2 of the compressor is controlled within a first preset range, and then the current value of the current compressor is detected .
  • the discharge pressure P1 is increased by increasing the operating frequency of the compressor The difference P0 from the suction pressure P2.
  • the difference P0 between the discharge pressure P1 and the suction pressure P2 of the compressor is greater than the upper limit setting value of the first preset range, by reducing the operating frequency of the compressor, and / or, Opening the bypass mechanism of the compressor suction and discharge side to relieve pressure reduces the difference P0 between the compressor discharge pressure P1 and the suction pressure P2.
  • the operating frequency of the compressor is controlled within a second preset range, and then the current value of the current compressor is detected.
  • the operating frequency of the compressor is less than the lower limit setting value of the second preset range, the operating frequency of the compressor is increased, if the operating frequency of the compressor is greater than the upper limit setting value of the second preset range, Then reduce the operating frequency of the compressor.
  • the compressor includes at least two cylinders, at least one cylinder is in a working state; the switching of the compressor operating mode includes a first switching mode and a second switching mode; the first switching mode: the compressor increases the cylinder The operating mode switching of the body into the working state; the second switching mode: the compressor switches to the operating mode that reduces the cylinder into the working state.
  • A1 and A2 are compared, and when the compressor switches to the operating mode in which the cylinder is added to the working state, the relationship between A1 and A2 meets the preset condition A2 ⁇ m * A1, where m ⁇ 1, then It is judged that the compressor operation mode is successfully switched.
  • comparing A1 and A2 and when the compressor switches to the operating mode in which the cylinder is reduced to the working state, the relationship between A1 and A2 satisfies the preset condition A2 ⁇ A1 / m, where m ⁇ 1, then It is judged that the compressor operation mode is successfully switched.
  • the value range of m is [1.2, 2].
  • variable-capacity compressor operation mode judgment device for implementing the above-described variable-capacity compressor operation mode judgment method, which includes: a detection unit configured to switch the operation mode of the compressor , The current value of the current compressor is detected as A1; and it is configured to detect the current value of the current compressor as A2 after the operation mode of the compressor is switched and reaches the preset time; and the comparison judgment unit is configured to compare A1 and A2, when the ratio relationship between A1 and A2 satisfies the preset condition, it is judged that the operation mode switching of the compressor is successful; otherwise, it is judged that the operation mode switching of the compressor fails.
  • Some embodiments of the present disclosure provide a computer device, which includes a memory, a processor, and a computer program stored on the memory and executable on the processor.
  • the processor implements the program to achieve the variable volume compression described above Judgment method of machine operation mode.
  • Some embodiments of the present disclosure provide a storage device containing computer-executable instructions.
  • the storage device containing computer-executable instructions is executed by a computer processor, the storage device is used to perform the method for determining the operation mode of the variable displacement compressor described above.
  • variable capacity compressor that includes any of the aforementioned devices.
  • the method for determining the operation mode of a variable-capacity compressor it compares the ratio relationship between the current value before switching the compressor operation mode and the current value after switching the operation mode, and can accurately determine the operation mode switching of the compressor Whether it is successful; to effectively control the single-cylinder operation mode, the double-cylinder operation mode or the multi-cylinder operation mode of more than three cylinders, in order to achieve the purpose of optimizing the use of the compressor.
  • the compressor includes a single-cylinder compressor, the compressor includes a two-cylinder compressor, and the compressor includes a multi-cylinder compressor with three or more cylinders.
  • the volume of the cylinder in the compressor may be the same or different.
  • Each cylinder in the compressor can work independently.
  • the compressor in the present disclosure includes at least two cylinders, and at least one cylinder is in an operating state.
  • the working state of the cylinder means that the inner rotor performs gas compression work.
  • the non-working state of the cylinder means that the rotor does not compress gas for work.
  • the compressor in the present disclosure includes a double-cylinder compressor or a multi-cylinder compressor of more than three cylinders.
  • the operation mode of the compressor includes a single-cylinder operation mode, a two-cylinder operation mode, or an operation mode of more than three cylinders.
  • the compressor is in single-cylinder operating mode, indicating that only one cylinder is in working condition.
  • the compressor is in dual-cylinder operating mode, indicating that two cylinders are in working condition.
  • the compressor is in the operating mode of more than three cylinders, indicating that more than three cylinders are in working condition.
  • the compressor effective current will suddenly increase; if the compressor is switched from the double-cylinder operating mode to the single-cylinder operating mode, the compressor effective current will suddenly decrease.
  • Some embodiments provide a method for determining the operation mode of a variable-capacity compressor, which detects the current value of the current compressor as A1 before switching the operation mode of the compressor.
  • the present disclosure judges whether the switching of the compressor operating mode is successful according to the ratio relationship of current changes before and after the switching of the compressor operating mode, and the judgment result is more stable and more accurate.
  • the current value of the current compressor is A1.
  • the difference P0 of the compressor discharge pressure P1 and the suction pressure P2 is controlled within a preset range, It can accurately judge whether the operation mode of the compressor is successfully switched. Effectively control the single-cylinder operation mode, double-cylinder operation mode or multi-cylinder operation mode of more than three cylinders to achieve the purpose of optimizing the use of the compressor.
  • the current value of the current compressor is A1.
  • the operating frequency of the compressor is controlled within a second preset range, and then the current value of the current compressor is detected.
  • the difference P0 between the discharge pressure P1 and the suction pressure P2 of the compressor is controlled Within the preset range, and the operation frequency of the compressor is controlled within the preset range, it can accurately determine whether the operation mode of the compressor is successfully switched. Effectively control the single-cylinder operation mode, double-cylinder operation mode or multi-cylinder operation mode of more than three cylinders to achieve the purpose of optimizing the use of the compressor.
  • the compressor before comparing the currents or before switching the operation mode of the compressor, the compressor needs to be controlled to satisfy the difference P0 between the discharge pressure P1 and the suction pressure P2 within the first preset range, or the compressor is The difference P0 between the air pressure P1 and the suction pressure P2 is controlled within the first preset range, and the operating frequency of the compressor is within the second preset range. This is because:
  • the present disclosure controls the difference P0 between the discharge pressure P1 and the suction pressure P2 of the compressor to be within the first preset range before comparing the currents, so as to improve the accuracy of determining whether the compressor operation mode is successfully switched.
  • the present disclosure first controls the operating frequency of the compressor within a second preset range to improve the accuracy of determining whether the compressor operating mode is successfully switched.
  • the compressor needs to be controlled to meet two conditions, namely, the difference P0 between the discharge pressure P1 and the suction pressure P2 of the compressor is in the first preset range And the operating frequency of the compressor is within the second preset range to improve the accuracy of determining whether the compressor operating mode has been successfully switched.
  • the present disclosure performs switching under the condition that the difference between the discharge pressure P1 and the suction pressure P2 of the compressor and the operating frequency are stable, eliminating the influence of the frequency and the difference between the suction and discharge pressure on the compressor current, and ensuring accurate judgment Whether the compressor operation mode switch is successful.
  • the first preset range is [a, b], if P0 ⁇ a, the pressure difference is increased by increasing the compressor operating frequency; if P0> b, the compressor operating frequency is decreased, and / Or, reduce the difference P0 between the compressor discharge pressure P1 and the suction pressure P2 by opening the compressor suction and discharge side bypass mechanism to relieve pressure.
  • the first preset range is 20 Hz to 30 Hz.
  • the operating frequency K of the compressor is controlled within a second preset range.
  • the second preset range is between [x, y], if K ⁇ x, the operating frequency of the compressor is increased, and if K> y, the operating frequency of the compressor is reduced.
  • x represents the lower limit setting value of the second preset range
  • y represents the upper limit setting value of the second preset range.
  • the second preset range is 1 MPa to 2 MPa.
  • the compressor operating mode switching includes a first switching mode and a second switching mode.
  • the first switching mode the compressor switches to the operating mode in which the cylinder enters the working state
  • the second switching mode the compressor switches to the operating mode in which the cylinder enters the working state.
  • A1 and A2 are compared, and when the compressor switches to the operating mode in which the cylinder is added to the working state, the relationship between A1 and A2 meets the preset condition A2 ⁇ m * A1, where m ⁇ 1, then It is judged that the compressor operation mode is successfully switched.
  • comparing A1 and A2 and when the compressor switches to the operating mode in which the cylinder is reduced to the working state, the relationship between A1 and A2 satisfies the preset condition A2 ⁇ A1 / m, where m ⁇ 1, then It is judged that the compressor operation mode is successfully switched.
  • the value range of m is [1.2, 2].
  • the compressor is a two-cylinder compressor, which includes: a compressor suction pressure detection device, a compressor discharge pressure detection device, a first cylinder block, a second cylinder block, a single-dual cylinder switching mechanism, Compressor current detection device, compressor suction and discharge side bypass mechanism.
  • the volume of the first cylinder and the second cylinder are different.
  • the operation mode of the double-cylinder compressor includes a single-cylinder operation mode and a double-cylinder operation mode.
  • the difference value P0 of the compressor discharge pressure P1 and the suction pressure P2 is controlled between [a1, b1]. If P0 ⁇ a1, the difference value P0 is increased by increasing the compressor operating frequency. If P0> b1, the difference P0 is reduced by reducing the compressor operating frequency and opening the suction and discharge side bypass mechanism for pressure relief.
  • the operating frequency K of the compressor is controlled between [x1, y1]. If K ⁇ x1, the operating frequency of the compressor is increased, and if K> y1, the operating frequency of the compressor is reduced.
  • a1, b1, x1, and y1 are preset values, and specific values can be obtained through experiments.
  • the compressor current effective value A1 is detected, and then the single-cylinder operating mode is switched to the dual-cylinder operating mode, and the compressor current effective value A2 is detected after t seconds.
  • A2 ⁇ m * A1 it is determined that the compressor operating mode has been successfully switched.
  • m is mainly related to the ratio of the displacement of the single cylinder operation mode of the compressor and the displacement of the two cylinder operation of the compressor. The larger the ratio, the larger the value of m.
  • the value of m can be obtained according to the difference between the suction and discharge pressure of the compressor and the volume ratio of the large and small cylinders of the compressor. If A2 ⁇ m * A1, it is considered that the operation mode switching has failed.
  • the present disclosure judges whether the switching of the compressor operating mode is successful according to the multiple m of the current change before and after the switching of the compressor operating mode, and the judgment result is more stable and more accurate. For example: when the two cylinders are not equal, the current change caused by switching the operation mode under the condition of low frequency and low pressure difference is small, but the current change multiple before and after the operation mode switch is still greater than a certain preset value; It is reasonable to say that the current change caused by switching the operation mode under the condition of high frequency and high voltage difference will also make the current change multiple before and after the operation mode switch greater than a certain preset value.
  • the present disclosure judges whether the switching of the compressor operating mode is successful according to the multiple m of the current change before and after the switching of the compressor operating mode, including the situation of each frequency and each pressure difference.
  • the proportional value m has a linear relationship with the proportional value n.
  • the ratio n is the ratio of the discharge volume of the unloadable cylinder to the discharge volume of the entire compressor.
  • the difference P0 between the discharge pressure P1 and the suction pressure P2 is controlled between [a2, b2]. If P0 ⁇ a2, the difference P0 is increased by increasing the compressor operating frequency. If P0> b2, the difference P0 is reduced by reducing the operating frequency of the compressor and opening the suction and discharge side bypass mechanism for pressure relief. Similarly, before switching, the difference P0 between the discharge pressure P1 and the suction pressure P2 of the compressor is controlled within [a2, b2].
  • the operating frequency K of the compressor is controlled between [x2, y2]. If K ⁇ x2, the operating frequency of the compressor is increased, and if K> y2, the operating frequency of the compressor is reduced.
  • a2, b2, x2, and y2 are preset values, and specific values can be obtained through experiments.
  • A2 ⁇ A1 / m it is determined that the operation mode is successfully switched.
  • m is mainly related to the ratio of the displacement of the single cylinder operation mode of the compressor and the displacement of the two cylinder operation of the compressor. The greater this ratio, the greater the value of m.
  • the value of m can be obtained according to the difference between the suction and discharge pressure of the compressor and the volume ratio of the large and small cylinders of the compressor. If A2 ⁇ A1 / m, it is considered that the operation mode switching has failed.
  • Some embodiments provide a device that can perform the method in any of the above embodiments.
  • the device includes a variable capacity compressor operating mode judgment device, a computer device or a storage device containing computer executable instructions.
  • the device provided by some embodiments includes a variable capacity compressor operation mode judgment device.
  • the variable-capacity compressor operation mode judgment device includes a detection unit configured to detect the current value of the current compressor A1 before switching the compressor operation mode; and is configured to switch the compressor operation mode, and After reaching the preset time, the current value of the current compressor is detected as A2.
  • variable volume compressor operation mode judgment device includes a comparison judgment unit configured to compare A1 and A2. When the ratio relationship between A1 and A2 meets the preset condition, the operation mode of the compressor is judged to switch Success; otherwise, it is judged that the switching of the compressor's operating mode has failed.
  • variable volume compressor operation mode judgment device includes a control unit configured to control the difference P0 between the discharge pressure P1 and the suction pressure P2 of the compressor before switching the operation mode of the compressor Within the first preset range, the current value of the current compressor is detected as A1.
  • variable volume compressor operating mode judgment device includes a regulating unit, which is configured to control the operating frequency of the compressor within a second preset range before switching the operating mode of the compressor, and then detect the current The current value of the compressor is A1.
  • the devices provided by some embodiments include computer devices.
  • the computer device includes a memory, a processor, and a computer program stored on the memory and executable on the processor; when the processor executes the computer program, the method for determining the operation mode of the variable displacement compressor in any of the foregoing embodiments is implemented.
  • Some embodiments provide devices that include storage devices that contain computer-executable instructions.
  • the storage device containing computer-executable instructions is used to execute the method for determining the operation mode of the variable-capacity compressor in any of the foregoing embodiments when executed by a computer processor.
  • variable-capacity compressor which includes any of the foregoing devices, that is, includes a variable-capacity compressor operating mode judgment device, or, a computer device, or a storage device that contains computer-executable instructions.
  • Some embodiments provide an air conditioner, which includes any of the foregoing devices, that is, a variable capacity compressor operation mode determination device, or a computer device, or a storage device containing computer-executable instructions.
  • the above-mentioned compressor may be a variable-frequency variable-capacity compressor, a double-rotor compressor, a three-rotor compressor, or a three-rotor or more rotor compressor.
  • Each cylinder in the variable-frequency variable-capacity compressor may be an equal-volume cylinder or a large and small cylinder.

Abstract

一种变容压缩机运行模式判断方法、设备、变容压缩机及空调。其中,变容压缩机运行模式判断方法为在切换压缩机的运行模式前,检测当前压缩机的电流值为A1;切换压缩机的运行模式,且达到预设时间后,检测当前压缩机的电流值为A2;比较A1和A2,当A1和A2的比值关系满足预设条件,则判断压缩机的运行模式切换成功;否则,则判断压缩机的运行模式切换失败。这种判断方法对压缩机运行模式切换前、后的电流值的比值关系进行比较,能够准确判断压缩机的运行模式切换是否成功,以优化压缩机的使用方式。

Description

变容压缩机运行模式判断方法、设备、变容压缩机及空调
本申请是以CN申请号为201811219713.1,申请日为2018年10月19日的申请为 基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本申请中。
技术领域
本公开涉及压缩机领域,尤其涉及一种变容压缩机运行模式判断方法、设备、变容压缩机及空调。
背景技术
变容压缩机包括两个以上缸体,其应用存在以下问题:
单缸运行时,压缩机只有一个转子做压缩,转子转动属于偏心转动,压缩的过程中,因压缩腔压力变化,转子受力是时刻在改变的,所以如果给转子一个稳定大小的驱动力,压缩机转子受力是不稳定的,会使得压缩机抖动大而导致铜管断管、噪音大、使用寿命短、可靠性低。此时如需要稳定转子的受力,就需要根据压缩腔压力情况调整电流,使转子受力平衡。
双缸运行时,如果双转子对称排布,且两个缸体等容积,两转子对称运转,则受力对称,无需改变电流大小即可稳定运行,抖动小。
双缸运行时,如果两个缸体的容积不同,则压缩机同样会存在抖动大的问题。
因此,对于大小缸压缩机,其在单缸运行、双缸运行下,压缩机的排气量和电机效率不同,润滑系统控制等也不同,需要针对单缸运行、双缸运行的特点,分别进行控制,以达到压缩机最优使用方式。
针对大小缸压缩机的以上问题,需要准确判断压缩机单双缸切换是否成功,以便进行系统控制。
发明内容
本公开的其中一个目的是提出一种变容压缩机运行模式判断方法、设备、变容压缩机及空调,以提高判断压缩机运行模式切换是否成功的准确率。
依据本公开的一些实施例的一个方面,变容压缩机运行模式判断方法包括:切换压缩机的运行模式前,检测当前压缩机的电流值为A1;切换压缩机的运行模式,且达 到预设时间后,检测当前压缩机的电流值为A2;比较A1和A2,当A1和A2的比值关系满足预设条件,则判断压缩机的运行模式切换成功;否则,则判断压缩机的运行模式切换失败。
在一些实施例中,在切换压缩机的运行模式前,先将压缩机的排气压力P1与吸气压力P2的差值P0控制在第一预设范围内,再检测当前压缩机的电流值。
在一些实施例中,如果压缩机的排气压力P1与吸气压力P2的差值P0小于第一预设范围的下限设定值时,则通过提高压缩机运行频率的方式提高排气压力P1与吸气压力P2的差值P0。
在一些实施例中,如果压缩机的排气压力P1与吸气压力P2的差值P0大于第一预设范围的上限设定值时,则通过降低压缩机运行频率的方式,和/或,开启压缩机吸排气侧旁通机构进行泄压的方式降低压缩机排气压力P1与吸气压力P2的差值P0。
在一些实施例中,在切换压缩机的运行模式前,先将压缩机的运行频率控制在第二预设范围内,再检测当前压缩机的电流值。
在一些实施例中,如果压缩机的运行频率小于第二预设范围的下限设定值,则提高压缩机的运行频率,如果压缩机的运行频率大于第二预设范围的上限设定值,则降低压缩机的运行频率。
在一些实施例中,压缩机包括至少两个缸体,至少一个缸体处于工作状态;压缩机运行模式的切换包括第一切换方式和第二切换方式;第一切换方式:压缩机向增加缸体进入工作状态的运行模式切换;第二切换方式:压缩机向减少缸体进入工作状态的运行模式切换。
在一些实施例中,比较A1和A2,且当压缩机向增加缸体进入工作状态的运行模式切换时,A1和A2的关系满足预设条件A2≥m*A1,其中,m≥1,则判断为压缩机运行模式切换成功。
在一些实施例中,比较A1和A2,且当压缩机向减少缸体进入工作状态的运行模式切换时,A1和A2的关系满足预设条件A2≤A1/m,其中,m≥1,则判断为压缩机运行模式切换成功。
在一些实施例中,m的取值范围为[1.2,2]。
本公开的一些实施例提供了一种变容压缩机运行模式判断设备,用于实现上述的变容压缩机运行模式判断方法,其包括:检测单元,被配置为在切换压缩机的运行模式前,检测当前压缩机的电流值为A1;以及被配置为,在切换压缩机的运行模式,且 达到预设时间后,检测当前压缩机的电流值为A2;以及比较判断单元,被配置为比较A1和A2,当A1和A2的比值关系满足预设条件,则判断压缩机的运行模式切换成功;否则,则判断压缩机的运行模式切换失败。
本公开的一些实施例提供了一种计算机设备,其包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现上述的变容压缩机运行模式判断方法。
本公开的一些实施例提供了一种包含计算机可执行指令的存储设备,所述包含计算机可执行指令的存储设备在由计算机处理器执行时用于执行上述的变容压缩机运行模式判断方法。
本公开的一些实施例提供了一种变容压缩机,其包括任一上述的设备。
本公开的一些实施例提供了一种空调,其包括任一上述的设备
根据本公开的实施例的变容压缩机运行模式判断方法,其对压缩机运行模式切换前的电流值和运行模式切换后的电流值的比值关系进行比较,能够准确判断压缩机的运行模式切换是否成功;以对单缸运行模式、双缸运行模式或三缸以上的多缸运行模式有效控制,以达到优化压缩机使用方式的目的。
具体实施方式
下面对实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本公开的一部分实施例,而不是全部的实施例。基于本公开的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
压缩机包括一个缸体为单缸压缩机,压缩机包括两个缸体为双缸压缩机,压缩机包括三个以上缸体为三缸以上的多缸压缩机。压缩机中的缸体的容积可以相同也可以不同。压缩机中的各缸体均可以独立工作。
本公开中的压缩机包括至少两个缸体,且至少一个缸体处于工作状态。
需要说明的是,缸体处于工作状态是指:其内转子执行气体压缩做功过程。缸体处于非工作状态是指:其内转子不压缩气体做功。
本公开中的压缩机包括双缸压缩机或三缸以上的多缸压缩机。压缩机的运行模式包括单缸运行模式、双缸运行模式或三缸以上的运行模式。
压缩机处于单缸运行模式,表示只有一个缸体处于工作状态。
压缩机处于双缸运行模式,表示有两个缸体处于工作状态。
压缩机处于三缸以上的运行模式,表示有三个以上缸体处于工作状态。
压缩机运行模式切换时,因压缩机做功突然变化,压缩机电流会出现明显变化。
压缩机向增加缸体进入工作状态的运行模式切换时,压缩机有效电流会突然增大;压缩机向减少缸体进入工作状态的运行模式切换时,压缩机有效电流会突然减小。
例如:压缩机由单缸运行模式切换为双缸运行模式,则压缩机有效电流会突然增大;压缩机由双缸运行模式切换为单缸运行模式,则压缩机有效电流会突然减小。
一些实施例提供了一种变容压缩机运行模式判断方法,其在切换压缩机的运行模式前,检测当前压缩机的电流值为A1。
切换压缩机的运行模式,且达到预设时间后,检测当前压缩机的电流值为A2。
比较A1和A2,当A1和A2的比值关系满足预设条件,则判断压缩机的运行模式切换成功;否则,则判断压缩机的运行模式切换失败。
本公开根据压缩机运行模式切换前后电流变化的比值关系,判断压缩机运行模式的切换是否成功,判断结果更稳定,更准确。
一些实施例提供了一种变容压缩机运行模式判断方法,其在切换压缩机的运行模式前,先将压缩机的排气压力P1与吸气压力P2的差值P0控制在第一预设范围内。在一些实施例中,P0=P1-P2。
再检测当前压缩机的电流值,当前压缩机的电流值为A1。
切换压缩机的运行模式,且达到预设时间后,检测当前压缩机的电流值为A2。
比较A1和A2,当A1和A2的比值关系满足预设条件,则判断压缩机的运行模式切换成功;否则,则判断压缩机的运行模式切换失败。
在对压缩机运行模式切换前的电流值A1和运行模式切换后的电流值A2进行比较前,先将压缩机的排气压力P1与吸气压力P2的差值P0控制在预设范围内,能够准确判断压缩机的运行模式切换是否成功。针对单缸运行模式、双缸运行模式或三缸以上的多缸运行模式进行有效控制,以达到优化压缩机使用方式的目的。
在一些实施例中,在切换压缩机的运行模式前,先将压缩机的排气压力P1与吸气压力P2的差值P0控制在第一预设范围内。其中,P0=P1-P2。且将压缩机的运行频率K控制在第二预设范围内。
再检测当前压缩机的电流值,当前压缩机的电流值为A1。
切换压缩机的运行模式,且达到预设时间后,检测当前压缩机的电流值为A2。
比较A1和A2,当A1和A2的比值关系满足预设条件,则判断压缩机的运行模式切换成功;否则,则判断压缩机的运行模式切换失败。
在一些实施例中,在切换压缩机的运行模式前,先将压缩机的运行频率控制在第二预设范围内,再检测当前压缩机的电流值。
在一些实施例中,在对压缩机运行模式切换前的电流值A1和运行模式切换后的电流值A2进行比较前,先将压缩机的排气压力P1与吸气压力P2的差值P0控制在预设范围内,以及将压缩机的运行频率控制在预设范围内,能够准确判断压缩机的运行模式切换是否成功。对单缸运行模式、双缸运行模式或三缸以上的多缸运行模式进行有效控制,以达到优化压缩机使用方式的目的。
本公开在比较电流之前,或者切换压缩机的运行模式之前,需要控制压缩机满足排气压力P1与吸气压力P2的差值P0控制在第一预设范围内,或者,控制压缩机满足排气压力P1与吸气压力P2的差值P0控制在第一预设范围,且压缩机的运行频率在第二预设范围内。这是由于:
1)因节流阀开度增大、内机开启或吸排气间旁通管路(连通压缩机的高压端与低压端之间的管路,该管路设有开关阀)开启等,卸载吸排气压差,使压缩机的排气压力P1与吸气压力P2的差值P0迅速减小,压缩机电流值也会迅速变小(假设压缩机的运行频率不变),会误判断为压缩机的运行模式切换成功。因此,本公开在比较电流前,先控制压缩机的排气压力P1与吸气压力P2的差值P0在第一预设范围内,以提高判断压缩机运行模式是否切换成功的准确率。
2)如压缩机实际由单缸运行模式切换为双缸运行模式(电流增大),但同时吸排气间旁通管路开启,压缩机的排气压力P1与吸气压力P2的差值P0减小(压差减小使电流减小),压缩机电流可能无变化或变化很小,则误判为压缩机的运行模式切换失败。因此,本公开在比较电流前先控制压缩机的排气压力P1与吸气压力P2的差值P0在第一预设范围内,以提高判断压缩机运行模式是否切换成功的准确率。
3)当压缩机处于单缸运行模式时,压缩机的运行频率突然由5Hz升到10Hz,那么电流值会增大,则会易误判压缩机增加缸体处于工作状态的运行模式切换成功。同理,压缩机的运行频率由10Hz降为5Hz也是如此。因此,本公开在比较电流前,先控制压缩机的运行频率在第二预设范围内,以提高判断压缩机运行模式是否切换成功的准确率。
4)在内机开启或吸排气间旁通管路开启,且压缩机的运行频率减小的情况下, 电流减小更快,更易误判断双缸运行模式切换为单缸运行模式。则本公开在比较电流之前,或者在切换压缩机的运行模式之前,需要控制压缩机满足两个条件,即压缩机的排气压力P1与吸气压力P2的差值P0在第一预设范围内,以及压缩机的运行频率在第二预设范围内,以提高判断压缩机运行模式是否切换成功的准确率。
本公开在压缩机的排气压力P1与吸气压力P2的差值P0,以及运行频率都稳定的状态下进行切换,排除频率、吸排气压差对压缩机电流变化的影响,保证准确判断压缩机运行模式切换是否成功。
在一些实施例中,第一预设范围为[a,b],若P0<a,则通过提高压缩机运行频率的方式提高压差;若P0>b,则通过降低压缩机运行频率,和/或,开启压缩机吸排气侧旁通机构进行泄压的方式降低压缩机排气压力P1与吸气压力P2的差值P0。其中,a表示第一预设范围的下限设定值;b表示第一预设范围的上限设定值。
在一些实施例中,第一预设范围为20Hz~30Hz。
在一些实施例中,在检测当前压缩机的电流值A1前,将压缩机的运行频率K控制在第二预设范围内。
在一些实施例中,第二预设范围为[x,y]之间,若K<x,则提高压缩机的运行频率,若K>y,则降低压缩机的运行频率。其中,x表示第二预设范围的下限设定值;y表示第二预设范围的上限设定值。
在一些实施例中,第二预设范围为1MPa~2MPa。
在一些实施例中,压缩机运行模式切换包括第一切换方式和第二切换方式。第一切换方式:压缩机向增加缸体进入工作状态的运行模式切换;第二切换方式:压缩机向减少缸体进入工作状态的运行模式切换。
在一些实施例中,比较A1和A2,且当压缩机向增加缸体进入工作状态的运行模式切换时,A1和A2的关系满足预设条件A2≥m*A1,其中,m≥1,则判断为压缩机运行模式切换成功。
在一些实施例中,比较A1和A2,且当压缩机向减少缸体进入工作状态的运行模式切换时,A1和A2的关系满足预设条件A2≤A1/m,其中,m≥1,则判断为压缩机运行模式切换成功。
在一些实施例中,m的取值范围为[1.2,2]。
在一些具体实施例中,压缩机为双缸压缩机,其包括:压缩机吸气压力检测装置、压缩机排气压力检测装置、第一缸体、第二缸体、单双缸切换机构、压缩机电流检测 装置、压缩机吸排气侧旁通机构。第一缸体与第二缸体的容积大小不同。
双缸压缩机的运行模式包括单缸运行模式和双缸运行模式。
压缩机需要将单缸运行模式切换为双缸运行模式时:
将压缩机的排气压力P1与吸气压力P2的差值P0控制在[a1,b1]之间,若P0<a1,则通过提高压缩机运行频率等方式提高差值P0。若P0>b1,则通过降低压缩机运行频率和开启吸排气侧旁通机构进行泄压的方式降低差值P0。
将压缩机的运行频率K控制在[x1,y1]之间,若K<x1,则提高压缩机运行频率,若K>y1,则降低压缩机运行频率。
a1、b1、x1、y1为预先设定值,具体值可以通过实验取得。
系统达到上述条件后(同时满足上述两个条件),检测压缩机电流有效值A1,之后单缸运行模式切换为双缸运行模式,t秒后再检测压缩机电流有效值A2。
比较A1、A2,若A2≥m*A1,则判断为压缩机运行模式切换成功。其中,m≥1。m主要与压缩机单缸运行模式的排气量和压缩机双缸运行的排气量的比值相关。此比值越大则m的取值越大。m的取值可以根据压缩机吸排气压差、压缩机大缸与小缸的容积比例取得。若A2<m*A1,则认为运行模式切换失败。
本公开根据压缩机运行模式切换前后电流变化的倍数m,判断压缩机运行模式的切换是否成功,判断结果更稳定,更准确。例如:在两个缸体不相等的情况下,在低频率低压差的状态下切换运行模式产生的电流变化小,但依然会使运行模式切换前后电流变化的倍数大于某一预设值;同理,在高频率高压差的状态下切换运行模式产生的电流变化大,同样会使运行模式切换前后电流变化的倍数大于某一预设值。
本公开根据压缩机运行模式切换前后电流变化的倍数m,判断压缩机运行模式的切换是否成功的方法,囊括了各频率各压差的情况。且该比例值m与比例值n成线性关系。其中,比例值n为可卸载缸的排气量与整个压缩机的排气量的比值。
压缩机需要由双缸运行模式切换为单缸运行模式时:
将排气压力P1与吸气压力P2的差值P0控制在[a2,b2]之间,若P0<a2,则通过提高压缩机运行频率等方式提高差值P0。若P0>b2,则通过降低压缩机运行频率和开启吸排气侧旁通机构进行泄压的方式降低差值P0。同理,在切换前,将压缩机的排气压力P1与吸气压力P2的差值P0控制在[a2,b2]内。
将压缩机的运行频率K控制在[x2,y2]之间,若K<x2,则提高压缩机的运行频率,若K>y2,则降低压缩机的运行频率。
a2、b2、x2、y2为预先设定值,具体值可以通过实验取得。
系统达到上述条件后(同时满足上述两个条件),必须同时满足才能保证无判断错误的情况。检测压缩机电流有效值A1,之后双缸运行模式切换为单缸运行模式,t秒后再检测压缩机电流有效值A2。
比较A1、A2,若A2≤A1/m,则判断为运行模式切换成功。其中,m≥1。m主要与压缩机单缸运行模式的排气量和压缩机双缸运行的排气量的比值相关。此比值越大,则m的取值越大。m的取值可以根据压缩机吸排气压差、压缩机大缸与小缸的容积比例取得。若A2≤A1/m,则认为运行模式切换失败。
一些实施例提供了一种设备,该设备能够执行上述任一实施例中的方法。该设备包括变容压缩机运行模式判断设备、计算机设备或包含计算机可执行指令的存储设备。
一些实施例提供的设备包括变容压缩机运行模式判断设备。变容压缩机运行模式判断设备包括检测单元,检测单元被配置为在切换压缩机的运行模式前,检测当前压缩机的电流值为A1;以及被配置为,在切换压缩机的运行模式,且达到预设时间后,检测当前压缩机的电流值为A2。
在一些实施例中,变容压缩机运行模式判断设备包括比较判断单元,比较判断单元被配置为比较A1和A2,当A1和A2的比值关系满足预设条件,则判断压缩机的运行模式切换成功;否则,则判断压缩机的运行模式切换失败。
在一些实施例中,变容压缩机运行模式判断设备包括调控单元,调控单元被配置为在切换压缩机的运行模式前,将压缩机的排气压力P1与吸气压力P2的差值P0控制在第一预设范围内,再检测当前压缩机的电流值为A1。
在一些实施例中,变容压缩机运行模式判断设备包括调控单元,调控单元被配置为在切换压缩机的运行模式前,将压缩机的运行频率控制在第二预设范围内,再检测当前压缩机的电流值为A1。
一些实施例提供的设备包括计算机设备。计算机设备包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序;处理器执行计算机程序时实现上述任一实施例中的变容压缩机运行模式判断方法。
一些实施例提供的设备包括包含计算机可执行指令的存储设备。包含计算机可执行指令的存储设备在由计算机处理器执行时用于执行上述任一实施例中的变容压缩机运行模式判断方法。
一些实施例提供了一种变容压缩机,其包括任一上述的设备,即包括变容压缩机 运行模式判断设备,或者,计算机设备,或者,包含计算机可执行指令的存储设备。
一些实施例提供了一种空调,其包括任一上述的设备,即包括变容压缩机运行模式判断设备,或者,计算机设备,或者,包含计算机可执行指令的存储设备。
上述的压缩机可以为变频变容压缩机,可以为双转子压缩机、也可以是三转子压缩机或者三转子以上的转子压缩机。变频变容压缩机中的各缸体可以是等容积缸、也可以是大小缸。
在本公开的描述中,需要理解的是,使用“第一”、“第二”、“第三”等词语来限定零部件,仅仅是为了便于对上述零部件进行区别,如没有另行声明,上述词语并没有特殊含义,因此不能理解为对本公开保护范围的限制。
最后应当说明的是:以上实施例仅用以说明本公开的技术方案而非对其限制;尽管参照较佳实施例对本公开进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本公开的具体实施方式进行修改或者对部分技术特征进行等同替换;而不脱离本公开技术方案的精神,其均应涵盖在本公开请求保护的技术方案范围当中。

Claims (15)

  1. 一种变容压缩机运行模式判断方法,其中,包括:
    切换压缩机的运行模式前,检测当前压缩机的电流值为A1;
    切换压缩机的运行模式,且达到预设时间后,检测当前压缩机的电流值为A2;
    比较A1和A2,当A1和A2的比值关系满足预设条件,则判断压缩机的运行模式切换成功;否则,则判断压缩机的运行模式切换失败。
  2. 如权利要求1所述的变容压缩机运行模式判断方法,其中,在切换压缩机的运行模式前,先将压缩机的排气压力P1与吸气压力P2的差值P0控制在第一预设范围内,再检测当前压缩机的电流值。
  3. 如权利要求2所述的变容压缩机运行模式判断方法,其中,如果压缩机的排气压力P1与吸气压力P2的差值P0小于第一预设范围的下限设定值时,则通过提高压缩机运行频率的方式提高排气压力P1与吸气压力P2的差值P0。
  4. 如权利要求2所述的变容压缩机运行模式判断方法,其中,如果压缩机的排气压力P1与吸气压力P2的差值P0大于第一预设范围的上限设定值时,则通过降低压缩机运行频率的方式,和/或,开启压缩机吸排气侧旁通机构进行泄压的方式,降低压缩机排气压力P1与吸气压力P2的差值P0。
  5. 如权利要求1~4任一项所述的变容压缩机运行模式判断方法,其中,在切换压缩机的运行模式前,先将压缩机的运行频率控制在第二预设范围内,再检测当前压缩机的电流值。
  6. 如权利要求5所述的变容压缩机运行模式判断方法,其中,如果压缩机的运行频率小于第二预设范围的下限设定值,则提高压缩机的运行频率,如果压缩机的运行频率大于第二预设范围的上限设定值,则降低压缩机的运行频率。
  7. 如权利要求1所述的变容压缩机运行模式判断方法,其中,压缩机包括至少两个缸体,至少一个缸体处于工作状态;压缩机运行模式的切换包括第一切换方式和第二切换方式;第一切换方式:压缩机向增加缸体进入工作状态的运行模式切换;第二切换方式:压缩机向减少缸体进入工作状态的运行模式切换。
  8. 如权利要求1所述的变容压缩机运行模式判断方法,其中,比较A1和A2,且当压缩机向增加缸体进入工作状态的运行模式切换时,A1和A2的关系满足预设条件A2≥m*A1,其中,m≥1,则判断为压缩机运行模式切换成功。
  9. 如权利要求1所述的变容压缩机运行模式判断方法,其中,比较A1和A2,且当压缩机向减少缸体进入工作状态的运行模式切换时,A1和A2的关系满足预设条件A2≤A1/m,其中,m≥1,则判断为压缩机运行模式切换成功。
  10. 如权利要求8或9所述的变容压缩机运行模式判断方法,其中,m的取值范围为[1.2,2]。
  11. 一种变容压缩机运行模式判断设备,用于实现如权利要求1所述的变容压缩机运行模式判断方法,其中,该设备包括:
    检测单元,被配置为在切换压缩机的运行模式前,检测当前压缩机的电流值为A1;以及被配置为,在切换压缩机的运行模式,且达到预设时间后,检测当前压缩机的电流值为A2;以及
    比较判断单元,被配置为比较A1和A2,当A1和A2的比值关系满足预设条件,则判断压缩机的运行模式切换成功;否则,则判断压缩机的运行模式切换失败。
  12. 一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其中,所述处理器执行所述程序时实现如权利要求1~10中任一项所述的变容压缩机运行模式判断方法。
  13. 一种包含计算机可执行指令的存储设备,所述包含计算机可执行指令的存储设备在由计算机处理器执行时用于执行如权利要求1~10中任意一项所述的变容压缩机运行模式判断方法。
  14. 一种变容压缩机,其中,包括如权利要求11~13任一项所述的设备。
  15. 一种空调,其中,包括如权利要求11~13任一项所述的设备。
PCT/CN2018/121200 2018-10-19 2018-12-14 变容压缩机运行模式判断方法、设备、变容压缩机及空调 WO2020077790A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021519589A JP7165263B2 (ja) 2018-10-19 2018-12-14 可変容量圧縮機の運転モードの判断方法、装置、可変容量圧縮機及びエアコン
KR1020217014283A KR102547287B1 (ko) 2018-10-19 2018-12-14 가변 용량 압축기 작동 모드 판단 방법 및 장치, 가변 용량 압축기, 및 에어 컨디셔너
US17/285,802 US11808261B2 (en) 2018-10-19 2018-12-14 Variable capacity compressor operation mode determination method and device, variable capacity compressor, and air conditioner
EP18937304.6A EP3848647A4 (en) 2018-10-19 2018-12-14 PROCEDURE FOR DETERMINING THE OPERATING MODE OF A VARIABLE CAPACITY COMPRESSOR, APPLIANCE, VARIABLE CAPACITY COMPRESSOR AND AIR CONDITIONING

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811219713.1A CN109356854B (zh) 2018-10-19 2018-10-19 变容压缩机运行模式判断方法、设备、变容压缩机及空调
CN201811219713.1 2018-10-19

Publications (1)

Publication Number Publication Date
WO2020077790A1 true WO2020077790A1 (zh) 2020-04-23

Family

ID=65345881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/121200 WO2020077790A1 (zh) 2018-10-19 2018-12-14 变容压缩机运行模式判断方法、设备、变容压缩机及空调

Country Status (6)

Country Link
US (1) US11808261B2 (zh)
EP (1) EP3848647A4 (zh)
JP (1) JP7165263B2 (zh)
KR (1) KR102547287B1 (zh)
CN (1) CN109356854B (zh)
WO (1) WO2020077790A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110439818B (zh) * 2019-08-26 2020-06-02 珠海格力电器股份有限公司 一种变容压缩结构、压缩机和空调器
JP2022131190A (ja) * 2021-02-26 2022-09-07 ダイキン工業株式会社 冷凍サイクル装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100585809B1 (ko) * 2004-12-28 2006-06-07 엘지전자 주식회사 용량 가변형 다중 로터리 압축기 및 그 운전 방법
CN102072529A (zh) * 2010-11-26 2011-05-25 广东美的制冷设备有限公司 一种使用可变容压缩机的空调器及其控制方法
CN103162384A (zh) * 2013-03-04 2013-06-19 约克(无锡)空调冷冻设备有限公司 热泵运行的风机控制方法
CN103363614A (zh) * 2012-03-26 2013-10-23 珠海格力电器股份有限公司 风冷冷热水空调机组及其除霜控制方法和装置
CN104047843A (zh) * 2014-05-27 2014-09-17 珠海格力电器股份有限公司 变频与变容压缩机的单双缸切换方法
CN104421139A (zh) * 2013-08-22 2015-03-18 珠海格力电器股份有限公司 压缩机运行控制方法和装置
CN104654516A (zh) * 2013-11-21 2015-05-27 珠海格力电器股份有限公司 变频变容压缩机的控制方法及系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4064066B2 (ja) * 2000-05-24 2008-03-19 サンデン株式会社 容量可変型斜板式圧縮機
US6928389B2 (en) * 2002-10-04 2005-08-09 Copeland Corporation Compressor performance calculator
ES2319598B1 (es) * 2003-12-03 2010-01-26 Toshiba Carrier Corporation Sistema de ciclo de refrigeracion.
JP2006022723A (ja) * 2004-07-08 2006-01-26 Sanyo Electric Co Ltd 圧縮システム及びそれを用いた冷凍装置
JP5360708B2 (ja) * 2009-01-14 2013-12-04 東芝キヤリア株式会社 多気筒回転式圧縮機および冷凍サイクル装置
EP3006848B1 (en) * 2013-05-24 2018-03-21 Mitsubishi Denki Kabushiki Kaisha Heat pump device
JP2016023885A (ja) 2014-07-23 2016-02-08 シャープ株式会社 温度調節装置および温度調節装置の制御方法
US11460024B2 (en) 2016-08-02 2022-10-04 Carrier Corporation Method of monitoring a volume index valve of a compressor and diagnostic system
CN106500257B (zh) * 2016-10-27 2019-10-29 广东美的制冷设备有限公司 空调器及其双缸压缩机的控制方法和装置
CN106765885B (zh) * 2016-11-29 2019-11-26 广州华凌制冷设备有限公司 双缸压缩机空调器及其制冷方法
CN108468843B (zh) 2018-03-27 2023-11-10 宁波照华环保科技有限公司 一种漏水保护器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100585809B1 (ko) * 2004-12-28 2006-06-07 엘지전자 주식회사 용량 가변형 다중 로터리 압축기 및 그 운전 방법
CN102072529A (zh) * 2010-11-26 2011-05-25 广东美的制冷设备有限公司 一种使用可变容压缩机的空调器及其控制方法
CN103363614A (zh) * 2012-03-26 2013-10-23 珠海格力电器股份有限公司 风冷冷热水空调机组及其除霜控制方法和装置
CN103162384A (zh) * 2013-03-04 2013-06-19 约克(无锡)空调冷冻设备有限公司 热泵运行的风机控制方法
CN104421139A (zh) * 2013-08-22 2015-03-18 珠海格力电器股份有限公司 压缩机运行控制方法和装置
CN104654516A (zh) * 2013-11-21 2015-05-27 珠海格力电器股份有限公司 变频变容压缩机的控制方法及系统
CN104047843A (zh) * 2014-05-27 2014-09-17 珠海格力电器股份有限公司 变频与变容压缩机的单双缸切换方法

Also Published As

Publication number Publication date
US20210340977A1 (en) 2021-11-04
US11808261B2 (en) 2023-11-07
JP7165263B2 (ja) 2022-11-02
EP3848647A4 (en) 2021-11-17
CN109356854A (zh) 2019-02-19
KR20210068567A (ko) 2021-06-09
KR102547287B1 (ko) 2023-06-23
JP2022504531A (ja) 2022-01-13
CN109356854B (zh) 2019-12-27
EP3848647A1 (en) 2021-07-14

Similar Documents

Publication Publication Date Title
WO2020077790A1 (zh) 变容压缩机运行模式判断方法、设备、变容压缩机及空调
CN109812920B (zh) 一种空调器多压缩机启停的控制方法、装置及多联机系统
CN109140829B (zh) 压缩机回油结构、制冷机组及空调系统
US11773855B2 (en) Gas compressor
KR20050110080A (ko) 압축기의 제어 장치 및 방법
CN110779146B (zh) 空调器及其电子膨胀阀控制方法、存储介质及计算机设备
JP5646282B2 (ja) 圧縮装置及びその運転制御方法
JP2002327690A (ja) 2段圧縮機
CN106440443B (zh) 一种适用高温制冷的空调系统及控制方法
WO2018181299A1 (ja) 給液式気体圧縮機
CN109357355B (zh) 空调开关机控制方法
TWI631282B (zh) 二段式螺桿壓縮機及其運轉方法
JP2004316462A (ja) 遠心圧縮機の容量制御方法及び装置
CN109404286B (zh) 变容压缩机及其内缸体状态变化的判断方法
CN110006141A (zh) 风冷磁悬浮机组的控制方法和风冷磁悬浮机组
JP4538875B2 (ja) 圧縮機の運転制御方法および装置
JPH04136498A (ja) 遠心圧縮機の容量制御装置
CN115451623B (zh) 空调器的压力调节方法、压力调节装置和定频空调
JP4399655B2 (ja) 圧縮空気製造設備
JPH077592Y2 (ja) 圧縮機の容量制御装置
CN116209829A (zh) 气体压缩机
JP2774433B2 (ja) 遠心圧縮機の容量制御装置
CN116734428A (zh) 空调器的启动控制方法
JP2004353498A (ja) ターボ圧縮機およびその運転方法
JP2001027148A (ja) ガスエンジンの失火検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18937304

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021519589

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018937304

Country of ref document: EP

Effective date: 20210408

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217014283

Country of ref document: KR

Kind code of ref document: A