JP2016023885A - 温度調節装置および温度調節装置の制御方法 - Google Patents

温度調節装置および温度調節装置の制御方法 Download PDF

Info

Publication number
JP2016023885A
JP2016023885A JP2014149624A JP2014149624A JP2016023885A JP 2016023885 A JP2016023885 A JP 2016023885A JP 2014149624 A JP2014149624 A JP 2014149624A JP 2014149624 A JP2014149624 A JP 2014149624A JP 2016023885 A JP2016023885 A JP 2016023885A
Authority
JP
Japan
Prior art keywords
control unit
compressor
temperature
heat exchanger
abnormality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014149624A
Other languages
English (en)
Inventor
新開 誠
Makoto Shinkai
誠 新開
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2014149624A priority Critical patent/JP2016023885A/ja
Publication of JP2016023885A publication Critical patent/JP2016023885A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

【課題】異常の検知精度が高い温度調節装置および温度調節装置の制御方法を提供する。【解決手段】圧縮機3を含む空気調和機構と、電流検出部10と、制御部12とを備える温度調節装置1が提供される。制御部12は、圧縮機3の回転数を第1の所定量変化させたときに、電流値が第2の所定量よりも変化した場合に、異常がないと判断し、圧縮機3の回転数を第1の所定量変化させたときに、電流値が第2の所定量変化しない場合に、異常があると判断する。【選択図】図4

Description

本発明は、温度調節装置の技術に関し、より詳細には温度調節装置の異常を検知するための技術に関する。
一般に、温度調節装置は、圧縮機、切換弁、室外熱交換器、膨張弁、室内熱交換器等の部品が接続されて冷凍サイクルが構成されている。このような温度調節装置では、切換弁を切り換えることで、冷凍サイクルを冷房運転サイクルおよび暖房運転サイクルのいずれかに切り換えることができる。
そして、冷房運転サイクルでは、圧縮機、切換弁、室外熱交換器(凝縮器)、膨張弁、室内熱交換器(蒸発器)、切換弁、圧縮機の順に冷媒が循環し、これにより、室内熱交換器で吸収した室内の熱が室外熱交換器で室外に放出される。
また、暖房運転サイクルでは、圧縮機、切換弁、室内熱交換器(凝縮器)、膨張弁、室外熱交換器(蒸発器)、切換弁、圧縮機の順に冷媒が循環し、これにより、室外熱交換器で吸収した室外の熱が室内熱交換器で室内に放出される。
そして、従来から、冷媒漏れや膨張弁の不具合などのような温度調節装置の各部の異常を検知するための様々な方法が知られている。たとえば、特開2008−267621号公報(特許文献1)には、空気調和機が開示されている。特開2008−267621号公報(特許文献1)によると、冷凍サイクルを運転する圧縮機と、圧縮機の一端に接続して室内に配される室内熱交換器と、圧縮機の他端に接続して室外に配される室外熱交換器と、冷凍サイクルの冷媒漏れを検知する冷媒漏れ検知部を備え、冷媒漏れ検知部は、圧縮機の駆動後に所定の判定時間内で変化する室内熱交換器の最高温度と最低温度との温度差が所定温度差よりも小さい時に冷媒漏れと判断する。
特開2008−267621号公報
しかしながら、熱交換機の最高温度と最低温度との温度差だけに基づいて異常を検知する方法では検知精度が悪い場合がある。本発明の目的は、異常の検知精度が高い温度調節装置および温度調節装置の制御方法を提供することにある。
この発明のある態様に従うと、圧縮機を含む空気調和機構と、電流検出部と、制御部とを備える温度調節装置が提供される。制御部は、圧縮機の回転数を第1の所定量変化させたときに、電流値が第2の所定量よりも変化した場合に、異常がないと判断し、圧縮機の回転数を第1の所定量変化させたときに、電流値が第2の所定量変化しない場合に、異常があると判断する。
この発明の別の態様に従うと、圧縮機を含む空気調和機構と、電流検出部と、制御部とを備える温度調節装置が提供される。制御部は、圧縮機の回転数を第1の所定割合変化させたときに、電流値が第2の所定割合よりも変化した場合に、異常がないと判断し、圧縮機の回転数を第1の所定割合変化させたときに、電流値が第2の所定割合変化しない場合に、異常があると判断する。
好ましくは、空気調和機構は熱交換器と熱交換器付近の冷媒の温度を測定するための温度センサとをさらに含む。制御部は、運転開始から所定時間経過したときに、熱交換器付近の冷媒の温度が第3の所定量変化しない場合に、上記の判断を行う。
この発明の別の態様に従うと、圧縮機を含む空気調和機構と電流検出部と制御部とを備える温度調節装置における制御方法が提供される。制御方法は、制御部が、圧縮機の回転数を第1の所定量変化させるステップと、制御部が、電流値が第2の所定量よりも変化したか否かを判断するステップと、制御部が、電流値が第2の所定量よりも変化した場合に異常がないと判断し、電流値が第2の所定量変化しない場合に異常があると判断するステップとを備える。
この発明の別の態様に従うと、圧縮機を含む空気調和機構と電流検出部と制御部とを備える温度調節装置における制御方法が提供される。制御方法は、制御部が、圧縮機の回転数を第1の所定割合変化させたステップと、制御部が、電流値が第2の所定割合よりも変化したか否かを判断するステップと、制御部が、電流値が第2の所定割合よりも変化した場合に異常がないと判断し、電流値が第2の所定量変化しない場合に異常があると判断するステップとを備える。
以上のように、この発明によれば、異常の検知精度が高い温度調節装置および温度調節装置の制御方法を提供することができる。
第1の実施の形態の空気調和機1の構成を示すブロック図である。 第1の実施の形態にかかる空気調和機1の冷凍サイクルの回路図を示している。 第1の実施の形態にかかる空気調和機1の制御部12による第1段階目の異常検知処理の処理手順を示す第1のフローチャートである。 第1の実施の形態にかかる空気調和機1の制御部12による第2段階目の異常検知処理の処理手順を示すフローチャートである。 第3の実施の形態にかける空気調和機1の制御部12による第2段階目の異常検知処理の処理手順を示すフローチャートである。 第5の実施の形態にかける空気調和機1の制御部12による第2段階目の異常検知処理の処理手順を示すフローチャートである。 第7の実施の形態にかける空気調和機1の制御部12による第2段階目の異常検知処理の処理手順を示すフローチャートである。 第9の実施の形態にかける空気調和機1の制御部12による異常検知の第1段階目の処理手順を示すフローチャートである。 第10の実施の形態にかける空気調和機1の制御部12による異常検知の第1段階目の処理手順を示すフローチャートである。
以下、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明では、同一の部品には同一の符号を付してある。それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰り返さない。
また以下では、温度調節装置の例として空気調和機について説明するが、温度調節装置は、洗濯乾燥機や冷蔵庫などの、冷媒を用いる他の装置であってもよい。また、空気調和機構の例として冷凍サイクルについて説明するが、冷媒を用いる他の冷凍および暖房サイクルであってもよい。
<第1の実施の形態>
<空気調和機の全体構成>
まず、図1を参照して、本実施の形態にかかる空気調和機1の全体構成と基本的な動作概要とについて説明する。図1は、本実施の形態の空気調和機1の構成を示すブロック図である。空気調和機1は室外に配される室外機2と室内に配される室内機11とを有している。本実施の形態においては、室内機11には各部を制御する制御部12が設けられる。
室外機2には制御部12に接続される圧縮機3、四方弁4、電子膨張弁5、外気温サーミスタ6、室外熱交換器サーミスタ7、室外送風機8、電流検出部10が設けられる。また、室外機2内には圧縮機3に接続される室外熱交換器9(図2を参照。)も配される。
圧縮機3は、HFC(ハイドロフルオロカーボン)冷媒であるR410Aを流通させて冷凍サイクルを運転する。尚、HFC冷媒としては他にR407C、R404A等があり、これらを使用してもよい。四方弁4は、冷媒の経路に設けられ、冷房運転時と暖房運転時とで冷媒の流通経路を切り替える。電子膨張弁5は、室外熱交換器9に接続され、冷媒を膨張させる。
外気温サーミスタ6は外気温を検知して制御部12に伝達する。室外熱交換器サーミスタ7は室外熱交換器9の温度を検知して制御部12に伝達する。室外送風機8は室外熱交換器9の熱または冷熱を室外に放出する。尚、外気温サーミスタ6は、室外送風機8および室外熱交換器9の上流側であって、室外熱交換器9の熱影響を受けない位置に設けられる。本実施の形態では、室外送風機8による風の流れの上流側から外気温サーミスタ6、室外熱交換器9、室外送風機8の順序で並んでいる。
一方、室内機11には制御部12に接続される室内送風機13、室内熱交換器サーミスタ14、室内サーミスタ15、ルーバー16、記憶部17、表示部18、受信部19が設けられる。また、室内機11内には圧縮機3に接続される室内熱交換器20(図2参照)が配される。
室内送風機13は室内熱交換器20の熱または冷熱を室内に送出する。室内熱交換器サーミスタ14は室内熱交換器20の温度を検知して制御部12に伝達する。室内サーミスタ15は室内の温度を検知して制御部12に伝達する。ルーバー16は室内送風機13により送出される空気の風向を可変する。
記憶部17は、ROM(read only memory)及びRAM(Random Access Memory)を含む。記憶部17は、空気調和機1の動作プログラムや設定データを記憶するとともに制御部12による演算結果を一時記憶する。
表示部18はLEDライトなどを含む。表示部18は制御部12からの信号に基づいて空気調和機1の動作状況や警報等を表示する。受信部19はリモートコントローラ21を操作した際に送信される赤外線の信号を受信する。
<空気調和機の冷凍サイクル>
次に、図2を参照して、本実施の形態にかかる空気調和機1の冷凍サイクル30について説明する。なお、図2は、本実施の形態にかかる空気調和機1の冷凍サイクルの回路図を示している。
圧縮機3の一端には四方弁4を介して室外熱交換器9が接続され、他端には四方弁4を介して室内熱交換器20が接続される。四方弁4の切替えによって暖房運転時には圧縮機3の冷媒流出側に室内熱交換器20が接続され、冷房運転時には圧縮機3の冷媒流出側に室外熱交換器9が接続される。室外熱交換器9及び室内熱交換器20の圧縮機3側と反対側に電子膨張弁5が配される。
本実施の形態では、室内熱交換器サーミスタ14は室内熱交換器20における冷媒流入部と冷媒流出部との中間付近に設置されている。また、室外熱交換器サーミスタ7は室外熱交換器9の冷媒流出部付近に設けられている。
尚、冷媒漏れを判断する場合には、熱交換器(室内熱交換器20または室外熱交換器9)の冷媒流入配管の温度(熱交換器への冷媒流入部の温度)を検知することが好ましい。これは、冷媒流入側配管の温度(熱交換器への冷媒流入部の温度)の方が、他の場所と比較して、運転開始直後と運転開始後に所定時間経ったときとの差が生じやすく、その結果冷媒漏れの判断をし易くなるからである。
暖房運転時には四方弁4が図中、実線で示すように切り替えられる。これにより、矢印Aに示す方向に冷媒が流通し、圧縮機3により圧縮された高温高圧の冷媒は室内熱交換器20で放熱しながら凝縮する。高温の冷媒は電子膨張弁5で膨張して低温低圧となり、室外熱交換器9に送られる。室外熱交換器9に流入する冷媒は吸熱しながら蒸発して低温のガス冷媒となり、圧縮機3に送られる。これにより、冷媒が循環して冷凍サイクルが運転される。冷凍サイクルの高温側となる室内熱交換器20と熱交換した空気が室内送風機13により室内に送出され、室内が暖められる。
冷房運転時には四方弁4が図中、破線で示すように切り替えられる。これにより、矢印Aと反対方向に冷媒が流通し、室内熱交換器20が冷凍サイクルの低温側となるとともに室外熱交換器9が冷凍サイクルの高温側となる。室内熱交換器20と熱交換した空気が室内送風機13により室内に送出され、室内が冷却される。
<制御部12による異常検知処理>
次に、図3および図4を参照して、本実施の形態にかかる空気調和機1の制御方法について説明する。すなわち、制御部12による異常検知処理について詳述する。なお、図3は、本実施の形態にかかる空気調和機1の制御部12による第1段階目の異常検知処理の処理手順を示す第1のフローチャートである。そして、図4は、本実施の形態にかかる空気調和機1の制御部12による第2段階目の異常検知処理の処理手順を示すフローチャートである。
制御部12は、運転開始時に、図3および図4に示す冷凍サイクルの冷媒漏れを検知する。まず、図3を参照して、制御部12は、空気調和機1の運転開始を指示すると圧縮機3を駆動する(ステップS111)。制御部12は、外気温サーミスタ6を利用して外気温Toを検知する(ステップS112)。制御部12は、外気温Toが所定温度T3(例えば、−10℃)以上であるか否かを判断する(ステップS113)。
外気温Toが所定温度T3以上の場合(ステップS113にてYESである場合)、制御部12は、冷媒漏れを判別するための判定時間tに時間t1を代入する(ステップS114)。そして、制御部12は、ステップS116からの処理を実行する。
一方、外気温Toが所定温度T3よりも低い場合(ステップS113にてNOの場合)、制御部12は、冷媒漏れを判別する判定時間tに時間t2を代入する(ステップS115)。なお、本実施の形態においては、時間t2には時間t1よりも長い値が設定されている。
制御部12は、現在、冷房運転中か否かを判断する(ステップS116)。冷房運転中でない場合(ステップS116においてNOである場合)、制御部12は、現在、暖房運転中であるか否かを判断する(ステップS117)。暖房運転中でない場合(ステップS117にてNOの場合)、制御部12は、通常運転を開始する(ステップS151)。
暖房運転中である場合(ステップS117にてYESである場合)、室内熱交換器20の最高温度と最低温度との温度差により冷媒漏れを判断するために、判定温度差ΔTに所定温度T2を代入する(ステップS118)。制御部12は、ステップS121からの処理を実行する。
一方、冷房運転中である場合(ステップS116にてYESである場合)、室内熱交換器20の最高温度と最低温度との温度差により冷媒漏れを判断するために、判定温度差ΔTに所定温度T1を代入する(ステップS120)。なお、本実施の形態においては、温度T2は温度T1よりも大きな値が設定されている。
制御部12は、室内熱交換器サーミスタ14を利用して、室内熱交換器20の温度Tjを検知する(ステップS121)。制御部12は、室内熱交換器サーミスタ14の検知した温度Tjが判定時間t内で最高温度または最低温度となるか否かを判断する(ステップS122)。制御部12は、温度Tjが最高温度または最低温度でない場合(ステップS122にてNOの場合)、ステップS124からの処理を実行する。
制御部12は、温度Tjが最高温度または最低温度である場合(ステップS122にてYESの場合)、温度Tjを記憶部17に記憶する(ステップS123)。より詳細には、制御部12は、温度Tjが最高温度の場合は、最高温度Tmaxとして記憶部17に記憶させる。逆に、制御部12は、温度Tjが最低温度の場合は、最低温度Tminとして記憶部17に記憶させる。
制御部12は、判定時間tが経過したか否かを判断する(ステップS124)。判定時間が経過していないとき(ステップS124においてNOである場合)、制御部12は、ステップS121からステップS124の処理を繰り返す。これにより、判定時間t内の室内熱交換器20の最高温度Tmax及び最低温度Tminが検知される。
判定時間tが経過すると(ステップS124においてYESである場合)、制御部12は、室内熱交換器20の最高温度Tmaxと最低温度Tminとの温度差ΔTjを計算する(ステップS125)。制御部12は、温度差ΔTjがステップS118またはステップS120で設定した判定温度差ΔT以上であるか否かを判断する(ステップS131)。
温度差ΔTjが判定温度差ΔT以上の場合(ステップS131においてYESである場合)、冷媒漏れがなく室内熱交換器20が正常に昇温または降温されている可能性が高いため、制御部12は、通常運転を実行する(ステップS151)。
温度差ΔTjが判定温度差ΔTよりも小さい場合(ステップS131においてNOである場合)、制御部12は、冷媒漏れの検知が所定回数N回行われたか否かを判断する(ステップS133)。冷媒漏れの検知精度を上げるためである。なお、ここで、制御部12は圧縮機3を停止させたり、回転数を減少させたりしてもよい。
冷媒漏れの検知がN回行われていない場合(ステップS133においてNOである場合)、制御部12は、所定時間待機してから(ステップS134)、ステップS111からの処理を繰り返す。
N回連続して室内熱交換器20の温度差ΔTjが判定温度差ΔTよりも小さく冷媒漏れと判断された場合(ステップS133においてYESである場合)、制御部12は、第2段階目の異常検知処理として、以下の処理を実行する。すなわち、本実施の形態においては、制御部12は、二段階で異常の有無を検知する。
図4を参照して、制御部12は、圧縮機3の回転数を取得する(ステップS152)。制御部12は、電流検出部10から現在の電流値を取得する(ステップS156)。制御部12は、圧縮機3の回転数を所定量、たとえば2000rpmだけ増加させる(ステップS158)。制御部12は、電流検出部10から回転数増加後の電流値を取得する(ステップS160)。
制御部12は、電流の増加量が、所定値、たとえば3アンペアより大きいか否かを判断する(ステップS162)。電流の増加量が所定値以下である場合(ステップS162においてYESである場合)、制御部12は、圧縮機3の回転数を元に戻す(ステップS170)。制御部12は、ステップS134からの処理を繰り返す。
電流の増加量が所定値以下である場合(ステップS162においてNOである場合)、制御部12は、表示部18により異常の発生を報知させる(ステップS164)。なお、制御部12は、スピーカやリモートコントローラ21などの他の出力装置を介して、異常の発生を報知してもよい。制御部12は、報知状態を維持しながら、圧縮機3を含む空気調和機1全体の運転を停止する(ステップS166)。制御部12は、異常検知処理を終了する。
このように、本実施の形態においては、制御部12は、圧縮機3の回転数を変化させて、当該変化に応じて電流値が変化するか否かの判断に基づいて異常の有無を判断する。なぜなら、異常がない場合には、圧縮機3の回転数の変化に従って電流値が変化するはずだからである。
また、本実施の形態においては、制御部12は、記憶部17に記憶されているプログラムに従って上記の処理を実行することによって、冷凍サイクルの異常を検知するための異常検知部を構成する。
<第2の実施の形態>
上記の第1の実施の形態おいては、圧縮機3の回転数を増加させて電流値の増加量が所定値以上であるかを判断するものであったが、圧縮機3の回転数を減少させて電流値の減少量が所定値以上であるかを判断してもよい。
すなわち、図4を参照して、制御部12は、圧縮機3の回転数を取得する(ステップS152)。制御部12は、電流検出部10から現在の電流値を取得する(ステップS156)。制御部12は、圧縮機3の回転数を所定量、たとえば、1000rpmだけ減少させる(ステップS158)。制御部12は、電流検出部10から回転数減少後の電流値を取得する(ステップS160)。
制御部12は、電流の減少量が、所定値、たとえば2アンペアより大きいか否かを判断する(ステップS162)。電流の減少量が所定値以下である場合(ステップS162においてYESである場合)、制御部12は、圧縮機3の回転数を元に戻す(ステップS170)。制御部12は、ステップS134からの処理を繰り返す。
電流の減少量が所定値以下である場合(ステップS162においてNOである場合)、制御部12は、表示部18により異常の発生を報知させる(ステップS164)。なお、制御部12は、スピーカやリモートコントローラ21などの他の出力装置を介して、異常の発生を報知してもよい。制御部12は、報知状態を維持しながら、圧縮機3を含む空気調和機1全体の運転を停止する(ステップS166)。制御部12は、異常検知処理を終了する。
<第3の実施の形態>
上記の第1の実施の形態おいては、圧縮機3の回転数を現在の値から所定量増加させて電流値の増加量が所定値以上であるかを判断するものであったが、圧縮機3の回転数を所定値に変化させてから所定量増加させて電流値の増加量が所定値以上であるかを判断してもよい。以下では、2段階目の異常の検知処理について説明する。なお、図5は、本実施の形態にかける空気調和機1の制御部12による第2段階目の異常検知処理の処理手順を示すフローチャートである。
図5を参照して、制御部12は、圧縮機3の回転数を取得する(ステップS352)。制御部12は、圧縮機3の回転数を所定値、たとえば3000rpmに変更する(ステップS354)。制御部12は、電流検出部10から現在の電流値を取得する(ステップS356)。制御部12は、圧縮機3の回転数を所定量、たとえば2000rpmだけ増加させる(ステップS358)。制御部12は、電流検出部10から回転数増加後の電流値を取得する(ステップS360)。
制御部12は、電流の増加量が、所定値、たとえば3アンペアより大きいか否かを判断する(ステップS362)。電流の増加量が所定値以上である場合(ステップS362においてYESである場合)、制御部12は、圧縮機3の回転数を元に戻す(ステップS370)。制御部12は、ステップS134からの処理を繰り返す。
電流の増加量が所定値以下である場合(ステップS362においてNOである場合)、制御部12は、表示部18により異常の発生を報知させる(ステップS364)。なお、制御部12は、スピーカやリモートコントローラ21などの他の出力装置を介して、異常の発生を報知してもよい。制御部12は、報知状態を維持しながら、圧縮機3を含む空気調和機1全体の運転を停止する(ステップS366)。制御部12は、異常検知処理を終了する。
<第4の実施の形態>
上記の第3の実施の形態おいては、圧縮機3の回転数を増加させて電流値の増加量が所定値以上であるかを判断するものであったが、圧縮機3の回転数を減少させて電流値の減少量が所定値以上であるかを判断してもよい。
すなわち、図5を参照して、制御部12は、圧縮機3の回転数を取得する(ステップS352)。制御部12は、圧縮機3の回転数を所定値、たとえば3000rpmに変更する(ステップS354)。制御部12は、電流検出部10から現在の電流値を取得する(ステップS356)。制御部12は、圧縮機3の回転数を所定量、たとえば1500rpmだけ減少させる(ステップS358)。制御部12は、電流検出部10から回転数減少後の電流値を取得する(ステップS360)。
制御部12は、電流の減少量が、所定値、たとえば2アンペアより大きいか否かを判断する(ステップS362)。電流の減少量が所定値以上である場合(ステップS362においてYESである場合)、制御部12は、圧縮機3の回転数を元に戻す(ステップS370)。制御部12は、ステップS134からの処理を繰り返す。
電流の減少量が所定値以下である場合(ステップS362においてNOである場合)、制御部12は、表示部18により異常の発生を報知させる(ステップS364)。なお、制御部12は、スピーカやリモートコントローラ21などの他の出力装置を介して、異常の発生を報知してもよい。制御部12は、報知状態を維持しながら、圧縮機3を含む空気調和機1全体の運転を停止する(ステップS366)。制御部12は、異常検知処理を終了する。
<第5の実施の形態>
上記の第1の実施の形態おいては、圧縮機3の回転数を現在の値から所定量増加させて電流値の増加量が所定値以上であるかを判断するものであったが、圧縮機3の回転数を所定割合増加させて電流値の増加量が所定割合以上であるかを判断してもよい。以下では、2段階目の異常の検知処理について説明する。なお、図6は、本実施の形態にかける空気調和機1の制御部12による第2段階目の異常検知処理の処理手順を示すフローチャートである。
図6を参照して、制御部12は、圧縮機3の回転数を取得する(ステップS552)。制御部12は、電流検出部10から現在の電流値を取得する(ステップS556)。制御部12は、圧縮機3の回転数を所定割合、たとえば1.0倍だけ増加させる、すなわち圧縮機3の回転数を2.0倍にする(ステップS558)。制御部12は、電流検出部10から回転数増加後の電流値を取得する(ステップS560)。
制御部12は、電流の増加割合が、所定値、たとえば0.5倍より大きいか否か、すなわち電流が1.5倍以上に変化したか否かを判断する(ステップS562)。電流の増加割合が所定値以上である場合(ステップS562においてYESである場合)、制御部12は、圧縮機3の回転数を元に戻す(ステップS570)。制御部12は、ステップS134からの処理を繰り返す。
電流の増加割合が所定値以下である場合(ステップS562においてNOである場合)、制御部12は、表示部18により異常の発生を報知させる(ステップS564)。なお、制御部12は、スピーカやリモートコントローラ21などの他の出力装置を介して、異常の発生を報知してもよい。制御部12は、報知状態を維持しながら、圧縮機3を含む空気調和機1全体の運転を停止する(ステップS566)。制御部12は、異常検知処理を終了する。
<第6の実施の形態>
上記の第5の実施の形態おいては、圧縮機3の回転数を増加させて電流値の増加量が所定値以上であるかを判断するものであったが、圧縮機3の回転数を減少させて電流値の減少量が所定値以上であるかを判断してもよい。
すなわち、図6を参照して、制御部12は、圧縮機3の回転数を取得する(ステップS552)。制御部12は、電流検出部10から現在の電流値を取得する(ステップS556)。制御部12は、圧縮機3の回転数を所定割合、たとえば0.5倍だけ減少させる、すなわち圧縮機3の回転数を0.5倍にする(ステップS558)。制御部12は、電流検出部10から回転数減少後の電流値を取得する(ステップS560)。
制御部12は、電流の減少割合が、所定値、たとえば0.3倍より大きいか否か、すなわち電流が0.7倍以下になったか否かを判断する(ステップS562)。電流の減少割合が所定値以上である場合(ステップS562においてYESである場合)、制御部12は、圧縮機3の回転数を元に戻す(ステップS570)。制御部12は、ステップS134からの処理を繰り返す。
電流の減少割合が所定値以下である場合(ステップS562においてNOである場合)、制御部12は、表示部18により異常の発生を報知させる(ステップS564)。なお、制御部12は、スピーカやリモートコントローラ21などの他の出力装置を介して、異常の発生を報知してもよい。制御部12は、報知状態を維持しながら、圧縮機3を含む空気調和機1全体の運転を停止する(ステップS566)。制御部12は、異常検知処理を終了する。
<第7の実施の形態>
上記の第5の実施の形態おいては、圧縮機3の回転数を現在の値から所定割合増加させて電流値の増加割合が所定値以上であるかを判断するものであったが、圧縮機3の回転数を所定値に変化させてから所定割合増加させて電流値の増加割合が所定値以上であるかを判断してもよい。以下では、2段階目の異常の検知処理について説明する。なお、図7は、本実施の形態にかける空気調和機1の制御部12による第2段階目の異常検知処理の処理手順を示すフローチャートである。
図7を参照して、制御部12は、圧縮機3の回転数を取得する(ステップS752)。制御部12は、圧縮機3の回転数を所定値、たとえば3000rpmに変更する(ステップS754)。制御部12は、電流検出部10から現在の電流値を取得する(ステップS756)。制御部12は、圧縮機3の回転数を所定割合、たとえば1.0倍だけ増加させる、すなわち圧縮機3の回転数を2.0倍にする(ステップS758)。制御部12は、電流検出部10から回転数増加後の電流値を取得する(ステップS760)。
制御部12は、電流の増加割合が、所定値、たとえば0.5倍より大きいか否か、すなわち電流が1.5倍になったか否かを判断する(ステップS762)。電流の増加割合が所定値以上である場合(ステップS762においてYESである場合)、制御部12は、圧縮機3の回転数を元に戻す(ステップS770)。制御部12は、ステップS134からの処理を繰り返す。
電流の増加割合が所定値以下である場合(ステップS762においてNOである場合)、制御部12は、表示部18により異常の発生を報知させる(ステップS764)。なお、制御部12は、スピーカやリモートコントローラ21などの他の出力装置を介して、異常の発生を報知してもよい。制御部12は、報知状態を維持しながら、圧縮機3を含む空気調和機1全体の運転を停止する(ステップS766)。制御部12は、異常検知処理を終了する。
<第8の実施の形態>
上記の第7の実施の形態おいては、圧縮機3の回転数を増加させて電流値の増加量が所定値以上であるかを判断するものであったが、圧縮機3の回転数を減少させて電流値の減少量が所定値以上であるかを判断してもよい。
すなわち、図7を参照して、制御部12は、圧縮機3の回転数を取得する(ステップS752)。制御部12は、圧縮機3の回転数を所定値、たとえば3000rpmに変更する(ステップS754)。制御部12は、電流検出部10から現在の電流値を取得する(ステップS756)。制御部12は、圧縮機3の回転数を所定割合、たとえば0.5倍だけ減少させる、すなわち圧縮機3の回転数を0.5倍にする(ステップS758)。制御部12は、電流検出部10から回転数減少後の電流値を取得する(ステップS760)。
制御部12は、電流の減少割合が、所定値、たとえば0.3倍より大きいか否か、すなわち電流が0.7倍以下になったか否かを判断する(ステップS762)。電流の減少割合が所定値以上である場合(ステップS762においてYESである場合)、制御部12は、圧縮機3の回転数を元に戻す(ステップS770)。制御部12は、ステップS134からの処理を繰り返す。
電流の減少割合が所定値以下である場合(ステップS762においてNOである場合)、制御部12は、表示部18により異常の発生を報知させる(ステップS764)。なお、制御部12は、スピーカやリモートコントローラ21などの他の出力装置を介して、異常の発生を報知してもよい。制御部12は、報知状態を維持しながら、圧縮機3を含む空気調和機1全体の運転を停止する(ステップS766)。制御部12は、異常検知処理を終了する。
<第9の実施の形態>
上記第1〜第8の実施の形態においては、冷房時も暖房時も、制御部12は、室内熱交換器サーミスタ14を利用して、室内熱交換器20の温度Tjを検知するものであった。しかしながら、冷房時と暖房時とで判断基準を異ならせてもよい。以下では、図8を参照しながら、第1段階目の異常の検知処理の別の実施の形態について説明する。なお、図8は、本実施の形態にかける空気調和機1の制御部12による異常検知の第1段階目の処理手順を示すフローチャートである。
本実施の形態においても、前述の第1から第6の実施の形態と同様に構成され、暖房運転時に室外熱交換器9の温度を監視して冷媒漏れを検知している。その他の部分は第1の実施の形態と同一である。同図において、ステップS111〜S115及びステップS122〜S134は前述の図3と同一のため説明を省略する。
暖房運転の場合、制御部12は、ステップS117の判断に基づいて判定温度差ΔTに所定温度T2を代入すると(ステップS118)、ステップS119を実行する。なお、ステップS119では、制御部12は、室外熱交換器サーミスタ7を利用して、室外熱交換器9の温度Tjを検知する。
また、制御部12は、ステップS124の判断において判定時間tが経過していないと判断した場合(ステップS124においてNOである場合)、冷房運転時はステップS121からの処理を繰り返し、暖房運転時はステップS119からの処理を繰り返す。そして、つまり、冷房運転時は制御部12はステップS121〜S124を繰り返し、暖房運転時は制御部12はステップS119とステップS122〜S124を繰り返す。これにより、制御部12は、判定時間t内の室内熱交換器20または室外熱交換器9の最高温度Tmax及び最低温度Tminを取得することができる。
なお、本実施の形態において、ステップS121を省いてステップS120の移行先をステップS119にしてもよい。すなわち、冷房運転時に室外熱交換器9の温度を監視して冷媒漏れを判断してもよい。しかしながら、冷房運転時は室外が高温のため室外熱交換器9よりも室内熱交換器20の方が温度変化が大きい。このため、本実施の形態のように室内熱交換器20の温度を監視して冷媒漏れを判断する方がより望ましい。
また、冷房運転時に室外熱交換器の温度を検知する構成や、暖房運転時に室内熱交換器の温度を検知する構成にすることも可能である。
<第10の実施の形態>
上記第1〜第8の実施の形態においては、外気温度に応じて判定温度を切り替えるものであった。しかしながら、判定温度は一定であってもよい。以下では、図9を参照しながら、第1段階目の異常の検知処理の別の実施の形態について説明する。なお、図9は、本実施の形態にかける空気調和機1の制御部12による異常検知の第1段階目の処理手順を示すフローチャートである。
本実施の形態においても、前述の第1から第6の実施の形態と同様に構成され、より詳細には図3のステップS112〜S115が省略されている。その他の部分は第1の実施の形態と同一であるため、ここでは説明を繰り返さない。
本実施の形態によると、制御部12は、圧縮機3の駆動後に室内熱交換器20の温度を監視して判定時間t内の最高温度Tmaxと最低温度Tminとの温度差ΔTjが判定温度差ΔTよりも小さい時に冷媒漏れと判断するので、暖房運転時に室外熱交換器9から流入する低温の冷媒により室内熱交換器20が一時降温しても冷媒漏れがない場合は所定量の昇温を検知できる。
尚、第1の実施の形態のように室外の温度Toに応じて判定時間tを可変していないが、室外の温度が例えば−10℃以下になりにくい状況において本実施の形態によって誤検知することなく冷媒漏れを正確に検知することができる。また、第9の実施の形態(図8)のステップS112〜S115を省略してもよい。
<第11の実施の形態>
なお、第1〜第10の実施の形態において、圧縮機3、四方弁4、電子膨張弁5及び室外送風機8を制御部12に替えて室外機2に別途設けた室外機用制御部により制御してもよい。この時、室外機用制御部は制御部12との間で通信を行い、制御部12から温度情報及び指示内容等を受信する。また、室外機用制御部には室外機内の外気温サーミスタ6や室外熱交換器サーミスタ7から温度情報が入力される。圧縮機3、四方弁4、電子膨張弁5及び室外送風機8は制御部12からの受信情報や外気温サーミスタ6等の温度情報等に基づいて室外機用制御部により制御される。
<第12の実施の形態>
上記の第1〜第11の実施の形態おいては、N回連続して室内熱交換器20の温度差ΔTjが判定温度差ΔTよりも小さく冷媒漏れと判断された場合(たとえば、ステップS133においてYESである場合)に、制御部12が、第2段階目の異常検知処理を実行していた。しかしながら、第2段階目の異常検知処理が準備されているため、第9の実施の形態として、1回でも、室内熱交換器20の温度差ΔTjが判定温度差ΔTよりも小さく冷媒漏れと判断された場合(たとえば、ステップS133においてYESである場合)に、制御部12が第2段階目の異常検知処理を実行してもよい。
逆に、上記の第1〜第11の実施の形態おいては、圧縮機3の回転数を1回だけ変化させているが、圧縮機3の回転数を複数回変化させて電流の変化に基づいて複数回、第2段階目の異常検知処理を行ってもよい。
<第13の実施の形態>
上記の第1〜第12の実施の形態おいては、第1段階目として熱交換器の近傍の温度に基づいて異常を判断してから、第2段階目として圧縮機3の回転数を変化させて電流の変化に基づいて異常を判断している。しかしながら、第1段階目として圧縮機3の回転数を変化させて電流の変化に基づいて異常を判断してから、第2段階目として熱交換器の近傍の温度に基づいて異常を判断してもよい。あるいは、熱交換器の近傍の温度に基づいて異常を判断せずに、圧縮機3の回転数を変化させて電流の変化に基づいて異常を判断してよい。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1 :空気調和機
2 :室外機
3 :圧縮機
4 :四方弁
5 :電子膨張弁
6 :外気温サーミスタ
7 :室外熱交換器サーミスタ
8 :室外送風機
9 :室外熱交換器
10 :電流検出部
11 :室内機
12 :制御部
13 :室内送風機
14 :室内熱交換器サーミスタ
15 :室内サーミスタ
16 :ルーバー
17 :記憶部
18 :表示部
19 :受信部
20 :室内熱交換器
21 :リモートコントローラ

Claims (5)

  1. 圧縮機を含む空気調和機構と、
    電流検出部と、
    制御部とを備え、前記制御部は、
    前記圧縮機の回転数を第1の所定量変化させたときに、電流値が第2の所定量よりも変化した場合に、異常がないと判断し、
    前記圧縮機の回転数を前記第1の所定量変化させたときに、電流値が前記第2の所定量変化しない場合に、異常があると判断する、温度調節装置。
  2. 圧縮機を含む空気調和機構と、
    電流検出部と、
    制御部とを備え、前記制御部は、
    前記圧縮機の回転数を第1の所定割合変化させたときに、電流値が第2の所定割合よりも変化した場合に、異常がないと判断し、
    前記圧縮機の回転数を前記第1の所定割合変化させたときに、電流値が前記第2の所定割合変化しない場合に、異常があると判断する、温度調節装置。
  3. 前記空気調和機構は熱交換器と前記熱交換器付近の冷媒の温度を測定するための温度センサとをさらに含み、
    前記制御部は、運転開始から所定時間経過したときに、前記熱交換器付近の冷媒の温度が第3の所定量変化しない場合に、請求項1または2の判断を行う、請求項1または2に記載の温度調節装置。
  4. 圧縮機を含む空気調和機構と電流検出部と制御部とを備える温度調節装置における制御方法であって、
    前記制御部が、前記圧縮機の回転数を第1の所定量変化させるステップと、
    前記制御部が、電流値が第2の所定量よりも変化したか否かを判断するステップと、
    前記制御部が、前記電流値が第2の所定量よりも変化した場合に異常がないと判断し、前記電流値が前記第2の所定量変化しない場合に異常があると判断するステップとを備える、温度調節装置における制御方法。
  5. 圧縮機を含む空気調和機構と電流検出部と制御部とを備える温度調節装置における制御方法であって、
    前記制御部が、前記圧縮機の回転数を第1の所定割合変化させたステップと、
    前記制御部が、電流値が第2の所定割合よりも変化したか否かを判断するステップと、
    前記制御部が、前記電流値が第2の所定割合よりも変化した場合に異常がないと判断し、前記電流値が前記第2の所定量変化しない場合に異常があると判断するステップとを備える、温度調節装置における制御方法。
JP2014149624A 2014-07-23 2014-07-23 温度調節装置および温度調節装置の制御方法 Pending JP2016023885A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014149624A JP2016023885A (ja) 2014-07-23 2014-07-23 温度調節装置および温度調節装置の制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014149624A JP2016023885A (ja) 2014-07-23 2014-07-23 温度調節装置および温度調節装置の制御方法

Publications (1)

Publication Number Publication Date
JP2016023885A true JP2016023885A (ja) 2016-02-08

Family

ID=55270803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014149624A Pending JP2016023885A (ja) 2014-07-23 2014-07-23 温度調節装置および温度調節装置の制御方法

Country Status (1)

Country Link
JP (1) JP2016023885A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107091516A (zh) * 2017-06-08 2017-08-25 广东美的暖通设备有限公司 电流控制方法、电流控制系统和空调器
CN109579226A (zh) * 2018-09-30 2019-04-05 广东美的制冷设备有限公司 空调的运行能力检测方法及系统
CN109612024A (zh) * 2018-11-14 2019-04-12 浙江大学 一种空气处理机组主动式故障检测与诊断的方法
CN111089391A (zh) * 2018-10-23 2020-05-01 成都毅诚机电工程有限公司 一种空调器自检报警系统
CN112178868A (zh) * 2020-09-23 2021-01-05 科华恒盛股份有限公司 空调故障检测方法及装置
KR20210068567A (ko) * 2018-10-19 2021-06-09 그리 일렉트릭 어플라이언시즈, 인코포레이티드 오브 주하이 가변 용량 압축기 작동 모드 판단 방법 및 장치, 가변 용량 압축기, 및 에어 컨디셔너
JP7425353B1 (ja) 2022-09-30 2024-01-31 ダイキン工業株式会社 空調機制御システム、情報処理装置及び空調機制御方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107091516A (zh) * 2017-06-08 2017-08-25 广东美的暖通设备有限公司 电流控制方法、电流控制系统和空调器
CN107091516B (zh) * 2017-06-08 2019-10-08 广东美的暖通设备有限公司 电流控制方法、电流控制系统和空调器
CN109579226A (zh) * 2018-09-30 2019-04-05 广东美的制冷设备有限公司 空调的运行能力检测方法及系统
CN109579226B (zh) * 2018-09-30 2021-07-20 广东美的制冷设备有限公司 空调的运行能力检测方法及系统
KR20210068567A (ko) * 2018-10-19 2021-06-09 그리 일렉트릭 어플라이언시즈, 인코포레이티드 오브 주하이 가변 용량 압축기 작동 모드 판단 방법 및 장치, 가변 용량 압축기, 및 에어 컨디셔너
JP2022504531A (ja) * 2018-10-19 2022-01-13 グリー エレクトリック アプライアンシーズ インク オブ ズーハイ 可変容量圧縮機の運転モードの判断方法、装置、可変容量圧縮機及びエアコン
JP7165263B2 (ja) 2018-10-19 2022-11-02 グリー エレクトリック アプライアンシーズ インク オブ ズーハイ 可変容量圧縮機の運転モードの判断方法、装置、可変容量圧縮機及びエアコン
KR102547287B1 (ko) * 2018-10-19 2023-06-23 그리 일렉트릭 어플라이언시즈, 인코포레이티드 오브 주하이 가변 용량 압축기 작동 모드 판단 방법 및 장치, 가변 용량 압축기, 및 에어 컨디셔너
US11808261B2 (en) 2018-10-19 2023-11-07 Gree Electric Appliances, Inc. Of Zhuhai Variable capacity compressor operation mode determination method and device, variable capacity compressor, and air conditioner
CN111089391A (zh) * 2018-10-23 2020-05-01 成都毅诚机电工程有限公司 一种空调器自检报警系统
CN109612024A (zh) * 2018-11-14 2019-04-12 浙江大学 一种空气处理机组主动式故障检测与诊断的方法
CN112178868A (zh) * 2020-09-23 2021-01-05 科华恒盛股份有限公司 空调故障检测方法及装置
JP7425353B1 (ja) 2022-09-30 2024-01-31 ダイキン工業株式会社 空調機制御システム、情報処理装置及び空調機制御方法
WO2024070060A1 (ja) * 2022-09-30 2024-04-04 ダイキン工業株式会社 空調機制御システム、情報処理装置及び空調機制御方法

Similar Documents

Publication Publication Date Title
JP2016023885A (ja) 温度調節装置および温度調節装置の制御方法
JP6636173B2 (ja) 空気調和装置及び空気調和システム
JP7257782B2 (ja) 空気調和システム
US10001294B2 (en) Air-conditioning apparatus
JP6071648B2 (ja) 空気調和装置
KR20100010237A (ko) 공기 조화기의 제어 방법
AU2014411657B2 (en) Air-conditioning apparatus
EP3441689B1 (en) Air conditioner
JP6595288B2 (ja) 空気調和機
JP2007218578A (ja) 空気調和機及びその制御方法
WO2014103620A1 (ja) 冷凍装置
JP2008232588A (ja) 空気調和装置
JPWO2016189626A1 (ja) 空気調和装置及び室内機
US11378297B2 (en) Air conditioner
JP2008045792A (ja) 冷媒量検知方法、冷媒量検知装置、および冷媒量検知装置を備える空調装置。
JP5900463B2 (ja) 空気調和システム
JP2008267621A (ja) 空気調和機
JP6551437B2 (ja) 空調機
WO2019171485A1 (ja) ヒートポンプシステム
JP6042024B2 (ja) 空気調和装置
JP2006207932A (ja) 空気調和機
KR20120085403A (ko) 냉매 순환 장치 및 그의 제어방법
CN109253528B (zh) 空调及其控制方法
JP6519098B2 (ja) 空気調和装置
JP2011127805A (ja) 空気調和装置