WO2020077770A1 - Céramique à multiples éléments de haute entropie, son procédé de préparation, et son utilisation - Google Patents

Céramique à multiples éléments de haute entropie, son procédé de préparation, et son utilisation Download PDF

Info

Publication number
WO2020077770A1
WO2020077770A1 PCT/CN2018/120033 CN2018120033W WO2020077770A1 WO 2020077770 A1 WO2020077770 A1 WO 2020077770A1 CN 2018120033 W CN2018120033 W CN 2018120033W WO 2020077770 A1 WO2020077770 A1 WO 2020077770A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
powder
oxide
solid melt
melt powder
Prior art date
Application number
PCT/CN2018/120033
Other languages
English (en)
Chinese (zh)
Inventor
郭伟明
张岩
牛文彬
张威
林华泰
Original Assignee
广东工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东工业大学 filed Critical 广东工业大学
Publication of WO2020077770A1 publication Critical patent/WO2020077770A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6265Thermal treatment of powders or mixtures thereof other than sintering involving reduction or oxidation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3256Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/421Boron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • C04B2235/9615Linear firing shrinkage
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • C04B2235/9684Oxidation resistance

Definitions

  • the invention belongs to the technical field of surface functional thin film materials, and more specifically, relates to a ceramic with multi-element high entropy and a preparation method and application thereof.
  • High-entropy ceramics have five or more kinds of components. If they become solid-phase single-phase solid-melt ceramics, they can easily obtain solid solution phases and nanostructures with high thermal stability due to their high entropy values. High-entropy ceramics have different characteristics, and their performance is superior to traditional ceramic materials. Multi-component high-entropy ceramics is a new ceramic world that can be synthesized, processed, analyzed, and applied. It has high academic research value and great industrial development potential.
  • high-entropy ceramics also have high strength, hardness, excellent wear resistance, excellent high temperature resistance, good structural stability, and good corrosion resistance and oxidation resistance.
  • Their preparation uses commercially available boride powders, and ceramic materials are sintered after high-energy ball milling. However, only a small number of reports have successfully prepared single-phase high-entropy ceramics. Therefore, there are still many places to be studied about these materials and their characteristics.
  • the ceramic has a uniform solid solution phase, stable component, high entropy ceramic with excellent mechanical properties and oxidation resistance.
  • Another object of the present invention is to provide a preparation method of the above-mentioned multi-element high-entropy ceramic.
  • Still another object of the present invention is to provide the above-mentioned applications with multi-element high-entropy ceramics.
  • a ceramic with multi-element high entropy is based on Me1 oxide, Me2 oxide, Me3 oxide, Me4 oxide, Me5 oxide and amorphous boron powder.
  • the mixed powder is mixed, and the green body obtained by molding is placed in a graphite crucible.
  • x 0.2
  • y 0.2
  • z 0.2
  • n 0.2
  • m 0.2.
  • the relative density of the ceramic is> 95%
  • the hardness is 25 to 35 GPa
  • the fracture toughness is 2 to 8 MPa ⁇ m 1/2
  • the grain size is 0.1 to 1.1 ⁇ m
  • the weight of the ceramic after heat treatment at 1000 to 1500 ° C The rate of change is 0.3 to 1%.
  • the purity of the solid melt powder (Me1xMe2yMe3zMe4nMe5m) B 2 is 99.0-99.9wt%
  • the particle size of the solid melt powder is 0.1-1 ⁇ m
  • the oxygen content of the solid melt powder is 0.1 -0.5wt%
  • the carbon content of the solid melt powder is 0.1-0.5wt%.
  • Me1, Me2, Me3, Me4 and Me5 in the solid melt powder (Me1xMe2yMe3zMe4nMe5m) B 2 are Hf, Zr, Ti, Nb, Ta, Mo or Cr.
  • the solvent is ethanol, propanol, methanol or acetone.
  • the protective atmosphere is N 2 or Ar.
  • the heating rate to 800 to 1200 ° C and the heating rate to 1400 to 1600 ° C are both 5 to 20 ° C / min, the time for holding I and II are 0.5 to 2h; the time for calcining It is 1-30 min, the calcination pressure is 10-100 MPa, and the rate of temperature increase when the temperature is raised to 1800-2200 ° C is 100-400 ° C / min.
  • the preparation method of the ceramic with multiple high entropy includes the following specific steps:
  • the invention has a multi-element high-entropy ceramic, which uses single-phase solid-melt powder (Me1xMe2yMe3zMe4nMe5m) B 2 as a raw material, and solid solution between pentad metals of Me1, Me2, Me3, Me4, and Me5. After spark plasma sintering, due to its rapid cooling rate, it is difficult to have a solid solution phase.
  • the ceramic obtained is still (Me1 2 Me2 2 Me3 2 Me4 2 Me5 2 ) B 2 single-phase multi-element high-entropy ceramic body, composition Uniform, stable composition, excellent performance, and a powder has the properties of multi-metal.
  • the present invention has the following beneficial effects:
  • the present invention adopts the ultrafine high-entropy ceramic powder self-synthesized by the solid-phase method, and prepares multiple high-entropy ceramic materials by spark plasma sintering. Studies have shown that the high-entropy ceramic powder synthesized by the solid-phase method has fine grains and uniform components . Raw material powder with small grain size and uniform composition, and the high-entropy ceramic material sintered has excellent performance.
  • the reaction raw material is a single-phase solid melt powder.
  • the method achieves the chemical uniformity of the raw material components. This also facilitates the formation of a uniform solid melt phase of its sintered material, and also saves energy and costs.
  • the high-entropy ceramic material prepared by the method of the present invention because the raw material is a solid melt powder, forming a solid melt can promote atom diffusion, can achieve compact sintering at low temperature, improve sintering performance, and improve material performance.
  • the method of the present invention uses SPS to achieve rapid preparation of high-entropy ceramic materials, greatly reducing the time for grain growth, obtaining fine-grain ceramics, low cost of raw material powder, and raw material powder relative to commercially purchased boride
  • the powder is fine, it diffuses faster during the sintering process, and it is easier to sinter a single-phase high-entropy ceramic material, which will make the structure of the high-entropy ceramic material smaller and improve the performance of the material.
  • Fig. 1 is an XRD pattern of (Hf 0.2 Mo 0.2 Ta 0.2 Nb 0.2 Ti 0.2 ) B 2 high-entropy solid melt powder prepared in Example 2.
  • FIG. 2 is an XRD pattern of the B 2 high-entropy ceramic prepared in Example 2 after SPS sintering (Hf 0.2 Mo 0.2 Ta 0.2 Nb 0.2 Ti 0.2 ).
  • the green body is placed in a graphite crucible, and heated to 1200 ° C at a rate of 10 ° C / min for 1h, and then heated to 1600 ° C for 1h at a rate of 10 ° C / min, after vacuum heat treatment Obtained (Hf 0.2 Zr 0.2 Nb 0.2 Ta 0.2 Cr 0.2 ) B 2 ultrafine high-entropy ceramic solid melt powder.
  • the particle size of the multi-component high-entropy ceramic solid melt powder of this example was measured by laser particle size analysis to be 0.34 ⁇ m, and the oxygen content of the solid melt powder was 0.1 wt% measured by a carbon-oxygen analyzer.
  • the carbon of the solid melt powder The content is 0.02 wt%.
  • the prepared ceramic material with multiple high entropy forms a uniform single-phase solid melt.
  • the relative density is 99%, the hardness is 30 GPa, the fracture toughness is 6 MPa ⁇ m 1/2 , the grain size is 0.50 ⁇ m, the ceramic has good oxidation resistance, and the weight increases by 0.85% after heat treatment at 1200 ° C.
  • the green body is placed in a graphite crucible, and heated to 1100 ° C at a rate of 10 ° C / min for 1h, and then heated to 1550 ° C for 1h at a rate of 10 ° C / min, after vacuum heat treatment (Hf 0.2 Mo 0.2 Ta 0.2 Nb 0.2 Ti 0.2 ) B 2 ultrafine high-entropy solid melt powder was obtained.
  • FIG. 1 is an XRD pattern of (Hf 0.2 Mo 0.2 Ta 0.2 Nb 0.2 Ti 0.2 ) B 2 high-entropy solid melt powder prepared in this example.
  • (a) is oxide mixed powder
  • (b) is (Hf 0.2 Mo 0.2 Ta 0.2 Nb 0.2 Ti 0.2 ) B 2 multivariate high-entropy solid melt powder, it can be seen from FIG.
  • FIG. 2 is an XRD pattern of the B 2 high-entropy ceramic after SPS sintering (Hf 0.2 Mo 0.2 Ta 0.2 Nb 0.2 Ti 0.2 ) prepared in this example.
  • (a) is (Hf 0.2 Mo 0.2 Ta 0.2 Nb 0.2 Ti 0.2 ) B 2 multi-component high-entropy solid melt powder
  • (b) is (Hf 0.2 Mo 0.2 Ta 0.2 Nb 0.2 Ti 0.2 ) B 2 multi-component high-entropy ceramic .
  • B 2 multi-component high-entropy solid melt powder has only one phase, compared with HfB 2 standard PDF card 65-86778, (Hf 0.2 Mo 0.2 Ta 0.2 Nb 0.2 Ti 0.2 )
  • the peak of B 2 shifts to a high angle, and the multicomponent high-entropy solid melt powder is a uniform solid melt phase. It shows that the multi-component high-entropy solid melt powder is still a homogeneous solid melt phase after SPS sintering.
  • the particle size of the solid melt powder of this embodiment was measured by laser particle size analysis to be 0.10 ⁇ m, the oxygen content of the solid melt powder was 0.08 wt%, and the carbon content of the solid melt powder was 0.01 wt% measured by a carbon-oxygen analyzer ,
  • the prepared ceramic material with multiple high entropy forms a uniform single-phase solid melt, its relative density is 99%, hardness 35GPa, fracture toughness 5MPa ⁇ m 1/2 , grain size is 0.10 ⁇ m, ceramic resistance The oxidation performance is good, and the weight increases by 0.35% after heat treatment at 1200 ° C.
  • the green body is put into a graphite crucible, and heated to 1000 ° C at a rate of 10 ° C / min for 1h, and then heated to 1550 ° C for 1h at a rate of 10 ° C / min.
  • vacuum heat treatment Hf 0.2 Zr 0.2 Nb 0.2 Mo 0.2 Cr 0.2
  • B 2 ultrafine high-entropy solid melt powder
  • the particle size of the solid melt powder of this embodiment was measured by laser particle size analysis to be 0.80 ⁇ m, and the oxygen content of the solid melt powder measured by a carbon-oxygen analyzer was 0.01 wt%, and the carbon content of the solid melt powder was 0.03 wt% ,
  • the prepared ceramic material with multiple high entropy forms a uniform single-phase solid melt, its relative density is 99%, hardness 25GPa, fracture toughness 8MPa ⁇ m 1/2 , grain size is 1.10 ⁇ m, ceramic resistance The oxidation performance is good, and the weight increases by 0.71% after heat treatment at 1200 ° C.
  • the green body is put into a graphite crucible, and heated to 1200 ° C at a rate of 10 ° C / min for 1h, and then heated to 1550 ° C for 1h at a rate of 10 ° C / min. Obtained (Hf 0.2 Ti 0.2 Nb 0.2 Ta 0.2 Cr 0.2 ) B 2 ultrafine high-entropy ceramic solid solution powder.
  • the particle size of the solid melt powder of this example was measured by laser particle size analysis to be 0.39 ⁇ m, the oxygen content of the solid melt powder measured by a carbon-oxygen analyzer was 0.15 wt%, and the carbon content of the solid solution powder was 0.01 wt%.
  • Preparation The obtained solid melt material with multiple high entropy forms a uniform single-phase solid melt with a relative density of 99%, a hardness of 30 GPa, a fracture toughness of 4.23 MPa ⁇ m 1/2 , and a grain size of 0.45 ⁇ m.
  • the oxidation resistance is good, and the weight is increased by 0.72% after heat treatment at 1400 ° C.
  • the green body is put into a graphite crucible, and heated to 1150 ° C for 1h at a rate of 10 ° C / min, and then heated to 1550 ° C for 1h at a rate of 10 ° C / min, after vacuum heat treatment Obtained (Hf 0.2 Zr 0.2 Ti 0.2 Ta 0.2 Cr 0.2 ) B 2 ultrafine high-entropy ceramic solid melt powder.
  • the particle size of the solid solution powder of this example was measured by laser particle size analysis to be 0.39 ⁇ m, the oxygen content of the solid melt powder was 0.13 wt%, and the carbon content of the solid melt powder was 0.02 wt% measured by a carbon-oxygen analyzer.
  • Preparation The obtained ceramic material with multiple high entropy forms a uniform single-phase solid melt, its relative density is 99%, the hardness is 35GPa, the fracture toughness is 6MPa ⁇ m 1/2 , the grain size is 0.52 ⁇ m, the oxidation resistance of the ceramic Good, the weight increased by 0.3% after heat treatment at 1500 °C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Products (AREA)

Abstract

La présente invention concerne une céramique à multiples éléments de haute entropie, son procédé de préparation, et son utilisation. Un oxyde de Me1, un oxyde de Me2, un oxyde de Me3, un oxyde de Me4, un oxyde de Me5 et une poudre de bore amorphe sont utilisés comme matières premières pour la céramique. La céramique est préparée par broyage à boulets et mélange des matières premières et compactage du mélange résultant en un corps cru ; par soumission du corps cru au traitement thermique dans un creuset en graphite sous vide pour obtenir une poudre fondue solide de (Me1xMe2yMe3zMe4nMe5m)B2 ; et par soumission de la poudre fondue solide au frittage par plasma d'étincelles par chauffage de la poudre fondue solide à 1 000 à 1 400 °C, puis en fournissant une atmosphère protectrice, suivi du chauffage jusqu'à 1 800 à 2 200 °C pour conduire la calcination, où 0,1 ≤ x ≤ 0,9, 0,1 ≤ y ≤ 0,9, 0,1 ≤ z ≤ 0,9, 0,1 ≤ n ≤ 0,9, et 0,1 ≤ m ≤ 0,9. La céramique à multiples éléments de haute entropie obtenue présente une densité relative > 95 %, une dureté de 25 à 35 GPa, une ténacité à la fracture de 2 à 8 MPa•m1/2, une taille de grain de 0,1 à 1,1 µm, et un taux de changement de poids de 0,3 à 1 % après traitement thermique à 1 000 à 1 500 °C.
PCT/CN2018/120033 2018-10-15 2018-12-10 Céramique à multiples éléments de haute entropie, son procédé de préparation, et son utilisation WO2020077770A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811196871.X 2018-10-15
CN201811196871.XA CN109516811B (zh) 2018-10-15 2018-10-15 一种具有多元高熵的陶瓷及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2020077770A1 true WO2020077770A1 (fr) 2020-04-23

Family

ID=65772640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/120033 WO2020077770A1 (fr) 2018-10-15 2018-12-10 Céramique à multiples éléments de haute entropie, son procédé de préparation, et son utilisation

Country Status (2)

Country Link
CN (1) CN109516811B (fr)
WO (1) WO2020077770A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022204556A1 (fr) * 2021-03-26 2022-09-29 Nutech Ventures Matériaux composites métal/céramique à haute entropie pour environnements rigoureux
CN115557793A (zh) * 2022-09-19 2023-01-03 广东工业大学 一种具有细晶、高硬度和高韧性的高熵陶瓷及其制备方法和应用

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110078507B (zh) * 2019-06-18 2020-12-18 昆明理工大学 一种高熵稀土增韧钽酸盐陶瓷及其制备方法
CN110330341B (zh) * 2019-07-24 2021-09-14 哈尔滨工业大学 一种高纯超细过渡金属碳化物单相高熵陶瓷粉体及其制备方法
CN110511035A (zh) * 2019-08-05 2019-11-29 广东工业大学 一种高韧性高耐磨性的高熵陶瓷及其制备方法和应用
CN110526716A (zh) * 2019-08-07 2019-12-03 广东工业大学 一种具有高韧性和高导热的硼化物陶瓷及其制备方法和应用
CN110735076B (zh) * 2019-09-04 2021-05-11 广东工业大学 一种高熵金属陶瓷及其制备方法和应用
CN110606748A (zh) * 2019-09-04 2019-12-24 广东工业大学 一种氧化铝增强高熵硼化物陶瓷及其制备方法和应用
CN110615681A (zh) * 2019-09-23 2019-12-27 航天材料及工艺研究所 一种多孔高熵六硼化物陶瓷及其制备方法
CN110776311B (zh) * 2019-11-06 2021-07-30 常州大学 一种热压烧结制备钙钛矿型复合氧化物高熵陶瓷的方法
CN110776310B (zh) * 2019-11-06 2021-09-28 常州大学 一种离子补偿混合物共沉淀制备钙钛矿型复合氧化物高熵陶瓷粉的方法
CN110818430B (zh) * 2019-11-12 2021-01-19 西安交通大学 一种均匀的高熵氧化物陶瓷亚微米级球形粉体及其制备方法
CN110759733B (zh) * 2019-11-19 2022-05-31 湘潭大学 一种Y0.5Dy0.5Ta0.5Nb0.5O4钽系陶瓷材料及其制备方法
CN110845237B (zh) * 2019-11-28 2022-04-12 太原理工大学 高熵陶瓷粉体及其制备方法和高熵陶瓷块体
CN111423236B (zh) * 2020-03-22 2021-05-14 华南理工大学 一种(Hf0.25Ti0.25Zr0.25W0.25)N高熵陶瓷粉体及其制备方法
CN113264769B (zh) * 2021-07-08 2022-07-22 昆明理工大学 一种高熵稳定稀土钽酸盐/铌酸盐陶瓷及其制备方法
CN113636842B (zh) * 2021-07-29 2023-02-10 安徽工业大学科技园有限公司 一种高熵二硼化物-碳化硼复相陶瓷、制备方法及其应用
CN113620722B (zh) * 2021-09-06 2022-07-01 西北工业大学 一种稀土铌酸盐高熵粉体、多孔高熵陶瓷及制备方法和应用
CN114804889B (zh) * 2022-05-24 2022-12-30 深圳技术大学 一种纳/微米结构过渡金属硼化物高熵陶瓷块体材料及其制备方法
CN115073183B (zh) * 2022-06-27 2023-06-13 山东大学 一种高熵硼化物纳米粉体及其溶胶-凝胶制备方法
CN117383943A (zh) * 2023-11-02 2024-01-12 中国科学院兰州化学物理研究所 一种高温摩擦自适应单相自润滑高熵陶瓷及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104860327A (zh) * 2014-02-21 2015-08-26 中国科学院宁波材料技术与工程研究所 一种具有柱状晶粒的ZrB2粉体的制备方法
WO2016116562A1 (fr) * 2015-01-22 2016-07-28 Swerea Ivf Ab Procédé de fabrication additive comprenant une granulation par congélation permettant la conception d'alliage souple
CN106517225A (zh) * 2016-11-15 2017-03-22 广东工业大学 一种超细M1‑xTixB2粉体的制备方法
CN106854080A (zh) * 2016-11-15 2017-06-16 中南大学 一种致密超细晶碳化硼陶瓷材料降低烧结温度的制备方法
CN108455623A (zh) * 2018-05-29 2018-08-28 广东工业大学 一种超细过渡金属硼化物粉体及其制备方法和应用
CN108546130A (zh) * 2018-07-19 2018-09-18 广东工业大学 一种超高温陶瓷及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101102977B (zh) * 2005-01-14 2010-10-27 李根法 生产陶瓷或陶瓷焊接用的共晶粉末添加剂及其制备方法
DE102006013729A1 (de) * 2006-03-24 2007-10-04 Esk Ceramics Gmbh & Co. Kg Gesinterter Werkstoff, sinterfähige Pulvermischung, Verfahren zur Herstellung des Werkstoffs und dessen Verwendung
CN103130508B (zh) * 2011-12-02 2015-03-25 中国科学院上海硅酸盐研究所 一种制备织构化硼化物基超高温陶瓷的方法
CN103011827A (zh) * 2012-12-20 2013-04-03 复旦大学 一种原位引入硼为添加剂的二硼化锆陶瓷的制备方法
CN107282937B (zh) * 2016-04-12 2020-08-11 海南大学 一种超细多元复合陶瓷粉体及其制备方法
CN108439986A (zh) * 2018-05-09 2018-08-24 西北工业大学 (HfTaZrTiNb)C高熵陶瓷粉体及高熵陶瓷粉体和高熵陶瓷块体的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104860327A (zh) * 2014-02-21 2015-08-26 中国科学院宁波材料技术与工程研究所 一种具有柱状晶粒的ZrB2粉体的制备方法
WO2016116562A1 (fr) * 2015-01-22 2016-07-28 Swerea Ivf Ab Procédé de fabrication additive comprenant une granulation par congélation permettant la conception d'alliage souple
CN106517225A (zh) * 2016-11-15 2017-03-22 广东工业大学 一种超细M1‑xTixB2粉体的制备方法
CN106854080A (zh) * 2016-11-15 2017-06-16 中南大学 一种致密超细晶碳化硼陶瓷材料降低烧结温度的制备方法
CN108455623A (zh) * 2018-05-29 2018-08-28 广东工业大学 一种超细过渡金属硼化物粉体及其制备方法和应用
CN108546130A (zh) * 2018-07-19 2018-09-18 广东工业大学 一种超高温陶瓷及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TALLARITA G. ET AL.: "Novel Processing Route for the Fabrication of Bulk High-entropy", SCRIPTA MATERIALIA, vol. 158, 1 September 2018 (2018-09-01), pages 100 - 104, XP085477495, ISSN: 1395-6462, DOI: 10.1016/j.scriptamat.2018.08.039 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022204556A1 (fr) * 2021-03-26 2022-09-29 Nutech Ventures Matériaux composites métal/céramique à haute entropie pour environnements rigoureux
CN115557793A (zh) * 2022-09-19 2023-01-03 广东工业大学 一种具有细晶、高硬度和高韧性的高熵陶瓷及其制备方法和应用
CN115557793B (zh) * 2022-09-19 2023-06-02 广东工业大学 一种具有细晶、高硬度和高韧性的高熵陶瓷及其制备方法和应用

Also Published As

Publication number Publication date
CN109516811A (zh) 2019-03-26
CN109516811B (zh) 2021-04-06

Similar Documents

Publication Publication Date Title
WO2020077770A1 (fr) Céramique à multiples éléments de haute entropie, son procédé de préparation, et son utilisation
CN109516812B (zh) 一种超细高熵固熔体粉末及其制备方法和应用
CN110002879B (zh) 一种致密超硬的高熵硼化物陶瓷及其制备方法和应用
CN109678523B (zh) 一种具有高温强度和硬度的高熵陶瓷及其制备方法和应用
CN109879669B (zh) 一种具有高强度的高熵陶瓷复合材料及其制备方法和应用
Li et al. Spark plasma sintering of TiC–ZrC composites
Sonber et al. Investigations on synthesis of HfB2 and development of a new composite with TiSi2
US20210323875A1 (en) Short-Fiber-Reinforced Oriented MAX-Phase Ceramic-Based Composite and Preparation Method Therefor
CN110698204B (zh) 一种max相陶瓷的制备方法
US20090105062A1 (en) Sintered Wear-Resistant Boride Material, Sinterable Powder Mixture, for Producing Said Material, Method for Producing the Material and Use Thereof
CN103182506B (zh) 一种TiCp/M2高速钢复合材料及其SPS制备方法
CN112830790B (zh) 一种铪铌基三元固溶体硼化物的导电陶瓷及其制备方法和应用
CN112830791A (zh) 一种高熵陶瓷及其制备方法和应用
Feng et al. Nano-TaC powder synthesized using modified spark plasma sintering apparatus and its densification
WO2022089379A1 (fr) Procédé de préparation de matériau céramique au nitrure de silicium/carbure de titane basé sur le frittage flash
WO2019227811A1 (fr) Poudre de métal de transition de borure ultrafine, son procédé de préparation et son application
CN106116586A (zh) 一种钼合金MoSi2‑ZrO2‑Y2O3涂层及其制备方法和应用
Duan et al. Effect of MgO doping on densification and grain growth behavior of Gd 2 Zr 2 O 7 ceramics by microwave sintering process
CN109665848B (zh) 一种超高温SiC-HfB2复合陶瓷及其制备方法和应用
Toksoy et al. Densification and characterization of rapid carbothermal synthesized boron carbide
CN104844214B (zh) 致密化高强度碳化锆和碳化铪陶瓷材料及其低温制备方法
Zhu et al. Effects of TaB2 and TiB2 on the grain growth behavior and kinetics of HfB2 ceramics during pressureless sintering
Wang et al. Spark plasma sintering of polycrystalline La0. 6Ce0. 3Pr0. 1B6–ZrB2 composites
JP2014055074A (ja) Ti3SiC2常圧焼結体及びその製造方法
CN112830792B (zh) 一种高硬度的铪基三元固溶体硼化物陶瓷及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18937490

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18937490

Country of ref document: EP

Kind code of ref document: A1