WO2020075866A1 - 架橋セパレータを用いたリチウムイオン電池 - Google Patents

架橋セパレータを用いたリチウムイオン電池 Download PDF

Info

Publication number
WO2020075866A1
WO2020075866A1 PCT/JP2019/040343 JP2019040343W WO2020075866A1 WO 2020075866 A1 WO2020075866 A1 WO 2020075866A1 JP 2019040343 W JP2019040343 W JP 2019040343W WO 2020075866 A1 WO2020075866 A1 WO 2020075866A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage device
separator
electricity storage
elastic modulus
silane
Prior art date
Application number
PCT/JP2019/040343
Other languages
English (en)
French (fr)
Inventor
シュン 張
諒 黒木
悠希 福永
小林 博実
三都子 齋藤
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN202210751481.4A priority Critical patent/CN115051106A/zh
Priority to EP22169036.5A priority patent/EP4053986A3/en
Priority to KR1020217034639A priority patent/KR102466829B1/ko
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to KR1020217034635A priority patent/KR102467607B1/ko
Priority to EP23157951.7A priority patent/EP4220844A3/en
Priority to KR1020217034638A priority patent/KR102466827B1/ko
Priority to KR1020237021105A priority patent/KR102632166B1/ko
Priority to CN202210749649.8A priority patent/CN114976483A/zh
Priority to EP19870116.1A priority patent/EP3866219A4/en
Priority to KR1020237021108A priority patent/KR102655732B1/ko
Priority to KR1020247011220A priority patent/KR20240049846A/ko
Priority to EP23166690.0A priority patent/EP4224613A3/en
Priority to CN202210750993.9A priority patent/CN115051117A/zh
Priority to EP23176156.0A priority patent/EP4235934A3/en
Priority to JP2020507143A priority patent/JP6898512B2/ja
Priority to CN201980007742.8A priority patent/CN111630687B/zh
Priority to EP22169029.0A priority patent/EP4068488A1/en
Priority to EP23176142.0A priority patent/EP4235933A3/en
Priority to KR1020207012551A priority patent/KR102435806B1/ko
Priority to EP23176153.7A priority patent/EP4235939A3/en
Priority to CN202211425326.XA priority patent/CN115810870A/zh
Priority to CN202210752468.0A priority patent/CN115036645A/zh
Priority to KR1020227039349A priority patent/KR102601002B1/ko
Priority to EP22169052.2A priority patent/EP4064443A3/en
Priority to US16/957,421 priority patent/US11588208B2/en
Priority to KR1020227015370A priority patent/KR102611025B1/ko
Priority to KR1020237004271A priority patent/KR102609224B1/ko
Priority to KR1020237004268A priority patent/KR102609222B1/ko
Priority to KR1020217034641A priority patent/KR102384050B1/ko
Priority to CN202211419385.6A priority patent/CN115642366A/zh
Priority to EP23176183.4A priority patent/EP4235940A3/en
Priority to CN202211426208.0A priority patent/CN115799602A/zh
Publication of WO2020075866A1 publication Critical patent/WO2020075866A1/ja
Priority to US17/967,012 priority patent/US20230111013A1/en
Priority to US17/967,002 priority patent/US20230117020A1/en
Priority to US17/966,990 priority patent/US11837750B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/365Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • H01M50/406Moulding; Embossing; Cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/494Tensile strength
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/05Elimination by evaporation or heat degradation of a liquid phase
    • C08J2201/0502Elimination by evaporation or heat degradation of a liquid phase the liquid phase being organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/054Precipitating the polymer by adding a non-solvent or a different solvent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/26Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/10Block- or graft-copolymers containing polysiloxane sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/10Homopolymers or copolymers of propene
    • C08J2423/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/26Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers modified by chemical after-treatment
    • C08J2423/30Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers modified by chemical after-treatment by oxidation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/26Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers modified by chemical after-treatment
    • C08J2423/36Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers modified by chemical after-treatment by reaction with nitrogen-containing compounds, e.g. by nitration
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/10Block- or graft-copolymers containing polysiloxane sequences
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electricity storage device separator and a method for crosslinking the same, an electricity storage device assembly kit, an electricity storage device manufacturing method, and the like.
  • Microporous membranes are widely used as separation or selective permeation separation membranes for various substances, and separators.
  • Examples of their applications include microfiltration membranes, fuel cell separators, condenser separators, or functional materials. Examples thereof include a base material of a functional film for filling the inside of the resin to exhibit a new function, a separator for an electricity storage device, and the like.
  • the polyolefin microporous film is preferably used as a lithium ion battery separator that is widely used in notebook personal computers, mobile phones, digital cameras and the like.
  • Patent Document 1 describes that the higher-order physical properties of a polyolefin resin, which is an essential component of a lithium ion battery separator, are adjusted. Further, as shown in Patent Document 2, in a specific crystallinity and gel fraction region, heat generation due to a short circuit inside the battery is suppressed by a shutdown function, and even if a high temperature portion is partially generated in the battery cell. It is known that the safety of the battery can be ensured by having the property of not rupturing the membrane (breakdown at 170 ° C. or higher). Regarding Patent Documents 1 and 2, more specifically, it has been experimentally found that high-temperature film rupture properties can be exhibited by constructing a silane cross-linked portion (gelation structure) in a polyolefin separator.
  • Patent Documents 1 to 6 describe a silane crosslinked structure formed by contact between a silane-modified polyolefin-containing separator and water.
  • Patent Document 8 describes a crosslinked structure formed by ring-opening of norbornene by irradiation with ultraviolet rays, electron beams or the like.
  • Patent Document 9 describes that the insulating layer of the separator has a (meth) acrylic acid copolymer having a crosslinked structure, a styrene-butadiene rubber binder, and the like.
  • a separator has been proposed in which the thickness ratio of the A layer having the shutdown characteristic and the B layer containing the aramid resin and the inorganic material is adjusted within a predetermined range (see Patent Document 11).
  • the material for the electricity storage device separator has a chemical structure that is inert to electrochemical reactions or other chemical reactions, so the development and practical application of the microporous polyolefin membrane is widely expanded. Has been done.
  • polyolefin is used as the resin, there is a limit to the performance improvement even if the mechanical microporous structure of the separator is improved.
  • the separator's heat resistance stability above the melting point of the polyolefin or the electronegativity of the olefin unit the affinity or liquid retention with the electrolyte is insufficient, resulting in the formation of Li ions or solvated ion clusters thereof.
  • the transparency in the separator cannot be satisfied.
  • JP, 9-216964 A International Publication No. 97/44839 JP-A-11-144700 JP, 11-172036, A JP 2001-176484 A JP-A-2000-319441 JP, 2017-203145, A JP, 2011-071128, A JP, 2014-056843, A Japanese Patent Laid-Open No. 10-261435 JP, 2007-299612, A International Publication No. 2010/134585 JP, 2016-072150, A
  • Patent Document 3 a crosslinking catalyst masterbatch is used during the extrusion step to promote the crosslinking reaction of the silane-modified polyethylene in the extruder, but resin agglomerates are also observed and the physical properties of the separator are uniform. Reduce sex.
  • the methods described in Patent Documents 4, 5, and 6 are provided with a plasticizer extraction step or a silane gel crosslinking step, control the gel fraction of the resin film, and convert the uncrosslinked resin into hot water. Measures are taken by passing through molding and then dehydrating. Further, in Patent Document 7, the gel fraction of the microporous polyolefin membrane, the storage elastic modulus at a temperature of 40 ° C. to 250 ° C.
  • At least one surface of a microporous polyolefin film is provided with calcined kaolin, boehmite, etc. It has been proposed to dispose an inorganic porous layer containing the above inorganic particles and a resin binder (Patent Documents 12 and 13).
  • Patent Document 4 cannot sufficiently advance the silane cross-linking reaction, and it is difficult to obtain high temperature film-rupture resistance.
  • the plasticizer extraction step described in Patent Documents 3 and 4 since the tin (II) -based crosslinking catalyst is used, the crosslinking reaction can proceed, but there is a concern that the crosslinking catalyst may remain afterwards.
  • the heat-resistant resin microporous film described in Patent Document 7 is merely obtained by applying a photopolymerizable coating liquid to a dry and porous film. Further, in Example 5 of Patent Document 7, a low-molecular weight silane coupling agent such as ⁇ -methacryloxypropyltrimethoxysilane is added to the porous membrane, but if the low-molecular weight silane coupling agent is used in the wet porosification method. Since the low molecular weight silane coupling agent easily reacts with or binds to the plasticizer for porosity, it is expected that it does not bind to the resin of the porous membrane. Furthermore, a battery including a heat-resistant resin microporous film as a separator as described in Patent Document 7 has poor cycle characteristics, and induces an unexpected side reaction in the battery during long-term use, resulting in reduced battery safety. Is concerned.
  • the coating layer described in Patent Document 7 is formed by a cross-linking reaction after applying a compound having a polymerizable functional group to the resin porous membrane, so that the resin porous membrane is applied simultaneously with the coating of the coating layer. It is expected that a part of the liquid will be infiltrated, and after the cross-linking reaction has progressed, a mixed region of them is also formed near the interface between the film layer and the resin porous film. As a result, good TMA heat shrinkage performance can be obtained, but a decrease in battery cycle characteristics due to clogging of the resin porous membrane or a decrease in Fuse (shutdown) performance due to melting phenomenon of the resin porous membrane is expected.
  • the multilayer porous membranes described in Patent Documents 12 and 13 are provided with a polyolefin microporous membrane and an inorganic porous layer, but have a low temperature shutdown function as a separator for an electricity storage device and a high temperature membrane rupture property, or an electricity storage device There is room for consideration on improving cycle characteristics and battery nail penetration safety.
  • the batteries using the separators described in Patent Documents 3 to 7 have poor cycle characteristics, and when they are used for a long period of time, unexpected side reactions are induced in the batteries, which may reduce the battery safety. .
  • a tin (Sn) -based catalyst is put into the extruder during the extrusion process.
  • the wet manufacturing process of a separator for an electricity storage device usually includes steps such as extrusion / sheet molding, stretching, plasticizer extraction (poration), heat treatment, and winding, so that silane crosslinking occurs in the extruder during the sheet molding process. If accelerated, the gelled part causes production failure, and it becomes difficult to stretch the silane-crosslinked polyolefin in the subsequent stretching step. Therefore, there is still room for study on a new separator for an electricity storage device that is suitable for the manufacturing process.
  • the cross-linking methods described in Patent Documents 1 to 6, 8 and 9 are all performed in-process of separator film formation or in a batch immediately after separator film formation. Therefore, after forming the cross-linked structure described in Patent Documents 1 to 6, 8 and 9, coating and slitting of the separator must be performed, and internal stress is not generated in the subsequent lamination / winding process with the electrode. Due to the increase, the manufactured battery may be deformed. For example, if a crosslinked structure is formed by heating, the internal stress of the separator having the crosslinked structure may increase at room temperature or room temperature.
  • the crosslinked structure is formed by irradiation with light such as ultraviolet rays or electron beams
  • the irradiation of light becomes non-uniform and the cross-linked structure may become non-uniform. It is considered that this is because the periphery of the crystal part of the resin forming the separator is easily cross-linked by the electron beam.
  • Patent Document 10 describes a technique for improving cycle characteristics of a lithium ion secondary battery by adding succinimides or the like to an electrolytic solution.
  • the technique described in Patent Document 10 does not attempt to improve the cycle characteristics by specifying the structure of the separator.
  • the present invention is compatible with a shutdown function and a high-temperature puncture resistance, and an electric storage device separator capable of ensuring safety, output and / or cycle stability of an electric storage device, and a manufacturing process thereof. It is an object of the present invention to provide a novel crosslinking method, an assembling kit for an electricity storage device, or a manufacturing method.
  • An electricity storage device separator comprising a silane-modified polyolefin, wherein the silane crosslinking reaction of the silane-modified polyolefin starts when the electricity storage device separator comes into contact with an electrolytic solution.
  • the separator for an electricity storage device according to item 1 wherein the silane-modified polyolefin is not a masterbatch resin containing a dehydration condensation catalyst that crosslinks the silane-modified polyolefin.
  • the separator for an electricity storage device according to item 1 or 2 wherein the electricity storage device separator contains polyethylene in addition to the silane-modified polyolefin.
  • E ′ S Is a storage elastic modulus of the electricity storage device separator measured at 160 ° C. to 220 ° C. after the silane-modified polyolefin is cross-linked, and E ′ j Or E ’ S
  • the conditions for measuring the storage elastic modulus E ′ are defined by the following configurations (i) to (iv).
  • the static tensile load refers to an intermediate value between the maximum stress and the minimum stress in each cyclic motion
  • the sine wave load refers to the vibration stress centered on the static tensile load.
  • the sine wave tension mode refers to measuring the vibration stress while performing periodic motion with a fixed amplitude of 0.2%. In the sine wave tension mode, the static tension load and the sine wave load are used. When the sine wave load is 0.02N or less by varying the gap distance and the static tensile load so that the difference is within 20%, the sine wave load is 5N or less. The vibration stress is measured by amplifying the amplitude value so that the increase amount of the amplitude value is within 25%.
  • E ′′ j Or E ′′ S The condition for measuring the loss elastic modulus E ′′ is defined by the following configurations (i) to (iv).
  • the static tensile load refers to an intermediate value between the maximum stress and the minimum stress in each cyclic motion
  • the sine wave load refers to the vibration stress centered on the static tensile load.
  • the sine wave tension mode refers to measuring the vibration stress while performing periodic motion with a fixed amplitude of 0.2%. In the sine wave tension mode, the static tension load and the sine wave load are used. When the sine wave load is 0.02N or less by varying the gap distance and the static tensile load so that the difference is within 20%, the sine wave load is 5N or less. The amplitude value is amplified so that the increase amount of the amplitude value is within 25%, and the vibration stress is measured.
  • a separator for an electricity storage device characterized in that a silane cross-linking reaction of a silane-modified polyolefin occurs when the separator for an electricity storage device comes into contact with an electrolytic solution.
  • E ′ 0 Is a storage elastic modulus of the electricity storage device separator not containing the silane-modified polyolefin, measured at 160 ° C. to 220 ° C., and E ′. a Or E ’ 0
  • the conditions for measuring the storage elastic modulus E ′ are defined by the following configurations (i) to (iv).
  • the static tensile load refers to an intermediate value between the maximum stress and the minimum stress in each cyclic motion
  • the sine wave load refers to the vibration stress centered on the static tensile load.
  • the sine wave tension mode refers to measuring the vibration stress while performing periodic motion with a fixed amplitude of 0.2%. In the sine wave tension mode, the static tension load and the sine wave load are used. When the sine wave load is 0.02N or less by varying the gap distance and the static tensile load so that the difference is within 20%, the sine wave load is 5N or less. The vibration stress is measured by amplifying the amplitude value so that the increase amount of the amplitude value is within 25%.
  • a separator for an electricity storage device containing 5 to 40% by mass of a silane-modified polyolefin and 60 to 95% by mass of a polyolefin other than the silane-modified polyolefin represented by the following formula (4):
  • R E '' mix E ′′ a / E ′′ 0 (4) ⁇ In the formula, E ′′ a Is the loss elastic modulus of the electricity storage device separator measured at 160 ° C. to 220 ° C., and E ′′ 0 Is the loss modulus of the electricity storage device separator not containing the silane-modified polyolefin, measured at 160 ° C.
  • E ′′ The condition for measuring the loss elastic modulus E ′′ is defined by the following configurations (i) to (iv).
  • the static tensile load refers to an intermediate value between the maximum stress and the minimum stress in each cyclic motion
  • the sine wave load refers to the vibration stress centered on the static tensile load.
  • the sine wave tension mode refers to measuring the vibration stress while performing periodic motion with a fixed amplitude of 0.2%. In the sine wave tension mode, the static tension load and the sine wave load are used. When the sine wave load is 0.02N or less by varying the gap distance and the static tensile load so that the difference is within 20%, the sine wave load is 5N or less. The amplitude value is amplified so that the increase amount of the amplitude value is within 25%, and the vibration stress is measured.
  • the electricity storage device separator not containing the silane-modified polyolefin is a silane-unmodified polyolefin microporous film having a gelation degree of 0% or more and 10% or less.
  • What is claimed is: 1. A separator for an electricity storage device comprising 5 to 40% by mass of a silane-modified polyolefin and 60 to 95% by mass of a polyolefin other than the silane-modified polyolefin, wherein the rubber-like flat region is obtained when the storage elastic modulus of the separator for the electricity storage device changes with temperature. And an electric storage device separator having a transition temperature of 135 ° C.
  • a separator for an electricity storage device comprising a polyolefin microporous film, In the solid viscoelasticity measurement of the electricity storage device separator at a temperature of ⁇ 50 ° C.
  • the conditions of the solid viscoelasticity measurement for measuring the storage elastic modulus and the loss elastic modulus are as follows (i) to (iv): (I) Dynamic viscoelasticity measurement under the following conditions: ⁇ Measuring device used: RSA-G2 (manufactured by TA Instruments) -Sample film thickness: 200 ⁇ m to 400 ⁇ m (However, when the film thickness of the sample alone is less than 200 ⁇ m, measure the dynamic viscoelasticity so that the total thickness falls within the range of 200 ⁇ m to 400 ⁇ m by stacking multiple samples.
  • a power storage device separator comprising a polyolefin microporous film, wherein the storage viscoelasticity of the power storage device separator from the film softening transition temperature to the film rupture temperature has an average storage elastic modulus of 1.0 MPa to 12 MPa, A separator for an electricity storage device having an average loss elastic modulus of 0.5 MPa to 10 MPa.
  • the electricity storage device separator according to any one of Items 12 to 14, which includes a silane-modified polyolefin and a polyolefin other than the silane-modified polyolefin.
  • Items 12 to 14 which includes a silane-modified polyolefin and a polyolefin other than the silane-modified polyolefin.
  • Item 16 The electricity storage device separator according to Item 15, which contains 5% to 40% by mass of the silane-modified polyolefin and 60% to 95% by mass of the polyolefin other than the silane-modified polyolefin.
  • a separator for a power storage device containing polyolefin has one or more functional groups, and After storage in an electricity storage device, (1) the functional groups undergo a condensation reaction with each other, (2) the functional group reacts with a chemical substance inside the electricity storage device, or (3) the functional group has another type.
  • a separator for an electricity storage device characterized in that a crosslinked structure is formed by reacting with the functional group of.
  • Item 18 The electricity storage device separator according to Item 17, wherein the chemical substance is any of an electrolyte, an electrolytic solution, an electrode active material, an additive, or a decomposition product thereof contained in the electricity storage device.
  • a separator for an electricity storage device containing a polyolefin the separator for an electricity storage device having an amorphous part crosslinked structure in which an amorphous part of the polyolefin is crosslinked.
  • R E''x ⁇ Mixed loss elastic modulus ratio (R E''x ) Is 1.5 to 20 times, and the separator for an electricity storage device according to Item 19 or 20.
  • R E '' mix 24 The separator for an electricity storage device according to any one of Items 17 to 23, wherein) is 1.5 times to 20 times.
  • the separator for an electricity storage device according to any one of Items 17 to 26, wherein the crosslinked structure is formed by a reaction via any of a covalent bond, a hydrogen bond and a coordinate bond.
  • the reactions via the covalent bond are the following reactions (I) to (IV): (I) Condensation reaction of multiple identical functional groups; (II) Reaction between multiple different functional groups; (III) Chain condensation reaction between functional group and electrolyte; and (IV) Reaction between functional group and additive; Item 28.
  • the electricity storage device separator according to Item 27 which is at least one selected from the group consisting of: [29]
  • the reaction via the coordination bond is the following reaction (V): (V) A reaction in which a plurality of identical functional groups are crosslinked via a coordinate bond with a metal ion; Item 27.
  • Item 29. The electricity storage device separator according to Item 28, wherein the reaction (I) and / or (II) is catalytically promoted by a chemical substance inside the electricity storage device.
  • Item 29 The electricity storage device separator according to Item 28, wherein the reaction (I) is a condensation reaction of a plurality of silanol groups.
  • the reaction (IV) is a nucleophilic substitution reaction, a nucleophilic addition reaction, or a ring-opening reaction of a compound Rx forming the electricity storage device separator and a compound Ry forming the additive, and the compound Rx is a functional group.
  • the compound Ry has a group x and is a ligation reaction unit y 1 Item 28.
  • the above reaction (IV) is a nucleophilic substitution reaction
  • the functional group x of the compound Rx is —OH, —NH 2 At least one selected from the group consisting of, --NH--, --COOH, and --SH, and Connection reaction unit y of the compound Ry 1 But CH 3 SO 2 -, CF 3 SO 2 -, ArSO 2 -, CH 3 SO 3 -, CF 3 SO 3 -, ArSO 3 -, And the following formula (y 1 -1) to (y 1 -6): ⁇ In the formula, X is a hydrogen atom or a monovalent substituent. ⁇ ⁇ In the formula, X is a hydrogen atom or a monovalent substituent.
  • X is a hydrogen atom or a monovalent substituent.
  • X is a hydrogen atom or a monovalent substituent.
  • X is a hydrogen atom or a monovalent substituent.
  • X is a hydrogen atom or a monovalent substituent.
  • the electricity storage device separator which is at least two selected from the group consisting of monovalent groups represented by: [34]
  • the above reaction (IV) is a nucleophilic substitution reaction
  • the compound Ry is the ligation reaction unit y 1 In addition to chain unit y 2 And The chain unit y 2
  • ⁇ ⁇ In the formula, n is an integer of 1 to 20.
  • ⁇ ⁇ In the formula, n is an integer of 1 to 20.
  • ⁇ ⁇ In the formula, n is an integer of 1 to 20.
  • ⁇ ⁇ In the formula, n is an integer of 1 to 20.
  • X is an alkylene group having 1 to 20 carbon atoms or an arylene group, and n is an integer of 1 to 20.
  • X is an alkylene group having 1 to 20 carbon atoms or an arylene group, and n is an integer of 1 to 20.
  • Item 34 The electricity storage device separator according to Item 32 or 33, which is at least one selected from the group consisting of divalent groups represented by.
  • the above reaction (IV) is a nucleophilic addition reaction
  • the functional group x of the compound Rx is —OH, —NH 2 At least one selected from the group consisting of, --NH--, --COOH, and --SH, and Connection reaction unit y of the compound Ry 1
  • the electricity storage device separator according to item 32 which is at least one selected from the group consisting of groups represented by: [36]
  • the above reaction (IV) is a ring opening reaction
  • the functional group x of the compound Rx is —OH, —NH 2 At least one selected from the group consisting of, --NH--, --COOH, and --SH, and Connection reaction unit y of the compound Ry 1
  • the following formula (ROy 1 -1) ⁇ In the formula, plural Xs are each independently a hydrogen atom or a monovalent substituent.
  • the electricity storage device separator according to item 32 which is at least two groups represented by.
  • the electricity storage device separator according to Item 29 which is at least one selected from the group consisting of: [38] A separator for an electricity storage device, comprising a first porous layer (A layer) containing a silane-modified polyolefin and capable of forming a crosslinked structure, and a second porous layer (B layer) containing inorganic particles, the crosslinked structure being The separator for an electricity storage device having a heat shrinkage rate at 150 ° C. after formation of 0.02 to 0.91 times the heat shrinkage rate at 150 ° C. before formation of the crosslinked structure.
  • a separator for an electricity storage device comprising a first porous layer (A layer) containing a silane-modified polyolefin and capable of forming a crosslinked structure, and a second porous layer (B layer) containing inorganic particles, the crosslinked structure being The separator for an electricity storage device having a heat shrinkage rate at 150 ° C. after formation of 0.02 to 0.91 times the heat shrinkage rate at 150 °
  • the separator for an electricity storage device according to item 40 or 41, wherein the content of the silane-modified polyolefin in the microporous film is 0.5% by weight to 40% by weight.
  • the inorganic particles are alumina (Al 2 O 3 ), Silica, titania, zirconia, magnesia, ceria, yttria, zinc oxide, iron oxide, silicon nitride, titanium nitride, boron nitride, silicon carbide, aluminum hydroxide oxide (AlO (OH)), talc, kaolinite, dickite, Item 40 to at least one selected from the group consisting of nacrite, halloysite, pyrophyllite, montmorillonite, sericite, mica, amethite, bentonite, asbestos, zeolite, diatomaceous earth, silica sand, and glass fiber.
  • R ⁇ E ' Storage elastic modulus change ratio (R ⁇ E ' ) Is 1.5 to 20 times, and / or the following formula (1B):
  • R ⁇ E '' E ′′ S / E ′′ j (1B) ⁇ In the formula, E ′′ j Is a loss elastic modulus measured at 160 ° C. to 220 ° C. of the electricity storage device separator before the silane-modified polyolefin is cross-linked, and E ′′ S Is a loss elastic modulus measured at 160 ° C. to 220 ° C. of the electricity storage device separator after the silane-modified polyolefin has undergone a crosslinking reaction.
  • the electricity storage device separator according to any one of Items 40 to 45, wherein ′′) is 1.5 times to 20 times.
  • R E'mix Is 1.5 to 20 times and / or the following formula (2B):
  • R E '' mix E ′′ / E ′′ 0 (2B) ⁇
  • E ′′ is the loss elastic modulus of the electricity storage device separator measured at 160 ° C. to 220 ° C.
  • E ′′ is 0 Is the loss elastic modulus measured at 160 ° C. to 220 ° C. of the electricity storage device separator not containing the silane-modified polyolefin.
  • R E '' mix 47 The separator for an electricity storage device according to any one of items 40 to 46, wherein the ratio is 1.5 times to 20 times. [48] 48.
  • the electricity storage device according to any one of items 40 to 47, wherein a transition temperature between a rubber-like flat region and a crystal melt flow region is 135 ° C. to 150 ° C. when the storage elastic modulus of the electricity storage device separator changes with temperature.
  • An electricity storage device including an electrode, the electricity storage device separator according to any one of items 1 to 48, and a non-aqueous electrolyte.
  • a sheet forming step in which a mixture of silane-modified polyolefin, polyethylene and a plasticizer is extruded, solidified by cooling, and formed into a sheet to obtain a sheet; (2) a stretching step of stretching the sheet in at least one axial direction to obtain a stretched product; (3) a porous body forming step of extracting the plasticizer from the stretched product in the presence of an extraction solvent to make the stretched product porous to form a porous body; and (4) Heat treatment step of subjecting the porous body to heat treatment; 51.
  • the method for producing a separator for an electricity storage device including: [52] The following steps: (1) A sheet forming step in which a silane-modified polyolefin, polyethylene and a plasticizer are extruded into a sheet with an extruder, cooled and solidified, and processed into a sheet-shaped molded body; (2) A stretching step of forming the stretched product by biaxially stretching the sheet-shaped molded product at an area ratio of 20 times or more and 250 times or less; (3) Porous body forming step of forming a porous body by extracting the plasticizer from the stretched product; (4) A heat treatment step of subjecting the porous body to a heat treatment, stretching and relaxation in the width direction to obtain a heat treated porous body; (8B) a coating step of forming an inorganic porous layer containing inorganic particles and a resin binder on at least one surface of the heat-treated porous body to form a silane crosslinking precursor; (9) An assembling step in which a
  • the electric storage device assembly kit according to item 53 wherein the non-aqueous electrolyte contains a fluorine (F) -containing lithium salt.
  • the non-aqueous electrolyte is lithium hexafluorophosphate (LiPF 6 57.
  • a step of preparing an electricity storage device assembly kit according to any one of items 53 to 56 A step of initiating a silane crosslinking reaction of the silane-modified polyolefin by contacting the electricity storage device separator in the element (1) of the electricity storage device assembly kit with the non-aqueous electrolyte solution in the element (2)
  • a method of manufacturing an electricity storage device including: [58] Further steps below: And a step of connecting a lead terminal to the electrode of the element (1), And a process of charging and discharging at least one cycle Item 57.
  • the method for manufacturing an electricity storage device including: [59] A method of manufacturing an electricity storage device using a separator containing polyolefin, comprising: The polyolefin contains one or more functional groups, and the following steps: (1) by subjecting the functional groups to a condensation reaction, (2) reacting the functional group with a chemical substance inside the electricity storage device, or (3) reacting the functional group with another type of functional group. , Cross-linking step to form cross-linked structure A method of manufacturing an electricity storage device including: [60] The method for manufacturing an electricity storage device according to item 59, wherein the crosslinking step is performed at a temperature of 5 ° C to 90 ° C.
  • both the low-temperature shutdown function and the high-temperature puncture resistance of the electricity storage device separator can be made compatible, and the generation of unmelted resin aggregates can also be suppressed in the manufacturing process to contribute to productivity and economic efficiency. It is possible to provide an electricity storage device having better cycle characteristics and higher safety, and an assembly kit for the same.
  • a cross-linking structure can be imparted to the separator to reduce cross-linking unevenness.
  • a cross-linking structure is formed not only inside the separator but also between the separator and the electrode or between the separator and the solid electrolyte interface (SEI) to improve the strength between the plurality of members of the electricity storage device.
  • FIG. 1 is an example of a graph for explaining the relationship between the temperature and the storage elastic modulus.
  • the storage elastic moduli of the reference film and the post-crosslinking film in the temperature range of ⁇ 50 ° C. to 225 ° C. are compared to show the rubber-like property.
  • the transition temperatures of the flat region and the crystal melt flow region are shown.
  • FIG. 2 is an example of a graph for explaining the relationship between temperature and loss elastic modulus.
  • the loss elastic moduli of the reference film and the post-crosslinking film in the temperature range of ⁇ 50 ° C. to 225 ° C. are compared and the rubber-like property is compared.
  • the transition temperatures of the flat region and the crystal melt flow region are shown.
  • FIG. 3 is a graph showing a relationship between temperature and resistance of an electricity storage device including the separator obtained in Example I-1.
  • FIG. 4 is a graph for explaining the relationship between the temperature, the gap distance, the storage elastic modulus, and the loss elastic modulus in the viscoelasticity measurement of the electricity storage device separator, and is compared with the graph (a) of Example II-1. 7 illustrates graph (b) of Example II-1.
  • FIG. 5 is a graph for determining the film softening transition temperature based on the temperature, the gap distance, and the first derivative value of the gap displacement in the viscoelasticity measurement of the electricity storage device separator, and the graph of Example II-1 ( The graph (a) and the graph (b) of Comparative Example II-1 are illustrated.
  • FIG. 4 is a graph for explaining the relationship between the temperature, the gap distance, the storage elastic modulus, and the loss elastic modulus in the viscoelasticity measurement of the electricity storage device separator, and is compared with the graph (a) of Example II-1. 7 illustrates graph (b) of
  • FIG. 6 is a schematic diagram for explaining a crystalline polymer having a higher-order structure divided into a lamella (crystal part) having a crystal structure, an amorphous part, and an intermediate layer part between them.
  • FIG. 7 is a schematic diagram for explaining crystal growth of polyolefin molecules.
  • FIG. 8 is a strain amount-crystal fragmentation rate graph for showing a change in X-ray crystal structure at the time of tensile rupture fracture test for the film according to one embodiment of the present invention.
  • FIG. 9 is an example of a graph for explaining the relationship between the temperature and the storage elastic modulus, and compares the storage elastic moduli of the reference membrane and the crosslinked membrane in the temperature range of ⁇ 50 ° C.
  • FIG. 10 is an example of a graph for explaining the relationship between the temperature and the loss elastic modulus, and compares the loss elastic moduli of the reference film and the post-crosslinking film in the temperature range of ⁇ 50 ° C. to 310 ° C. with a rubber-like shape.
  • the transition temperatures of the flat region and the crystal melt flow region are shown.
  • FIG. 11 is a 1 H-NMR chart (a) and a 13 C-NMR chart (b) of a silane-modified polyolefin raw material 1 obtained by using a polyolefin.
  • FIG. 10 is an example of a graph for explaining the relationship between the temperature and the loss elastic modulus, and compares the loss elastic moduli of the reference film and the post-crosslinking film in the temperature range of ⁇ 50 ° C. to 310 ° C. with a rubber-like shape.
  • the transition temperatures of the flat region and the crystal melt flow region are shown.
  • FIG. 11 is a 1 H-NMR chart (a) and
  • FIG. 12 is a 1 H-NMR chart (a) and a 13 C-NMR chart (b) of a silane-modified polyolefin raw material 2 obtained by using polyolefin.
  • FIG. 13 is a 1 H-NMR chart (a) and a 13 C-NMR chart (b) of the separator obtained in Example I-1 in a state before crosslinking.
  • the upper limit value and the lower limit value of the numerical range can be arbitrarily combined.
  • the upper limit of the preferable numerical range and the lower limit of the more preferable numerical range may be combined, and conversely, the upper limit of the more preferable numerical range and the lower limit of the preferable numerical range may be combined.
  • the terms “above” and “formed on the surface” do not mean that the positional relationship of each member is “directly above”.
  • the expressions "layer B formed on layer A” and “layer B formed on the surface of layer A” mean any layer between layer A and layer B that does not fall under any of them. Does not exclude aspects including.
  • the characteristics of only the microporous film described below can be measured after removing the layers other than the microporous film (for example, the inorganic porous layer) from the electricity storage device separator.
  • One embodiment of the present invention is a power storage device separator (hereinafter, also simply referred to as a “separator”). Since the separator needs to have insulating properties and ion permeability, it generally includes paper, a polyolefin nonwoven fabric, a resin microporous film, or the like, which is an insulating material having a porous structure. Particularly, in a lithium ion battery, a polyolefin microporous film that is capable of constructing a dense and uniform porous body structure by oxidation-reduction resistance deterioration of a separator is excellent.
  • the microporous film means a film (film) made of a porous body, and its average pore diameter is preferably 10 nm or more and 500 nm or less, more preferably 30 nm or more and 100 nm or less.
  • the separator can be taken out from the electricity storage device.
  • the separator according to the first embodiment contains a silane-modified polyolefin, and may also contain other polyolefins if desired.
  • the separator according to the first embodiment is brought into contact with the electrolytic solution, the silane crosslinking reaction of the silane-modified polyolefin contained in the separator is started. Since the separator according to the first embodiment can perform crosslinking of the silane-modified polyolefin at the time of contact with the electrolytic solution, it is possible to control the timing of crosslinking, and thereby the crosslinking reaction in the manufacturing process of the separator. Instead, the crosslinking reaction can be performed in the manufacturing process of the electricity storage device.
  • the separator according to the second embodiment is characterized in that a silane cross-linking reaction of a silane-modified polyolefin occurs when it comes into contact with an electrolytic solution.
  • a silane cross-linking reaction of a silane-modified polyolefin occurs when it comes into contact with an electrolytic solution.
  • silane cross-linking reaction of the silane-modified polyolefin that occurs when the separator according to the second embodiment contacts the electrolytic solution, it is possible to achieve control of the cross-linking timing without being affected by the manufacturing or use process of the separator.
  • the separators according to the first and second embodiments can accelerate the crosslinking reaction when pouring the electrolytic solution into the exterior body that houses the separator, so that production defects can be avoided in the manufacturing process, and the storage device can be manufactured. In the process, it is possible to achieve safety and high output of the electricity storage device. From the viewpoint of the content of the separator and the timing of the crosslinking reaction, it is preferable that the silane crosslinking reaction of the silane-modified polyolefin is started at the time of mixing or contacting the separator and the electrolytic solution.
  • the separator according to the third embodiment contains 5 to 40% by mass of a silane-modified polyolefin and 60 to 95% by mass of a polyolefin other than the silane-modified polyolefin, and relates to the viscoelasticity measurement (version 1) described in Examples.
  • the following formula (1): R ⁇ E ' E' S / E 'j (1) ⁇ In the formula, E ′ j is the storage elastic modulus of the electricity storage device separator at 160 ° C. to 220 ° C. before the silane-modified polyolefin cross-links, and E ′ S is the silane-modified polyolefin cross-linking reaction. It is a storage elastic modulus measured at 160 ° C.
  • the loss elastic modulus change ratio (R ⁇ E ′′ ) defined by is 1.5 to 20 times.
  • the storage elastic modulus change ratio (R ⁇ E ′ ) and / or the loss elastic modulus change ratio (R ⁇ E ′′ ) is within the range of 1.5 to 20 times, the shutdown function is realized. It is possible to achieve both high temperature film rupture resistance.
  • the storage elastic modulus change ratio (R ⁇ E ′ ) and / or the loss elastic modulus change ratio (R ⁇ E ′′ ) is preferably 2 to 18 times.
  • E ′ j and E ′ S and E ′′ j and E ′′ S are storage elastic moduli measured within the set temperature range of the measuring device when 160 to 220 ° C.
  • the separator is in the form of a laminated film, only the silane-modified polyolefin-containing porous film is removed from the laminated film to obtain the storage elastic moduli E ′ j and E ′ S and the loss elastic moduli E ′′ j and E ′′ S. Shall be measured.
  • the separator according to the fourth embodiment contains 5 to 40% by mass of a silane-modified polyolefin and 60 to 95% by mass of a polyolefin other than the silane-modified polyolefin, and relates to the viscoelasticity measurement (version 1) described in the examples.
  • the following formula (2): R E'mix E ' a / E' 0 (2) ⁇ Wherein E ′ a is the storage elastic modulus of the electricity storage device separator measured at 160 ° C. to 220 ° C., and E ′ 0 is the electricity storage device separator that does not contain a silane-modified polyolefin. Storage elastic modulus measured at ° C.
  • the mixed loss elastic modulus ratio (R E ′′ mix ) defined by is 1.5 times to 20.0 times.
  • the mixed storage elastic modulus ratio (R E′mix ) and / or the mixed loss elastic modulus ratio (R E ′′ mix ) is in the range of 1.5 times to 20.0 times. It is possible to achieve both the shutdown function and the high temperature film breakage resistance.
  • the mixed storage elastic modulus ratio (R E′mix ) and / or the mixed loss elastic modulus ratio (R E ′′ mix ) is preferably 2 to 18 times.
  • E ′ a and E ′ 0 and E ′′ a and E ′′ 0 are the storage elastic moduli measured within the set temperature range of the measuring device when 160 to 220 ° C. is the widest temperature range. Or, it is the average value of the loss elastic modulus.
  • the separator When the separator is in the form of a laminated film, only the silane-modified polyolefin-containing porous film is removed from the laminated film so that the storage elastic moduli E ′ a and E ′ 0 and the loss elastic moduli E ′′ a and E ′′ 0 Shall be measured.
  • the separator according to the fifth embodiment contains 5 to 40% by mass of a silane-modified polyolefin and 60 to 95% by mass of a polyolefin other than the silane-modified polyolefin, and relates to the viscoelasticity measurement (version 1) described in the examples.
  • the transition temperature between the rubber-like flat region and the crystal melt flow region is 135 ° C. to 150 ° C. when the storage elastic modulus or loss elastic modulus changes with temperature.
  • the transition temperature between the rubber-like flat region and the crystal melt flow region is in the range of 135 ° C. to 150 ° C., so that both the shutdown function and the high temperature film breakage resistance can be achieved.
  • the transition temperature between the rubbery flat region and the crystal melt flow region is preferably 137 ° C to 147 ° C, more preferably 140 ° C to 145 ° C, and further preferably 140 ° C to 143 ° C.
  • the separator is in the form of a laminated film, only the silane-modified polyolefin-containing porous film is removed from the laminated body, and the transition temperatures of the rubber-like flat region and the crystal melt flow region are measured.
  • the separator according to the sixth embodiment includes a polyolefin having one or more kinds of functional groups, and after being stored in an electricity storage device, (1) the functional groups of the polyolefins undergo a condensation reaction or (2) ) A functional group of polyolefin reacts with a chemical substance inside the electricity storage device, or (3) a functional group of polyolefin reacts with another type of functional group to form a crosslinked structure.
  • the functional group contained in the polyolefin constituting the separator is considered not to be taken into the crystalline part of the polyolefin and to be crosslinked in the amorphous part, so the separator according to the sixth embodiment is stored in the electricity storage device,
  • the surrounding environment or chemical substances inside the electricity storage device can be used to form a crosslinked structure, thereby suppressing increase in internal stress or deformation of the produced electricity storage device.
  • a crosslinking reaction is performed before being stored in the electricity storage device and a step such as winding and slit is performed, the influence of stress such as tension generated during the step remains. At this time, if the stress is released after assembling the electricity storage device, it may cause damage to the electrode winding or the like due to deformation or stress concentration, which is not preferable.
  • the condensation reaction between the functional groups of the polyolefin can be, for example, a reaction via a covalent bond between two or more functional groups A contained in the polyolefin.
  • the reaction between the functional group of the polyolefin and another type of functional group can be, for example, a reaction via a covalent bond between the functional group A and the functional group B contained in the polyolefin.
  • the functional group A contained in the polyolefin is an electrolyte, an electrolytic solution, an electrode active material, an additive or the like contained in the electricity storage device.
  • a cross-linking structure is formed not only inside the separator but also between the separator and the electrode or between the separator and the solid electrolyte interface (SEI), and the strength between the plurality of members of the electricity storage device is increased. Can be improved.
  • the separator according to the seventh embodiment includes a polyolefin and has an amorphous part crosslinked structure in which the amorphous part of the polyolefin is crosslinked.
  • the functional group contained in the polyolefin constituting the separator is considered not to be taken into the crystalline part of the polyolefin and to be crosslinked in the amorphous part, so the separator according to the seventh embodiment, the crystalline part and its periphery are crosslinked.
  • the amorphous part of the polyolefin contained in the separator according to the seventh embodiment is preferably selectively crosslinked, and more preferably significantly crosslinked than the crystalline part.
  • cross-linking reaction mechanism and cross-linking structure of the seventh embodiment are not clear, but the present inventors consider as follows.
  • a polyolefin resin represented by high density polyethylene is generally a crystalline polymer, and has a lamella (crystal part) having a crystal structure and an amorphous structure. It has a higher-order structure divided into a quality part and an intermediate layer part between them. In the crystal part and in the intermediate layer part between the crystal part and the amorphous part, the mobility of the polymer chains is low and it cannot be separated, but a relaxation phenomenon can be observed in the 0 to 120 ° C. region by solid viscoelasticity measurement.
  • the amorphous part has very high polymer chain mobility, and is observed in the range of ⁇ 150 to ⁇ 100 ° C. in solid viscoelasticity measurement. This is deeply related to radical relaxation, radical transfer reaction, crosslinking reaction, and the like, which will be described later.
  • the polyolefin molecules that compose the crystal are not single, and as shown in FIG. 7, after a plurality of polymer chains form a small lamella, the lamella aggregates to become a crystal. It is difficult to directly observe such a phenomenon. In recent years, simulations have made it clear that academic research has advanced.
  • the crystal is a unit of the smallest crystal measured by X-ray structural analysis, and is a unit that can be calculated as a crystallite size. As described above, even in the crystal part (inside the lamella), it is predicted that there is a part having slightly high mobility without being partly constrained in the crystal.
  • the reaction mechanism of electron beam crosslinking (hereinafter abbreviated to EB crosslinking) to the polymer is as follows. (I) irradiation with electron beam of several tens kGy to several hundreds kGy, (ii) transmission of electron beam to reaction object (polymer) and generation of secondary electron, (iii) secondary electron in polymer chain Hydrogen abstraction reaction and radical generation, (iv) Radical abstraction of adjacent hydrogen and movement of active site, (v) Cross-linking reaction by recombination of radicals or polyene formation.
  • EB crosslinking electron beam crosslinking
  • the radicals generated in the crystal part have poor motion, and therefore exist for a long period of time, and impurities and the like cannot enter the crystal, so that the probability of reaction / quenching is low.
  • a radical species is called Stable Radical, and remains for a long period of several months, and its lifetime was clarified by ESR measurement.
  • the crosslinking reaction within the crystal is considered to be poor.
  • the generated radical has a slightly long life.
  • a radical species is called Persistent Radical, and it is considered that a cross-linking reaction between molecular chains proceeds with a high probability in a mobile environment.
  • the generated radical species has a short life, and it is considered that not only the cross-linking reaction between molecular chains but also the polyene reaction within one molecular chain proceeds with high probability. .
  • the crosslinking reaction by EB crosslinking is localized inside or around the crystal.
  • the functional group in the polyolefin resin and the chemical substance contained in the electricity storage device, or the chemical substance contained in the electricity storage device is used as a catalyst.
  • the polyolefin resin has a crystalline part and an amorphous part.
  • the above-mentioned functional group does not exist inside the crystal due to steric hindrance and is localized in the amorphous part.
  • Non-Patent Document 2 a unit such as a methyl group, which is slightly contained in a polyethylene chain, may be incorporated into a crystal, but a graft which is more bulky than an ethyl group is not incorporated. Therefore, the cross-linking point due to a reaction different from the electron beam cross-linking is localized only in the amorphous part.
  • the EB cross-linked film shows that the fragmentation of the crystal part is suppressed as the strain amount increases. Do you get it. This is because the inside or periphery of the crystal part was selectively crosslinked. Along with that, the Young's modulus and the breaking strength were remarkably improved, and high mechanical strength could be expressed.
  • the chemically crosslinked film there is no difference in the crystal fragmentation before and after the crosslinking reaction, which suggests that the amorphous part was selectively crosslinked. In addition, there was no change in mechanical strength before and after the crosslinking reaction.
  • the separator according to the seventh embodiment has the following formula with respect to the viscoelasticity measurement (version 2) described in the examples, from the viewpoints of formation of an amorphous part crosslinked structure, compatibility of shutdown function and high temperature film rupture resistance, and the like.
  • R E'X E ' Z / E' z0
  • E ′ Z is a storage elastic modulus measured in a temperature range of 160 ° C. to 300 ° C. after the crosslinking reaction of the electricity storage device separator proceeds in the electricity storage device
  • E ′ z0 is It is a storage elastic modulus measured in a temperature range of 160 ° C. to 300 ° C. before the electricity storage device separator is incorporated into the electricity storage device.
  • R E'x Mixed storage elastic modulus ratio (R E'x ) and / or the following formula (3):
  • R E " X E" Z / E " Z0 (3)
  • E ′′ Z is a loss elastic modulus measured in a temperature range of 160 ° C. to 300 ° C. after the crosslinking reaction of the electricity storage device separator proceeds in the electricity storage device
  • E ′′ Z0 Is a loss elastic modulus measured in a temperature range of 160 ° C. to 300 ° C. before the electricity storage device separator is incorporated into the electricity storage device.
  • the mixing loss elastic modulus ratio (R E ′′ x ) defined by is preferably 1.5 to 20 times, more preferably 3 to 18 times.
  • E ′ Z and E ′ z0 and E ′′ Z and E ′′ z0 are storage measured within the set temperature range of the measuring device when 160 ° C. to 300 ° C. is set as the widest temperature region. It is an average value of elastic modulus or loss elastic modulus.
  • the separator is in the form of a laminated film, only the polyolefin porous film is removed from the laminated film to measure the storage elastic moduli E ′ Z and E ′ z0 and the loss elastic moduli E ′′ Z and E ′′ z0 . It shall be.
  • R E'mix Mixed storage elastic modulus ratio (R E'mix ), and / or the following formula (4):
  • R E ′′ mix E ′′ / E ′′ 0 (4)
  • E ′′ is a loss elastic modulus measured at 160 ° C. to 300 ° C. when the electricity storage device separator has an amorphous part crosslinked structure
  • E ′′ 0 is an amorphous part crosslinked structure. It is a loss elastic modulus measured at 160 ° C. to 300 ° C. of the electricity storage device separator having no structure.
  • the mixing loss elastic modulus ratio (R E ′′ mix ) defined by is preferably 1.5 times to 20 times, more preferably 3 times to 19 times, and further preferably 5 times to 18 times.
  • E ′ and E ′ 0 and E ′′ and E ′′ 0 are the storage elastic moduli measured within the set temperature range of the measuring device, respectively, when 160 ° C. to 300 ° C. is the widest temperature range. It is the average value of the loss elastic modulus.
  • the storage elastic modulus E ′ and E ′ 0 and the loss elastic moduli E ′′ and E ′′ 0 are measured by removing only the polyolefin porous film from the laminated film.
  • the separator according to the eighth embodiment is composed of a polyolefin microporous membrane, and stored in a solid viscoelasticity measurement at a temperature of ⁇ 50 ° C. to 250 ° C. for the viscoelasticity measurement (version 3) described in the example.
  • the minimum value (E ′ min ) of the elastic modulus (E ′) is 1.0 MPa to 10 MPa
  • the maximum value (E ′ max ) of E ′ is 100 MPa to 10,000 MPa
  • / or the loss elastic modulus (E ′′) Has a minimum value (E ′′ min ) of 0.1 MPa to 10 MPa and a maximum value of E ′′ (E ′′ max ) of 10 MPa to 10,000 MPa.
  • 1.1 MPa ⁇ E ′ min ⁇ 9.0 MPa and / or 150 MPa ⁇ E ′ max ⁇ 9,500 MPa is preferable, and 1.2 MPa ⁇ E ′ min ⁇ 8.0 MPa and / or 233 MPa ⁇ E ′ max. ⁇ 9000 MPa is more preferable.
  • 0.2 MPa ⁇ E ′′ min ⁇ 9.0 MPa and / or 56 MPa ⁇ E ′′ max ⁇ 9000 MPa is preferable, and 0.4 MPa ⁇ E ′′ min ⁇ 8.0 MPa and / or 74 MPa ⁇ E ′′. More preferably max ⁇ 8,000 MPa.
  • the average E '(E' ave ) is preferably 1.0 MPa to 12 MPa at a temperature from the film softening transition temperature to the film rupture temperature of the separator made of a polyolefin microporous film. It is preferably 1.2 MPa to 10 MPa, more preferably 1.8 MPa to 8.2 MPa, and / or the average E ′′ (E ′′ ave ) is preferably 0.5 MPa to 10 MPa, more preferably 0.8 MPa. ⁇ 8.2 MPa or 0.9 MPa ⁇ 3.2 MPa.
  • E ′ and / or E ′′ is within the above numerical range at a temperature from the film softening transition temperature to the film rupture temperature, cycle stability and safety of the electricity storage device including the separator tend to be improved.
  • the membrane softening transition temperature of the polyolefin microporous membrane separator is preferably 140 ° C to 150 ° C, more preferably 141 ° C.
  • the film rupture temperature is preferably 180 ° C or higher, more preferably 190 ° C or higher, 200 ° C or higher, 210 ° C or higher, 220 ° C or higher, 230 ° C or higher, or The temperature is 240 ° C or higher, more preferably 250 ° C or higher.
  • the upper limit of the film rupture temperature is not limited and it is understood in the art that the film rupture phenomenon can occur even at temperatures above 250 ° C.
  • the separators according to the first to eighth embodiments are fine in view of achieving both a shutdown function at a relatively low temperature and a film rupture property at a relatively high temperature, and improving cycle characteristics and safety of an electricity storage device. It may include a porous film; and an inorganic porous layer including inorganic particles and a resin binder, which is disposed on at least one surface of the microporous film.
  • the separator can be in a state in which the microporous membrane is used as a base material and the base material and the inorganic coating layer are combined.
  • the separator according to the ninth embodiment is: A microporous membrane containing a silane-modified polyolefin; An inorganic porous layer including inorganic particles and a resin binder, which is disposed on at least one surface of the microporous membrane; including.
  • the separator according to the ninth embodiment may include a layer other than the microporous membrane and the inorganic porous layer, if desired.
  • a combination of a microporous film containing a silane-modified polyolefin and an inorganic porous layer has both a shutdown function at a temperature lower than 150 ° C. and a film rupture property at a relatively high temperature, and an electric storage device It tends to improve cycle characteristics and battery nail penetration safety. Since the silane-modified polyolefin in the microporous film is silane-crosslinkable, the viscosity of the resin in the microporous film may be increased when silane crosslinking occurs, so that an abnormality in an electricity storage device including the separator according to the ninth embodiment is abnormal.
  • the cross-linked high-viscosity resin does not easily flow into the inorganic layer (that is, it is difficult to integrate), the clearance between the electrodes can be sufficiently secured, and the battery short circuit can be suppressed. Guessed.
  • the silane crosslinking reaction of the silane-modified polyolefin is started when the separator according to the ninth embodiment comes into contact with the electrolytic solution. More preferably, the silane cross-linking reaction upon contact with the electrolyte, whether initiated first, sequentially, or continuously, observed silane cross-linking reaction upon contact of the separator and the electrolyte. To be done.
  • the silane cross-linking reaction of the silane-modified polyolefin that occurs when the separator comes into contact with the electrolytic solution controls the cross-linking timing of the separator, avoids production defects in the separator manufacturing process, and increases safety and high output in the storage device manufacturing process. Can also be achieved. Further, by bringing the separator into contact with the electrolytic solution, a crosslinking reaction other than the silane crosslinking reaction can occur.
  • the storage elastic modulus change ratio (R ⁇ E ′ ) defined by is preferably 1.5 times to 20 times, and / or the following formula (1B):
  • R ⁇ E ′′ E ′′ S / E ′′ j (1B) ⁇
  • E ′′ j is a loss elastic modulus measured at 160 ° C. to 220 ° C. of the electricity storage device separator before the silane-modified polyolefin is crosslinked
  • E ′′ S is a silane-modified polyolefin. It is a loss elastic modulus measured at 160 ° C. to 220 ° C. of the electricity storage device separator after the crosslinking reaction.
  • the loss elastic modulus change ratio (R ⁇ E ′′) defined by is preferably 1.5 to 20 times.
  • the storage elastic modulus change ratio (R ⁇ E ′ ) and / or the loss elastic modulus change ratio (R ⁇ E ′′ ) is more preferably 2 to 18 times.
  • E ′ j and E ′ S and E ′′ j and E ′′ S are storage elastic moduli measured within the set temperature range of the measuring device when 160 to 220 ° C. is the widest temperature range.
  • the separator is in the form of a laminated film or a composite film of a microporous film and an inorganic porous layer, only the silane-modified polyolefin-containing microporous film is removed from the laminated film or the composite film, and the silane-modified polyolefin-containing film is contained. and measures the microporous film storage modulus E of 'j and E' S and loss modulus E '' j and E '' S.
  • the separator according to the ninth embodiment has the following formula (2A) when measured by removing the inorganic porous layer from the separator:
  • R E'mix E '/ E' 0 (2A) ⁇
  • E ′ is the storage elastic modulus of the electricity storage device separator measured at 160 ° C. to 220 ° C.
  • E ′ 0 is 160 ° C. to 220 ° C. of the electricity storage device separator containing no silane-modified polyolefin. Is the storage elastic modulus measured in.
  • E ′′ is the loss modulus measured at 160 ° C. to 220 ° C. of the electricity storage device separator
  • E ′′ 0 is from 160 ° C. of the electricity storage device separator containing no silane-modified polyolefin. It is the loss modulus measured at 220 ° C.
  • the mixing loss elastic modulus ratio (R E ′′ mix ) defined by is 1.5 times to 20 times.
  • the mixed storage elastic modulus ratio (R E'mix ) and / or the mixed loss elastic modulus ratio (R E ′′ mix ) being within a range of 1.5 to 20 times, the shutdown function and the high temperature membrane rupture resistance It is easy to achieve both.
  • the mixed storage elastic modulus ratio (R E′mix ) and / or the mixed loss elastic modulus ratio (R E ′′ mix ) is more preferably 2 to 18 times.
  • E ′ and E ′ 0 and E ′′ and E ′′ 0 are the storage elastic modulus or loss measured within the set temperature range of the measuring device when 160 to 220 ° C. is the widest temperature range. This is the average value of the elastic modulus.
  • the separator when the separator is in the form of a laminated film or a composite film of a microporous film and an inorganic porous layer, only the silane-modified polyolefin-containing microporous film is removed from the laminated film or the composite film, and the silane-modified polyolefin-containing film is contained. and measures the storage modulus E 'and E' 0 and the loss modulus E '' and E '' 0 of the microporous membrane.
  • the electricity storage device separator containing no silane-modified polyolefin will be described in detail in the section of Examples.
  • the separator according to the ninth embodiment has a transition temperature between the rubber-like flat region and the crystal melting flow region of 135 ° C. or higher when the storage elastic modulus changes with temperature from the viewpoint of achieving both the shutdown function and the high temperature film rupture resistance. It is preferably 150 ° C.
  • the transition temperature between the rubbery flat region and the crystal melt flow region is preferably 137 ° C to 147 ° C, more preferably 140 ° C to 145 ° C, and further preferably 140 ° C to 143 ° C.
  • the separator When the separator is in the form of a laminated film or a composite film of a microporous film and an inorganic porous layer, only the silane-modified polyolefin-containing microporous film is removed from the laminate or the composite film, and the silane-modified polyolefin-containing film is contained.
  • the transition temperature of the microporous membrane shall be measured.
  • the electricity storage device separator according to the tenth embodiment includes a silane-modified polyolefin, and a first porous layer (A layer) capable of forming a crosslinked structure, and inorganic particles. And a second porous layer (B layer) containing the same.
  • the A layer and the B layer are each a single layer or a plurality of layers.
  • the B layer is formed on only one side or both sides of the A layer.
  • LIB which is a typical example of an electricity storage device, lithium (Li) ions make a round trip between positive and negative electrodes. Therefore, by disposing the separator including the A layer and the B layer between the positive and negative electrodes, it is possible to move Li ions between the positive and negative electrodes at a relatively high speed, while avoiding contact between the positive and negative electrodes.
  • the layer A functions as a microporous film having crosslinkability
  • the layer B functions as an inorganic porous layer formed on the microporous film.
  • the ratio (TA / TB) of the thickness (TA) of the A layer to the thickness (TB) of the B layer is preferably 0.22 or more and 14 or less.
  • the ratio (TA / TB) is 0.22 or more, the existence ratio of the A layer in the separator can be sufficiently secured and the function of the A layer can be exhibited.
  • the ratio (TA / TB) is 14 or less, the existence ratio of the B layer in the separator can be sufficiently secured and the function of the B layer can be exhibited.
  • the A layer and the B layer each have a specific structure and further setting the ratio (TA / TB) in the above range.
  • a separator can be suitably used, for example, as a constituent material of LIB for mobile device mounting or vehicle mounting.
  • the ratio (TA / TB) is preferably 0.8 or more, more preferably 1.0 or more.
  • the ratio (TA / TB) is preferably 5.5 or less, more preferably 3.2 or less.
  • the ratio (TA / TB) may be set to, for example, less than 2.5, 2.0 or less, or 1.0 or less.
  • the thickness (TA) of the A layer is less than 2.5 times the thickness (TB) of the B layer, and is smaller than the thickness (TB) of the B layer, so that the thickness of the A layer is reduced, and It becomes easier to reduce the thickness of the separator.
  • the total thickness (TA + TB) of the A layer and the B layer is preferably 3.0 ⁇ m or more and 22 ⁇ m or less.
  • the total thickness (TA + TB) is 3.0 ⁇ m or more, the film strength of the separator tends to be improved.
  • the total thickness (TA + TB) is 22 ⁇ m or less, the ion permeability of the separator tends to be improved.
  • the total thickness (TA + TB) is more preferably 3.5 ⁇ m or more, and further preferably 4.0 ⁇ m or more.
  • the total thickness (TA + TB) is more preferably 20 ⁇ m or less, still more preferably 18 ⁇ m or less.
  • the total thickness (TA + TB) may be set to less than 11 ⁇ m, 10 ⁇ m or less, or 8 ⁇ m or less, for example. Even in the case of such a thinned separator, the cycle characteristics and safety of the electricity storage device can be improved within the scope of the present invention.
  • Each of the ratio (TA / TB) and the total thickness (TA + TB) can be measured by the method described in the Example section, and can be controlled by adjusting the thickness (TA) and / or the thickness (TB).
  • the layers A and B will be described later.
  • the shutdown temperature (sometimes referred to as fuse temperature) measured from the electric resistance under pressure of 0.1 Mpa or more and 10.0 Mpa or less (preferably under 10 Mpa pressure) is 130 ° C to 160 ° C. Further, it is preferable that the meltdown temperature (sometimes referred to as the film rupture temperature) is 200 ° C. or higher.
  • the shutdown temperature is 130 ° C. or higher, it is possible to prevent the shutdown function from being unnecessarily exhibited during the normal reaction of the electricity storage device, and it is possible to secure sufficient output characteristics of the electricity storage device.
  • the shutdown temperature is 160 ° C. or lower, the shutdown function can be suitably exerted during abnormal reaction of the electricity storage device.
  • the shutdown temperature is 200 ° C. or higher, the abnormal reaction can be stopped before reaching the ultra-high temperature region during the abnormal reaction of the electricity storage device, and the melt-disrupted film of the separator during the abnormal reaction of the electricity storage device. Can be prevented.
  • the shutdown temperature and the meltdown temperature satisfy the above conditions, it is possible to realize a separator that can provide an electricity storage device having excellent heat resistance, pore blocking characteristics (shutdown function), and melt rupture property (meltdown function). In addition, mechanical characteristics, ion permeability and the like can be secured in the separator itself. Therefore, by including a separator whose shutdown temperature and meltdown temperature satisfy the above conditions, the electricity storage device can improve cycle characteristics and safety.
  • the shutdown temperature is preferably higher than 130 ° C, more preferably 135 ° C or higher, still more preferably 136 ° C or higher.
  • the shutdown temperature is preferably 150 ° C. or lower, more preferably 148 ° C.
  • the meltdown temperature is preferably 175 ° C. or higher, more preferably 178 ° C. or higher, still more preferably 180 ° C. or higher.
  • the meltdown temperature is preferably 230 ° C. or lower, more preferably 225 ° C. or lower, still more preferably 220 ° C. or lower.
  • shutdown temperature and the “meltdown temperature” mean the values obtained when measured based on the electric resistance under the above pressure. That is, while the above pressure is applied to the laminated body including the positive electrode, the separator, and the negative electrode, the temperature of the laminated body is increased, and the shutdown is performed based on the AC resistance (AC resistance between the electrodes) that rises accordingly.
  • the temperature and meltdown temperature are derived.
  • the temperature when the AC resistance exceeds a predetermined reference value (for example, 1000 ⁇ ) for the first time is set as the shutdown temperature, and then the heating is further continued and the AC resistance that exceeds the reference value is the above-mentioned.
  • the temperature at which the temperature falls below the reference value (for example, 1000 ⁇ ) is set as the meltdown temperature.
  • a hydraulic jack can be used to press the laminated body, but the present invention is not limited to this, and a known pressurizing means other than the hydraulic jack may be used.
  • An aluminum heater can be used to heat the laminate, but the present invention is not limited to this, and known heating means other than the aluminum heater may be used.
  • the shutdown temperature and the meltdown temperature can be measured by the method described in the Example section, and can be controlled by adjusting the constitution or the manufacturing method in the A layer.
  • the heat shrinkage rate (T2) at 150 ° C. after the formation of the crosslinked structure is 0.02 times or more and 0.91 times or less the heat shrinkage rate (T1) at 150 ° C. before the formation of the crosslinked structure.
  • the ratio (T2 / T1) of the heat shrinkage rate (T2) at 150 ° C. after the formation of the crosslinked structure to the heat shrinkage rate (T1) at 150 ° C. before the formation of the crosslinked structure is 0.02 or more. It is 0.91 or less.
  • the larger value of the heat shrinkage of the A layer in the machine direction (MD) and the heat shrinkage of the A layer in the width direction (TD) is used. Since the layer A can form a crosslinked structure of the silane-modified polyolefin, it becomes possible to pay attention to the change in the heat shrinkage rate before and after the crosslinking.
  • the ratio (T2 / T1) is 0.02 or more, it is possible to effectively suppress the occurrence of a short circuit, and thereby reliably prevent the temperature increase of the entire power storage device, smoke that may occur with it, and further ignition.
  • the ratio (T2 / T1) is 0.91 or less, it can be judged that the crosslinking reaction in the A layer could be sufficiently advanced. That is, when the ratio (T2 / T1) is within the above range, it is possible to provide a separator for an electricity storage device, which can improve cycle characteristics and safety in the electricity storage device. Therefore, from the viewpoint of the above effects, the ratio (T2 / T1) is preferably 0.03 or more, more preferably 0.05 or more, still more preferably 0.07 or more. On the other hand, the ratio (T2 / T1) is preferably 0.7 or less, more preferably 0.5 or less, still more preferably 0.4 or less.
  • the heat shrinkage rate (T1) at 150 ° C. before forming the crosslinked structure is preferably 70% or less, more preferably 60% or less.
  • the heat shrinkage ratio (T2) at 150 ° C. after forming the crosslinked structure is preferably 60% or less, more preferably 50% or less.
  • the heat shrinkage ratio (T2) is generally smaller than the heat shrinkage ratio (T1). is there.
  • the heat shrinkage rate at 150 ° C. can be measured by the method described in the Example section, and can be controlled by adjusting the constitution or manufacturing method in the A layer.
  • the separators according to the embodiments described above can be interchangeable or can be combined with each other.
  • the separator according to the ninth or tenth embodiment described above may optionally include a layer other than the microporous membrane and the inorganic porous layer.
  • the components of the separator according to the first to tenth embodiments will be described below.
  • the microporous membrane can be formed of polyolefin or modified polyolefin.
  • the microporous membrane contains a silane-modified polyolefin, and may optionally contain other polyolefins.
  • the silane-crosslinking property of the silane-modified polyolefin enables the microporous membrane to perform a crosslinking reaction in the separator manufacturing process.
  • the polyolefin contained in the microporous membrane is not particularly limited, but for example, a homopolymer of ethylene or propylene, or ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene, 1-octene, And a copolymer formed from at least two monomers selected from the group consisting of norbornene.
  • high-density polyethylene (homopolymer) or low-density polyethylene is preferable from the viewpoint that heat fixation (sometimes abbreviated as “HS”) can be performed at a higher temperature without blocking pores, and high density Polyethylene (homopolymer) is more preferred.
  • the polyolefins may be used alone or in combination of two or more.
  • the microporous membrane is preferably manufactured by using both silane-modified polyolefin and ultra-high molecular weight polyethylene (UHMWPE) as raw materials from the viewpoints of oxidation-reduction resistance deterioration and a dense and uniform porous body structure.
  • UHMWPE ultra-high molecular weight polyethylene
  • the ultrahigh molecular weight polyethylene (UHMWPE) has a weight average molecular weight of 1,000,000 or more. More preferably, in the production of the microporous membrane or the separator, the weight ratio of silane-modified polyolefin and UHMWPE (silane-modified polyolefin weight / UHMWPE weight) is 0.05 / 0.95 to 0.40 / 0.60.
  • the content of the polyolefin contained in the microporous membrane is preferably 50% by weight or more and 100% by weight or less, preferably 70% by weight or more and 100% by weight or less, and preferably 80% by weight or more and 100% by weight or less.
  • the microporous membrane contains a polyolefin having a weight average molecular weight of 100,000 or more and less than 1,000,000 (preferably 40% by weight or more, more preferably 80% by weight or more based on the total weight of the polyolefin). ) Is preferred.
  • the weight average molecular weight of the polyolefin is more preferably 120,000 or more and less than 950,000, further preferably 130,000 or more and less than 930,000.
  • a polyolefin having a weight average molecular weight of 100,000 or more and less than 1,000,000 relaxation of polymer shrinkage occurs early in a heat test of an electricity storage device, and it is easy to maintain safety particularly in a heat safety test. There is a tendency.
  • the weight average molecular weight of the microporous film By adjusting the weight average molecular weight of the microporous film to be less than 1,000,000, it is possible to suppress molding defects (film pattern) called extrusion called melt fracture at the time of extrusion.
  • the weight average molecular weight of the microporous film to 100,000 or more, it is possible to suppress the transfer of the depression when the microporous film is wound around the core (winding core).
  • the viscosity average molecular weight of the microporous membrane at the time of removing the inorganic porous layer and at the time of non-crosslinking treatment is preferably 100,000 or more from the viewpoint that polymer powder due to friction shear does not occur during roll transportation of the separator. It is 1,200,000 or less, more preferably 150,000 or more and 800,000 or less.
  • the film thickness of the microporous film is preferably 1.0 ⁇ m or more, more preferably 2.0 ⁇ m or more, further preferably 3.0 ⁇ m or more, 4.0 ⁇ m or more, or 4.5 ⁇ m or more.
  • the film thickness of the microporous film is preferably 500 ⁇ m or less, more preferably 100 ⁇ m or less, and further preferably 80 ⁇ m or less, 22 ⁇ m or less or 19 ⁇ m or less.
  • the film thickness of the microporous film is 500 ⁇ m or less, the ion permeability tends to be further improved.
  • the film thickness of the microporous film can be measured by the method described in the examples.
  • the film thickness of the microporous film is preferably 25 ⁇ m or less, more preferably 22 ⁇ m or less or 20 ⁇ m or less. , More preferably 18 ⁇ m or less, particularly preferably 16 ⁇ m or less. In this case, when the thickness of the microporous film is 25 ⁇ m or less, the permeability tends to be further improved.
  • the lower limit of the film thickness of the microporous film may be 1.0 ⁇ m or more, 3.0 ⁇ m or more, 4.0 ⁇ m or more, 6.0 ⁇ m or more, or 7.5 ⁇ m or more.
  • the microporous membrane as the separator has a melting rupture temperature of preferably 180 ° C. to 220 ° C. during thermomechanical analysis (TMA) measurement. C., and more preferably 180 to 200.degree.
  • TMA thermomechanical analysis
  • the poofin-made electricity storage device separator fuses at a low temperature (for example, 150 ° C. or lower), and Li ions move early, and the electricity storage device Alternatively, the discharge outside the power storage device is stopped.
  • the entire power storage device is cooled by cooling the power storage device with outside air or a refrigerant, and it is expected that the ignition of the electrolytic solution or the decomposition and exothermic reaction of the electrolyte can be prevented and the safety can be ensured.
  • the runaway reaction that has occurred in the electricity storage device continues to generate heat without being stopped by the fuse of the separator, and the separator melts and ruptures, making it impossible to ensure the safety of the device. Therefore, it is important that the separator does not melt and rupture until the entire electricity storage device is sufficiently cooled. Further, when the temperature is raised to an extremely high temperature region of 220 ° C.
  • the decomposition reaction of the electrolytic solution or the electrolyte rapidly progresses, a corrosion reaction occurs on the electrode due to the decomposition product, further heat generation, and an explosion occurs.
  • the separator is melted and ruptured, and the electrodes are coated with the active material to prevent corrosion reaction.
  • the layer A contains a silane-modified polyolefin and can form a crosslinked structure. From the viewpoint of ensuring deterioration resistance to redox and ensuring a dense and uniform porous body structure, the layer A preferably further contains polyethylene as a polyolefin different from the silane-modified polyolefin.
  • the A layer may contain components other than the silane-modified polyolefin and polyethylene.
  • the polyolefin constituting the silane-modified polyolefin in the layer A is a homopolymer of ethylene or propylene; selected from the group consisting of ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene, 1-octene, and norbornene. Examples thereof include a copolymer formed from at least two kinds of selected monomers.
  • the polyolefin is preferably a homopolymer of ethylene (polyethylene), more preferably high-density polyethylene and / or low-density polyethylene, from the viewpoint of enabling heat setting at a higher temperature while avoiding clogging of pores. Density polyethylene is more preferred.
  • the polyolefin may be used alone or in combination of two or more.
  • the layer A may contain a polymer (other polymer) that does not correspond to any of the silane-modified polyolefin and polyethylene, within a range where the effect of the present invention is not excessively impaired.
  • the weight average molecular weight of the entire A layer is preferably 100,000 or more and 1,200,000 or less, more preferably 150,000 or more and 800,000 or less.
  • the thickness (TA) of the layer A is preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more, still more preferably 3 ⁇ m or more. When the thickness (TA) is 1 ⁇ m or more, the film strength tends to be further improved. On the other hand, the thickness (TA) is preferably 500 ⁇ m or less, more preferably 100 ⁇ m or less, still more preferably 80 ⁇ m or less. When the thickness (TA) is 500 ⁇ m or less, ion permeability tends to be further improved.
  • the thickness (TA) may be set to, for example, 1.00 ⁇ m or more, 2.00 ⁇ m or more, or 3.00 ⁇ m or more.
  • the thickness (TA) is preferably less than 22 ⁇ m, more preferably 21 ⁇ m or less, still more preferably 20.5 ⁇ m or less.
  • the upper limit of the thickness (TA) may be set to less than 13 ⁇ m or 8.5 ⁇ m or less.
  • the thickness (TA) is 25 ⁇ m or less, the transparency tends to be further improved.
  • the thickness (TA) may be set to, for example, less than 22.00 ⁇ m, 21.00 ⁇ m or less, 20.00 ⁇ m or less, 13.00 ⁇ m or less, or 8.50 or less.
  • the lower limit of the thickness (TA) may be the same as above.
  • the thickness (TA) can be measured by the method described in the Example section, and can be controlled by changing the stretching ratio of the A layer.
  • the thickness of the A layer is treated as the thickness (TA).
  • the total thickness of the A layers of the plurality of layers is treated as the thickness (TA).
  • the film rupture temperature of the layer A measured by thermomechanical analysis (TMA) is preferably 180 ° C or higher and 220 ° C or lower. Even if the power storage device abnormally generates heat due to an unexpected runaway reaction, it is expected that the shutdown function of the separator will stop the movement of Li ions and the accompanying discharge inside or outside the power storage device. After that, it is expected that the refrigerant will cool the entire power storage device and ensure safety. On the other hand, when the membrane rupture temperature is within the above range, even if the entire electricity storage device is not sufficiently cooled, or even if it reaches the ultra-high temperature region, the separator melts and ruptures and penetrates into both electrodes. As a result, the active material can be coated, which makes it easier to suppress further heat generation.
  • the film rupture temperature can be measured by the method described in the Example section, and can be controlled by changing the stretching temperature and / or the stretching ratio in the manufacturing process.
  • the porosity of the microporous membrane or the layer A is preferably 20% or more, more preferably 25% or more, still more preferably 28% or more, 30% or more, 32% or more or 35% or more.
  • the porosity is 20% or more, the followability to the rapid movement of Li ions tends to be further improved.
  • the porosity is preferably 90% or less, more preferably 80% or less, still more preferably 60% or less.
  • the porosity can be measured by the method described in the Example section, and can be controlled by changing the stretching temperature and / or the stretching ratio in the manufacturing process.
  • the air permeability of the microporous film or layer A preferably from 1 sec / 100 cm 3 or more, more preferably 50 sec / 100 cm 3 or more, more preferably 55 sec / 100 cm 3 or more, still more preferably 70 seconds or more, It is 90 seconds or longer, or 110 seconds or longer.
  • the air permeability is 1 second / 100 cm 3 or more, the balance among the film thickness, the porosity and the average pore diameter tends to be further improved.
  • the air permeability is preferably 400 seconds / 100 cm 3 or less, more preferably 300 seconds or less / 100 cm 3 , and further preferably 270 seconds / 100 cm 3 or less.
  • the air permeability is 400 seconds / 100 cm 3 or less, the ion permeability tends to be further improved.
  • the air permeability can be measured by the method described in the Example section, and can be controlled by changing the stretching temperature and / or the stretching ratio in the manufacturing process.
  • the puncture strength of the microporous membrane or layer A is preferably 200 gf / 20 ⁇ m or more, more preferably 300 gf / 20 ⁇ m or more.
  • the puncture strength is 200 gf / 20 ⁇ m or more, even when the active material or the like is dropped off when the laminated body of the separator and the electrode is wound, it is easy to suppress film breakage due to the dropped active material or the like. In addition, it is easy to reduce the possibility of short circuit due to expansion and contraction of the electrodes due to charge and discharge.
  • the puncture strength is preferably 4000 gf / 20 ⁇ m or less, more preferably 3800 gf / 20 ⁇ m or less.
  • the puncture strength is 3500 gf / 20 ⁇ m or less, it is easy to reduce heat shrinkage during heating.
  • the puncture strength can be measured by the method described in the Example section, and can be controlled by changing the stretching temperature and / or the stretching ratio in the manufacturing process.
  • the tensile strength of the microporous membrane or A layer is respectively in both MD (longitudinal direction of the membrane or A layer, machine direction or flow direction) and TD (direction orthogonal to MD, width direction of the membrane or A layer), respectively. It is preferably 1000 kgf / cm 2 or more, more preferably 1050 kgf / cm 2 or more, and further preferably 1100 kgf / cm 2 or more. When the tensile strength is 1000 kgf / cm 2 or more, breakage during slitting or winding of the power storage device is more suppressed, or short circuit due to foreign matter in the power storage device tends to be further suppressed.
  • the tensile strength is preferably 5000 kgf / cm 2 or less, more preferably 4500 kgf / cm 2 or less, and further preferably 4000 kgf / cm 2 or less.
  • the tensile strength is 5000 kgf / cm 2 or less, the microporous membrane or the A layer is relaxed early in the heating test, the contraction force is weakened, and as a result, the safety tends to be improved.
  • the tensile modulus of elasticity of the microporous membrane or A layer is preferably 120 N / cm or less, more preferably 100 N / cm or less, and further preferably 90 N / cm or less in both MD and TD directions.
  • a tensile modulus of 120 N / cm or less indicates that the lithium ion secondary battery separator is not extremely oriented, and in a heating test or the like, for example, when a blocking agent such as polyethylene melts and shrinks, Polyethylene or the like causes stress relaxation at an early stage, which suppresses contraction of the separator in the battery and tends to prevent short circuit between electrodes (that is, the safety of the separator during heating may be improved).
  • Such a low tensile elastic modulus is easily achieved by including polyethylene having a weight average molecular weight of 500,000 or less in the polyolefin forming the microporous membrane or the A layer.
  • the lower limit of the tensile elastic modulus is not particularly limited, but is preferably 10 N / cm or more, more preferably 30 N / cm or more, and further preferably 50 N / cm or more.
  • the tensile modulus can be appropriately adjusted by adjusting the degree of stretching in the manufacturing process, and if necessary, relaxing after stretching.
  • the polyolefin is not particularly limited, but is, for example, a homopolymer of ethylene or propylene, or a group consisting of ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene, 1-octene, and norbornene. Examples thereof include a copolymer formed from at least two selected monomers. Among these, high-density polyethylene or low-density polyethylene is preferable, and high-density polyethylene is more preferable, from the viewpoint that heat fixation (which may be abbreviated as “HS”) can be performed at a higher temperature without blocking the pores.
  • the polyolefins may be used alone or in combination of two or more.
  • the separator preferably contains a polyolefin having a weight average molecular weight (Mw) of less than 2,000,000, and more preferably 40% by mass of the polyolefin having Mw of less than 2,000,000 with respect to the entire polyolefin.
  • Mw weight average molecular weight
  • the above content is more preferably 80% by mass or more.
  • the elastic modulus in the thickness direction of the obtained microporous membrane tends to be smaller when the polyolefin having Mw of less than 2,000,000 is used as compared with the case of using the polyolefin having 1,000,000 or more.
  • a microporous film is obtained in which the irregularities of the core are relatively easily transferred.
  • the weight average molecular weight of the entire polyolefin microporous membrane that constitutes the separator is preferably 100,000 or more and 2,000,000 or less, and more preferably 150,000 or more and 1,500,000 or less.
  • the separator is a functional group-modified polyolefin, or a unit amount having a functional group, as a polyolefin having one or more functional groups, from the viewpoint of formation of a crosslinked structure, redox resistance, and a dense and uniform porous body structure. It is preferred that the body comprises a copolymerized polyolefin.
  • a functional group-modified polyolefin refers to a product to which a functional group is bound after the production of the polyolefin.
  • the functional group is one that can be bonded to the polyolefin skeleton or introduced into a comonomer, and is preferably one that participates in the selective crosslinking of the amorphous portion of the polyolefin, for example, a carboxyl group, a hydroxy group, a carbonyl group.
  • Polymerizable unsaturated hydrocarbon group isocyanate group, epoxy group, silanol group, hydrazide group, carbodiimide group, oxazoline group, acetoacetyl group, aziridine group, ester group, active ester group, carbonate group, azido group, chain or It can be at least one selected from the group consisting of cyclic heteroatom-containing hydrocarbon groups, amino groups, sulfhydryl groups, metal chelate groups, and halogen-containing groups.
  • the separator contains both a polyolefin having one or more functional groups and a silane-unmodified polyethylene. Is preferred.
  • the mass ratio of the polyolefin having one or more functional groups and the silane unmodified polyethylene (1 The mass of the polyolefin having one kind or two or more kinds of functional groups / the mass of the silane-unmodified polyethylene) is 0.05 / 0.95 to 0.80 / 0.20.
  • the crosslinked structure of the separator contributes to both the shutdown function of the separator and the high temperature puncture resistance and the safety of the electricity storage resistant device, and is preferably formed in the amorphous portion of the polyolefin contained in the separator.
  • the crosslinked structure can be formed, for example, by a reaction via either a covalent bond, a hydrogen bond or a coordinate bond.
  • the reaction via the covalent bond includes the following reactions (I) to (IV): (I) Condensation reaction of a plurality of identical functional groups (II) Reaction between a plurality of different functional groups (III) Chain condensation reaction of functional group and electrolyte (IV) Chain condensation reaction of functional group and additive At least one selected is preferable.
  • the reaction via the coordinate bond is the following reaction (V): (V) A plurality of the same functional groups are preferably a reaction of crosslinking with the eluting metal ion via a coordinate bond.
  • reaction (I) A schematic scheme and specific examples of the reaction (I) are shown below, where A is the first functional group of the separator.
  • R is an alkyl group having 1 to 20 carbon atoms or a heteroalkyl group which may have a substituent.
  • the polyolefin contained in the separator is preferably silane graft modified.
  • the silane-grafted modified polyolefin has a main chain of polyolefin and has a structure having alkoxysilyl as a graft on the main chain.
  • examples of the alkoxide substituted with the alkoxysilyl include methoxide, ethoxide, and butoxide.
  • R may be methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, or the like.
  • the main chain and the graft are linked by a covalent bond, and examples thereof include structures such as alkyl, ether, glycol or ester.
  • the ratio of silicon to carbon Si / C is 0.2 to 1.8% before the crosslinking treatment step. It is preferably 0.5 to 1.7%, and more preferably 0.5 to 1.7%.
  • the preferred silane-grafted modified polyolefin has a density of 0.90 to 0.96 g / cm 3 and a melt flow rate (MFR) at 190 ° C. of 0.2 to 5 g / min.
  • the silane-grafted modified polyolefin is not a masterbatch resin containing a dehydration condensation catalyst from the viewpoint of suppressing the generation of resin aggregates in the manufacturing process of the separator and maintaining the silane crosslinkability until it comes into contact with the electrolytic solution. Is preferred. It is known that the dehydration condensation catalyst also functions as a catalyst for the siloxane bond forming reaction of the alkoxysilyl group-containing resin.
  • a compound obtained by previously adding a dehydration condensation catalyst for example, an organometallic catalyst
  • a dehydration condensation catalyst for example, an organometallic catalyst
  • Reaction (II) A schematic scheme and a specific example of the reaction (II) are shown below, where the first functional group of the separator is A and the second functional group is B.
  • the reaction (I) and the reaction (II) can be catalyzed, and for example, can be catalytically promoted by a chemical substance inside the electricity storage device in which the separator is incorporated.
  • the chemical substance can be, for example, any of an electrolyte, an electrolytic solution, an electrode active material, an additive, or a decomposed product thereof contained in an electricity storage device.
  • Reaction (III) A schematic scheme and a specific example of the reaction (III) are shown below, where the first functional group of the separator is A and the electrolytic solution is Sol.
  • Reaction (IV) A schematic scheme of the reaction (IV) is shown below, where the first functional group of the separator is A, the second functional group optionally incorporated is B, and the additive is Add.
  • the reaction (IV) is a nucleophilic substitution reaction or a nucleophilic addition reaction between the compound Rx forming the separator and the compound Ry forming the additive (Add) from the viewpoint of forming a covalent bond represented by a dotted line in the above scheme. Alternatively, it is preferably a ring-opening reaction.
  • the compound Rx may be a polyolefin contained in the separator, such as polyethylene or polypropylene, preferably the polyolefin is, depending on the functional group x, for example -OH, -NH 2 , -NH-, -COOH and -SH. Is modified by at least one selected from
  • the compound Ry preferably has two or more ligation reaction units y 1 .
  • the plurality of ligation reaction units y 1 may have any structures or groups, and may be substituted or unsubstituted, as long as they can cause a nucleophilic substitution reaction, a nucleophilic addition reaction or a ring opening reaction with the functional group x of the compound Rx. , Heteroatoms or inorganic substances, which may be the same or different from each other.
  • the plurality of ligation reaction units y 1 can independently be a terminal group, incorporated into the main chain, or a side chain or a pendant.
  • the reaction (IV) is a nucleophilic substitution reaction
  • the functional group x of the compound Rx is regarded as a nucleophilic group
  • the ligation reaction unit y 1 of the compound Ry is regarded as a leaving group, which will be described below as an example.
  • both the functional group x and the ligation reaction unit y 1 can be a leaving group depending on the nucleophilicity.
  • the functional group x of the compound Rx is preferably an oxygen nucleophilic group, a nitrogen nucleophilic group, or a sulfur nucleophilic group.
  • the oxygen-based nucleophilic group include a hydroxyl group, an alkoxy group, an ether group, a carboxyl group and the like, among which —OH and —COOH are preferable.
  • the nitrogen-based nucleophilic group include an ammonium group, a primary amino group, a secondary amino group and the like, among which —NH 2 and —NH— are preferable.
  • the sulfur-based nucleophilic group include —SH and thioether group, with —SH being preferred.
  • the coupling reaction unit y 1 of the compound Ry may be an alkylsulfonyl group such as CH 3 SO 2 — and CH 3 CH 2 SO 2 — from the viewpoint of a leaving group.
  • an arylsulfonyl group (-ArSO 2 -); CF 3 SO 2 -, CCl 3 SO 2 - haloalkylsulfonyl group such as; CH 3 SO 3 - -, CH 3 CH 2 SO 3 - - alkylsulfonate group and the like;
  • Aryl sulfonate group (ArSO 3 ⁇ ⁇ ); haloalkyl sulfonate group such as CF 3 SO 3 ⁇ ⁇ , CCl 3 SO 3 ⁇ ⁇ , and heterocyclic group are preferable, and these are used alone or in combination of two or more kinds.
  • hetero atom contained in the heterocycle examples include a nitrogen atom, an oxygen atom and a sulfur atom, and among them, a nitrogen atom is preferable from the viewpoint of elimination.
  • the leaving group containing a nitrogen atom in the heterocycle include the following formulas (y 1 -1) to (y 1 -6): ⁇ In the formula, X is a hydrogen atom or a monovalent substituent. ⁇ ⁇ In the formula, X is a hydrogen atom or a monovalent substituent. ⁇ ⁇ In the formula, X is a hydrogen atom or a monovalent substituent. ⁇ ⁇ In the formula, X is a hydrogen atom or a monovalent substituent. ⁇ ⁇ In the formula, X is a hydrogen atom or a monovalent substituent. ⁇ ⁇ In the formula, X is a hydrogen atom or a monovalent substituent. ⁇ ⁇ In the formula, X is a hydrogen atom or a monovalent substituent. ⁇ A monovalent group represented by
  • X is a hydrogen atom or a monovalent substituent.
  • the monovalent substituent include an alkyl group, a haloalkyl group, an alkoxyl group, and a halogen atom.
  • the compound Ry is represented by the following formula (y 2) as a chain unit y 2 in addition to the linking reaction unit y 1. -1) to (y 2 -6): ⁇ In the formula, m is an integer of 0 to 20 and n is an integer of 1 to 20. ⁇ ⁇ In the formula, n is an integer of 1 to 20. ⁇ ⁇ In the formula, n is an integer of 1 to 20. ⁇ ⁇ In the formula, n is an integer of 1 to 20. ⁇ ⁇ In the formula, n is an integer of 1 to 20. ⁇ ⁇ In the formula, n is an integer of 1 to 20. ⁇ ⁇ In the formula, X is an alkylene group having 1 to 20 carbon atoms or an arylene group, and n is an integer of 1 to 20.
  • X is an alkylene group having 1 to 20 carbon atoms or an arylene group
  • n is an integer of 1 to 20.
  • X is an alkylene group having 1 to 20 carbon atoms or an arylene group
  • n is an integer of 1 to 20.
  • the compound Ry contains a plurality of chain units y 2 , they may be the same or different from each other, and their sequences may be block or random.
  • m is an integer of 0 to 20, and preferably 1 to 18 from the viewpoint of the crosslinked network.
  • n is an integer of 1 to 20 and is preferably 2 to 19 or 3 to 16 from the viewpoint of the crosslinked network.
  • X is an alkylene group having 1 to 20 carbon atoms or an arylene group, and from the viewpoint of stability of the chain structure, preferably a methylene group, Ethylene group, n-propylene group, n-butylene group, n-hexylene group, n-heptylene group, n-octylene group, n-dodecylene group, o-phenylene group, m-phenylene group, or p-phenylene group .
  • reaction (IV) is a nucleophilic substitution reaction
  • preferred combinations of the functional group x of the compound Rx and the ligation reaction unit y 1 and the chain unit y 2 of the compound Ry are shown in Tables 2 to 4 below.
  • the functional group x of the polyolefin is —NH 2
  • the ligation reaction unit y 1 of the additive is a succinimide-derived skeleton
  • a chain unit y 2 The reaction scheme in the case where is — (O—C 2 H 5 ) n — is shown below.
  • the functional group x of the polyolefin is —SH and —NH 2
  • the coupling reaction unit y 1 of the additive is a nitrogen-containing cyclic skeleton, and a chain unit.
  • the reaction scheme in which y 2 is o-phenylene is shown below.
  • the functional group x of the compound Rx and the ligation reaction unit y 1 of the compound Ry can cause an addition reaction.
  • the functional group x of the compound Rx is preferably an oxygen nucleophilic group, a nitrogen nucleophilic group, or a sulfur nucleophilic group.
  • the oxygen-based nucleophilic group include a hydroxyl group, an alkoxy group, an ether group, a carboxyl group and the like, among which —OH and —COOH are preferable.
  • nitrogen-based nucleophilic group examples include an ammonium group, a primary amino group, a secondary amino group and the like, among which —NH 2 and —NH— are preferable.
  • sulfur-based nucleophilic group examples include —SH and thioether group, with —SH being preferred.
  • the ligation reaction unit y 1 of the compound Ry has the following formulas (Ay 1 -1) to (Ay 1 -6): ⁇ In the formula, R is a hydrogen atom or a monovalent organic group. ⁇ It is preferably at least one selected from the group consisting of groups represented by
  • R is a hydrogen atom or a monovalent organic group, preferably a hydrogen atom, C 1 ⁇ 20 alkyl group, an alicyclic group, or aromatic group, more preferably Is a hydrogen atom, a methyl group, an ethyl group, a cyclohexyl group or a phenyl group.
  • reaction (IV) is a nucleophilic addition reaction
  • preferable combinations of the functional group x of the compound Rx and the ligation reaction unit y 1 of the compound Ry are shown in Tables 5 and 6 below.
  • the functional group x of the compound Rx and the ligation reaction unit y 1 of the compound Ry can cause a ring-opening reaction, and the ligation reaction unit can be easily obtained from the viewpoint of availability of raw materials.
  • the cyclic structure on the y 1 side is preferably opened.
  • the ligation reaction unit y 1 is more preferably an epoxy group
  • the compound Ry is further preferably at least two epoxy groups, and even more preferably a diepoxy compound.
  • the functional group x of the compound Rx is at least one selected from the group consisting of —OH, —NH 2 , —NH—, —COOH and —SH.
  • the ligation reaction unit y 1 of the compound Ry has the following formula (ROy 1 -1): ⁇ In the formula, plural Xs are each independently a hydrogen atom or a monovalent substituent.
  • a plurality of X's each independently represent a hydrogen atom or a monovalent substituent, preferably a hydrogen atom, a C 1-20 alkyl group, an alicyclic group, or an aromatic group.
  • a group more preferably a hydrogen atom, a methyl group, an ethyl group, a cyclohexyl group or a phenyl group.
  • Table 7 shows preferred combinations of the functional group x of the compound Rx and the ligation reaction unit y 1 of the compound Ry.
  • Reaction (V) A schematic scheme of the reaction (V) and an example of the functional group A are shown below, where A is the first functional group of the separator and M n + is the metal ion.
  • the metal ions M n + are preferably those eluted from the electricity storage device (hereinafter, also referred to as eluted metal ions), for example, Zn 2+ , Mn 2+ , Co 3+ , Ni 2+ and Li +. It can be at least one selected from the group.
  • the coordination bond in the case where the functional group A is —COO ⁇ is exemplified below.
  • hydrofluoric acid is, for example, one of an electrolyte, an electrolytic solution, an electrode active material, an additive, or a decomposed product or a water-absorbed product thereof, which is included in an electricity storage device, depending on a charge / discharge cycle of the electricity storage device. Can be derived from.
  • the silane-modified polyolefin has a main chain of polyolefin, and has a structure in which an alkoxysilyl group is grafted to the main chain.
  • the silane-modified polyolefin can be obtained by grafting an alkoxysilyl group on the main chain of the silane-unmodified polyolefin. It is presumed that an alkoxysilyl group is converted into a silanol group through a hydrolysis reaction with water and undergoes a cross-linking reaction to form a siloxane bond (see the following formula; the ratio of T1 structure, T2 structure, and T3 structure is arbitrary. Is).
  • alkoxide substituted with the alkoxysilyl group examples include methoxide, ethoxide, butoxide and the like.
  • examples of R include methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl and the like.
  • the main chain and the graft are connected by a covalent bond.
  • Examples of the structure that forms such a covalent bond include alkyl, ether, glycol, and ester.
  • the silanol unit has a modification amount of 2% or less with respect to the main chain ethylene unit before the crosslinking reaction.
  • the preferred silane-grafted modified polyolefin has a density of 0.90 to 0.96 g / cm 3 and a melt flow rate (MFR) at 190 ° C. of 0.2 to 5 g / min.
  • the amount of the silane-modified polyolefin is preferably 0.5% by mass or more or 3% by mass or more, and more preferably 4%, based on the total amount of the microporous membrane or the A layer, from the viewpoint that the effect of the present invention is favorably exhibited. It is at least mass%, more preferably at least 5 mass% or at least 6 mass%. From the viewpoint of cycleability and safety of the electricity storage device, the amount of the silane-modified polyolefin is preferably 40% by mass or less, more preferably 38% by mass or less, based on the total amount of the microporous membrane. The amount of the silane-modified polyolefin may be 30% by mass or more, 50% by mass or more, and further 100% by mass, based on the total amount of the layer A.
  • the crosslinked structure in the microporous film or the A layer is preferably formed by a compound generated in the electricity storage device. That is, in the manufacturing process of the electricity storage device, when the separator is brought into contact with the non-aqueous electrolyte, swelling of the microporous membrane or the A layer and / or a compound generated in the electricity storage device is used to form an oligosiloxane bond. It is also preferable that the crosslinked structure is a crosslinked structure in the microporous membrane or the A layer.
  • the crosslinked structure in this case is a crosslinked structure obtained by positively promoting the crosslinking reaction in the manufacturing process of the electricity storage device without actively promoting the crosslinking reaction in the manufacturing process of the separator. The self-crosslinking property of the separator can be maintained until it is stored.
  • the silane-modified polyolefin is not a masterbatch resin containing a dehydration condensation catalyst from the viewpoint of suppressing the generation of resin aggregates in the manufacturing process of the separator, and maintaining the silane crosslinkability until it comes into contact with the electrolytic solution.
  • the dehydration condensation catalyst also functions as a catalyst for the siloxane bond formation reaction of the alkoxysilyl group-containing resin.
  • a compound obtained by previously adding a dehydration condensation catalyst for example, an organometal-containing catalyst
  • a dehydration condensation catalyst for example, an organometal-containing catalyst
  • polyethylene in the present specification, polyethylene that can be further contained in addition to the silane-modified polyolefin (polyethylene further included as a polyolefin different from the silane-modified polyolefin in the microporous membrane or the layer A) has a weight average molecular weight of 100,000 or more. It means polyethylene, which is a homo-ethylene polymerized polymer having a molecular weight of less than or equal to 2,000,000, and a copolymer copolymerized polymer containing an alkane unit.
  • the content thereof is preferably 20% by mass or more, more preferably 40% by mass, based on the total amount of the silane-modified polyolefin and polyethylene. It is at least mass%, more preferably at least 50 mass%.
  • the content of polyethylene is 20% by mass or more, deterioration resistance to redox tends to be easily secured, and a dense and uniform porous body structure tends to be secured.
  • the content of polyethylene is preferably 97% by mass or less, more preferably 96% by mass or less, and further preferably 95% by mass or less. When the content of polyethylene is 97% by mass or less, the content of silane-modified polyolefin in the microporous membrane or A layer can be secured.
  • the identification of 1 H or 13 C NMR of silane-modified polyolefin as a raw material used for manufacturing a separator can be utilized in a method for detecting a silane-modified polyolefin contained in a separator.
  • An example of 1 H and 13 C NMR measurement techniques will be described below.
  • 11 and 12 are 1 H and 13 C-NMR charts of silane-modified polyolefin raw materials 1 and 2 using two kinds of polyolefins, and raw materials 1 and 2 are melt index (MI) and C 3 grafts, respectively. Amount, C 4 graft amount, and / or silanol modification amount are different.
  • the 1 H and 13 C-NMR measurement conditions in FIG. 11 are as follows.
  • the 1 H and 13 C-NMR measurement conditions in FIG. 12 are as follows.
  • FIG. 13 is a 1 H- and 13 C-NMR chart in a pre-crosslinking state of a separator produced using the silane-modified polyolefin raw material 1 shown in FIG. 11 in Example I-1 described later.
  • the 1 H and 13 C-NMR measurement conditions in FIG. 13 are as follows.
  • crosslinked separator can be measured by the same NMR as in FIG. 13 after the pretreatment described above (not shown).
  • a combination of a microporous membrane containing a silane-modified polyolefin and an inorganic porous layer has both a shutdown function at a temperature lower than 150 ° C and a film rupture property at a relatively high temperature, and has cycle characteristics of an electricity storage device and battery nail penetration safety. Tend to improve the sex. Since the silane-modified polyolefin in the microporous film is silane-crosslinkable, it may increase the viscosity of the resin in the microporous film when silane cross-linking occurs.
  • the crosslinked high-viscosity resin does not easily flow into the inorganic layer (that is, it is difficult to integrate), the clearance between the electrodes can be sufficiently secured, and the battery short circuit can be suppressed.
  • the inorganic porous layer is a layer containing inorganic particles and a resin binder, and may optionally further contain a dispersant for dispersing the inorganic particles in the binder resin.
  • the thickness of the inorganic porous layer is 0.5 ⁇ m to 10 ⁇ m, 0.5 ⁇ m to 7 ⁇ m, 0.5 ⁇ m to 5 ⁇ m, or 0. 0, from the viewpoint of ion permeability of the separator and charge / discharge capacity or cycle stability of the electricity storage device. It is preferably 5 ⁇ m to 4 ⁇ m.
  • the thickness of the inorganic porous layer can be determined by the method described in the examples.
  • the B layer contains inorganic particles.
  • the B layer may further include a resin binder.
  • the B layer can be the inorganic porous layer described above.
  • the B layer may include components other than the inorganic particles and the resin binder.
  • the thickness (TB) of the B layer is preferably 0.2 ⁇ m or more, more preferably 0.5 ⁇ m or more. If the thickness (TB) is 0.5 ⁇ m or more, the mechanical strength tends to be further improved. On the other hand, the thickness (TB) is preferably less than 22 ⁇ m, more preferably 20 ⁇ m or less, still more preferably 15 ⁇ m or less. When the thickness (TB) is 30 ⁇ m or less, the volume occupied by the separator in the electricity storage device decreases, which tends to be advantageous in terms of increasing the capacity of the electricity storage device. It is also preferable from the viewpoint of preventing an excessive increase in air permeability of the separator.
  • the thickness (TB) may be set to, for example, 0.50 ⁇ m or more, 0.80 ⁇ m or more, or 1.00 ⁇ m or more, and less than 22.00 ⁇ m, 20.00 ⁇ m or less, or 15.00 ⁇ m or less. Good.
  • the thickness (TB) can be measured by the method described in the Example section, and can be controlled by changing the coating amount of the coating liquid (slurry) for forming the B layer.
  • the thickness of the B layer is treated as the above “thickness (TB)”.
  • the total thickness of the plurality of B layers is treated as the above-mentioned “thickness (TB)”.
  • the total thickness of the B layer arranged on the one side and the B layer arranged on the other side is the above-mentioned "thickness”. (TB) ”.
  • inorganic particles examples include alumina (Al 2 O 3 ), silica, titania, zirconia, magnesia, ceria, yttria, zinc oxide, iron oxide, and other inorganic oxides (oxide-based ceramics); silicon nitride, titanium nitride. , And inorganic nitrides (nitride-based ceramics) such as boron nitride; silicon carbide, calcium carbonate, magnesium sulfate, aluminum sulfate, aluminum hydroxide, aluminum hydroxide oxide (AlO (OH)), potassium titanate, talc, kaori.
  • Ceramics such as knight, dikite, nacrite, halloysite, pyrophyllite, montmorillonite, sericite, mica, amesite, bentonite, asbestos, zeolite, calcium silicate, magnesium silicate, diatomaceous earth and silica sand; and glass fiber Is You can These may be used alone or in combination of two or more.
  • the amount of the inorganic particles is preferably 5% by mass or more or 20% by mass or more, more preferably 30% by mass or more, from the viewpoint of ensuring heat resistance, based on the total amount of the inorganic porous layer or the B layer.
  • the amount of the inorganic particles may be set to 50% by mass or more, more than 80% by mass, or 85% by mass or more based on the total amount of the inorganic porous layer or the B layer.
  • the amount of the inorganic particles is preferably 99.9% by mass or less, more preferably 99.5% by mass or less or 99% by mass or less.
  • the amount of the inorganic particles may be set to, for example, 20.00 mass% or more, 30.00 mass% or more, 50.00 mass% or more, 80.00 mass% or more, or 85.00 mass% or more, On the other hand, it may be set to 99.90% by mass or less or 99.50% by mass.
  • the shape of the inorganic particles includes a plate shape, a scale shape, a needle shape, a column shape, a spherical shape, a polyhedral shape, a spindle shape, and a lump shape (block shape).
  • a plurality of inorganic particles having these shapes may be used in combination.
  • the number average particle diameter of the inorganic particles is, for example, 0.01 ⁇ m or more, 0.1 ⁇ m or more, or 0.3 ⁇ m or more, and preferably 0.5 ⁇ m or more.
  • the number average particle diameter is, for example, 10.0 ⁇ m or less, 9.0 ⁇ m or less, or 6.0 ⁇ m or less, preferably 2.5 ⁇ m or less, more preferably 2.0 ⁇ m or less. More preferably, it is 0.5 ⁇ m or less. It is preferable to adjust the number average particle diameter of the inorganic particles within the above range from the viewpoint of improving safety during short circuit.
  • Examples of the method for adjusting the number average particle diameter of the inorganic particles include a method of pulverizing the inorganic particles by using an appropriate pulverizing device such as a ball mill, a bead mill, a jet mill.
  • the minimum particle size is preferably 0.02 ⁇ m or more, more preferably 0.05 ⁇ m or more, still more preferably 0.1 ⁇ m or more.
  • the maximum particle size is preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less, even more preferably 7 ⁇ m or less.
  • the ratio of maximum particle diameter / average particle diameter is preferably 50 or less, more preferably 30 or less, and further preferably 20 or less. It is preferable to adjust the particle size distribution of the inorganic particles within the above range from the viewpoint of suppressing heat shrinkage at high temperature. Further, it may have a plurality of particle size peaks between the maximum particle size and the minimum particle size.
  • a method for adjusting the particle size distribution of the inorganic particles for example, a method of crushing the inorganic filler using a ball mill, a bead mill, a jet mill or the like to adjust to a desired particle size distribution, a plurality of particles having a plurality of particle size distributions After the filler is prepared, a method of blending them may be mentioned.
  • the resin binder contains a resin that binds the inorganic particles to each other.
  • the glass transition temperature (Tg) of the resin binder is said to ensure the binding property with the inorganic particles and the stability of the inorganic porous layer or the B layer in the manufacturing process of the separator, the manufacturing process of the electricity storage device, or the charging / discharging process. From the viewpoint, the temperature is preferably ⁇ 50 ° C. to 100 ° C., more preferably ⁇ 35 ° C. to 95 ° C.
  • the glass transition temperature is determined from the DSC curve obtained by differential scanning calorimetry (DSC). Specifically, the temperature at the intersection of the straight line obtained by extending the low temperature side baseline in the DSC curve to the high temperature side and the tangent line at the inflection point of the stepwise change portion of the glass transition may be adopted as the glass transition temperature. it can. More specifically, it may be determined according to the method described in the examples. Further, “glass transition” refers to a change in the amount of heat caused by a change in the state of a polymer as a test piece on the endothermic side in DSC. Such a change in the amount of heat is observed as a step-like change shape in the DSC curve.
  • stepwise change refers to a part of the DSC curve from the baseline on the low temperature side until the curve moves to a new baseline on the high temperature side. Note that a combination of a step change and a peak is also included in the step change. Furthermore, the “inflection point” refers to a point at which the slope of the DSC curve in the stepwise change portion becomes maximum. Further, in the stepwise change portion, when the upper side is the heat generating side, it can be expressed as a point where the upward convex curve changes to the downward convex curve. “Peak” refers to a portion of the DSC curve from the time when the curve leaves the baseline on the low temperature side until it returns to the same baseline again. The “baseline” refers to a DSC curve in a temperature range in which the test piece does not undergo transition and reaction.
  • Examples of the resin binder include the following 1) to 7). These may be used alone or in combination of two or more.
  • 1) Polyolefin For example, polyethylene, polypropylene, ethylene propylene rubber, and modified products thereof; 2) Conjugated diene-based polymer: For example, styrene-butadiene copolymer, its hydride, acrylonitrile-butadiene copolymer, its hydride, acrylonitrile-butadiene-styrene copolymer, and its hydride; 3) Acrylic polymer: For example, methacrylic acid ester-acrylic acid ester copolymer, styrene-acrylic acid ester copolymer, and acrylonitrile-acrylic acid ester copolymer; 4) Polyvinyl alcohol resin: for example, polyvinyl alcohol and polyvinyl acetate; 5) Fluorine-containing resin: for example, PVdF, polytetrafluoroethylene, vinyl
  • polysulfone polysulfone
  • polyether sulfone polyphenylene sulfide
  • polyetherimide 1, polyamideimide, polyamide, and polyester.
  • resin binders can be obtained from a desired monomer as a raw material according to a known production method such as emulsion polymerization or solution polymerization.
  • a known production method such as emulsion polymerization or solution polymerization.
  • the polymerization temperature, the pressure during the polymerization, the method of adding the monomer, and the additives (polymerization initiator, molecular weight adjusting agent, pH adjusting agent, etc.) used are not limited.
  • the amount of the resin binder is, for example, 0.5% by mass or more or 1.0% by mass or more based on the total amount of the inorganic porous layer or the B layer, while, for example, 50% by mass or less or 30% by mass or less. Is. Further, as described above, since the resin binder is an optional component in the B layer, the amount of the resin binder contained in the B layer is less than 20% by mass, 15% by mass or less, or 0% by mass, based on the total amount of the B layer. You can If the amount of the resin binder contained in the B layer is reduced, the room for containing the inorganic particles in the B layer can be increased accordingly.
  • the dispersant is one that is adsorbed on the surface of the inorganic particles in the slurry for forming the inorganic porous layer or the B layer and stabilizes the inorganic particles by electrostatic repulsion or the like. Salts, polyoxyethers, surfactants and the like may be used.
  • the inorganic porous layer or the B layer may further contain other components which are usually added and blended with an aqueous paint or the like within the range of its effect.
  • Such other components are not particularly limited and include, for example, thickeners, film forming aids, plasticizers, cross-linking agents, antifreezing agents, defoamers, dyes, preservatives, ultraviolet absorbers, and light stabilizers. Agents and the like. These other components may be used alone or in combination of two or more.
  • the microporous membrane, the inorganic porous layer, the A layer, and / or the B layer can optionally contain known additives.
  • additives include organic metal-containing catalysts (dehydration condensation catalysts); plasticizers; antioxidants such as phenol-based, phosphorus-based, and sulfur-based; metal soaps such as calcium stearate and zinc stearate; thickeners A film forming aid; a cross-linking agent; an antifreezing agent; an antifoaming agent; an antiseptic; an ultraviolet absorber; a light stabilizer; an antistatic agent; an antifogging agent; a dye; and a coloring pigment.
  • the B layer may contain a crosslinking agent.
  • Such a cross-linking agent may contain a functional group having reactivity with the above-mentioned inorganic particles.
  • the thickness of the entire separator is preferably 25 ⁇ m or less, more preferably 22 ⁇ m or less or 20 ⁇ m or less, and further preferably 18 ⁇ m or less. , Particularly preferably 16 ⁇ m or less.
  • the lower limit of the thickness of the entire separator may be, for example, 1.0 ⁇ m or more, 3.0 ⁇ m or more, 4.0 ⁇ m or more, 6.0 ⁇ m or more, or 7.5 ⁇ m or more.
  • the air permeability of the separator is preferably 50 seconds / 100 cm 3 to 400 seconds / 100 cm 3 , more preferably 75 seconds / 100 cm 3 to 275 seconds / 100 cm 3 , and further preferably 100 seconds / 100 cm 3 to 200 seconds. / 100 cm 3 .
  • the separator has suitable mechanical strength if it has an air permeability of 50 seconds / 100 cm 3 or more, and preferably has an air permeability of 400 seconds / 100 cm 3 because the battery characteristics are improved from the viewpoint of permeability.
  • an electricity storage device assembly kit including the electricity storage device separator described above.
  • the storage device assembly kit has the following two components: (A) An exterior body that houses a laminate or a wound body of the electrode and the electricity storage device separator according to each embodiment described above; and (B) a container that stores a non-aqueous electrolyte. Is provided.
  • the separator in the element (A) and the nonaqueous electrolytic solution in the element (B) are brought into contact with each other to bring the electrolytic solution into contact with the laminated body or the wound body, And / or by continuing the charge / discharge cycle of the assembled electric storage device, a crosslinked structure can be formed in the separator to form an electric storage device having both safety and output.
  • the substance or cross-linked structure that catalyzes the cross-linking reaction when the electrolyte or electrolyte contacts the electrodes and / or when charging and discharging the electricity storage device.
  • the substance having a functional group is present in the electrolytic solution, on the inner surface of the exterior body or on the electrode surface, and they are dissolved in the electrolytic solution, and are uniformly swollen and diffused into the amorphous part in the polyolefin, whereby the separator-containing laminate or It is considered to uniformly promote the crosslinking reaction of the wound body.
  • the substance which catalyzes the cross-linking reaction may be in the form of an acid solution or a film, and when the electrolyte contains lithium hexafluorophosphate (LiPF 6 ), hydrogen fluoride (HF) or hydrogen fluoride (HF) It can be a fluorine-containing organic substance derived from.
  • the substance having a functional group which becomes a part of the crosslinked structure can be, for example, the compound having the functional group A and / or B described above, the electrolytic solution itself, various additives, and the like.
  • the electrolyte contained in the element (2) is a fluorine (F) -containing lithium salt such as LiPF 6 or LiN (SO 2 CF 3 ) 2 which produces HF.
  • F fluorine
  • LiPF 6 LiN
  • SO 2 CF 3 LiN
  • LiSO 3 CF 3 or the like having an unshared electron pair is preferable, and LiBF 4 , LiBC 4 O 8 (LiBOB) or the like is also preferable.
  • the electricity storage device assembly kit includes, as an accessory (or element (C)), a catalyst for accelerating the crosslinking reaction, for example, a mixture of an organic metal-containing catalyst and water, an acid solution, Another container may be provided to store the base solution and the like.
  • a catalyst for accelerating the crosslinking reaction for example, a mixture of an organic metal-containing catalyst and water, an acid solution
  • Another container may be provided to store the base solution and the like.
  • the separator described above can be used in an electricity storage device.
  • the electricity storage device includes a positive electrode, a negative electrode, the separator according to the present embodiment arranged between the positive and negative electrodes, an electrolytic solution, and optionally an additive.
  • the separator When the separator is housed in the device exterior body, the functional group-modified polyethylene or the functional group graft copolymerized polyethylene and the chemical substance contained in the electrolytic solution or the additive react with each other to form a crosslinked structure.
  • the power storage device has a crosslinked structure.
  • the functional group-modified polyethylene or the functional group graft copolymerized polyethylene may be, but is not limited to, derived from a polyolefin raw material of the microporous membrane or derived from a polyolefin modified during the manufacturing process of the microporous membrane. it can.
  • a lithium battery As the electricity storage device, specifically, a lithium battery, a lithium secondary battery, a lithium ion secondary battery, a sodium secondary battery, a sodium ion secondary battery, a magnesium secondary battery, a magnesium ion secondary battery, a calcium secondary battery.
  • Calcium ion secondary battery aluminum secondary battery, aluminum ion secondary battery, nickel hydrogen battery, nickel cadmium battery, electric double layer capacitor, lithium ion capacitor, redox flow battery, lithium sulfur battery, lithium air battery, zinc air battery And so on.
  • a lithium battery, a lithium secondary battery, a lithium ion secondary battery, a nickel hydrogen battery, or a lithium ion capacitor is preferable, and a lithium battery or a lithium ion secondary battery is more preferable.
  • the additive may be, for example, a dehydration condensation catalyst, metal soap such as calcium stearate or zinc stearate, an ultraviolet absorber, a light stabilizer, an antistatic agent, an antifogging agent, a color pigment and the like.
  • the lithium ion secondary battery contains a lithium transition metal oxide such as lithium cobalt oxide or lithium cobalt composite oxide as a positive electrode, a carbon material such as graphite or graphite as a negative electrode, and a lithium salt such as LiPF 6 as an electrolytic solution. It is a storage battery using an organic solvent.
  • the electrolytes described above for the electricity storage device assembly kit may also be used for lithium ion secondary batteries.
  • ionized lithium reciprocates between the electrodes. Further, since the ionized lithium needs to move between the electrodes at a relatively high speed while suppressing contact between the electrodes, a separator is arranged between the electrodes.
  • Another aspect of the present invention is a method for manufacturing a separator for an electricity storage device.
  • the method for producing the separator may include, for example, a step of producing a microporous membrane or an A layer, and, if desired, a step of producing an inorganic porous layer into the microporous membrane, or a step of producing a B layer into the A layer. it can.
  • the materials used in the method for manufacturing the separator may be those described in the first to tenth embodiments, unless otherwise specified.
  • the manufacturing method of the microporous membrane according to the eleventh embodiment includes the following steps: (1) Sheet forming step; (2) Stretching step; (3) Porous body forming step; and (4) Heat treatment step; including. By performing steps (1) to (4), the A layer described above can also be formed.
  • the separator manufacturing method according to the eleventh embodiment may include the following steps in addition to the steps (1) to (4): (8B) A coating step of forming an inorganic porous layer containing inorganic particles and a resin binder on at least one surface of the heat-treated porous body to form a silane crosslinking precursor. (9) An assembling step in which a laminate of the electrode and the silane cross-linking precursor or a wound body thereof, and a non-aqueous electrolytic solution are housed in an outer package and the silane cross-linking precursor and the non-aqueous electrolytic solution are brought into contact with each other; Can be included.
  • the inorganic porous layer is applied in the step (8B) to the microporous film maintaining the silane crosslinkability, and then the separator in the electricity storage device is applied in the step (9). Since the electrolytic solution is brought into contact with the storage device, the stress resistance of the power storage device and the separator in the power storage device is improved, and thus cycle stability and safety of the power storage device can be achieved.
  • the method for producing a microporous membrane according to the eleventh embodiment may optionally include a kneading step before the sheet forming step (1) and / or a winding / slit step after the heat treatment step (3).
  • the silane crosslinking treatment step it is preferable not to include the silane crosslinking treatment step from the viewpoint of maintaining the silane crosslinking property until it comes into contact with the electrolyte.
  • the silane cross-linking treatment step generally, an object to be treated containing a silane-modified polyolefin is brought into contact with a mixture of an organic metal-containing catalyst and water, or is immersed in a base solution or an acid solution, and a silane dehydration condensation reaction is performed to perform oligosiloxane. This is a step of forming a bond.
  • the metal of the organometallic-containing catalyst may be, for example, at least one selected from the group consisting of sgandium, titanium, vanadium, copper, zinc, aluminum, zirconium, palladium, gallium, tin and lead.
  • Organometallic-containing catalysts include di-butyltin-di-laurate, di-butyltin-di-acetate, di-butyltin-di-octoate and the like, and Weij et al. (FW van. Der. Weij: Macromol. Chem). , 181, 2541, 1980.) is known to be able to overwhelmingly accelerate the reaction rate by the reaction mechanism proposed by the authors.
  • the base solution has a pH of more than 7, and may contain, for example, alkali metal hydroxides, alkaline earth metal hydroxides, alkali metal carbonates, alkali metal phosphates, ammonia, amine compounds and the like.
  • alkali metal hydroxides or alkaline earth metal hydroxides are preferable, alkali metal hydroxides are more preferable, and sodium hydroxide is further preferable, from the viewpoint of safety of the electricity storage device and silane cross-linking property.
  • the acid solution has a pH of less than 7 and may contain, for example, an inorganic acid or an organic acid.
  • Preferred acids are hydrochloric acid, sulfuric acid, carboxylic acids, or phosphoric acids.
  • a silane-modified polyolefin and, if desired, a plasticizer or an inorganic material and other polyolefin can be kneaded by using a kneader. It is preferable not to add the masterbatch resin containing the dehydration condensation catalyst to the kneaded product from the viewpoints of suppressing the generation of resin aggregates in the production process and maintaining the silane crosslinkability until it comes into contact with the electrolytic solution.
  • the plasticizer is not particularly limited, and examples thereof include an organic compound capable of forming a uniform solution with the polyolefin at a temperature equal to or lower than the boiling point. More specific examples include decalin, xylene, dioctyl phthalate, dibutyl phthalate, stearyl alcohol, oleyl alcohol, decyl alcohol, nonyl alcohol, diphenyl ether, n-decane, n-dodecane and paraffin oil. Among these, paraffin oil and dioctyl phthalate are preferable.
  • the plasticizers may be used alone or in combination of two or more.
  • the proportion of the plasticizer is not particularly limited, but from the viewpoint of the porosity of the obtained microporous film, the polyolefin and the silane-modified polyolefin are, if necessary, preferably 20% by mass or more with respect to the total mass, and at the time of melt kneading. From the viewpoint of viscosity, 90% by mass or less is preferable.
  • the sheet forming step is a step of extruding the obtained kneaded product or a mixture of a silane-modified polyolefin, polyethylene and a plasticizer, cooling and solidifying, and forming into a sheet to obtain a sheet.
  • the sheet forming method is not particularly limited, and examples thereof include a method in which the melt-kneaded and extruded melt is solidified by compression cooling.
  • Examples of the cooling method include cold air, a method of directly contacting a cooling medium such as cooling water, and a method of contacting with a roll cooled with a refrigerant and / or a press machine, but with a roll cooled with a refrigerant and / or a press machine.
  • the contacting method is preferable because the film thickness controllability is excellent.
  • the mass ratio of the silane-modified polyolefin and polyethylene is 0.05 / 0.95 to 0. It is preferably 4 / 0.6, and more preferably 0.06 / 0.94 to 0.38 / 0.62.
  • Silane modification is used in the sheet molding process from the viewpoint of suppressing the thermal runaway at the time of destruction of the electricity storage device and improving safety while having a low temperature shutdown property of 150 ° C. or less and a film rupture resistance at a high temperature of 180 to 220 ° C. It is preferable that the polyolefin is not a masterbatch resin containing a dehydration condensation catalyst for crosslinking the silane-modified polyolefin before the sheet forming step.
  • the stretching step is a step of extracting a plasticizer and / or an inorganic material from the obtained sheet, if necessary, and further stretching the sheet in a uniaxial or more direction.
  • a stretching method of the sheet MD uniaxial stretching by a roll stretching machine, TD uniaxial stretching by a tenter, sequential biaxial stretching by a roll stretching machine and a tenter, or a combination of a tenter and a tenter, simultaneous biaxial tenter or simultaneous biaxial stretching by inflation molding.
  • Axial stretching and the like can be mentioned. From the viewpoint of obtaining a more uniform film, simultaneous biaxial stretching is preferable.
  • the total areal magnification is preferably 8 times or more, more preferably 15 times or more, and further preferably 20 times or more, from the viewpoint of uniformity of film thickness, balance of tensile elongation, porosity and average pore diameter. Or 30 times or more.
  • the total surface magnification is 8 times or more, it tends to be easy to obtain a product having high strength and good thickness distribution. Further, this surface magnification may be 250 times or less from the viewpoint of prevention of breakage and the like.
  • the porous body forming step is a step of extracting the plasticizer from the stretched material after the stretching step to make the stretched material porous.
  • the method of extracting the plasticizer is not particularly limited, and examples thereof include a method of immersing the stretched product in an extraction solvent and a method of showering the stretched product with the extraction solvent.
  • the extraction solvent is not particularly limited, but for example, a poor solvent for polyolefin, and a good solvent for plasticizer and / or inorganic material, and one having a boiling point lower than the melting point of polyolefin are preferable. .
  • the extraction solvent is not particularly limited, but examples thereof include hydrocarbons such as n-hexane and cyclohexane; halogenated hydrocarbons such as methylene chloride, 1,1,1-trichloroethane, and fluorocarbons; ethanol, isopropanol, etc. Alcohols; acetone, 2-butanone and other ketones; alkaline water and the like.
  • the extraction solvent may be used alone or in combination of two or more.
  • the heat treatment step is a step in which after the stretching step, a plasticizer is further extracted from the sheet, if necessary, and further heat treated to obtain a microporous membrane.
  • the heat treatment method is not particularly limited, and examples thereof include a heat setting method of performing stretching and relaxation operations using a tenter and / or a roll stretching machine.
  • the relaxation operation refers to a reduction operation performed in the machine direction (MD) and / or the width direction (TD) of the film at a predetermined temperature and relaxation rate.
  • the relaxation rate is a value obtained by dividing the MD dimension of the membrane after the relaxation operation by the MD dimension of the membrane before the operation, or the value obtained by dividing the TD dimension after the relaxation operation by the TD dimension of the membrane before the operation, or MD and TD. When both are relaxed, it is a value obtained by multiplying the MD relaxation rate and the TD relaxation rate.
  • the inorganic porous layer coating step (8B) is a step of forming an inorganic porous layer containing inorganic particles and a resin binder on at least one surface of the microporous film obtained above.
  • the coating step (8B) can be performed while maintaining the silane crosslinkability of the silane-modified polyolefin.
  • the B layer described above can also be formed.
  • a known manufacturing method can be adopted.
  • a method of producing a laminate including the A layer and the B layer for example, a method of applying a slurry containing inorganic particles to the A layer, a raw material of the B layer, and a raw material of the A layer are coextruded. Examples thereof include a method of laminating and extruding, a method of individually manufacturing the A layer and the B layer, and then laminating them.
  • the inorganic porous layer is, for example, a slurry containing inorganic particles, a resin binder, water or an aqueous solvent (for example, a mixture of water and alcohol), and optionally a dispersant, at least one of the microporous membrane. It can be formed by coating the surface.
  • the inorganic particles, the resin binder and the dispersant may be as described in the first to tenth embodiments.
  • the solvent contained in the slurry is preferably one that can uniformly or stably disperse or dissolve the inorganic particles.
  • a solvent include N-methylpyrrolidone (NMP), N, N-dimethylformamide, N, N-dimethylacetamide, water, ethanol, toluene, hot xylene, methylene chloride, and hexane.
  • the inorganic particle-containing slurry for example, ball mill, bead mill, planetary ball mill, vibrating ball mill, sand mill, colloid mill, attritor, roll mill, high speed impeller dispersion, disperser, homogenizer, high speed impact mill, ultrasonic dispersion, stirring.
  • a mechanical stirring method using blades and the like can be mentioned.
  • the coating method of the inorganic particle-containing slurry for example, gravure coater method, small diameter gravure coater method, reverse roll coater method, transfer roll coater method, kiss coater method, dip coater method, knife coater method, air doctor coater method, blade coater Method, rod coater method, squeeze coater method, cast coater method, die coater method, screen printing method, spray coating method and the like.
  • the solvent As a method of removing the solvent from the coating film, there are a method of drying at a temperature below the melting point of the material forming the microporous film, a method of drying under reduced pressure at a low temperature, and the like.
  • the solvent may be partially left as long as it does not significantly affect the device characteristics.
  • the winding step is a step of slitting the obtained microporous film or the microporous film coated with the inorganic porous layer, if necessary, and winding it into a predetermined core.
  • a separator precursor (hereinafter also referred to as a silane crosslinking precursor) that maintains silane crosslinkability and an electrode are laminated to form a laminated body, and the laminated body is further wound if desired. Is formed, and the laminated body or wound body and the non-aqueous electrolytic solution are housed in an exterior body, and the silane crosslinking precursor and the non-aqueous electrolytic solution are brought into contact with each other.
  • the film loss of the microporous membrane is suppressed and the morphology is maintained, the permeation of the polyolefin resin from the microporous membrane to the inorganic porous layer can be suppressed, and the stress of the electricity storage device or the separator can be suppressed. Tolerance is improved.
  • the silane cross-linking reaction of the separator may occur after the electricity storage device is manufactured to cause a silane cross-linking reaction of the separator after the electricity storage device is manufactured.
  • the safety can be improved.
  • the laminate or the wound body is housed in the outer package and then the non-aqueous electrolytic solution is poured into the outer package, or the electrolytic solution is poured into the outer package. It is preferable to store the laminated body or the wound body in the exterior body.
  • the electrolyte of the non-aqueous electrolyte solution is a fluorine (F) -containing lithium salt such as LiPF 6 that generates hydrogen fluoride (HF), LiN (SO 2 CF 3 ) 2 or LiSO 3.
  • F fluorine
  • LiPF 6 that generates hydrogen fluoride
  • LiN LiN (SO 2 CF 3 ) 2 or LiSO 3.
  • An electrolyte having an unshared electron pair such as CF 3 may be used, and LiBF 4 , LiBC 4 O 8 (LiBOB), or the like may be used.
  • the methoxysilane graft part is converted to silanol by a small amount of water contained in the electricity storage device (water contained in members such as electrodes, separators and electrolytes), and a crosslinking reaction occurs. , It is estimated that the siloxane bond is changed. Further, when the electrolyte or the electrolytic solution is brought into contact with the electrode, a substance which catalyzes the silane cross-linking reaction is generated in the electrolytic solution or on the surface of the electrode, and they are dissolved in the electrolytic solution. It is considered that the cross-linking reaction of the separator-containing laminate or wound body is uniformly promoted by uniformly swelling and diffusing into the amorphous part.
  • the substance which catalyzes the silane crosslinking reaction may be in the form of an acid solution or a film, and when the electrolyte contains lithium hexafluorophosphate (LiPF 6 ), LiPF 6 reacts with water to generate HF, or It can be a fluorine-containing organic substance derived from HF.
  • LiPF 6 lithium hexafluorophosphate
  • the lead terminals are connected to the electrodes to carry out charge / discharge for at least one cycle. It is preferable to carry out. It is conceivable that a substance that catalyzes the silane cross-linking reaction is generated in the electrolytic solution or on the electrode surface by the charge / discharge cycle, and thereby the silane cross-linking reaction is achieved.
  • the cycle charge / discharge can be performed by a known method and device, and specifically, the method described in the examples is possible.
  • Another aspect of the present invention is a method for manufacturing an electricity storage device.
  • the method of manufacturing an electricity storage device includes the following steps; (A) a step of preparing the electricity storage device assembly kit described above, (A) a step of initiating a silane crosslinking reaction of the silane-modified polyolefin by bringing the separator in the element (1) of the electricity storage device assembly kit into contact with the nonaqueous electrolytic solution in the element (2); (C) optionally connecting a lead terminal to the electrode of the element (1), (D) If desired, a step of performing charge / discharge for at least one cycle, including.
  • the steps (a) to (d) can be performed by a method known in the technical field except that the separator for an electricity storage device according to the present embodiment is used, and the steps (a) to (d).
  • a positive electrode, a negative electrode, an electrolytic solution, an outer package, and a charging / discharging device known in the technical field can be used.
  • a vertically long separator having a width of 10 to 500 mm (preferably 80 to 500 mm) and a length of 200 to 4000 m (preferably 1000 to 4000 m) can be manufactured.
  • the positive electrode-separator-negative electrode-separator or the negative electrode-separator-positive electrode-separator may be laminated in this order and wound in a circular or flat spiral shape to obtain a wound body.
  • the wound body is housed in a device can (for example, a battery can), and a nonaqueous electrolytic solution is further injected, whereby a power storage device can be manufactured.
  • the electricity storage device can be manufactured by a method in which the electrode and the separator are folded to form a wound body, which is placed in a device container (for example, an aluminum film) and a nonaqueous electrolytic solution is injected.
  • the wound body can be pressed.
  • the separator, the current collector, and the electrode having the active material layer formed on at least one surface of the current collector can be stacked and pressed.
  • the pressing temperature is preferably, for example, 20 ° C. or higher as a temperature at which adhesiveness can be effectively exhibited. Further, from the viewpoint of suppressing clogging of pores or heat shrinkage in the separator due to hot pressing, the pressing temperature is preferably lower than the melting point of the material contained in the microporous membrane, and more preferably 120 ° C. or lower.
  • the pressing pressure is preferably 20 MPa or less from the viewpoint of suppressing clogging of holes in the separator.
  • the pressing time may be 1 second or less when a roll press is used, or a surface press for several hours, but is preferably 2 hours or less from the viewpoint of productivity.
  • the method for manufacturing the separator when the method for manufacturing the A layer described above does not include the silane crosslinking treatment step, it is possible to positively promote the crosslinking reaction by bringing the separator into contact with the non-aqueous electrolytic solution. it can.
  • the silane-modified graft part is converted to silanol by a small amount of water contained in the electricity storage device (a small amount of water contained in the electrode, separator, non-aqueous electrolyte solution, etc.) and crosslinked. It is presumed that it reacts and changes into a siloxane bond.
  • a substance that catalyzes the silane crosslinking reaction may be generated in the non-aqueous electrolytic solution or on the electrode surface.
  • a substance that exerts a catalytic action on the silane crosslinking reaction is dissolved in the non-aqueous electrolytic solution and uniformly swells and diffuses into the amorphous portion in the polyolefin where the silane-modified graft portion is present, whereby the separator-containing laminate Alternatively, it is considered to uniformly promote the crosslinking reaction of the wound body.
  • the substance that catalyzes the silane crosslinking reaction may be in the form of an acid solution or a film.
  • the electrolyte contains lithium hexafluorophosphate (LiPF 6 )
  • LiPF 6 reacts with water, and hydrogen fluoride (HF) generated by this reaction or a fluorine-containing organic substance derived from hydrogen fluoride (HF) is generated. It is treated as a substance that exerts a catalytic action on a silane cross-linking reaction (a compound generated in an electricity storage device).
  • the thirteenth embodiment is a method of manufacturing an electricity storage device using a separator containing a polyolefin having one or more kinds of functional groups, and the following steps: (1) A functional group is subjected to a condensation reaction, (2) a functional group is reacted with a chemical substance inside an electricity storage device, or (3) a functional group of a polyolefin is reacted with another type of functional group to crosslink. It includes a cross-linking step to form a structure.
  • the crosslinking step can be performed in the same manner as the reaction for forming the crosslinked structure of the separator described above.
  • the crosslinking step can be performed using the compound in the electricity storage device and the environment around the device, it does not require excessive conditions such as an electron beam and a high temperature of 100 ° C. or higher, and the temperature is 5 ° C. Mild conditions such as temperatures up to 90 ° C. and / or under ambient atmosphere can be employed.
  • cross-linking structure By performing the cross-linking step in the manufacturing process of the electricity storage device, formation of the cross-linking structure can be omitted during or immediately after the film forming process of the separator, and the stress strain after production of the electricity storage device is relaxed or eliminated, and / or Alternatively, a cross-linking structure can be imparted to the separator without using relatively high energy such as light irradiation or heating to reduce cross-linking unevenness, generation of unmelted resin aggregates, and environmental burden.
  • cross-linking step by reacting (2) the functional group with a chemical substance inside the electricity storage device or (3) reacting the functional group of the polyolefin with another type of functional group, not only inside the separator but also
  • a crosslinked structure can be formed between the separator and the electrode or between the separator and the solid electrolyte interface (SEI) to improve the strength between the plurality of members of the electricity storage device.
  • SEI solid electrolyte interface
  • the silane crosslinking reaction occurs after the storage of the electricity storage device to improve the safety of the electricity storage device while being compatible with the conventional production process of the electricity storage device. Can be made.
  • MFR Melt index F-F01
  • Second stage cooling program 110 ° C to 40 ° C / min. Hold for 5 minutes after reaching -50 ° C.
  • 3rd stage heating program Temperature rising from -50 ° C to 130 ° C at a rate of 15 ° C per minute. Data of DSC and DDSC were acquired during the temperature rise of the third stage. The intersection of the baseline (a straight line obtained by extending the baseline in the obtained DSC curve to the high temperature side) and the tangent at the inflection point (the point where the upward convex curve changes to the downward convex curve) is the glass transition temperature ( Tg).
  • ⁇ Film thickness ( ⁇ m)> The film thickness of the microporous film or the separator was measured at a room temperature of 23 ⁇ 2 ° C. and a relative humidity of 60% by using KBM (trademark), a micro thickness gauge manufactured by Toyo Seiki. Specifically, the film thickness at 5 points was measured at substantially equal intervals over the entire width in the TD direction, and the average value thereof was obtained.
  • the thickness of the inorganic porous layer can be calculated by subtracting the thickness of the microporous film from the thickness of the separator including the microporous film and the inorganic porous layer.
  • ⁇ Thickness of layer A (TA) and thickness of layer B (TB)> The thickness (TA) of the A layer was measured at a room temperature of 23 ⁇ 2 ° C. and a relative humidity of 60% by using KBM (trademark), a micro thickness gauge manufactured by Toyo Seiki. Specifically, the film thickness at 5 points was measured at substantially equal intervals over the entire width of the TD, and the average value thereof was obtained. Moreover, the thickness of the laminated body including the A layer and the B layer was obtained by the same method. Then, by subtracting the thickness (TA) of the A layer from the thickness of the obtained laminated body, the thickness (TB) of the B layer was obtained. The thickness of the obtained laminate was treated as the total thickness (TA + TB) of the A layer and the B layer. Further, the thickness ratio (TA / TB) was obtained by dividing the thickness (TA) by the thickness (TB).
  • the porosity of the microporous membrane is calculated from the following equation from the volume, mass and membrane density (g / cm 3 ).
  • Porosity (%) (volume-mass / film density) / volume ⁇ 100
  • the film density means a value measured according to the D) density gradient tube method described in JIS K7112 (1999).
  • Air permeability (sec / 100 cm 3 )> According to JIS P-8117 (2009), the air permeability of the sample or the A layer was measured by G-B2 (trademark), a Gurley type air permeability meter manufactured by Toyo Seiki Co., Ltd.
  • ⁇ Puncture strength of layer A> The layer A was fixed with a sample holder having a diameter of 11.3 mm at the opening using a handy compression tester KES-G5 (model name) manufactured by Kato Tech. Next, a maximum puncture load was obtained by performing a puncture test in a 25 ° C. atmosphere at a puncture speed of 2 mm / sec using a needle with a tip radius of curvature of 0.5 mm on the center of the fixed A layer. was measured. The value obtained by converting the maximum puncture load per thickness of 20 ⁇ m was defined as the puncture strength (gf / 20 ⁇ m). If the thermoplastic polymer is present on only one side of the substrate, the needle can be pierced from the side on which the thermoplastic polymer is present.
  • the resin aggregate in the separator has an area of 100 ⁇ m in length ⁇ 100 ⁇ m in width and more than 100 ⁇ m in width when observing the separator obtained through the film forming steps of Examples and Comparative Examples described later with a transmission optical microscope. Is defined as a region that does not penetrate. In observation with a transmission optical microscope, the number of resin aggregates per 1000 m 2 of separator area was measured.
  • ⁇ Storage modulus, loss modulus and transition temperature (version 1)>
  • the dynamic viscoelasticity of the separator is measured using a dynamic viscoelasticity measuring device, and the storage elastic modulus (E ′), loss elastic modulus (E ′′), and the transition temperature of the rubber-like flat region and the crystal melt flow region are measured. It can be calculated.
  • the storage elastic modulus change ratio (R ⁇ E ′ ) is in accordance with the following formula (1)
  • the mixed storage elastic modulus ratio (R E ′ mix ) is in accordance with the following formula (2)
  • the loss elastic modulus change ratio (R ⁇ E ′′ ) is in the following formula.
  • the mixing loss elastic modulus ratio (R E ′′ mix ) was calculated according to the following equation (4).
  • the static tensile load refers to an intermediate value between the maximum stress and the minimum stress in each periodic motion
  • the sinusoidal load refers to the vibration stress centered on the static tensile load.
  • Sinusoidal tension mode refers to measuring vibrational stress while performing periodic motion with a fixed amplitude of 0.2%, in which case the difference between the static tension load and the sine wave load is within 20%. The vibration stress was measured by changing the gap distance and the static tensile load so that When the sine wave load was 0.02 N or less, the amplitude value was amplified so that the sine wave load was within 5 N and the increase amount of the amplitude value was within 25%, and the vibration stress was measured.
  • E ′ S and E ′ j and E ′′ S and E ′′ j were the average values of storage elastic moduli or loss elastic moduli at 160 ° C. to 220 ° C. in the dynamic viscoelasticity measurement data.
  • E ′ a and E ′ 0 and E ′′ a and E ′′ 0 are the average value of each storage elastic modulus or each loss elastic modulus at 160 ° C. to 220 ° C. in the dynamic viscoelasticity measurement data.
  • FIG. 1 An example of a graph for explaining the relationship between temperature and storage elastic modulus is shown in FIG.
  • the storage elastic moduli of the reference film a separator for an electricity storage device that does not contain silane-modified polyolefin
  • the post-crosslinking film in the temperature range of ⁇ 50 ° C. to 225 ° C. are compared, and in FIG.
  • the transition temperature between the region and the crystal melt flow region can be confirmed.
  • the transition temperature is the temperature at the intersection of the straight line extending the high temperature side baseline to the low temperature side and the tangent line drawn at the inflection point of the curve of the crystal melting change portion.
  • FIG. 2 shows an example of a graph for explaining the relationship between temperature and loss elastic modulus.
  • the loss elastic moduli of the reference film (a separator for a power storage device that does not contain silane-modified polyolefin) and the post-crosslinking film in the temperature range of ⁇ 50 ° C. to 220 ° C. are compared, and are determined by the same method as in FIG. The transition temperature given is indicated.
  • ⁇ Storage modulus, loss modulus and transition temperature (version 2)>
  • the dynamic viscoelasticity of the separator is measured using a dynamic viscoelasticity measuring device, and the storage elastic modulus (E ′), loss elastic modulus (E ′′), and the transition temperature of the rubber-like flat region and the crystal melt flow region are measured. It can be calculated.
  • the storage elastic modulus change ratio (R ⁇ E′X ) is in accordance with the following formula (1)
  • the mixed storage elastic modulus ratio (R E′mix ) is in accordance with the following formula (2)
  • the mixing loss elastic modulus ratio (R E ′′ x ) is The mixing loss elastic modulus ratio (R E ′′ mix ) was calculated according to the following formula (3) according to the following formula (4).
  • the measurement conditions were as follows: using an RSA-G2 dynamic viscoelasticity measuring device manufactured by TA Instruments Co., Ltd., measuring frequency was 1 Hz, strain was 0.2%, and the temperature range was ⁇ 50 ° C. to 310 ° C. in a nitrogen atmosphere.
  • the storage elastic modulus and loss elastic modulus were measured according to version 1 above.
  • E ′ Z and E ′ Z0 and E ′′ Z and E ′′ Z0 are the average value of each storage elastic modulus or each loss elastic modulus at 160 ° C. to 300 ° C. in the dynamic viscoelasticity measurement data.
  • E ′ and E ′ 0 and E ′′ and E ′′ 0 are average values of storage elastic modulus or loss elastic modulus at 160 ° C.
  • Fig. 9 shows an example of a graph for explaining the relationship between temperature and storage elastic modulus.
  • the storage elastic moduli of the reference film a separator for an electricity storage device having no crosslinked amorphous structure
  • the post-crosslinking film in the temperature range of ⁇ 50 ° C. to 310 ° C. are compared, and the rubber in FIG. 9 is compared. It is possible to confirm the transition temperatures of the flat region and the crystal melt flow region.
  • the transition temperature is the temperature at the intersection of the straight line extending the high temperature side baseline to the low temperature side and the tangent line drawn at the inflection point of the curve of the crystal melting change portion.
  • FIG. 10 shows an example of a graph for explaining the relationship between temperature and loss elastic modulus.
  • the loss elastic moduli of the reference film (electric storage device separator not containing silane-modified polyolefin) and the post-crosslinking film in the temperature range of ⁇ 50 ° C. to 310 ° C. are compared, and are determined by the same method as in FIG. The transition temperature given is indicated.
  • a separator for an electricity storage device having no amorphous part cross-linking structure includes polyethylene: X (viscosity average molecular weight of 100,000 to 400,000), PE: Y (viscosity average molecular weight of 400,000 to 800,000) and PE: Z. (A viscosity average molecular weight of 800,000 to 9,000,000) Any one kind selected from the group consisting of, or two kinds or three kinds selected from the group consisting of X, Y and Z was mixed at an arbitrary ratio. It can be a separator made of a composition.
  • the polyolefin comprised only with hydrocarbon skeletons such as low-density polyethylene: LDPE, linear low-density polyethylene: LLDPE, polypropylene: PP, olefin system thermoplastic elastomer, to a mixed composition.
  • the rate of change in solid content in a decalin solution before and after heating at 160 ° C. (hereinafter referred to as “gelation degree”) is 10% or less. It can mean a polyolefin microporous membrane.
  • the degree of gelation of the polyolefin microporous film having an amorphous part crosslinked structure such as a silane crosslinked structure is preferably 30% or more, more preferably 70% or more.
  • Measurement temperature range -50 °C to 250 °C
  • Raising rate 10 ° C / min
  • Measurement frequency 1 Hz
  • Deformation mode Sine wave tension mode (Linear tension)
  • Initial value of static tensile load 0.2N ⁇ Gap distance at the initial stage (at 25 ° C): 10 mm -Automatic distortion adjustment (Auto strain adjustment): Disabled (Disabled) Do with.
  • the static tensile load refers to an intermediate value between the maximum stress and the minimum stress in each periodic motion, and the sinusoidal load refers to the vibration stress centered on the static tensile load;
  • the sine wave tension mode refers to measuring vibration stress while performing periodic motion with a fixed amplitude of 0.1%, and in the sine wave tension mode, the difference between the static tension load and the sine wave load is 5%. The vibration stress is measured by changing the gap distance and the static tensile load so that it is within the range, and when the sine wave load is 0.1N or less, the static tensile load is fixed to 0.1N and vibration is performed. Measure stress.
  • the average value of the maximum and minimum values of E' is calculated as the average E '(E' ave ), and the average value of the maximum and minimum values of E '' is average E '' (E '' ave ).
  • E ′ and E ′′ the maximum value and the minimum value of each storage elastic modulus or each loss elastic modulus at ⁇ 50 ° C. to 250 ° C. in the dynamic viscoelasticity measurement data were calculated. More specifically, in the case where breakage of the sample (rapid decrease in elastic modulus) is not observed at -50 ° C to 250 ° C, the maximum and minimum values of -50 ° C to 250 ° C are calculated, The value at the temperature at which breakage of the sample was observed at ⁇ 250 ° C. was defined as the minimum value.
  • the film softening transition temperature is the minimum temperature obtained by first-order differentiating the curve of the gap distance of the sample in the dynamic viscoelasticity measurement data.
  • the film rupture temperature is the temperature at which the sample rupture (rapid decrease in elastic modulus) is observed in the dynamic viscoelasticity measurement data, and the measurement limit temperature is the viewpoint that the thermal decomposition reaction of the polyolefin resin proceeds. Therefore, it may be specified as 250 ° C. However, since the phenomenon can be similarly understood even when the measurement is performed at a temperature higher than 250 ° C., a separator for an electricity storage device having a film rupture temperature of 180 ° C. or higher can be implemented in this embodiment.
  • TMA film rupture temperature TMA film rupture temperature (trademark) manufactured by Shimadzu Corporation
  • TMA film rupture temperature TMA film rupture temperature
  • TD 3 mm and MD 14 mm were sampled from the A layer, and this was used as a sample piece (a sample piece in which MD is the long side). Both ends of the MD of the sample piece were set on a dedicated probe so that the chuck distance was 10 mm, and a load of 1.0 g was applied to the sample piece.
  • the temperature of the furnace equipped with the test piece was raised, and the temperature at which the load was 0 g was taken as the film rupture temperature (° C).
  • the layer A was sampled in TD 14 mm and MD 3 mm, and this was used as a sample piece.
  • the both ends of the TD were chucked with a dedicated probe, and the chuck distance was set to 10 mm. Then, 1.0 g of initial load is applied, and the same operation as above is performed.
  • ⁇ Heat shrinkage at 150 ° C> TD100mm and MD100mm were sampled from the laminated body (laminated body including the A layer and the B layer) before the formation of the crosslinked structure, and this was used as a sample piece. Then, the sample piece was allowed to stand in an oven at 150 ° C. for 1 hour. At this time, the sample piece was sandwiched between two sheets of paper so that the warm air did not directly hit the sample piece. After the sample piece was taken out of the oven and cooled, the area of the sample piece was measured, and the heat shrinkage rate (T1) at 150 ° C. before the formation of the crosslinked structure was calculated by the following formula. Thermal contraction rate (%) at 150 ° C.
  • Battery breakage safety test 1 is a test in which an iron nail is driven into a battery charged to 4.5 V at a speed of 20 mm / sec and penetrated to cause an internal short circuit.
  • the phenomenon at the time of internal short circuit can be clarified by measuring the time change behavior of the voltage drop of the battery due to the internal short circuit and the temperature rise behavior of the battery surface due to the internal short circuit.
  • due to insufficient shutdown function of the separator or film rupture at low temperature during internal short circuit abrupt heat generation of the battery may occur. is there.
  • Negative Electrode 96.9% by mass of artificial graphite as an anode active material, 1.4% by mass of ammonium salt of carboxymethyl cellulose as a resin binder and 1.7% by mass of styrene-butadiene copolymer latex were dispersed in purified water to form a slurry.
  • This slurry was applied on one surface of a copper foil having a thickness of 12 ⁇ m to be a negative electrode current collector by a die coater, dried at 120 ° C. for 3 minutes, and compression-molded by a roll press. At this time, the amount of active material applied to the negative electrode was adjusted to 106 g / m 2 , and the active material bulk density was adjusted to 1.35 g / cm 3 .
  • Battery assembly A separator is cut out in a width (TD) direction of 60 mm and a length (MD) direction of 1000 mm, and the separator is folded in 99 times, and the positive electrode and the negative electrode are alternately stacked between the separators (12 positive electrodes and 13 negative electrodes). .
  • the positive electrode had an area of 30 mm ⁇ 50 mm, and the negative electrode had an area of 32 mm ⁇ 52 mm.
  • the charging and discharging of the obtained battery was performed 100 cycles in an atmosphere of 60 ° C. Charging is performed by charging the battery with a current value of 6.0 mA (1.0 C) to a battery voltage of 4.2 V, and then holding the battery voltage at 4.2 V and starting to squeeze the current value from 6.0 mA for a total of 3 hours. Charged The battery was discharged to a battery voltage of 3.0 V at a current value of 6.0 mA (1.0 C).
  • the resistance ( ⁇ ) between the electrodes is measured while heating the laminate with an aluminum heater at a heating rate of 2 ° C./min.
  • the resistance between the electrodes of both fuses of the separator increases, and the temperature when the resistance exceeds 1000 ⁇ for the first time is defined as the fuse temperature (shutdown temperature). Further, the temperature when the resistance is lowered to 1000 ⁇ or less is further defined as the meltdown temperature (film rupture temperature).
  • a conductive silver paste was applied to the back of the aluminum foil of the positive electrode prepared by "1a.
  • Preparation of positive electrode in the above item ⁇ Battery destruction safety test 1>.
  • the electric wire for resistance measurement was adhered by.
  • an electric wire for resistance measurement was adhered to the back of the copper foil of the negative electrode prepared by “1b.
  • Preparation of non-aqueous electrolytic solution in the above item ⁇ Battery destruction safety test 1> was also used for the F / MD characteristic test.
  • This slurry was applied to one surface of an aluminum foil having a thickness of 20 ⁇ m to be a positive electrode current collector by using a die coater, dried at 130 ° C. for 3 minutes, and then compression-molded by using a roll press machine to obtain a positive electrode.
  • the coating amount of the positive electrode active material was 109 g / m 2 .
  • Graphite powder A as prepared negative active material of the negative electrode (density 2.23 g / cm 3, number average particle diameter 12.7 [mu] m) 87.6 wt%, and graphite powder B (density 2.27 g / cm 3, number average particle diameter 6.5 ⁇ m) 9.7% by mass, and 1.4% by mass of ammonium salt of carboxymethyl cellulose as a resin binder (solid content conversion) (solid content concentration 1.83% by mass aqueous solution) and diene rubber latex 1.7% by mass. (Solid content conversion) (solid content concentration 40 mass% aqueous solution) was dispersed in purified water to prepare a slurry.
  • This slurry was applied to one surface of a copper foil having a thickness of 12 ⁇ m, which was a negative electrode current collector, by a die coater, dried at 120 ° C. for 3 minutes, and then compression-molded with a roll press machine to prepare a negative electrode. At this time, the coating amount of the negative electrode active material was 52 g / m 2 .
  • the raw material polyolefin used for the silane-grafted modified polyolefin has a viscosity average molecular weight (Mv) of 100,000 or more and 1 million or less, a weight average molecular weight (Mw) of 30,000 or more and 920,000 or less, and a number average molecular weight of 10,000 or more. It may be 150,000 or less, and propylene or butene copolymerized ⁇ -olefin may be used.
  • the residual concentration of unreacted trimethoxyalkoxide-substituted vinylsilane in the pellet is about 10 to 1500 ppm.
  • the silane-grafted modified polyolefin obtained by the above production method is used as "silane-modified polyolefin (B)" in Table 8.
  • Example I-1 MFR (190 ° C) obtained by a modification reaction of a homopolymer polyethylene (A) having a weight average molecular weight of 500,000 with 79.2% by mass of a polyolefin having a viscosity average molecular weight of 20,000, and a trimethoxyalkoxide-substituted vinylsilane.
  • silane-grafted polyethylene silane-modified polyethylene (B)) 19.8% by mass (the resin compositions of (A) and (B) are 0.8 and 0.2, respectively), an antioxidant 1% by mass of pentaerythrityl-tetrakis- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] was added as a mixture, and dry blended using a tumbler blender to obtain a mixture. . The obtained mixture was fed to a twin-screw extruder under a nitrogen atmosphere by a feeder. Liquid paraffin (kinematic viscosity at 37.78 ° C.
  • the sheet-shaped molded product was introduced into a simultaneous biaxial tenter stretching machine and biaxially stretched to obtain a stretched product.
  • the set stretching conditions were an MD magnification of 7.0 times, a TD magnification of 6.0 times (that is, 7 ⁇ 6 times), and a biaxial stretching temperature of 125 ° C.
  • the stretched gel sheet was introduced into a methylethylketone tank and sufficiently immersed in methylethylketone to extract and remove liquid paraffin, and then the methylethylketone was dried and removed to obtain a porous body.
  • the porous body is introduced into a TD tenter to perform heat setting (HS), and HS is performed at a heat setting temperature of 125 ° C. and a draw ratio of 1.8 times, and then a relaxation operation of 0.5 times in the TD direction (ie, The HS relaxation rate was 0.5 times) to obtain a microporous membrane.
  • the obtained microporous membrane was cut at its end and wound as a mother roll having a width of 1,100 mm and a length of 5,000 m.
  • the microporous film unwound from the mother roll was slit as needed and used as an evaluation separator.
  • Examples I-2 to I-6 As described in Table 8, the same operation as in Example I-1 was performed, except that the ratio of the amounts of the components A and B and the crosslinking method / conditions were changed, and the microporous membrane shown in Table 8 was obtained.
  • silane-grafted polyethylene silane-modified polyethylene (B)) 19.8% by mass (the resin compositions of (A) and (B) are 0.8 and 0.2, respectively), an antioxidant 1% by mass of pentaerythrityl-tetrakis- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] was added as a mixture, and dry blended using a tumbler blender to obtain a mixture. . The obtained mixture was fed to a twin-screw extruder under a nitrogen atmosphere by a feeder. Liquid paraffin (kinematic viscosity at 37.78 ° C.
  • the sheet-shaped molded product was introduced into a simultaneous biaxial tenter stretching machine and biaxially stretched to obtain a stretched product.
  • the set stretching conditions were an MD magnification of 7.0 times, a TD magnification of 6.0 times (that is, 7 ⁇ 6 times), and a biaxial stretching temperature of 125 ° C.
  • the stretched gel sheet was introduced into a methylethylketone tank and sufficiently immersed in methylethylketone to extract and remove liquid paraffin, and then the methylethylketone was dried and removed to obtain a porous body.
  • the porous body was introduced into a TD tenter to perform heat setting (HS), and HS was performed at a heat setting temperature of 125 ° C. and a draw ratio of 1.8 times, and thereafter, a relaxation operation of 0.5 times in the TD direction (that is, The HS relaxation rate was 0.5 times). Furthermore, it was introduced into an ethanol bath (affinity treatment tank), dipped for 60 seconds and retained, and the affinity treatment of the heat-treated porous body was performed to obtain an affinity-treated porous body.
  • HS heat setting
  • Comparative Example I-1 25% caustic soda aqueous solution (temperature 80 ° C., pH 8.5-14), in Comparative Example I-2 10% hydrochloric acid aqueous solution (temperature 60 ° C., pH 1-6.5),
  • Each of the affinity-treated porous bodies was guided and stayed for 60 seconds while dwelling, and the affinity-treated porous body was subjected to a crosslinking treatment to obtain a crosslinked-treated porous body.
  • the crosslinked porous body was introduced into water (water washing treatment tank), dipped for 60 seconds and retained therein, and the crosslinked porous body was washed with water. This was introduced into a conveyor dryer and dried at 120 ° C. for 60 seconds to obtain a microporous membrane.
  • the obtained microporous membrane was cut at its end and wound as a mother roll having a width of 1,100 mm and a length of 5,000 m.
  • the microporous film unwound from the mother roll was slit as needed and used as an evaluation separator.
  • FIG. 3 shows the relationship between the temperature and the resistance of the battery provided with the microporous membrane obtained in Example I-1 as a separator. From FIG. 3 and Table 8, it can be seen that the shutdown temperature of the separator obtained in Example I-1 is 143 ° C. and the film rupture temperature is 200 ° C. or higher. Further, FIG. 13 shows the 1 H- and 13 C-NMR charts (b) of the separator obtained in Example I-1 in a state before crosslinking.
  • the “silane-modified polyethylene (B)” in Table 8 is obtained by a modification reaction with a trimethoxyalkoxide-substituted vinylsilane using a polyolefin having a viscosity average molecular weight of 20,000 as a raw material and has a density of 0.95 g / cm 3. And a melt flow rate (MFR) at 190 ° C. of 0.4 g / min.
  • MFR melt flow rate
  • the raw material polyolefin used for the silane-grafted modified polyolefin has a viscosity average molecular weight (Mv) of 100,000 or more and 1 million or less, a weight average molecular weight (Mw) of 30,000 or more and 920,000 or less, and a number average molecular weight of 10,000 or more. It may be 150,000 or less, an ethylene homopolymer, or a copolymerized ⁇ -olefin of ethylene with propylene or butene.
  • the residual concentration of unreacted trimethoxyalkoxide-substituted vinylsilane in the pellet is about 1500 ppm or less.
  • the silane-grafted modified polyethylene obtained by the above production method is used as “silane-modified polyethylene (B)” in Table 9.
  • Silane-modified polyethylene (B) 80% by weight of homopolymer polyethylene (polyethylene (A)) having a weight-average molecular weight of 700,000 and a polyolefin having a viscosity-average molecular weight of 10,000 as a raw material, MFR obtained by a modification reaction with trimethoxyalkoxide-substituted vinylsilane (190 ° C.
  • 1 mass% of lytyl-tetrakis- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] was added and dry blended using a tumbler blender to obtain a mixture. The obtained mixture was fed to a twin-screw extruder under a nitrogen atmosphere by a feeder.
  • Liquid paraffin (kinematic viscosity at 37.78 ° C.
  • the sheet-shaped molded product was introduced into a simultaneous biaxial tenter stretching machine and biaxially stretched to obtain a stretched product.
  • the set stretching conditions were MD magnification of 7.0 times, TD magnification of 6.2 times, and biaxial stretching temperature of 120 ° C.
  • the stretched gel sheet was introduced into a dichloromethane tank and sufficiently immersed in dichloromethane to extract and remove liquid paraffin, and then dichloromethane was dried and removed to obtain a porous body.
  • the porous body was introduced into a TD tenter to carry out heat setting (HS), and HS was carried out at a heat setting temperature of 133 ° C. and a draw ratio of 2.1 times, and thereafter, a relaxation operation was performed up to 2.0 times in the TD direction. It was After that, the obtained microporous membrane was cut at its end and wound as a mother roll having a width of 1,100 mm and a length of 5,000 m. At the time of the above evaluation, the microporous film unwound from the mother roll was slit as needed and used as an evaluation separator.
  • HS heat setting
  • Example II-1 As described in Table 9, Example II-1 except that the ratio of the amounts of components A and B, the presence or absence of (C) other resin as an additional component, the film physical properties, and the crosslinking method / conditions were changed. The same operation as above was performed to obtain the microporous membrane shown in Table 9.
  • component “PP” in Table 9 silane having a MFR of 2.5 g / 10 min or less and a density of 0.89 g / cm 3 or more measured under conditions of a temperature of 230 ° C. and a mass of 2.16 kg is used. Modified polypropylene was used.
  • the crosslinking method “alkali treatment crosslinking” in Table 9 the sample is treated with a 25% caustic soda aqueous solution (temperature 80 ° C., pH 8.5 to 14).
  • Example II-1 to II-8 and Comparative Example II-3 no film breakage was observed at the measurement limit temperature of 250 ° C.
  • Example II-1 and Comparative Example II-1 26 sheets having a thickness of 8 ⁇ m were stacked, and the storage elastic modulus, the loss elastic modulus, the film softening transition temperature, and the film rupture temperature under the condition of the total sample film thickness of 208 ⁇ m. was measured.
  • a separator for an electricity storage device that does not contain a silane-grafted modified polyolefin is polyethylene (PE): X (viscosity average molecular weight 100,000 to 400,000), PE: Y (viscosity average molecular weight 400,000 to 800,000). And PE: Z (viscosity average molecular weight 800,000 to 9,000,000), or any two kinds or three kinds selected from the group consisting of X, Y and Z. It can be manufactured in a composition mixed in proportion.
  • polyolefin comprised only with hydrocarbon skeletons, such as low-density polyethylene: LDPE, linear low-density polyethylene: LLDPE, polypropylene: PP, olefin system thermoplastic elastomer, to a mixed composition.
  • hydrocarbon skeletons such as low-density polyethylene: LDPE, linear low-density polyethylene: LLDPE, polypropylene: PP, olefin system thermoplastic elastomer
  • Crosslinking film As a separator for an electricity storage device after a silane crosslinking reaction (hereinafter referred to as “crosslinking film”), from the polyolefin microporous film of Example II-1 after contacting with the electrolytic solution described above, or from the cell after initial charge / discharge. The taken out polyolefin microporous membrane of Example II-1 was dried and used. The degree of gelation of the crosslinked film was 30% or more or 70% or more.
  • the raw material polyolefin used for the silane-grafted modified polyolefin has a viscosity average molecular weight (Mv) of 100,000 or more and 1,000,000 or less, a weight average molecular weight (Mw) of 30,000 or more and 920,000 or less, and a number average molecular weight of 10,000 or more and 15 or more. It may be 10,000 or less, and may be propylene or butene copolymerized ⁇ -olefin.
  • organic peroxide (di-t-butyl peroxide) was added to generate radicals in the ⁇ -olefin polymer chain, and then trimethoxyalkoxide-substituted vinylsilane was injected.
  • An alkoxysilyl group is introduced into the ⁇ -olefin polymer by an addition reaction to form a silane graft structure.
  • the residual concentration of unreacted trimethoxyalkoxide-substituted vinylsilane in the pellet is about 1000 to 1500 ppm.
  • the silane-grafted modified polyolefin obtained by the above production method is shown as "silane-modified polyethylene" in Tables 11 and 12.
  • Modified PEs and copolymers having various functional groups other than silane-modified PEs were produced by the following methods. The molecular weight of each raw material was adjusted so that MI was in the range of 0.5 to 10. The modified PE having a hydroxyl group was produced by saponifying and neutralizing the EVA copolymer. A modified resin such as amine-modified or oxazoline-modified causes the terminal vinyl group of PE polymerized using a chromium catalyst to act on a tungsten-based catalyst under hydrogen peroxide conditions to convert the vinyl group into an epoxy group.
  • a modified resin such as amine-modified or oxazoline-modified causes the terminal vinyl group of PE polymerized using a chromium catalyst to act on a tungsten-based catalyst under hydrogen peroxide conditions to convert the vinyl group into an epoxy group.
  • the target reaction site was converted into the target functional group by using the already known functional group-converting organic reaction to obtain various modified PEs.
  • modified PEs For example, in the case of amine-modified PE, primary or secondary amines are injected as a liquid while the modified PE having an epoxy group is melt-kneaded at 200 ° C. in an extruder to cause a reaction. Then, unreacted amines are removed from the pressure reducing valve, and the obtained amine-modified resin is extruded into a strand and cut into pellets.
  • the modified PE obtained by the above production method is shown in Tables 11 and 12 as one type of "modified PE or copolymer (B)".
  • Homopolymer polyethylene (A) having a weight average molecular weight of 500,000, 79.2% by weight, and polyolefin having a viscosity average molecular weight of 20,000 as a raw material, and MFR obtained by a modification reaction with trimethoxyalkoxide-substituted vinylsilane are 0.4 g. / Min of silane-grafted polyethylene (PE (B)) 19.8% by mass (the resin compositions of (A) and (B) are 0.8 and 0.2 respectively, and pentaerythrityl-tetrakis as an antioxidant.
  • the mixture and the liquid paraffin are melt-kneaded in the extruder, and the feeder and the pump are adjusted so that the ratio of the amount of the liquid paraffin in the extruded polyolefin composition is 70% (that is, the polymer concentration is 30% by mass).
  • the melt-kneading conditions were set temperature 220 ° C., screw rotation speed 240 rpm, and discharge rate 18 kg / h.
  • the melt-kneaded product was extruded through a T-die onto a cooling roll whose surface temperature was controlled at 25 ° C. and cast to obtain a gel sheet (sheet-shaped molded product) having an original film thickness of 1400 ⁇ m.
  • the sheet-shaped molded product was introduced into a simultaneous biaxial tenter stretching machine and biaxially stretched to obtain a stretched product.
  • the set stretching conditions were an MD magnification of 7.0 times, a TD magnification of 6.0 times (that is, 7 ⁇ 6 times), and a biaxial stretching temperature of 125 ° C.
  • the stretched gel sheet was introduced into a methylethylketone tank and sufficiently immersed in methylethylketone to extract and remove liquid paraffin, and then the methylethylketone was dried and removed to obtain a porous body.
  • the porous body is introduced into a TD tenter to perform heat setting (HS), and HS is performed at a heat setting temperature of 125 ° C.
  • the obtained microporous membrane was cut at its end and wound as a mother roll having a width of 1,100 mm and a length of 5,000 m.
  • the microporous film unwound from the mother roll was slit as needed and used as an evaluation separator.
  • Various evaluations were performed on the evaluation separator and the battery according to the above evaluation methods, and the evaluation results are shown in Table 11.
  • Examples III-2 to III-18 As described in Table 11 or Table 12, the same operations as in Example III-1 were performed except that the types, the ratio of the amounts of the resins A and B, and the crosslinking method / conditions were changed. The microporous membrane and battery shown in 12 were obtained. Various evaluations were performed on the obtained microporous membrane and battery according to the above evaluation methods, and the evaluation results are also shown in Table 11 or Table 12. In addition, in Examples III-8 to III-10 and III-15 to III-18, when the electrolytic solution was injected, the additives shown in Table 11 or Table 12 were dissolved in an appropriate amount in the electrolytic solution in advance. .
  • Example III-1 the microporous membrane shown in Table 12 was prepared in the same manner as in Example III-1, except that the types and ratios of resins A and B, and the crosslinking method and conditions were changed. Got Using the obtained microporous film, irradiation with a predetermined dose was carried out to carry out electron beam crosslinking. Various evaluations were performed on the obtained electron beam crosslinked microporous membrane and battery according to the above evaluation methods, and the evaluation results are also shown in Table 12.
  • Example III-2 For Comparative Example III-2 and Example III-1, a strain amount-crystal subdivision ratio graph is shown in FIG. 8 to observe changes in X-ray crystal structure during a tensile fracture test.
  • the microporous membrane of Comparative Example III-2 is represented by a dotted line “EB crosslink”
  • the microporous membrane of Example III-1 is represented by a solid line “before chemical crosslink” and a broken line “after chemical crosslink”. .
  • Silane-modified polyethylene is obtained by a modification reaction with trimethoxyalkoxide-substituted vinylsilane using polyolefin having a viscosity average molecular weight of 20,000 as a raw material, and has a density of 0.95 g / cm 3 and at 190 ° C. It is a silane-modified polyethylene having a melt flow rate (MFR) of 0.4 g / min.
  • MFR melt flow rate
  • Example IV-1 ⁇ Production of layer A> (Production of silane-grafted modified polyolefin) Polyethylene having a viscosity average molecular weight of 120,000 is used as a raw material polyethylene, and while the raw material polyethylene is melt-kneaded with an extruder, an organic peroxide (di-t-butyl peroxide) is added to generate radicals in the ⁇ -olefin polymer chain. After the generation, trimethoxyalkoxide-substituted vinylsilane was poured and an alkoxysilyl group was introduced into the ⁇ -olefin polymer by an addition reaction to form a silane graft structure.
  • an organic peroxide di-t-butyl peroxide
  • the residual concentration of unreacted trimethoxyalkoxide-substituted vinylsilane in the pellet was about 1500 ppm or less.
  • a silane-modified polyethylene having an MFR (190 ° C.) of 0.4 g / min was obtained by a modification reaction using trimethoxyalkoxide-substituted vinylsilane as described above.
  • the mixture and the liquid paraffin are melt-kneaded in the extruder, and the feeder and the pump are adjusted so that the ratio of the amount of the liquid paraffin in the extruded polyolefin composition is 70% (that is, the polymer concentration is 30% by mass).
  • the melt-kneading conditions were set temperature 220 ° C., screw rotation speed 240 rpm, and discharge rate 18 kg / hour.
  • the melt-kneaded product was extruded through a T-die onto a cooling roll whose surface temperature was controlled at 25 ° C. and cast to obtain a gel sheet (sheet-shaped molded product) having an original film thickness of 1400 ⁇ m.
  • the sheet-shaped molded product was introduced into a simultaneous biaxial tenter stretching machine and biaxially stretched to obtain a stretched product.
  • the set stretching conditions were an MD magnification of 7.0 times, a TD magnification of 6.3 times (that is, 7 ⁇ 6.3 times), and a biaxial stretching temperature of 122 ° C.
  • the stretched gel sheet was introduced into a dichloromethane tank and sufficiently immersed in dichloromethane to extract and remove liquid paraffin, and then dichloromethane was dried and removed to obtain a porous body.
  • the porous body was introduced into a TD tenter to perform heat setting (HS), and HS was performed at a heat setting temperature of 133 ° C.
  • microporous membrane was cut at its end and wound as a mother roll having a width of 1,100 mm and a length of 5,000 m.
  • the microporous film unwound from the mother roll was slit as needed and used as the A layer for evaluation.
  • the film thickness, air permeability, porosity and the like of the obtained evaluation A layer were measured and are shown in Table 13.
  • ⁇ Preparation of layer B> 95 parts by mass of aluminum hydroxide oxide (average particle size 1.4 ⁇ m) as inorganic particles, and 0.4 parts by mass (solid content) of ammonium polycarboxylate aqueous solution (SN Dispersant 5468 manufactured by San Nopco Ltd.) as an ionic dispersant. And a solid content concentration of 40%) were uniformly dispersed in 100 parts by mass of water to prepare a dispersion liquid. The obtained dispersion was crushed with a bead mill (cell volume 200 cc, zirconia beads diameter 0.1 mm, filling amount 80%), and the particle size distribution of inorganic particles was adjusted to D50 1.0 ⁇ m. A particle-containing slurry was prepared.
  • the microporous film is continuously fed from the microporous film mother roll, the inorganic particle-containing slurry is applied to one surface of the microporous film by a gravure reverse coater, and then dried by a dryer at 60 ° C. Was removed and wound to obtain a mother roll of a separator.
  • the separator unwound from the mother roll was slit as required and used as an evaluation separator.
  • Examples IV-2 to IV-5 and Comparative Examples IV-1 to IV-2 Aiming at the physical property values shown in Table 13, at least one of the weight average molecular weight of polyethylene, which is a homopolymer, set stretching conditions, heat setting conditions, and relaxation operation conditions was changed. In addition, the configuration in layer B was changed as described in Table 13. Except for these changes, a separator was produced in the same manner as in Example IV-1, and the obtained separator was used for the above evaluation. The evaluation results are shown in Table 13.
  • the raw material polyolefin used for the silane-grafted modified polyolefin has a viscosity average molecular weight (Mv) of 100,000 or more and 1 million or less, a weight average molecular weight (Mw) of 30,000 or more and 920,000 or less, and a number average molecular weight of 10,000 or more. It may be 150,000 or less, and propylene or butene copolymerized ⁇ -olefin may be used.
  • the residual concentration of unreacted trimethoxyalkoxide-substituted vinylsilane in the pellet is about 10 to 1500 ppm.
  • the silane-grafted modified polyolefin obtained by the above production method is used as “silane-modified polyethylene (B)” in Tables 14 to 16.
  • the silane-grafted modified polyolefin used this time has a density of 0.94 g / cm 3 and an MFR of 0.65 g / min.
  • Example V-1 (Formation of microporous membrane) MFR (190 ° C) obtained by a modification reaction of a homopolymer polyethylene (A) having a weight average molecular weight of 500,000 with 79.2% by weight of a polyolefin having a viscosity average molecular weight of 20,000 as a raw material and a trimethoxyalkoxide-substituted vinylsilane.
  • A homopolymer polyethylene
  • a polyolefin having a viscosity average molecular weight of 20,000 as a raw material and a trimethoxyalkoxide-substituted vinylsilane.
  • the mixture and the liquid paraffin are melt-kneaded in an extruder, and a feeder and a pump are used so that the ratio of the liquid paraffin in the extruded polyolefin composition is 70% by weight (that is, the polymer concentration is 30% by weight).
  • the melt-kneading conditions were set temperature 220 ° C., screw rotation speed 240 rpm, and discharge rate 18 kg / h.
  • the melt-kneaded product was extruded through a T-die onto a cooling roll whose surface temperature was controlled at 25 ° C. and cast to obtain a gel sheet (sheet-shaped molded product) having an original film thickness of 1400 ⁇ m.
  • the sheet-shaped molded product was introduced into a simultaneous biaxial tenter stretching machine and biaxially stretched to obtain a stretched product.
  • the set stretching conditions were an MD magnification of 7.0 times, a TD magnification of 6.0 times (that is, 7 ⁇ 6 times), and a biaxial stretching temperature of 125 ° C.
  • the stretched gel sheet was introduced into a methylethylketone tank and sufficiently immersed in methylethylketone to extract and remove liquid paraffin, and then the methylethylketone was dried and removed to obtain a porous body.
  • the porous body is introduced into a TD tenter to perform heat setting (HS), and HS is performed at a heat setting temperature of 125 ° C.
  • microporous membrane mother roll having a width of 1,100 mm and a length of 5,000 m.
  • the acrylic latex used as the resin binder is manufactured by the following method.
  • a reaction vessel equipped with a stirrer, a reflux condenser, a dropping tank and a thermometer 70.4 parts by mass of ion-exchanged water and "Aqualon KH1025" as an emulsifier (registered trademark, 25% aqueous solution manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) 0.5 parts by mass and 0.5 parts by mass of "Adecaria Soap SR1025" (registered trademark, 25% aqueous solution manufactured by ADEKA CORPORATION) were added.
  • the temperature inside the reaction vessel was raised to 80 ° C., and while maintaining the temperature at 80 ° C., 7.5 parts by mass of a 2% aqueous solution of ammonium persulfate was added to obtain an initial mixture.
  • a 2% aqueous solution of ammonium persulfate was added to obtain an initial mixture.
  • the emulsion was: 70 parts by mass of butyl acrylate; 29 parts by mass of methyl methacrylate; 1 part by mass of methacrylic acid; 3 parts by mass of "Aqualon KH1025" (registered trademark, 25% aqueous solution manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) as an emulsifier. And 5 parts by mass of "ADEKA REASOAP SR1025" (registered trademark, 25% aqueous solution manufactured by ADEKA Co., Ltd.); 2% aqueous solution of ammonium persulfate, 7.5 parts by mass; Prepared by mixing for minutes. After the dropping of the emulsion, the temperature inside the reaction vessel was maintained at 80 ° C.
  • the obtained acrylic latex had a number average particle diameter of 145 nm and a glass transition temperature of -23 ° C.
  • Examples V-2 to V-12, Comparative Example V-2 As described in Tables 14 to 16, the same operation as in Example V-1 was carried out except that the amount ratio of the components A and B, the presence or absence or composition of the inorganic layer, and the crosslinking method / conditions were changed. The microporous membranes shown in Tables 14 to 16 were obtained.
  • erythrityl-tetrakis- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] was added and dry blended using a tumbler blender to obtain a mixture.
  • the obtained mixture was fed to a twin-screw extruder under a nitrogen atmosphere by a feeder.
  • Liquid paraffin (kinematic viscosity at 37.78 ° C. 7.59 ⁇ 10 ⁇ 5 m 2 / s) was injected into the extruder cylinder by a plunger pump.
  • the mixture and the liquid paraffin are melt-kneaded in an extruder, and a feeder and a pump are used so that the ratio of the liquid paraffin in the extruded polyolefin composition is 70% by weight (that is, the polymer concentration is 30% by weight).
  • the melt-kneading conditions were set temperature 220 ° C., screw rotation speed 240 rpm, and discharge rate 18 kg / h.
  • the melt-kneaded product was extruded through a T-die onto a cooling roll whose surface temperature was controlled at 25 ° C. and cast to obtain a gel sheet (sheet-shaped molded product) having an original film thickness of 1400 ⁇ m.
  • the sheet-shaped molded product was introduced into a simultaneous biaxial tenter stretching machine and biaxially stretched to obtain a stretched product.
  • the set stretching conditions were an MD magnification of 7.0 times, a TD magnification of 6.0 times (that is, 7 ⁇ 6 times), and a biaxial stretching temperature of 125 ° C.
  • the stretched gel sheet was introduced into a methylethylketone tank and sufficiently immersed in methylethylketone to extract and remove liquid paraffin, and then the methylethylketone was dried and removed to obtain a porous body.
  • the porous body was introduced into a TD tenter to perform heat setting (HS), and HS was performed at a heat setting temperature of 125 ° C.
  • Comparative Example V-1 in order to use the heat-treated porous body as a separator, the end portion of the obtained porous body was cut and wound as a mother roll having a width of 1,100 mm and a length of 5,000 m. Regarding Comparative Example V-1, during the above evaluation, the microporous film unwound from the mother roll was slit as required and used as an evaluation separator.
  • Porous membranes were formed in the same manner as in Examples 1 to 3 and Comparative Examples 2 to 3 shown in Patent Document 5 (Japanese Patent Laid-Open No. 2001-176484) and labeled as porous membranes V-1 to V-5, respectively.
  • the gel fraction (%), the heat resistant temperature (° C) and the needle penetration strength (gf / 25 ⁇ m) were evaluated according to the method described in Patent Document 5, and further described in the above specification.
  • the separator according to the seventh embodiment of the present invention described above is valuable in selectively chemically crosslinking the amorphous zone between the crystal and the crystal part.
  • the silane-unmodified polyolefin and the silane-modified polyolefin form a mixed crystal, the modified units are repelled in the non-crystalline part and randomly dispersed. ..
  • the plurality of crosslinking units are far from each other, even if the crosslinking units are present, they cannot contribute to the crosslinking reaction.
  • the separator according to the seventh embodiment of the present invention the molecular weight of the raw material resin, the copolymer concentration, the blending ratio, etc. are adjusted, and further combined with the stretching film-forming step, the crosslinking reaction of the crosslinking unit is highly likely.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Composite Materials (AREA)
  • Cell Separators (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Silicon Polymers (AREA)

Abstract

シラン変性ポリオレフィンを含む蓄電デバイス用セパレータであって、電解液と接触するとシラン変性ポリオレフィンのシラン架橋反応が開始されることを特徴とする蓄電デバイス用セパレータ及びその製造方法が提供される。

Description

架橋セパレータを用いたリチウムイオン電池
 本発明は、蓄電デバイス用セパレータ及びその架橋方法、蓄電デバイス組み立てキット、蓄電デバイスの製造方法などに関する。
 微多孔膜は、種々の物質の分離又は選択透過分離膜、及び隔離材等として広く用いられており、その用途例としては、精密ろ過膜、燃料電池用、コンデンサー用セパレータ、又は機能材を孔の中に充填させて新たな機能を発現させるための機能膜の母材、蓄電デバイス用セパレータ等が挙げられる。中でも、ポリオレフィン製微多孔膜は、ノート型パーソナルコンピュータ又は携帯電話、デジタルカメラ等に広く使用されているリチウムイオン電池用セパレータとして好適に使用されている。
 電池安全性を確保するために、セパレータは、シャットダウン機能の発動と破膜温度の向上の両立が求められている。例えば、特許文献1には、リチウムイオン電池用セパレータの必須成分であるポリオレフィン樹脂の高次物性が調整されたことが記述されている。また、特許文献2に示されるとおり、特定の結晶化度とゲル分率領域では、電池内部の短絡による発熱をシャットダウン機能で抑制する一方、電池セル内で部分的に高温部位が発生しても破膜しない(170℃以上でのブレイクダウン)性能を有することで、電池の安全性を確保できることが知られている。特許文献1,2について、より詳細には、ポリオレフィン製セパレータ内にシラン架橋部(ゲル化構造)を構築することで、高温破膜性を発現できることが実験的に分かってきた。
 例えば、特許文献1~6には、シラン変性ポリオレフィン含有セパレータと水との接触などにより形成されるシラン架橋構造が記述されている。特許文献8には、紫外線、電子線などの照射によるノルボルネンの開環から形成される架橋構造が記述されている。特許文献9には、セパレータの絶縁層が、架橋構造を有する(メタ)アクリル酸共重合体、スチレン-ブタジエンゴムバインダなどを有することが記述されている。また、例えば、シャットダウン特性を有するA層と、アラミド樹脂、及び無機材料を含むB層との厚みの比を所定の範囲内に調整したセパレータが提案されている(特許文献11参照)。
 リチウムイオン電池用の部材については正極、負極材料、電解液及びセパレータが用いられている。これらの部材のうち、セパレータについては、その絶縁材料としての性格から電気化学反応又は周辺部材に対して不活性であることが求められてきた。一方で、リチウムイオン電池の負極材料は、その開発当初から初充電時の化学反応による固体電解質界面(SEI)形成によって負極表面の電解液の分解を抑制する技術が確立されている(非特許文献1)。またセパレータにポリオレフィン樹脂を用いたとしても、正極表面では高電圧下において酸化反応が誘起され、セパレータの黒色化、表面劣化などの事例も報告されている。
 以上の思想のもとで、蓄電デバイス用セパレータの材料について、電気化学反応又はその他の化学反応に対して不活性な化学構造を採用するため、ポリオレフィン製微多孔膜の開発及び実用化が広く展開されている。しかしながら、樹脂としてポリオレフィンを採用する限り、セパレータの機械的な微多孔構造を改良しても、性能向上に限界があった。例えば、ポリオレフィンの融点以上でのセパレータ耐熱安定性又はオレフィンユニットが有する電気陰性度によって、電解液との親和性又は保液性が不十分であることによって、Liイオン又はその溶媒和したイオンクラスタのセパレータ内の透過性が満足できない。
 このように、上記限界により、現代の電池開発が要求している高速充放電又は耐熱安定性を満たすことが、現状での対応では期待できない。
特開平9-216964号公報 国際公開第97/44839号 特開平11-144700号公報 特開平11-172036号公報 特開2001-176484号公報 特開2000-319441号公報 特開2017-203145号公報 特開2011-071128号公報 特開2014-056843号公報 特開平10-261435号公報 特開2007-299612号公報 国際公開第2010/134585号 特開2016-072150号公報
リチウムイオン二次電池(第2版) 日刊工業新聞社 発行 基礎高分子化学 東京化学同人 発行
 近年、モバイルデバイス搭載用途又は車載用リチウムイオン二次電池の高出力化と高エネルギー密度化が進んでいる一方、電池セルの小型化と長期使用時の安定なサイクル放充電性能が求められている。そのため、使用されるセパレータとして薄膜(例えば15μm以下)で高品位(例えば、物性均一性があり、かつ樹脂凝集物がない)なものが必要とされている。さらに、電池安全性の水準についても、以前より厳格となっており、特許文献1,2にも記載されるように、シャットダウン機能と高温破膜性が求められており、安定生産が可能なセパレータ用樹脂組成物と製造方法の開発が期待されている。これに関連して、シャットダウン温度の水準として150℃より低いほど望ましく、また破膜温度の水準としては高温であるほど望ましい。
 例えば、特許文献3に記載の方法では、押出工程時に架橋触媒マスターバッチを用いることで、押出機内でシラン変性ポリエチレンの架橋反応を進行させるが、樹脂凝集物の発生も見られ、セパレータの物性均一性を低下させる。この方法に対して、特許文献4,5,6に記載の方法は、可塑剤抽出工程又はシランゲル架橋工程を設けたり、樹脂膜のゲル分率を制御したり、未架橋の樹脂を熱水に通して成形してから脱水したりすることで対策している。また、特許文献7には、ポリオレフィン微多孔膜のゲル分率、動的粘弾性(DMA)測定における温度40℃~250℃での貯蔵弾性率、熱機械分析(TMA)による最大収縮率、及び電子スピン共鳴法(ESR)により測定されるラジカル量を調整することによって、低熱収縮性、低流動性及び耐メルトダウン性に優れた耐熱性樹脂微多孔膜を提供することが提案されている。
 さらに、蓄電デバイス用セパレータについて、寸法安定性、シャットダウン機能の維持と破膜温度の向上の両立、寸法安定性などの観点から、ポリオレフィン製微多孔膜の少なくとも一方の表面に、焼成カオリン、ベーマイトなどの無機粒子と樹脂バインダとを含む無機多孔質層を配置することが提案されている(特許文献12,13)。
 しかしながら、特許文献4に示す方法はシラン架橋反応を十分に進行させることができず、高温耐破膜性を得ることが難しい。特許文献3,4に記載の可塑剤抽出工程では、スズ(II)系架橋触媒を使用するため、架橋反応を進行できるが、後に架橋触媒の残留が懸念されている。
 特許文献7に記載の耐熱性樹脂微多孔膜は、乾式で多孔化された膜に対して光重合性塗工液を塗工することにより得られるものにすぎない。また、特許文献7の実施例5では、γ-メタクリロキシプロピルトリメトキシシランなどの低分子量シランカップリング剤を多孔膜に添加するが、仮に低分子量シランカップリング剤を湿式多孔化法に用いると、低分子量シランカップリング剤は、多孔化のための可塑剤と反応又は結合し易いため、多孔膜の樹脂とは結合しないことが予想される。さらに、特許文献7に記載されるような耐熱性樹脂微多孔膜をセパレータとして備える電池は、サイクル特性が悪く、また長期使用時に、電池内で予期できない副反応を誘発し、電池安全性の低下が懸念される。
 また、特許文献7に記載の皮膜層は、重合性官能基を有する化合物を樹脂製多孔膜に塗布した後、外部刺激によって架橋反応で形成されるため、皮膜層の塗布と同時に樹脂製多孔膜の一部分への侵液が予想され、架橋反応の進行後では、皮膜層と樹脂製多孔膜の界面付近には、それらの混合領域も形成されることが予測される。それによって、良好なTMA熱収縮性能を得られるが、樹脂製多孔膜の目詰まりによる電池サイクル特性の低下又は樹脂製多孔膜の融解現象に伴うFuse(シャットダウン)性能の低下が予測される。さらに、特許文献7に記載の方法により得られた複合微多孔膜には、少量のラジカル種化合物がESRで検出され、残存することにより、複合微多孔膜を電池へ組み込ませた際に、他の部材と、特に電解液とラジカル反応が進行し、電解液を分解する連鎖反応が予測され、著しく電池性能を悪化させると考えられる。
 さらに、特許文献1,2,7に記載の微多孔膜及びセパレータは、それらの表面に無機粒子と樹脂バインダとを含む無機多孔質層を配置することについての検討が乏しい。微多孔膜上に無機多孔質層を備える従来のセパレータは、蓄電デバイスの温度-抵抗曲線上では破膜温度が向上するように見える。しかしながら、実際には微多孔膜から樹脂が無機多孔質層中へ溶出することがあるので、セパレータ全体としての膜減り及びそれによる応力耐性の低下が予想される。したがって、特許文献12及び13に記載の多層多孔膜は、ポリオレフィン製微多孔膜と無機多孔質層を備えるが、蓄電デバイス用セパレータとしての低温シャットダウン機能と高温破膜性の両立、又は蓄電デバイスのサイクル特性と電池釘刺安全性の向上について検討の余地がある。
 さらに、特許文献3~7に記載されるようなセパレータを用いた電池は、サイクル特性が悪く、また長期使用時に、電池内で予期できない副反応を誘発し、電池安全性の低下が懸念される。
 熱水用パイプなどの一般的な成形品ではスズ(Sn)系触媒を押出工程時に押出機に投入する。他方、蓄電デバイス用セパレータの湿式製造プロセスは、通常、押出・シート成形、延伸、可塑剤抽出(多孔化)、熱処理、巻き取りなどの工程を含むため、シート成形工程中の押出機内でシラン架橋が促進されると、ゲル化部分が生産不良を招き、かつ後工程である延伸工程においてシラン架橋ポリオレフィンの延伸が困難になる。したがって、製造プロセスに適合した新規な蓄電デバイス用セパレータについて未だに検討の余地がある。
 さらに、特許文献1~6,8,9に記載される架橋方法は、いずれもセパレータ製膜のインプロセスで、又はセパレータ製膜直後のバッチで行われるものである。したがって、特許文献1~6,8,9に記載される架橋構造の形成後には、セパレータの塗工加工及びスリットを行わなければならず、その後の電極との積層・捲回工程では内部応力が増加するため、作製された電池が変形することがある。例えば、加温により架橋構造を形成すると、その架橋構造を有するセパレータの内部応力が常温又は室温で増加することがある。
 さらに、紫外線、電子線などの光照射により架橋構造を形成すると、光の照射が不均一になり、架橋構造が不均質になることがある。これは、セパレータを構成する樹脂の結晶部周辺が電子線により架橋され易いためであると考えられる。
 なお、特許文献10には、電解液にスクシンイミド類などを添加することによってリチウムイオン2次電池のサイクル特性を向上させる技術が記述されている。しかしながら、特許文献10に記載の技術は、セパレータの構造を特定することによってサイクル特性の向上を図るものではない。
 また、特許文献1,2,11に記載の蓄電デバイス用セパレータでは、その蓄電デバイスの性能の向上を図る観点で、未だ改良の余地があった。
 本発明は、上記問題点に鑑みて、シャットダウン機能と高温耐破性を両立させ、蓄電デバイスの安全性、出力及び/又はサイクル安定性を確保し得る蓄電デバイス用セパレータ、及びその製造プロセスに適合した新規な架橋方法又は蓄電デバイスの組み立てキット若しくは製造方法を提供することを目的とする。
 上記の課題は、次の技術的手段により解決される。
[1]
 シラン変性ポリオレフィンを含む蓄電デバイス用セパレータであって、前記蓄電デバイス用セパレータが電解液と接触すると前記シラン変性ポリオレフィンのシラン架橋反応が開始されることを特徴とする蓄電デバイス用セパレータ。
[2]
 前記シラン変性ポリオレフィンが、当該シラン変性ポリオレフィンを架橋する脱水縮合触媒を含有するマスターバッチ樹脂ではない、項目1に記載の蓄電デバイス用セパレータ。
[3]
 前記蓄電デバイス用セパレータが、前記シラン変性ポリオレフィンに加えて、ポリエチレンを含む、項目1又は2に記載の蓄電デバイス用セパレータ。
[4]
 前記シラン変性ポリオレフィンと前記ポリエチレンの質量比(シラン変性ポリオレフィンの質量/ポリエチレンの質量)が、0.05/0.95~0.40/0.60である、項目3に記載の蓄電デバイス用セパレータ。
[5]
 シラン変性ポリオレフィンを5~40質量%、及び前記シラン変性ポリオレフィン以外のポリオレフィンを60~95質量%含む蓄電デバイス用セパレータであって、下記式(1):
  RΔE’=E’/E’   (1)
{式中、E’は、前記シラン変性ポリオレフィンが架橋反応する前の前記蓄電デバイス用セパレータの160℃~220℃で測定された貯蔵弾性率であり、かつE’は、前記シラン変性ポリオレフィンが架橋反応した後の前記蓄電デバイス用セパレータの160℃~220℃で測定された貯蔵弾性率であり、そしてE’又はE’である貯蔵弾性率E’の測定条件は、下記構成(i)~(iv)で規定される。
 (i)動的粘弾性測定を以下の条件:
 ・使用測定装置:RSA-G2(TAインスツルメンツ社製)
 ・サンプル膜厚:5μm~50μmの範囲
 ・測定温度範囲:-50~225℃
 ・昇温速度:10℃/min
 ・測定周波数:1Hz
 ・変形モード:正弦波引張モード(Linear tension)
 ・静的引張荷重の初期値:0.5N
 ・初期(25℃時)のギャップ間距離:25mm
 ・Auto strain adjustment:Enabled(範囲:振幅値0.05~25%、正弦波荷重0.02~5N)
で行う。
 (ii)前記静的引張荷重とは、各周期運動での最大応力と最小応力の中間値を指し、かつ前記正弦波荷重とは、前記静的引張荷重を中心とした振動応力を指す。
 (iii)前記正弦波引張モードとは、固定振幅0.2%で周期運動を行いながら前記振動応力を測定することを指し、前記正弦波引張モードでは、前記静的引張荷重と前記正弦波荷重の差が20%以内となるようにギャップ間距離及び前記静的引張荷重を変動して前記振動応力を測定し、前記正弦波荷重が0.02N以下になった場合、前記正弦波荷重が5N以内かつ前記振幅値の増加量が25%以内になるように前記振幅値を増幅させて前記振動応力を測定する。
 (iv)得られた正弦波荷重と振幅値の関係、及び下記式:
  σ=σ・Exp[i(ωt+δ)]、
  ε=ε・Exp(iωt)、
  σ=E・ε
  E=E’+iE’’
  (式中、σ:振動応力、ε:歪み、i:虚数単位、ω:角振動数、t:時間、δ:振動応力と歪みの間の位相差、E:複素弾性率、E’:貯蔵弾性率、E’’:損失弾性率
  振動応力:正弦波荷重/初期断面積
  静的引張荷重:各周期での振動応力の最小点(各周期でのギャップ間距離の最小点)の荷重
  正弦波荷重:測定された振動応力と静的引張荷重の差)
から貯蔵弾性率E’を算出する。}
により定義される貯蔵弾性率変化比(RΔE’)が、1.5倍~20倍である蓄電デバイス用セパレータ。
[6]
 シラン変性ポリオレフィンを5~40質量%、及び前記シラン変性ポリオレフィン以外のポリオレフィンを60~95質量%含む蓄電デバイス用セパレータであって、下記式(3):
  RΔE’’=E’’/E’’   (3)
{式中、E’’は、前記シラン変性ポリオレフィンが架橋反応する前の前記蓄電デバイス用セパレータの160℃~220℃で測定された損失弾性率であり、かつE’’は、前記シラン変性ポリオレフィンが架橋反応した後の前記蓄電デバイス用セパレータの160℃~220℃で測定された損失弾性率であり、そしてE’’又はE’’である損失弾性率E’’の測定条件は、下記構成(i)~(iv)で規定される。
 (i)動的粘弾性測定を以下の条件:
 ・使用測定装置:RSA-G2(TAインスツルメンツ社製)
 ・サンプル膜厚:5μm~50μmの範囲
 ・測定温度範囲:-50~225℃
 ・昇温速度:10℃/min
 ・測定周波数:1Hz
 ・変形モード:正弦波引張モード(Linear tension)
 ・静的引張荷重の初期値:0.5N
 ・初期(25℃時)のギャップ間距離:25mm
 ・Auto strain adjustment:Enabled(範囲:振幅値0.05~25%、正弦波荷重0.02~5N)
で行う。
 (ii)前記静的引張荷重とは、各周期運動での最大応力と最小応力の中間値を指し、かつ前記正弦波荷重とは、前記静的引張荷重を中心とした振動応力を指す。
 (iii)前記正弦波引張モードとは、固定振幅0.2%で周期運動を行いながら前記振動応力を測定することを指し、前記正弦波引張モードでは、前記静的引張荷重と前記正弦波荷重の差が20%以内となるようにギャップ間距離及び前記静的引張荷重を変動して前記振動応力を測定し、前記正弦波荷重が0.02N以下になった場合、前記正弦波荷重が5N以内かつ振幅値の増加量が25%以内になるように前記振幅値を増幅させて前記振動応力を測定する。
 (iv)得られた正弦波荷重と振幅値、及び下記式:
  σ=σ・Exp[i(ωt+δ)]、
  ε=ε・Exp(iωt)、
  σ=E・ε
  E=E’+iE’’
  (式中、σ:振動応力、ε:歪み、i:虚数単位、ω:角振動数、t:時間、δ:振動応力と歪みの間の位相差、E:複素弾性率、E’:貯蔵弾性率、E’’:損失弾性率
  振動応力:正弦波荷重/初期断面積
  静的引張荷重:各周期での振動応力の最小点(各周期でのギャップ間距離の最小点)の荷重
  正弦波荷重:測定された振動応力と静的引張荷重の差)
から損失弾性率E’’を算出する。}
により定義される損失弾性率変化比(RΔE’’)が、1.5倍~20倍である蓄電デバイス用セパレータ。
[7]
 蓄電デバイス用セパレータが電解液と接触するとシラン変性ポリオレフィンのシラン架橋反応が起こることを特徴とする蓄電デバイス用セパレータ。
[8]
 シラン変性ポリオレフィンを5~40質量%、及び前記シラン変性ポリオレフィン以外のポリオレフィンを60~95質量%含む蓄電デバイス用セパレータであって、下記式(2):
  RE’mix=E’/E’   (2)
{式中、E’は、前記蓄電デバイス用セパレータの160℃~220℃で測定された貯蔵弾性率であり、かつE’は、前記シラン変性ポリオレフィンを含まない蓄電デバイス用セパレータの160℃~220℃で測定された貯蔵弾性率であり、そしてE’又はE’である貯蔵弾性率E’の測定条件は、下記構成(i)~(iv)で規定される。
 (i)動的粘弾性測定を以下の条件:
 ・使用測定装置:RSA-G2(TAインスツルメンツ社製)
 ・サンプル膜厚:5μm~50μmの範囲
 ・測定温度範囲:-50~225℃
 ・昇温速度:10℃/min
 ・測定周波数:1Hz
 ・変形モード:正弦波引張モード(Linear tension)
 ・静的引張荷重の初期値:0.5N
 ・初期(25℃時)のギャップ間距離:25mm
 ・Auto strain adjustment:Enabled(範囲:振幅値0.05~25%、正弦波荷重0.02~5N)
で行う。
 (ii)前記静的引張荷重とは、各周期運動での最大応力と最小応力の中間値を指し、かつ前記正弦波荷重とは、前記静的引張荷重を中心とした振動応力を指す。
 (iii)前記正弦波引張モードとは、固定振幅0.2%で周期運動を行いながら前記振動応力を測定することを指し、前記正弦波引張モードでは、前記静的引張荷重と前記正弦波荷重の差が20%以内となるようにギャップ間距離及び前記静的引張荷重を変動して前記振動応力を測定し、前記正弦波荷重が0.02N以下になった場合、前記正弦波荷重が5N以内かつ前記振幅値の増加量が25%以内になるように前記振幅値を増幅させて前記振動応力を測定する。
 (iv)得られた正弦波荷重と振幅値の関係、及び下記式:
  σ=σ・Exp[i(ωt+δ)]、
  ε=ε・Exp(iωt)、
  σ=E・ε
  E=E’+iE’’
  (式中、σ:振動応力、ε:歪み、i:虚数単位、ω:角振動数、t:時間、δ:振動応力と歪みの間の位相差、E:複素弾性率、E’:貯蔵弾性率、E’’:損失弾性率
  振動応力:正弦波荷重/初期断面積
  静的引張荷重:各周期での振動応力の最小点(各周期でのギャップ間距離の最小点)の荷重
  正弦波荷重:測定された振動応力と静的引張荷重の差)
から貯蔵弾性率E’を算出する。}
により定義される混合貯蔵弾性率比(RE’mix)が、1.5倍~20倍である蓄電デバイス用セパレータ。
[9]
 シラン変性ポリオレフィンを5~40質量%、及び前記シラン変性ポリオレフィン以外のポリオレフィンを60~95質量%含む蓄電デバイス用セパレータであって、下記式(4):
  RE’’mix=E’’/E’’   (4)
{式中、E’’は、前記蓄電デバイス用セパレータの160℃~220℃で測定された損失弾性率であり、かつE’’は、前記シラン変性ポリオレフィンを含まない蓄電デバイス用セパレータの160℃~220℃で測定された損失弾性率であり、そしてE’’又はE’’である損失弾性率E’’の測定条件は、下記構成(i)~(iv)で規定される。
 (i)動的粘弾性測定を以下の条件:
 ・使用測定装置:RSA-G2(TAインスツルメンツ社製)
 ・サンプル膜厚:5μm~50μmの範囲
 ・測定温度範囲:-50~225℃
 ・昇温速度:10℃/min
 ・測定周波数:1Hz
 ・変形モード:正弦波引張モード(Linear tension)
 ・静的引張荷重の初期値:0.5N
 ・初期(25℃時)のギャップ間距離:25mm
 ・Auto strain adjustment:Enabled(範囲:振幅値0.05~25%、正弦波荷重0.02~5N)
で行う。
 (ii)前記静的引張荷重とは、各周期運動での最大応力と最小応力の中間値を指し、かつ前記正弦波荷重とは、前記静的引張荷重を中心とした振動応力を指す。
 (iii)前記正弦波引張モードとは、固定振幅0.2%で周期運動を行いながら前記振動応力を測定することを指し、前記正弦波引張モードでは、前記静的引張荷重と前記正弦波荷重の差が20%以内となるようにギャップ間距離及び前記静的引張荷重を変動して前記振動応力を測定し、前記正弦波荷重が0.02N以下になった場合、前記正弦波荷重が5N以内かつ振幅値の増加量が25%以内になるように前記振幅値を増幅させて前記振動応力を測定する。
 (iv)得られた正弦波荷重と振幅値、及び下記式:
  σ=σ・Exp[i(ωt+δ)]、
  ε=ε・Exp(iωt)、
  σ=E・ε
  E=E’+iE’’
  (式中、σ:振動応力、ε:歪み、i:虚数単位、ω:角振動数、t:時間、δ:振動応力と歪みの間の位相差、E:複素弾性率、E’:貯蔵弾性率、E’’:損失弾性率
  振動応力:正弦波荷重/初期断面積
  静的引張荷重:各周期での振動応力の最小点(各周期でのギャップ間距離の最小点)の荷重
  正弦波荷重:測定された振動応力と静的引張荷重の差)
から損失弾性率E’’を算出する。}
により定義される混合損失弾性率比(RE’’mix)が、1.5倍~20.0倍である蓄電デバイス用セパレータ。
[10]
 前記シラン変性ポリオレフィンを含まない蓄電デバイス用セパレータは、ゲル化度が0%以上10%以下のシラン非変性ポリオレフィン製微多孔膜である、項目8又は9に記載の蓄電デバイス用セパレータ。
[11]
 シラン変性ポリオレフィンを5~40質量%、及び前記シラン変性ポリオレフィン以外のポリオレフィンを60~95質量%含む蓄電デバイス用セパレータであって、前記蓄電デバイス用セパレータの貯蔵弾性率の温度変化においてゴム状平坦領域と結晶融解流動領域の転移温度が、135℃~150℃である蓄電デバイス用セパレータ。
[12]
 ポリオレフィン微多孔膜から成る蓄電デバイス用セパレータであって、
 -50℃~250℃の温度での前記蓄電デバイス用セパレータの固体粘弾性測定において、
 貯蔵弾性率の最小値が1.0MPa~10MPaであり、貯蔵弾性率の最大値が100MPa~10,000MPaであり、かつ
 損失弾性率の最小値が0.1MPa~10MPaであり、損失弾性率の最大値が10MPa~10,000MPaであり、
 前記貯蔵弾性率及び前記損失弾性率を測定するための前記固体粘弾性測定の条件は、下記構成(i)~(iv):
 (i)動的粘弾性測定を以下の条件:
 ・使用測定装置:RSA-G2(TAインスツルメンツ社製)
 ・サンプル膜厚:200μm~400μm(ただし、サンプル単体の膜厚が200μm未満の場合には、複数枚のサンプルを重ねて総厚が200μm~400μmの範囲内になるように動的粘弾性測定を行う。)
 ・測定温度範囲:-50℃~250℃
 ・昇温速度:10℃/min
 ・測定周波数:1Hz
 ・変形モード:正弦波引張モード(Linear tension)
 ・静的引張荷重の初期値:0.2N
 ・初期(25℃時)のギャップ間距離:10mm
 ・自動歪み調整(Auto strain adjustment):無効(Disabled)
で行う;
 (ii)前記静的引張荷重とは、各周期運動での最大応力と最小応力の中間値を指し、かつ前記正弦波荷重とは、前記静的引張荷重を中心とした振動応力を指す;
 (iii)前記正弦波引張モードとは、固定振幅0.1%で周期運動を行いながら前記振動応力を測定することを指し、前記正弦波引張モードでは、前記静的引張荷重と前記正弦波荷重の差が5%以内となるようにギャップ間距離及び前記静的引張荷重を変動して前記振動応力を測定し、前記正弦波荷重が0.1N以下になった場合には前記静的引張荷重を0.1Nに固定して前記振動応力を測定する;
 (iv)得られた正弦波荷重と振幅値の関係、及び下記式: 
  σ=σ・Exp[i(ωt+δ)]、
  ε=ε・Exp(iωt)、
  σ=E・ε
  E=E’+iE’’
 {式中、σ:振動応力、ε:歪み、i:虚数単位、ω:角振動数、t:時間、δ:振動応力と歪みの間の位相差、E:複素弾性率、E’:貯蔵弾性率、E’’:損失弾性率
  振動応力:正弦波荷重/初期断面積
  静的引張荷重:各周期での振動応力の最小点(各周期でのギャップ間距離の最小点)の荷重
  正弦波荷重:測定された振動応力と静的引張荷重の差}
から前記貯蔵弾性率及び前記損失弾性率を算出する;
で規定される蓄電デバイス用セパレータ。
[13]
 ポリオレフィン微多孔膜から成る蓄電デバイス用セパレータであって、膜軟化転移温度から膜破断温度までの前記蓄電デバイス用セパレータの固体粘弾性測定において、平均貯蔵弾性率が、1.0MPa~12MPaであり、かつ平均損失弾性率が、0.5MPa~10MPaである蓄電デバイス用セパレータ。
[14]
 前記固体粘弾性測定において、膜軟化転移温度が、140℃~150℃であり、かつ膜破断温度が、180℃以上である、項目13に記載の蓄電デバイス用セパレータ。
[15]
 シラン変性ポリオレフィン、及び前記シラン変性ポリオレフィン以外のポリオレフィンを含む、項目12~14のいずれか1項に記載の蓄電デバイス用セパレータ。
[16]
 シラン変性ポリオレフィンを5質量%~40質量%、及び前記シラン変性ポリオレフィン以外のポリオレフィンを60質量%~95質量%含む、項目15に記載の蓄電デバイス用セパレータ。
[17]
 ポリオレフィンを含む蓄電デバイス用セパレータであって、
 前記ポリオレフィンが1種又は2種以上の官能基を有し、かつ
 蓄電デバイスへの収納後に、(1)前記官能基同士が縮合反応するか、(2)前記官能基が前記蓄電デバイス内部の化学物質と反応するか、又は(3)前記官能基が他の種類の官能基と反応して、架橋構造が形成されることを特徴とする蓄電デバイス用セパレータ。
[18]
 前記化学物質が、前記蓄電デバイスに含まれる電解質、電解液、電極活物質、添加剤又はそれらの分解物のいずれかである、項目17に記載の蓄電デバイス用セパレータ。
[19]
 ポリオレフィンを含む蓄電デバイス用セパレータであって、前記ポリオレフィンの非晶部が架橋された非晶部架橋構造を有する蓄電デバイス用セパレータ。
[20]
 前記蓄電デバイス用セパレータは、下記式(1):
  RE’X=E’/E’Z0   (1)
{式中、E’は、前記蓄電デバイス用セパレータの架橋反応が蓄電デバイス内で進行した後に、160℃~300℃の温度領域で測定された貯蔵弾性率であり、かつ
 E’Z0は、前記蓄電デバイス用セパレータが前記蓄電デバイスに組み込まれる前に、160℃~300℃の温度領域で測定された貯蔵弾性率である。}
により定義される混合貯蔵弾性率比(RE’x)が、1.5倍~20倍である、項目19に記載の蓄電デバイス用セパレータ。
[21]
 前記蓄電デバイス用セパレータは、下記式(3):
  RE’’X=E’’/E’’Z0   (3)
{式中、E’’は、前記蓄電デバイス用セパレータの架橋反応が蓄電デバイス内で進行した後に、160℃~300℃の温度領域で測定された損失弾性率であり、かつ
 E’’Z0は、前記蓄電デバイス用セパレータが前記蓄電デバイスに組み込まれる前に、160℃~300℃の温度領域で測定された損失弾性率である。}
により定義される混合損失弾性率比(RE’’x)が、1.5倍~20倍である、項目19又は20に記載の蓄電デバイス用セパレータ。
[22]
 前記非晶部が、選択的に架橋された、項目19~21のいずれか1項に記載の蓄電デバイス用セパレータ。
[23]
 前記蓄電デバイス用セパレータは、下記式(2):
  RE’mix=E’/E’   (2)
{式中、E’は、前記蓄電デバイス用セパレータが非晶部架橋構造を有するときに160℃~300℃で測定された貯蔵弾性率であり、かつ
  E’は、非晶部架橋構造を有しない前記蓄電デバイス用セパレータの160℃~300℃で測定された貯蔵弾性率である。}
により定義される混合貯蔵弾性率比(RE’mix)が、1.5倍~20倍である、項目17~22のいずれか1項に記載の蓄電デバイス用セパレータ。
[24]
 前記蓄電デバイス用セパレータは、下記式(4):
  RE’’mix=E’’/E’’   (4)
{式中、E’’は、前記蓄電デバイス用セパレータが非晶部架橋構造を有するときに160℃~300℃で測定された損失弾性率であり、かつ
  E’’は、非晶部架橋構造を有しない前記蓄電デバイス用セパレータの160℃~300℃で測定された損失弾性率である。}
により定義される混合損失弾性率比(RE’’mix)が、1.5倍~20倍である、項目17~23のいずれか1項に記載の蓄電デバイス用セパレータ。
[25]
 前記ポリオレフィンが、ポリエチレンである、項目17~24のいずれか1項に記載の蓄電デバイス用セパレータ。
[26]
 前記ポリオレフィンが、官能基変性ポリオレフィン、又は官能基を有する単量体を共重合されたポリオレフィンである、項目17~25のいずれか1項に記載の蓄電デバイス用セパレータ。
[27]
 前記架橋構造が、共有結合、水素結合又は配位結合のいずれかを介した反応により形成される、項目17~26のいずれか1項に記載の蓄電デバイス用セパレータ。
[28]
 前記共有結合を介した反応が、下記反応(I)~(IV):
  (I)複数の同一官能基の縮合反応;
  (II)複数の異種官能基間の反応;
  (III)官能基と電解液の連鎖縮合反応;及び
  (IV)官能基と添加剤の反応;
から成る群から選択される少なくとも1つである、項目27に記載の蓄電デバイス用セパレータ。
[29]
 前記配位結合を介した反応が、下記反応(V):
  (V)複数の同一官能基が、金属イオンとの配位結合を介して架橋する反応;
である、項目27に記載の蓄電デバイス用セパレータ。
[30]
 前記反応(I)及び/又は(II)が、蓄電デバイス内部の化学物質により触媒的に促進される、項目28に記載の蓄電デバイス用セパレータ。
[31]
 前記反応(I)が、複数のシラノール基の縮合反応である、項目28に記載の蓄電デバイス用セパレータ。
[32]
 前記反応(IV)が、前記蓄電デバイス用セパレータを構成する化合物Rxと前記添加剤を構成する化合物Ryとの求核置換反応、求核付加反応又は開環反応であり、前記化合物Rxは、官能基xを有し、かつ前記化合物Ryは、連結反応ユニットyを有する、項目28に記載の蓄電デバイス用セパレータ。
[33]
 前記反応(IV)が求核置換反応であり、
 前記化合物Rxの官能基xが、-OH、-NH、-NH-、-COOH及び-SHから成る群から選択される少なくとも1つであり、かつ
 前記化合物Ryの連結反応ユニットyが、CHSO-、CFSO-、ArSO-、CHSO-、CFSO-、ArSO-、及び下記式(y-1)~(y-6):
Figure JPOXMLDOC01-appb-C000020
{式中、Xは、水素原子又は1価の置換基である。}
Figure JPOXMLDOC01-appb-C000021
{式中、Xは、水素原子又は1価の置換基である。}
Figure JPOXMLDOC01-appb-C000022
{式中、Xは、水素原子又は1価の置換基である。}
Figure JPOXMLDOC01-appb-C000023
{式中、Xは、水素原子又は1価の置換基である。}
Figure JPOXMLDOC01-appb-C000024
{式中、Xは、水素原子又は1価の置換基である。}
Figure JPOXMLDOC01-appb-C000025
{式中、Xは、水素原子又は1価の置換基である。}
で表される1価の基から成る群から選択される少なくとも2つである、項目32に記載の蓄電デバイス用セパレータ。
[34]
 前記反応(IV)が求核置換反応であり、
 前記化合物Ryが、前記連結反応ユニットyに加えて鎖状ユニットyを有し、かつ
 前記鎖状ユニットyが、下記式(y-1)~(y-6):
Figure JPOXMLDOC01-appb-C000026
{式中、mは、0~20の整数であり、かつnは、1~20の整数である。}
Figure JPOXMLDOC01-appb-C000027
{式中、nは、1~20の整数である。}
Figure JPOXMLDOC01-appb-C000028
{式中、nは、1~20の整数である。}
Figure JPOXMLDOC01-appb-C000029
{式中、nは、1~20の整数である。}
Figure JPOXMLDOC01-appb-C000030
{式中、Xは、炭素数1~20のアルキレン基、又はアリーレン基であり、かつnは、1~20の整数である。}
Figure JPOXMLDOC01-appb-C000031
{式中、Xは、炭素数1~20のアルキレン基、又はアリーレン基であり、かつnは、1~20の整数である。}
で表される2価の基から成る群から選択される少なくとも1つである、項目32又は33に記載の蓄電デバイス用セパレータ。
[35]
 前記反応(IV)が求核付加反応であり、
 前記化合物Rxの官能基xが、-OH、-NH、-NH-、-COOH及び-SHから成る群から選択される少なくとも1つであり、かつ
 前記化合物Ryの連結反応ユニットyが、下記式(Ay-1)~(Ay-6):
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
{式中、Rは、水素原子又は1価の有機基である。}
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
で表される基から成る群から選択される少なくとも1つである、項目32に記載の蓄電デバイス用セパレータ。
[36]
 前記反応(IV)が開環反応であり、
 前記化合物Rxの官能基xが、-OH、-NH、-NH-、-COOH及び-SHから成る群から選択される少なくとも1つであり、かつ
 前記化合物Ryの連結反応ユニットyが、下記式(ROy-1):
Figure JPOXMLDOC01-appb-C000038
{式中、複数のXは、それぞれ独立に、水素原子又は1価の置換基である。}
で表される少なくとも2つの基である、項目32に記載の蓄電デバイス用セパレータ。
[37]
 下記反応(V)において、前記金属イオンが、Zn2+、Mn2+、Co3+、Ni2+及びLiから成る群から選択される少なくとも1つである、項目29に記載の蓄電デバイス用セパレータ。
[38]
 シラン変性ポリオレフィンを含み、架橋構造を形成可能な第1多孔質層(A層)と、無機粒子を含む第2多孔質層(B層)とを備える蓄電デバイス用セパレータであって、前記架橋構造の形成後における150℃での熱収縮率が、前記架橋構造の形成前における150℃での熱収縮率の0.02倍以上0.91倍以下である蓄電デバイス用セパレータ。
[39]
 前記A層中の前記架橋構造は、酸、塩基、膨潤、又は蓄電デバイス内で発生する化合物によって形成される、項目38に記載の蓄電デバイス用セパレータ。
[40]
 シラン変性ポリオレフィンを含む微多孔膜と、
 前記微多孔膜の少なくとも一方の表面に配置された、無機粒子及び樹脂バインダを含む無機多孔質層と、
を含む蓄電デバイス用セパレータ。
[41]
 前記無機多孔質層中の前記無機粒子の含有量が、5重量%~99重量%である、項目40に記載の蓄電デバイス用セパレータ。
[42]
 前記微多孔膜中の前記シラン変性ポリオレフィンの含有量が、0.5重量%~40重量%である、項目40又は41に記載の蓄電デバイス用セパレータ。
[43]
 前記無機粒子が、アルミナ(Al)、シリカ、チタニア、ジルコニア、マグネシア、セリア、イットリア、酸化亜鉛、酸化鉄、窒化ケイ素、窒化チタン、窒化ホウ素、シリコンカーバイド、水酸化酸化アルミニウム(AlO(OH))、タルク、カオリナイト、ディカイト、ナクライト、ハロイサイト、パイロフィライト、モンモリロナイト、セリサイト、マイカ、アメサイト、ベントナイト、アスベスト、ゼオライト、ケイ藻土、ケイ砂、及びガラス繊維から成る群から選択される少なくとも1つである、項目40~42のいずれか1項に記載の蓄電デバイス用セパレータ。
[44]
 前記樹脂バインダのガラス転移温度(Tg)が、-50℃~100℃である、項目40~43のいずれか1項に記載の蓄電デバイス用セパレータ。
[45]
 前記蓄電デバイス用セパレータが電解液と接触すると前記シラン変性ポリオレフィンのシラン架橋反応が開始される、項目40~44のいずれか1項に記載の蓄電デバイス用セパレータ。
[46]
 前記蓄電デバイス用セパレータは、前記無機多孔質層を除いて測定されたときに、下記式(1A):
  R△E’=E’/E’   (1A)
{式中、E’は、前記シラン変性ポリオレフィンが架橋反応する前の前記蓄電デバイス用セパレータの160℃~220℃で測定された貯蔵弾性率であり、かつE’は、前記シラン変性ポリオレフィンが架橋反応した後の前記蓄電デバイス用セパレータの160℃~220℃で測定された貯蔵弾性率である。}
により定義される貯蔵弾性率変化比(R△E’)が1.5倍~20倍であり、かつ/又は下記式(1B):
  R△E’’=E’’/E’’   (1B)
{式中、E’’は、前記シラン変性ポリオレフィンが架橋反応する前の前記蓄電デバイス用セパレータの160℃~220℃で測定された損失弾性率であり、かつE’’は、前記シラン変性ポリオレフィンが架橋反応した後の前記蓄電デバイス用セパレータの160℃~220℃で測定された損失弾性率である。}
により定義される損失弾性率変化比(R△E’’)が1.5倍~20倍である、項目40~45のいずれか1項に記載の蓄電デバイス用セパレータ。
[47]
 前記蓄電デバイス用セパレータは、前記無機多孔質層を除いて測定されたときに、下記式(2A):
  RE’mix=E’/E’   (2A)
{式中、E’は、前記蓄電デバイス用セパレータの160℃~220℃で測定された貯蔵弾性率であり、かつE’は、前記シラン変性ポリオレフィンを含まない蓄電デバイス用セパレータの160℃~220℃で測定された貯蔵弾性率である。}
により定義される混合貯蔵弾性率比(RE’mix)が1.5倍~20倍であり、かつ/又は下記式(2B):
  RE’’mix=E’’/E’’   (2B)
{式中、E’’は、前記蓄電デバイス用セパレータの160℃~220℃で測定された損失弾性率であり、かつE’’は、前記シラン変性ポリオレフィンを含まない蓄電デバイス用セパレータの160℃~220℃で測定された損失弾性率である。}
により定義される混合損失弾性率比(RE’’mix)が1.5倍~20倍である、項目40~46のいずれか1項に記載の蓄電デバイス用セパレータ。
[48]
 前記蓄電デバイス用セパレータの貯蔵弾性率の温度変化において、ゴム状平坦領域と結晶融解流動領域の転移温度が、135℃~150℃である、項目40~47のいずれか1項に記載の蓄電デバイス用セパレータ。
[49]
 電極と、項目1~48のいずれか1項に記載の蓄電デバイス用セパレータと、非水電解液とを含む蓄電デバイス。
[50]
 ポリエチレンを含むセパレータと、電解液又は添加剤とを含む蓄電デバイスであって、官能基変性ポリエチレン又は官能基グラフト共重合ポリエチレンと、前記電解液又は前記添加剤に含まれる化学物質とが反応し、架橋構造が形成された蓄電デバイス。
[51]
 以下の工程:
 (1)シラン変性ポリオレフィンとポリエチレンと可塑剤の混合物を押出し、冷却固化させ、シート状に成形して、シートを得るシート成形工程;
 (2)前記シートを少なくとも一軸方向に延伸して、延伸物を得る延伸工程;
 (3)抽出溶媒の存在下で前記延伸物から前記可塑剤を抽出し、前記延伸物を多孔化して、多孔体を形成する多孔体形成工程;及び
 (4)前記多孔体を熱処理に供する熱処理工程;
を含む、項目1~50のいずれか1項に記載の蓄電デバイス用セパレータの製造方法。
[52]
 以下の工程:
 (1)シラン変性ポリオレフィン、ポリエチレン及び可塑剤を押出機でシート状に押出し、冷却固化させ、シート状成形体に加工するシート成形工程;
 (2)前記シート状成形体を20倍以上250倍以下の面倍率で二軸延伸して、延伸物を形成する延伸工程;
 (3)前記延伸物から前記可塑剤を抽出して、多孔体を形成する多孔体形成工程;
 (4)前記多孔体を熱処理に供して、幅方向に延伸及び緩和を行って、熱処理多孔体を得る熱処理工程;
 (8B)無機粒子と樹脂バインダを含む無機多孔質層を、前記熱処理多孔体の少なくとも一方の表面に形成して、シラン架橋前駆体を形成する塗工工程;
 (9)電極及び前記シラン架橋前駆体の積層体又はその捲回体と、非水電解液とを外装体に収納して、前記シラン架橋前駆体と前記非水電解液を接触させる組み立て工程;
を含む、蓄電デバイス用セパレータの製造方法。
[53]
 以下の2つの要素:
 (1)電極と項目1~48のいずれか1項に記載の蓄電デバイス用セパレータの積層体又は捲回体を収納している外装体;及び
 (2)非水電解液を収納している容器;
を備える蓄電デバイス組み立てキット。
[54]
 前記非水電解液が、フッ素(F)含有リチウム塩を含む、項目53に記載の蓄電デバイス組み立てキット。
[55]
 前記非水電解液が、ヘキサフルオロリン酸リチウム(LiPF)を含む、項目53又は54に記載の蓄電デバイス組み立てキット。
[56]
 前記非水電解液が、酸溶液及び/又は塩基溶液である、項目53~55のいずれか1項に記載の蓄電デバイス組み立てキット。
[57]
 以下の工程;
  項目53~56のいずれか1項に記載の蓄電デバイス組み立てキットを用意する工程と、
  前記蓄電デバイス組み立てキットの要素(1)中の前記蓄電デバイス用セパレータと要素(2)中の前記非水電解液を接触させることによりシラン変性ポリオレフィンのシラン架橋反応を開始する工程と
を含む蓄電デバイスの製造方法。
[58]
 さらに以下の工程:
  前記要素(1)の前記電極にリード端子を接続する工程と、
  少なくとも1サイクルの充放電を行う工程と
を含む、項目57に記載の蓄電デバイスの製造方法。
[59]
 ポリオレフィンを含むセパレータを用いる蓄電デバイスの製造方法であって、
 前記ポリオレフィンが、1種類又は2種類以上の官能基を含み、かつ以下の工程:
 (1)前記官能基同士を縮合反応させるか、(2)前記官能基を前記蓄電デバイス内部の化学物質と反応させるか、又は(3)前記官能基を他の種類の官能基と反応させて、架橋構造を形成する架橋工程
を含む蓄電デバイスの製造方法。
[60]
 前記架橋工程が、5℃~90℃の温度で行われる、項目59に記載の蓄電デバイスの製造方法。
 本発明によれば、蓄電デバイス用セパレータの低温シャットダウン機能と高温耐破性を両立させて、その製造プロセスにおいて未溶融樹脂凝集物の発生も抑制して生産性及び経済性に寄与することができ、さらに良好なサイクル特性と高い安全性を有する蓄電デバイスとその組み立てキットを提供することができる。
 また、本発明によれば、製膜プロセス中又はその直後に架橋構造を形成しなくてもよいので、セパレータの内部応力の増加及び蓄電デバイス作製後の変形を抑制することができ、かつ/又は光照射若しくは加温などの比較的高いエネルギーを用いなくてもセパレータに架橋構造を付与して、架橋ムラを低減することができる。さらに、本発明によれば、セパレータ内部だけでなく、セパレータと電極の間又はセパレータと固体電解質界面(SEI)の間にも架橋構造を形成して、蓄電デバイスの複数の部材間の強度を向上させることができ、蓄電デバイス充放電時に電極が膨張、収縮することによって、セパレータとの間に生じる隙間が抑制され、長期使用におけるサイクル安定を著しく向上させることができる。
図1は、温度と貯蔵弾性率の関係を説明するためのグラフの一例であり、-50℃~225℃の温度範囲内の基準膜と架橋後膜の貯蔵弾性率を対比して、ゴム状平坦領域と結晶融解流動領域の転移温度を示す。 図2は、温度と損失弾性率の関係を説明するためのグラフの一例であり、-50℃~225℃の温度範囲内の基準膜と架橋後膜の損失弾性率を対比して、ゴム状平坦領域と結晶融解流動領域の転移温度を示す。 図3は、実施例I-1で得られたセパレータを備える蓄電デバイスの温度と抵抗の関係を示すグラフである。 図4は、蓄電デバイス用セパレータの粘弾性測定において温度とギャップ距離と貯蔵弾性率と損失弾性率との関係を説明するためのグラフであり、かつ実施例II-1のグラフ(a)と比較例II-1のグラフ(b)を例示する。 図5は、蓄電デバイス用セパレータの粘弾性測定において、温度、ギャップ距離及びギャップ変位の一次微分値に基づいて膜軟化転移温度を決定するためのグラフであり、かつ実施例II-1のグラフ(a)と比較例II-1のグラフ(b)を例示する。 図6は、結晶構造のラメラ(結晶部)、非晶質部およびそれらの間の中間層部に分かれた高次構造を有する結晶性高分子を説明するための模式図である。 図7は、ポリオレフィン分子の結晶成長を説明するための模式図である。 図8は、本発明の一実施形態に係る膜について、引張破断破壊試験時のX線結晶構造変化を示すためのひずみ量-結晶細分化率グラフである。 図9は、温度と貯蔵弾性率の関係を説明するためのグラフの一例であり、-50℃~310℃の温度範囲内の基準膜と架橋後膜の貯蔵弾性率を対比して、ゴム状平坦領域と結晶融解流動領域の転移温度を示す。 図10は、温度と損失弾性率の関係を説明するためのグラフの一例であり、-50℃~310℃の温度範囲内の基準膜と架橋後膜の損失弾性率を対比して、ゴム状平坦領域と結晶融解流動領域の転移温度を示す。 図11は、ポリオレフィンを用いて得られるシラン変性ポリオレフィン原料1のH-NMRチャート(a)及び13C-NMRチャート(b)である。 図12は、ポリオレフィンを用いて得られるシラン変性ポリオレフィン原料2のH-NMRチャート(a)及び13C-NMRチャート(b)である。 図13は、実施例I-1で得られたセパレータの架橋前状態のH-NMRチャート(a)及び13C-NMRチャート(b)である。
 以下、本発明を実施するための形態(以下、「実施形態」と略記する。)について詳細に説明する。尚、本発明は、以下の実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
 本明細書において、「~」とは、その両端の数値を上限値、及び下限値として含む意味である。また、本明細書において、数値範囲の上限値、及び下限値は、任意に組み合わせることができる。例えば、好ましい数値範囲の上限値と、より好ましい数値範囲の下限値とを組み合わせてよく、逆に、より好ましい数値範囲の上限値と、好ましい数値範囲の下限値とを組み合わせてよい。
 なお、本明細書において、「上」、及び「面に形成」とは、各部材の位置関係が「直上」であることを限定する意味ではない。例えば、「A層上に形成されるB層」、及び「A層の表面に形成されるB層」という表現は、A層とB層との間に、そのいずれにも該当しない任意の層が含まれる態様を除外しない。
 以下で説明される微多孔膜のみの特性については、蓄電デバイス用セパレータから微多孔膜以外の層(例えば無機多孔質層)を除いてから測定されることができる。
<蓄電デバイス用セパレータ>
 本発明の一態様は、蓄電デバイス用セパレータ(以下、単に「セパレータ」ともいう)である。セパレータは、絶縁性とイオン透過性が必要なため、一般的には、多孔体構造を有する絶縁材料である紙、ポリオレフィン製不織布又は樹脂製微多孔膜などを含む。特に、リチウムイオン電池においては、セパレータの耐酸化還元劣化及び緻密で均一な多孔体構造を構築できるポリオレフィン製微多孔膜が優れている。
 ここで、微多孔膜とは、多孔体から成る膜(フィルム)をいい、その平均孔径は、10nm以上、500nm以下であることが好ましく、30nm以上、100nm以下であることがより好ましい。
 セパレータが蓄電デバイスに含まれる場合には、蓄電デバイスからセパレータを取り出すことが可能である。
<第一、第二、第三、第四及び第五の実施形態>
 第一の実施形態に係るセパレータは、シラン変性ポリオレフィンを含み、所望により、その他のポリオレフィンも含んでよい。第一の実施形態に係るセパレータは、電解液と接触すると、セパレータに含まれるシラン変性ポリオレフィンのシラン架橋反応が開始される。第一の実施形態に係るセパレータは、電解液との接触時にシラン変性ポリオレフィンの架橋を行うことができるので、架橋のタイミングを制御することができ、それにより、セパレータの製造プロセスにおいては架橋反応を行わず、蓄電デバイスの製造プロセスにおいて架橋反応を行うことが可能となる。
 第二の実施形態に係るセパレータは、電解液と接触するとシラン変性ポリオレフィンのシラン架橋反応が起こることを特徴とする。第二の実施形態では、セパレータ中にシラン変性ポリオレフィンが含まれるのか否か、残存シラン変性ポリオレフィンが何処にいるのか、及び電解液との接触時にシラン架橋反応が、最初に開始されるのか、逐次的に起こるのか、又は連続的に起こるのかについて問わず、セパレータと電解液の接触時にシラン架橋反応が観測されればよい。第二の実施形態に係るセパレータと電解液の接触時に起こるシラン変性ポリオレフィンのシラン架橋反応によって、セパレータの製造又は使用プロセスに左右されることなく、架橋タイミングの制御を達成することができる。
 第一及び第二の実施形態に係るセパレータは、セパレータを収納する外装体に電解液を注ぐ時に架橋反応を促進することができるので、その製造プロセスにおいては生産不良を回避し、蓄電デバイスの製造プロセスにおいては蓄電デバイスの安全性と高出力化を達成することができる。セパレータの含有成分と架橋反応のタイミングの観点から、セパレータと電解液の混合又は接触時に、シラン変性ポリオレフィンのシラン架橋反応が開始されることが好ましい。
 第三の実施形態に係るセパレータは、シラン変性ポリオレフィンを5~40質量%、及び前記シラン変性ポリオレフィン以外のポリオレフィンを60~95質量%含み、実施例で説明される粘弾性測定(version 1)に関して、下記式(1):
  RΔE’=E’/E’   (1)
{式中、E’は、シラン変性ポリオレフィンが架橋反応する前の蓄電デバイス用セパレータの160℃~220℃で測定された貯蔵弾性率であり、かつE’は、シラン変性ポリオレフィンが架橋反応した後の蓄電デバイス用セパレータの160℃~220℃で測定された貯蔵弾性率である。}
により定義される貯蔵弾性率変化比(RΔE’)が、1.5倍~20倍であり、かつ/又は下記式(3):
  RΔE’’=E’’/E’’   (3)
{式中、E’’は、前記シラン変性ポリオレフィンが架橋反応する前の前記蓄電デバイス用セパレータの160℃~220℃で測定された損失弾性率であり、かつE’’は、前記シラン変性ポリオレフィンが架橋反応した後の前記蓄電デバイス用セパレータの160℃~220℃で測定された損失弾性率である。}
により定義される損失弾性率変化比(RΔE’’)が、1.5倍~20倍である。第三の実施形態では、貯蔵弾性率変化比(RΔE’)及び/又は損失弾性率変化比(RΔE’’)が1.5倍~20倍の範囲内にあることによって、シャットダウン機能と高温耐破膜性の両立を達成することができる。貯蔵弾性率変化比(RΔE’)及び/又は損失弾性率変化比(RΔE’’)は、好ましくは2倍~18倍である。なお、E’及びE’とE’’及びE’’は、それぞれ160~220℃を最も広い温度範囲としたときに、測定装置の設定温度範囲内で測定された貯蔵弾性率又は損失弾性率の平均値である。また、セパレータが積層膜の形態である場合には、積層膜からシラン変性ポリオレフィン含有多孔膜のみを取り外して貯蔵弾性率E’及びE’と損失弾性率E’’及びE’’を測定するものとする。
 第四の実施形態に係るセパレータは、シラン変性ポリオレフィンを5~40質量%、及び前記シラン変性ポリオレフィン以外のポリオレフィンを60~95質量%含み、実施例で説明される粘弾性測定(version 1)に関して、下記式(2):
  RE’mix=E’/E’   (2)
{式中、E’は、蓄電デバイス用セパレータの160℃~220℃で測定された貯蔵弾性率であり、かつE’は、シラン変性ポリオレフィンを含まない蓄電デバイス用セパレータの160℃~220℃で測定された貯蔵弾性率である。}
により定義される混合貯蔵弾性率比(RE’mix)が、1.5倍~20倍であり、かつ/又は下記式(4):
  RE’’mix=E’’/E’’   (4)
{式中、E’’は、前記蓄電デバイス用セパレータの160℃~220℃で測定された損失弾性率であり、かつE’’は、前記シラン変性ポリオレフィンを含まない蓄電デバイス用セパレータの160℃~220℃で測定された損失弾性率である。}
により定義される混合損失弾性率比(RE’’mix)が、1.5倍~20.0倍である。第四の実施形態では、混合貯蔵弾性率比(RE’mix)及び/又は混合損失弾性率比(RE’’mix)が1.5倍~20.0倍の範囲内にあることによって、シャットダウン機能と高温耐破膜性の両立を達成することができる。混合貯蔵弾性率比(RE’mix)及び/又は混合損失弾性率比(RE’’mix)は、好ましくは2倍~18倍である。なお、E’及びE’とE’’及びE’’は、それぞれ160~220℃を最も広い温度範囲としたときに、測定装置の設定温度範囲内で測定された貯蔵弾性率又は損失弾性率の平均値である。また、セパレータが積層膜の形態である場合には、積層膜からシラン変性ポリオレフィン含有多孔膜のみを取り外して貯蔵弾性率E’及びE’と損失弾性率E’’及びE’’を測定するものとする。
 第五の実施形態に係るセパレータは、シラン変性ポリオレフィンを5~40質量%、及び前記シラン変性ポリオレフィン以外のポリオレフィンを60~95質量%含み、実施例で説明される粘弾性測定(version 1)に関して、その貯蔵弾性率又は損失弾性率の温度変化において、ゴム状平坦領域と結晶融解流動領域の転移温度が、135℃~150℃である。第五の実施形態では、ゴム状平坦領域と結晶融解流動領域の転移温度が135℃~150℃の範囲内にあることによって、シャットダウン機能と高温耐破膜性の両立を達成することができる。ゴム状平坦領域と結晶融解流動領域の転移温度は、好ましくは137℃~147℃、より好ましくは140℃~145℃、さらに好ましくは140℃~143℃である。なお、セパレータが積層膜の形態である場合には、積層体からシラン変性ポリオレフィン含有多孔膜のみを取り外して、ゴム状平坦領域と結晶融解流動領域の転移温度を測定するものとする。
<第六及び第七の実施形態>
 第六の実施形態に係るセパレータは、1種又は2種以上の官能基を有するポリオレフィンを含み、蓄電デバイスへ収納された後には、(1)ポリオレフィンの官能基同士が縮合反応するか、(2)ポリオレフィンの官能基が蓄電デバイス内部の化学物質と反応するか、又は(3)ポリオレフィンの官能基が他の種類の官能基と反応して、架橋構造が形成される。セパレータを構成するポリオレフィンに含まれる官能基は、ポリオレフィンの結晶部に取り込まれず、非晶部において架橋されると考えられるので、第六の実施形態に係るセパレータは、蓄電デバイスへ収納された後に、周囲の環境又は蓄電デバイス内部の化学物質を利用して、架橋構造を形成し、それにより内部応力の増加又は作製された蓄電デバイスの変形を抑制することができる。
 一方、蓄電デバイスへ収納される前に架橋反応を行い、巻取り・スリットなどの工程を経た場合には、その工程の際に発生した張力等の応力の影響が残留する。このとき、当該応力が蓄電デバイス組み立て後に開放された場合には、電極捲回物等のデフォーム又は応力集中による破損の原因となることが考えられるため好ましくない。
 第六の実施形態では、(1)ポリオレフィンの官能基同士の縮合反応は、例えば、ポリオレフィンに含まれる2つ以上の官能基Aの共有結合を介した反応であることができる。(3)ポリオレフィンの官能基と他の種類の官能基との反応は、例えば、ポリオレフィンに含まれる官能基Aと官能基Bの共有結合を介した反応であることができる。
 また、(2)ポリオレフィンの官能基と蓄電デバイス内部の化学物質との反応において、例えば、ポリオレフィンに含まれる官能基Aは、蓄電デバイスに含まれる電解質、電解液、電極活物質、添加剤又はそれらの分解物のいずれかと共有結合又は配位結合を形成することができる。また、反応(2)によれば、セパレータ内部だけでなく、セパレータと電極の間又はセパレータと固体電解質界面(SEI)の間にも架橋構造を形成して、蓄電デバイスの複数の部材間の強度を向上させることができる。
 第七の実施形態に係るセパレータは、ポリオレフィンを含み、かつポリオレフィンの非晶部が架橋された非晶部架橋構造を有する。セパレータを構成するポリオレフィンに含まれる官能基は、ポリオレフィンの結晶部に取り込まれず、非晶部において架橋されると考えられるので、第七の実施形態に係るセパレータは、結晶部及びその周辺が架橋し易い従来の架橋型セパレータと比べて、シャットダウン機能と高温耐破膜性を両立しながら内部応力の増加又は作製された蓄電デバイスの変形を抑制することができ、ひいては蓄電デバイスの安全性を確保することができる。同様の観点から、第七の実施形態に係るセパレータに含まれるポリオレフィンの非晶部は、好ましくは、選択的に架橋されており、より好ましくは、結晶部よりも有意に架橋されている。
 上記第七の実施形態の架橋反応機構・架橋構造については明らかではないが本発明者らは以下のように考える。
(1)高密度ポリエチレン製微多孔膜における結晶構造
 高密度ポリエチレン等に代表されるポリオレフィン樹脂は図6に示すように、一般に結晶性高分子であり、結晶構造のラメラ(結晶部)、非晶質部およびそれらの間の中間層部に分かれた高次構造を有する。結晶部、および結晶部と非晶部の間の中間層部においては、高分子鎖の運動性は低く、切り分けができないが、固体粘弾性測定では0~120℃領域に緩和現象が観測できる。他方、非晶部は高分子鎖の運動性が非常に高く、固体粘弾性測定では-150~-100℃領域に観測される。このことが後述するラジカルの緩和又はラジカルの移動反応、架橋反応などに深く関係する。
 また、結晶を構成するポリオレフィン分子は単一ではなく、図7に例示されるように、複数の高分子鎖が小さなラメラを形成した後、ラメラが集合化し、結晶となる。このような現象は直接的に観測することが難しい。近年シミュレーションにより、学術的に研究が進められ、明らかになってきた。なお、ここでは、結晶とは、X線構造解析により計測される最小結晶の単位であり、結晶子サイズとして算出できる単位である。このように、結晶部(ラメラ内部)といえども、結晶中にも一部拘束されずに、運動性がやや高い部分が存在すると予測される。
(2)電子線による架橋反応機構
 次に、高分子への電子線架橋(以後、EB架橋に省略)反応機構は以下のとおりである。(i)数十kGyから数百kGyの電子線の照射、(ii)反応対象物(高分子)への電子線の透過と二次電子発生、(iii)二次電子による高分子鎖中の水素の引き抜き反応とラジカル発生、(iv)ラジカルによる隣接水素の引き抜きと活性点の移動、(v)ラジカル同士の再結合による架橋反応またはポリエン形成。ここで、結晶部に発生したラジカルについては、運動が乏しいため、長期間に亘り存在し、かつ不純物等が結晶内へ進入できないため、反応・消光の確率が低い。このようなラジカル種は、Stable Radicalと呼ばれており、数ヶ月という長い期間で残存し、ESR測定によって、寿命を明らかにした。結果として、結晶内における架橋反応は乏しいと考えられる。しかし、結晶内部に僅かに存在する、拘束されていない分子鎖又は周辺の結晶-非晶中間層部では、発生したラジカルは、やや長寿命を有する。このようなラジカル種は、Persistent Radicalと呼ばれており、運動性のある環境下では、高い確率で分子鎖間の架橋反応が進行すると考えられる。一方、非結晶部は運動性が非常に高いため、発生したラジカル種は寿命が短く、分子鎖間の架橋反応だけではなく、一本の分子鎖内のポリエン反応も高確率で進行すると考えられる。
 以上の様に、結晶レベルのミクロな視野においては、EB架橋による架橋反応は結晶内部又はその周辺が局在していると推測できる。
(3)化学反応による架橋反応機構
 本発明の第七の実施形態においては、ポリオレフィン樹脂中の官能基と蓄電デバイス中に含まれる化学物質、又は蓄電デバイス中に含まれる化学物質を触媒として用いることが好ましい。
 前述のように、ポリオレフィン樹脂には結晶部と非晶部が存在する。しかし、前述の官能基は、立体障害のため結晶内部には存在せず、非晶部に局在する。このことは、一般的に知られており、ポリエチレン鎖状に僅かに含まれるメチル基のようなユニットは結晶中に取り込まれることはあるが、エチル基より嵩高いグラフトは取り込まれることはない(非特許文献2)。このため、電子線架橋と異なる反応による架橋点は、非晶部のみに局在する。
(4)架橋構造の違いと効果との関係
 以上の様に、本発明の第七の実施形態に用いられる電池内部の化学反応による架橋反応では、反応生成物のモルフォロジーが相違する。本発明に至るまでの研究では、架橋構造の解明及び構造変化に伴うに微多孔膜の物性変化を明らかにするために、以下の実験により現象解明に至った。
 まず、引張破断試験による膜の機械的物性を調査した。また、引張破断試験を行うと同時に、放射光を用いたin-situ X線構造解析により、結晶構造変化について解析した。結果は図8に示すように、EB架橋または化学架橋(前)未実施の膜を基準にすると、EB架橋膜は、ひずみ量が大きくなるにつれ、結晶部の細分化が抑制されていることが分かった。これは結晶部内又は周辺が選択的に架橋されたためである。それに伴い、ヤング率と破断強度が著しく向上し、高い機械的強度を発現できた。一方、化学架橋膜は、架橋反応前後に、結晶の細分化に違いが見られないため、非結晶部が選択的に架橋されたことを示唆する。また、架橋反応前後に、機械的強度にも変化がなかった。
 次に、ヒューズ/メルトダウン特性試験により、両者の結晶融解時の挙動を調べた。結果、EB架橋処理した膜は、ヒューズ温度が著しく高くなり、メルトダウン温度は200以上まで上昇する。一方、化学架橋膜は、架橋処理前後において、ヒューズ温度は変化が見られず、メルトダウン温度は200℃以上まで上昇したことが確認された。このことから、結晶融解によって発生するヒューズ(シャットダウン)特性において、EB架橋膜は、結晶部周辺が架橋したため、融解温度の上昇、融解速度の低下が原因であったと考えられる。一方、化学架橋膜は、結晶部に架橋構造がないため、シャットダウン特性へ変化を及ぼさないと断定した。また、200℃前後の高温領域では、両者とも結晶融解後、架橋構造を有するため、樹脂物全体がゲル状態で安定化でき、良いメルトダウン特性を得られる。
 上記の知見を下表にまとめる。
Figure JPOXMLDOC01-appb-T000039
 第七の実施形態に係るセパレータは、非晶部架橋構造の形成、シャットダウン機能と高温耐破膜性の両立などの観点から、実施例で説明される粘弾性測定(version 2)に関して、下記式(1):
  RE’X=E’/E’z0   (1)
{式中、E’は、前記蓄電デバイス用セパレータの架橋反応が蓄電デバイス内で進行した後に、160℃~300℃の温度領域で測定された貯蔵弾性率であり、かつ
 E’z0は、前記蓄電デバイス用セパレータが前記蓄電デバイスに組み込まれる前に、160℃~300℃の温度領域で測定された貯蔵弾性率である。}
により定義される混合貯蔵弾性率比(RE’x)及び/又は下記式(3):
  RE’’X=E’’/E’’Z0   (3)
{式中、E’’は、前記蓄電デバイス用セパレータの架橋反応が蓄電デバイス内で進行した後に、160℃~300℃の温度領域で測定された損失弾性率であり、かつ
 E’’Z0は、前記蓄電デバイス用セパレータが前記蓄電デバイスに組み込まれる前に、160℃~300℃の温度領域で測定された損失弾性率である。}
により定義される混合損失弾性率比(RE’’x)が、好ましくは1.5倍~20倍、より好ましくは3倍~18倍である。なお、E’及びE’z0とE’’及びE’’z0とは、それぞれ160℃~300℃を最も広い温度領域としたときに、測定装置の設定温度範囲内で測定された貯蔵弾性率又は損失弾性率の平均値である。また、セパレータが積層膜の形態である場合には、積層膜からポリオレフィン製多孔膜のみを取り外して貯蔵弾性率E’及びE’z0と損失弾性率E’’及びE’’z0を測定するものとする。
 第六及び第七の実施形態に係るセパレータは、非晶部架橋構造の形成、シャットダウン機能と高温耐破膜性の両立などの観点から、実施例で説明される粘弾性測定(version 2)に関して、下記式(2):
  RE’mix=E’/E’   (2)
{式中、E’は、非晶部架橋構造を有する蓄電デバイス用セパレータの160℃~300℃で測定された貯蔵弾性率であり、かつ
  E’は、非晶部架橋構造を有しない蓄電デバイス用セパレータの160℃~300℃で測定された貯蔵弾性率である。}
により定義される混合貯蔵弾性率比(RE’mix)及び/又は下記式(4):
  RE’’mix=E’’/E’’   (4)
{式中、E’’は、前記蓄電デバイス用セパレータが非晶部架橋構造を有するときに160℃~300℃で測定された損失弾性率であり、かつ
  E’’は、非晶部架橋構造を有しない前記蓄電デバイス用セパレータの160℃~300℃で測定された損失弾性率である。}
により定義される混合損失弾性率比(RE’’mix)が、好ましくは1.5倍~20倍、より好ましくは3倍~19倍、さらに好ましくは5倍~18倍である。なお、E’及びE’とE’’及びE’’は、それぞれ160℃~300℃を最も広い温度領域としたときに、測定装置の設定温度範囲内で測定された貯蔵弾性率又は損失弾性率の平均値である。また、セパレータが積層膜の形態である場合には、積層膜からポリオレフィン製多孔膜のみを取り外して貯蔵弾性率E’及びE’と損失弾性率E’’及びE’’を測定するものとする。
<第八の実施形態>
〔粘弾性挙動(実施例で説明される粘弾性測定version 3)〕
 第八の実施形態に係るセパレータは、ポリオレフィン微多孔膜から成り、そして実施例で説明される粘弾性測定(version 3)に関して、-50℃~250℃の温度での固体粘弾性測定において、貯蔵弾性率(E’)の最小値(E’min)が1.0MPa~10MPaであり、E’の最大値(E’max)が100MPa~10,000MPaであり、かつ/又は損失弾性率(E’’)の最小値(E’’min)が0.1MPa~10MPaであり、E’’の最大値(E’’max)が10MPa~10,000MPaである。1.0MPa≦E’min≦10MPaと100MPa≦E’max≦10,000MPa、かつ/又は0.1MPa≦E’’min≦10MPaと10MPa≦E’’max≦10,000MPaの範囲内にあると、セパレータのシャットダウン機能と高温破膜耐性を両立させる傾向にあるだけでなく、セパレータ又は蓄電デバイスの製造プロセスにおいては生産不良を回避して、蓄電デバイスの安定性と安全性を達成することもできる。これらの観点から、1.1MPa≦E’min≦9.0MPa及び/又は150MPa≦E’max≦9,500MPaが好ましく、1.2MPa≦E’min≦8.0MPa及び/又は233MPa≦E’max≦9,000MPaがより好ましい。また、0.2MPa≦E’’min≦9.0MPa及び/又は56MPa≦E’’max≦9,000MPaが好ましく、0.4MPa≦E’’min≦8.0MPa及び/又は74MPa≦E’’max≦8,000MPaがより好ましい。
 固体粘弾性測定(version 3)において、ポリオレフィン微多孔膜から成るセパレータの膜軟化転移温度から膜破断温度までの温度では、平均E’(E’ave)は、好ましくは1.0MPa~12MPa、より好ましくは1.2MPa~10MPa、さらに好ましくは1.8MPa~8.2MPaであり、かつ/又は平均E’’(E’’ave)は、好ましくは0.5MPa~10MPa、より好ましくは0.8MPa~8.2MPa又は0・9MPa~3.2MPaである。膜軟化転移温度から膜破断温度までの温度でE’及び/又はE’’が上記数値範囲内にあると、セパレータを備える蓄電デバイスのサイクル安定性と安全性が向上する傾向にある。
 固体粘弾性測定(version 3)において、シャットダウン機能と高温破膜耐性を両立という観点から、ポリオレフィン微多孔膜から成るセパレータの膜軟化転移温度は、好ましくは140℃~150℃、より好ましくは141℃~149℃若しくは146℃~149℃であり、かつ/又は膜破断温度は、好ましくは180℃以上、より好ましくは190℃以上、200℃以上、210℃以上、220℃以上、230℃以上、若しくは240℃以上、さらに好ましくは250℃以上である。膜破断温度の上限は、限定されるものではなく、本技術分野では、250℃より高温でさえも同様に膜破断現象が起こり得ることが理解される。
 セパレータの固体粘弾性測定(version 3)においてE’及びE’’を測定するための条件が、実施例において説明される。セパレータが積層膜の形態である場合には、積層膜からポリオレフィン微多孔膜のみを取り外して、取り外されたポリオレフィン微多孔膜のE’及びE’’を測定するものとする。また、単一のポリオレフィン微多孔膜の膜厚が200μm未満である場合には、ポリオレフィン微多孔膜を複数重ねることによって、又は単一のポリオレフィン微多孔膜を折り畳むことによって、総厚が200μm~400μmの範囲内になるようにして動的粘弾性測定(version 3)を行うものとする。
 第一~第八の実施形態に係るセパレータは、比較的低温でのシャットダウン機能と比較的高温での破膜性を両立し、かつ蓄電デバイスのサイクル特性と安全性を向上させるという観点から、微多孔膜と;その微多孔膜の少なくとも一方の表面に配置された、無機粒子及び樹脂バインダを含む無機多孔質層とを含むことができる。セパレータは、微多孔膜を基材として使用して、その基材と無機塗工層を複合化した状態であることができる。
<第九の実施形態>
 第九の実施形態に係るセパレータは:
  シラン変性ポリオレフィンを含む微多孔膜と;
  微多孔膜の少なくとも一方の表面に配置された、無機粒子及び樹脂バインダを含む無機多孔質層と;
を含む。第九の実施形態に係るセパレータは、所望により、微多孔膜及び無機多孔質層以外の層を含んでよい。
 第九の実施形態では、シラン変性ポリオレフィンを含む微多孔膜と無機多孔質層との組み合わせが、150℃より低温でのシャットダウン機能と比較的高温での破膜性を両立し、かつ蓄電デバイスのサイクル特性と電池釘刺安全性を向上させる傾向にある。微多孔膜中のシラン変性ポリオレフィンは、シラン架橋性のため、シラン架橋が起こると微多孔膜中の樹脂の粘度を高めることがあるので、第九の実施形態に係るセパレータを含む蓄電デバイスの異常高温時に、複数の電極間に圧縮力が加えると、架橋した高粘度の樹脂が無機層へ流れ込み難く(すなわち、一体化し難く)、電極間のクリアランスを十分に確保でき、電池ショートを抑制できることが推測される。
 第九の実施形態に係るセパレータが電解液と接触すると、シラン変性ポリオレフィンのシラン架橋反応が開始されることが好ましい。より好ましくは、電解液との接触時にシラン架橋反応が、最初に開始されるのか、逐次的に起こるのか、又は連続的に起こるのかについて問わず、セパレータと電解液の接触時にシラン架橋反応が観測される。セパレータと電解液の接触時に起こるシラン変性ポリオレフィンのシラン架橋反応によって、セパレータの架橋タイミングの制御し、セパレータ製造プロセスにおいて生産不良を回避するだけでなく、蓄電デバイスの製造プロセスにおいて安全性と高出力化も達成することができる。また、セパレータと電解液を接触させることで、シラン架橋反応以外の架橋反応を起こすことができる。
 第九の実施形態に係るセパレータは、実施例で説明される粘弾性測定(version 1)に関して、セパレータから無機多孔質層を取り除いて測定されたときに、下記式(1A):
  R△E’=E’/E’   (1A)
{式中、E’は、シラン変性ポリオレフィンが架橋反応する前の蓄電デバイス用セパレータの160℃~220℃で測定された貯蔵弾性率であり、かつE’は、シラン変性ポリオレフィンが架橋反応した後の前記蓄電デバイス用セパレータの160℃~220℃で測定された貯蔵弾性率である。}
により定義される貯蔵弾性率変化比(R△E’)が1.5倍~20倍であることが好ましく、かつ/又は下記式(1B):
  R△E’’=E’’/E’’   (1B)
{式中、E’’は、シラン変性ポリオレフィンが架橋反応する前の蓄電デバイス用セパレータの160℃~220℃で測定された損失弾性率であり、かつE’’は、シラン変性ポリオレフィンが架橋反応した後の蓄電デバイス用セパレータの160℃~220℃で測定された損失弾性率である。}
により定義される損失弾性率変化比(R△E’’)が1.5倍~20倍であることが好ましい。貯蔵弾性率変化比(R△E’)及び/又は損失弾性率変化比(R△E’’)が1.5倍~20倍の範囲内にあることによって、シャットダウン機能と高温耐破膜性を両立させ易い。貯蔵弾性率変化比(RΔE’)及び/又は損失弾性率変化比(RΔE’’)は、より好ましくは2倍~18倍である。なお、E’及びE’とE’’及びE’’は、それぞれ160~220℃を最も広い温度範囲としたときに、測定装置の設定温度範囲内で測定された貯蔵弾性率又は損失弾性率の平均値である。また、セパレータが積層膜の形態又は微多孔膜と無機多孔質層の複合膜の形態である場合には、積層膜又は複合膜からシラン変性ポリオレフィン含有微多孔膜のみを取り外して、シラン変性ポリオレフィン含有微多孔膜の貯蔵弾性率E’及びE’と損失弾性率E’’及びE’’を測定するものとする。
 第九の実施形態に係るセパレータは、実施例で説明される粘弾性測定(version 1)に関して、セパレータから無機多孔質層を取り除いて測定されたときに、下記式(2A):
  RE’mix=E’/E’   (2A)
{式中、E’は、蓄電デバイス用セパレータの160℃~220℃で測定された貯蔵弾性率であり、かつE’は、シラン変性ポリオレフィンを含まない蓄電デバイス用セパレータの160℃~220℃で測定された貯蔵弾性率である。}
により定義される混合貯蔵弾性率比(RE’mix)が1.5倍~20倍であることが好ましく、かつ/又は下記式(2B):
  RE’’mix=E’’/E’’   (2B)
{式中、E’’は、蓄電デバイス用セパレータの160℃~220℃で測定された損失弾性率であり、かつE’’は、シラン変性ポリオレフィンを含まない蓄電デバイス用セパレータの160℃~220℃で測定された損失弾性率である。}
により定義される混合損失弾性率比(RE’’mix)が1.5倍~20倍であることが好ましい。混合貯蔵弾性率比(RE’mix)及び/又は混合損失弾性率比(RE’’mix)が1.5倍~20倍の範囲内にあることによって、シャットダウン機能と高温耐破膜性を両立させ易い。混合貯蔵弾性率比(RE’mix)及び/又は混合損失弾性率比(RE’’mix)は、より好ましくは2倍~18倍である。なお、E’及びE’とE’’及びE’’は、それぞれ160~220℃を最も広い温度範囲としたときに、測定装置の設定温度範囲内で測定された貯蔵弾性率又は損失弾性率の平均値である。また、セパレータが積層膜の形態又は微多孔膜と無機多孔質層の複合膜の形態である場合には、積層膜又は複合膜からシラン変性ポリオレフィン含有微多孔膜のみを取り外して、シラン変性ポリオレフィン含有微多孔膜の貯蔵弾性率E’及びE’と損失弾性率E’’及びE’’を測定するものとする。なお、シラン変性ポリオレフィンを含まない蓄電デバイス用セパレータについては、実施例の項目において詳述する。
 第九の実施形態に係るセパレータは、シャットダウン機能と高温耐破膜性の両立という観点から、その貯蔵弾性率の温度変化において、ゴム状平坦領域と結晶融解流動領域の転移温度が、135℃~150℃であることが好ましい。ゴム状平坦領域と結晶融解流動領域の転移温度は、好ましくは137℃~147℃、より好ましくは140℃~145℃、さらに好ましくは140℃~143℃である。なお、セパレータが積層膜の形態又は微多孔膜と無機多孔質層の複合膜の形態である場合には、積層体又は複合膜からシラン変性ポリオレフィン含有微多孔膜のみを取り外して、シラン変性ポリオレフィン含有微多孔膜の転移温度を測定するものとする。
<第十の実施形態>
 第十の実施形態に係る、蓄電デバイス用セパレータ(以下、単に「セパレータ」ともいう)は、シラン変性ポリオレフィンを含み、架橋構造を形成可能な第1多孔質層(A層)と、無機粒子を含む第2多孔質層(B層)とを備える。A層、及びB層は、それぞれ、単層又は複数層である。B層は、A層の一方面のみ又は両面に形成される。
 蓄電デバイスの代表例であるLIBでは、リチウム(Li)イオンが正負極間を往復する。そこで、A層、及びB層を含むセパレータを正負極間に配することで、Liイオンを正負極間で比較的高速に移動させることを可能としながら、正負極間の接触を回避できる。
(厚みの比)
 A層は、架橋性を有する微多孔膜として機能し、B層は、微多孔膜上に形成される無機多孔質層として機能する。
 ここで、B層の厚み(TB)に対するA層の厚み(TA)の比(TA/TB)は0.22以上14以下であることが好ましい。比(TA/TB)が0.22以上であれば、セパレータにおけるA層の存在割合を十分に確保でき、A層による機能を発揮させることができる。他方、比(TA/TB)が14以下であれば、セパレータにおけるB層の存在割合を十分に確保でき、B層による機能を発揮させることができる。
 A層、及びB層をそれぞれ特定の構造とし、更に、その比(TA/TB)を上記の範囲に設定することで、蓄電デバイスにおける、サイクル特性、及び安全性の向上を図ることができるセパレータを提供できる。このようなセパレータは、例えば、モバイルデバイス搭載用途又は車載用途のLIBの構成材料として好適に用いることができる。
 上記の効果の観点から、比(TA/TB)は、好ましくは0.8以上、より好ましくは1.0以上である。他方、比(TA/TB)は、好ましくは5.5以下、より好ましくは3.2以下である。
 比(TA/TB)は、例えば、2.5未満、2.0以下又は1.0以下に設定してよい。この場合、A層の厚み(TA)が、B層の厚み(TB)に対して2.5倍未満、また、B層の厚み(TB)よりも小さくなり、A層の薄膜化、ひいては、セパレータの薄膜化を図り易くなる。
 A層とB層との合計厚み(TA+TB)は3.0μm以上22μm以下であることが好ましい。合計厚み(TA+TB)が3.0μm以上であれば、セパレータの膜強度が向上する傾向にある。他方、合計厚み(TA+TB)が22μm以下であれば、セパレータのイオン透過性が向上する傾向にある。
 上記の効果の観点から、合計厚み(TA+TB)は、より好ましくは3.5μm以上、更に好ましくは4.0μm以上である。他方、合計厚み(TA+TB)は、より好ましくは20μm以下、更に好ましくは18μm以下である。
 合計厚み(TA+TB)は、例えば、11μm未満、10μm以下又は8μm以下に設定してよい。このように薄膜化されたセパレータであっても、本発明の範囲内であれば、蓄電デバイスにおける、サイクル特性、及び安全性の向上を図ることができる。
 比(TA/TB)、及び合計厚み(TA+TB)のそれぞれは、実施例欄に記載の手法により測定でき、また、厚み(TA)、及び/又は厚み(TB)を調整することで制御できる。A層とB層とについては後述する。
(シャットダウン温度、及びメルトダウン温度)
 A層について、0.1Mpa以上10.0Mpa以下の加圧下(好ましくは10Mpa加圧下)で電気抵抗に基づき測定される、シャットダウン温度(ヒューズ温度と称される場合がある)が130℃~160℃かつメルトダウン温度(破膜温度と称される場合がある)が200℃以上であることが好ましい。
 上記のシャットダウン温度が130℃以上であれば、蓄電デバイスの通常反応時においてシャットダウン機能が不要に発揮されることを回避でき、その蓄電デバイスの十分な出力特性を確保できる。他方、上記のシャットダウン温度が160℃以下であれば、蓄電デバイスの異常反応時においてシャットダウン機能を好適に発揮させることができる。
 加えて、上記のシャットダウン温度が200℃以上であれば、蓄電デバイスの異常反応時において超高温領域に達する前にその異常反応を停止でき、また、蓄電デバイスの異常反応時におけるセパレータの溶融破膜を防止できる。
 すなわち、シャットダウン温度とメルトダウン温度とが上記の条件を満たすことで、耐熱性、孔閉塞特性(シャットダウン機能)、溶融破膜特性(メルトダウン機能)に優れた蓄電デバイスを提供できるセパレータを実現でき、かつ、そのセパレータ自体においても、機械的特性、イオン透過性等を確保できる。よって、シャットダウン温度とメルトダウン温度とが上記の条件を満たすセパレータを備えることで、蓄電デバイスは、サイクル特性、及び安全性の向上を図ることができる。
 上記の効果の観点から、シャットダウン温度は、好ましくは130℃超、より好ましくは135℃以上、更に好ましくは136℃以上である。他方、シャットダウン温度は、好ましくは150℃以下、より好ましくは148℃以下、更に好ましくは146℃以下である。
 同様に、上記の効果の観点から、メルトダウン温度は、好ましくは175℃以上、より好ましくは178℃以上、更に好ましくは180℃以上である。他方、メルトダウン温度は、好ましくは230℃以下、より好ましくは225℃以下、更に好ましくは220℃以下である。
 なお、メルトダウン温度については、200℃を超えた範囲で正確に測定ができなくなる場合であっても、その温度が200℃以上である限り、上記の「メルトダウン温度が200℃以上」の要件を満たす。
 本明細書における、「シャットダウン温度」と「メルトダウン温度」は、上記の加圧下で、電気抵抗に基づき測定したときに得られる値を意味する。すなわち、正極、セパレータ、及び負極を含む積層体に対して上記の圧力を加えながら、その積層体の温度を上昇させ、これに伴い上昇する交流抵抗(電極間の交流抵抗)に基づいて、シャットダウン温度とメルトダウン温度が導出される。第十の実施形態では、交流抵抗が初めて所定の基準値(例えば、1000Ω)を超えたときの温度をシャットダウン温度とし、その後に更に加熱を続けて上記の基準値を超えていた交流抵抗が上記の基準値(例えば、1000Ω)以下に下がったときの温度をメルトダウン温度と設定している。
 積層体の加圧には、油圧ジャッキを用いることができるが、これに限られず、油圧ジャッキ以外の既知の加圧手段を用いてよい。また、積層体の加熱には、アルミヒーターを用いることができるが、これに限られず、アルミヒーター以外の既知の加熱手段を用いてよい。
 上記のシャットダウン温度とメルトダウン温度は、実施例欄に記載の手法により測定でき、また、A層における、構成又は製造方法を調整することで制御できる。
(150℃での熱収縮率)
 A層において、その架橋構造の形成後における150℃での熱収縮率(T2)は、架橋構造の形成前における150℃での熱収縮率(T1)の0.02倍以上0.91倍以下である。言い換えれば、架橋構造の形成前における150℃での熱収縮率(T1)に対する、架橋構造の形成後における150℃での熱収縮率(T2)の比(T2/T1)が、0.02以上0.91以下である。ここでの熱収縮率としては、A層の機械方向(MD)の熱収縮率と、A層の幅方向(TD)の熱収縮率とのうち、大きい方の値を用いる。
 A層が、シラン変性ポリオレフィンによる架橋構造を形成可能であるからこそ、その架橋前後での熱収縮率の変化に着目できるようになる。
 比(T2/T1)が0.02以上であれば、短絡の発生を有効に抑制でき、これにより、蓄電デバイス全体の温度上昇、及びそれに伴い生じ得る発煙、更には発火を確実に防止できる。他方、比(T2/T1)が0.91以下であれば、A層での架橋反応を十分に進行させることができたと判断できる。つまり、比(T2/T1)が上記の範囲内であれば、蓄電デバイスにおける、サイクル特性、及び安全性の向上を図ることができる、蓄電デバイス用セパレータを提供することができる。
 従って、上記の効果の観点から、比(T2/T1)は、好ましくは0.03以上、より好ましくは0.05以上、更に好ましくは0.07以上である。他方、比(T2/T1)は、好ましくは0.7以下、より好ましくは0.5以下、更に好ましくは0.4以下である。
 なお、架橋構造の形成前における150℃での熱収縮率(T1)は、70%以下が好ましく、60%以下がより好ましい。
 また、架橋構造の形成後における150℃での熱収縮率(T2)は、60%以下が好ましく、50%以下がより好ましい。ただ、架橋構造の形成により、架橋構造の形成前と比べて上記の熱収縮率が減少する傾向にあるため、熱収縮率(T2)は、一般に、熱収縮率(T1)よりも小さい値である。
 150℃での熱収縮率は、実施例欄に記載の手法により測定でき、また、A層における、構成又は製造方法を調整することで制御できる。
 上記で説明された複数の実施形態に係るセパレータは、互換可能であるか、又は互いに組み合わせることができる。上記で説明された第九又は第十の実施形態に係るセパレータは、所望により、微多孔膜及び無機多孔質層以外の層を含んでよい。第一~第十の実施形態に係るセパレータの構成要素について以下に説明する。
[微多孔膜]
 微多孔膜は、ポリオレフィン又は変性ポリオレフィンで形成されることができる。
 微多孔膜は、シラン変性ポリオレフィンを含み、所望により、その他のポリオレフィンも含んでよい。微多孔膜は、シラン変性ポリオレフィンのシラン架橋性のために、セパレータの製造プロセスにおいて架橋反応を行うことが可能となる。
 微多孔膜に含まれるポリオレフィンとしては、特に限定されないが、例えば、エチレン若しくはプロピレンのホモ重合体、又はエチレン、プロピレン、1-ブテン、4-メチル-1-ペンテン、1-ヘキセン、1-オクテン、及びノルボルネンから成る群より選ばれる少なくとも2つのモノマーから形成される共重合体などが挙げられる。これらの中でも、孔が閉塞せずに、より高温で熱固定(「HS」と略記することがある)が行えるという観点から、高密度ポリエチレン(ホモポリマー)、又は低密度ポリエチレンが好ましく、高密度ポリエチレン(ホモポリマー)がより好ましい。なお、ポリオレフィンは、1種単独で用いても、2種以上を併用してもよい。
 微多孔膜は、耐酸化還元劣化及び緻密で均一な多孔体構造の観点から、シラン変性ポリオレフィンと超高分子量ポリエチレン(UHMWPE)の両方を原料として使用することにより製造されることが好ましい。一般に、超高分子量ポリエチレン(UHMWPE)の重量平均分子量は、1,000,000以上であることが知られている。より好ましくは、微多孔膜又はセパレータの製造において、シラン変性ポリオレフィンとUHMWPEの重量比(シラン変性ポリオレフィン重量/UHMWPE重量)が、0.05/0.95~0.40/0.60である。
 微多孔膜中に含まれるポリオレフィンの含有量は、50重量%以上100重量%以下が好ましく、70重量%以上100重量%以下が好ましく、80重量%以上100重量%以下が好ましい。また、微多孔膜は、重量平均分子量が100,000以上1,000,000未満のポリオレフィンを含む(ポリオレフィン全体に対して、好ましくは40重量%以上、より好ましくは80重量%以上の割合で含む)ことが好ましい。ポリオレフィンの重量平均分子量は、より好ましくは120,000以上、950,000未満、さらに好ましくは130,000以上、930,000未満である。重量平均分子量が100,000以上、1,000,000未満のポリオレフィンを用いることにより、蓄電デバイスの加熱試験等において早期にポリマーの収縮の緩和が起き、特に加熱安全性試験において安全性を保ち易い傾向にある。微多孔膜の重量平均分子量を1,000,000未満に調整することで、メルトフラクチャーと呼ばれる押出時の成形不良(膜模様)を抑制することができる。他方、微多孔膜の重量平均分子量を100,000以上に調整することで、微多孔膜をコア(巻芯)に捲回した時の凹みの転写を抑制することができる。
 微多孔膜は、無機多孔質層の除去時かつ未架橋処理時での粘度平均分子量は、セパレータのロール搬送中において、摩擦せん断によるポリマー粉が発生しないという視点からは、好ましくは100,000以上1,200,000以下であり、より好ましくは150,000以上800,000以下である。
 微多孔膜の膜厚は、好ましくは1.0μm以上であり、より好ましくは2.0μm以上であり、さらに好ましくは3.0μm以上、4.0μm以上、又は4.5μm以上である。微多孔膜の膜厚が1.0μm以上であることにより、膜強度がより向上する傾向にある。また、微多孔膜の膜厚は、好ましくは500μm以下であり、より好ましくは100μm以下であり、さらに好ましくは80μm以下、22μm以下又は19μm以下である。微多孔膜の膜厚が500μm以下であることにより、イオン透過性がより向上する傾向にある。微多孔膜の膜厚は実施例に記載の方法により測定することができる。
 微多孔膜が近年の比較的高容量のリチウムイオン二次電池に使用されるセパレータである場合、微多孔膜の膜厚は、好ましくは25μm以下であり、より好ましくは22μm以下又は20μm以下であり、さらに好ましくは18μm以下であり、特に好ましくは16μm以下である。この場合、微多孔膜の膜厚が25μm以下であることにより、透過性がより向上する傾向にある。この場合、微多孔膜の膜厚の下限値は、1.0μm以上、3.0μm以上、4.0μm以上、6.0μm以上、又は7.5μm以上でよい。
 蓄電デバイス用セパレータの高温耐破膜性及び蓄電デバイスの安全性の観点から、セパレータとしての微多孔膜は、その熱機械分析(TMA)測定時に、融解破膜温度が、好ましくは180℃~220℃、より好ましくは180℃~200℃であることが好ましい。一般的に、蓄電デバイスが、予期しない暴走反応によって発熱した場合では、ポリオフィン製蓄電デバイス用セパレータは低温(例えば150℃以下)でヒューズし、早期にLiイオンの移動、またそれに伴う蓄電デバイス内又は蓄電デバイス外の放電が停止される。その後、蓄電デバイスの外気又は冷媒による放冷で、蓄電デバイス全体が冷却され、電解液の引火又は電解質の分解発熱反応が阻止でき、安全性が確保されることが期待されている。しかし、前記蓄電デバイス内で発生した暴走反応は、セパレータのヒューズにより停止することなく、発熱が続き、セパレータが融解破膜され、デバイスの安全性を確保できなくなる。そのため、蓄電デバイス全体が十分に冷却されるまで、セパレータが融解破膜しないことが重要である。また、万一220℃以上の超高温領域まで昇温したときに、電解液又は電解質の分解反応は激しく進行し、分解物による電極への腐食反応が起こり、さらに発熱し、爆発に至る。その場合では、セパレータが融解破膜し、両電極へ染込むことで活物質をコーティングし、腐食反応を阻止することができる。
[第1多孔質層(A層)]
 A層は、シラン変性ポリオレフィンを含み、架橋構造を形成可能である。A層は、酸化還元に対する耐劣化性を確保し、また、緻密で均一な多孔体構造を確保する観点から、該シラン変性ポリオレフィンとは異なるポリオレフィンとして、更にポリエチレンを含むことが好ましい。なお、A層は、シラン変性ポリオレフィン、及びポリエチレン以外の成分を含んでよい。
 A層においてシラン変性ポリオレフィンを構成するポリオレフィンとしては、エチレン又はプロピレンのホモポリマー;エチレン、プロピレン、1-ブテン、4-メチル-1-ペンテン、1-ヘキセン、1-オクテン、及びノルボルネンから成る群から選択される少なくとも2種のモノマーから形成されるコポリマー等が挙げられる。中でも、ポリオレフィンとしては、孔の閉塞を回避しながらより高温で熱固定を可能にする観点から、エチレンのホモポリマー(ポリエチレン)が好ましく、高密度ポリエチレン、及び/又は低密度ポリエチレンがより好ましく、高密度ポリエチレンが更に好ましい。ポリオレフィンは、1種単独を用いて又は2種以上を併用してよい。
 A層は、本発明による効果が過度に阻害されない範囲内で、シラン変性ポリオレフィン、及びポリエチレンのいずれにも該当しないポリマー(他のポリマー)を含んでよい。
 A層の全体の重量平均分子量は、好ましくは100,000以上1,200,000以下、より好ましくは150,000以上800,000以下である。
(A層の厚み)
 A層の厚み(TA)は、好ましくは1μm以上、より好ましくは2μm以上、更に好ましくは3μm以上である。厚み(TA)が1μm以上であれば、膜強度がより向上する傾向にある。他方、厚み(TA)は、好ましくは500μm以下、より好ましくは100μm以下、更に好ましくは80μm以下である。厚み(TA)が500μm以下であれば、イオン透過性がより向上する傾向にある。なお、厚み(TA)は、例えば、1.00μm以上、2.00μm以上又は3.00μm以上に設定してよい。
 セパレータがLIB用セパレータである場合、厚み(TA)は、好ましくは22μm未満、より好ましくは21μm以下、更に好ましくは20.5μm以下である。セパレータがLIB用セパレータである場合、厚み(TA)の上限を、13μm未満又は8.5μm以下に設定してよい。厚み(TA)が25μm以下であれば、透過性がより向上する傾向にある。なお、厚み(TA)は、例えば、22.00μm未満、21.00μm以下、20.00μm以下、13.00μm未満又は8.50以下に設定してよい。厚み(TA)の下限は、上記と同様でよい。
 厚み(TA)は、実施例欄に記載の方法により測定でき、また、A層の延伸倍率の変更等により制御できる。
 A層が単層の場合、そのA層の厚みが、厚み(TA)として扱われる。A層が複数層の場合、その複数層のA層の合計厚みが、厚み(TA)として扱われる。
(A層の破膜温度)
 熱機械分析(TMA)により測定される、A層の破膜温度は、180℃以上220℃以下であることが好ましい。
 予期しない暴走反応によって蓄電デバイスが異常に発熱しても、セパレータのシャットダウン機能により、Liイオンの移動、また、それに伴う蓄電デバイス内又は蓄電デバイス外の放電が停止されることが期待されている。その後、冷媒により蓄電デバイス全体が冷却され、安全性が確保されることが期待されている。他方、破膜温度が上記の範囲内にあることで、蓄電デバイス全体が十分に冷却されない場合でも、また、万が一、超高温領域に達する場合でも、セパレータが融解破膜して両電極へ染込むことで、活物質をコーティングでき、これにより、更なる発熱を抑制し易くなる。
 破膜温度は、実施例欄に記載の方法により測定でき、また、製造プロセスにおいて延伸温度、及び/又は延伸倍率の変更等により制御可能である。
(微多孔膜又はA層の気孔率)
 微多孔膜又はA層の気孔率としては、好ましくは20%以上、より好ましくは25%以上、更に好ましくは28%以上、30%以上、32%以上又は35%以上である。気孔率が20%以上であれば、Liイオンの急速な移動に対する追従性がより向上する傾向にある。他方、気孔率は、好ましくは90%以下、より好ましくは80%以下、更に好ましくは60%以下である。気孔率が90%以下であれば、膜強度がより向上し、自己放電がより抑制される傾向にある。
 気孔率は、実施例欄に記載の方法により測定でき、また、製造プロセスにおいて延伸温度、及び/又は延伸倍率の変更等により制御可能である。
(微多孔膜又はA層の透気度)
 微多孔膜又はA層の透気度としては、好ましくは1秒/100cm3以上、より好ましくは50秒/100cm3以上、更に好ましくは55秒/100cm3以上、よりさらに好ましくは70秒以上、90秒以上、又は110秒以上である。透気度が1秒/100cm3以上であれば、膜厚と気孔率と平均孔径のバランスがより向上する傾向にある。他方、透気度は、好ましくは400秒/100cm3以下、より好ましくは300秒以下/100cm3、更に好ましくは270秒/100cm3以下である。透気度が400秒/100cm3以下であれば、イオン透過性がより向上する傾向にある。
 透気度は、実施例欄に記載の方法により測定でき、また、製造プロセスにおいて延伸温度、及び/又は延伸倍率の変更等により制御可能である。
(微多孔膜又はA層の突刺強度)
 微多孔膜又はA層の突刺強度としては、好ましくは200gf/20μm以上、より好ましくは300gf/20μm以上である。突刺強度が200gf/20μm以上であれば、セパレータと電極との積層体を捲回するとき、活物質等が仮に脱落したとしても、その脱落した活物質等による破膜を抑制し易くなる。また、充放電に伴う電極の膨張収縮によって短絡する可能性を低減し易くなる。他方、突刺強度は、好ましくは4000gf/20μm以下、より好ましくは3800gf/20μm以下である。突刺強度が3500gf/20μm以下であれば、加熱時に熱収縮を低減し易くなる。
 突刺強度は、実施例欄に記載の方法により測定でき、また、製造プロセスにおいて延伸温度、及び/又は延伸倍率の変更等により制御可能である。
[微多孔膜又はA層の引張強度]
 微多孔膜又はA層の引張強度は、MD(膜又はA層の長手方向、機械方向又は流れ方向)及びTD(MDと直交する方向、膜又はA層の幅方向)の両方向において、それぞれ、好ましくは1000kgf/cm以上であり、より好ましくは1050kgf/cm以上であり、さらに好ましくは1100kgf/cm以上である。引張強度が1000kgf/cm以上であることにより、スリット又は蓄電デバイス捲回時での破断がより抑制されるか、蓄電デバイス内の異物等による短絡がより抑制される傾向にある。他方、引張強度は、好ましくは5000kgf/cm以下であり、より好ましくは4500kgf/cm以下であり、さらに好ましくは4000kgf/cm以下である。引張強度が5000kgf/cm以下であることにより、加熱試験時に微多孔膜又はA層が早期に緩和して収縮力が弱まり、結果として安全性が高まる傾向にある。
[微多孔膜又はA層の引張弾性率]
 微多孔膜又はA層の引張弾性率は、MD及びTDの両方向において、それぞれ、好ましくは120N/cm以下であり、より好ましくは100N/cm以下であり、さらに好ましくは90N/cm以下である。120N/cm以下の引張弾性率は、リチウムイオン二次電池用セパレータとしては極度に配向していないことを示しており、加熱試験等において、例えばポリエチレンなどの閉塞剤が溶融し収縮する際に、早期にポリエチレンなどが応力緩和を起こし、これによって電池内でのセパレータの収縮が抑えられ、電極同士の短絡を防ぎ易くなる傾向にある(すなわち、セパレータの、加熱時の安全性を向上し得る)。このような低引張弾性率は、微多孔膜又はA層を形成するポリオレフィン中に重量平均分子量が500,000以下のポリエチレンを含むことによって達成し易い。他方、引張弾性率の下限値は、特に制限はないが、好ましくは10N/cm以上であり、より好ましくは30N/cm以上であり、さらに好ましくは50N/cm以上である。引張弾性率は、製造プロセスにおいて延伸の程度を調整したり、必要に応じ延伸後に緩和を行ったりすること等により適宜調整することができる。
<ポリオレフィン>
 ポリオレフィンとしては、特に限定されないが、例えば、エチレン若しくはプロピレンのホモ重合体、又はエチレン、プロピレン、1-ブテン、4-メチル-1-ペンテン、1-ヘキセン、1-オクテン、及びノルボルネンから成る群より選ばれる少なくとも2つのモノマーから形成される共重合体などが挙げられる。この中でも、孔が閉塞せずに、より高温で熱固定(「HS」と略記することがある)が行えるという観点から、高密度ポリエチレン、又は低密度ポリエチレンが好ましく、高密度ポリエチレンがより好ましい。なお、ポリオレフィンは、1種単独で用いても、2種以上を併用してもよい。
 また、セパレータは、重量平均分子量(Mw)が2,000,000未満のポリオレフィンを含むことが好ましく、Mwが2,000,000未満のポリオレフィンを、ポリオレフィン全体に対して、より好ましくは40質量%以上、さらに好ましくは80質量%以上の割合で含む。Mwが2,000,000未満のポリオレフィンを用いることにより、蓄電デバイスの加熱試験等において早期にポリマーの収縮の緩和が起き、特に加熱安全性試験において安全性を保ち易い傾向にある。なお、Mwが2,000,000未満のポリオレフィンを用いる場合を、1,000,000以上のポリオレフィンを用いる場合と比較すると、得られる微多孔膜の厚み方向の弾性率が小さくなる傾向にあるため、比較的にコアの凹凸が転写され易い微多孔膜が得られる。セパレータを構成するポリオレフィン製微多孔膜全体の重量平均分子量は、好ましくは100,000以上2,000,000以下であり、より好ましくは150,000以上1,500,000以下である。
(1種又は2種以上の官能基を有するポリオレフィン)
 セパレータは、架橋構造の形成、耐酸化還元劣化及び緻密で均一な多孔体構造の観点から、1種又は2種以上の官能基を有するポリオレフィンとして、官能基変性ポリオレフィン、又は官能基を有する単量体を共重合されたポリオレフィンを含むことが好ましい。なお、本明細書では、官能基変性ポリオレフィンとは、ポリオレフィンの製造後に官能基を結合させた物をいう。官能基は、ポリオレフィン骨格に結合するか、又はコモノマーに導入可能なものであり、好ましくは、ポリオレフィン非晶部の選択的な架橋に関与するものであり、例えば、カルボキシル基、ヒドロキシ基、カルボニル基、重合性不飽和炭化水素基、イソシアネート基、エポキシ基、シラノール基、ヒドラジド基、カルボジイミド基、オキサゾリン基、アセトアセチル基、アジリジン基、エステル基、活性エステル基、カーボネート基、アジド基、鎖状又は環状ヘテロ原子含有炭化水素基、アミノ基、スルフヒドリル基、金属キレート基、及びハロゲン含有基から成る群から選択される少なくとも1つであることができる。
 セパレータの強度、イオン透過性、耐酸化還元劣化及び緻密で均一な多孔体構造などの観点から、セパレータは、1種又は2種以上の官能基を有するポリオレフィンとシラン未変性ポリエチレンの両方を含むことが好ましい。1種又は2種以上の官能基を有するポリオレフィンとシラン未変性ポリエチレンを併用する場合、好ましくは、セパレータにおいて、1種又は2種以上の官能基を有するポリオレフィンとシラン未変性ポリエチレンの質量比(1種又は2種以上の官能基を有するポリオレフィンの質量/シラン未変性ポリエチレンの質量)が、0.05/0.95~0.80/0.20である。
(架橋構造)
 セパレータの架橋構造は、セパレータのシャットダウン機能と高温耐破性の両立及び耐蓄電デバイスの安全性に寄与し、好ましくはセパレータに含まれるポリオレフィンの非晶部に形成される。架橋構造は、例えば、共有結合、水素結合又は配位結合のいずれかを介した反応により形成されることができる。中でも、共有結合を介した反応は、下記反応(I)~(IV):
  (I)複数の同一官能基の縮合反応
  (II)複数の異種官能基間の反応
  (III)官能基と電解液の連鎖縮合反応
  (IV)官能基と添加剤の連鎖縮合反応
から成る群から選択される少なくとも1つであることが好ましい。
 また、配位結合を介した反応は、下記反応(V):
  (V)複数の同一官能基が、溶出金属イオンとの配位結合を介して架橋する反応
であることが好ましい。
反応(I)
 セパレータの第一官能基をAとして、反応(I)の模式的スキーム及び具体例を以下に示す。
Figure JPOXMLDOC01-appb-C000040
{式中、Rは、置換基を有していてもよい炭素数1~20のアルキル基又はヘテロアルキル基である。}
 反応(I)のための官能基Aがシラノール基である場合には、セパレータに含まれるポリオレフィンは、シラングラフト変性されていることが好ましい。シラングラフト変性ポリオレフィンは、主鎖がポリオレフィンであり、その主鎖にアルコキシシリルをグラフトとして有する構造で構成されている。なお、前記アルコキシシリルに置換したアルコキシドは、例えば、メトキシド、エトキシド、ブトキシドなどが挙げられる。例えば、上記式中、Rは、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、sec-ブチル、磯ブチル、tert-ブチルなどであることができる。また、主鎖とグラフト間は共有結合で繋いでおり、アルキル、エーテル、グリコール又はエステルなどの構造が挙げられる。本実施形態に係るセパレータの製造プロセスを考慮すると、シラングラフト変性ポリオレフィンは、架橋処理工程の前の段階では、炭素に対するケイ素の割合(Si/C)が、0.2~1.8%であることが好ましく、0.5~1.7%であることがより好ましい。
 好ましいシラングラフト変性ポリオレフィンは、密度が0.90~0.96g/cmであり、かつ190℃でのメルトフローレート(MFR)が、0.2~5g/分である。シラングラフト変性ポリオレフィンは、セパレータの製造プロセスにおいて樹脂凝集物の発生を抑制し、かつ電解液と接触するときまでシラン架橋性を維持するという観点から、脱水縮合触媒を含有するマスターバッチ樹脂ではないことが好ましい。脱水縮合触媒は、アルコキシシリル基含有樹脂のシロキサン結合形成反応の触媒としても機能することが知られている。本明細書では、押出機を用いた樹脂混練の連続プロセス中に脱水縮合触媒(例えば、有機金属含有触媒)をアルコキシシリル基含有樹脂又は他の混練樹脂へ事前に添加し、コンパウンドした物をマスターバッチ樹脂と呼ぶ。
反応(II)
 セパレータの第一官能基をA、かつ第二官能基をBとして、反応(II)の模式的スキーム及び具体例を以下に示す。
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
 反応(I)と反応(II)は、触媒作用を受けることができ、例えば、セパレータが組み込まれる蓄電デバイス内部の化学物質により触媒的に促進されることができる。化学物質は、例えば、蓄電デバイスに含まれる電解質、電解液、電極活物質、添加剤又はそれらの分解物のいずれかであることができる。
反応(III)
 セパレータの第一官能基をA、かつ電解液をSolとして、反応(III)の模式的スキーム及び具体例を以下に示す。
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
反応(IV)
 セパレータの第一官能基をA、所望により組み込まれる第二官能基をB、かつ添加剤をAddとして、反応(IV)の模式的スキームを以下に示す。
Figure JPOXMLDOC01-appb-C000049
 反応(IV)は、上記スキームにおいて点線で表される共有結合の形成の観点から、セパレータを構成する化合物Rxと添加剤(Add)を構成する化合物Ryとの求核置換反応、求核付加反応又は開環反応であることが好ましい。化合物Rxは、セパレータに含まれるポリオレフィン、例えばポリエチレン又はポリプロピレンなどでよく、好ましくは、ポリオレフィンは、官能基xにより、例えば、-OH、-NH、-NH-、-COOH及び-SHから成る群から選択される少なくとも1つにより変性される。
 複数の化合物Rxは、添加剤としての化合物Ryを介して架橋されるので、化合物Ryは、2つ以上の連結反応ユニットyを有することが好ましい。複数の連結反応ユニットyは、化合物Rxの官能基xと求核置換反応、求核付加反応又は開環反応を起こすことができる限り、任意の構造又は基でよく、置換又は非置換でよく、ヘテロ原子又は無機物を含んでよく、互いに同一でも異なってもよい。また、化合物Ryは鎖状構造を有するときには、複数の連結反応ユニットyは、それぞれ独立に、末端基であるか、主鎖に組み込まれるか、又は側鎖若しくはペンダントであることができる。
 反応(IV)が求核置換反応である場合、あくまでも一例として、化合物Rxの官能基xを求核性基と見なし、かつ化合物Ryの連結反応ユニットyを脱離基と見なして以下に説明するが、本実施形態では、官能基xと連結反応ユニットyは、求核性に応じて、いずれも脱離基になることができるものとする。
 求核試剤の観点から、化合物Rxの官能基xは、酸素系求核基、窒素系求核基、硫黄系求核基であることが好ましい。酸素系求核基としては、水酸基、アルコキシ基、エーテル基、カルボキシル基などが挙げられ、中でも-OH及び-COOHが好ましい。窒素系求核基としては、アンモニウム基、第一アミノ基、第二アミノ基などが挙げられ、中でも-NH及び-NH-が好ましい。硫黄系求核基としては、例えば、-SH、チオエーテル基などが挙げられ、-SHが好ましい。
 反応(IV)が求核置換反応である場合には、脱離基の観点から、化合物Ryの連結反応ユニットyとしては、CHSO-、CHCHSO-などのアルキルスルホニル基;アリールスルホニル基(-ArSO-);CFSO-、CClSO-などのハロアルキルスルホニル基;CHSO -、CHCHSO -などのアルキルスルホネート基;アリールスルホネート基(ArSO -);CFSO -、CClSO -などのハロアルキルスルホネート基;及び複素環式基が好ましく、これらを単独で又は複数種の組み合わせとして使用することができる。複素環に含まれるヘテロ原子としては、窒素原子、酸素原子、硫黄原子などが挙げられ、中でも、脱離性の観点から、窒素原子が好ましい。複素環に窒素原子が含まれている脱離基としては、下記式(y-1)~(y-6):
Figure JPOXMLDOC01-appb-C000050
{式中、Xは、水素原子又は1価の置換基である。}
Figure JPOXMLDOC01-appb-C000051
{式中、Xは、水素原子又は1価の置換基である。}
Figure JPOXMLDOC01-appb-C000052
{式中、Xは、水素原子又は1価の置換基である。}
Figure JPOXMLDOC01-appb-C000053
{式中、Xは、水素原子又は1価の置換基である。}
Figure JPOXMLDOC01-appb-C000054
{式中、Xは、水素原子又は1価の置換基である。}
Figure JPOXMLDOC01-appb-C000055
{式中、Xは、水素原子又は1価の置換基である。}
で表される1価の基が好ましい。
 式(y-1)~(y-6)において、Xは、水素原子又は1価の置換基である。1価の置換基としては、例えば、アルキル基、ハロアルキル基、アルコキシル基、ハロゲン原子などが挙げられる。
 反応(IV)が求核置換反応であり、かつ化合物Ryが鎖状構造を有する場合には、化合物Ryは、連結反応ユニットyに加えて、鎖状ユニットyとして、下記式(y-1)~(y-6):
Figure JPOXMLDOC01-appb-C000056
{式中、mは、0~20の整数であり、かつnは、1~20の整数である。}
Figure JPOXMLDOC01-appb-C000057
{式中、nは、1~20の整数である。}
Figure JPOXMLDOC01-appb-C000058
{式中、nは、1~20の整数である。}
Figure JPOXMLDOC01-appb-C000059
{式中、nは、1~20の整数である。}
Figure JPOXMLDOC01-appb-C000060
{式中、Xは、炭素数1~20のアルキレン基、又はアリーレン基であり、かつnは、1~20の整数である。}
Figure JPOXMLDOC01-appb-C000061
{式中、Xは、炭素数1~20のアルキレン基、又はアリーレン基であり、かつnは、1~20の整数である。}
で表される2価の基から成る群から選択される少なくとも1つを有することが好ましい。また、化合物Ryに複数の鎖状ユニットyが含まれる場合には、それらは、互いに同一でも異なっていてもよく、それらの配列はブロックでもランダムでもよい。
 式(y-1)において、mは、0~20の整数であり、架橋網目の観点から、好ましくは1~18である。式(y-1)~(y-6)において、nは、1~20の整数であり、架橋網目の観点から、好ましくは2~19又は3~16である。式(y-5)~(y-6)において、Xは、炭素数1~20のアルキレン基、又はアリーレン基であり、鎖状構造の安定性の観点から、好ましくは、メチレン基、エチレン基、n-プロピレン基、n-ブチレン基、n-ヘキシレン基、n-ヘプチレン基、n-オクチレン基、n-ドデシレン基、о-フェニレン基、m-フェニレン基、又はp-フェニレン基である。
 反応(IV)が求核置換反応である場合について、化合物Rxの官能基xと、化合物Ryの連結反応ユニットy及び鎖状ユニットyとの好ましい組み合わせを下記表2~4に示す。
Figure JPOXMLDOC01-appb-T000062
Figure JPOXMLDOC01-appb-T000063
Figure JPOXMLDOC01-appb-T000064
 求核置換反応の具体例1として、ポリオレフィンの官能基xが-NHであり、添加剤(化合物Ry)の連結反応ユニットyが、スクシンイミドに由来する骨格であり、かつ鎖状ユニットyが-(O-C-である場合の反応スキームを以下に示す。
Figure JPOXMLDOC01-appb-C000065
 求核置換反応の具体例2として、ポリオレフィンの官能基xが-SH及び-NHであり、添加剤(化合物Ry)の連結反応ユニットyが、窒素含有環状骨格であり、かつ鎖状ユニットyがо-フェニレンである場合の反応スキームを以下に示す。
Figure JPOXMLDOC01-appb-C000066
 反応(IV)が求核付加反応である場合、化合物Rxの官能基xと化合物Ryの連結反応ユニットyとが付加反応を起こすことができる。求核付加反応において、化合物Rxの官能基xは、酸素系求核基、窒素系求核基、硫黄系求核基であることが好ましい。酸素系求核基としては、水酸基、アルコキシ基、エーテル基、カルボキシル基などが挙げられ、中でも-OH及び-COOHが好ましい。窒素系求核基としては、アンモニウム基、第一アミノ基、第二アミノ基などが挙げられ、中でも-NH及び-NH-が好ましい。硫黄系求核基としては、例えば、-SH、チオエーテル基などが挙げられ、-SHが好ましい。
 求核付加反応において、化合物Ryの連結反応ユニットyは、付加反応性又は原料の入手容易性の観点から、下記式(Ay-1)~(Ay-6):
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
{式中、Rは、水素原子又は1価の有機基である。}
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
で表される基から成る群から選択される少なくとも1つであることが好ましい。
 式(Ay-4)において、Rは、水素原子又は1価の有機基であり、好ましくは、水素原子、C1~20アルキル基、脂環式基、又は芳香族基であり、より好ましくは、水素原子、メチル基、エチル基、シクロヘキシル基又はフェニル基である。
 反応(IV)が求核付加反応である場合について、化合物Rxの官能基xと化合物Ryの連結反応ユニットyの好ましい組み合わせを下記表5及び6に示す。
Figure JPOXMLDOC01-appb-T000073
Figure JPOXMLDOC01-appb-T000074
 求核付加反応の具体例として、セパレータの官能基xが-OHであり、添加剤(化合物Ry)の連結反応ユニットyが-NCOである場合の反応スキームを以下に示す。
Figure JPOXMLDOC01-appb-C000075
 反応(IV)が開環反応である場合、化合物Rxの官能基xと化合物Ryの連結反応ユニットyとが開環反応を起こすことができ、原料の入手容易性の観点から、連結反応ユニットy側の環状構造が開くことが好ましい。同様の観点から、連結反応ユニットyは、エポキシ基であることがより好ましく、化合物Ryが、少なくとも2つのエポキシ基を有することがさらに好ましく、ジエポキシ化合物であることがよりさらに好ましい。
 反応(IV)が開環反応である場合、化合物Rxの官能基xは、-OH、-NH、-NH-、-COOH及び-SHから成る群から選択される少なくとも1つであることが好ましく、かつ/又は化合物Ryの連結反応ユニットyが、下記式(ROy-1):
Figure JPOXMLDOC01-appb-C000076
{式中、複数のXは、それぞれ独立に、水素原子又は1価の置換基である。}
で表される少なくとも2つの基であることが好ましい。式(ROy-1)において、複数のXは、それぞれ独立に、水素原子又は1価の置換基であり、好ましくは、水素原子、C1~20アルキル基、脂環式基、又は芳香族基であり、より好ましくは、水素原子、メチル基、エチル基、シクロヘキシル基又はフェニル基である。エポキシ開環反応について、化合物Rxの官能基xと化合物Ryの連結反応ユニットyの好ましい組み合わせを下記表7に示す。
Figure JPOXMLDOC01-appb-T000077
反応(V)
 セパレータの第一官能基をA、かつ金属イオンをMn+として、反応(V)の模式的スキーム、及び官能基Aの例を以下に示す。
Figure JPOXMLDOC01-appb-C000078
 上記スキーム中、金属イオンMn+は、蓄電デバイスから溶出したもの(以下、溶出金属イオンともいう。)であることが好ましく、例えば、Zn2+、Mn2+、Co3+、Ni2+及びLiから成る群から選択される少なくとも1つであることができる。官能基Aが-COOの場合の配位結合を以下に例示する。
Figure JPOXMLDOC01-appb-C000079
 官能基Aが-COOHであり、かつ溶出金属イオンがZn2+である場合の反応(V)の具体的なスキームを以下に示す。
Figure JPOXMLDOC01-appb-C000080
 上記スキームにおいて、フッ酸(HF)は、例えば、蓄電デバイスの充放電サイクルに応じて、蓄電デバイスに含まれる電解質、電解液、電極活物質、添加剤又はそれらの分解物若しくは吸水物のいずれかに由来することができる。
<シラン変性ポリオレフィン>
 シラン変性ポリオレフィンは、主鎖がポリオレフィンであり、その主鎖にアルコキシシリル基をグラフトする構造で構成されている。シラン変性ポリオレフィンは、シラン非変性ポリオレフィンの主鎖に、アルコキシシリル基をグラフトすることで得ることができる。
 アルコキシシリル基は、水による加水分解反応を経てシラノール基へ変換され、架橋反応を起こし、シロキサン結合を形成すると推定されている(下記式参照;T1構造、T2構造、及びT3構造の割合は任意である)。アルコキシシリル基に置換したアルコキシドとしては、メトキシド、エトキシド、ブトキシド等が挙げられる。下記式中、Rとしては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、sec-ブチル、イソブチル、tert-ブチル等が挙げられる。
Figure JPOXMLDOC01-appb-C000081
 主鎖とグラフトとの間は、共有結合で繋がれている。かかる共有結合を形成する構造としては、アルキル、エーテル、グリコール、エステル等が挙げられる。シラン変性ポリポリオレフィンは、架橋反応を行う前の段階では、シラノールユニットが主鎖エチレンユニットに対して2%以下の変性量である。
 好ましいシラングラフト変性ポリオレフィンは、密度が0.90~0.96g/cm3、かつ190℃でのメルトフローレート(MFR)が0.2~5g/分である。
 シラン変性ポリオレフィンの量は、本発明による効果が良好に奏される観点から、微多孔膜又はA層の全量を基準として、好ましくは0.5質量%以上又は3質量%以上、より好ましくは4質量%以上、更に好ましくは5質量%以上又は6質量%以上である。シラン変性ポリオレフィンの量は、蓄電デバイスのサイクル性及び安全性の観点から、微多孔膜の全量を基準として、好ましくは40質量%以下であり、より好ましくは38質量%以下である。シラン変性ポリオレフィンの量は、A層の全量を基準として、30質量%以上又は50質量%以上にしてよく、更には、100質量%にしてよい。
 微多孔膜又はA層中の架橋構造は、蓄電デバイス内で発生する化合物によって形成されることが好ましい。
 すなわち、蓄電デバイスの製造プロセスにおいて、セパレータを非水電解液に接触させるとき、微多孔膜又はA層の膨潤、及び/又は蓄電デバイス内で発生する化合物を利用して、オリゴシロキサン結合を形成した架橋構造が、微多孔膜又はA層中の架橋構造であることも好ましい。この場合の架橋構造は、セパレータの製造プロセスにおいては架橋反応を積極的に促進させず、蓄電デバイスの製造プロセスにおいて架橋反応を積極的に促進させて得られる架橋構造であるため、蓄電デバイス内に収納されるまでセパレータの自己架橋性を保持することができる。
 シラン変性ポリオレフィンは、セパレータの製造プロセスにおいて樹脂凝集物の発生を抑制し、かつ電解液と接触するときまでシラン架橋性を維持するという観点から、脱水縮合触媒を含有するマスターバッチ樹脂ではないことが好ましい。脱水縮合触媒はアルコキシシリル基含有樹脂のシロキサン結合形成反応の触媒としても機能することが知られている。本明細書では、押出機を用いた樹脂混練工程を有する連続プロセス中に脱水縮合触媒(例えば、有機金属含有触媒)をアルコキシシリル基含有樹脂又は他の混練樹脂へ事前に添加し、コンパウンドした物をマスターバッチ樹脂と呼ぶ。
(ポリエチレン)
 本明細書において、シラン変性ポリオレフィンに加えて更に含有可能なポリエチレン(微多孔膜又はA層中、シラン変性ポリオレフィンとは異なるポリオレフィンとして更に含まれるポリエチレン)は、その重量平均分子量が100,000以上10,000,000以下のホモエチレン重合高分子、アルカンユニットを含まれるコポリマー共重合高分子であるポリエチレンを意味する。
 微多孔膜又はA層が、シラン変性ポリオレフィンとは異なるポリオレフィンとして更にポリエチレンを含む場合、その含有量は、シラン変性ポリオレフィンとポリエチレンの合計量を基準として、好ましくは20質量%以上、より好ましくは40質量%以上、更に好ましくは50質量%以上である。ポリエチレンの含有量が20質量%以上であれば、酸化還元に対する耐劣化性を確保し易くなり、また、緻密で均一な多孔体構造を確保できる傾向にある。
 他方、ポリエチレンの含有量は、好ましくは97質量%以下、より好ましくは96質量%以下、更に好ましくは95質量%以下である。ポリエチレンの含有量が97質量%以下であれば、微多孔膜又はA層におけるシラン変性ポリオレフィンの含有量を確保できる。
(セパレータに含まれるシラン変性ポリオレフィンの検出方法)
 セパレータに含まれるシラン変性ポリオレフィンが架橋した状態では、有機溶剤に対して、不溶であるか、又は溶解度が不足するため、セパレータから直接的にシラン変性ポリオレフィンの含有を測定することが困難な場合がある。その場合、サンプルの前処理として、副反応が起こらないオルトギ酸メチルを用いて、シロキサン結合をメトキシシラノールへ分解した後、溶液NMR測定を行うことによって、セパレータに含まれるシラン変性ポリオレフィンを検出することができる。前処理の実験は、特許第3529854号公報及び特許第3529858号公報を参照して行われることができる。
 具体的には、セパレータ製造に用いる原料としてのシラン変性ポリオレフィンのH又は13CのNMRの同定を、セパレータに含まれるシラン変性ポリオレフィンの検出方法に活用することができる。H及び13CのNMRの測定手法の一例を以下に説明する。
HのNMR測定)
 試料をo-ジクロロベンゼン-d4に140℃で溶解し、プロトン共鳴周波数が600MHzの1H-NMRスペクトルを得る。H-NMRの測定条件は、下記のとおりである。
 装置:Bruker社製 AVANCE NEO 600
 試料管直径:5mmφ
 溶媒:o-ジクロロベンゼン-d4
 測定温度:130℃
 パルス角:30°
 パルス待ち時間:1sec
 積算回数:1000回以上
 試料濃度:1 wt/vol%
13CのNMR測定)
 試料をo-ジクロロベンゼン-d4に140℃で溶解し、13C-NMRスペクトルを得る。13C-NMRの測定条件は下記のとおりである。
 装置:Bruker社製 AVANCE NEO 600
 試料管直径:5mmφ
 溶媒:o-ジクロロベンゼン-d4
 測定温度:130℃
 パルス角:30°
 パルス待ち時間:5sec
 積算回数:10000回以上
 試料濃度:10 wt/vol%
 図11及び12は、2種類のポリオレフィンを用いたシラン変性ポリオレフィン原料1及び2のH及び13C-NMRチャートであり、かつ原料1及び2は、それぞれのメルトインデックス(MI)、Cグラフト量、Cグラフト量、及び/又はシラノール変性量が異なる。
 図11のH及び13C-NMR測定条件は以下のとおりである。
H-NMR測定条件)
 装置: Bruker Avance NEO 600
 観測核: 
 観測周波数: 600MHz
 パルスプログラム: zg30
 パルス待ち時間: 1sec
 積算回数: 1024回
 測定温度: 130℃
 化学シフト基準: 7.219ppm(o-DCBz)
 溶媒: o-dichlorobenzene-d4
 試料濃度: 1wt/vol%
 試料管: 5mmφ
13C-NMR測定条件)
 装置: Bruker Avance NEO 600
 観測核: 13
 観測周波数: 150.91MHz
 パルスプログラム: zgpg30
 パルス待ち時間: 5sec
 積算回数: 24000回、又は12800回
 測定温度: 130℃
 化学シフト基準: 132.39ppm(o-DCBz)
 溶媒: o-dichlorobenzene-d4
 試料濃度: 10wt/vol%
 試料管: 5mmφ
 図12のH及び13C-NMR測定条件は以下のとおりである。
H-NMR測定条件)
 装置: Bruker Avance NEO 600
 観測核: 
 観測周波数: 600MHz
 パルスプログラム: zg30
 パルス待ち時間: 1sec
 積算回数: 1024回
 測定温度: 130℃
 化学シフト基準: 7.219ppm(o-DCBz)
 溶媒: o-dichlorobenzene-d4
 試料濃度: 1wt/vol%
 試料管: 5mmφ
13C-NMR測定条件)
 装置: Bruker Avance NEO 600
 観測核: 13
 観測周波数: 150.91MHz
 パルスプログラム: zgpg30
 パルス待ち時間: 5sec
 積算回数: 12800回
 測定温度: 130℃
 化学シフト基準: 132.39ppm(o-DCBz)
 溶媒: o-dichlorobenzene-d4
 試料濃度: 10wt/vol%
 試料管: 5mmφ
 図13は、後述される実施例I-1において、図11に示されるシラン変性ポリオレフィン原料1を用いて作製されたセパレータの架橋前状態のH及び13C-NMRチャートである。図13のH及び13C-NMR測定条件は以下のとおりである。
H-NMR測定条件)
 装置: Bruker Avance NEO 600
 観測核: 
 観測周波数: 600MHz
 パルスプログラム: zg30
 パルス待ち時間: 1sec
 積算回数: 1024回
 測定温度: 130℃
 化学シフト基準: 7.219ppm(o-DCBz)
 溶媒: o-dichlorobenzene-d4
 試料濃度: 1wt/vol%
 試料管: 5mmφ
13C-NMR測定条件)
 装置: Bruker Avance NEO 600
 観測核: 13
 観測周波数: 150.91MHz
 パルスプログラム: zgpg30
 パルス待ち時間: 5 sec
 積算回数: 24000回、又は12800回
 測定温度: 130℃
 化学シフト基準: 132.39 ppm(o-DCBz)
 溶媒: o-dichlorobenzene-d4
 試料濃度: 10wt/vol%
 試料管: 5mmφ
 また、架橋状態のセパレータについては、上記で説明された前処理の後に、図13と同様なNMRにより測定可能である(図示せず)。
 図11~13に示されるとおり、H及び/又は13CのNMR測定により、ポリオレフィン原料においては、シラン変性ポリオレフィン中のシランユニット変性量、ポリオレフィンのアルキル基変性量などを確認することができ、そしてセパレータ中では、シラン変性ポリオレフィンの含有の同定(-CH-Si:H,0.69ppm,t;13C,6.11ppm,s)が可能である。
[微多孔膜と無機多孔質層との組み合わせ]
 シラン変性ポリオレフィンを含む微多孔膜と無機多孔質層との組み合わせが、150℃より低温でのシャットダウン機能と比較的高温での破膜性を両立し、かつ蓄電デバイスのサイクル特性と電池釘刺安全性を向上させる傾向にある。微多孔膜中のシラン変性ポリオレフィンは、シラン架橋性のため、シラン架橋が起こると微多孔膜中の樹脂の粘度を高めることがあるので、セパレータを含む蓄電デバイスの異常高温時に、複数の電極間に圧縮力が加わると、架橋した高粘度の樹脂が無機層へ流れ込み難く(すなわち、一体化し難く)、電極間のクリアランスを十分に確保でき、電池ショートを抑制できることが推測される。
[無機多孔質層]
 無機多孔質層は、無機粒子及び樹脂バインダを含む層であり、所望により、無機粒子をバインダ樹脂中に分散させる分散剤をさらに含んでよい。
 無機多孔質層の厚さは、セパレータのイオン透過性及び蓄電デバイスの充放電容量又はサイクル安定性の観点から、0.5μm~10μm、0.5μm~7μm、0.5μm~5μm、又は0.5μm~4μmであることが好ましい。無機多孔質層の厚さは実施例に記載の方法により決定されることができる。
[第2多孔質層(B層)]
 B層は、無機粒子を含む。B層は、樹脂バインダを更に含むことができる。B層が無機粒子及び樹脂バインダを含む場合には、B層は、上記で説明された無機多孔質層であることができる。なお、B層は、無機粒子、及び樹脂バインダ以外の成分を含んでよい。
(B層の厚み)
 B層の厚み(TB)は、好ましくは0.2μm以上、より好ましくは0.5μm以上である。厚み(TB)が0.5μm以上であれば、機械強度がより向上する傾向にある。他方、厚み(TB)は、好ましくは22μm未満、より好ましくは20μm以下、更に好ましくは15μm以下である。厚み(TB)が30μm以下であれば、蓄電デバイスにおけるセパレータの占有体積が減るため、その蓄電デバイスの高容量化の点において有利となる傾向がある。また、セパレータの透気度の過度な上昇を防止する観点からも好ましい。なお、厚み(TB)は、例えば、0.50μm以上、0.80μm以上又は1.00μm以上に設定してよく、また、22.00μm未満、20.00μm以下又は15.00μm以下に設定してよい。
 厚み(TB)は、実施例欄に記載の方法により測定でき、また、B層を形成するための塗工液(スラリー)の塗工量の変更等により制御できる。
 B層が単層の場合、そのB層の厚みが、上記の「厚み(TB)」として扱われる。B層が単層の場合、その複数層のB層の合計厚みが、上記の「厚み(TB)」として扱われる。
 また、B層が、A層の一方面と他方面の両面に配される場合、その一方面に配されるB層と、その他方面に配されるB層と合計厚みが、上記の「厚み(TB)」として扱われる。
(無機粒子)
 無機粒子としては、例えば、アルミナ(Al)、シリカ、チタニア、ジルコニア、マグネシア、セリア、イットリア、酸化亜鉛、及び酸化鉄等の無機酸化物(酸化物系セラミックス);窒化ケイ素、窒化チタン、及び窒化ホウ素等の無機窒化物(窒化物系セラミックス);シリコンカーバイド、炭酸カルシウム、硫酸マグネシウム、硫酸アルミニウム、水酸化アルミニウム、水酸化酸化アルミニウム(AlO(OH))、チタン酸カリウム、タルク、カオリナイト、ディカイト、ナクライト、ハロイサイト、パイロフィライト、モンモリロナイト、セリサイト、マイカ、アメサイト、ベントナイト、アスベスト、ゼオライト、ケイ酸カルシウム、ケイ酸マグネシウム、ケイ藻土、及びケイ砂等のセラミックス;並びにガラス繊維が挙げられる。これらは1種単独を用いて又は2種以上を併用してよい。
 無機粒子の量は、無機多孔質層又はB層の全量を基準として、耐熱性を確保する観点から、好ましくは5質量%以上又は20質量%以上、より好ましくは30質量%以上である。無機粒子の量は、無機多孔質層又はB層の全量を基準として、50質量%以上、80質量%超え又は85質量%以上に設定してよい。他方、無機粒子の量は、好ましくは99.9質量%以下、より好ましくは99.5質量%以下又は99質量%以下である。
 なお、無機粒子の量は、例えば、20.00質量%以上、30.00質量%以上、50.00質量%以上、80.00質量%超え又は85.00質量%以上に設定してよく、他方、99.90質量%以下又は99.50質量%に設定してよい。
 無機粒子の形状としては、板状、鱗片状、針状、柱状、球状、多面体状、紡錘状、及び塊状(ブロック状)が挙げられる。これらの形状を有する無機粒子を複数組み合わせて用いてよい。
 無機粒子の数平均粒子径は、例えば、0.01μm以上、0.1μm以上又は0.3μm以上であり、0.5μm以上あることが好ましい。他方、この数平均粒子径は、例えば、10.0μm以下、9.0μm以下又は6.0μm以下であり、2.5μm以下であることが好ましく、2.0μm以下であることがより好ましく、1.5μm以下であることが更に好ましい。無機粒子の数平均粒径を上記範囲内に調整することは、短絡時の安全性を向上させるという観点から好ましい。無機粒子の数平均粒子径を調整する方法としては、ボールミル、ビーズミル、ジェットミル等の適宜の粉砕装置を用い、無機粒子を粉砕する方法が挙げられる。
 無機粒子の粒度分布については、最小粒径が、0.02μm以上であることが好ましく、0.05μm以上がより好ましく、0.1μm以上がさらに好ましい。最大粒径は、20μm以下が好ましく、10μm以下がより好ましく、7μm以下が更に好ましい。また、最大粒径/平均粒径の比率は、50以下が好ましく、30以下がより好ましく、20以下が更に好ましい。無機粒子の粒度分布を上記範囲内に調整することは、高温での熱収縮を抑制する観点から好ましい。また、最大粒径と最小粒径の間に複数の粒径ピークを有してもよい。なお、無機粒子の粒度分布を調整する方法としては、例えば、ボールミル、ビーズミル、ジェットミル等を用いて無機フィラーを粉砕し、所望の粒度分布に調整する方法、複数の粒径分布を有する複数のフィラーを調製した後に、それらをブレンドする方法等を挙げることができる。
(樹脂バインダ)
 樹脂バインダは、無機粒子同士を結着させる樹脂を含む。樹脂バインダのガラス転移温度(Tg)は、セパレータの製造プロセス、又は蓄電デバイスの製造プロセス若しくは充放電プロセスにおいて、無機粒子との結着性及び無機多孔質層又はB層の安定性を確保するという観点から、好ましくは-50℃~100℃、より好ましくは-35℃~95℃である。
 ガラス転移温度は、示差走査熱量測定(DSC)で得られるDSC曲線から決定される。具体的には、DSC曲線における低温側のベースラインを高温側に延長した直線と、ガラス転移の階段状変化部分の変曲点における接線との交点の温度を、ガラス転移温度として採用することができる。より詳細には、実施例に記載の方法に準じて決定すればよい。また、「ガラス転移」はDSCにおいて試験片であるポリマーの状態変化に伴う熱量変化が吸熱側に生じたものを指す。このような熱量変化はDSC曲線において階段状変化の形状として観測される。「階段状変化」とは、DSC曲線において、曲線がそれまでの低温側のベースラインから離れ新たな高温側のベースラインに移行するまでの部分を示す。なお、階段状変化とピークとが組み合わされたものも階段状変化に含まれることとする。更に、「変曲点」とは、階段状変化部分のDSC曲線の勾配が最大になるような点を示す。また、階段状変化部分において、上側を発熱側とした場合に、上に凸の曲線が下に凸の曲線に変わる点と表現することもできる。「ピーク」とは、DSC曲線において、曲線が低温側のベースラインから離れてから再度同じベースラインに戻るまでの部分を示す。「ベースライン」とは、試験片に転移及び反応を生じない温度領域のDSC曲線を示す。
 樹脂バインダとしては、例えば、以下の1)~7)が挙げられる。これらは、1種単独を用いて又は2種以上を併用してよい。
 1)ポリオレフィン:例えば、ポリエチレン、ポリプロピレン、エチレンプロピレンラバー、及びこれらの変性体;
 2)共役ジエン系重合体:例えば、スチレン-ブタジエン共重合体、及びその水素化物、アクリロニトリル-ブタジエン共重合体、及びその水素化物、アクリロニトリル-ブタジエン-スチレン共重合体、及びその水素化物;
 3)アクリル系重合体:例えば、メタクリル酸エステル-アクリル酸エステル共重合体、スチレン-アクリル酸エステル共重合体、及びアクリロニトリル-アクリル酸エステル共重合体;
 4)ポリビニルアルコール系樹脂:例えば、ポリビニルアルコール、及びポリ酢酸ビニル;
 5)含フッ素樹脂:例えば、PVdF、ポリテトラフルオロエチレン、フッ化ビニリデン-ヘキサフルオロプロピレン-テトラフルオロエチレン共重合体、及びエチレン-テトラフルオロエチレン共重合体;
 6)セルロース誘導体:例えば、エチルセルロース、メチルセルロース、ヒドロキシエチルセルロース、及びカルボキシメチルセルロース;並びに
 7)融点、及び/又はガラス転移温度が180℃以上の樹脂あるいは融点を有しないが分解温度が200℃以上のポリマー:例えば、ポリフェニレンエーテル、ポリスルホン、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリエーテルイミドl、ポリアミドイミド、ポリアミド、及びポリエステル。
 これらの種類の樹脂バインダは、所望の単量体を原料として公知の乳化重合又は溶液重合等の製造方法に沿って得ることができる。重合において、重合温度、重合時の圧力、単量体の添加方法、使用する添加剤(重合開始剤、分子量調整剤、及びpH調整剤等)は限定されない。
 樹脂バインダの量は、無機多孔質層又はB層の全量を基準として、例えば、0.5質量%以上又は1.0質量%以上であり、他方、例えば、50質量%以下又は30質量%以下である。また、上記のとおり、B層については樹脂バインダが任意成分のため、B層に含まれる樹脂バインダの量は、B層の全量を基準として、20質量%未満、15質量%以下又は0質量%にしてよい。B層に含まれる樹脂バインダの量が減れば、その分、B層に上記の無機粒子を含有せしめる余地を増やすことができる。
(分散剤)
 分散剤は、無機多孔質層又はB層を形成するためのスラリー中で無機粒子表面に吸着し、静電反発などにより無機粒子を安定化させるものであり、例えば、ポリカルボン酸塩、スルホン酸塩、ポリオキシエーテル、界面活性剤などでよい。無機多孔質層又はB層には、上記した成分以外にも、その効果の範囲内において、通常、水系塗料等に添加配合される他の成分を更に含有してもよい。このような他の成分としては、特に限定されず、例えば、増粘剤、成膜助剤、可塑剤、架橋剤、凍結防止剤、消泡剤、染料、防腐剤、紫外線吸収剤、光安定剤等が挙げられる。これらの他の成分は、1種単独で用いてもよいし、2種以上を併用してもよい。
(添加剤)
 微多孔膜、無機多孔質層、A層、及び/又はB層は、必要により、既知の添加剤を含むことができる。添加剤としては、例えば、有機金属含有触媒(脱水縮合触媒);可塑剤;フェノール系、リン系、及びイオウ系等の酸化防止剤;ステアリン酸カルシウム、ステアリン酸亜鉛等の金属石鹸類;増粘剤;成膜助剤;架橋剤;凍結防止剤;消泡剤;防腐剤;紫外線吸収剤;光安定剤;帯電防止剤;防曇剤;染料;着色顔料が挙げられる。
 また、B層は、架橋剤を含んでよい。かかる架橋剤は、上記の無機粒子と反応性を有する作用基を含んでよい。
<セパレータの物性>
 セパレータが比較的高容量のリチウムイオン二次電池に使用される場合、セパレータ全体の膜厚は、好ましくは25μm以下であり、より好ましくは22μm以下又は20μm以下であり、さらに好ましくは18μm以下であり、特に好ましくは16μm以下である。セパレータの膜厚が25μm以下であることにより、イオン透過性がより向上する傾向にある。セパレータ全体の膜厚の下限値は、例えば、1.0μm以上、3.0μm以上、4.0μm以上、6.0μm以上、又は7.5μm以上でよい。
 セパレータの透気度は、50秒/100cm~400秒/100cmであることが好ましく、より好ましくは75秒/100cm~275秒/100cm、さらに好ましくは100秒/100cm~200秒/100cmである。セパレータは、50秒/100cm以上の透気度であれば適度な機械強度を有し、400秒/100cmの透気度であれば透過性の観点から電池特性が向上するので好ましい。
〔蓄電デバイス組み立てキット〕
 本発明の別の態様では、上記で説明された蓄電デバイス用セパレータを含む蓄電デバイス組み立てキットが提供される。蓄電デバイス組み立てキットは以下の2つの要素:
 (A)電極と上記で説明された各実施形態に係る蓄電デバイス用セパレータの積層体又は捲回体を収納している外装体;及び
 (B)非水電解液を収納している容器;
を備える。蓄電デバイス組み立てキットの使用時に、要素(A)中のセパレータと要素(B)中の非水電解液とを接触させて、外装体内で電解液と積層体又は捲回体を接触させることによって、かつ/又は組み立てられた蓄電デバイスの充放電サイクルを継続することによって、セパレータ内に架橋構造を形成して、安全性と出力を両立する蓄電デバイスを形成することができる。
 理論に拘束されることを望まないが、電解質又は電解液が電極と接触するとき、及び/又は蓄電デバイスの充放電を行うとき、架橋反応に触媒作用を及ぼす物質又は架橋構造の一部になる官能基を有する物質が、電解液中、外装体内面又は電極表面に存在し、それらが電解液に溶け込み、ポリオレフィン中の非晶部へ均一に膨潤、拡散されることによって、セパレータ含有積層体又は捲回体の架橋反応を均一に促進することが考えられる。架橋反応に触媒作用を及ぼす物質は、酸溶液又は膜の形態でよく、電解質がヘキサフルオロリン酸リチウム(LiPF)を含む場合には、フッ化水素(HF)、又はフッ化水素(HF)に由来するフッ素含有有機物であることができる。架橋構造の一部になる官能基を有する物質は、例えば、上記で説明された官能基A及び/又はBを有する化合物、電解液そのもの、各種の添加剤などであることができる。
 要素(2)に収納される非水電解液は、セパレータの架橋反応を促進する観点から、電解質はHFを発生するLiPF等のフッ素(F)含有リチウム塩やLiN(SOCF、LiSOCFなどの非共有電子対を有する電解質がよく、LiBF、LiBC(LiBOB)などもよい。
 蓄電デバイス組み立てキットは、セパレータの架橋反応を促進する観点から、付属品(又は要素(C))として、架橋反応を促進するための触媒、例えば、有機金属含有触媒と水の混合物、酸溶液、塩基溶液などを収納する別の容器を備えてよい。
〔蓄電デバイス〕
 上記で説明されたセパレータは、蓄電デバイスにおいて使用されることができる。蓄電デバイスは、正極と、負極と、正負極間に配置された本実施形態に係るセパレータと、電解液と、所望により添加剤とを備える。セパレータがデバイス外装体に収納されると、官能基変性ポリエチレン又は官能基グラフト共重合ポリエチレンと、電解液又は添加剤に含まれる化学物質とが反応し、架橋構造が形成されるため、作製された蓄電デバイスには架橋構造がある。官能基変性ポリエチレン又は官能基グラフト共重合ポリエチレンは、限定されるものではないが、微多孔膜のポリオレフィン原料に由来するか、又は微多孔膜の製造プロセス中に変性されたポリオレフィンに由来することができる。
 蓄電デバイスとしては、具体的には、リチウム電池、リチウム二次電池、リチウムイオン二次電池、ナトリウム二次電池、ナトリウムイオン二次電池、マグネシウム二次電池、マグネシウムイオン二次電池、カルシウム二次電池、カルシウムイオン二次電池、アルミニウム二次電池、アルミニウムイオン二次電池、ニッケル水素電池、ニッケルカドミウム電池、電気二重層キャパシタ、リチウムイオンキャパシタ、レドックスフロー電池、リチウム硫黄電池、リチウム空気電池、亜鉛空気電池などが挙げられる。これらの中でも、実用性の観点から、リチウム電池、リチウム二次電池、リチウムイオン二次電池、ニッケル水素電池、又はリチウムイオンキャパシタが好ましく、リチウム電池又はリチウムイオン二次電池がより好ましい。
 添加剤は、例えば、脱水縮合触媒、ステアリン酸カルシウム又はステアリン酸亜鉛等の金属石鹸類、紫外線吸収剤、光安定剤、帯電防止剤、防曇剤、着色顔料等でよい。
〔リチウムイオン二次電池〕
 リチウムイオン二次電池は、正極として、コバルト酸リチウム、リチウムコバルト複合酸化物等のリチウム遷移金属酸化物、負極として、グラファイト、黒鉛等の炭素材料、そして電解液としてLiPF等のリチウム塩を含む有機溶媒を使用した蓄電池である。蓄電デバイス組み立てキットについて上記で説明された電解液をリチウムイオン二次電池にも使用してよい。
 リチウムイオン二次電池の充電・放電の時には、イオン化したリチウムが電極間を往復する。また、電極間の接触を抑制しながら、前記イオン化したリチウムが、電極間の移動を比較的高速に行う必要があるため、電極間にセパレータが配置される。
<蓄電デバイス用セパレータの製造方法>
 本発明の別の態様は、蓄電デバイス用セパレータの製造方法である。セパレータの製造方法は、例えば、微多孔膜又はA層の製造工程と、所望により、微多孔膜への無機多孔質層の製造工程、又はA層へのB層の製造工程とを含むことができる。セパレータの製造方法において使用される材料は、特に言及されない限り、第一~第十の実施形態において説明されたものでよい。
<第十一の実施形態>
 第十一の実施形態に係るセパレータの製造方法として、微多孔膜(平膜)の場合について以下に説明するが、平膜以外の形態を除く意図ではない。第十一の実施形態に係る微多孔膜の製造方法は、以下の工程:
  (1)シート成形工程;
  (2)延伸工程;
  (3)多孔体形成工程;及び
  (4)熱処理工程;
を含む。工程(1)~(4)を行うことにより、上記で説明されたA層を形成することもできる。
 第十一の実施形態に係るセパレータの製造方法は、所望により、工程(1)~(4)に加えて、以下の工程:
 (8B)無機粒子と樹脂バインダを含む無機多孔質層を、前記熱処理多孔体の少なくとも一方の表面に形成して、シラン架橋前駆体を形成する塗工工程;
 (9)電極及び前記シラン架橋前駆体の積層体又はその捲回体と、非水電解液とを外装体に収納して、前記シラン架橋前駆体と前記非水電解液を接触させる組み立て工程;
を含むことができる。第十一の実施形態では、シラン架橋性を維持している微多孔膜に対して工程(8B)で無機多孔質層の塗工を行ってから、工程(9)で蓄電デバイス内のセパレータと電解液を接触させるので、蓄電デバイス及びその中のセパレータの応力耐性が向上し、ひいては蓄電デバイスのサイクル安定性と安全性を達成することができる。
 第十一の実施形態に係る微多孔膜の製造方法は、所望により、シート成形工程(1)前の混錬工程、及び/又は熱処理工程(3)後の捲回・スリット工程を含んでよいが、電解液と接触するときまでシラン架橋性を維持するという観点からは、シラン架橋処理工程を含まないことが好ましい。シラン架橋処理工程は、一般に、シラン変性ポリオレフィンを含む被処理物を、有機金属含有触媒と水の混合物に接触させるか、又は塩基溶液若しくは酸溶液に浸漬させ、シラン脱水縮合反応を行ってオリゴシロキサン結合を形成する工程である。
 有機金属含有触媒の金属は、例えば、スガンジウム、チタン、バナジウム、銅、亜鉛、アルミニウム、ジルコニウム、パラジウム、ガリウム、スズ及び鉛から成る群から選択される少なくとも1つでよい。有機金属含有触媒は、ジ-ブチルスズ-ジ-ラウレート、ジ-ブチルスズ-ジ-アセテート、ジ-ブチルスズ-ジ-オクトエートなどとして挙げられ、Weijら(F. W. van. der. Weij: Macromol. Chem., 181, 2541, 1980.)によって提唱された反応機構で反応速度を圧倒的に促進できることが知られている。また、近年では、有機スズによる環境、人体への健康被害を避けるために、銅及び/又はチタンのキレート錯体のルイス機能を利用して、有機塩基と組み合わせることで、有機スズ錯体と同様にアルコキシシリル基同士のシロキサン結合を形成する反応を促進できることが知られている。
 塩基溶液は、pHが7を超え、例えば、水酸化アルカリ金属類、水酸化アルカリ土類金属類、アルカリ金属の炭酸塩、アルカリ金属のリン酸塩、アンモニア、アミン化合物などを含んでよい。これらの中でも、蓄電デバイスの安全性とシラン架橋性の観点から、水酸化アルカリ金属類又は水酸化アルカリ土類金属類が好ましく、水酸化アルカリ金属類がより好ましく、水酸化ナトリウムがさらに好ましい。
 酸溶液は、pHが7未満であり、例えば、無機酸、有機酸などを含んでよい。好ましい酸は、塩酸、硫酸、カルボン酸類、又はリン酸類である。
 混練工程では、混錬機を用いて、本実施形態では、シラン変性ポリオレフィンと、所望により、可塑剤又は無機材とその他のポリオレフィンとを混錬することができる。製造プロセスにおいて樹脂凝集物の発生を抑制し、かつ電解液と接触するときまでシラン架橋性を維持するという観点から、脱水縮合触媒を含有するマスターバッチ樹脂を混錬物に加えないことが好ましい。
 可塑剤としては、特に限定されないが、例えば、沸点以下の温度でポリオレフィンと均一な溶液を形成し得る有機化合物が挙げられる。より具体的には、デカリン、キシレン、ジオクチルフタレート、ジブチルフタレート、ステアリルアルコール、オレイルアルコール、デシルアルコール、ノニルアルコール、ジフェニルエーテル、n-デカン、n-ドデカン、パラフィン油等が挙げられる。これらの中でも、パラフィン油、ジオクチルフタレートが好ましい。可塑剤は、1種単独で用いても、2種以上を併用してもよい。可塑剤の割合は特に限定されないが、得られる微多孔膜の気孔率の観点から、ポリオレフィンとシラン変性ポリオレフィンは、必要に応じて、合計質量に対して20質量%以上が好ましく、溶融混練時の粘度の観点から90質量%以下が好ましい。
 シート成形工程は、得られた混練物、又はシラン変性ポリオレフィンとポリエチレンと可塑剤の混合物を押出し、冷却固化させ、シート状に成型加工してシートを得る工程である。シート成形の方法としては、特に限定されないが、例えば、溶融混練し押出された溶融物を、圧縮冷却により固化させる方法が挙げられる。冷却方法としては、冷風、冷却水等の冷却媒体に直接接触させる方法、冷媒で冷却したロール及び/又はプレス機に接触させる方法等が挙げられるが、冷媒で冷却したロール及び/又はプレス機に接触させる方法が、膜厚制御性が優れる点で好ましい。
 セパレータ中の樹脂凝集物又は内部最大発熱速度の観点から、シート成形工程ではシラン変性ポリオレフィンとポリエチレンの質量比(シラン変性ポリオレフィンの質量/ポリエチレンの質量)が、0.05/0.95~0.4/0.6であることが好ましく、より好ましくは0.06/0.94~0.38/0.62である。
 150℃以下の低温シャットダウン性と180~220℃の高温での耐破膜性を有しながら蓄電デバイス破壊時の熱暴走を抑制して安全性を向上させるという観点から、シート成形工程ではシラン変性ポリオレフィンが、そのシラン変性ポリオレフィンを架橋する脱水縮合触媒をシート成形工程前から含有するマスターバッチ樹脂ではないことが好ましい。
 延伸工程は、得られたシートから、必要に応じて可塑剤及び/又は無機材を抽出し、更にシートを一軸以上の方向へ延伸する工程である。シートの延伸方法としては、ロール延伸機によるMD一軸延伸、テンターによるTD一軸延伸、ロール延伸機とテンター、又はテンターとテンターとの組み合わせによる逐次二軸延伸、同時二軸テンター若しくはインフレーション成形による同時二軸延伸等が挙げられる。より均一な膜を得るという観点からは、同時二軸延伸であることが好ましい。トータルの面倍率は、膜厚の均一性、引張伸度と気孔率と平均孔径のバランスの観点から、好ましくは8倍以上であり、より好ましくは15倍以上であり、さらに好ましくは20倍以上又は30倍以上である。トータルの面倍率が8倍以上であることにより、高強度で厚み分布が良好のものが得られ易くなる傾向にある。また、この面倍率は、破断防止などの観点から、250倍以下でよい。
 多孔体形成工程は、延伸工程後の延伸物から可塑剤を抽出して、延伸物を多孔化する工程である。可塑剤の抽出方法としては、特に限定されないが、例えば、延伸物を抽出溶媒に浸漬する方法、延伸物に抽出溶媒をシャワーする方法等が挙げられる。抽出溶媒としては、特に限定されないが、例えば、ポリオレフィンに対して貧溶媒であり、且つ、可塑剤及び/又は無機材に対しては良溶媒であり、沸点がポリオレフィンの融点よりも低いものが好ましい。このような抽出溶媒としては、特に限定されないが、例えば、n-ヘキサン、シクロヘキサン等の炭化水素類;塩化メチレン、1,1,1-トリクロロエタン、フルオロカーボン系等ハロゲン化炭化水素類;エタノール、イソプロパノール等のアルコール類;アセトン、2-ブタノン等のケトン類;アルカリ水等が挙げられる。抽出溶媒は、1種単独で用いても、2種以上を併用してもよい。
 熱処理工程は、延伸工程の後、さらに必要に応じてシートから可塑剤を抽出し、更に熱処理を行い、微多孔膜を得る工程である。熱処理の方法としては、特に限定されないが、例えば、テンター及び/又はロール延伸機を利用して、延伸及び緩和操作等を行う熱固定方法が挙げられる。緩和操作とは、膜の機械方向(MD)及び/又は幅方向(TD)へ、所定の温度及び緩和率で行う縮小操作のことをいう。緩和率とは、緩和操作後の膜のMD寸法を操作前の膜のMD寸法で除した値、又は緩和操作後のTD寸法を操作前の膜のTD寸法で除した値、又はMDとTD双方を緩和した場合は、MDの緩和率とTDの緩和率を乗じた値のことである。
〔無機多孔質層の塗工工程〕
 無機多孔質層の塗工工程(8B)は、無機粒子と樹脂バインダを含む無機多孔質層を、上記で得られた微多孔膜の少なくとも一方の表面に形成する工程である。塗工工程(8B)は、シラン変性ポリオレフィンのシラン架橋性を維持したままで行われることができる。
 塗工工程(8B)を行うことにより、上記で説明されたB層を形成することもできる。B層の形成方法としては、既知の製造方法を採用できる。A層とB層とを含む積層体を作製する手法としては、例えば、無機粒子を含有するスラリーをA層に塗工する方法、B層の原料と、A層の原料とを共押出法により積層して押し出す方法、A層とB層とを個別に作製した後にそれらを貼り合せる方法等が挙げられる。
 無機多孔質層は、例えば、無機粒子と、樹脂バインダと、水又は水系溶媒(例えば、水とアルコールとの混合物など)と、所望により分散剤とを含むスラリーを、微多孔膜の少なくとも一方の表面に塗工することにより形成されることができる。無機粒子、樹脂バインダ及び分散剤は、第一~第十の実施形態について説明されたとおりでよい。
 スラリーに含まれる溶媒としては、無機粒子を均一且つ安定に分散又は溶解できるものが好ましい。かかる溶媒としては、例えば、N-メチルピロリドン(NMP)、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、水、エタノール、トルエン、熱キシレン、塩化メチレン、及びヘキサンが挙げられる。
 無機粒子含有スラリーの調製方法としては、例えば、ボールミル、ビーズミル、遊星ボールミル、振動ボールミル、サンドミル、コロイドミル、アトライター、ロールミル、高速インペラー分散、ディスパーザー、ホモジナイザー、高速衝撃ミル、超音波分散、撹拌羽根等による機械撹拌法などが挙げられる。
 無機粒子含有スラリーの塗工方法としては、例えば、グラビアコーター法、小径グラビアコーター法、リバースロールコーター法、トランスファロールコーター法、キスコーター法、ディップコーター法、ナイフコーター法、エアドクタコーター法、ブレードコーター法、ロッドコーター法、スクイズコーター法、キャストコーター法、ダイコーター法、スクリーン印刷法、スプレー塗布法などが挙げられる。
 かかる塗工膜から溶媒を除去する方法については、微多孔膜を構成する材料の融点以下の温度にて乾燥する方法、低温で減圧乾燥する方法等が挙げられる。また、デバイス特性に著しく影響を及ぼさない範囲内であれば、溶媒を一部残存させてよい。
〔捲回/スリット工程〕
 捲回工程は、得られた微多孔膜を、又は無機多孔質層が塗工された微多孔膜を、必要に応じてスリットして、所定のコアへ捲回する工程である。
〔蓄電デバイス組み立て工程〕
 蓄電デバイス組み立て工程は、シラン架橋性を維持したセパレータ前駆体(以下、シラン架橋前駆体ともいう。)及び電極を積層して積層体を形成し、所望により積層体をさらに捲回して捲回体を形成し、積層体又は捲回体と非水電解液とを外装体に収納して、シラン架橋前駆体と非水電解液を接触させる工程である。蓄電デバイス組み立て工程によって、微多孔膜の膜減りが抑制されてモルフォロジーが維持され、微多孔膜から無機多孔質層へのポリオレフィン樹脂の染み込みが抑制されることができ、ひいては蓄電デバイス又はセパレータの応力耐性が向上する。
 蓄電デバイス組み立て工程(9)中又は工程(9)後に、シラン変性ポリオレフィンが架橋するため、従来の蓄電デバイスの製造プロセスに適合しながら、蓄電デバイス製造後にセパレータのシラン架橋反応を起こして蓄電デバイスの安全性を向上させることができる。
 蓄電デバイス組み立て工程では、電解液のハンドリング性の観点から、積層体又は捲回体を外装体に収納してから外装体に非水電解液を注ぐか、又は外装体に電解液を注いでから積層体又は捲回体を外装体に収納することが好ましい。
 非水電解液の電解質は、セパレータの架橋反応を促進する観点から、フッ化水素(HF)を発生するLiPF等のフッ素(F)含有リチウム塩やLiN(SOCF、LiSOCFなどの非共有電子対を有する電解質でよく、LiBF、LiBC(LiBOB)などもよい。
 理論に拘束されることを望まないが、メトキシシラングラフト部は蓄電デバイス内に含まれるわずかな水分(電極、セパレータ、電解液などの部材に含まれる水分)で、シラノールへ変換され、架橋反応し、シロキサン結合へ変化すると推定されている。また、電解質又は電解液が電極と接触すると、シラン架橋反応に触媒作用を及ぼす物質が、電解液中又は電極表面に生成し、それらが電解液に溶け込み、シラン変性グラフト部が存在するポリオレフィン中の非晶部へ均一に膨潤、拡散されることで、セパレータ含有積層体又は捲回体の架橋反応を均一に促進することが考えられる。シラン架橋反応に触媒作用を及ぼす物質は、酸溶液又は膜の形態でよく、電解質がヘキサフルオロリン酸リチウム(LiPF)を含む場合には、LiPFと水分が反応し、発生したHF、又はHFに由来するフッ素含有有機物であることができる。
 シラン架橋反応の効率という観点から、蓄電デバイスの外装体内に積層体又は捲回体と非水電解液とを外装体に収納した後に、電極にリード端子を接続して少なくとも1サイクルの充放電を行うことが好ましい。充放電サイクルによって、シラン架橋反応に触媒作用を及ぼす物質が、電解液中又は電極表面に生成し、それによりシラン架橋反応が達成されることが考えられる。サイクル充放電は、既知の方法及び装置により行われることでき、具体的には実施例に記載の方法が可能である。
〔蓄電デバイスの製造方法〕
 本発明の別の態様は、蓄電デバイスの製造方法である。
<第十二の実施形態>
 第十二の実施形態に係る蓄電デバイスの製造方法は、以下の工程;
 (ア)上記で説明された蓄電デバイス組み立てキットを用意する工程と、
 (イ)蓄電デバイス組み立てキットの要素(1)中のセパレータと要素(2)中の非水電解液を接触させることによりシラン変性ポリオレフィンのシラン架橋反応を開始する工程と、
 (ウ)所望により、要素(1)の電極にリード端子を接続する工程と、
 (エ)所望により、少なくとも1サイクルの充放電を行う工程と、
を含む。工程(ア)~(エ)は、本実施形態に係る蓄電デバイス用セパレータを使用することを除いて、本技術分野において既知の方法により行われることができ、また工程(ア)~(エ)においては、本技術分野において既知の正極、負極、電解液、外装体及び充放電装置を使用することができる。
 工程(ア)のために、幅10~500mm(好ましくは80~500mm)、長さ200~4000m(好ましくは1000~4000m)の縦長形状のセパレータを製造することができる。次いで、工程(ア)において、正極-セパレータ-負極-セパレータ又は負極-セパレータ-正極-セパレータの順で積層し、円又は扁平な渦巻状に捲回して捲回体を得ることができる。工程(イ)及び(ウ)では、その捲回体をデバイス缶(例えば電池缶)内に収納し、更に非水電解液を注入することにより、蓄電デバイスを製造することができる。また、電極、及びセパレータを折り畳んで捲回体としたものを、デバイス容器(例えばアルミニウム製のフィルム)に入れて非水電解液を注液する方法により、蓄電デバイスを製造することもできる。
 このとき、捲回体に対して、プレスを行うことができる。具体的には、セパレータと、集電体、及びその集電体の少なくとも片面に形成された活物質層を有する電極とを重ね合わせてプレスを行うことができる。
 プレス温度は、効果的に接着性を発現できる温度として、例えば20℃以上が好ましい。また、熱プレスによる、セパレータにおける孔の目詰まり又は熱収縮を抑える観点から、プレス温度は、微多孔膜に含まれる材料の融点よりも低いことが好ましく、120℃以下がより好ましい。プレス圧力は、セパレータにおける孔の目詰まりを抑える観点から、20MPa以下が好ましい。プレス時間については、ロールプレスを用いたときに1秒以下でもよく、数時間の面プレスでもよいが、生産性の観点から2時間以下が好ましい。
 上記の製造工程を経ると、電極、及びセパレータから成る捲回体をプレス成形したときのプレスバックを抑制できる。従って、デバイス組立工程における歩留まり低下を抑制し、生産工程時間を短縮することができ、好ましい。
 工程(イ)後にセパレータのシラン架橋反応を確実に実行するという観点からは、工程(ウ)及び(エ)を行うことが好ましい。充放電サイクルによって、シラン架橋反応に触媒作用を及ぼす物質が、電解液中又は電極表面に生成し、それによりシラン架橋反応が達成されることが考えられる。
 例えば、セパレータの製造方法において、上記で説明されたA層の製造方法がシラン架橋処理工程を含まない場合、セパレータを非水電解液と接触させることで、架橋反応を積極的に促進させることができる。理論に拘束されることを望まないが、シラン変性グラフト部は蓄電デバイス内に含まれるわずかな水分(電極、セパレータ、非水電解液等にわずかに含まれる水分)により、シラノールへ変換され、架橋反応し、シロキサン結合へ変化すると推定されている。また、非水電解液が電極と接触すると、シラン架橋反応に触媒作用を及ぼす物質が、非水電解液中又は電極表面に生成することが考えられる。そのような、シラン架橋反応に触媒作用を及ぼす物質が、非水電解液に溶け込み、シラン変性グラフト部が存在するポリオレフィン中の非晶部へ均一に膨潤、拡散されることで、セパレータ含有積層体又は捲回体の架橋反応を均一に促進することが考えられる。
 シラン架橋反応に触媒作用を及ぼす物質は、酸溶液又は膜の形態でよい。電解質がヘキサフルオロリン酸リチウム(LiPF)を含む場合には、LiPFと水分が反応し、これにより発生するフッ化水素(HF)又はフッ化水素(HF)に由来するフッ素含有有機物が、シラン架橋反応に触媒作用を及ぼす物質(蓄電デバイス内で発生する化合物)として扱われる。
<第十三の実施形態>
 第十三の実施形態は、1種類又は2種類以上の官能基を有するポリオレフィンを含むセパレータを用いて蓄電デバイスを製造する方法であり、かつ以下の工程:
  (1)官能基同士を縮合反応させるか、(2)官能基を蓄電デバイス内部の化学物質と反応させるか、又は(3)ポリオレフィンの官能基を他の種類の官能基と反応させて、架橋構造を形成する架橋工程
を含む。
 架橋工程は、上記で説明されたセパレータの架橋構造を形成する反応と同様に行われることができる。また、架橋工程は、蓄電デバイス内の化合物、デバイス周囲の環境を利用して行われることができるので、電子線、100℃以上の高温などの過度な条件を必要とすることがなく、5℃~90℃の温度及び/又は周囲雰囲気下などのマイルドな条件を採用することができる。
 蓄電デバイスの製造プロセスにおいて架橋工程を行うことによって、セパレータの製膜プロセス中又はその直後に架橋構造の形成が省略されることができ、蓄電デバイス作製後の応力歪みを緩和又は解消し、かつ/又は光照射若しくは加温などの比較的高いエネルギーを用いなくてもセパレータに架橋構造を付与して、架橋ムラ、未溶融樹脂凝集物の発生、環境への負担などを低減することができる。
 架橋工程のうちで、(2)官能基を蓄電デバイス内部の化学物質と反応させるか、又は(3)ポリオレフィンの官能基を他の種類の官能基と反応させることによって、セパレータ内部だけでなく、セパレータと電極の間又はセパレータと固体電解質界面(SEI)の間にも架橋構造を形成して、蓄電デバイスの複数の部材間の強度を向上させることができる。
 上記で説明されたセパレータは、電解液と接触するとシラン変性ポリオレフィンが架橋するため、従来の蓄電デバイスの製造プロセスに適合しながら、蓄電デバイス製造後にシラン架橋反応を起こして蓄電デバイスの安全性を向上させることができる。
 実施例及び比較例を挙げて本発明をより具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。なお、実施例中の物性は以下の方法により測定した。
<重量平均分子量>
 Waters社製 ALC/GPC 150C型(商標)を用い、標準ポリスチレンを以下の条件で測定して較正曲線を作成した。また、下記各ポリマーについても同様の条件でクロマトグラムを測定し、較正曲線に基づいて、下記方法により各ポリマーの重量平均分子量を算出した。
 カラム  :東ソー製 GMH-HT(商標)2本+GMH-HTL(商標)2本
 移動相  :o-ジクロロベンゼン
 検出器  :示差屈折計
 流速   :1.0ml/min
 カラム温度:140℃
 試料濃度 :0.1wt%
(ポリエチレンの重量平均分子量)
 得られた較正曲線における各分子量成分に0.43(ポリエチレンのQファクター/ポリスチレンのQファクター=17.7/41.3)を乗じることによりポリエチレン換算の分子量分布曲線を得て、重量平均分子量を算出した。
(樹脂組成物の重量平均分子量)
 最も質量分率の大きいポリオレフィンのQファクター値を用い、その他はポリエチレンの場合と同様にして重量平均分子量を算出した。
<粘度平均分子量(Mv)>
 ASTM-D4020に基づき、デカリン溶媒における135℃での極限粘度[η]を求めた。ポリエチレンのMvを次式により算出した。
   [η]=6.77×10-4Mv0.67
<メルトマスフローレイト(MFR)(g/10min)>
 東洋精機製メルトマスフローレイト測定機(メルトインデックサF-F01)を用いて、190℃及び加重2.16kgの条件下、10分間で押出された樹脂物の重量をMFR値として定めた。
<ガラス転移温度の測定>
 樹脂サンプルを含む水分散体(固形分=38~42重量%、pH=9.0)を、アルミ皿に適量取り、130℃の熱風乾燥機で30分間乾燥して乾燥皮膜を得た。その乾燥皮膜約17mgを測定用アルミ容器に充填し、DSC測定装置(島津製作所社製、型式名「DSC6220」)にて窒素雰囲気下におけるDSC曲線、及びDSC曲線を得た。測定条件は下記の通りとした。
 1段目昇温プログラム:70℃スタート、毎分15℃の割合で昇温。110℃に到達後5分間維持。
 2段目降温プログラム:110℃から毎分40℃の割合で降温。-50℃に到達後5分間維持。
 3段目昇温プログラム:-50℃から毎分15℃の割合で130℃まで昇温。この3段目の昇温時にDSC、及びDDSCのデータを取得。
 ベースライン(得られたDSC曲線におけるベースラインを高温側に延長した直線)と、変曲点(上に凸の曲線が下に凸の曲線に変わる点)における接線との交点をガラス転移温度(Tg)とした。
<膜厚(μm)>
 東洋精機製の微小測厚器、KBM(商標)用いて、室温23±2℃及び相対湿度60%で微多孔膜又はセパレータの膜厚を測定した。具体的には、TD方向全幅に亘って、ほぼ等間隔に5点の膜厚を測定し、それらの平均値を得た。無機多孔質層の厚さは、微多孔膜と無機多孔質層から成るセパレータの厚さから微多孔膜の厚さを減じることにより算出されることができる。
<A層の厚み(TA)、及びB層の厚み(TB)>
 東洋精機製の微小測厚器、KBM(商標)用いて、室温23±2℃、及び相対湿度60%でA層の厚み(TA)を測定した。具体的には、TDの全幅に亘って、ほぼ等間隔に5点の膜厚を測定し、それらの平均値を得た。また、同様の手法により、A層とB層とを含む積層体の厚みを得た。そして、得られた積層体の厚みから、A層の厚み(TA)を減算することで、B層の厚み(TB)を得た。
 得られた積層体の厚みを、A層とB層との合計厚み(TA+TB)として扱った。また、厚み(TA)を厚み(TB)で除することで、厚みの比(TA/TB)を得た。
<気孔率(%)>
(i)混合組成物の密度から算出
 10cm×10cm角の試料を微多孔膜から切り取り、その体積(cm)と質量(g)を求め、それらと密度(g/cm)より、次式を用いて気孔率を計算した。なお、混合組成物の密度は、用いた原料の各々の密度と混合比より計算して求められる値を用いた。
   気孔率(%)=(体積-質量/混合組成物の密度)/体積×100
(ii)膜密度から算出
 代替的には、体積と質量と膜密度(g/cm)とから、微多孔膜の気孔率を次式により算出する。
   気孔率(%)=(体積-質量/膜密度)/体積×100
 なお、本開示において膜密度とは、JIS K7112(1999)に記載のD)密度勾配管法に従って測定した値をいう。
(iii)A層の気孔率
 10cm×10cm角の試料をA層から切り取り、その体積(cm3)と質量(g)を求め、それらと密度(g/cm3)から、次式を用いて気孔率を計算した。混合組成物の密度は、用いた原料の各々の密度と混合比より計算して求められる値を用いた。
   気孔率(%)=(体積-質量/混合組成物の密度)/体積×100
<透気度(sec/100cm)>
 JIS P-8117(2009年)に準拠し、東洋精器(株)製のガーレー式透気度
計、G-B2(商標)により試料又はA層の透気度を測定した。
<A層の突刺強度>
 カトーテック製のハンディー圧縮試験器KES-G5(型式名)を用いて、開口部の直径11.3mmの試料ホルダーでA層を固定した。次に、固定されたA層の中央部に対して、先端の曲率半径0.5mmの針を用いて、突刺速度2mm/秒で、25℃雰囲気下において突刺試験を行うことにより、最大突刺荷重を測定した。その最大突刺加重を20μmの厚さ当たりに換算した値を突刺強度(gf/20μm)とした。熱可塑性ポリマーが基材の片面にしか存在しない場合は、熱可塑性ポリマーが存在する面から針を突刺することができる。
<セパレータ中樹脂凝集物の定量化>
 セパレータ中樹脂凝集物は、後述される実施例と比較例の製膜工程を経て得られたセパレータを透過型光学顕微鏡で観察したときに、縦100μm×横100μm以上の面積を有し、かつ光が透過しない領域として定義されるものである。透過型光学顕微鏡による観察において、セパレータ面積1000m当たりの樹脂凝集物の個数を測定した。
<貯蔵弾性率と損失弾性率と転移温度(version 1)>
 動的粘弾性測定装置を用いてセパレータの動的粘弾性測定を行い、貯蔵弾性率(E’)、損失弾性率(E’’)、及びゴム状平坦領域と結晶融解流動領域の転移温度を算出可能である。貯蔵弾性率変化比(RΔE’)は下記式(1)、混合貯蔵弾性率比(RE’mix)は下記式(2)に従い、損失弾性率変化比(RΔE’’)は下記式(3)に従い、混合損失弾性率比(RE’’mix)は下記式(4)に従い、それぞれ算出した。なお、測定条件は下記(i)~(iv)のとおりであった。
 (i)動的粘弾性測定を以下の条件:
 ・雰囲気:窒素
 ・使用測定装置:RSA-G2(TAインスツルメンツ社製)
 ・サンプル膜厚:5μm~50μmの範囲
 ・測定温度範囲:-50~225℃
 ・昇温速度:10℃/min
 ・測定周波数:1Hz
 ・変形モード:正弦波引張モード(Linear tension)
 ・静的引張荷重の初期値:0.5N
 ・初期(25℃時)のギャップ間距離:25mm
 ・Auto strain adjustment:Enabled(範囲:振幅値0.05~25%、正弦波荷重0.02~5N)
で行なった。
 (ii)静的引張荷重とは、各周期運動での最大応力と最小応力の中間値を指し、かつ正弦波荷重とは、静的引張荷重を中心とした振動応力を指す。
 (iii)正弦波引張モードとは、固定振幅0.2%で周期運動を行いながら振動応力を測定することを指し、その際に、静的引張荷重と正弦波荷重の差が20%以内となるようにギャップ間距離及び静的引張荷重を変動して振動応力を測定した。なお、正弦波荷重が0.02N以下になった場合、正弦波荷重が5N以内かつ振幅値の増加量が25%以内になるように振幅値を増幅させて振動応力を測定した。
 (iv)得られた正弦波荷重と振幅値の関係、及び下記式:
  σ=σ・Exp[i(ωt+δ)]、
  ε=ε・Exp(iωt)、
  σ=E・ε
  E=E’+iE’’
{式中、σ:振動応力、ε:歪み、i:虚数単位、ω:角振動数、t:時間、δ:振動応力と歪みの間の位相差、E:複素弾性率、E’:貯蔵弾性率、E’’:損失弾性率
  振動応力:正弦波荷重/初期断面積
  静的引張荷重:各周期での振動応力の最小点(各周期でのギャップ間距離の最小点)の荷重
  正弦波荷重:測定された振動応力と静的引張荷重の差}
から貯蔵弾性率及び損失弾性率を算出した。
 E’及びE’とE’’及びE’’は、動的粘弾性測定データ中、160℃~220℃における各貯蔵弾性率又は各損失弾性率の平均値とした。E’及びE’とE’’及びE’’は、動的粘弾性測定データ中、160℃~220℃における各貯蔵弾性率又は各損失弾性率の平均値とした。
  RΔE’=E’/E’   (1) セルへの投入の前後の対比
  RE’mix=E’/E’   (2) シラン架橋の有無の対比
  RΔE’’=E’’/E’’   (3) セルへの投入の前後の対比
  RE’’mix=E’’/E’’   (4) シラン架橋の有無の対比
 温度と貯蔵弾性率の関係を説明するためのグラフの一例を図1に示す。図1に示すように、-50℃~225℃の温度範囲内の基準膜(シラン変性ポリオレフィンを含まない蓄電デバイス用セパレータ)と架橋後膜の貯蔵弾性率を対比し、図1においてゴム状平坦領域と結晶融解流動領域の転移温度を確認することができる。なお、転移温度は高温側のベースラインを低温側に延長した直線と、結晶融解変化部分の曲線の変曲点で引かれた接線との交点の温度とする。
 温度と損失弾性率の関係を説明するためのグラフの一例を図2に示す。図2には、-50℃~220℃の温度範囲内の基準膜(シラン変性ポリオレフィンを含まない蓄電デバイス用セパレータ)と架橋後膜の損失弾性率が対比され、図1と同様の方法により定められた転移温度が示される。本技術分野では、貯蔵弾性率と損失弾性率は、下記式:
  tanδ=E’’/E’
{式中、tanδは、損失正接を表し、E’は、貯蔵弾性率を表し、かつE’’は、損失弾性率を表す。}
に従って互換可能である。
 なお、混合貯蔵弾性率比(RE’mix)又は混合損失弾性率比(RE’’mix)の測定では、シラン変性ポリオレフィンを含まない蓄電デバイス用セパレータとして、ゲル化度が約0%であるシラン非変性ポリオレフィン製微多孔膜を使用した。また、E’、E’0、E’’及びE’’については、160℃~220℃において、サンプルの破断(弾性率の急な低下)が観察されない場合には、160℃~220℃の平均値より算出し、160℃~220℃においてサンプルの破断が見られた場合には、160℃から破断点の温度までの平均値より算出した。例えば、図1及び2に示す基準膜は207℃で破断が見られた。
<貯蔵弾性率と損失弾性率と転移温度(version 2)>
 動的粘弾性測定装置を用いてセパレータの動的粘弾性測定を行い、貯蔵弾性率(E’)、損失弾性率(E’’)、及びゴム状平坦領域と結晶融解流動領域の転移温度を算出可能である。貯蔵弾性率変化比(RΔE’X)は下記式(1)、混合貯蔵弾性率比(RE’mix)は下記式(2)に従い、混合損失弾性率比(RE’’x)は下記式(3)に従い、混合損失弾性率比(RE’’mix)は下記式(4)に従い、それぞれ算出した。なお、測定条件は、TAインスルツメント社製RSA-G2動的粘弾性測定装置を用いて、測定周波数は1Hz、ひずみ0.2%、窒素雰囲気下で-50℃~310℃の温度領域であり、その他の条件については上記version 1に従って、貯蔵弾性率、損失弾性率を測定した。E’及びE’Z0とE’’及びE’’Z0は、動的粘弾性測定データ中、160℃~300℃における各貯蔵弾性率又は各損失弾性率の平均値とした。E’及びE’とE’’及びE’’は、動的粘弾性測定データ中、160℃~300℃における各貯蔵弾性率又は各損失弾性率の平均値とした。
  RΔE’X=E’/E’Z0   (1) セルへの投入の前後の対比
  RE’mix=E’/E’   (2) 非晶部架橋構造の有無の対比
  RE’’X=E’’/E’’Z0   (3) セルへの投入の前後の対比
  RE’’mix=E’’/E’’   (4) 非晶部架橋構造の有無の対比
 温度と貯蔵弾性率の関係を説明するためのグラフの一例を図9に示す。図9に示すように、-50℃~310℃の温度範囲内の基準膜(非晶部架橋構造を有しない蓄電デバイス用セパレータ)と架橋後膜の貯蔵弾性率を対比し、図9においてゴム状平坦領域と結晶融解流動領域の転移温度を確認することができる。なお、転移温度は高温側のベースラインを低温側に延長した直線と、結晶融解変化部分の曲線の変曲点で引かれた接線との交点の温度とする。
 温度と損失弾性率の関係を説明するためのグラフの一例を図10に示す。図10には、-50℃~310℃の温度範囲内の基準膜(シラン変性ポリオレフィンを含まない蓄電デバイス用セパレータ)と架橋後膜の損失弾性率が対比され、図9と同様の方法により定められた転移温度が示される。本技術分野では、貯蔵弾性率と損失弾性率は、下記式:
  tanδ=E’’/E’
{式中、tanδは、損失正接を表し、E’は、貯蔵弾性率を表し、かつE’’は、損失弾性率を表す。}
に従って互換可能である。
 なお、混合貯蔵弾性率比(RE’mix)又は混合損失弾性率比(RE’’mix)の測定では、非晶部架橋構造を有しない蓄電デバイス用セパレータとして、ゲル化度が約0%であるポリオレフィン製微多孔膜を使用した。また、E’、E’0、E’’及びE’’については、160℃~300℃において、サンプルの破断(弾性率の急な低下)が観察されない場合には、160℃~300℃の平均値より算出し、160℃~300℃においてサンプルの破断が見られた場合には、160℃から破断点の温度までの平均値より算出した。例えば、表11及び表12と図9及び図10に示す基準膜は、210℃で破断が見られた。
 本明細書では、非晶部架橋構造を有しない蓄電デバイス用セパレータは、ポリエチレン:X(粘度平均分子量10万~40万)、PE:Y(粘度平均分子量40万~80万)及びPE:Z(粘度平均分子量80万~900万)から成る群から選択される任意の一種類、またはX、Y及びZから成る群から選択される2種類若しくは3種類を用いて、任意の割合で混合した組成で製造されるセパレータであることができる。なお、低密度ポリエチエレン:LDPE、直鎖状低密度ポリエチレン:LLDPE、ポリプロピレン:PP、オレフィン系熱可塑性エラストマー等の炭化水素骨格のみで構成したポリオレフィンを混合組成物に添加してもよい。より詳細には、非晶部架橋構造を有しない蓄電デバイス用セパレータは、デカリン溶液中の160℃での加熱前後の固形分の変化率(以下「ゲル化度」という)が10%以下であるポリオレフィン製微多孔膜を意味することができる。なお、ゲル化度の測定時に、固形分は、樹脂のみを意味し、無機物などの他の材料を含まないものとする。
 他方、シラン架橋構造などの非晶部架橋構造を有するポリオレフィン製微多孔膜のゲル化度は、好ましくは30%以上、より好ましくは70%以上である。
<貯蔵弾性率と損失弾性率と膜軟化転移温度と膜破断温度(version 3)>
 動的粘弾性測定装置を用いてセパレータの固体粘弾性測定を行い、貯蔵弾性率(E’)、損失弾性率(E’’)、及び膜軟化転移温度を算出可能である。なお、固体粘弾性測定の条件は下記(i)~(iv)のとおりであった。
 (i)動的粘弾性測定を以下の条件:
 ・使用測定装置:RSA-G2(TAインスツルメンツ社製)
 ・サンプル膜厚:200μm~400μm(ただし、サンプル単体の膜厚が200μm未満の場合には、複数枚のサンプルを重ねて総厚が200μm~400μmの範囲内になるように動的粘弾性測定を行う。)
 ・測定温度範囲:-50℃~250℃
 ・昇温速度:10℃/min
 ・測定周波数:1Hz
 ・変形モード:正弦波引張モード(Linear tension)
 ・静的引張荷重の初期値:0.2N
 ・初期(25℃時)のギャップ間距離:10mm
 ・自動歪み調整(Auto strain adjustment):無効(Disabled)
で行う。
 (ii)静的引張荷重とは、各周期運動での最大応力と最小応力の中間値を指し、かつ正弦波荷重とは、静的引張荷重を中心とした振動応力を指す;
 (iii)正弦波引張モードとは、固定振幅0.1%で周期運動を行いながら振動応力を測定することを指し、正弦波引張モードでは、静的引張荷重と正弦波荷重の差が5%以内となるようにギャップ間距離及び静的引張荷重を変動して振動応力を測定し、正弦波荷重が0.1N以下になった場合には静的引張荷重を0.1Nに固定して振動応力を測定する。
 (iv)得られた正弦波荷重と振幅値の関係、及び下記式: 
  σ=σ・Exp[i(ωt+δ)]、
  ε=ε・Exp(iωt)、
  σ=E・ε
  E=E’+iE’’
 {式中、σ:振動応力、ε:歪み、i:虚数単位、ω:角振動数、t:時間、δ:振動応力と歪みの間の位相差、E:複素弾性率、E’:貯蔵弾性率、E’’:損失弾性率
  振動応力:正弦波荷重/初期断面積
  静的引張荷重:各周期での振動応力の最小点(各周期でのギャップ間距離の最小点)の荷重
  正弦波荷重:測定された振動応力と静的引張荷重の差}
から、貯蔵弾性率(E’)及び損失弾性率(E’’)を算出する。また、E’の最大値と最小値の平均値を平均E’(E’ave)として算出し、そしてE’’の最大値と最小値の平均値を平均E’’(E’’ave)として算出する。
 なお、E’とE’’は、動的粘弾性測定データ中、-50℃~250℃における各貯蔵弾性率又は各損失弾性率の最大値、最小値を算出した。より詳細には、-50℃~250℃において、サンプルの破断(弾性率の急な低下)が観察されない場合には、-50℃~250℃の最大値、最小値を算出し、-50℃~250℃においてサンプルの破断が見られる温度における値を最小値とした。また、本技術分野では、貯蔵弾性率と損失弾性率は、下記式:
  tanδ=E’’/E’
{式中、tanδは、損失正接を表し、E’は、貯蔵弾性率を表し、かつE’’は、損失弾性率を表す。}
に従って互換可能である。
 膜軟化転移点温度は、動的粘弾性測定データ中、サンプルのギャップ距離の曲線を1次微分して得られる最小値の温度とする。また、膜破断温度は、動的粘弾性測定データ中、サンプルの破断(弾性率の急な低下)が観察される温度とし、その測定限界温度は、ポリオレフィン樹脂の熱分解反応が進行するという観点から、250℃として定められる場合がある。ただし、250℃より高温での測定でも同様に現象を理解できるため、本実施形態では膜破断温度180℃以上を有する蓄電デバイス用セパレータを実施することができる。
<A層の破膜温度>
 島津製作所製TMA50(商標)の定長モードを用いて、環境温度を25~250℃に亘って変化させ、荷重が完全開放される瞬間の温度をTMA破膜温度(TMAにより測定される、A層の破膜温度)と定めた。
 具体的には、A層からTD3mm、MD14mmを採取し、これを試料片(MDが長辺である試料片)とした。試料片のMDの両端を、チャック間距離が10mmになるように専用プローブにセットし、試料片に対して荷重1.0gをかけた。試験片を搭載した炉を昇温して、荷重が0gを示した温度を破膜温度(℃)とした。
 なお、TDが長辺である試料片TDについて測定するときは、TD14mm、MD3mmにA層を採取してこれを試料片とし、専用プローブにTD両端をチャックし、チャック間距離を10mmにセットして初期1.0g荷重させ、上記と同様な操作を行う。
<150℃での熱収縮率>
 架橋構造の形成前における積層体(A層とB層とを含む積層体)からTD100mm、MD100mmを採取し、これを試料片とした。そして、試料片を150℃のオーブン中に1時間静置した。このとき、温風が試料片に直接あたらないよう、試料片を2枚の紙に挟んだ。試料片をオーブンから取り出し、冷却した後、試料片の面積を測定し、下記式にて、架橋構造の形成前における150℃での熱収縮率(T1)を算出した。
   150℃での熱収縮率(%)=(10,000(mm)-加熱後の試料片の面積(mm))×100/10,000
 また、架橋構造の形成後における積層体について、TD100mm、MD100mmを採取してこれを試料片とし、上記と同様な操作を行うことで、架橋構造の形成後における150℃での熱収縮率(T2)を算出した。
 そして、熱収縮率(T2)を熱収縮率(T1)で除することで比(T2/T1)を得た。この比(T2/T1)の値は、架橋構造の形成前における150℃での熱収縮率(T1)に対する、架橋構造の形成後における150℃での熱収縮率(T2)の変化倍率に相当する。
<電池破壊安全性試験1>
 電池破壊安全性試験1は、4.5Vまで充電した電池に鉄釘を20mm/secの速度で打ち込み、貫通させて、内部短絡を起こす試験である。本試験は、内部短絡による電池の電圧低下の時間変化挙動および内部短絡による電池表面温度上昇挙動を測定することで、内部短絡時の現象を明らかにできる。また、内部短絡時にセパレータの不十分なシャットダウン機能又は低温での破膜により、電池の急激な発熱が生じる場合があり、それに伴い、電解液が発火し、電池が発煙及び/又は爆発することがある。
(電池破壊安全性試験1に用いられる電池の作製)
1a.正極の作製
 正極活物質としてリチウムコバルト複合酸化物LiCoOを92.2質量%、導電材としてリン片状グラファイトとアセチレンブラックをそれぞれ2.3質量%、及び樹脂バインダとしてポリフッ化ビニリデン(PVDF)3.2質量%を採取し、これらをN-メチルピロリドン(NMP)中に分散させてスラリーを調製した。このスラリーを正極集電体となる厚さ20μmのアルミニウム箔の片面にダイコーターで塗布し、130℃で3分間乾燥後、ロールプレス機で圧縮成形した。このとき、正極の活物質塗布量は250g/m、活物質嵩密度は3.00g/cmになるように調整した。
1b.負極の作製
 負極活物質として人造グラファイト96.9質量%、及び樹脂バインダとしてカルボキシメチルセルロースのアンモニウム塩1.4質量%とスチレン-ブタジエン共重合体ラテックス1.7質量%を精製水中に分散させてスラリーを調製した。このスラリーを負極集電体となる厚さ12μmの銅箔の片面にダイコーターで塗布し、120℃で3分間乾燥後、ロールプレス機で圧縮成形した。このとき、負極の活物質塗布量は106g/m、活物質嵩密度は1.35g/cmになるように調整した。
1c.非水電解液の調製
 エチレンカーボネート:エチルメチルカーボネート=1:2(体積比)の混合溶媒に、溶質としてLiPFを濃度1.0mol/Lとなるように溶解させて非水電解液を調製した。
1d.電池組立
 セパレータを横(TD)方向60mm、縦(MD)方向1000mmに切出し、セパレータに対して、九十九折し、正極と負極を交互にセパレータ間(正極12枚、負極13枚)に重ねる。なお、正極は30mm×50mm、負極は32mm×52mmの面積の物を使用した。この九十九折した積層体をラミネート袋へ入れた後、上記c.で得られた非水電解液を注入して密閉した。室温にて1日放置した後、25℃雰囲気下、3mA(0.5C)の電流値で電池電圧4.2Vまで充電し、到達後4.2Vを保持するようにして電流値を3mAから絞り始めるという方法で、合計6時間、電池作製後の最初の充電を行った。続いて、3mA(0.5C)の電流値で電池電圧3.0Vまで放電した。
(最大発熱速度)
 得られた電池へ鉄釘を貫通させた後、電池表面温度は熱電対を用いて、300秒間に亘って測定した温度変化グラフから、1sec当たりに昇温変化が最も大きかった時の速度を最大発熱速度と定めた。
(電圧低下時間)
 得られた電池へ鉄釘を貫通させた後、4.5Vから3Vまでの電圧低下に要した時間を電圧低下時間(3V低下時間)として定めた。
<サイクル特性評価およびその電池の作製方法>
 上記項目<電池破壊安全性試験1>に用いられる電池の作製方法の1a.~1c.と同じ方法に従って、ただし組立は下記1d-2.によりサイクル特性評価用電池を作製した。
1d-2.電池組立
 セパレータを直径18mm、正極及び負極を直径16mmの円形に切り出し、正極と負極の活物質面が対向するよう、正極、セパレータ、負極の順に重ね、蓋付きステンレス金属製容器に収納した。容器と蓋とは絶縁されており、容器は負極の銅箔と、蓋は正極のアルミニウム箔と接していた。この容器内に、上記項目<電池破壊安全性試験1>の1c.で得られた非水電解液を注入して密閉した。室温にて1日放置した後、25℃雰囲気下、3mA(0.5C)の電流値で電池電圧4.2Vまで充電し、到達後4.2Vを保持するようにして電流値を3mAから絞り始めるという方法で、合計6時間、電池作製後の最初の充電を行った。続いて、3mA(0.5C)の電流値で電池電圧3.0Vまで放電した。
 得られた電池の充放電は、60℃雰囲気下で100サイクル実施した。充電は6.0mA(1.0C)の電流値で電池電圧4.2Vまで充電し、到達後4.2Vを保持するようにして電流値を6.0mAから絞り始めるという方法で、合計3時間充電した。放電は6.0mA(1.0C)の電流値で電池電圧3.0Vまで放電した。
(サイクル特性評価1)
 100サイクル目の放電容量と1サイクル目の放電容量から、容量維持率を算出した。容量維持率が高い場合、良好なサイクル特性を有するものと評価した。
(サイクル特性評価2)
 300サイクル目の放電容量と1サイクル目の放電容量から、容量維持率(%)を下記式に基づき算出した。容量維持率が高い場合、良好なサイクル特性を有するものと評価した。
 評価結果(%)=(100×300サイクル後の保持容量/1サイクル目の放電容量)
<ヒューズ/メルトダウン(F/MD)特性>
(i)0.5MPaの加圧と2℃/分の昇温速度
 直径200mmの円形状に正極、セパレータ及び負極を切出し、重なり合わせし、得られた積層体に非水電解液を加え、全体に染みわたした。直径600mmの円形状アルミニウムヒーターの中心部に積層体を挟み、油圧ジャッキでアルミニウムヒーターを上下から0.5MPaに加圧し、測定の準備を完了とする。昇温速度を2℃/minの速度で、アルミニウムヒーターで前記積層体を加熱しながら、電極間の抵抗(Ω)を測定する。セパレータのヒューズともに電極間の抵抗が上昇し、抵抗が初めて1000Ωを超えた時の温度をヒューズ温度(シャットダウン温度)とする。また、さらに加熱を続け、抵抗が1000Ω以下に下がる時の温度をメルトダウン温度(破膜温度)とする。
(ii)10MPa最大加圧と15℃/分の昇温速度
 直径200mmの円形状に正極、セパレータ、及び負極を切出し、重なり合わせて得られた積層体に、非水電解液を加え、全体に染みわたした。直径600mmの円形状アルミニウムヒーターの中心部に積層体を挟み、油圧ジャッキでアルミニウムヒーターを上下から圧力を10MPaまで加え、測定の準備を完了とした。昇温速度を15℃/分の速度で、アルミニウムヒーターで積層体を加熱しながら、電極間の抵抗(Ω)を測定した。電極間の抵抗が上昇し、抵抗が初めて1000Ωを超えたときの温度をシャットダウン温度(℃)とした。また、更に加熱を続け、抵抗が1000Ω以下に下がったときの温度をメルトダウン温度(℃)とした。
 なお、(i)と(ii)のいずれの評価についても、上記項目<電池破壊安全性試験1>の「1a.正極の作製」により作製された正極のアルミニウム箔の裏に、導電性銀ペーストで抵抗測定用電線を接着させた。また、上記項目<電池破壊安全性試験1>の「1b.負極の作製」により作製された負極の銅箔の裏に、導電性銀ペーストで抵抗測定用電線を接着させた。さらに、上記項目<電池破壊安全性試験1>の「1c.非水電解液の調製」により調製された電解質含有電解液をF/MD特性試験にも使用した。
<安全性試験(釘刺試験)2>
2a.正極の作製
 正極活物質としてニッケル、マンガン、コバルト複合酸化物(NMC)(Ni:Mn:Co=1:1:1(元素比)、密度4.70g/cm3)90.4質量%、導電助材としてグラファイト粉末(KS6)(密度2.26g/cm3、数平均粒子径6.5μm)を1.6質量%、及びアセチレンブラック粉末(AB)(密度1.95g/cm3、数平均粒子径48nm)3.8質量%、並びに樹脂バインダとしてPVDF(密度1.75g/cm3)4.2質量%の比率で混合し、これらをNMP中に分散させてスラリーを調製した。このスラリーを、正極集電体となる厚さ20μmのアルミニウム箔の片面にダイコーターを用いて塗工し、130℃において3分間乾燥した後、ロールプレス機を用いて圧縮成形することにより、正極を作製した。このとき、正極活物質塗工量は109g/m2であった。
2b.負極の作製
 負極活物質としてグラファイト粉末A(密度2.23g/cm3、数平均粒子径12.7μm)87.6質量%、及びグラファイト粉末B(密度2.27g/cm3、数平均粒子径6.5μm)9.7質量%、並びに樹脂バインダとしてカルボキシメチルセルロースのアンモニウム塩1.4質量%(固形分換算)(固形分濃度1.83質量%水溶液)、及びジエンゴム系ラテックス1.7質量%(固形分換算)(固形分濃度40質量%水溶液)を精製水中に分散させてスラリーを調製した。このスラリーを負極集電体となる厚さ12μmの銅箔の片面にダイコーターで塗工し、120℃において3分間乾燥した後、ロールプレス機で圧縮成形することにより、負極を作製した。このとき、負極活物質塗工量は52g/m2であった。
2c.非水電解液の調製
 エチレンカーボネート:エチルメチルカーボネート=1:2(体積比)の混合溶媒に、溶質としてLiPF6を濃度1.0mol/Lとなるように溶解させ、非水電解液を調整した。
2d.電池作製
 上記2a~2cで得られた正極、負極、及び非水電解液、並びにセパレータ(実施例のセパレータ又は比較例のセパレータ)を用いて、電流値1A(0.3C)、終止電池電圧4.2Vの条件で3時間に亘って定電流定電圧(CCCV)充電したサイズ100mm×60mm、容量3Ahのラミネート型二次電池を作製した。
2e.釘刺評価
 作製したラミネート型二次電池を、温調可能な防爆ブース内の鉄板上に静置した。ラミネート型二次電池の中央部に、防爆ブース内の温度を40℃に設定し、直径3.0mmの鉄製釘を、2mm/秒の速度で貫通させ、釘は貫通した状態で維持した。釘内部に、釘が貫通した後ラミネート電池内部の温度が測定できるように設置した熱電対の温度を測定し、発火の有無を評価した。
 同様の手法により新たに作製したラミネート型二次電池を用いて評価を繰り返し、発火に至らなかった(発火なし)サンプル数を、下記式により%値で算出した。
 評価結果(%)=(100×発火に至らなかったサンプル数/総サンプル数)
 釘刺評価の合格率については、例えば、200サイクル時では50%以上、1000サイクル時では5%以上であることが好ましい。
<実験グループI>
[シラングラフト変性ポリオレフィンの製法]
 シラングラフト変性ポリオレフィンに用いる原料ポリオレフィンは、粘度平均分子量(Mv)が10万以上かつ100万以下であり、重量平均分子量(Mw)が3万以上かつ92万以下、数平均分子量は1万以上かつ15万以下でよく、プロピレン又はブテン共重合αオレフィンでもよい。原料ポリエチレンを押出機で溶融混練しながら、有機過酸化物(ジ-t-ブチルパーオキサイド)を添加し、αオレフィンのポリマー鎖内でラジカルを発生させた後、トリメトキシアルコキシド置換ビニルシランを注液し、付加反応により、αオレフィンポリマーへアルコキシシリル基を導入し、シラングラフト構造を形成させる。また、同時に系中のラジカル濃度を調整するために、酸化防止剤(ペンタエリトリトールテトラキス[3-(3,5-ジ-テトラ-ブチル-4-ヒドロキシフェニル)プロピオナート])を適量添加し、αオレフィン内の鎖状連鎖反応(ゲル化)を抑制する。得られたシラングラフトポリオレフィン溶融樹脂を水中で冷却し、ペレット加工を行った後、80℃で2日加熱乾燥し、水分又は未反応のトリメトキシアルコキシド置換ビニルシランを除く。なお、未反応のトリメトキシアルコキシド置換ビニルシランのペレット中の残留濃度は、10~1500ppm程度である。
 上記の製法により得られたシラングラフト変性ポリオレフィンを表8において「シラン変性ポリオレフィン(B)」として用いる。
[実施例I-1]
 重量平均分子量が500,000のホモポリマーのポリエチレン(A)79.2質量%に、粘度平均分子量20,000のポリオレフィンを原料とし、トリメトキシアルコキシド置換ビニルシランによって変性反応で得られるMFR(190℃)が0.4g/分のシラングラフトポリエチレン(シラン変性ポリエチレン(B))19.8質量%(以上より(A)と(B)の樹脂組成はそれぞれ0.8および0.2)、酸化防止剤としてペンタエリスリチル-テトラキス-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]を1質量%添加し、タンブラーブレンダーを用いてドライブレンドすることにより、混合物を得た。得られた混合物を、二軸押出機へ窒素雰囲気下でフィーダーにより供給した。また、流動パラフィン(37.78℃における動粘度7.59×10-5/s)を押出機シリンダーにプランジャーポンプにより注入した。
 押出機内で混合物と流動パラフィンを溶融混練し、押し出されるポリオレフィン組成物中に占める流動パラフィン量比が質量70%となるように(即ち、ポリマー濃度が30質量%となるように)、フィーダー及びポンプを調整した。溶融混練条件は、設定温度220℃、スクリュー回転数240rpm、及び吐出量18kg/hであった。
 続いて、溶融混練物を、T-ダイを経て表面温度25℃に制御された冷却ロール上に押出しキャストすることにより、原反膜厚1400μmのゲルシート(シート状成型体)を得た。
 次に、シート状成型体を同時二軸テンター延伸機に導き、二軸延伸を行なって延伸物を得た。設定延伸条件は、MD倍率7.0倍、TD倍率6.0倍(即ち、7×6倍)、二軸延伸温度125℃とした。
 次に、延伸後のゲルシートをメチルエチルケトン槽に導き、メチルエチルケトン中に充分に浸漬して流動パラフィンを抽出除去し、その後メチルエチルケトンを乾燥除去し、多孔体を得た。
 次に、熱固定(HS)を行なうべく多孔体をTDテンターに導き、熱固定温度125℃、延伸倍率1.8倍でHSを行い、その後、TD方向0.5倍の緩和操作(即ち、HS緩和率が0.5倍)を行って微多孔膜を得た。
 その後、得られた微多孔膜について、端部を裁断し、幅1,100mm、長さ5,000mのマザーロールとして巻き取った。
 上記の評価時には、マザーロールから巻き出した微多孔膜を必要に応じてスリットして、評価用セパレータとして使用した。
[実施例I-2~I-6]
 表8に記載されるように、成分AとBの量比及び架橋方式・条件を変更したこと以外は、上記の実施例I-1と同様の操作を行って、表8に示す微多孔膜を得た。
[比較例I-1、I-2]
 重量平均分子量が500,000のホモポリマーのポリエチレン(A)79.2質量%に、粘度平均分子量20,000のポリオレフィンを原料とし、トリメトキシアルコキシド置換ビニルシランによって変性反応で得られるMFR(190℃)が0.4g/分のシラングラフトポリエチレン(シラン変性ポリエチレン(B))19.8質量%(以上より(A)と(B)の樹脂組成はそれぞれ0.8および0.2)、酸化防止剤としてペンタエリスリチル-テトラキス-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]を1質量%添加し、タンブラーブレンダーを用いてドライブレンドすることにより、混合物を得た。得られた混合物を、二軸押出機へ窒素雰囲気下でフィーダーにより供給した。また、流動パラフィン(37.78℃における動粘度7.59×10-5/s)を押出機シリンダーにプランジャーポンプにより注入した。
 押出機内で混合物と流動パラフィンを溶融混練し、押し出されるポリオレフィン組成物中に占める流動パラフィン量比が質量70%となるように(即ち、ポリマー濃度が30質量%となるように)、フィーダー及びポンプを調整した。溶融混練条件は、設定温度220℃、スクリュー回転数240rpm、及び吐出量18kg/hであった。
 続いて、溶融混練物を、T-ダイを経て表面温度25℃に制御された冷却ロール上に押出しキャストすることにより、原反膜厚1400μmのゲルシート(シート状成型体)を得た。
 次に、シート状成型体を同時二軸テンター延伸機に導き、二軸延伸を行なって延伸物を得た。設定延伸条件は、MD倍率7.0倍、TD倍率6.0倍(即ち、7×6倍)、二軸延伸温度125℃とした。
 次に、延伸後のゲルシートをメチルエチルケトン槽に導き、メチルエチルケトン中に充分に浸漬して流動パラフィンを抽出除去し、その後メチルエチルケトンを乾燥除去し、多孔体を得た。
 次に、熱固定(HS)を行なうべく多孔体をTDテンターに導き、熱固定温度125℃、延伸倍率1.8倍でHSを行い、その後、TD方向0.5倍の緩和操作(即ち、HS緩和率が0.5倍)を行った。
 さらに、エタノール浴中(親和性処理槽)に導き、60秒間浸漬しつつ滞留し、熱処理多孔体の親和性処理を行なって、親和性処理多孔体を得た。
 さらに、比較例I-1では25%苛性ソーダ水溶液(温度80℃、pH8.5~14)中に、比較例I-2では10%塩酸水溶液(温度60℃、pH1~6.5)中に、それぞれ親和性処理多孔体を導き60秒間浸漬しつつ滞留し、親和性処理多孔体の架橋処理を行い、架橋処理多孔体を得た。
 さらに、架橋処理多孔体を水中(水洗処理槽)に導き60秒間浸漬しつつ滞留し、架橋処理多孔体を水洗した。これを搬送式乾燥機へ導き、120℃で60秒間の条件下で乾燥して微多孔膜を得た。
 その後、得られた微多孔膜について、端部を裁断し、幅1,100mm、長さ5,000mのマザーロールとして巻き取った。
 上記の評価時には、マザーロールから巻き出した微多孔膜を必要に応じてスリットして、評価用セパレータとして使用した。
[評価結果]
 実施例I-1~I-6及び比較例I-1~I-2で得られた微多孔膜及び電池について、上記評価方法に従って各種の評価を行って、評価結果も表8に示した。また、実施例I-1で得られた微多孔膜をセパレータとして備える電池の温度と抵抗の関係を図3に示す。図3及び表8から、実施例I-1で得られたセパレータのシャットダウン温度が143℃であり、かつ破膜温度が200℃以上であることが分かる。さらに、実施例I-1で得られたセパレータの架橋前状態のH及び13C-NMRチャート(b)を図13に示す。
Figure JPOXMLDOC01-appb-T000082
 なお、表8中の「シラン変性ポリエチレン(B)」は、粘度平均分子量20,000のポリオレフィンを原料として用いて、トリメトキシアルコキシド置換ビニルシランによる変性反応で得られる、密度が0.95g/cmであり、かつ190℃でのメルトフローレート(MFR)が0.4g/分であるシラン変性ポリエチレンである。
<実験グループIIa>
[シラングラフト変性ポリオレフィンの製法]
 シラングラフト変性ポリオレフィンに用いる原料ポリオレフィンは、粘度平均分子量(Mv)が10万以上かつ100万以下であり、重量平均分子量(Mw)が3万以上かつ92万以下、数平均分子量は1万以上かつ15万以下でよく、エチレンホモポリマーでよく、又はエチレンとプロピレン若しくはブテンの共重合αオレフィンでよい。原料ポリエチレンを押出機で溶融混練しながら、有機過酸化物(ジ-t-ブチルパーオキサイド)を添加し、αオレフィンのポリマー鎖内でラジカルを発生させた後、トリメトキシアルコキシド置換ビニルシランを注液し、付加反応により、αオレフィンポリマーへアルコキシシリル基を導入し、シラングラフト構造を形成させる。また、同時に系中のラジカル濃度を調整するために、酸化防止剤(ペンタエリトリトールテトラキス[3-(3,5-ジ-テトラ-ブチル-4-ヒドロキシフェニル)プロピオナート])を適量添加し、αオレフィン内の鎖状連鎖反応(ゲル化)を抑制する。得られたシラングラフトポリオレフィン溶融樹脂を水中で冷却し、ペレット加工を行った後、80℃で2日加熱乾燥し、水分又は未反応のトリメトキシアルコキシド置換ビニルシランを除く。なお、未反応のトリメトキシアルコキシド置換ビニルシランのペレット中の残留濃度は、約1500ppm以下である。
 上記の製法により得られたシラングラフト変性ポリエチレンを表9において「シラン変性ポリエチレン(B)」として用いる。
〔実施例II-1〕
 重量平均分子量が700,000のホモポリマーのポリエチレン(ポリエチレン(A))80質量%に、粘度平均分子量10,000のポリオレフィンを原料とし、トリメトキシアルコキシド置換ビニルシランによって変性反応で得られるMFR(190℃)が0.4g/分のシラングラフトポリエチレン(シラン変性ポリエチレン(B))20質量%(以上より(A)と(B)の樹脂組成はそれぞれ80%および20%)、酸化防止剤としてペンタエリスリチル-テトラキス-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]を1質量%添加し、タンブラーブレンダーを用いてドライブレンドすることにより、混合物を得た。得られた混合物を、二軸押出機へ窒素雰囲気下でフィーダーにより供給した。また、流動パラフィン(37.78℃における動粘度7.59×10-5/s)を押出機シリンダーにプランジャーポンプにより注入した。
 押出機内で混合物と流動パラフィンを溶融混練し、押し出されるポリオレフィン組成物中に占める流動パラフィン量比が質量70%となるように(即ち、ポリマー濃度が30質量%となるように)、フィーダー及びポンプを調整した。溶融混練条件は、設定温度220℃、スクリュー回転数240rpm、及び吐出量18kg/hであった。
 続いて、溶融混練物を、T-ダイを経て表面温度25℃に制御された冷却ロール上に押出しキャストすることにより、原反膜厚1100μmのゲルシート(シート状成型体)を得た。
 次に、シート状成型体を同時二軸テンター延伸機に導き、二軸延伸を行なって延伸物を得た。設定延伸条件は、MD倍率7.0倍、TD倍率6.2倍、二軸延伸温度120℃とした。
 次に、延伸後のゲルシートをジクロロメタン槽に導き、ジクロロメタン中に充分に浸漬して流動パラフィンを抽出除去し、その後ジクロロメタンを乾燥除去し、多孔体を得た。
 次に、熱固定(HS)を行なうべく多孔体をTDテンターに導き、熱固定温度133℃、延伸倍率2.1倍でHSを行い、その後、TD方向2.0倍までの緩和操作を行った。
 その後、得られた微多孔膜について、端部を裁断し、幅1,100mm、長さ5,000mのマザーロールとして巻き取った。
 上記の評価時には、マザーロールから巻き出した微多孔膜を必要に応じてスリットして、評価用セパレータとして使用した。
〔実施例II-2~II-8、比較例II-1~II-3〕
 表9に記載されるように、成分AとBの量比、追加成分としての(C)その他の樹脂の有無、膜物性、及び架橋方式・条件を変更したこと以外は、実施例II-1と同様の操作を行って、表9に示す微多孔膜を得た。なお、表9中の成分「PP」としては、温度230℃及び質量2.16kgの条件下で測定したMFRが2.5g/10min以下、かつ密度が0.89g/cm以上であるシラン未変性ポリプロピレンを使用した。また表9中の架橋方式「アルカリ処理架橋」においては、25%苛性ソーダ水溶液(温度80℃、pH8.5~14)によりサンプルを処理する。
〔評価結果〕
 実施例II-1~II-8及び比較例II-1~II-3で得られた微多孔膜及び電池について、上記評価方法に従って各種の評価を行って、評価結果も表9に示す。また、得られた微多孔膜を蓄電デバイス用セパレータとして使用したときの粘弾性測定については、温度とギャップ距離と貯蔵弾性率と損失弾性率との関係を、実施例II-1では図4(a)に、比較例II-1では図4(b)にそれぞれ示し、さらに、温度、ギャップ距離及びギャップ変位の一次微分値に基づいて決定される膜軟化転移温度を、実施例II-1では図5(a)に、比較例II-1では図5(b)にそれぞれ示す。実施例II-1~II-8と比較例II-3では、測定限界温度250℃で膜破断が観察されなかった。なお、実施例II-1及び比較例II-1では、厚み8μmの膜を26枚重ねて、サンプル総膜厚208μmの条件下で貯蔵弾性率と損失弾性率と膜軟化転移温度と膜破断温度の測定を行った。
Figure JPOXMLDOC01-appb-T000083
Figure JPOXMLDOC01-appb-T000084
<実験シリーズIIb>
〔基準膜〕
 シラン変性ポリオレフィンを含まない蓄電デバイス用セパレータ(以下「基準膜」という)として、デカリン溶液中の160℃での加熱前後の固形分の変化率(以下「ゲル化度」という)が約0%であるシラングラフト非変性ポリオレフィン微多孔膜を使用した。ゲル化度の測定時に、固形分は、樹脂のみを意味し、無機物などの他の材料を含まないものとする。
 なお、本明細書では、シラングラフト変性ポリオレフィンを含まない蓄電デバイス用セパレータは、ポリエチレン(PE):X(粘度平均分子量10万~40万)、PE:Y(粘度平均分子量40万~80万)及びPE:Z(粘度平均分子量80万~900万)から成る群から選択される任意の一種類、またはX、Y及びZから成る群から選択される2種類若しくは3種類を用いて、任意の割合で混合した組成で製造されることができる。なお、低密度ポリエチエレン:LDPE、直鎖状低密度ポリエチレン:LLDPE、ポリプロピレン:PP、オレフィン系熱可塑性エラストマー等の炭化水素骨格のみで構成したポリオレフィンを混合組成物に添加してもよい。
〔架橋膜〕
 シラン架橋反応後の蓄電デバイス用セパレータ(以下「架橋膜」という)として、上記で説明された電解液と接触した後の実施例II-1のポリオレフィン微多孔膜、又は初回充放電後のセルから取り出された実施例II-1のポリオレフィン微多孔膜を乾燥させて使用した。架橋膜のゲル化度は、30%以上又は70%以上であった。
〔粘弾性挙動〕
 基準膜と架橋膜について上記項目<貯蔵弾性率と損失弾性率と膜軟化転移温度と膜破断温度(version 3)>の測定を行なった。測定結果を表10に示す。
Figure JPOXMLDOC01-appb-T000085
<実験グループIII>
[シラングラフト変性ポリオレフィンの製法]
 シラングラフト変性ポリオレフィンに用いる原料ポリオレフィンは粘度平均分子量(Mv)が10万以上かつ100万以下であり、重量平均分子量(Mw)が3万以上かつ92万以下、数平均分子量は1万以上かつ15万以下でよく、プロピレン又はブテン共重合αオレフィンでもよい。原料ポリエチレンを押出機で溶融混練しながら、有機過酸化物(ジ-t-ブチルパーオキサイド)を添加し、αオレフィンポリマー鎖内でラジカルを発生させた後、トリメトキシアルコキシド置換ビニルシランを注液し、付加反応により、αオレフィンポリマーへアルコキシシリル基を導入し、シラングラフト構造を形成させる。また、同時に系中のラジカル濃度を調整するために、酸化防止剤(ペンタエリトリトールテトラキス[3-(3,5-ジ-テトラ-ブチル-4-ヒドロキシフェニル)プロピオナート])を適量添加し、αオレフィン内の鎖状連鎖反応(ゲル化)を抑制する。得られたシラングラフトポリオレフィン溶融樹脂を水中で冷却し、ペレット加工を行った後、80℃で2日加熱乾燥し、水分又は未反応のトリメトキシアルコキシド置換ビニルシランを除く。なお、未反応のトリメトキシアルコキシド置換ビニルシランのペレット中の残留濃度は、1000~1500ppm程度である。
 上記の製法により得られたシラングラフト変性ポリオレフィンを表11及び表12において「シラン変性ポリエチレン」として示す。
[シラン変性PE以外の各種官能基を有する変性PEおよび共重合体の製法]
 シラン変性PE以外の各種官能基を有する変性PEおよび共重合体は以下の方法で製造した。
 いずれの原料についても、MIが0.5~10の範囲内になるように使用する原料の分子量で調整した。水酸基を有する変性PEは、EVA共重合体をケン化、中和することで製造した。アミン変性、オキサゾリン変性などの変性樹脂は、クロム触媒を用いて重合したPEの末端ビニル基を過酸化水素条件下でタングステン系触媒に作用させ、ビニル基をエポキシ基へ変換する。以後は、既に公知の官能基変換有機反応を用いて、対象反応部位を目的官能基へ変換し、種々の変性PEを得た。例えば、アミン変性PEの場合は、エポキシ基を有する変性PEを押出機内で200℃で溶融混練しながら、1級又は2級アミン類を液体で注入し、反応をさせる。その後、減圧弁より未反応のアミン類を除き、得られたアミン変性樹脂をストランド状に押出し、ペレット状へカットする。
 上記の製法により得られた変性PEを表11及び表12において「変性PE又は共重合体(B)」の一種として示す。
[実施例III-1]
 重量平均分子量が500,000のホモポリマーのポリエチレン(A)79.2質量%に、粘度平均分子量20,000のポリオレフィンを原料とし、トリメトキシアルコキシド置換ビニルシランによって変性反応で得られるMFRが0.4g/分のシラングラフトポリエチレン(PE(B))19.8質量%(以上より(A)と(B)の樹脂組成はそれぞれ0.8および0.2)、酸化防止剤としてペンタエリスリチル-テトラキス-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]を1質量%添加し、タンブラーブレンダーを用いてドライブレンドすることにより、混合物を得た。得られた混合物を、二軸押出機へ窒素雰囲気下でフィーダーにより供給した。また、流動パラフィン(37.78℃における動粘度7.59×10-5/s)を押出機シリンダーにプランジャーポンプにより注入した。
 押出機内で混合物と流動パラフィンを溶融混練し、押し出されるポリオレフィン組成物中に占める流動パラフィン量比が質量70%となるように(即ち、ポリマー濃度が30質量%となるように)、フィーダー及びポンプを調整した。溶融混練条件は、設定温度220℃、スクリュー回転数240rpm、及び吐出量18kg/hであった。
 続いて、溶融混練物を、T-ダイを経て表面温度25℃に制御された冷却ロール上に押出しキャストすることにより、原反膜厚1400μmのゲルシート(シート状成型体)を得た。
 次に、シート状成型体を同時二軸テンター延伸機に導き、二軸延伸を行なって延伸物を得た。設定延伸条件は、MD倍率7.0倍、TD倍率6.0倍(即ち、7×6倍)、二軸延伸温度125℃とした。
 次に、延伸後のゲルシートをメチルエチルケトン槽に導き、メチルエチルケトン中に充分に浸漬して流動パラフィンを抽出除去し、その後メチルエチルケトンを乾燥除去し、多孔体を得た。
 次に、熱固定(HS)を行なうべく多孔体をTDテンターに導き、熱固定温度125℃、延伸倍率1.8倍でHSを行い、その後、TD方向0.5倍の緩和操作(即ち、HS緩和率が0.5倍)を行って微多孔膜を得た。
 その後、得られた微多孔膜について、端部を裁断し、幅1,100mm、長さ5,000mのマザーロールとして巻き取った。
 上記の評価時には、マザーロールから巻き出した微多孔膜を必要に応じてスリットして、評価用セパレータとして使用した。
 評価用セパレータ及び電池について、上記評価方法に従って各種の評価を行って、評価結果を表11に示した。
[実施例III-2~III-18]
 表11又は表12に記載されるように、樹脂AとBの種類、量比及び架橋方式・条件を変更したこと以外は、実施例III-1と同様の操作を行って、表11又は表12に示す微多孔膜及び電池を得た。得られた微多孔膜及び電池について、上記評価方法に従って各種の評価を行って、評価結果も表11又は表12に示した。なお、実施例III-8~III-10,III-15~III-18では電解液注入した際に、表11又は表12に記載の添加剤を予め、適量電解液へ溶解したものを使用した。
[比較例III-1、III-2]
 表12に記載されるように、樹脂AとBの種類、量比及び架橋方式・条件を変更したこと以外は、実施例III-1と同様の操作を行って、表12に示す微多孔膜を得た。得られた微多孔膜を用いて、所定の線量を照射させ、電子線架橋を行った。得られた電子線架橋微多孔膜及び電池について、上記評価方法に従って各種の評価を行って、評価結果も表12に示した。
 比較例III-2と実施例III-1について、ひずみ量-結晶細分化率グラフを図8に示して、引張破断破壊試験時のX線結晶構造変化を観察する。図8では、比較例III-2の微多孔膜が点線「EB架橋」として表され、実施例III-1の微多孔膜が実線「化学架橋前」及び破線「化学架橋後」として表される。
Figure JPOXMLDOC01-appb-T000086
Figure JPOXMLDOC01-appb-T000087
Figure JPOXMLDOC01-appb-T000088
Figure JPOXMLDOC01-appb-T000089
表11及び表12中の略号の説明
 「シラン変性ポリエチレン」は、粘度平均分子量20,000のポリオレフィンを原料として用いて、トリメトキシアルコキシド置換ビニルシランによる変性反応で得られる、密度が0.95g/cmであり、かつ190℃でのメルトフローレート(MFR)が0.4g/分であるシラン変性ポリエチレンである。
  「-COOH変性PE」、「-オキサゾリン変性PE」、「-オキサゾリン,-OH変性PE」、「-OH変性PE」、「-OH,-NH-変性PE」及び「-OH,アミン変性PE」は、いずれも上記[シラン変性PE以外の各種官能基を有する変性PEおよび共重合体の製法]により得られる変性PEである。
** (I)複数の同一官能基の縮合反応
   (II)複数の異種官能基間の反応
   (III)官能基と電解液の連鎖縮合反応
   (IV)官能基と添加剤の反応
   (V)複数の同一官能基が、溶出金属イオンとの配位結合を介して架橋する反応
*** EC:エチレンカーボネート
**** BS(PEG):両末端スクシンイミド、EOユニット繰り返し数5
    ジイソシアネート:両末端イソシアネートをウレタン結合を介して、ヘキサンユニットと連結した化合物
    ジエポキシ化合物:両末端エポキシド基とブタンユニットとを連結した化合物
<実験グループIV>
[実施例IV-1]
<A層の作製>
(シラングラフト変性ポリオレフィンの作製)
 粘度平均分子量120,000のポリエチレンを原料ポリエチレンとし、原料ポリエチレンを押出機で溶融混練しながら、有機過酸化物(ジ-t-ブチルパーオキサイド)を添加し、αオレフィンのポリマー鎖内でラジカルを発生させた後、トリメトキシアルコキシド置換ビニルシランを注液し、付加反応により、αオレフィンポリマーへアルコキシシリル基を導入し、シラングラフト構造を形成させた。また、同時に反応系中のラジカル濃度を調整するために、酸化防止剤(ペンタエリトリトールテトラキス[3-(3,5-ジ-テトラ-ブチル-4-ヒドロキシフェニル)プロピオナート])を適量添加し、αオレフィン内の鎖状連鎖反応(ゲル化)を抑制した。得られたシラングラフトポリオレフィン溶融樹脂を水中で冷却し、ペレット加工を行った後、80℃で2日加熱乾燥し、水分又は未反応のトリメトキシアルコキシド置換ビニルシランを除いた。なお、未反応のトリメトキシアルコキシド置換ビニルシランのペレット中の残留濃度は、約1500ppm以下であった。
 上記のようにトリメトキシアルコキシド置換ビニルシランを用いる変性反応によって、MFR(190℃)が0.4g/分のシラン変性ポリエチレンを得た。
(A層の作製)
 重量平均分子量800,000のホモポリマーのポリエチレン65質量%に、上記で得られたシラン変性ポリエチレン35質量%を合わせて樹脂配合物を形成し、その配合物へ酸化防止剤としてペンタエリスリチル-テトラキス-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]を1質量%添加し、タンブラーブレンダーを用いてドライブレンドすることにより、混合物を得た。得られた混合物を、二軸押出機へ窒素雰囲気下でフィーダーにより供給した。また、流動パラフィン(37.78℃における動粘度7.59×10-5/s)を押出機シリンダーにプランジャーポンプにより注入した。
 押出機内で混合物と流動パラフィンを溶融混練し、押し出されるポリオレフィン組成物中に占める流動パラフィン量比が質量70%となるように(即ち、ポリマー濃度が30質量%となるように)、フィーダー及びポンプを調整した。溶融混練条件は、設定温度220℃、スクリュー回転数240rpm、及び吐出量18kg/時間であった。続いて、溶融混練物を、T-ダイを経て表面温度25℃に制御された冷却ロール上に押出しキャストすることにより、原反膜厚1400μmのゲルシート(シート状成型体)を得た。
 次に、シート状成型体を同時二軸テンター延伸機に導き、二軸延伸を行なって、延伸物を得た。設定延伸条件は、MD倍率7.0倍、TD倍率6.3倍(即ち、7×6.3倍)、二軸延伸温度122℃とした。
 次に、延伸後のゲルシートをジクロロメタン槽に導き、ジクロロメタン中に充分に浸漬して流動パラフィンを抽出除去し、その後ジクロロメタンを乾燥除去し、多孔体を得た。
 次に、熱固定(HS)を行なうべく多孔体をTDテンターに導き、熱固定温度133℃、延伸倍率1.8倍でHSを行い、その後、TD1.7倍まで緩和操作を行って微多孔膜を得た。
 その後、得られた微多孔膜について、端部を裁断し、幅1,100mm、長さ5,000mのマザーロールとして巻き取った。
 上記の評価時には、マザーロールから巻き出した微多孔膜を必要に応じてスリットして、評価用A層として使用した。
 得られた評価用A層について膜厚、透気度、気孔率等を測定し、表13に示した。
<B層の作製>
 無機粒子として95質量部の水酸化酸化アルミニウム(平均粒径1.4μm)と、イオン性分散剤として0.4質量部(固形分換算)のポリカルボン酸アンモニウム水溶液(サンノプコ社製 SNディスパーサント5468、固形分濃度40%)とを、100質量部の水に均一に分散させて分散液を調整した。得られた分散液を、ビーズミル(セル容積200cc、ジルコニア製ビーズ径0.1mm、充填量80%)にて解砕処理し、無機粒子の粒度分布を、D50=1.0μmに調整し、無機粒子含有スラリーを作製した。
 次に、上記微多孔膜マザーロールから微多孔膜を連続的に繰り出し、微多孔膜の片面に無機粒子含有スラリーをグラビアリバースコーターで塗工し、続いて60℃の乾燥機で乾燥させて水を除去し、巻き取って、セパレータのマザーロールを得た。
 評価時には、マザーロールから巻き出したセパレータを必要に応じてスリットして、評価用セパレータとして使用した。
[実施例IV-2~IV-5、及び比較例IV-1~IV-2]
 表13に記載される物性値を目標に、ホモポリマーのポリエチレンの重量平均分子量と、設定延伸条件と、熱固定条件と、緩和操作条件と、の少なくともいずれか1つの条件を変更した。また、表13に記載されるとおりにB層における構成を変更した。
 これらの変更以外は、実施例IV-1と同様の手法により、セパレータを作製し、得られたセパレータを用いて上記の評価を行った。評価結果を表13に示す。
Figure JPOXMLDOC01-appb-T000090
<実験グループV>
[シラングラフト変性ポリオレフィンの製法]
 シラングラフト変性ポリオレフィンに用いる原料ポリオレフィンは、粘度平均分子量(Mv)が10万以上かつ100万以下であり、重量平均分子量(Mw)が3万以上かつ92万以下、数平均分子量は1万以上かつ15万以下でよく、プロピレン又はブテン共重合αオレフィンでもよい。原料ポリエチレンを押出機で溶融混練しながら、有機過酸化物(ジ-t-ブチルパーオキサイド)を添加し、αオレフィンのポリマー鎖内でラジカルを発生させた後、トリメトキシアルコキシド置換ビニルシランを注液し、付加反応により、αオレフィンポリマーへアルコキシシリル基を導入し、シラングラフト構造を形成させる。また、同時に系中のラジカル濃度を調整するために、酸化防止剤(ペンタエリトリトールテトラキス[3-(3,5-ジ-テトラ-ブチル-4-ヒドロキシフェニル)プロピオナート])を適量添加し、αオレフィン内の鎖状連鎖反応(ゲル化)を抑制する。得られたシラングラフトポリオレフィン溶融樹脂を水中で冷却し、ペレット加工を行った後、80℃で2日加熱乾燥し、水分又は未反応のトリメトキシアルコキシド置換ビニルシランを除く。なお、未反応のトリメトキシアルコキシド置換ビニルシランのペレット中の残留濃度は、10~1500ppm程度である。
 上記の製法により得られたシラングラフト変性ポリオレフィンを表14~16において「シラン変性ポリエチレン(B)」として用いる。なお、今回使用したシラングラフト変性ポリオレフィンは密度が0.94g/cmであり、かつMFRが0.65g/分である。
[実施例V-1]
(微多孔膜の形成)
 重量平均分子量が500,000のホモポリマーのポリエチレン(A)79.2重量%に、粘度平均分子量20,000のポリオレフィンを原料とし、トリメトキシアルコキシド置換ビニルシランによって変性反応で得られるMFR(190℃)が0.4g/分のシラングラフトポリエチレン(シラン変性ポリエチレン(B))19.8重量%(以上より(A)と(B)の樹脂組成は80%および20%)、酸化防止剤としてペンタエリスリチル-テトラキス-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]を1重量%添加し、タンブラーブレンダーを用いてドライブレンドすることにより、混合物を得た。得られた混合物を、二軸押出機へ窒素雰囲気下でフィーダーにより供給した。また、流動パラフィン(37.78℃における動粘度7.59×10-5/s)を押出機シリンダーにプランジャーポンプにより注入した。
 押出機内で混合物と流動パラフィンを溶融混練し、押し出されるポリオレフィン組成物中に占める流動パラフィン量比が重量70%となるように(即ち、ポリマー濃度が30重量%となるように)、フィーダー及びポンプを調整した。溶融混練条件は、設定温度220℃、スクリュー回転数240rpm、及び吐出量18kg/hであった。
 続いて、溶融混練物を、T-ダイを経て表面温度25℃に制御された冷却ロール上に押出しキャストすることにより、原反膜厚1400μmのゲルシート(シート状成型体)を得た。
 次に、シート状成型体を同時二軸テンター延伸機に導き、二軸延伸を行なって延伸物を得た。設定延伸条件は、MD倍率7.0倍、TD倍率6.0倍(即ち、7×6倍)、二軸延伸温度125℃とした。
 次に、延伸後のゲルシートをメチルエチルケトン槽に導き、メチルエチルケトン中に充分に浸漬して流動パラフィンを抽出除去し、その後メチルエチルケトンを乾燥除去し、多孔体を得た。
 次に、熱固定(HS)を行なうべく多孔体をTDテンターに導き、熱固定温度125℃、延伸倍率1.8倍でHSを行い、その後、TD方向0.5倍の緩和操作(即ち、HS緩和率が0.5倍)を行って微多孔膜を得た。
 その後、得られた微多孔膜について、端部を裁断し、幅1,100mm、長さ5,000mの微多孔膜マザーロールとして巻き取った。
(アクリルラテックスの製法)
 樹脂バインダとして用いられるアクリルラテックスは以下の方法で製造される。
 撹拌機、還流冷却器、滴下槽及び温度計を取り付けた反応容器に、イオン交換水70.4質量部と、乳化剤として「アクアロンKH1025」(登録商標、第一工業製薬株式会社製25%水溶液)0.5質量部と、「アデカリアソープSR1025」(登録商標、株式会社ADEKA製25%水溶液)0.5質量部とを投入した。次いで、反応容器内部の温度を80℃に昇温し、80℃の温度を保ったまま、過硫酸アンモニウムの2%水溶液を7.5質量部添加し、初期混合物を得た。過硫酸アンモニウム水溶液を添加終了した5分後に、乳化液を滴下槽から反応容器に150分かけて滴下した。
 なお、上記乳化液は:ブチルアクリレート70質量部;メタクリル酸メチル29質量部;メタクリル酸1質量部;乳化剤として「アクアロンKH1025」(登録商標、第一工業製薬株式会社製25%水溶液)3質量部と「アデカリアソープSR1025」(登録商標、株式会社ADEKA製25%水溶液)3質量部;過硫酸アンモニウムの2%水溶液7.5質量部;及びイオン交換水52質量部の混合物を、ホモミキサーにより5分間混合させて調製した。
 乳化液の滴下終了後、反応容器内部の温度を80℃に保ったまま90分間維持し、その後室温まで冷却した。得られたエマルジョンを、25%の水酸化アンモニウム水溶液でpH=8.0に調整し、少量の水を加えて固形分40%のアクリルラテックスを得た。得られたアクリルラテックスは数平均粒子径145nm、ガラス転移温度-23℃であった。
(無機多孔質層の形成)
 無機粒子として95重量部の水酸化酸化アルミニウム(平均粒径1.4μm)と、イオン性分散剤として0.4重量部(固形分換算)のポリカルボン酸アンモニウム水溶液(サンノプコ社製 SNディスパーサント5468、固形分濃度40%)とを、100重量部の水に均一に分散させて分散液を調整した。得られた分散液を、ビーズミル(セル容積200cc、ジルコニア製ビーズ径0.1mm、充填量80%)にて解砕処理し、無機粒子の粒度分布を、D50=1.0μmに調整した。粒度分布を調整した分散液に、樹脂バインダとして4.6重量部(固形分換算)のアクリルラテックス(固形分濃度40%、平均粒径145nm、ガラス転移温度-23℃、構成モノマー:ブチルアクリレート、メタクリル酸メチル、メタクリル酸)を添加することによって無機粒子含有スラリーを作製した。
 次に、上記微多孔膜マザーロールから微多孔膜を連続的に繰り出し、微多孔膜の片面に無機粒子含有スラリーをグラビアリバースコーターで塗工し、続いて60℃の乾燥機で乾燥させて水を除去し、巻き取って、セパレータのマザーロールを得た。
 評価時には、マザーロールから巻き出したセパレータを必要に応じてスリットして、評価用セパレータとして使用した。
[実施例V-2~V-12、比較例V-2]
 表14~16に記載されるように、成分AとBの量比、無機層の有無又は組成、及び架橋方式・条件を変更したこと以外は、実施例V-1と同様の操作を行って、表14~16に示す微多孔膜を得た。
[比較例V-1]
 重量平均分子量が500,000のホモポリマーのポリエチレン(A)79.2重量%に、粘度平均分子量20,000のポリオレフィンを原料とし、トリメトキシアルコキシド置換ビニルシランによって変性反応で得られるMFR(190℃)が0.4g/分のシラングラフトポリエチレン(シラン変性ポリエチレン(B))19.8重量%(以上より(A)と(B)の樹脂組成はそれぞれ80%および20%)、酸化防止剤としてペンタエリスリチル-テトラキス-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]を1重量%添加し、タンブラーブレンダーを用いてドライブレンドすることにより、混合物を得た。得られた混合物を、二軸押出機へ窒素雰囲気下でフィーダーにより供給した。また、流動パラフィン(37.78℃における動粘度7.59×10-5/s)を押出機シリンダーにプランジャーポンプにより注入した。
 押出機内で混合物と流動パラフィンを溶融混練し、押し出されるポリオレフィン組成物中に占める流動パラフィン量比が重量70%となるように(即ち、ポリマー濃度が30重量%となるように)、フィーダー及びポンプを調整した。溶融混練条件は、設定温度220℃、スクリュー回転数240rpm、及び吐出量18kg/hであった。
 続いて、溶融混練物を、T-ダイを経て表面温度25℃に制御された冷却ロール上に押出しキャストすることにより、原反膜厚1400μmのゲルシート(シート状成型体)を得た。
 次に、シート状成型体を同時二軸テンター延伸機に導き、二軸延伸を行なって延伸物を得た。設定延伸条件は、MD倍率7.0倍、TD倍率6.0倍(即ち、7×6倍)、二軸延伸温度125℃とした。
 次に、延伸後のゲルシートをメチルエチルケトン槽に導き、メチルエチルケトン中に充分に浸漬して流動パラフィンを抽出除去し、その後メチルエチルケトンを乾燥除去し、多孔体を得た。
 次に、熱固定(HS)を行なうべく多孔体をTDテンターに導き、熱固定温度125℃、延伸倍率1.8倍でHSを行い、その後、TD方向0.5倍の緩和操作(即ち、HS緩和率が0.5倍)を行った。
 比較例V-1では、熱処理多孔体をセパレータとして使用するために、得られた多孔体について、端部を裁断し、幅1,100mm、長さ5,000mのマザーロールとして巻き取った。
 比較例V-1について、上記の評価時には、マザーロールから巻き出した微多孔膜を必要に応じてスリットして、評価用セパレータとして使用した。
[評価結果]
 実施例V-1~V-12及び比較例V-1~V-2で得られた微多孔膜及び電池について、上記評価方法に従って各種の評価を行って、評価結果も表14~16に示した。
Figure JPOXMLDOC01-appb-T000091
Figure JPOXMLDOC01-appb-T000092
Figure JPOXMLDOC01-appb-T000093
<実験グループVI>
 特許文献5(特開2001-176484号公報)に示される実施例1~3及び比較例2~3と同様に多孔膜を形成し、それぞれ多孔膜V-1~V-5と表示した。多孔膜V-1~V-5について、特許文献5に記載の方法に従ってゲル分率(%)、耐熱温度(℃)及び針貫通強度(gf/25μm)を評価し、さらに本明細書の上記項目<貯蔵弾性率と損失弾性率と転移温度(version 1)>に従って、多孔膜V-4の電解液接触前後の貯蔵弾性率と損失弾性率の変化倍率R△E’とR△E’’を測定した。結果を表17に示す。
Figure JPOXMLDOC01-appb-T000094
 表17から下記の点が明らかである。
(a)ゲル分率が最低値である多孔膜V-4(特許文献5の比較例2、ゲル分率36%)でさえも弾性率変化倍率が1のまま変わらないので、多孔膜V-1~V-5のいずれも既に架橋反応し尽くしており、特許文献5に記載の多孔膜には自己架橋性(未架橋部分)がないことが実証された。
(b)なお、特許文献5の比較例1はシラン未変性品である。
(c)上記で説明された本発明の第七の実施形態に係るセパレータは、結晶と結晶部の間の非結晶ゾーンを選択的に化学架橋することに価値がある。シラン未変性ポリオレフィンとシラン変性ポリオレフィンが混晶を作る際に、変性ユニットが非結晶部にはじき出されて、ランダムに分散している状態では、連接している架橋ユニットは接触し、架橋反応が進む。
 他方、複数の架橋ユニットが互いに遠く離れていると、架橋ユニットが存在しているとしても、架橋反応に寄与できない。特に、多孔膜中のシラノールからシロキサンへの架橋反応は、その(全ての)反応条件が充足されると、直ぐに反応が進行し、架橋に寄与可能なユニットは十分に架橋できるので、多孔膜を含む電池内で残存ユニットのさらなる架橋が進行することはあり得ない。
 したがって、多孔膜V-1~V-5のように残存シラノール基が多孔膜中に残っているとしても、それらの膜の製造工程内で架橋処理を行っていれば、その膜を含む電池内の架橋反応は進行しない(すなわち、その残存シラノール基は架橋構造に寄与できない)。
(d)本発明の第七の実施形態に係るセパレータについては、原料樹脂の分子量、コポリマー濃度、配合率などを調整し、さらに、延伸製膜工程と組み合わせて、高確率で架橋ユニットの架橋反応が進行できる結晶間距離、架橋ユニットの分散分布を有する結晶構造を実験的に見出した。それによって、電池の耐破壊性、耐熱安全性を向上することができ、残存ヘテロ官能基による電池サイクル性能の劣化も抑制することができた。

Claims (60)

  1.  シラン変性ポリオレフィンを含む蓄電デバイス用セパレータであって、前記蓄電デバイス用セパレータが電解液と接触すると前記シラン変性ポリオレフィンのシラン架橋反応が開始されることを特徴とする蓄電デバイス用セパレータ。
  2.  前記シラン変性ポリオレフィンが、当該シラン変性ポリオレフィンを架橋する脱水縮合触媒を含有するマスターバッチ樹脂ではない、請求項1に記載の蓄電デバイス用セパレータ。
  3.  前記蓄電デバイス用セパレータが、前記シラン変性ポリオレフィンに加えて、ポリエチレンを含む、請求項1又は2に記載の蓄電デバイス用セパレータ。
  4.  前記シラン変性ポリオレフィンと前記ポリエチレンの質量比(シラン変性ポリオレフィンの質量/ポリエチレンの質量)が、0.05/0.95~0.40/0.60である、請求項3に記載の蓄電デバイス用セパレータ。
  5.  シラン変性ポリオレフィンを5~40質量%、及び前記シラン変性ポリオレフィン以外のポリオレフィンを60~95質量%含む蓄電デバイス用セパレータであって、下記式(1):
      RΔE’=E’/E’   (1)
    {式中、E’は、前記シラン変性ポリオレフィンが架橋反応する前の前記蓄電デバイス用セパレータの160℃~220℃で測定された貯蔵弾性率であり、かつE’は、前記シラン変性ポリオレフィンが架橋反応した後の前記蓄電デバイス用セパレータの160℃~220℃で測定された貯蔵弾性率であり、そしてE’又はE’である貯蔵弾性率E’の測定条件は、下記構成(i)~(iv)で規定される。
     (i)動的粘弾性測定を以下の条件:
     ・使用測定装置:RSA-G2(TAインスツルメンツ社製)
     ・サンプル膜厚:5μm~50μmの範囲
     ・測定温度範囲:-50~225℃
     ・昇温速度:10℃/min
     ・測定周波数:1Hz
     ・変形モード:正弦波引張モード(Linear tension)
     ・静的引張荷重の初期値:0.5N
     ・初期(25℃時)のギャップ間距離:25mm
     ・Auto strain adjustment:Enabled(範囲:振幅値0.05~25%、正弦波荷重0.02~5N)
    で行う。
     (ii)前記静的引張荷重とは、各周期運動での最大応力と最小応力の中間値を指し、かつ前記正弦波荷重とは、前記静的引張荷重を中心とした振動応力を指す。
     (iii)前記正弦波引張モードとは、固定振幅0.2%で周期運動を行いながら前記振動応力を測定することを指し、前記正弦波引張モードでは、前記静的引張荷重と前記正弦波荷重の差が20%以内となるようにギャップ間距離及び前記静的引張荷重を変動して前記振動応力を測定し、前記正弦波荷重が0.02N以下になった場合、前記正弦波荷重が5N以内かつ前記振幅値の増加量が25%以内になるように前記振幅値を増幅させて前記振動応力を測定する。
     (iv)得られた正弦波荷重と振幅値の関係、及び下記式:
      σ=σ・Exp[i(ωt+δ)]、
      ε=ε・Exp(iωt)、
      σ=E・ε
      E=E’+iE’’
      (式中、σ:振動応力、ε:歪み、i:虚数単位、ω:角振動数、t:時間、δ:振動応力と歪みの間の位相差、E:複素弾性率、E’:貯蔵弾性率、E’’:損失弾性率
      振動応力:正弦波荷重/初期断面積
      静的引張荷重:各周期での振動応力の最小点(各周期でのギャップ間距離の最小点)の荷重
      正弦波荷重:測定された振動応力と静的引張荷重の差)
    から貯蔵弾性率E’を算出する。}
    により定義される貯蔵弾性率変化比(RΔE’)が、1.5倍~20倍である蓄電デバイス用セパレータ。
  6.  シラン変性ポリオレフィンを5~40質量%、及び前記シラン変性ポリオレフィン以外のポリオレフィンを60~95質量%含む蓄電デバイス用セパレータであって、下記式(3):
      RΔE’’=E’’/E’’   (3)
    {式中、E’’は、前記シラン変性ポリオレフィンが架橋反応する前の前記蓄電デバイス用セパレータの160℃~220℃で測定された損失弾性率であり、かつE’’は、前記シラン変性ポリオレフィンが架橋反応した後の前記蓄電デバイス用セパレータの160℃~220℃で測定された損失弾性率であり、そしてE’’又はE’’である損失弾性率E’’の測定条件は、下記構成(i)~(iv)で規定される。
     (i)動的粘弾性測定を以下の条件:
     ・使用測定装置:RSA-G2(TAインスツルメンツ社製)
     ・サンプル膜厚:5μm~50μmの範囲
     ・測定温度範囲:-50~225℃
     ・昇温速度:10℃/min
     ・測定周波数:1Hz
     ・変形モード:正弦波引張モード(Linear tension)
     ・静的引張荷重の初期値:0.5N
     ・初期(25℃時)のギャップ間距離:25mm
     ・Auto strain adjustment:Enabled(範囲:振幅値0.05~25%、正弦波荷重0.02~5N)
    で行う。
     (ii)前記静的引張荷重とは、各周期運動での最大応力と最小応力の中間値を指し、かつ前記正弦波荷重とは、前記静的引張荷重を中心とした振動応力を指す。
     (iii)前記正弦波引張モードとは、固定振幅0.2%で周期運動を行いながら前記振動応力を測定することを指し、前記正弦波引張モードでは、前記静的引張荷重と前記正弦波荷重の差が20%以内となるようにギャップ間距離及び前記静的引張荷重を変動して前記振動応力を測定し、前記正弦波荷重が0.02N以下になった場合、前記正弦波荷重が5N以内かつ振幅値の増加量が25%以内になるように前記振幅値を増幅させて前記振動応力を測定する。
     (iv)得られた正弦波荷重と振幅値、及び下記式:
      σ=σ・Exp[i(ωt+δ)]、
      ε=ε・Exp(iωt)、
      σ=E・ε
      E=E’+iE’’
      (式中、σ:振動応力、ε:歪み、i:虚数単位、ω:角振動数、t:時間、δ:振動応力と歪みの間の位相差、E:複素弾性率、E’:貯蔵弾性率、E’’:損失弾性率
      振動応力:正弦波荷重/初期断面積
      静的引張荷重:各周期での振動応力の最小点(各周期でのギャップ間距離の最小点)の荷重
      正弦波荷重:測定された振動応力と静的引張荷重の差)
    から損失弾性率E’’を算出する。}
    により定義される損失弾性率変化比(RΔE’’)が、1.5倍~20倍である蓄電デバイス用セパレータ。
  7.  蓄電デバイス用セパレータが電解液と接触するとシラン変性ポリオレフィンのシラン架橋反応が起こることを特徴とする蓄電デバイス用セパレータ。
  8.  シラン変性ポリオレフィンを5~40質量%、及び前記シラン変性ポリオレフィン以外のポリオレフィンを60~95質量%含む蓄電デバイス用セパレータであって、下記式(2):
      RE’mix=E’/E’   (2)
    {式中、E’は、前記蓄電デバイス用セパレータの160℃~220℃で測定された貯蔵弾性率であり、かつE’は、前記シラン変性ポリオレフィンを含まない蓄電デバイス用セパレータの160℃~220℃で測定された貯蔵弾性率であり、そしてE’又はE’である貯蔵弾性率E’の測定条件は、下記構成(i)~(iv)で規定される。
     (i)動的粘弾性測定を以下の条件:
     ・使用測定装置:RSA-G2(TAインスツルメンツ社製)
     ・サンプル膜厚:5μm~50μmの範囲
     ・測定温度範囲:-50~225℃
     ・昇温速度:10℃/min
     ・測定周波数:1Hz
     ・変形モード:正弦波引張モード(Linear tension)
     ・静的引張荷重の初期値:0.5N
     ・初期(25℃時)のギャップ間距離:25mm
     ・Auto strain adjustment:Enabled(範囲:振幅値0.05~25%、正弦波荷重0.02~5N)
    で行う。
     (ii)前記静的引張荷重とは、各周期運動での最大応力と最小応力の中間値を指し、かつ前記正弦波荷重とは、前記静的引張荷重を中心とした振動応力を指す。
     (iii)前記正弦波引張モードとは、固定振幅0.2%で周期運動を行いながら前記振動応力を測定することを指し、前記正弦波引張モードでは、前記静的引張荷重と前記正弦波荷重の差が20%以内となるようにギャップ間距離及び前記静的引張荷重を変動して前記振動応力を測定し、前記正弦波荷重が0.02N以下になった場合、前記正弦波荷重が5N以内かつ前記振幅値の増加量が25%以内になるように前記振幅値を増幅させて前記振動応力を測定する。
     (iv)得られた正弦波荷重と振幅値の関係、及び下記式:
      σ=σ・Exp[i(ωt+δ)]、
      ε=ε・Exp(iωt)、
      σ=E・ε
      E=E’+iE’’
      (式中、σ:振動応力、ε:歪み、i:虚数単位、ω:角振動数、t:時間、δ:振動応力と歪みの間の位相差、E:複素弾性率、E’:貯蔵弾性率、E’’:損失弾性率
      振動応力:正弦波荷重/初期断面積
      静的引張荷重:各周期での振動応力の最小点(各周期でのギャップ間距離の最小点)の荷重
      正弦波荷重:測定された振動応力と静的引張荷重の差)
    から貯蔵弾性率E’を算出する。}
    により定義される混合貯蔵弾性率比(RE’mix)が、1.5倍~20倍である蓄電デバイス用セパレータ。
  9.  シラン変性ポリオレフィンを5~40質量%、及び前記シラン変性ポリオレフィン以外のポリオレフィンを60~95質量%含む蓄電デバイス用セパレータであって、下記式(4):
      RE’’mix=E’’/E’’   (4)
    {式中、E’’は、前記蓄電デバイス用セパレータの160℃~220℃で測定された損失弾性率であり、かつE’’は、前記シラン変性ポリオレフィンを含まない蓄電デバイス用セパレータの160℃~220℃で測定された損失弾性率であり、そしてE’’又はE’’である損失弾性率E’’の測定条件は、下記構成(i)~(iv)で規定される。
     (i)動的粘弾性測定を以下の条件:
     ・使用測定装置:RSA-G2(TAインスツルメンツ社製)
     ・サンプル膜厚:5μm~50μmの範囲
     ・測定温度範囲:-50~225℃
     ・昇温速度:10℃/min
     ・測定周波数:1Hz
     ・変形モード:正弦波引張モード(Linear tension)
     ・静的引張荷重の初期値:0.5N
     ・初期(25℃時)のギャップ間距離:25mm
     ・Auto strain adjustment:Enabled(範囲:振幅値0.05~25%、正弦波荷重0.02~5N)
    で行う。
     (ii)前記静的引張荷重とは、各周期運動での最大応力と最小応力の中間値を指し、かつ前記正弦波荷重とは、前記静的引張荷重を中心とした振動応力を指す。
     (iii)前記正弦波引張モードとは、固定振幅0.2%で周期運動を行いながら前記振動応力を測定することを指し、前記正弦波引張モードでは、前記静的引張荷重と前記正弦波荷重の差が20%以内となるようにギャップ間距離及び前記静的引張荷重を変動して前記振動応力を測定し、前記正弦波荷重が0.02N以下になった場合、前記正弦波荷重が5N以内かつ振幅値の増加量が25%以内になるように前記振幅値を増幅させて前記振動応力を測定する。
     (iv)得られた正弦波荷重と振幅値、及び下記式:
      σ=σ・Exp[i(ωt+δ)]、
      ε=ε・Exp(iωt)、
      σ=E・ε
      E=E’+iE’’
      (式中、σ:振動応力、ε:歪み、i:虚数単位、ω:角振動数、t:時間、δ:振動応力と歪みの間の位相差、E:複素弾性率、E’:貯蔵弾性率、E’’:損失弾性率
      振動応力:正弦波荷重/初期断面積
      静的引張荷重:各周期での振動応力の最小点(各周期でのギャップ間距離の最小点)の荷重
      正弦波荷重:測定された振動応力と静的引張荷重の差)
    から損失弾性率E’’を算出する。}
    により定義される混合損失弾性率比(RE’’mix)が、1.5倍~20.0倍である蓄電デバイス用セパレータ。
  10.  前記シラン変性ポリオレフィンを含まない蓄電デバイス用セパレータは、ゲル化度が0%以上10%以下のシラン非変性ポリオレフィン製微多孔膜である、請求項8又は9に記載の蓄電デバイス用セパレータ。
  11.  シラン変性ポリオレフィンを5~40質量%、及び前記シラン変性ポリオレフィン以外のポリオレフィンを60~95質量%含む蓄電デバイス用セパレータであって、前記蓄電デバイス用セパレータの貯蔵弾性率の温度変化においてゴム状平坦領域と結晶融解流動領域の転移温度が、135℃~150℃である蓄電デバイス用セパレータ。
  12.  ポリオレフィン微多孔膜から成る蓄電デバイス用セパレータであって、
     -50℃~250℃の温度での前記蓄電デバイス用セパレータの固体粘弾性測定において、
     貯蔵弾性率の最小値が1.0MPa~10MPaであり、貯蔵弾性率の最大値が100MPa~10,000MPaであり、かつ
     損失弾性率の最小値が0.1MPa~10MPaであり、損失弾性率の最大値が10MPa~10,000MPaであり、
     前記貯蔵弾性率及び前記損失弾性率を測定するための前記固体粘弾性測定の条件は、下記構成(i)~(iv):
     (i)動的粘弾性測定を以下の条件:
     ・使用測定装置:RSA-G2(TAインスツルメンツ社製)
     ・サンプル膜厚:200μm~400μm(ただし、サンプル単体の膜厚が200μm未満の場合には、複数枚のサンプルを重ねて総厚が200μm~400μmの範囲内になるように動的粘弾性測定を行う。)
     ・測定温度範囲:-50℃~250℃
     ・昇温速度:10℃/min
     ・測定周波数:1Hz
     ・変形モード:正弦波引張モード(Linear tension)
     ・静的引張荷重の初期値:0.2N
     ・初期(25℃時)のギャップ間距離:10mm
     ・自動歪み調整(Auto strain adjustment):無効(Disabled)
    で行う;
     (ii)前記静的引張荷重とは、各周期運動での最大応力と最小応力の中間値を指し、かつ前記正弦波荷重とは、前記静的引張荷重を中心とした振動応力を指す;
     (iii)前記正弦波引張モードとは、固定振幅0.1%で周期運動を行いながら前記振動応力を測定することを指し、前記正弦波引張モードでは、前記静的引張荷重と前記正弦波荷重の差が5%以内となるようにギャップ間距離及び前記静的引張荷重を変動して前記振動応力を測定し、前記正弦波荷重が0.1N以下になった場合には前記静的引張荷重を0.1Nに固定して前記振動応力を測定する;
     (iv)得られた正弦波荷重と振幅値の関係、及び下記式: 
      σ=σ・Exp[i(ωt+δ)]、
      ε=ε・Exp(iωt)、
      σ=E・ε
      E=E’+iE’’
     {式中、σ:振動応力、ε:歪み、i:虚数単位、ω:角振動数、t:時間、δ:振動応力と歪みの間の位相差、E:複素弾性率、E’:貯蔵弾性率、E’’:損失弾性率
      振動応力:正弦波荷重/初期断面積
      静的引張荷重:各周期での振動応力の最小点(各周期でのギャップ間距離の最小点)の荷重
      正弦波荷重:測定された振動応力と静的引張荷重の差}
    から前記貯蔵弾性率及び前記損失弾性率を算出する;
    で規定される蓄電デバイス用セパレータ。
  13.  ポリオレフィン微多孔膜から成る蓄電デバイス用セパレータであって、膜軟化転移温度から膜破断温度までの前記蓄電デバイス用セパレータの固体粘弾性測定において、平均貯蔵弾性率が、1.0MPa~12MPaであり、かつ平均損失弾性率が、0.5MPa~10MPaである蓄電デバイス用セパレータ。
  14.  前記固体粘弾性測定において、膜軟化転移温度が、140℃~150℃であり、かつ膜破断温度が、180℃以上である、請求項13に記載の蓄電デバイス用セパレータ。
  15.  シラン変性ポリオレフィン、及び前記シラン変性ポリオレフィン以外のポリオレフィンを含む、請求項12~14のいずれか1項に記載の蓄電デバイス用セパレータ。
  16.  シラン変性ポリオレフィンを5質量%~40質量%、及び前記シラン変性ポリオレフィン以外のポリオレフィンを60質量%~95質量%含む、請求項15に記載の蓄電デバイス用セパレータ。
  17.  ポリオレフィンを含む蓄電デバイス用セパレータであって、
     前記ポリオレフィンが1種又は2種以上の官能基を有し、かつ
     蓄電デバイスへの収納後に、(1)前記官能基同士が縮合反応するか、(2)前記官能基が前記蓄電デバイス内部の化学物質と反応するか、又は(3)前記官能基が他の種類の官能基と反応して、架橋構造が形成されることを特徴とする蓄電デバイス用セパレータ。
  18.  前記化学物質が、前記蓄電デバイスに含まれる電解質、電解液、電極活物質、添加剤又はそれらの分解物のいずれかである、請求項17に記載の蓄電デバイス用セパレータ。
  19.  ポリオレフィンを含む蓄電デバイス用セパレータであって、前記ポリオレフィンの非晶部が架橋された非晶部架橋構造を有する蓄電デバイス用セパレータ。
  20.  前記蓄電デバイス用セパレータは、下記式(1):
      RE’X=E’/E’Z0   (1)
    {式中、E’は、前記蓄電デバイス用セパレータの架橋反応が蓄電デバイス内で進行した後に、160℃~300℃の温度領域で測定された貯蔵弾性率であり、かつ
     E’Z0は、前記蓄電デバイス用セパレータが前記蓄電デバイスに組み込まれる前に、160℃~300℃の温度領域で測定された貯蔵弾性率である。}
    により定義される混合貯蔵弾性率比(RE’x)が、1.5倍~20倍である、請求項19に記載の蓄電デバイス用セパレータ。
  21.  前記蓄電デバイス用セパレータは、下記式(3):
      RE’’X=E’’/E’’Z0   (3)
    {式中、E’’は、前記蓄電デバイス用セパレータの架橋反応が蓄電デバイス内で進行した後に、160℃~300℃の温度領域で測定された損失弾性率であり、かつ
     E’’Z0は、前記蓄電デバイス用セパレータが前記蓄電デバイスに組み込まれる前に、160℃~300℃の温度領域で測定された損失弾性率である。}
    により定義される混合損失弾性率比(RE’’x)が、1.5倍~20倍である、請求項19又は20に記載の蓄電デバイス用セパレータ。
  22.  前記非晶部が、選択的に架橋された、請求項19~21のいずれか1項に記載の蓄電デバイス用セパレータ。
  23.  前記蓄電デバイス用セパレータは、下記式(2):
      RE’mix=E’/E’   (2)
    {式中、E’は、前記蓄電デバイス用セパレータが非晶部架橋構造を有するときに160℃~300℃で測定された貯蔵弾性率であり、かつ
      E’は、非晶部架橋構造を有しない前記蓄電デバイス用セパレータの160℃~300℃で測定された貯蔵弾性率である。}
    により定義される混合貯蔵弾性率比(RE’mix)が、1.5倍~20倍である、請求項17~22のいずれか1項に記載の蓄電デバイス用セパレータ。
  24.  前記蓄電デバイス用セパレータは、下記式(4):
      RE’’mix=E’’/E’’   (4)
    {式中、E’’は、前記蓄電デバイス用セパレータが非晶部架橋構造を有するときに160℃~300℃で測定された損失弾性率であり、かつ
      E’’は、非晶部架橋構造を有しない前記蓄電デバイス用セパレータの160℃~300℃で測定された損失弾性率である。}
    により定義される混合損失弾性率比(RE’’mix)が、1.5倍~20倍である、請求項17~23のいずれか1項に記載の蓄電デバイス用セパレータ。
  25.  前記ポリオレフィンが、ポリエチレンである、請求項17~24のいずれか1項に記載の蓄電デバイス用セパレータ。
  26.  前記ポリオレフィンが、官能基変性ポリオレフィン、又は官能基を有する単量体を共重合されたポリオレフィンである、請求項17~25のいずれか1項に記載の蓄電デバイス用セパレータ。
  27.  前記架橋構造が、共有結合、水素結合又は配位結合のいずれかを介した反応により形成される、請求項17~26のいずれか1項に記載の蓄電デバイス用セパレータ。
  28.  前記共有結合を介した反応が、下記反応(I)~(IV):
      (I)複数の同一官能基の縮合反応;
      (II)複数の異種官能基間の反応;
      (III)官能基と電解液の連鎖縮合反応;及び
      (IV)官能基と添加剤の反応;
    から成る群から選択される少なくとも1つである、請求項27に記載の蓄電デバイス用セパレータ。
  29.  前記配位結合を介した反応が、下記反応(V):
      (V)複数の同一官能基が、金属イオンとの配位結合を介して架橋する反応;
    である、請求項27に記載の蓄電デバイス用セパレータ。
  30.  前記反応(I)及び/又は(II)が、蓄電デバイス内部の化学物質により触媒的に促進される、請求項28に記載の蓄電デバイス用セパレータ。
  31.  前記反応(I)が、複数のシラノール基の縮合反応である、請求項28に記載の蓄電デバイス用セパレータ。
  32.  前記反応(IV)が、前記蓄電デバイス用セパレータを構成する化合物Rxと前記添加剤を構成する化合物Ryとの求核置換反応、求核付加反応又は開環反応であり、前記化合物Rxは、官能基xを有し、かつ前記化合物Ryは、連結反応ユニットyを有する、請求項28に記載の蓄電デバイス用セパレータ。
  33.  前記反応(IV)が求核置換反応であり、
     前記化合物Rxの官能基xが、-OH、-NH、-NH-、-COOH及び-SHから成る群から選択される少なくとも1つであり、かつ
     前記化合物Ryの連結反応ユニットyが、CHSO-、CFSO-、ArSO-、CHSO-、CFSO-、ArSO-、及び下記式(y-1)~(y-6):
    Figure JPOXMLDOC01-appb-C000001
    {式中、Xは、水素原子又は1価の置換基である。}
    Figure JPOXMLDOC01-appb-C000002
    {式中、Xは、水素原子又は1価の置換基である。}
    Figure JPOXMLDOC01-appb-C000003
    {式中、Xは、水素原子又は1価の置換基である。}
    Figure JPOXMLDOC01-appb-C000004
    {式中、Xは、水素原子又は1価の置換基である。}
    Figure JPOXMLDOC01-appb-C000005
    {式中、Xは、水素原子又は1価の置換基である。}
    Figure JPOXMLDOC01-appb-C000006
    {式中、Xは、水素原子又は1価の置換基である。}
    で表される1価の基から成る群から選択される少なくとも2つである、請求項32に記載の蓄電デバイス用セパレータ。
  34.  前記反応(IV)が求核置換反応であり、
     前記化合物Ryが、前記連結反応ユニットyに加えて鎖状ユニットyを有し、かつ
     前記鎖状ユニットyが、下記式(y-1)~(y-6):
    Figure JPOXMLDOC01-appb-C000007
    {式中、mは、0~20の整数であり、かつnは、1~20の整数である。}
    Figure JPOXMLDOC01-appb-C000008
    {式中、nは、1~20の整数である。}
    Figure JPOXMLDOC01-appb-C000009
    {式中、nは、1~20の整数である。}
    Figure JPOXMLDOC01-appb-C000010
    {式中、nは、1~20の整数である。}
    Figure JPOXMLDOC01-appb-C000011
    {式中、Xは、炭素数1~20のアルキレン基、又はアリーレン基であり、かつnは、1~20の整数である。}
    Figure JPOXMLDOC01-appb-C000012
    {式中、Xは、炭素数1~20のアルキレン基、又はアリーレン基であり、かつnは、1~20の整数である。}
    で表される2価の基から成る群から選択される少なくとも1つである、請求項32又は33に記載の蓄電デバイス用セパレータ。
  35.  前記反応(IV)が求核付加反応であり、
     前記化合物Rxの官能基xが、-OH、-NH、-NH-、-COOH及び-SHから成る群から選択される少なくとも1つであり、かつ
     前記化合物Ryの連結反応ユニットyが、下記式(Ay-1)~(Ay-6):
    Figure JPOXMLDOC01-appb-C000013
    Figure JPOXMLDOC01-appb-C000014
    Figure JPOXMLDOC01-appb-C000015
    Figure JPOXMLDOC01-appb-C000016
    {式中、Rは、水素原子又は1価の有機基である。}
    Figure JPOXMLDOC01-appb-C000017
    Figure JPOXMLDOC01-appb-C000018
    で表される基から成る群から選択される少なくとも1つである、請求項32に記載の蓄電デバイス用セパレータ。
  36.  前記反応(IV)が開環反応であり、
     前記化合物Rxの官能基xが、-OH、-NH、-NH-、-COOH及び-SHから成る群から選択される少なくとも1つであり、かつ
     前記化合物Ryの連結反応ユニットyが、下記式(ROy-1):
    Figure JPOXMLDOC01-appb-C000019
    {式中、複数のXは、それぞれ独立に、水素原子又は1価の置換基である。}
    で表される少なくとも2つの基である、請求項32に記載の蓄電デバイス用セパレータ。
  37.  下記反応(V)において、前記金属イオンが、Zn2+、Mn2+、Co3+、Ni2+及びLiから成る群から選択される少なくとも1つである、請求項29に記載の蓄電デバイス用セパレータ。
  38.  シラン変性ポリオレフィンを含み、架橋構造を形成可能な第1多孔質層(A層)と、無機粒子を含む第2多孔質層(B層)とを備える蓄電デバイス用セパレータであって、前記架橋構造の形成後における150℃での熱収縮率が、前記架橋構造の形成前における150℃での熱収縮率の0.02倍以上0.91倍以下である蓄電デバイス用セパレータ。
  39.  前記A層中の前記架橋構造は、酸、塩基、膨潤、又は蓄電デバイス内で発生する化合物によって形成される、請求項38に記載の蓄電デバイス用セパレータ。
  40.  シラン変性ポリオレフィンを含む微多孔膜と、
     前記微多孔膜の少なくとも一方の表面に配置された、無機粒子及び樹脂バインダを含む無機多孔質層と、
    を含む蓄電デバイス用セパレータ。
  41.  前記無機多孔質層中の前記無機粒子の含有量が、5重量%~99重量%である、請求項40に記載の蓄電デバイス用セパレータ。
  42.  前記微多孔膜中の前記シラン変性ポリオレフィンの含有量が、0.5重量%~40重量%である、請求項40又は41に記載の蓄電デバイス用セパレータ。
  43.  前記無機粒子が、アルミナ(Al)、シリカ、チタニア、ジルコニア、マグネシア、セリア、イットリア、酸化亜鉛、酸化鉄、窒化ケイ素、窒化チタン、窒化ホウ素、シリコンカーバイド、水酸化酸化アルミニウム(AlO(OH))、タルク、カオリナイト、ディカイト、ナクライト、ハロイサイト、パイロフィライト、モンモリロナイト、セリサイト、マイカ、アメサイト、ベントナイト、アスベスト、ゼオライト、ケイ藻土、ケイ砂、及びガラス繊維から成る群から選択される少なくとも1つである、請求項40~42のいずれか1項に記載の蓄電デバイス用セパレータ。
  44.  前記樹脂バインダのガラス転移温度(Tg)が、-50℃~100℃である、請求項40~43のいずれか1項に記載の蓄電デバイス用セパレータ。
  45.  前記蓄電デバイス用セパレータが電解液と接触すると前記シラン変性ポリオレフィンのシラン架橋反応が開始される、請求項40~44のいずれか1項に記載の蓄電デバイス用セパレータ。
  46.  前記蓄電デバイス用セパレータは、前記無機多孔質層を除いて測定されたときに、下記式(1A):
      R△E’=E’/E’   (1A)
    {式中、E’は、前記シラン変性ポリオレフィンが架橋反応する前の前記蓄電デバイス用セパレータの160℃~220℃で測定された貯蔵弾性率であり、かつE’は、前記シラン変性ポリオレフィンが架橋反応した後の前記蓄電デバイス用セパレータの160℃~220℃で測定された貯蔵弾性率である。}
    により定義される貯蔵弾性率変化比(R△E’)が1.5倍~20倍であり、かつ/又は下記式(1B):
      R△E’’=E’’/E’’   (1B)
    {式中、E’’は、前記シラン変性ポリオレフィンが架橋反応する前の前記蓄電デバイス用セパレータの160℃~220℃で測定された損失弾性率であり、かつE’’は、前記シラン変性ポリオレフィンが架橋反応した後の前記蓄電デバイス用セパレータの160℃~220℃で測定された損失弾性率である。}
    により定義される損失弾性率変化比(R△E’’)が1.5倍~20倍である、請求項40~45のいずれか1項に記載の蓄電デバイス用セパレータ。
  47.  前記蓄電デバイス用セパレータは、前記無機多孔質層を除いて測定されたときに、下記式(2A):
      RE’mix=E’/E’   (2A)
    {式中、E’は、前記蓄電デバイス用セパレータの160℃~220℃で測定された貯蔵弾性率であり、かつE’は、前記シラン変性ポリオレフィンを含まない蓄電デバイス用セパレータの160℃~220℃で測定された貯蔵弾性率である。}
    により定義される混合貯蔵弾性率比(RE’mix)が1.5倍~20倍であり、かつ/又は下記式(2B):
      RE’’mix=E’’/E’’   (2B)
    {式中、E’’は、前記蓄電デバイス用セパレータの160℃~220℃で測定された損失弾性率であり、かつE’’は、前記シラン変性ポリオレフィンを含まない蓄電デバイス用セパレータの160℃~220℃で測定された損失弾性率である。}
    により定義される混合損失弾性率比(RE’’mix)が1.5倍~20倍である、請求項40~46のいずれか1項に記載の蓄電デバイス用セパレータ。
  48.  前記蓄電デバイス用セパレータの貯蔵弾性率の温度変化において、ゴム状平坦領域と結晶融解流動領域の転移温度が、135℃~150℃である、請求項40~47のいずれか1項に記載の蓄電デバイス用セパレータ。
  49.  電極と、請求項1~48のいずれか1項に記載の蓄電デバイス用セパレータと、非水電解液とを含む蓄電デバイス。
  50.  ポリエチレンを含むセパレータと、電解液又は添加剤とを含む蓄電デバイスであって、官能基変性ポリエチレン又は官能基グラフト共重合ポリエチレンと、前記電解液又は前記添加剤に含まれる化学物質とが反応し、架橋構造が形成された蓄電デバイス。
  51.  以下の工程:
     (1)シラン変性ポリオレフィンとポリエチレンと可塑剤の混合物を押出し、冷却固化させ、シート状に成形して、シートを得るシート成形工程;
     (2)前記シートを少なくとも一軸方向に延伸して、延伸物を得る延伸工程;
     (3)抽出溶媒の存在下で前記延伸物から前記可塑剤を抽出し、前記延伸物を多孔化して、多孔体を形成する多孔体形成工程;及び
     (4)前記多孔体を熱処理に供する熱処理工程;
    を含む、請求項1~50のいずれか1項に記載の蓄電デバイス用セパレータの製造方法。
  52.  以下の工程:
     (1)シラン変性ポリオレフィン、ポリエチレン及び可塑剤を押出機でシート状に押出し、冷却固化させ、シート状成形体に加工するシート成形工程;
     (2)前記シート状成形体を20倍以上250倍以下の面倍率で二軸延伸して、延伸物を形成する延伸工程;
     (3)前記延伸物から前記可塑剤を抽出して、多孔体を形成する多孔体形成工程;
     (4)前記多孔体を熱処理に供して、幅方向に延伸及び緩和を行って、熱処理多孔体を得る熱処理工程;
     (8B)無機粒子と樹脂バインダを含む無機多孔質層を、前記熱処理多孔体の少なくとも一方の表面に形成して、シラン架橋前駆体を形成する塗工工程;
     (9)電極及び前記シラン架橋前駆体の積層体又はその捲回体と、非水電解液とを外装体に収納して、前記シラン架橋前駆体と前記非水電解液を接触させる組み立て工程;
    を含む、蓄電デバイス用セパレータの製造方法。
  53.  以下の2つの要素:
     (1)電極と請求項1~48のいずれか1項に記載の蓄電デバイス用セパレータの積層体又は捲回体を収納している外装体;及び
     (2)非水電解液を収納している容器;
    を備える蓄電デバイス組み立てキット。
  54.  前記非水電解液が、フッ素(F)含有リチウム塩を含む、請求項53に記載の蓄電デバイス組み立てキット。
  55.  前記非水電解液が、ヘキサフルオロリン酸リチウム(LiPF)を含む、請求項53又は54に記載の蓄電デバイス組み立てキット。
  56.  前記非水電解液が、酸溶液及び/又は塩基溶液である、請求項53~55のいずれか1項に記載の蓄電デバイス組み立てキット。
  57.  以下の工程;
      請求項53~56のいずれか1項に記載の蓄電デバイス組み立てキットを用意する工程と、
      前記蓄電デバイス組み立てキットの要素(1)中の前記蓄電デバイス用セパレータと要素(2)中の前記非水電解液を接触させることによりシラン変性ポリオレフィンのシラン架橋反応を開始する工程と
    を含む蓄電デバイスの製造方法。
  58.  さらに以下の工程:
      前記要素(1)の前記電極にリード端子を接続する工程と、
      少なくとも1サイクルの充放電を行う工程と
    を含む、請求項57に記載の蓄電デバイスの製造方法。
  59.  ポリオレフィンを含むセパレータを用いる蓄電デバイスの製造方法であって、
     前記ポリオレフィンが、1種類又は2種類以上の官能基を含み、かつ以下の工程:
     (1)前記官能基同士を縮合反応させるか、(2)前記官能基を前記蓄電デバイス内部の化学物質と反応させるか、又は(3)前記官能基を他の種類の官能基と反応させて、架橋構造を形成する架橋工程
    を含む蓄電デバイスの製造方法。
  60.  前記架橋工程が、5℃~90℃の温度で行われる、請求項59に記載の蓄電デバイスの製造方法。
PCT/JP2019/040343 2018-10-11 2019-10-11 架橋セパレータを用いたリチウムイオン電池 WO2020075866A1 (ja)

Priority Applications (35)

Application Number Priority Date Filing Date Title
KR1020237004268A KR102609222B1 (ko) 2018-10-11 2019-10-11 가교 세퍼레이터를 사용한 리튬 이온 전지
KR1020217034639A KR102466829B1 (ko) 2018-10-11 2019-10-11 가교 세퍼레이터를 사용한 리튬 이온 전지
EP23176142.0A EP4235933A3 (en) 2018-10-11 2019-10-11 Lithium ion battery using crosslinkable separator
KR1020217034635A KR102467607B1 (ko) 2018-10-11 2019-10-11 가교 세퍼레이터를 사용한 리튬 이온 전지
EP23157951.7A EP4220844A3 (en) 2018-10-11 2019-10-11 Lithium ion battery using crosslinked separator
KR1020217034638A KR102466827B1 (ko) 2018-10-11 2019-10-11 가교 세퍼레이터를 사용한 리튬 이온 전지
KR1020237021105A KR102632166B1 (ko) 2018-10-11 2019-10-11 가교 세퍼레이터를 사용한 리튬 이온 전지
CN202210749649.8A CN114976483A (zh) 2018-10-11 2019-10-11 使用交联分隔件的锂离子电池
EP19870116.1A EP3866219A4 (en) 2018-10-11 2019-10-11 Lithium ion battery using crosslinked separator
KR1020237021108A KR102655732B1 (ko) 2018-10-11 2019-10-11 가교 세퍼레이터를 사용한 리튬 이온 전지
KR1020247011220A KR20240049846A (ko) 2018-10-11 2019-10-11 가교 세퍼레이터를 사용한 리튬 이온 전지
EP23166690.0A EP4224613A3 (en) 2018-10-11 2019-10-11 Lithium ion battery using crosslinked separator
CN202210750993.9A CN115051117A (zh) 2018-10-11 2019-10-11 使用交联分隔件的锂离子电池
EP23176156.0A EP4235934A3 (en) 2018-10-11 2019-10-11 Lithium ion battery using crosslinkable separator
JP2020507143A JP6898512B2 (ja) 2018-10-11 2019-10-11 架橋セパレータを用いたリチウムイオン電池
CN201980007742.8A CN111630687B (zh) 2018-10-11 2019-10-11 使用交联分隔件的锂离子电池
EP22169029.0A EP4068488A1 (en) 2018-10-11 2019-10-11 Lithium ion battery using crosslinkable separator
CN202210751481.4A CN115051106A (zh) 2018-10-11 2019-10-11 使用交联分隔件的锂离子电池
KR1020207012551A KR102435806B1 (ko) 2018-10-11 2019-10-11 가교 세퍼레이터를 사용한 리튬 이온 전지
CN202211425326.XA CN115810870A (zh) 2018-10-11 2019-10-11 使用交联分隔件的锂离子电池
EP23176153.7A EP4235939A3 (en) 2018-10-11 2019-10-11 Lithium ion battery using crosslinkable separator
CN202210752468.0A CN115036645A (zh) 2018-10-11 2019-10-11 使用交联分隔件的锂离子电池
KR1020227039349A KR102601002B1 (ko) 2018-10-11 2019-10-11 가교 세퍼레이터를 사용한 리튬 이온 전지
EP22169052.2A EP4064443A3 (en) 2018-10-11 2019-10-11 Lithium ion battery using crosslinkable separator
US16/957,421 US11588208B2 (en) 2018-10-11 2019-10-11 Lithium ion battery using crosslinkable separator
KR1020227015370A KR102611025B1 (ko) 2018-10-11 2019-10-11 가교 세퍼레이터를 사용한 리튬 이온 전지
KR1020237004271A KR102609224B1 (ko) 2018-10-11 2019-10-11 가교 세퍼레이터를 사용한 리튬 이온 전지
EP22169036.5A EP4053986A3 (en) 2018-10-11 2019-10-11 Lithium ion battery using crosslinkable separator
KR1020217034641A KR102384050B1 (ko) 2018-10-11 2019-10-11 가교 세퍼레이터를 사용한 리튬 이온 전지
CN202211419385.6A CN115642366A (zh) 2018-10-11 2019-10-11 使用交联分隔件的锂离子电池
EP23176183.4A EP4235940A3 (en) 2018-10-11 2019-10-11 Lithium ion battery using crosslinkable separator
CN202211426208.0A CN115799602A (zh) 2018-10-11 2019-10-11 使用交联分隔件的锂离子电池
US17/967,012 US20230111013A1 (en) 2018-10-11 2022-10-17 Lithium Ion Battery Using Crosslinkable Separator
US17/967,002 US20230117020A1 (en) 2018-10-11 2022-10-17 Lithium Ion Battery Using Crosslinkable Separator
US17/966,990 US11837750B2 (en) 2018-10-11 2022-10-17 Lithium ion battery using crosslinkable separator

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2018192975 2018-10-11
JP2018-192978 2018-10-11
JP2018-192975 2018-10-11
JP2018192978 2018-10-11
JP2018206944 2018-11-01
JP2018-206944 2018-11-01
JP2019082084 2019-04-23
JP2019-082084 2019-04-23
JP2019141513 2019-07-31
JP2019141211 2019-07-31
JP2019-141211 2019-07-31
JP2019-141513 2019-07-31

Related Child Applications (4)

Application Number Title Priority Date Filing Date
US16/957,421 A-371-Of-International US11588208B2 (en) 2018-10-11 2019-10-11 Lithium ion battery using crosslinkable separator
US17/967,002 Continuation US20230117020A1 (en) 2018-10-11 2022-10-17 Lithium Ion Battery Using Crosslinkable Separator
US17/967,012 Continuation US20230111013A1 (en) 2018-10-11 2022-10-17 Lithium Ion Battery Using Crosslinkable Separator
US17/966,990 Continuation US11837750B2 (en) 2018-10-11 2022-10-17 Lithium ion battery using crosslinkable separator

Publications (1)

Publication Number Publication Date
WO2020075866A1 true WO2020075866A1 (ja) 2020-04-16

Family

ID=70164138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/040343 WO2020075866A1 (ja) 2018-10-11 2019-10-11 架橋セパレータを用いたリチウムイオン電池

Country Status (6)

Country Link
US (3) US11588208B2 (ja)
EP (10) EP4235940A3 (ja)
JP (16) JP6898512B2 (ja)
KR (12) KR102609224B1 (ja)
CN (8) CN115036645A (ja)
WO (1) WO2020075866A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220009486A (ko) 2019-09-13 2022-01-24 아사히 가세이 가부시키가이샤 비수계 전해액 및 비수계 이차 전지
KR20220033494A (ko) 2020-04-13 2022-03-16 아사히 가세이 가부시키가이샤 복합형 단층 화학 가교 세퍼레이터
KR20220033495A (ko) 2020-04-13 2022-03-16 아사히 가세이 가부시키가이샤 복합형 적층 화학 가교 세퍼레이터
WO2022092302A1 (ja) * 2020-10-30 2022-05-05 旭化成株式会社 シロキサン分散架橋型セパレータ

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112582750B (zh) * 2020-12-07 2022-07-26 界首市天鸿新材料股份有限公司 利用聚乙烯接枝共聚物制备高性能锂电池隔膜的工艺
CN112928387B (zh) * 2021-01-28 2022-05-03 厦门大学 一种含硼改性隔膜及其制备方法和应用及含该隔膜的电池
CN113433467B (zh) * 2021-05-11 2023-01-20 天津力神电池股份有限公司 一种锂离子电池循环加速测评方法
KR20240059977A (ko) * 2022-10-28 2024-05-08 에스케이온 주식회사 이차전지용 분리막, 이의 제조방법 및 리튬 이차전지

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS529858B2 (ja) 1972-07-28 1977-03-18
JPS529854B2 (ja) 1972-08-04 1977-03-18
JPH09216964A (ja) 1996-02-09 1997-08-19 Nitto Denko Corp 多孔質フィルムおよびそれを用いた電池用セパレータ並びに電池
WO1997044839A1 (en) 1996-05-22 1997-11-27 Kureha Chemical Industry Co., Ltd. Porous film and separator for batteries comprising porous film
JPH10261435A (ja) 1997-03-18 1998-09-29 Fujitsu Ltd リチウム二次電池用イオン伝導体及びそれを用いたリチウム二次電池
JPH11144700A (ja) 1997-11-06 1999-05-28 Kureha Chem Ind Co Ltd 多孔膜、多孔膜からなる電池用セパレータ、およびその製造方法
JPH11172036A (ja) 1997-12-10 1999-06-29 Kureha Chem Ind Co Ltd 多孔膜、多孔膜からなる電池用セパレータ、およびその製造方法
JP2000319441A (ja) 1999-05-12 2000-11-21 Toray Ind Inc 樹脂微多孔膜の製造方法
JP2001176484A (ja) 1999-12-15 2001-06-29 Nitto Denko Corp 多孔質膜
JP2006092848A (ja) * 2004-09-22 2006-04-06 Nitto Denko Corp 電池用セパレータのための反応性ポリマー担持多孔質フィルムとこれを用いる電池の製造方法
JP2007299612A (ja) 2006-04-28 2007-11-15 Matsushita Electric Ind Co Ltd 非水電解質二次電池用セパレータおよび非水電解質二次電池
WO2010134585A1 (ja) 2009-05-21 2010-11-25 旭化成イーマテリアルズ株式会社 多層多孔膜
JP2011071128A (ja) 2003-04-09 2011-04-07 Nitto Denko Corp 電池用セパレータのための接着剤担持多孔質フィルムとその利用
JP2014056843A (ja) 2008-01-29 2014-03-27 Hitachi Maxell Ltd 電気化学素子用セパレータおよび電気化学素子
JP2015079588A (ja) * 2013-10-15 2015-04-23 竹本油脂株式会社 非水電解質電池セパレータ用水酸基価低減有機シリコーン微粒子及びその製造方法、並びに、非水電解質電池セパレータ及びその製造方法
JP2016072150A (ja) 2014-09-30 2016-05-09 旭化成イーマテリアルズ株式会社 電池用セパレータ
JP2017103206A (ja) * 2015-11-19 2017-06-08 旭化成株式会社 蓄電デバイス用セパレータ及びそれを用いた積層体、捲回体、リチウムイオン二次電池又は蓄電デバイス
JP2017203145A (ja) 2016-05-13 2017-11-16 積水化学工業株式会社 耐熱性合成樹脂微多孔フィルム及び電池用セパレータ
CN108198986A (zh) * 2017-12-29 2018-06-22 上海恩捷新材料科技股份有限公司 一种硅烷交联聚合物隔离膜及其制备方法

Family Cites Families (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07112530B2 (ja) 1987-09-18 1995-12-06 三菱重工業株式会社 凝縮成分分離用セラミツク膜の製造方法
JPH1144700A (ja) 1997-07-25 1999-02-16 Sanyo Electric Co Ltd 速度測定装置、該装置を用いた自動追尾システム及び予想到達位置表示システム
JP2002249742A (ja) * 2000-12-07 2002-09-06 Nitto Denko Corp 接着性多孔質膜、それより得られる高分子ゲル電解質とそれらの応用
JP2003187777A (ja) 2001-12-18 2003-07-04 Fuji Photo Film Co Ltd アルカリ電池用セパレータ
KR100709527B1 (ko) 2003-02-21 2007-04-20 아사히 가세이 가부시키가이샤 실리카 함유 적층체, 및 다공성 실리카층 형성용 도포조성물
JP2004323827A (ja) 2003-04-09 2004-11-18 Nitto Denko Corp 電池用セパレータのための接着剤担持多孔質フィルムとその利用
JP4451084B2 (ja) 2003-06-20 2010-04-14 ユニチカ株式会社 ポリオレフィン樹脂分散体およびその製造方法
JP4662533B2 (ja) 2003-08-26 2011-03-30 日東電工株式会社 電池用セパレータのための反応性ポリマー担持多孔質フィルムとそれを用いる電池の製造方法
JP2005162902A (ja) * 2003-12-03 2005-06-23 Jsr Corp 環状オレフィン系グラフト共重合体およびその製造方法、その架橋体およびその製造方法、ならびにこれらの用途
JP2006179279A (ja) * 2004-12-22 2006-07-06 Nitto Denko Corp 電池用セパレータとこれを用いる電池の製造方法
JP5231986B2 (ja) * 2005-03-17 2013-07-10 ダウ グローバル テクノロジーズ エルエルシー 官能化エチレン/α−オレフィン共重合体組成物
RU2007134341A (ru) * 2005-03-17 2009-03-20 Дау Глобал Текнолоджиз Инк. (Us) КОМПОЗИЦИИ ИЗ ПОЛИБЛОЧНОГО ИНТЕРПОЛИМЕРА ЭТИЛЕНА/α-ОЛЕФИНА ДЛЯ ЭЛАСТИЧНЫХ ПЛЕНОК И ЛАМИНАТОВ
JP4822726B2 (ja) * 2005-03-30 2011-11-24 三洋電機株式会社 リチウムイオン二次電池用ポリマー及びそれを用いたリチウムイオン二次電池
RU2430772C2 (ru) * 2005-11-24 2011-10-10 Торей Тонен Спешиалти Сепарейтор Годо Кайса Микропористая полиолефиновая мембрана, способ ее получения, сепаратор аккумулятора и аккумулятор
US8405957B2 (en) 2005-12-08 2013-03-26 Hitachi Maxell, Ltd. Separator for electrochemical device and method for producing the same, and electrochemical device and method for producing the same
WO2008041657A1 (fr) * 2006-09-29 2008-04-10 Fujifilm Corporation Film de résine de polycyclooléfine, procédé de fabrication de celui-ci, polariseur et dispositif d'affichage à cristaux liquides
US10003058B2 (en) 2006-11-17 2018-06-19 Celgard, Llc Method of making a co-extruded, multi-layered battery separator
EP2103644B1 (en) 2007-01-12 2014-04-02 Asahi Kasei Fibers Corporation Cellulose fine particle,s and liquid or solid dispersion thereof
JP2009070620A (ja) 2007-09-11 2009-04-02 Nitto Denko Corp 架橋微多孔質膜
US20110159346A1 (en) 2008-09-03 2011-06-30 Mitsubishi Plastics, Inc. Laminated porous film for separator
CN102257048B (zh) * 2008-12-19 2016-01-20 旭化成电子材料株式会社 聚烯烃制微多孔膜及锂离子二次电池用分隔件
CN101434708B (zh) * 2008-12-19 2012-01-11 成都中科来方能源科技有限公司 水性聚合物改性微孔聚烯烃隔膜及其制备方法和用途
EP2409347A4 (en) 2009-03-19 2014-07-02 Amtek Res International Llc SELF-SUPPORTING HEAT-RESISTANT MICROPOROUS FILM FOR USE IN ENERGY STORAGE DEVICES
JP5525193B2 (ja) 2009-06-23 2014-06-18 旭化成イーマテリアルズ株式会社 多層多孔膜および塗布液
CN102412377B (zh) * 2010-09-24 2015-08-26 比亚迪股份有限公司 一种隔膜及其制备方法、一种锂离子电池
JP5727747B2 (ja) 2010-10-01 2015-06-03 三菱樹脂株式会社 積層多孔性フィルム、電池用セパレータ及び電池
WO2012046753A1 (ja) 2010-10-06 2012-04-12 三菱樹脂株式会社 ポリオレフィン系樹脂多孔フィルム
CN103328209B (zh) 2011-01-20 2015-05-06 东丽株式会社 多孔质层合膜、蓄电装置用隔板及蓄电装置
CN102751459B (zh) * 2011-04-22 2016-03-23 天津东皋膜技术有限公司 后交联橡胶、聚烯烃复合材料纳米微多孔隔膜及其制造方法
JP5842932B2 (ja) * 2011-08-25 2016-01-13 ダイキン工業株式会社 ダイヤフラム
EP2562767A1 (en) 2011-08-26 2013-02-27 Borealis AG Article comprising a silane crosslinkable polymer composition
DE102012000910A1 (de) 2012-01-19 2013-07-25 Sihl Gmbh Separator umfassend eine poröse Schicht und Verfahren zu seiner Herstellung
JP2013173930A (ja) * 2012-02-24 2013-09-05 Daikin Industries Ltd 耐バイオディーゼル燃料部材
IN2014DN09654A (ja) * 2012-05-31 2015-07-31 Borealis Ag
CN102888016B (zh) * 2012-09-12 2014-03-05 常州大学 具有交联结构复合层的锂离子二次电池隔膜的制备方法
PL2908364T3 (pl) 2012-10-10 2018-08-31 Zeon Corporation Sposób wytwarzania elektrody dodatniej dla akumulatora elektrycznego, akumulator elektryczny i sposób wytwarzania zespołu w postaci stosu dla akumulatora elektrycznego
CN104969305B (zh) * 2013-02-06 2017-03-22 三菱树脂株式会社 透明层叠膜、透明导电性膜和气体阻隔性层叠膜
JP2014179321A (ja) 2013-03-13 2014-09-25 Samsung Sdi Co Ltd セパレータおよびこれを含むリチウム二次電池
CN105246957B (zh) 2013-05-31 2019-02-01 东丽株式会社 聚烯烃微多孔膜及其制造方法
CN103441229B (zh) * 2013-07-23 2015-06-24 清华大学 电池隔膜及其制备方法
JP6405187B2 (ja) * 2013-10-25 2018-10-17 日東電工株式会社 非水電解質蓄電デバイス用セパレータ、非水電解質蓄電デバイス及びそれらの製造方法
CN104031289B (zh) 2014-05-22 2017-06-13 江苏华东锂电技术研究院有限公司 聚烯烃复合隔膜及其制备方法,以及锂离子电池
JP5876629B1 (ja) 2014-06-11 2016-03-02 東レバッテリーセパレータフィルム株式会社 電池用セパレータ及びその製造方法
EP3181621B1 (en) * 2014-08-12 2020-09-23 Toray Industries, Inc. Polyolefin microporous film and method for manufacturing same, separator for nonaqueous electrolyte secondary cell, and nonaqueous electrolyte secondary cell
CN106104850B (zh) 2014-09-26 2018-12-25 旭化成株式会社 蓄电装置用分隔件
KR101857156B1 (ko) * 2014-10-31 2018-05-11 주식회사 엘지화학 가교 폴리올레핀 분리막 및 이의 제조방법
CN105576172B (zh) * 2014-10-31 2018-06-22 Lg化学株式会社 交联聚烯烃隔膜及其制备方法
CN104538576B (zh) 2014-12-17 2017-07-28 毛赢超 一种锂离子电池用改性陶瓷隔膜及制备方法
JP6612563B2 (ja) 2014-12-26 2019-11-27 日東電工株式会社 シリコーン多孔体およびその製造方法
KR101915347B1 (ko) 2015-04-30 2018-11-05 주식회사 엘지화학 가교 폴리올레핀 분리막 및 이의 제조방법
KR101915346B1 (ko) * 2015-04-30 2018-11-05 주식회사 엘지화학 세퍼레이터의 제조방법 및 이에 의해 제조된 세퍼레이터
KR101943491B1 (ko) * 2015-05-08 2019-01-29 주식회사 엘지화학 세퍼레이터 및 이를 포함하는 전기화학소자
JP2016219358A (ja) 2015-05-26 2016-12-22 Jsr株式会社 蓄電デバイス用組成物、蓄電デバイス用スラリー、蓄電デバイス用セパレータ、蓄電デバイス電極及び蓄電デバイス
KR101960926B1 (ko) * 2015-06-11 2019-03-21 주식회사 엘지화학 가교 폴리올레핀 분리막의 제조방법 및 그에 의해 제조된 분리막
KR102062315B1 (ko) * 2015-10-16 2020-01-03 주식회사 엘지화학 가교 폴리올레핀 분리막의 제조방법 및 그에 의해 제조된 분리막
CN106328862A (zh) 2016-08-25 2017-01-11 郑少华 一种交联聚酰亚胺凝胶聚合物电解质隔膜的制备方法
CN106486632A (zh) * 2016-11-25 2017-03-08 上海恩捷新材料科技股份有限公司 一种电池隔离膜及其制备方法
EP3340342B1 (en) 2016-12-20 2020-10-28 Asahi Kasei Kabushiki Kaisha Separator for power storage device, laminated body, roll, lithium-ion secondary battery or power storage device using it
JP6367453B2 (ja) 2016-12-20 2018-08-01 旭化成株式会社 蓄電デバイス用セパレータ及びそれを用いた積層体、捲回体、リチウムイオン二次電池又は蓄電デバイス
KR102299856B1 (ko) * 2017-03-07 2021-09-07 삼성에스디아이 주식회사 다공성 필름, 이를 포함하는 분리막 및 전기 화학 전지
US20190198839A1 (en) * 2017-12-27 2019-06-27 Samsung Electronics Co., Ltd. Separator, secondary battery comprising the same, method of preparing the separator, and method of manufacturing the secondary battery
KR101955911B1 (ko) 2018-08-23 2019-03-12 더블유스코프코리아 주식회사 분리막 및 그 제조방법
JP7028981B2 (ja) * 2018-08-31 2022-03-02 エルジー・ケム・リミテッド 架橋ポリオレフィン分離膜及びその製造方法

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS529858B2 (ja) 1972-07-28 1977-03-18
JPS529854B2 (ja) 1972-08-04 1977-03-18
JPH09216964A (ja) 1996-02-09 1997-08-19 Nitto Denko Corp 多孔質フィルムおよびそれを用いた電池用セパレータ並びに電池
WO1997044839A1 (en) 1996-05-22 1997-11-27 Kureha Chemical Industry Co., Ltd. Porous film and separator for batteries comprising porous film
JPH10261435A (ja) 1997-03-18 1998-09-29 Fujitsu Ltd リチウム二次電池用イオン伝導体及びそれを用いたリチウム二次電池
JPH11144700A (ja) 1997-11-06 1999-05-28 Kureha Chem Ind Co Ltd 多孔膜、多孔膜からなる電池用セパレータ、およびその製造方法
JPH11172036A (ja) 1997-12-10 1999-06-29 Kureha Chem Ind Co Ltd 多孔膜、多孔膜からなる電池用セパレータ、およびその製造方法
JP2000319441A (ja) 1999-05-12 2000-11-21 Toray Ind Inc 樹脂微多孔膜の製造方法
JP2001176484A (ja) 1999-12-15 2001-06-29 Nitto Denko Corp 多孔質膜
JP2011071128A (ja) 2003-04-09 2011-04-07 Nitto Denko Corp 電池用セパレータのための接着剤担持多孔質フィルムとその利用
JP2006092848A (ja) * 2004-09-22 2006-04-06 Nitto Denko Corp 電池用セパレータのための反応性ポリマー担持多孔質フィルムとこれを用いる電池の製造方法
JP2007299612A (ja) 2006-04-28 2007-11-15 Matsushita Electric Ind Co Ltd 非水電解質二次電池用セパレータおよび非水電解質二次電池
JP2014056843A (ja) 2008-01-29 2014-03-27 Hitachi Maxell Ltd 電気化学素子用セパレータおよび電気化学素子
WO2010134585A1 (ja) 2009-05-21 2010-11-25 旭化成イーマテリアルズ株式会社 多層多孔膜
JP2015079588A (ja) * 2013-10-15 2015-04-23 竹本油脂株式会社 非水電解質電池セパレータ用水酸基価低減有機シリコーン微粒子及びその製造方法、並びに、非水電解質電池セパレータ及びその製造方法
JP2016072150A (ja) 2014-09-30 2016-05-09 旭化成イーマテリアルズ株式会社 電池用セパレータ
JP2017103206A (ja) * 2015-11-19 2017-06-08 旭化成株式会社 蓄電デバイス用セパレータ及びそれを用いた積層体、捲回体、リチウムイオン二次電池又は蓄電デバイス
JP2017203145A (ja) 2016-05-13 2017-11-16 積水化学工業株式会社 耐熱性合成樹脂微多孔フィルム及び電池用セパレータ
CN108198986A (zh) * 2017-12-29 2018-06-22 上海恩捷新材料科技股份有限公司 一种硅烷交联聚合物隔离膜及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
F. W. VAN. DER. WEIJ, MACROMOL. CHEM., vol. 181, no. 2541, 1980

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220009486A (ko) 2019-09-13 2022-01-24 아사히 가세이 가부시키가이샤 비수계 전해액 및 비수계 이차 전지
KR20220150997A (ko) 2019-09-13 2022-11-11 아사히 가세이 가부시키가이샤 비수계 전해액 및 비수계 이차 전지
US11843092B2 (en) 2019-09-13 2023-12-12 Asahi Kasei Kabushiki Kaisha Nonaqueous electrolyte solution and nonaqueous electrolyte secondary battery
KR20220033494A (ko) 2020-04-13 2022-03-16 아사히 가세이 가부시키가이샤 복합형 단층 화학 가교 세퍼레이터
KR20220033495A (ko) 2020-04-13 2022-03-16 아사히 가세이 가부시키가이샤 복합형 적층 화학 가교 세퍼레이터
EP4235899A3 (en) * 2020-04-13 2024-04-10 Asahi Kasei Kabushiki Kaisha Composite single-layer chemically cross-linked separator
WO2022092302A1 (ja) * 2020-10-30 2022-05-05 旭化成株式会社 シロキサン分散架橋型セパレータ
KR20230079399A (ko) 2020-10-30 2023-06-07 아사히 가세이 가부시키가이샤 실록산 분산 가교형 세퍼레이터

Also Published As

Publication number Publication date
JP2024042011A (ja) 2024-03-27
EP4235939A3 (en) 2023-11-01
CN115799602A (zh) 2023-03-14
CN115810870A (zh) 2023-03-17
JP2021015798A (ja) 2021-02-12
CN115036645A (zh) 2022-09-09
JP2021177494A (ja) 2021-11-11
JP2024042012A (ja) 2024-03-27
JP6945706B2 (ja) 2021-10-06
US11837750B2 (en) 2023-12-05
JP7016977B2 (ja) 2022-02-07
KR20210131463A (ko) 2021-11-02
JP2022002211A (ja) 2022-01-06
KR20210131465A (ko) 2021-11-02
CN111630687A (zh) 2020-09-04
JP6965424B2 (ja) 2021-11-10
EP4068488A1 (en) 2022-10-05
KR20210131464A (ko) 2021-11-02
EP3866219A4 (en) 2021-12-29
KR102467607B1 (ko) 2022-11-16
JP2021177493A (ja) 2021-11-11
CN114976483A (zh) 2022-08-30
EP4235939A2 (en) 2023-08-30
CN115051117A (zh) 2022-09-13
JP6965469B2 (ja) 2021-11-10
EP4053986A3 (en) 2022-11-30
EP4224613A2 (en) 2023-08-09
KR102466829B1 (ko) 2022-11-14
JP7351875B2 (ja) 2023-09-27
KR102435806B1 (ko) 2022-08-25
EP4220844A2 (en) 2023-08-02
EP4224613A3 (en) 2023-11-08
JP2021082596A (ja) 2021-05-27
EP4053986A2 (en) 2022-09-07
JP2021177492A (ja) 2021-11-11
JP2021015797A (ja) 2021-02-12
EP4235940A3 (en) 2023-10-25
EP4220844A3 (en) 2023-08-30
KR20200062292A (ko) 2020-06-03
JP6898512B2 (ja) 2021-07-07
CN115642366A (zh) 2023-01-24
US20230117020A1 (en) 2023-04-20
KR20230098365A (ko) 2023-07-03
EP4235934A2 (en) 2023-08-30
KR20220156668A (ko) 2022-11-25
EP4064443A2 (en) 2022-09-28
KR102601002B1 (ko) 2023-11-14
KR102384050B1 (ko) 2022-04-08
EP4235933A3 (en) 2023-11-08
JP6945048B2 (ja) 2021-10-06
JP7383672B2 (ja) 2023-11-20
EP4064443A3 (en) 2022-11-30
EP3866219A1 (en) 2021-08-18
JP7350811B2 (ja) 2023-09-26
EP4235940A2 (en) 2023-08-30
KR20230023830A (ko) 2023-02-17
KR102466827B1 (ko) 2022-11-14
KR20210131466A (ko) 2021-11-02
JP2023133423A (ja) 2023-09-22
KR20220066414A (ko) 2022-05-24
KR102655732B1 (ko) 2024-04-11
JP2021022570A (ja) 2021-02-18
EP4235934A3 (en) 2023-11-01
JPWO2020075866A1 (ja) 2021-02-15
JP7112571B2 (ja) 2022-08-03
US20200335755A1 (en) 2020-10-22
CN115051106A (zh) 2022-09-13
KR102611025B1 (ko) 2023-12-08
KR20240049846A (ko) 2024-04-17
KR20230097225A (ko) 2023-06-30
JP2021097052A (ja) 2021-06-24
US20230120715A1 (en) 2023-04-20
JP2022002212A (ja) 2022-01-06
JP2021180182A (ja) 2021-11-18
KR102632166B1 (ko) 2024-02-02
JP2021015799A (ja) 2021-02-12
KR102609222B1 (ko) 2023-12-06
US11588208B2 (en) 2023-02-21
KR102609224B1 (ko) 2023-12-06
EP4235933A2 (en) 2023-08-30
JP7112572B2 (ja) 2022-08-03
CN111630687B (zh) 2022-11-01
JP6945707B2 (ja) 2021-10-06
KR20230023829A (ko) 2023-02-17

Similar Documents

Publication Publication Date Title
JP7351875B2 (ja) 架橋セパレータを用いたリチウムイオン電池

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020507143

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207012551

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19870116

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019870116

Country of ref document: EP

Effective date: 20210511