WO2020075411A1 - 付加硬化型シリコーン組成物及びその製造方法 - Google Patents

付加硬化型シリコーン組成物及びその製造方法 Download PDF

Info

Publication number
WO2020075411A1
WO2020075411A1 PCT/JP2019/033860 JP2019033860W WO2020075411A1 WO 2020075411 A1 WO2020075411 A1 WO 2020075411A1 JP 2019033860 W JP2019033860 W JP 2019033860W WO 2020075411 A1 WO2020075411 A1 WO 2020075411A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
mass
parts
silicone composition
component
Prior art date
Application number
PCT/JP2019/033860
Other languages
English (en)
French (fr)
Inventor
啓太 北沢
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to JP2020550031A priority Critical patent/JP7476793B2/ja
Priority to EP19871858.7A priority patent/EP3865542A4/en
Priority to KR1020217013816A priority patent/KR20210076046A/ko
Priority to US17/284,375 priority patent/US20210388207A1/en
Priority to CN201980064674.9A priority patent/CN112867764B/zh
Publication of WO2020075411A1 publication Critical patent/WO2020075411A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • C08K5/5419Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/56Organo-metallic compounds, i.e. organic compounds containing a metal-to-carbon bond
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/18Polysiloxanes containing silicon bound to oxygen-containing groups to alkoxy or aryloxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0812Aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure

Definitions

  • the present invention relates to an addition-curable silicone composition and a method for producing the same. More particularly, it relates to a highly heat-conductive addition-curable silicone composition, and an addition-curable silicone composition having good adhesion to various adherends even if it contains a large amount of a heat-conductive filler, and a method for producing the same.
  • Patent Document 9 discloses a thermally conductive silicone grease composition containing an organopolysiloxane having a specific structure, an alkoxysilane having a specific substituent, and a thermally conductive filler. It is described that the composition has good thermal conductivity, good fluidity and excellent workability.
  • Patent Documents 10 and 11 disclose a sheet having adhesiveness and thermal conductivity, and an addition-curable silicone rubber composition contains a thermally conductive filler and an aliphatic unsaturated hydrocarbon group.
  • a thermally conductive composition containing a non-silicone resin is disclosed.
  • Patent Document 10 and Patent Document 11 disclose that a thermally conductive cured product having appropriate adhesiveness and good thermal conductivity in a thin film state can be provided.
  • Some heat-dissipating greases have adhesive properties added to the grease in order to firmly bond the semiconductor chip and heat spreader. This is because if the semiconductor chip and the heat spreader are not sufficiently adhered via the grease, the heat dissipation performance is not fully exhibited and the performance is significantly reduced. Therefore, it is important to firmly bond the semiconductor chip and the heat spreader with grease.
  • Patent Document 12 JP 2012-102283A discloses an alkenyl group-containing organopolysiloxane, a hydrolyzable methylpolysiloxane, a heat conductive filler, an organohydrogenpolysiloxane, a triazine ring- and alkenyl group-containing adhesion aid, And a thermally conductive silicone grease composition containing a platinum-based catalyst as an essential component.
  • Patent Document 12 describes that the composition can provide a heat-dissipating grease that has a small increase in hardness when subjected to heat aging at a high temperature after curing and has a suppressed decrease in elongation.
  • Patent Document 13 JP 2012-96361 A discloses a thermally conductive silicone composition containing a peroxide having a 10-hour half-life temperature of 80 ° C. or higher and lower than 130 ° C. as a curing agent. States that it can provide a heat-dissipating grease that can be easily cured on the surface of a substrate having a noble metal layer such as gold.
  • the present invention has been made in view of the above circumstances, and provides a silicone heat-dissipating grease which has a higher thermal conductivity than conventional silicone heat-dissipating grease and has good adhesiveness to various adherends. It is an object of the present invention to provide an addition-curable silicone composition capable of producing and a method for producing the same.
  • the present inventor has conducted extensive studies to achieve the above object, and as a result, an aliphatic unsaturated hydrocarbon group-containing organopolysiloxane, a thermally conductive filler, an organohydrogenpolysiloxane having a specific structure, and an organic peroxide.
  • the present invention has been completed by finding that an addition-curable silicone composition having good adhesiveness to an adherend can be obtained.
  • the present invention provides the following addition-curable silicone composition and a method for producing the same. [1].
  • (A) Organopolysiloxane having at least two aliphatic unsaturated hydrocarbon groups in one molecule and having a kinematic viscosity at 25 ° C.
  • R 2 is an epoxy Group, an acryloyl group, a methacryloyl group, an alkoxysilyl group, X is an alkylene group having 1 to 20 carbon atoms and optionally containing a hetero atom, and n is an integer of 0 to 2.
  • the hydrolyzable organopolysiloxane compound represented by the following general formula (2) is contained in an amount of 1 to 200 parts by mass per 100 parts by mass of the components (A) and (B) [1] or The addition-curable silicone composition according to [2].
  • R 1 represents a monovalent hydrocarbon group having 1 to 10 carbon atoms which may have a substituent, and each R 1 may be the same or different.
  • M is 5 to Indicates an integer of 100.
  • a hydrolyzable organopolysiloxane compound represented by the following general formula (3) is contained in an amount of 1 to 50 parts by mass based on 100 parts by mass of the total of the components (A) and (B) [1] to The addition-curable silicone composition according to any one of [3].
  • R 1 represents a monovalent hydrocarbon group having 1-10 1 carbon atoms which may have a substituent, each of R 1 good .R 3 be different even for the same carbon It is an alkenyl group of the numbers 2 to 6.
  • p and q are numbers satisfying 1 ⁇ p ⁇ 50, 1 ⁇ q ⁇ 99, and 5 ⁇ p + q ⁇ 100.
  • the addition-curable silicone composition of the present invention has good adhesiveness to various adherends even if it contains a large amount of thermally conductive filler, it is possible to achieve both high thermal conductivity and strong adhesiveness. . That is, it is possible to provide a silicone heat-dissipating grease that can cope with the recent increase in heat generation and size increase of semiconductor devices.
  • Component (A) has at least 2, preferably 2 to 100, more preferably 2 to 50 aliphatic unsaturated hydrocarbon groups in one molecule and has a kinematic viscosity at 25 ° C. Is 60 to 100,000 mm 2 / s.
  • the aliphatic unsaturated hydrocarbon group is preferably a monovalent hydrocarbon group having an aliphatic unsaturated bond and having 2 to 8 carbon atoms, more preferably 2 to 6 carbon atoms, and more preferably an alkenyl group.
  • alkenyl groups such as vinyl group, allyl group, propenyl group, isopropenyl group, butenyl group, hexenyl group, cyclohexenyl group, and octenyl group.
  • a vinyl group is particularly preferred.
  • the aliphatic unsaturated hydrocarbon group may be bonded to either a silicon atom at the end of the molecular chain or a silicon atom in the middle of the molecular chain, or may be bonded to both.
  • the organopolysiloxane as the component (A) preferably has 0.00001 to 0.01 mol / g, particularly 0.0001 to 0.01 mol / g, of an aliphatic unsaturated hydrocarbon group in one molecule. .
  • Examples of the organic group other than the aliphatic unsaturated hydrocarbon group bonded to the silicon atom of the organopolysiloxane include a fatty acid having 1 to 18 carbon atoms, preferably 1 to 10 carbon atoms, and more preferably 1 to 8 carbon atoms. It is an unsubstituted or substituted monovalent hydrocarbon group having no group unsaturated bond.
  • alkyl groups such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, cyclohexyl group, octyl group, nonyl group and decyl group;
  • An aryl group such as a phenyl group, a tolyl group, a xylyl group, a naphthyl group; an aralkyl group such as a benzyl group, a phenylethyl group, a phenylpropyl group, or a part or all of the hydrogen atoms of these groups such as fluorine, bromine, chlorine, etc.
  • a halogen atom, a cyano group or the like for example, a chloromethyl group, a chloropropyl group, a bromoethyl group, a trifluoropropyl group, a cyanoethyl group and the like. It is particularly preferably a methyl group.
  • the organopolysiloxane has a kinematic viscosity at 25 ° C. of 60 to 100,000 mm 2 / s, preferably 100 to 30,000 mm 2 / s. If the kinematic viscosity is less than 60 mm 2 / s, the physical properties of the silicone composition will deteriorate, and if it exceeds 100,000 mm 2 / s, the extensibility of the silicone composition will be poor.
  • the kinematic viscosity is a value at 25 ° C. measured by an Ubbelohde-type Ostwald viscometer (hereinafter the same).
  • the molecular structure of the organopolysiloxane is not particularly limited as long as it has the above properties, and examples thereof include a linear structure, a branched structure, a partially branched structure, or a linear structure having a cyclic structure. .
  • the main chain is composed of repeating diorganosiloxane units and both ends of the molecular chain have a linear structure blocked with triorganosiloxy groups.
  • the organopolysiloxane having the linear structure may partially have a branched structure or a cyclic structure.
  • the organopolysiloxane may be used alone or in combination of two or more.
  • Component (B) is a silicone resin.
  • the silicone resin as the component (B) has at least one aliphatic unsaturated hydrocarbon group in one molecule.
  • the component (B) may not be blended, but when the silicone resin as the component (B) is contained, the adhesive strength of the cured product obtained from the addition-curable silicone composition of the present invention can be improved.
  • the component (B) is preferably a SiO 4/2 unit, an R 4 2 R 5 SiO 1/2 unit, and an R 4 3 SiO 1/2 unit (in the formula, R 4 is independently an aliphatic group).
  • R 4 is independently an aliphatic group.
  • a silicone resin containing a monovalent hydrocarbon group having no unsaturated bond and R 5 is a monovalent aliphatic unsaturated hydrocarbon group.
  • R 4 s independently of each other have 1 to 18 carbon atoms, preferably 1 to 10 carbon atoms, more preferably 1 to 8 carbon atoms, unsubstituted or substituted 1 It is a valent hydrocarbon group.
  • R 4 is a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a tert-butyl group, a pentyl group, a neopentyl group, a hexyl group, a cyclohexyl group, an octyl group, a nonyl group or a decyl group.
  • a halogen atom such as bromine or chlorine, a cyano group and the like, for example, a chloromethyl group, a chloropropyl group, a bromoethyl group, a trifluoropropyl group, a cyanoethyl group and the like.
  • a methyl group is particularly preferable.
  • R 5 is a monovalent aliphatic unsaturated hydrocarbon group, preferably a monovalent hydrocarbon group having an aliphatic unsaturated bond and having 2 to 8 carbon atoms, more preferably 2 to 6 carbon atoms, and It is preferably an alkenyl group.
  • alkenyl group include a vinyl group, an allyl group, a propenyl group, an isopropenyl group, a butenyl group, a hexenyl group, a cyclohexenyl group, and an octenyl group.
  • a vinyl group is particularly preferred.
  • the component (B) has at least one silicone resin in one molecule, preferably 1 ⁇ 10 ⁇ 5 to 1 ⁇ 10 ⁇ 2 mol / g, and more preferably 1 ⁇ 10 ⁇ 4 to 2 ⁇ 10 ⁇ 3 mol / g. Having an aliphatic unsaturated hydrocarbon group.
  • the molar ratio of the SiO 4/2 unit (Q unit) to the R 4 2 R 5 SiO 1/2 unit and the R 4 3 SiO 1/2 unit (M unit) is (M unit).
  • ) / (Q unit) is a number satisfying 0.1 to 3
  • (M unit) / (Q unit) is preferably a number satisfying 0.3 to 2.5, and particularly (M unit). It is preferable that / (Q unit) is a number satisfying 0.5 to 2.
  • the silicone resin according to the present invention does not impair the properties of the addition-curable silicone composition of the present invention with R 2 SiO 2/2 units (D units) and RSiO 3/2 units (T units) in the molecule.
  • R 2 SiO 2/2 units D units
  • RSiO 3/2 units T units
  • R for example, 1 to 50 mol% in the component (B) silicone resin
  • R is R 4 or R 5 .
  • the silicone resin used in the present invention is a solid or viscous liquid at room temperature.
  • the average molecular weight of the silicone resin is not particularly limited, but the kinematic viscosity when the silicone resin is dissolved in xylene to form a 50 mass% solution has a kinematic viscosity of 0.5 to 10 mm 2 / s, preferably 1 to 5 mm 2 / s.
  • a molecular weight such that When the kinematic viscosity of the silicone resin is within the above range, deterioration of physical properties of the composition can be prevented, which is preferable.
  • the amount of the silicone resin as the component (B) is 0 to 100 parts by mass with respect to 100 parts by mass of the component (A), but when blended, it is preferably 1 to 100 parts by mass, more preferably 3 to 50 parts by mass. Is. If the amount of the component (B) is less than the above lower limit, it may be insufficient to develop adhesiveness, and if it is more than the above upper limit, the extensibility may be poor.
  • the component (C) is one or more thermally conductive fillers selected from the group consisting of metals, metal oxides, metal hydroxides, metal nitrides, metal carbides, and allotropes of carbon.
  • metals metal oxides, metal hydroxides, metal nitrides, metal carbides, and allotropes of carbon.
  • metals metal oxides, metal hydroxides, metal nitrides, metal carbides, and allotropes of carbon.
  • aluminum, silver, copper, metallic silicon, alumina, zinc oxide, magnesium oxide, aluminum oxide, silicon dioxide, cerium oxide, iron oxide, aluminum hydroxide, cerium hydroxide, aluminum nitride, boron nitride, silicon carbide, diamond, Graphite, carbon nanotube, graphene and the like can be mentioned. These may be used alone or in combination of two or more, and are preferably a combination of a large particle component and a small particle component.
  • the average particle size of the large particle component is smaller than 0.1 ⁇ m, the viscosity of the obtained composition may be too high, resulting in poor extensibility, and if it is larger than 100 ⁇ m, the obtained composition may be non-uniform. Therefore, the range of 0.1 to 100 ⁇ m is preferable, the range of 10 to 50 ⁇ m is more preferable, and the range of 10 to 45 ⁇ m is more preferable. If the average particle size of the small particle component is less than 0.01 ⁇ m, the viscosity of the obtained composition may be too high, and the extensibility may be poor. If it is 10 ⁇ m or more, the obtained composition is not uniform.
  • the range is preferably 0.01 ⁇ m or more and less than 10 ⁇ m, and more preferably 0.1 to 4 ⁇ m.
  • the ratio of the large particle component and the small particle component is not particularly limited, and is preferably in the range of 9: 1 to 1: 9 (mass ratio).
  • the shapes of the large particle component and the small particle component are not particularly limited, and may be spherical, irregular shape, needle-like, or the like.
  • the average particle size can be obtained as, for example, a volume-based average value (or median size) in particle size distribution measurement by a laser light diffraction method.
  • the blending amount of the component (C) is 10 to 95% by mass, preferably 20 to 90% by mass, more preferably 30 to 88% by mass, and even 50 to 85% by mass, based on the entire composition.
  • the composition has poor extensibility, and when it is less than 10% by mass, it has poor thermal conductivity.
  • the component (D) is an organohydrogenpolysiloxane having two or more hydrogen atoms (SiH groups) bonded to silicon atoms in one molecule, preferably 2 to 100, and more preferably 2 to 20. Is.
  • the SiH group in the molecule undergoes an addition reaction with the aliphatic unsaturated hydrocarbon group contained in the components (A) and (B) in the presence of a platinum group metal catalyst to form a crosslinked structure. Any material that can be formed may be used.
  • the molecular structure of the organohydrogenpolysiloxane is not particularly limited as long as it has the above-mentioned properties, and a linear structure, a branched structure, a cyclic structure, a partially branched structure or a linear structure having a cyclic structure. A structure etc. are mentioned. A linear structure and a cyclic structure are preferred.
  • the organohydrogenpolysiloxane has a kinematic viscosity at 25 ° C. of preferably 1 to 1,000 mm 2 / s, more preferably 10 to 100 mm 2 / s. If the kinematic viscosity is 1 mm 2 / s or more, the physical properties of the silicone composition may not be deteriorated, and if it is 1,000 mm 2 / s or less, the extensibility of the silicone composition may be poor. There is no.
  • Examples of the organic group bonded to the silicon atom of the organohydrogenpolysiloxane include unsubstituted or substituted monovalent hydrocarbon groups other than the aliphatic unsaturated hydrocarbon group. Particularly, it is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 12 carbon atoms, preferably 1 to 10 carbon atoms.
  • an alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group and a dodecyl group, an aryl group such as a phenyl group, an aralkyl group such as a 2-phenylethyl group and a 2-phenylpropyl group, and hydrogen thereof.
  • halogen atoms such as fluorine, bromine, chlorine, cyano group, epoxy ring-containing organic group (glycidyl group or glycidyloxy group-substituted alkyl group), for example, chloromethyl group, chloropropyl Group, bromoethyl group, trifluoropropyl group, cyanoethyl group, 2-glycidoxyethyl group, 3-glycidoxypropyl group, 4-glycidoxybutyl group and the like. Of these, a methyl group and a 3-glycidoxypropyl group are preferable.
  • the organohydrogenpolysiloxane may be used alone or in combination of two or more.
  • the amount of the organohydrogenpolysiloxane as the component (D) is such that the total number of the aliphatic unsaturated hydrocarbon groups in the components (A) and (B) is 0.
  • the amount is 5 to 5, preferably 0.7 to 4.5, and more preferably 1 to 4. If the amount of component (D) is less than the above lower limit, the addition reaction will not proceed sufficiently and crosslinking will be insufficient. On the other hand, if the amount exceeds the upper limit, the cross-linked structure may become non-uniform, or the storage stability of the composition may be significantly deteriorated.
  • the number of aliphatic unsaturated hydrocarbon groups in the composition is 0.5 to 5, and particularly 1 to 4 relative to the total of the above.
  • Component (E) The component (E) is decomposed under specific conditions selected from peroxyketal, hydroperoxide, dialkyl peroxide, diacyl peroxide, peroxy ester, and peroxydicarbonate to generate free radicals. It is an organic peroxide which is generated, and can be used alone or in combination of two or more kinds as a reaction initiator for introducing a silalkylene structure into the siloxane crosslinked structure of the silicone composition obtained by the present invention. To work.
  • peroxyketals such as 1,1-di (tert-butylperoxy) cyclohexane and 2,2- (4,4-di- (tert-butylperoxy) cyclohexyl) propane, p-menthane hydro Hydroperoxides such as peroxides and diisopropylbenzene hydroperoxides, dialkyl peroxides such as dicumyl peroxide, tert-butylcumyl peroxide, and 2,5-dimethyl-2,5-di (tert-butylperoxy) hexane , Dibenzoyl peroxide, diacyl peroxide such as disuccinic acid peroxide, peroxy ester such as tert-butyl peroxyacetate and tert-butyl peroxybenzoate, peroxy ester such as diisopropyl peroxydicarbonate Siji carbonate is preferably used. Particularly, it is preferable to use peroxyketal, hydro
  • the decomposition temperature for obtaining the one-hour half-life is preferably in the range of 50 to 200 ° C, more preferably in the range of 80 to 170 ° C. If the decomposition temperature for obtaining a one-hour half-life is less than 50 ° C, the reaction may be explosive, which makes it difficult to handle. The introduction efficiency of the silalkylene structure may decrease. Further, these organic peroxides may be diluted with any organic solvent, hydrocarbon, liquid paraffin, inert solid or the like.
  • the blending amount of the component (E) is 0.01 to 10 parts by mass, preferably 0.1 to 5 parts by mass, based on 100 parts by mass of the total of the components (A) and (B). If the blending amount is less than 0.01 parts by mass, the introduction efficiency of the silalkylene structure into the structure of the silicone composition decreases, and if it exceeds 10 parts by mass, the storage stability of the silicone composition may decrease. There is a nature.
  • Component (F) is a hydrolyzable organosilane compound represented by the following general formula (1), which may be used alone or in combination of two or more, and is obtained in the present invention. It acts as an adhesion aid for improving the adhesiveness of the silicone composition.
  • R 1 represents a monovalent hydrocarbon group having 1 to 10 carbon atoms which may have a substituent, and each R 1 may be the same or different.
  • R 2 is an epoxy Group, an acryloyl group, a methacryloyl group, an alkoxysilyl group, X is an alkylene group having 1 to 20 carbon atoms and optionally containing a hetero atom, and n is an integer of 0 to 2.
  • R 1 in the above formula (1) is a monovalent hydrocarbon group having 1 to 10 carbon atoms which may have a substituent, preferably a monovalent saturated aliphatic hydrocarbon which may have a substituent.
  • Branched-chain alkyl groups such as alkyl groups, isopropyl groups, isobutyl groups, tert-butyl groups, isopentyl groups, neopentyl groups, cycloalkyl groups such as cyclopentyl groups, cyclohexyl groups, cycloheptyl groups, chloromethyl groups, 3-chloropropyl groups And halogen-substituted alkyl groups such as 3,3,3-trifluoropropyl group and bromopropyl group, etc., having 1 to 10 carbon atoms, preferably 1 to 8 carbon atoms, and more preferably 1 to 6 carbon atoms. .
  • Examples of the monovalent unsaturated aliphatic hydrocarbon group which may have a substituent include alkenyl groups such as ethenyl group, 1-methylethenyl group and 2-propenyl group, ethynyl group and 2-propynyl group.
  • An alkynyl group or the like having 2 to 10 carbon atoms, preferably 2 to 8 carbon atoms, and more preferably 2 to 6 carbon atoms.
  • aryl groups such as phenyl group and tolyl group
  • aralkyl groups such as benzyl group and 2-phenylethyl group
  • ⁇ , ⁇ , ⁇ -A halogen-substituted aryl group such as a trifluorotolyl group and a chlorobenzyl group having 6 to 10 carbon atoms, preferably 6 to 8 carbon atoms, and more preferably 6 carbon atoms.
  • R 1 is preferably a methyl group, an ethyl group, a 3,3,3-trifluoropropyl group or a phenyl group, more preferably a methyl group, an ethyl group or a phenyl group, and particularly preferably a methyl group. Is.
  • R 2 is a group selected from an epoxy group, an acryloyl group, a methacryloyl group, and an alkoxysilyl group.
  • an epoxy group or an alkoxysilyl group examples include a trimethoxy group, a dimethoxymethyl group, a methoxydimethylsilyl group, a triethoxy group, a diethoxymethyl group, an ethoxydimethylsilyl group, and among these, a trimethoxy group and a triethoxy group are preferable.
  • X is an alkylene group having 1 to 20 carbon atoms which may contain a hetero atom, and is a spacer connecting R 2 and the silicon atom.
  • the structure of X is not particularly limited and may be linear or branched, but is preferably linear. Specific examples of X include those shown below. -CH 2 OCH 2 CH 2 CH 2- —CH 2 OCH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 — -(CH 2 ) x- (X is an integer from 1 to 20.)
  • N is an integer of 0 to 2 and defines the number of alkoxy groups of the alkoxysilyl group of the hydrolyzable organosilane compound as the component (F).
  • n is preferably 0 or 1, and more preferably 0. is there.
  • the blending amount of the component (F) is 0.1 to 30 parts by mass, preferably 1 to 20 parts by mass, based on 100 parts by mass of the total of the components (A) and (B). If the blending amount is less than 0.1 part by mass, the coating amount on the surface of the thermally conductive filler will be reduced, so that the adhesiveness may not be sufficiently exhibited. If the amount exceeds 30 parts by mass, the strength of the cured product of the silicone composition may be reduced, and the adhesiveness may not be sufficiently exhibited, which is not preferable.
  • Component (G) is a platinum group metal catalyst and functions to accelerate the addition reaction of the above-mentioned components.
  • the platinum group metal catalyst a conventionally known catalyst used for an addition reaction can be used. Examples thereof include platinum-based, palladium-based, and rhodium-based catalysts, and among them, platinum or a platinum compound that is relatively easily available is preferable. For example, simple substance of platinum, platinum black, chloroplatinic acid, platinum-olefin complex, platinum-alcohol complex, platinum coordination compound and the like can be mentioned.
  • the platinum group metal catalysts may be used alone or in combination of two or more.
  • the blending amount of the component (G) may be an effective amount as a catalyst, that is, an effective amount necessary for promoting the addition reaction and curing the addition-curable silicone composition of the present invention.
  • the amount is preferably 0.1 to 500 ppm, and more preferably 1 to 200 ppm, based on the mass of platinum group metal atoms, based on the total mass of the components (A) and (B). If the amount of the catalyst is less than the above lower limit, the effect as the catalyst may not be obtained. Further, even if the upper limit is exceeded, the catalytic effect does not increase and it is uneconomical, which is not preferable.
  • the addition-curable silicone composition of the present invention may further contain the following optional components in addition to the above components, if necessary.
  • the component (H) is a reaction control agent that suppresses the progress of the hydrosilylation reaction at room temperature, and can be added to extend the shelf life and the pot life.
  • a reaction control agent a conventionally known control agent used in addition-curable silicone compositions can be used.
  • acetylene compounds such as acetylene alcohols (eg, ethynylmethyldecylcarbinol, 1-ethynyl-1-cyclohexanol, 3,5-dimethyl-1-hexyn-3-ol), tributylamine, tetra
  • acetylene alcohols eg, ethynylmethyldecylcarbinol, 1-ethynyl-1-cyclohexanol, 3,5-dimethyl-1-hexyn-3-ol
  • tributylamine tetra
  • nitrogen compounds such as methylethylenediamine and benzotriazole
  • organic phosphorus compounds such as triphenylphosphine, oxime compounds and organic chloro compounds.
  • the blending amount is preferably 0.05 to 5 parts by mass, more preferably 0.1 to 1 part by mass, based on 100 parts by mass of the total of the components (A) and (B). Is. If the amount of the reaction control agent is less than 0.05 parts by mass, the desired sufficient shelf life and pot life may not be obtained, and if it is more than 5 parts by mass, the curability of the silicone composition may be poor. It may decrease. Further, the reaction control agent may be diluted with an organo (poly) siloxane, toluene or the like and used in order to improve dispersibility in the silicone composition.
  • the addition-curable silicone composition of the present invention may further contain a hydrolyzable organopolysiloxane compound (I) represented by the following general formula (2).
  • the hydrolyzable organopolysiloxane compound as the component (I) is used for treating the surface of the thermally conductive filler, and plays a role of assisting the high filling of the filler.
  • R 1 represents a monovalent hydrocarbon group having 1 to 10 carbon atoms which may have a substituent, and each R 1 may be the same or different.
  • M is 5 to Indicates an integer of 100.
  • R 1 in the above formula (2) is the same as described above, and is particularly preferably a methyl group.
  • m is an integer of 5 to 100, preferably 10 to 60. If the value of m is less than 5, oil bleeding derived from the silicone composition may be severe and the reliability may be deteriorated. If the value of m is greater than 100, the wettability with the filler may be insufficient.
  • the blending amount is preferably 1 to 200 parts by mass, and particularly preferably 5 to 30 parts by mass, relative to 100 parts by mass of the total of the components (A) and (B). If the amount of component (I) is less than 1 part by mass, sufficient wettability may not be exhibited. Further, if the amount of the component (I) is more than 200 parts by mass, bleeding from the composition may be severe.
  • the addition-curable silicone composition of the present invention may further contain a hydrolyzable organopolysiloxane compound (J) represented by the following general formula (3).
  • the hydrolyzable organopolysiloxane compound as the component (J) has a reinforcing effect of treating the surface of the thermally conductive filler and enhancing the strength of the silicone composition.
  • R 1 represents a monovalent hydrocarbon group having 1-10 1 carbon atoms which may have a substituent, each of R 1 good .R 3 be different even for the same carbon It is an alkenyl group of the numbers 2 to 6.
  • p and q are numbers satisfying 1 ⁇ p ⁇ 50, 1 ⁇ q ⁇ 99, and 5 ⁇ p + q ⁇ 100.
  • R 1 in the above formula (3) is the same as described above, and is particularly preferably a methyl group.
  • R 3 is an alkenyl group having 2 to 6 carbon atoms, and specific examples thereof include a vinyl group, an allyl group, a propenyl group, an isopropenyl group, a butenyl group, a hexenyl group and a cyclohexenyl group, with vinyl being particularly preferable. It is a base.
  • P is 1 to 50, preferably 1 to 10, and q is 1 to 99, preferably 4 to 50. If p is small, the silicone composition may not have a sufficient reinforcing effect, and if p is large, crosslinking may be non-uniform. If q is small, oil bleeding may be severe, and when q is large. The treatment of the surface of the thermally conductive filler may be insufficient. Further, p + q is 5 ⁇ p + q ⁇ 100, and preferably 5 ⁇ p + q ⁇ 60. If p + q is less than 5, oil bleeding of the composition may be severe and reliability may be deteriorated. If p + q is larger than 100, the wettability with the filler may be insufficient.
  • the blending amount is 1 to 50 parts by mass, preferably 2 to 30 parts by mass, relative to 100 parts by mass of the total of the components (A) and (B). If the amount of component (J) is less than the above lower limit value, sufficient wettability and reinforcing effect may not be exhibited. If the amount of the component (J) is more than the above upper limit, oil bleeding from the composition may become severe.
  • the addition-curable silicone composition of the present invention may contain a non-reactive organo (poly) siloxane such as methylpolysiloxane in order to adjust the strength and viscosity of the composition. Further, in order to prevent the deterioration of the silicone composition, a conventionally known antioxidant such as 2,6-di-tert-butyl-4-methylphenol may be contained if necessary. Furthermore, a dye, a pigment, a flame retardant, an anti-settling agent, a thixotropy improving agent, or the like can be added if necessary.
  • Step of producing silicone composition The method for producing the silicone composition of the present invention will be described.
  • the method for producing the silicone composition according to the present invention is not particularly limited, but contains the above-mentioned components (A) to (G), and optionally (H), (I) and (J). And a step of producing a silicone composition.
  • the above-mentioned components (A) to (G) and, if necessary, the components (H), (I), and (J) are mixed, for example, with a Trimix, a Twin Mix, a planetary mixer (all are mixers manufactured by Inoue Co., Ltd.). No.), an ultramixer (registered trademark of a mixer manufactured by Mizuho Industry Co., Ltd.), and a mixer such as Hibis Dispermix (registered trademark of a mixer manufactured by Tokushu Kika Kogyo Co., Ltd.). Is mentioned.
  • the addition-curable silicone composition of the present invention may be mixed while heating.
  • the heating conditions are not particularly limited, but the temperature is usually 25 to 220 ° C., preferably 40 to 200 ° C., particularly preferably 50 to 200 ° C., and the time is usually 3 minutes to 24 hours, preferably 5 minutes to It is 12 hours, particularly preferably 10 minutes to 6 hours.
  • deaeration may be performed during heating.
  • the components (A) to (C) and (F) are heated and mixed at 50 to 200 ° C. in advance, and then the components (D), (E) and (G) are mixed. It is preferable from the viewpoint that the product exhibits good adhesive strength.
  • the components (A) to (C), (F), (I) and (J) should be added at 50 to 200 ° C in advance. It is preferable that the components (D), (E), (G) and (H) are mixed by heating and mixing.
  • the addition-curable silicone composition of the present invention has a viscosity measured at 25 ° C. of preferably 1 to 1,000 Pa ⁇ s, more preferably 20 to 700 Pa ⁇ s, still more preferably 40 to 600 Pa ⁇ s. . If the viscosity is less than 1 Pa ⁇ s, it may be difficult to maintain the shape and the workability may be deteriorated. Further, when the viscosity exceeds 1,000 Pa ⁇ s, workability may be deteriorated, such as difficulty in discharging or applying.
  • the viscosity can be obtained by adjusting the blending amount of each component described above.
  • the addition-curable silicone composition of the present invention is heat conductive and usually has a heat conductivity of 0.5 to 10 W / m ⁇ K.
  • the viscosity is a value measured at 25 ° C by a rotational viscometer
  • the thermal conductivity is a value measured by a hot disk method.
  • the addition-curable silicone composition of the present invention is suitable as a composition that is interposed between a heat generating member such as an electronic component such as an LSI or the like and a cooling member to transfer heat from the heat generating member to the cooling member to radiate the heat.
  • a heat generating member such as an electronic component such as an LSI or the like
  • a cooling member to transfer heat from the heat generating member to the cooling member to radiate the heat.
  • the addition-curable silicone composition of the present invention can be cured by heat generated from a heat-generating member such as an electronic component, and after the addition-curable silicone composition of the present invention is applied, it is positively heat-cured. May be. This makes it possible to provide a semiconductor device in which a cured product of the addition-curable silicone composition of the present invention is interposed between a heat generating member and a cooling member.
  • the curing conditions for heat-curing the addition-curable silicone composition of the present invention are not particularly limited, but are usually 80 to 200 ° C., preferably 100 to 180 ° C., 30 minutes to 4 hours, preferably 30. Minutes to 2 hours.
  • the addition-curable silicone composition of the present invention has good adhesiveness to various adherends even if it contains a large amount of a thermally conductive filler, and thus can achieve both high thermal conductivity and strong adhesiveness. Therefore, it can be particularly suitably used as a heat-dissipating grease used for a large-sized or large-sized semiconductor device.
  • the kinematic viscosity is a value at 25 ° C. measured by an Ubbelohde Ostwald viscometer.
  • Component A-1 Dimethylpolysiloxane having both ends blocked with dimethylvinylsilyl groups and a kinematic viscosity at 25 ° C. of 600 mm 2 / s: SiVi group amount: 0.00014 mol / g
  • Component B-1 Silicone resin represented by the following average composition formula: Kinematic viscosity of a solution of 50% by mass in a xylene solvent, 3.0 mm 2 / s, SiVi group amount: 0.0004 mol / g (SiO 4/2 ) 1.0 ((CH 2 ⁇ CH) (CH 3 ) 2 SiO 1/2 ) 0.12 ((CH 3 ) 3 SiO 1/2 ) 0.75
  • Component C-1 Aluminum powder having an average particle size of 20.0 ⁇ m and aluminum powder having an average particle size of 2.0 ⁇ m premixed at a mass ratio of 60:40
  • C-2 Average particle size of 1.0 ⁇ m Zinc oxide powder
  • F Component F-1: 3-glycidoxypropyltrimethoxysilane represented by the following formula (9)
  • G-1 Platinum-divinyltetramethyldisiloxane complex dissolved in the same dimethylpolysiloxane as A-1 (platinum atom content: 1% by mass)
  • Examples 1 to 10 and Comparative Examples 1 to 8 Preparation of Silicone Composition
  • the components (A) to (J) described above were blended in the blending amounts shown in Tables 1 to 4 below by the method shown below to prepare a silicone composition.
  • the mass of the component (G) in the table is the mass of a solution (platinum atom content: 1 mass%) in which a platinum-divinyltetramethyldisiloxane complex is dissolved in dimethylpolysiloxane.
  • SiH / SiVi is the ratio of the total number of SiH groups in the component (D) to the total number of alkenyl groups in the components (A), (B), and (J).
  • Components (A), (B), (C), (I) and (J) were added to a 5 liter planetary mixer (manufactured by Inoue Seisakusho Co., Ltd.) and mixed at 170 ° C. for 1 hour. The mixture was cooled to 40 ° C or lower, then the component (F) was added and mixed at 70 ° C for 1 hour. The mixture was cooled to 40 ° C. or lower, and then the components (G), (H), (D), and (E) were added and mixed so as to be uniform to prepare a silicone composition.
  • the silicone compositions of Examples 1 to 10 satisfying the requirements of the present invention have a large adhesive force to the nickel-plated copper plate. That is, it can be judged that the adhesiveness is excellent.
  • the silicone compositions of Comparative Examples 1 to 8 have low adhesive strength to the nickel-plated copper plate. That is, it can be determined that the adhesiveness is poor. Therefore, since the addition-curable silicone composition of the present invention has good adhesiveness to various adherends even if it contains a large amount of a thermally conductive filler, it is possible to achieve both high thermal conductivity and strong adhesiveness. I was able to confirm. Due to such characteristics, the addition-curable silicone composition of the present invention can be particularly suitably used as a heat-dissipating grease used for large-scale or large-scale semiconductor devices.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiments are merely examples, and the present invention has substantially the same configuration as the technical idea described in the scope of claims of the present invention, and has any similar effects to the present invention. It is included in the technical scope of.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

脂肪族不飽和炭化水素基含有オルガノポリシロキサン、熱伝導性充填剤、特定構造を有するオルガノハイドロジェンポリシロキサン、有機過酸化物、加水分解性オルガノシラン化合物、白金族金属触媒、及び必要により脂肪族不飽和炭化水素基を有するシリコーンレジンを特定量配合する付加硬化型シリコーン組成物が、従来のシリコーン放熱グリースに比べ、高い熱伝導率を有し、かつ各種被着体への接着性が良好であるシリコーン放熱グリースを与えることができる。

Description

付加硬化型シリコーン組成物及びその製造方法
 本発明は、付加硬化型シリコーン組成物及びその製造方法に関する。詳細には、高熱伝導性の付加硬化型シリコーン組成物に関し、熱伝導性充填剤を多量に含有しても各種被着体への接着性が良好である付加硬化型シリコーン組成物及びその製造方法に関する。
 LSIやICチップ等の電子部品は、使用中の発熱及びそれによる性能の低下が広く知られており、これを解決するための手段として様々な放熱技術が用いられている。一般的な放熱技術としては、発熱部の付近に冷却部材を配置し、両者を密接させたうえで冷却部材から効率的に除熱することにより放熱を行う技術が挙げられる。
 その際、発熱部材と冷却部材との間に隙間があると、熱伝導性の悪い空気が介在することにより熱伝導率が低下し、発熱部材の温度が十分に下がらなくなってしまう。このような空気の介在を防ぎ、熱伝導率を向上させるため、熱伝導率がよく、部材の表面に追随性のある放熱材料、例えば放熱グリースや放熱シートが用いられている(特許文献1~11:特許第2938428号公報、特許第2938429号公報、特許第3580366号公報、特許第3952184号公報、特許第4572243号公報、特許第4656340号公報、特許第4913874号公報、特許第4917380号公報、特許第4933094号公報、特開2008-260798号公報、特開2009-209165号公報)。
 例えば、特許文献9には、特定構造を有するオルガノポリシロキサンと、特定の置換基を有するアルコキシシランと、熱伝導性充填剤とを含有してなる熱伝導性シリコーングリース組成物が開示されており、該組成物は熱伝導性が良好であり、かつ流動性が良好であり作業性に優れることが記載されている。また、特許文献10及び特許文献11には、粘着性と熱伝導性を有するシートが開示され、付加硬化型のシリコーンゴム組成物に、熱伝導性充填剤と脂肪族不飽和炭化水素基を有さないシリコーンレジンを配合した熱伝導性組成物が開示されている。特許文献10及び特許文献11には、薄膜状態で適度な粘着性と良好な熱伝導性を有する熱伝導性硬化物が提供できることが開示されている。
 放熱グリースの中には、半導体チップとヒートスプレッダーを強固に接着させるためにグリースに接着性能を付与したものがある。半導体チップとヒートスプレッダーがグリースを介して十分に接着していないと、放熱性能が十分発揮されず著しい性能の低下を及ぼすためである。従って、半導体チップとヒートスプレッダーとの間をグリースにより強固に接着させることは重要である。一方で、放熱グリースの熱伝導率を向上させるためには熱伝導性充填剤を大量に充填する必要もある。熱伝導性充填剤をグリース中に大量に充填すると相対的に有機物成分量が減少するため、得られる硬化物の接着性が低下するという問題がある。接着性が低下すると、発熱と冷却の熱履歴による半導体チップの歪みに硬化物が追従できなくなり剥離を生じ、最悪の場合、半導体チップの破損を起こす可能性がある。
 特許文献12(特開2012-102283号公報)は、アルケニル基含有オルガノポリシロキサン、加水分解性メチルポリシロキサン、熱伝導性充填剤、オルガノハイドロジェンポリシロキサン、トリアジン環及びアルケニル基含有接着助剤、及び白金系触媒を必須成分として含有する熱伝導性シリコーングリース組成物を開示している。特許文献12には、該組成物は、硬化後に高温での加熱エージングを行った際の硬度上昇が少なく、伸びの減少が抑制される放熱グリースを提供できることが記載されている。特許文献13(特開2012-96361号公報)には、硬化剤として10時間半減期温度が80℃以上130℃未満のパーオキサイドを含む熱伝導性シリコーン組成物が開示されており、該組成物は、金などの貴金属層を有する基材表面上で容易に硬化できる放熱グリースを提供できるとしている。
 従来のシリコーン放熱グリースは、熱伝導率が十分でないという問題や、熱伝導率は高いが接着性が低いという問題を有する。近年では半導体装置の発熱量はますます増加の傾向にあり、放熱グリースの高熱伝導率化の要求は高まっている。また半導体装置の大型化に伴い半導体チップの歪み量も増加しているため、放熱グリースの接着性向上も重要な課題となっている。
特許第2938428号公報 特許第2938429号公報 特許第3580366号公報 特許第3952184号公報 特許第4572243号公報 特許第4656340号公報 特許第4913874号公報 特許第4917380号公報 特許第4933094号公報 特開2008-260798号公報 特開2009-209165号公報 特開2012-102283号公報 特開2012-96361号公報
 従って、本発明は、上記事情に鑑みなされたもので、従来のシリコーン放熱グリースに比べ、高い熱伝導率を有し、かつ各種被着体への接着性が良好であるシリコーン放熱グリースを与えることができる付加硬化型シリコーン組成物及びその製造方法を提供することを目的とする。
 本発明者は、上記目的を達成するために鋭意研究を行った結果、脂肪族不飽和炭化水素基含有オルガノポリシロキサン、熱伝導性充填剤、特定構造を有するオルガノハイドロジェンポリシロキサン、有機過酸化物、加水分解性オルガノシラン化合物、白金族金属触媒、及び必要により脂肪族不飽和炭化水素基を有するシリコーンレジンを特定量配合することで、熱伝導性充填剤を多量に含有しても各種被着体に対し良好な接着性を有する付加硬化型シリコーン組成物が得られることを見出し、本発明を完成した。
 従って、本発明は、下記付加硬化型シリコーン組成物及びその製造方法を提供する。
[1].
 (A)1分子中に少なくとも2個の脂肪族不飽和炭化水素基を有し、25℃での動粘度が60~100,000mm2/sであるオルガノポリシロキサン: 100質量部、
(B)1分子中に少なくとも1個の脂肪族不飽和炭化水素基を有するシリコーンレジン:
 (A)成分100質量部に対して0~100質量部、
(C)金属、金属酸化物、金属水酸化物、金属窒化物、金属炭化物、及び炭素の同素体からなる群より選ばれる少なくとも1種の熱伝導性充填剤: 組成物全体に対し10~95質量%となる量、
(D)1分子中に2個以上のケイ素原子に結合した水素原子を有するオルガノハイドロジェンポリシロキサン: (A)及び(B)成分中の脂肪族不飽和炭化水素基の個数の合計に対するSiH基の個数が0.5~5となる量、
(E)パーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、ジアシルパーオキサイド、パーオキシエステル、及びパーオキシジカーボネートから選ばれる有機過酸化物: (A)成分と(B)成分の合計100質量部に対して0.01~10質量部、
(F)下記一般式(1)で示される加水分解性オルガノシラン化合物: (A)成分と(B)成分の合計100質量部に対して0.1~30質量部、
Figure JPOXMLDOC01-appb-C000004
(式中、R1は置換基を有していてもよい炭素数1~10の1価炭化水素基を表し、それぞれのR1は同一であっても異なっていてもよい。R2はエポキシ基、アクリロイル基、メタクリロイル基、アルコキシシリル基から選択される基である。Xはヘテロ原子を含んでもよい炭素数1~20のアルキレン基である。nは0~2の整数である。)
(G)白金族金属触媒: 有効量
を必須成分とする付加硬化型シリコーン組成物。
[2].
 さらに、(H)反応制御剤を(A)成分と(B)成分の合計100質量部に対して0.05~5質量部含む[1]に記載の付加硬化型シリコーン組成物。
[3].
 さらに、(I)下記一般式(2)で表される加水分解性オルガノポリシロキサン化合物を(A)成分と(B)成分の合計100質量部に対して1~200質量部含む[1]又は[2]に記載の付加硬化型シリコーン組成物。
Figure JPOXMLDOC01-appb-C000005
(式中、R1は置換基を有していてもよい炭素数1~10の1価炭化水素基を表し、それぞれのR1は同一であっても異なっていてもよい。mは5~100の整数を示す。)
[4].
 さらに、(J)下記一般式(3)で表される加水分解性オルガノポリシロキサン化合物を(A)成分と(B)成分の合計100質量部に対して1~50質量部含む[1]~[3]のいずれかに記載の付加硬化型シリコーン組成物。
Figure JPOXMLDOC01-appb-C000006
(式中、R1は置換基を有していてもよい炭素数1~10の1価炭化水素基を表し、それぞれのR1は同一であっても異なっていてもよい。R3は炭素数2~6のアルケニル基である。p、qは1≦p≦50、1≦q≦99、5≦p+q≦100を満足する数である。)
[5].
 [1]~[4]のいずれかに記載の付加硬化型シリコーン組成物の製造方法であって、予め(A)~(C)及び(F)成分を50~200℃で加熱混合し、その後、(D)、(E)及び(G)成分を混合することを特徴とする付加硬化型シリコーン組成物の製造方法。
 本発明の付加硬化型シリコーン組成物は、熱伝導性充填剤を多量に含有しても各種被着体に対し良好な接着性を有するため、高熱伝導率と強接着性の両立が可能である。すなわち、近年の半導体装置の発熱量増加や大型化に対応可能なシリコーン放熱グリースを提供可能である。
 以下、本発明を詳細に説明する。
(A)成分
 (A)成分は、1分子中に少なくとも2個、好ましくは2~100個、より好ましくは2~50個の脂肪族不飽和炭化水素基を有し、25℃での動粘度が60~100,000mm2/sであるオルガノポリシロキサンである。
 脂肪族不飽和炭化水素基は、好ましくは、脂肪族不飽和結合を有する、炭素数2~8、さらに好ましくは炭素数2~6の1価炭化水素基であり、より好ましくはアルケニル基である。例えば、ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、ヘキセニル基、シクロヘキセニル基、及びオクテニル基等のアルケニル基が挙げられる。特に好ましくはビニル基である。脂肪族不飽和炭化水素基は、分子鎖末端のケイ素原子、分子鎖途中のケイ素原子のいずれに結合していてもよく、両者に結合していてもよい。
 なお、(A)成分のオルガノポリシロキサンは、1分子中に0.00001~0.01mol/g、特には0.0001~0.01mol/gの脂肪族不飽和炭化水素基を有することが好ましい。
 前記オルガノポリシロキサンのケイ素原子に結合する、脂肪族不飽和炭化水素基以外の有機基としては、炭素数1~18、好ましくは炭素数1~10、さらに好ましくは炭素数1~8の、脂肪族不飽和結合を有しない、非置換又は置換の1価炭化水素基である。例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、シクロヘキシル基、オクチル基、ノニル基、デシル基等のアルキル基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;ベンジル基、フェニルエチル基、フェニルプロピル基等のアラルキル基、又はこれらの基の水素原子の一部又は全部をフッ素、臭素、塩素等のハロゲン原子、シアノ基等で置換したもの、例えば、クロロメチル基、クロロプロピル基、ブロモエチル基、トリフルオロプロピル基、シアノエチル基等が挙げられる。特にはメチル基であることが好ましい。
 前記オルガノポリシロキサンは、25℃での動粘度が、60~100,000mm2/s、好ましくは100~30,000mm2/sである。該動粘度が60mm2/s未満であると、シリコーン組成物の物理的特性が低下し、100,000mm2/sを超えると、シリコーン組成物の伸展性が乏しいものとなる。
 本発明において、動粘度は、ウベローデ型オストワルド粘度計により測定した25℃における値である(以下、同じ)。
 前記オルガノポリシロキサンは、上記性質を有するものであればその分子構造は特に限定されず、直鎖状構造、分岐鎖状構造、一部分岐状構造又は環状構造を有する直鎖状構造等が挙げられる。特には、主鎖がジオルガノシロキサン単位の繰り返しからなり、分子鎖両末端がトリオルガノシロキシ基で封鎖された直鎖状構造を有するのが好ましい。該直鎖状構造を有するオルガノポリシロキサンは、部分的に分岐状構造、又は環状構造を有していてもよい。
 該オルガノポリシロキサンは、1種を単独で又は2種以上を組み合わせて使用することができる。
(B)成分
 (B)成分はシリコーンレジンである。(B)成分のシリコーンレジンは、1分子中に少なくとも1個の脂肪族不飽和炭化水素基を有するものである。(B)成分は配合しなくてもよいが、(B)成分のシリコーンレジンを含有した場合、本発明の付加硬化型シリコーン組成物より得られる硬化物の接着強度を向上することができる。
 本発明において(B)成分は、好ましくはSiO4/2単位、R4 25SiO1/2単位、及びR4 3SiO1/2単位(式中、R4は、互いに独立に脂肪族不飽和結合を有しない1価炭化水素基であり、R5は1価脂肪族不飽和炭化水素基である)を含むシリコーンレジンである。
 前記式中、R4は、互いに独立に脂肪族不飽和結合を有しない、炭素数1~18、好ましくは炭素数1~10、さらに好ましくは炭素数1~8の、非置換又は置換の1価炭化水素基である。例えば、R4としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、シクロヘキシル基、オクチル基、ノニル基、デシル基等のアルキル基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;ベンジル基、フェニルエチル基、フェニルプロピル基等のアラルキル基、又はこれらの基の水素原子の一部又は全部をフッ素、臭素、塩素等のハロゲン原子、シアノ基等で置換したもの、例えば、クロロメチル基、クロロプロピル基、ブロモエチル基、トリフルオロプロピル基、シアノエチル基等が挙げられる。これらの中でも、メチル基が特に好ましい。
 R5は1価脂肪族不飽和炭化水素基であり、好ましくは、脂肪族不飽和結合を有する、炭素数2~8、さらに好ましくは炭素数2~6の1価炭化水素基であり、より好ましくはアルケニル基である。アルケニル基としては、例えば、ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、ヘキセニル基、シクロヘキセニル基、及びオクテニル基等が挙げられる。特に好ましくはビニル基である。
 (B)成分のシリコーンレジンは1分子中に少なくとも1個、好ましくは1×10-5~1×10-2mol/g、さらに好ましくは1×10-4~2×10-3mol/gの脂肪族不飽和炭化水素基を有する。
 さらに(B)成分は、SiO4/2単位(Q単位)とR4 25SiO1/2単位、及びR4 3SiO1/2単位(M単位)とのモル比が、(M単位)/(Q単位)が0.1~3を満たす数、さらには(M単位)/(Q単位)が0.3~2.5を満たす数であることが好ましく、特には(M単位)/(Q単位)が0.5~2を満たす数であることが好ましい。M単位とQ単位のモル比が上記範囲内であると、良好な接着性及び強度を有するグリースを提供することができる。なお、本発明にかかるシリコーンレジンは、分子中にR2SiO2/2単位(D単位)及びRSiO3/2単位(T単位)を、本発明の付加硬化型シリコーン組成物の性質を損なわない程度(例えば、(B)成分のシリコーンレジン中1~50モル%)に含んでいてよい(式中、RはR4ないしはR5である)。
 本発明に用いるシリコーンレジンは室温で固体又は粘稠な液体である。該シリコーンレジンの平均分子量は特に限定されないが、該シリコーンレジンをキシレンに溶解して50質量%溶液とした時の動粘度が、0.5~10mm2/s、好ましくは1~5mm2/sとなるような分子量が好ましい。シリコーンレジンの動粘度が上記範囲内にあることにより組成物の物理的特性の低下を防止でき、好ましい。
 (B)成分のシリコーンレジンの量は、(A)成分100質量部に対して0~100質量部であるが、配合する場合、好ましくは1~100質量部、より好ましくは3~50質量部である。(B)成分の量が上記下限値より少ないと接着性を発現するには不十分となるおそれがあり、上記上限値より多いと伸展性の乏しいものとなるおそれがある。
(C)成分
 (C)成分は、金属、金属酸化物、金属水酸化物、金属窒化物、金属炭化物、及び炭素の同素体からなる群より選ばれる1種以上の熱伝導性充填剤である。例えば、アルミニウム、銀、銅、金属ケイ素、アルミナ、酸化亜鉛、酸化マグネシウム、酸化アルミニウム、二酸化ケイ素、酸化セリウム、酸化鉄、水酸化アルミニウム、水酸化セリウム、窒化アルミニウム、窒化ホウ素、炭化ケイ素、ダイヤモンド、グラファイト、カーボンナノチューブ、グラフェン等が挙げられる。これらは1種単独で又は2種以上を適宜組み合わせて用いることができ、大粒子成分と小粒子成分を組み合わせたものであることが好ましい。
 大粒子成分の平均粒径は、0.1μmより小さいと得られる組成物の粘度が高くなりすぎ、伸展性の乏しいものとなるおそれがあり、100μmより大きいと得られる組成物が不均一となるおそれがあるため、0.1~100μmの範囲、好ましくは10~50μmの範囲、より好ましくは10~45μmの範囲が好ましい。
 また、小粒子成分の平均粒径は、0.01μmより小さいと得られる組成物の粘度が高くなりすぎ、伸展性の乏しいものとなるおそれがあり、10μm以上だと得られる組成物が不均一となるおそれがあるため、0.01μm以上10μm未満の範囲、好ましくは0.1~4μmの範囲がよい。
 大粒子成分と小粒子成分の割合は特に限定されず、9:1~1:9(質量比)の範囲が好ましい。また、大粒子成分及び小粒子成分の形状は、球状、不定形状、針状等、特に限定されるものではない。
 なお、平均粒径は、例えば、レーザー光回折法による粒度分布測定における体積基準の平均値(又はメジアン径)として求めることができる。
 (C)成分の配合量は、組成物全体に対し10~95質量%であり、20~90質量%が好ましく、30~88質量%がより好ましく、50~85質量%とすることもできる。95質量%より多いと、組成物が伸展性の乏しいものとなるし、10質量%より少ないと熱伝導性に乏しいものとなる。
(D)成分
 (D)成分は、ケイ素原子に結合した水素原子(SiH基)を1分子中に2個以上、好ましくは2~100個、さらに好ましくは2~20個有するオルガノハイドロジェンポリシロキサンである。該オルガノハイドロジェンポリシロキサンは、分子中のSiH基が、上述した(A)及び(B)成分が有する脂肪族不飽和炭化水素基と白金族金属触媒の存在下に付加反応し、架橋構造を形成できるものであればよい。
 前記オルガノハイドロジェンポリシロキサンは、上記性質を有するものであればその分子構造は特に限定されず、直鎖状構造、分岐鎖状構造、環状構造、一部分岐状構造又は環状構造を有する直鎖状構造等が挙げられる。好ましくは直鎖状構造、環状構造である。
 該オルガノハイドロジェンポリシロキサンは、25℃での動粘度が、好ましくは1~1,000mm2/s、より好ましくは10~100mm2/sである。前記動粘度が1mm2/s以上であれば、シリコーン組成物の物理的特性が低下するおそれがなく、1,000mm2/s以下であれば、シリコーン組成物の伸展性が乏しいものとなるおそれがない。
 前記オルガノハイドロジェンポリシロキサンのケイ素原子に結合した有機基としては、脂肪族不飽和炭化水素基以外の非置換又は置換の1価炭化水素基が挙げられる。特には、炭素数1~12、好ましくは炭素数1~10の、非置換又は置換の1価炭化水素基である。例えば、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、ドデシル基等のアルキル基、フェニル基等のアリール基、2-フェニルエチル基、2-フェニルプロピル基等のアラルキル基、これらの水素原子の一部又は全部をフッ素、臭素、塩素等のハロゲン原子、シアノ基、エポキシ環含有有機基(グリシジル基又はグリシジルオキシ基置換アルキル基)等で置換したもの、例えば、クロロメチル基、クロロプロピル基、ブロモエチル基、トリフルオロプロピル基、シアノエチル基、2-グリシドキシエチル基、3-グリシドキシプロピル基、及び4-グリシドキシブチル基等が挙げられる。これらの中でも、メチル基、3-グリシドキシプロピル基が好ましい。
 該オルガノハイドロジェンポリシロキサンは、1種単独でも、2種以上を混合して使用してもよい。
 (D)成分のオルガノハイドロジェンポリシロキサンの配合量は、(A)及び(B)成分中の脂肪族不飽和炭化水素基の個数の合計に対する(D)成分中のSiH基の個数が0.5~5となる量、好ましくは0.7~4.5となる量、より好ましくは1~4となる量である。(D)成分の量が上記下限値未満では付加反応が十分に進行せず、架橋が不十分となる。また、上記上限値超では、架橋構造が不均一となったり、組成物の保存性が著しく悪化する場合がある。
 なお、本発明においては、組成物中(特には(A)成分、(B)成分、(F)成分及び後述する任意成分である(J)成分中)の脂肪族不飽和炭化水素基の個数の合計に対する組成物中(特には(D)成分中)のSiH基の個数が、0.5~5となる量、特には1~4となる量であることが望ましい。
(E)成分
 (E)成分は、パーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、ジアシルパーオキサイド、パーオキシエステル、及びパーオキシジカーボネートから選ばれる、特定の条件下で分解して遊離ラジカルを生じる有機過酸化物であり、1種単独で又は2種以上を適宜組み合わせて用いることができ、本発明で得られるシリコーン組成物のシロキサン架橋構造内中にシルアルキレン構造を導入する反応開始剤として作用する。
 具体的には、1,1-ジ(tert-ブチルパーオキシ)シクロヘキサン、2,2-(4,4-ジ-(tert-ブチルパーオキシ)シクロヘキシル)プロパン等のパーオキシケタール、p-メンタンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド等のハイドロパーオキサイド、ジクミルパーオキサイド、tert-ブチルクミルパーオキサイド、2,5-ジメチル-2,5-ジ(tert-ブチルパーオキシ)ヘキサン等のジアルキルパーオキサイド、ジベンゾイルパーオキサイド、ジスクシン酸パーオキサイド等のジアシルパーオキサイド、tert-ブチルパーオキシアセテート、tert-ブチルパーオキシベンゾエート等のパーオキシエステル、ジイソプロピルパーオキシジカーボネート等のパーオキシジカーボネートが好適に用いられる。特には、分解温度が比較的高いパーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、パーオキシエステルの使用が、取扱い性や保存性の観点から好ましい。
 とりわけ、1時間半減期を得るための分解温度として50~200℃の範囲にあるものが好ましく、80~170℃の範囲にあるものがより好ましい。1時間半減期を得るための分解温度が50℃未満であると爆発的に反応を起こす場合があるため取扱いが難しく、200℃を超えるものは反応性が低いため、シリコーン組成物の構造中へのシルアルキレン構造の導入効率が低下する可能性がある。またこれらの有機過酸化物は、任意の有機溶剤や炭化水素、流動パラフィンや不活性固体等で希釈されたものを用いてもよい。
 (E)成分の配合量は、(A)成分と(B)成分の合計100質量部に対し、0.01~10質量部であり、0.1~5質量部が好ましい。配合量が、0.01質量部未満であるとシリコーン組成物の構造中へのシルアルキレン構造の導入効率が低下し、10質量部を超える量であるとシリコーン組成物の保存性を低下させる可能性がある。
(F)成分
 (F)成分は、下記一般式(1)で示される加水分解性オルガノシラン化合物であり、1種単独で又は2種以上を適宜組み合わせて用いることができ、本発明で得られるシリコーン組成物の接着性を向上するための接着助剤として作用する。
Figure JPOXMLDOC01-appb-C000007
(式中、R1は置換基を有していてもよい炭素数1~10の1価炭化水素基を表し、それぞれのR1は同一であっても異なっていてもよい。R2はエポキシ基、アクリロイル基、メタクリロイル基、アルコキシシリル基から選択される基である。Xはヘテロ原子を含んでもよい炭素数1~20のアルキレン基である。nは0~2の整数である。)
 上記式(1)中のR1は置換基を有していてもよい炭素数1~10の1価炭化水素基であり、好ましくは置換基を有してもよい1価飽和脂肪族炭化水素基、置換基を有してもよい1価不飽和脂肪族炭化水素基、置換基を有してもよい1価芳香族炭化水素基(芳香族ヘテロ環を含む)が挙げられ、より好ましくは置換基を有してもよい1価飽和脂肪族炭化水素基、置換基を有してもよい1価芳香族炭化水素基、特に好ましくは置換基を有してもよい1価飽和脂肪族炭化水素基である。
 置換基を有してもよい1価飽和脂肪族炭化水素基として、具体的には、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基等の直鎖アルキル基、イソプロピル基、イソブチル基、tert-ブチル基、イソペンチル基、ネオペンチル基等の分岐鎖アルキル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等のシクロアルキル基、クロロメチル基、3-クロロプロピル基、3,3,3-トリフルオロプロピル基、ブロモプロピル基等のハロゲン置換アルキル基などの、炭素数1~10、好ましくは炭素数1~8、さらに好ましくは炭素数1~6のものである。
 置換基を有してもよい1価不飽和脂肪族炭化水素基として、具体的には、エテニル基、1-メチルエテニル基、2-プロペニル基等のアルケニル基、エチニル基、2-プロピニル基等のアルキニル基などの、炭素数2~10、好ましくは炭素数2~8、さらに好ましくは炭素数2~6のものである。
 置換基を有してもよい1価芳香族炭化水素基として、具体的には、フェニル基、トリル基等のアリール基、ベンジル基、2-フェニルエチル基等のアラルキル基、α,α,α-トリフルオロトリル基、クロロベンジル基等のハロゲン置換アリール基などの、炭素数6~10、好ましくは炭素数6~8、さらに好ましくは炭素数6のものである。
 R1としては、これらの中でも、メチル基、エチル基、3,3,3-トリフルオロプロピル基、フェニル基が好ましく、さらに好ましくはメチル基、エチル基、フェニル基であり、特に好ましくはメチル基である。
 R2はエポキシ基、アクリロイル基、メタクリロイル基、アルコキシシリル基から選択される基である。半導体装置における半導体チップやヒートスプレッダー等の金属被着体に対する接着性を向上させる目的においては、エポキシ基、アルコキシシリル基を選択することが好ましい。
 ここで、アルコキシシリル基としては、トリメトキシ基、ジメトキシメチル基、メトキシジメチルシリル基、トリエトキシ基、ジエトキシメチル基、エトキシジメチルシリル基等が例示でき、これらの中でもトリメトキシ基、トリエトキシ基が好ましい。
 Xはヘテロ原子を含んでもよい炭素数1~20のアルキレン基であり、R2とケイ素原子を連結するスペーサである。Xの構造は直鎖状、分岐鎖状等、特に限定されるものではないが、好ましくは直鎖状である。Xとして、具体的には、下記に示すものが例示できる。
-CH2OCH2CH2CH2
-CH2OCH2CH2CH2CH2CH2CH2CH2CH2
-(CH2x
(xは1~20の整数。)
 nは0~2の整数であり、(F)成分の加水分解性オルガノシラン化合物のアルコキシシリル基のアルコキシ基の数を規定するものである。(F)成分中のアルコキシシリル基数が多いほうが、(F)成分が(C)成分の熱伝導性充填剤表面上に固定化されやすいため、nは好ましくは0又は1、さらに好ましくは0である。
 (F)成分の配合量は、(A)成分と(B)成分の合計100質量部に対し、0.1~30質量部であり、1~20質量部が好ましい。配合量が、0.1質量部未満であると熱伝導性充填剤表面に対する被覆量が低下するため、接着性が十分に発現されないおそれがある。30質量部を超えるとシリコーン組成物の硬化物強度を低下させ、ひいては接着性が十分に発現されないおそれがあるため好ましくない。
(G)成分
 (G)成分は白金族金属触媒であり、上述した成分の付加反応を促進するために機能する。白金族金属触媒は、付加反応に用いられる従来公知のものを使用することができる。例えば、白金系、パラジウム系、ロジウム系の触媒が挙げられるが、中でも比較的入手しやすい白金又は白金化合物が好ましい。例えば、白金の単体、白金黒、塩化白金酸、白金-オレフィン錯体、白金-アルコール錯体、白金配位化合物等が挙げられる。白金族金属触媒は1種単独でも2種以上を組み合わせて使用してもよい。
 (G)成分の配合量は触媒としての有効量、すなわち、付加反応を促進して本発明の付加硬化型シリコーン組成物を硬化させるために必要な有効量であればよい。好ましくは、(A)成分及び(B)成分の合計質量に対し、白金族金属原子に換算した質量基準で0.1~500ppm、より好ましくは1~200ppmである。触媒の量が上記下限値より少ないと触媒としての効果が得られないことがある。また上記上限値を超えても触媒効果が増大することはなく不経済であるため好ましくない。
 本発明の付加硬化型シリコーン組成物は、上記成分の他に、必要に応じてさらに以下の任意成分を添加することができる。
(H)成分
 (H)成分は室温でのヒドロシリル化反応の進行を抑える反応制御剤であり、シェルフライフ、ポットライフを延長させるために添加することができる。該反応制御剤は、付加硬化型シリコーン組成物に使用される従来公知の制御剤を使用することができる。これには、例えば、アセチレンアルコール類(例えば、エチニルメチルデシルカルビノール、1-エチニル-1-シクロヘキサノール、3,5-ジメチル-1-ヘキシン-3-オール)等のアセチレン化合物、トリブチルアミン、テトラメチルエチレンジアミン、ベンゾトリアゾール等の各種窒素化合物、トリフェニルホスフィン等の有機リン化合物、オキシム化合物、有機クロロ化合物等が挙げられる。
 (H)成分を配合する場合の配合量は、(A)成分と(B)成分の合計100質量部に対し、0.05~5質量部が好ましく、より好ましくは0.1~1質量部である。反応制御剤の量が0.05質量部未満では、所望とする十分なシェルフライフ、ポットライフが得られないおそれがあり、また、5質量部より多い場合には、シリコーン組成物の硬化性が低下するおそれがある。
 また反応制御剤は、シリコーン組成物への分散性をよくするために、オルガノ(ポリ)シロキサンやトルエン等で希釈して使用してもよい。
(I)成分
 本発明の付加硬化型シリコーン組成物には、さらに、下記一般式(2)で表される加水分解性オルガノポリシロキサン化合物(I)を配合することができる。(I)成分の加水分解性オルガノポリシロキサン化合物は、熱伝導性充填剤表面を処理するために用いるものであり、充填剤の高充填化を補助する役割を担う。
Figure JPOXMLDOC01-appb-C000008
(式中、R1は置換基を有していてもよい炭素数1~10の1価炭化水素基を表し、それぞれのR1は同一であっても異なっていてもよい。mは5~100の整数を示す。)
 上記式(2)中のR1は先述と同様であり、特に好ましくはメチル基である。mは5~100の整数、好ましくは10~60の整数である。mの値が5より小さいと、シリコーン組成物由来のオイルブリードがひどくなり、信頼性が悪くなるおそれがある。また、mの値が100より大きいと、充填剤との濡れ性が十分でなくなるおそれがある。
 (I)成分を配合する場合の配合量は、(A)成分と(B)成分の合計100質量部に対して1~200質量部が好ましく、特に5~30質量部が好ましい。(I)成分の量が1質量部より少ないと十分な濡れ性を発揮できないおそれがある。また(I)成分の量が200質量部より多いと組成物からのブリードが激しくなるおそれがある。
(J)成分
 本発明の付加硬化型シリコーン組成物には、さらに、下記一般式(3)で表される加水分解性オルガノポリシロキサン化合物(J)を配合することができる。(J)成分の加水分解性オルガノポリシロキサン化合物は、熱伝導性充填剤表面を処理するとともに、シリコーン組成物の強度を高める補強効果を有する。
Figure JPOXMLDOC01-appb-C000009
(式中、R1は置換基を有していてもよい炭素数1~10の1価炭化水素基を表し、それぞれのR1は同一であっても異なっていてもよい。R3は炭素数2~6のアルケニル基である。p、qは1≦p≦50、1≦q≦99、5≦p+q≦100を満足する数である。)
 上記式(3)中のR1は先述と同様であり、特に好ましくはメチル基である。R3は炭素数2~6のアルケニル基であり、具体的には、ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、ヘキセニル基、シクロヘキセニル基等が挙げられ、特に好ましくはビニル基である。
 pは1~50、好ましくは1~10であり、qは1~99、好ましくは4~50である。pが少ないとシリコーン組成物へ十分な補強効果を与えない場合があり、pが多いと架橋が不均一となる場合があり、qが少ないとオイルブリードがひどくなる場合があり、qが多いと熱伝導性充填剤表面の処理が不十分となる場合がある。また、p+qは5≦p+q≦100であるが、好ましくは5≦p+q≦60である。p+qが5未満では組成物のオイルブリードがひどくなり、信頼性が悪くなるおそれがある。また、p+qが100より大きい場合には、充填剤との濡れ性が十分でなくなるおそれがある。
 (J)成分を配合する場合の配合量は、(A)成分と(B)成分の合計100質量部に対して1~50質量部であり、好ましくは2~30質量部である。(J)成分の量が上記下限値より少ないと十分な濡れ性や補強効果を発揮できないおそれがある。また、(J)成分の量が上記上限値より多いと組成物からのオイルブリードが激しくなるおそれがある。
その他の成分
 本発明の付加硬化型シリコーン組成物は、組成物の強度や粘度を調整するために、メチルポリシロキサン等の反応性を有さないオルガノ(ポリ)シロキサンを含有してもよい。さらに、シリコーン組成物の劣化を防ぐために、2,6-ジ-tert-ブチル-4-メチルフェノール等の、従来公知の酸化防止剤を必要に応じて含有してもよい。さらに、染料、顔料、難燃剤、沈降防止剤、又はチクソ性向上剤等を、必要に応じて配合することができる。
シリコーン組成物を作製する工程
 本発明におけるシリコーン組成物の製造方法について説明する。本発明におけるシリコーン組成物の製造方法は特に限定されるものではないが、上述の(A)~(G)成分、必要によりこれに加えて(H)、(I)、(J)成分を含有するシリコーン組成物を作製する工程を有する。
 上述した(A)~(G)成分、及び必要により(H)、(I)、(J)成分を、例えば、トリミックス、ツウィンミックス、プラネタリーミキサー(いずれも(株)井上製作所製混合機の登録商標)、ウルトラミキサー(みずほ工業(株)製混合機の登録商標)、ハイビスディスパーミックス(特殊機化工業(株)製混合機の登録商標)等の混合機等を用いて混合する方法が挙げられる。
 また本発明の付加硬化型シリコーン組成物は、加熱しながら混合してもよい。加熱条件は特に制限されるものでないが、温度は通常25~220℃、好ましくは40~200℃、特に好ましくは50~200℃であり、時間は通常3分~24時間、好ましくは5分~12時間、特に好ましくは10分~6時間である。また加熱時に脱気を行ってもよい。
 本発明においては、予め(A)~(C)及び(F)成分を50~200℃で加熱混合し、その後、(D)、(E)及び(G)成分を混合することが、シリコーン組成物が良好な接着力を発現する観点から好ましい。なお、任意成分である(H)、(I)、(J)成分を配合する場合は、予め(A)~(C)、(F)、(I)及び(J)成分を50~200℃で加熱混合し、その後、(D)、(E)、(G)及び(H)成分を混合することが好ましい。
 本発明の付加硬化型シリコーン組成物は、25℃にて測定される粘度が、好ましくは1~1,000Pa・s、より好ましくは20~700Pa・s、さらに好ましくは40~600Pa・sである。粘度が、1Pa・s未満では、形状保持が困難となる等、作業性が悪くなるおそれがある。また粘度が1,000Pa・sを超える場合にも吐出や塗布が困難となる等、作業性が悪くなるおそれがある。前記粘度は、上述した各成分の配合量を調整することにより得ることができる。
 また本発明の付加硬化型シリコーン組成物は熱伝導性であり、通常、0.5~10W/m・Kの熱伝導率を有する。
 なお、本発明において、粘度は、回転粘度計により測定した25℃における値であり、熱伝導率は、ホットディスク法により測定した値である。
 本発明の付加硬化型シリコーン組成物は、LSI等の電子部品その他の発熱部材と冷却部材との間に介在させて発熱部材からの熱を冷却部材に伝熱して放熱するための組成物として好適に用いることができ、従来のシリコーン放熱グリースと同様の方法で使用することができる。例えば、本発明の付加硬化型シリコーン組成物は、電子部品等の発熱部材からの発熱によって硬化することができるし、本発明の付加硬化型シリコーン組成物を塗布した後、積極的に加熱硬化させてもよい。これにより、本発明の付加硬化型シリコーン組成物の硬化物を発熱部材と冷却部材との間に介在させた半導体装置を提供することができる。
 本発明の付加硬化型シリコーン組成物を加熱硬化する場合の硬化条件は、特に制限されるものでないが、通常80~200℃、好ましくは100~180℃で、30分~4時間、好ましくは30分~2時間である。
 本発明の付加硬化型シリコーン組成物は、熱伝導性充填剤を多量に含有しても各種被着体に対し良好な接着性を有するため高熱伝導率と強接着性の両立が可能である。よって、発熱量が多い、又は大型の半導体装置に使用する放熱グリースとして特に好適に利用することができる。
 以下、実施例及び比較例を示し、本発明をより詳細に説明するが、本発明は下記の実施例に制限されるものではない。なお、動粘度はウベローデ型オストワルド粘度計による25℃の値を示す。
 初めに、本発明の付加硬化型シリコーン組成物を調製する以下の各成分を用意した。
(A)成分
A-1:両末端がジメチルビニルシリル基で封鎖され、25℃における動粘度が600mm2/sのジメチルポリシロキサン:SiVi基量0.00014mol/g
(B)成分
B-1:下記平均組成式で示されるシリコーンレジン:キシレン溶媒中50質量%溶液とした時の動粘度3.0mm2/s、SiVi基量0.0004mol/g
(SiO4/2)1.0((CH2=CH)(CH3)2SiO1/2)0.12((CH3)3SiO1/2)0.75
(C)成分
C-1:平均粒径20.0μmのアルミニウム粉末と平均粒径2.0μmのアルミニウム粉末を60:40の質量比で予め混合したアルミニウム粉末
C-2:平均粒径1.0μmの酸化亜鉛粉末
(D)成分
D-1:下記式(4)で示されるメチルハイドロジェンジメチルポリシロキサン
(25℃における動粘度=12mm2/s)
Figure JPOXMLDOC01-appb-C000010
D-2:下記式(5)で示されるポリシロキサン
(25℃における動粘度=25mm2/s)
Figure JPOXMLDOC01-appb-C000011
D-3:下記式(6)で示されるポリシロキサン
(25℃における動粘度=11mm2/s)
Figure JPOXMLDOC01-appb-C000012
(E)成分
E-1:下記式(7)で示される2,5-ジメチル-2,5-ジ(tert-ブチルパーオキシ)ヘキサン(1時間半減期を得るための分解温度=138℃)
Figure JPOXMLDOC01-appb-C000013
E-2:下記式(8)で示される1,1-ジ(tert-ブチルパーオキシ)シクロヘキサン(1時間半減期を得るための分解温度=111℃)
Figure JPOXMLDOC01-appb-C000014
(F)成分
F-1:下記式(9)で示される3-グリシドキシプロピルトリメトキシシラン
Figure JPOXMLDOC01-appb-C000015
F-2:下記式(10)で示される8-グリシドキシオクチルトリメトキシシラン
Figure JPOXMLDOC01-appb-C000016
(G)成分
G-1:白金-ジビニルテトラメチルジシロキサン錯体を上記A-1と同じジメチルポリシロキサンに溶解した溶液(白金原子含有量:1質量%)
(H)成分
H-1:下記式(11)で示される1-エチニル-1-シクロヘキサノール
Figure JPOXMLDOC01-appb-C000017
(I)成分
I-1:下記式(12)で示される片末端トリメトキシシリル基封鎖ジメチルポリシロキサン
Figure JPOXMLDOC01-appb-C000018
(J)成分
J-1:下記式(13)で示される両末端トリメトキシシリル基封鎖メチルビニルポリシロキサン
Figure JPOXMLDOC01-appb-C000019
[実施例1~10、比較例1~8]
シリコーン組成物の調製
 上記(A)~(J)成分を、下記表1~4に示す配合量で、下記に示す方法で配合してシリコーン組成物を調製した。なお、表において(G)成分の質量は、白金-ジビニルテトラメチルジシロキサン錯体をジメチルポリシロキサンに溶解した溶液(白金原子含有量:1質量%)の質量である。また、SiH/SiViは(A)成分、(B)成分、及び(J)成分中のアルケニル基の個数の合計に対する(D)成分のSiH基の個数の合計の比である。
 5リットルのプラネタリーミキサー((株)井上製作所製)に、(A)、(B)、(C)、(I)及び(J)成分を加え、170℃で1時間混合した。40℃以下になるまで冷却し、次に(F)成分を加え、70℃で1時間混合した。40℃以下になるまで冷却し、次に(G)、(H)、(D)、及び(E)成分を加え均一になるように混合し、シリコーン組成物を調製した。
 上記方法で得られた各シリコーン組成物について、下記の方法に従い、粘度、熱伝導率、及び接着強度を測定した。結果を表1~4に示す。
[粘度]
 各シリコーン組成物の絶対粘度を、マルコム粘度計(タイプPC-1T)を用いて25℃で測定した(ロータAで10rpm、ズリ速度6[1/s])。
[熱伝導率]
 各シリコーン組成物をキッチンラップで包み、熱伝導率を京都電子工業(株)製TPS-2500Sで測定した。
[接着強度]
 各シリコーン組成物を10mm×10mmのシリコンウェハと20mm×20mmのニッケルめっき銅板の間に挟み込み、1.8kgfのクリップによって加圧しながら150℃にて60分間加熱硬化した。その後、Dage series-4000PXY(Dage Deutchland GmbH製)を用いてせん断接着強度を測定した。
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
 表1~4の結果より、本発明の要件を満たす実施例1~10のシリコーン組成物では、ニッケルめっき銅板に対する接着力が大きい。すなわち、接着性に優れると判断できる。一方、比較例1~8のシリコーン組成物では、ニッケルめっき銅板に対する接着力が小さい。すなわち、接着性に劣ると判断できる。
 従って、本発明の付加硬化型シリコーン組成物は、熱伝導性充填剤を多量に含有しても各種被着体に対し良好な接着性を有するため、高熱伝導率と強接着性の両立が可能であると確認できた。このような特性を有するため、本発明の付加硬化型シリコーン組成物は、発熱量が多い、又は大型の半導体装置に使用する放熱グリースとして特に好適に利用することができる。
 なお、本発明は上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (5)

  1.  (A)1分子中に少なくとも2個の脂肪族不飽和炭化水素基を有し、25℃での動粘度が60~100,000mm2/sであるオルガノポリシロキサン: 100質量部、
    (B)1分子中に少なくとも1個の脂肪族不飽和炭化水素基を有するシリコーンレジン:
     (A)成分100質量部に対して0~100質量部、
    (C)金属、金属酸化物、金属水酸化物、金属窒化物、金属炭化物、及び炭素の同素体からなる群より選ばれる少なくとも1種の熱伝導性充填剤: 組成物全体に対し10~95質量%となる量、
    (D)1分子中に2個以上のケイ素原子に結合した水素原子を有するオルガノハイドロジェンポリシロキサン: (A)及び(B)成分中の脂肪族不飽和炭化水素基の個数の合計に対するSiH基の個数が0.5~5となる量、
    (E)パーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、ジアシルパーオキサイド、パーオキシエステル、及びパーオキシジカーボネートから選ばれる有機過酸化物: (A)成分と(B)成分の合計100質量部に対して0.01~10質量部、
    (F)下記一般式(1)で示される加水分解性オルガノシラン化合物: (A)成分と(B)成分の合計100質量部に対して0.1~30質量部、
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1は置換基を有していてもよい炭素数1~10の1価炭化水素基を表し、それぞれのR1は同一であっても異なっていてもよい。R2はエポキシ基、アクリロイル基、メタクリロイル基、アルコキシシリル基から選択される基である。Xはヘテロ原子を含んでもよい炭素数1~20のアルキレン基である。nは0~2の整数である。)
    (G)白金族金属触媒: 有効量
    を必須成分とする付加硬化型シリコーン組成物。
  2.  さらに、(H)反応制御剤を(A)成分と(B)成分の合計100質量部に対して0.05~5質量部含む請求項1に記載の付加硬化型シリコーン組成物。
  3.  さらに、(I)下記一般式(2)で表される加水分解性オルガノポリシロキサン化合物を(A)成分と(B)成分の合計100質量部に対して1~200質量部含む請求項1又は2に記載の付加硬化型シリコーン組成物。
    Figure JPOXMLDOC01-appb-C000002
    (式中、R1は置換基を有していてもよい炭素数1~10の1価炭化水素基を表し、それぞれのR1は同一であっても異なっていてもよい。mは5~100の整数を示す。)
  4.  さらに、(J)下記一般式(3)で表される加水分解性オルガノポリシロキサン化合物を(A)成分と(B)成分の合計100質量部に対して1~50質量部含む請求項1~3のいずれか1項に記載の付加硬化型シリコーン組成物。
    Figure JPOXMLDOC01-appb-C000003
    (式中、R1は置換基を有していてもよい炭素数1~10の1価炭化水素基を表し、それぞれのR1は同一であっても異なっていてもよい。R3は炭素数2~6のアルケニル基である。p、qは1≦p≦50、1≦q≦99、5≦p+q≦100を満足する数である。)
  5.  請求項1~4のいずれか1項に記載の付加硬化型シリコーン組成物の製造方法であって、予め(A)~(C)及び(F)成分を50~200℃で加熱混合し、その後、(D)、(E)及び(G)成分を混合することを特徴とする付加硬化型シリコーン組成物の製造方法。
PCT/JP2019/033860 2018-10-12 2019-08-29 付加硬化型シリコーン組成物及びその製造方法 WO2020075411A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020550031A JP7476793B2 (ja) 2018-10-12 2019-08-29 付加硬化型シリコーン組成物及びその製造方法
EP19871858.7A EP3865542A4 (en) 2018-10-12 2019-08-29 ADD-CURE SILICONE COMPOSITION AND METHOD FOR MAKING THE SAME
KR1020217013816A KR20210076046A (ko) 2018-10-12 2019-08-29 부가 경화형 실리콘 조성물 및 그 제조 방법
US17/284,375 US20210388207A1 (en) 2018-10-12 2019-08-29 Addition curing silicone composition and method for manufacturing same
CN201980064674.9A CN112867764B (zh) 2018-10-12 2019-08-29 加成固化型有机硅组合物及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-193154 2018-10-12
JP2018193154 2018-10-12

Publications (1)

Publication Number Publication Date
WO2020075411A1 true WO2020075411A1 (ja) 2020-04-16

Family

ID=70164276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/033860 WO2020075411A1 (ja) 2018-10-12 2019-08-29 付加硬化型シリコーン組成物及びその製造方法

Country Status (7)

Country Link
US (1) US20210388207A1 (ja)
EP (1) EP3865542A4 (ja)
JP (1) JP7476793B2 (ja)
KR (1) KR20210076046A (ja)
CN (1) CN112867764B (ja)
TW (1) TW202020052A (ja)
WO (1) WO2020075411A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE42540E1 (en) 2005-03-28 2011-07-12 Steyphi Services De Llc Reconfigurable optical add-drop multiplexer incorporating sets of diffractive elements
WO2023132192A1 (ja) * 2022-01-07 2023-07-13 信越化学工業株式会社 高熱伝導性シリコーン組成物
JP7476795B2 (ja) 2018-10-22 2024-05-01 信越化学工業株式会社 付加硬化型シリコーン組成物

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3580790B1 (en) 2017-02-08 2024-01-24 Elkem Silicones USA Corp. Secondary battery pack with improved thermal management
CN114269848A (zh) * 2019-08-26 2022-04-01 富士胶片株式会社 导热材料形成用组合物、导热材料、导热片、带导热层的器件

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4913874B1 (ja) 1969-08-29 1974-04-03
JPS4917380B1 (ja) 1970-07-06 1974-04-30
JPS4933094B1 (ja) 1968-12-31 1974-09-04
JPS58366B2 (ja) 1973-10-06 1983-01-06 ソニー株式会社 表面材貼付方法
JP2938429B1 (ja) 1998-02-27 1999-08-23 信越化学工業株式会社 熱伝導性シリコーン組成物
JP2938428B1 (ja) 1998-02-27 1999-08-23 信越化学工業株式会社 熱伝導性グリース組成物
JP2004506778A (ja) * 2000-08-11 2004-03-04 ゼネラル・エレクトリック・カンパニイ デュアル硬化性低溶剤型シリコーン感圧接着剤
JP3952184B2 (ja) 2002-10-10 2007-08-01 信越化学工業株式会社 熱伝導性シート
JP2008260798A (ja) 2007-04-10 2008-10-30 Shin Etsu Chem Co Ltd 熱伝導性硬化物及びその製造方法
JP2009209165A (ja) 2008-02-29 2009-09-17 Shin Etsu Chem Co Ltd 熱伝導性硬化物及びその製造方法
JP4572243B2 (ja) 2008-03-27 2010-11-04 信越化学工業株式会社 熱伝導性積層体およびその製造方法
JP4656340B2 (ja) 2008-03-03 2011-03-23 信越化学工業株式会社 熱伝導性シリコーングリース組成物
JP2012096361A (ja) 2010-10-29 2012-05-24 Shin-Etsu Chemical Co Ltd シリコーン構造体の製造方法及び半導体装置
JP2012102283A (ja) 2010-11-12 2012-05-31 Shin-Etsu Chemical Co Ltd 熱伝導性シリコーングリース組成物
CN104119833A (zh) * 2014-07-10 2014-10-29 烟台恒迪克能源科技有限公司 一种电子灌封用单组分加成型导热有机硅液体胶
JP2016510358A (ja) * 2013-02-11 2016-04-07 ダウ コーニング コーポレーションDow Corning Corporation 熱伝導性熱ラジカル硬化性シリコーン組成物を形成するためのinsitu法
JP2016512567A (ja) * 2013-02-11 2016-04-28 ダウ コーニング コーポレーションDow Corning Corporation 熱伝導性の熱ラジカル硬化型シリコーン組成物を形成する方法
WO2016103654A1 (ja) * 2014-12-26 2016-06-30 東レ・ダウコーニング株式会社 硬化性オルガノポリシロキサン組成物、それからなる半導体用封止剤および半導体装置
WO2018056297A1 (ja) * 2016-09-26 2018-03-29 東レ・ダウコーニング株式会社 硬化反応性シリコーンゲルおよびその用途
WO2018056298A1 (ja) * 2016-09-26 2018-03-29 東レ・ダウコーニング株式会社 積層体、その製造方法および電子部品の製造方法
WO2019049950A1 (ja) * 2017-09-11 2019-03-14 東レ・ダウコーニング株式会社 ラジカル反応性を有するシリコーンエラストマー硬化物およびその用途
WO2019098290A1 (ja) * 2017-11-17 2019-05-23 富士高分子工業株式会社 二段階硬化型熱伝導性シリコーン組成物及びその製造方法
WO2019138991A1 (ja) * 2018-01-15 2019-07-18 信越化学工業株式会社 シリコーン組成物

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58366A (ja) 1981-06-23 1983-01-05 Nippon Steel Corp 連続鋳造鋼のモ−ルド焼付き検出方法
JPH07119366B2 (ja) * 1989-07-03 1995-12-20 東芝シリコーン株式会社 接着性シリコーン組成物
EP1878767A1 (en) * 2006-07-12 2008-01-16 Shin-Etsu Chemical Co., Ltd. Heat conductive silicone grease composition and cured product thereof
JP5102179B2 (ja) * 2008-11-12 2012-12-19 日東電工株式会社 熱伝導性組成物およびその製造方法
JP5832983B2 (ja) 2012-10-18 2015-12-16 信越化学工業株式会社 シリコーン組成物
JP6149831B2 (ja) * 2014-09-04 2017-06-21 信越化学工業株式会社 シリコーン組成物
EP3150672B1 (en) * 2015-10-02 2018-05-09 Shin-Etsu Chemical Co., Ltd. Thermal conductive silicone composition and semiconductor device
WO2020084899A1 (ja) 2018-10-22 2020-04-30 信越化学工業株式会社 付加硬化型シリコーン組成物

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4933094B1 (ja) 1968-12-31 1974-09-04
JPS4913874B1 (ja) 1969-08-29 1974-04-03
JPS4917380B1 (ja) 1970-07-06 1974-04-30
JPS58366B2 (ja) 1973-10-06 1983-01-06 ソニー株式会社 表面材貼付方法
JP2938429B1 (ja) 1998-02-27 1999-08-23 信越化学工業株式会社 熱伝導性シリコーン組成物
JP2938428B1 (ja) 1998-02-27 1999-08-23 信越化学工業株式会社 熱伝導性グリース組成物
JP2004506778A (ja) * 2000-08-11 2004-03-04 ゼネラル・エレクトリック・カンパニイ デュアル硬化性低溶剤型シリコーン感圧接着剤
JP3952184B2 (ja) 2002-10-10 2007-08-01 信越化学工業株式会社 熱伝導性シート
JP2008260798A (ja) 2007-04-10 2008-10-30 Shin Etsu Chem Co Ltd 熱伝導性硬化物及びその製造方法
JP2009209165A (ja) 2008-02-29 2009-09-17 Shin Etsu Chem Co Ltd 熱伝導性硬化物及びその製造方法
JP4656340B2 (ja) 2008-03-03 2011-03-23 信越化学工業株式会社 熱伝導性シリコーングリース組成物
JP4572243B2 (ja) 2008-03-27 2010-11-04 信越化学工業株式会社 熱伝導性積層体およびその製造方法
JP2012096361A (ja) 2010-10-29 2012-05-24 Shin-Etsu Chemical Co Ltd シリコーン構造体の製造方法及び半導体装置
JP2012102283A (ja) 2010-11-12 2012-05-31 Shin-Etsu Chemical Co Ltd 熱伝導性シリコーングリース組成物
JP2016510358A (ja) * 2013-02-11 2016-04-07 ダウ コーニング コーポレーションDow Corning Corporation 熱伝導性熱ラジカル硬化性シリコーン組成物を形成するためのinsitu法
JP2016512567A (ja) * 2013-02-11 2016-04-28 ダウ コーニング コーポレーションDow Corning Corporation 熱伝導性の熱ラジカル硬化型シリコーン組成物を形成する方法
CN104119833A (zh) * 2014-07-10 2014-10-29 烟台恒迪克能源科技有限公司 一种电子灌封用单组分加成型导热有机硅液体胶
WO2016103654A1 (ja) * 2014-12-26 2016-06-30 東レ・ダウコーニング株式会社 硬化性オルガノポリシロキサン組成物、それからなる半導体用封止剤および半導体装置
WO2018056297A1 (ja) * 2016-09-26 2018-03-29 東レ・ダウコーニング株式会社 硬化反応性シリコーンゲルおよびその用途
WO2018056298A1 (ja) * 2016-09-26 2018-03-29 東レ・ダウコーニング株式会社 積層体、その製造方法および電子部品の製造方法
WO2019049950A1 (ja) * 2017-09-11 2019-03-14 東レ・ダウコーニング株式会社 ラジカル反応性を有するシリコーンエラストマー硬化物およびその用途
WO2019098290A1 (ja) * 2017-11-17 2019-05-23 富士高分子工業株式会社 二段階硬化型熱伝導性シリコーン組成物及びその製造方法
WO2019138991A1 (ja) * 2018-01-15 2019-07-18 信越化学工業株式会社 シリコーン組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3865542A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE42540E1 (en) 2005-03-28 2011-07-12 Steyphi Services De Llc Reconfigurable optical add-drop multiplexer incorporating sets of diffractive elements
JP7476795B2 (ja) 2018-10-22 2024-05-01 信越化学工業株式会社 付加硬化型シリコーン組成物
WO2023132192A1 (ja) * 2022-01-07 2023-07-13 信越化学工業株式会社 高熱伝導性シリコーン組成物

Also Published As

Publication number Publication date
CN112867764B (zh) 2022-12-27
JPWO2020075411A1 (ja) 2021-09-02
JP7476793B2 (ja) 2024-05-01
EP3865542A4 (en) 2022-07-13
KR20210076046A (ko) 2021-06-23
CN112867764A (zh) 2021-05-28
TW202020052A (zh) 2020-06-01
EP3865542A1 (en) 2021-08-18
US20210388207A1 (en) 2021-12-16

Similar Documents

Publication Publication Date Title
JP6149831B2 (ja) シリコーン組成物
JP7476793B2 (ja) 付加硬化型シリコーン組成物及びその製造方法
JP5832983B2 (ja) シリコーン組成物
JP6977786B2 (ja) シリコーン組成物
CN113396055B (zh) 具有热传导性粘着层的热传导性硅酮橡胶片及其制造方法
JP7476795B2 (ja) 付加硬化型シリコーン組成物
CN111918929B (zh) 有机硅组合物
KR102683945B1 (ko) 실리콘 조성물
WO2023132192A1 (ja) 高熱伝導性シリコーン組成物
WO2024048335A1 (ja) 熱伝導性シリコーン組成物
WO2023021954A1 (ja) 熱伝導性シリコーン組成物及び熱伝導性シリコーン硬化物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19871858

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020550031

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217013816

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019871858

Country of ref document: EP

Effective date: 20210512