WO2024048335A1 - 熱伝導性シリコーン組成物 - Google Patents

熱伝導性シリコーン組成物 Download PDF

Info

Publication number
WO2024048335A1
WO2024048335A1 PCT/JP2023/029945 JP2023029945W WO2024048335A1 WO 2024048335 A1 WO2024048335 A1 WO 2024048335A1 JP 2023029945 W JP2023029945 W JP 2023029945W WO 2024048335 A1 WO2024048335 A1 WO 2024048335A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
group
thermally conductive
mass
bonded
Prior art date
Application number
PCT/JP2023/029945
Other languages
English (en)
French (fr)
Inventor
邦弘 山田
謙一 辻
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Publication of WO2024048335A1 publication Critical patent/WO2024048335A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • C08K3/11Compounds containing metals of Groups 4 to 10 or Groups 14 to 16 of the Periodic system
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes

Definitions

  • the present invention relates to a thermally conductive silicone composition that generates few bubbles during curing.
  • Heat dissipation sheets and heat dissipation grease with good quality have been used. Heat dissipation sheets have the advantage of being easy to attach, but even if the surfaces of CPUs, heat dissipation fins, etc. appear smooth at first glance, microscopically they are uneven, so in reality, it is necessary to securely attach the heat dissipation sheet to these surfaces. They could not be brought into close contact, and as a result, an air layer remained, resulting in the inconvenience that the heat dissipation effect could not be achieved as expected.
  • the space between the silicon chip and the organic substrate is sealed with an epoxy resin-based underfill agent, etc., but the silicon chip, the organic substrate, and the underfill agent each have thermal expansion. Rates are different. Therefore, the silicon chip and the substrate warp due to the difference in thermal expansion coefficient of each component and member due to temperature change. In some cases, the periphery of a silicon chip may warp by several tens of microns compared to the center. However, a heat spreader or heat sink placed on a silicon chip has a large structure and high strength, so it does not warp.
  • the heat dissipation material sandwiched between the silicon chip and the heat spreader or heat sink cannot follow the warpage of the silicon chip, it will peel off, resulting in an increase in thermal resistance and a failure to obtain the desired heat dissipation performance. Therefore, the heat dissipation material used must be flexible enough to follow the warpage of the silicon chip.
  • the composition described in Patent Document 1 is extremely hard after being cured, it may not be able to follow the warpage of the silicon chip that occurs during CPU operation and may peel off from the base material or the like. As a result, desired heat dissipation performance cannot be obtained, resulting in problems such as an increase in thermal resistance over time.
  • the present invention was made in view of the above circumstances, and it is an object of the present invention to provide a highly reliable thermally conductive silicone composition that suppresses the generation of bubbles in the composition during heat curing of the composition, has excellent heat dissipation properties, and has high reliability. purpose.
  • the present inventors have solved the above problem by blending a composition containing a silicone gel crosslinked product prepared in advance into a thermally conductive silicone composition. They discovered this and completed the present invention.
  • the present invention provides the following thermally conductive silicone composition.
  • the component is (A-1) Silicone gel crosslinked product: 0.01 to 10% by mass, (A-2) General formula (1) below (In the formula, R 1 is each independently an alkyl group having 1 to 6 carbon atoms, and R 2 is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 18 carbon atoms and having no aliphatic unsaturated bond.
  • the component is (A-1-1) an organopolysiloxane having two or more alkenyl groups bonded to a silicon atom in one molecule; (A-1-2) Organohydrogenpolysiloxane having two or more silicon-bonded hydrogen atoms in one molecule: For one alkenyl group in the component (A-1-1), ( The thermally conductive silicone composition according to 1 or 2, which is an addition reaction product with component A-1-2) in an amount such that the number of hydrogen atoms bonded to silicon atoms in the component is 0.1 to 20. 4.
  • the component has the following average composition formula (2) R 3 b R 4 c SiO (4-bc)/2 (2)
  • R 3 represents an alkenyl group
  • R 4 represents an unsubstituted or substituted monovalent hydrocarbon group having no aliphatic unsaturated bond
  • b is a number from 0.0001 to 0.2.
  • c is a number from 1.7 to 2.2, but b+c is a number that satisfies 1.9 to 2.4.
  • the thermally conductive silicone composition according to 3 which is an organopolysiloxane having two or more silicon-bonded alkenyl groups in one molecule. 5.
  • Conductive silicone composition is any one of 1 to 4, which contains 5 to 70% by mass of a non-functional liquid silicone oil having a kinematic viscosity of 10 to 500,000 mm 2 /s at 25°C in the component (A-2).
  • thermoly conductive silicone composition that suppresses the generation of bubbles in the composition during heat curing of the composition, has excellent heat dissipation properties, and has high reliability.
  • the conductive silicone composition of the present invention includes: (A) Below (A-1), (A-2) and (A-3) (A-1) silicone gel crosslinked product, (A-2) silicone oil that does not contain aliphatic unsaturated bonds and SiH groups, (A-3) Composition containing a thermally conductive filler and having a viscosity of 100 to 2,000 Pa ⁇ s at 25°C: 100 parts by mass, (B) organopolysiloxane having two or more alkenyl groups bonded to a silicon atom in one molecule: 0.01 to 50 parts by mass, (C) Organohydrogenpolysiloxane having two or more hydrogen atoms bonded to silicon atoms in one molecule: For each alkenyl group in component (B), one silicon atom in component (C) The amount of bonded hydrogen atoms is 0.1 to 10.0, (D) a platinum-based catalyst: an effective amount; and (E) an addition reaction control agent: an effective amount;
  • Component (A) of the present invention includes the following (A) below (A-1), (A-2) and (A-3).
  • (A-3) A composition containing a thermally conductive filler and having a viscosity of 100 to 2,000 Pa ⁇ s at 25°C, and using a combination of various components (A-1) to (A-3). Can be done.
  • a silicone gel crosslinker is used as a matrix for the thermally conductive silicone composition of the present invention.
  • Component (A-1) can be used alone or in combination of two or more.
  • A-1-1) (A-1-1)
  • the organopolysiloxane having two or more silicon-bonded alkenyl groups in one molecule can be used alone or in combination of two or more.
  • A-1-1) As the component, the following average composition formula (2) is used.
  • R 3 represents an alkenyl group
  • R 4 represents an unsubstituted or substituted monovalent hydrocarbon group having no aliphatic unsaturated bond
  • b is a number from 0.0001 to 0.2.
  • Organopolysiloxanes having two or more alkenyl groups bonded to a silicon atom in one molecule are represented by:
  • R 3 is an alkenyl group, preferably an alkenyl group having 2 to 6 carbon atoms, more preferably an alkenyl group having 2 to 4 carbon atoms. Specific examples include lower alkenyl groups such as vinyl, allyl, propenyl, isopropenyl, butenyl, and isobutenyl, with vinyl being preferred.
  • R 4 is an unsubstituted or substituted monovalent hydrocarbon group having no aliphatic unsaturated bond, preferably having 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms.
  • alkyl groups such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, hexyl group, cyclohexyl group, octyl group, decyl group, dodecyl group, etc.
  • Aryl groups such as phenyl group and tolyl group; Aralkyl groups such as benzyl group and phenylethyl group; Chloromethyl group in which some or all of the hydrogen atoms of these groups are substituted with halogen atoms such as fluorine and chlorine; Examples include 3,3,3-trifluoropropyl group, and from the viewpoint of ease of synthesis, methyl group, phenyl group, and 3,3,3-trifluoropropyl group are preferred.
  • b is a number from 0.0001 to 0.2, preferably from 0.0005 to 0.1.
  • c is a number from 1.7 to 2.2, preferably from 1.9 to 2.0, and b+c is a number from 1.9 to 2.4, and from 1.95 to 2.05. It is preferable that
  • the molecular structure of the organopolysiloxane component (A-1-1) is not particularly limited and is linear; a part of the molecular chain includes R 3 SiO 3/2 units, R 4 SiO 3/2 units, and SiO 2
  • the main chain may be branched; cyclic; three-dimensional network (resin-like), etc., including units (wherein the groups represented by R 3 and R 4 are as defined above);
  • Preferred is a linear diorganopolysiloxane which basically consists of repeating diorganosiloxane units and has both molecular chain ends blocked with triorganosiloxy groups.
  • the kinematic viscosity of the organopolysiloxane component (A-1-1) is preferably 10 to 100,000 mm 2 /s, more preferably 100 to 50,000 mm 2 /s at 25°C.
  • the resulting cured product will have better fluidity and workability.
  • the kinematic viscosity is a value measured at 25°C using an Ostwald viscometer (the same applies hereinafter).
  • R 5 each independently represents an unsubstituted or substituted monovalent hydrocarbon group, provided that one or more of R 5 is an alkenyl group, and d is an integer from 20 to 2,000. .
  • R 5 each independently represents an unsubstituted or substituted monovalent hydrocarbon group, provided that one or more of R 5 is an alkenyl group, and d is an integer from 20 to 2,000. .
  • R 5 is the same as defined above for R 3 (alkenyl group) and R 4 (unsubstituted or substituted monovalent hydrocarbon group having no aliphatic unsaturated bond), and the number of carbon atoms, specific examples, etc. The same is true.
  • two or more of R 5 are alkenyl groups.
  • d is an integer of 20 to 2,000, preferably 40 to 1,200, and more preferably 50 to 600.
  • organopolysiloxane represented by the above formula (3) include dimethylpolysiloxane with dimethylvinylsiloxy groups endblocked at both ends of the molecular chain, dimethylpolysiloxane endblocked with trimethylsiloxy group at one end of the molecular chain and dimethylvinylsiloxy group at one end, Dimethylsiloxane/methylvinylsiloxane copolymer with trimethylsiloxy groups blocked at both ends of the molecular chain, dimethylsiloxane/methylvinylsiloxane copolymer with trimethylsiloxy groups blocked at one end of the molecular chain and dimethylvinylsiloxy groups at both ends of the molecular chain, dimethylvinylsiloxane at both ends of the molecular chain Examples include a group-blocked dimethylsiloxane/methylvinylsiloxane copolymer, a dimethylsiloxane/diphenyls
  • (A-1-2) Organohydrogenpolysiloxanes having two or more silicon-bonded hydrogen atoms in one molecule can be used alone or in combination of two or more.
  • the component (A-1-2) reacts with the component (A-1-1) and acts as a crosslinking agent.
  • the component (A-1-2) needs to have two or more hydrogen atoms (SiH groups) bonded to silicon atoms at the non-terminus of the molecular chain in one molecule.
  • the molecular structure of the component (A-1-2) is not particularly limited as long as it satisfies the above requirements, and conventionally known molecular structures such as linear, cyclic, branched, three-dimensional network (resin-like), etc. It may be either. Among these, from the viewpoint of handling workability and suppression of bubble generation in the cured product obtained by crosslinking component (A-1-1), the number of silicon atoms in one molecule (or degree of polymerization) is 3 to 1,000. The number is preferably 5 to 400, more preferably 10 to 300, particularly preferably 10 to 100, and most preferably 10 to 60.
  • the kinematic viscosity of the organohydrogenpolysiloxane is preferably 1 to 10,000 mm 2 /s, more preferably 3 to 5,000 mm 2 /s, and even more preferably 5 to 3,000 mm 2 /s. preferable. Preferably, it is liquid at room temperature (25°C).
  • organohydrogenpolysiloxane satisfying the above requirements, for example, one represented by the following average composition formula (4) is preferable.
  • R 6 represents an unsubstituted or substituted monovalent hydrocarbon group having no aliphatic unsaturated bond
  • e is a number from 0.7 to 2.2
  • f is a number from 0.001 to 0.
  • e+f is a number that satisfies 0.8 to 2.5.
  • R 6 preferably has 1 to 10 carbon atoms, and is more preferably an unsubstituted or substituted monovalent hydrocarbon group having 1 to 6 aliphatic unsaturated bonds.
  • Specific examples include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, cyclohexyl group, octyl group, nonyl group, decyl group.
  • Alkyl groups such as phenyl, tolyl, xylyl and naphthyl groups; aralkyl groups such as benzyl, phenylethyl and phenylpropyl; some or all of the hydrogen atoms of these groups are fluorine , a 3,3,3-trifluoropropyl group substituted with a halogen atom such as chlorine, etc., with alkyl groups, aryl groups, and 3,3,3-trifluoropropyl groups being preferred; methyl groups, phenyl groups, 3,3,3-trifluoropropyl group is more preferred.
  • e, f, and e+f are as described above, but e is preferably a number of 0.9 to 2.1, f is preferably a number of 0.002 to 0.2, and 0. A number between 005 and 0.1 is more preferred. e+f is preferably 1.0 to 2.3, more preferably 1.5 to 2.2.
  • the molecular structure of the organohydrogenpolysiloxane represented by the above formula (4) is not particularly limited, and may be linear, cyclic, branched, three-dimensional network (resin-like), or the like. Among these, those having a number of silicon atoms in one molecule and a kinematic viscosity satisfying the above-mentioned ranges and having a straight chain shape are preferable.
  • organohydrogenpolysiloxane represented by the above formula (4) include a dimethylsiloxane/methylhydrogensiloxane copolymer blocked with dimethylhydrogensiloxy groups at both molecular chain ends, and a dimethylhydrogensiloxane copolymer with dimethylhydrogensiloxy groups at both molecular chain ends.
  • the amount of component (A-1-2) is such that the number of silicon-bonded hydrogen atoms in component (A-1-2) is 0 per alkenyl group in component (A-1-1).
  • the amount is preferably from .1 to 20, more preferably from 0.5 to 15, even more preferably from 1.0 to 15.
  • the crosslinking density will not become too low, and the generation of bubbles in the resulting conductive silicone composition can be further suppressed.
  • the number is greater than 20, the viscosity of the resulting thermally conductive silicone composition may become too high, leading to poor handling properties.
  • the addition reaction catalyst (A-1-3) used in component (A-1) includes a silicon-bonded alkenyl group in component (A-1-1) and a silicon-bonded alkenyl group in component (A-1-2).
  • Examples include platinum-based catalysts for promoting the addition reaction with atomically bonded hydrogen atoms, and they can be used alone or in combination of two or more.
  • platinum or a platinum-based compound and conventionally known ones can be used, such as platinum black; chloroplatinic acid; alcohol-modified chloroplatinic acid; chloroplatinic acid and olefin aldehyde;
  • Examples include complexes such as vinyl siloxane and acetylene alcohols.
  • the amount of component (A-1-3) may be any effective amount, and may be increased or decreased as appropriate depending on the desired curing speed. Usually, it is 0.1 to 1,000 ppm (mass), preferably 1 to 300 ppm. If this amount is too small, the addition reaction may be significantly slowed down or crosslinking may not occur. If this amount is too large, not only will the heat resistance of the cured product decrease, but also it will be disadvantageous in terms of cost since platinum is expensive.
  • An addition reaction control agent may be used for component (A-1).
  • the addition reaction control agent can be used alone or in combination of two or more.
  • conventionally known control agents used in addition-curable silicone compositions can be used.
  • acetylene compounds such as acetylene alcohols (e.g. 1-ethynyl-1-cyclohexanol, 3,5-dimethyl-1-hexyn-3-ol), various nitrogen compounds such as tributylamine, tetramethylethylenediamine, benzotriazole, etc.
  • organic phosphorus compounds such as triphenylphosphine, oxime compounds, organic chloro compounds, and the like.
  • the amount of component (A-1-4) is not particularly limited as long as it is an effective amount that can suppress the progress of the hydrosilylation reaction.
  • the amount is usually about 0.001 to 5 parts by weight, preferably 0.1 to 3 parts by weight, per 100 parts by weight of component (A-1-1). If the amount of component (A-1-4) is too small, sufficient pot life cannot be ensured, and if it is too large, the curability of the composition of the present invention decreases.
  • this component (A-1-4) can be used after being diluted with an organic solvent such as toluene, xylene, or isopropyl alcohol, if necessary, in order to improve its dispersibility in the composition.
  • (A-1) Crosslinked silicone gel can be produced by, for example, heating and mixing components (A-1-1) and (A-1-2) in the presence of (A-1-3) addition reaction catalyst, and crosslinking. That is, it can be obtained by proceeding with an addition reaction (hydrosilylation reaction).
  • the reaction temperature is usually about 50 to 180°C, but is not limited.
  • the reaction time is influenced by the heating temperature, but the reaction usually proceeds sufficiently within 0.5 to 12 hours.
  • a material subjected to such treatment is defined as a "crosslinked product.”
  • the content of component (A-1) in component (A) is preferably 0.01 to 10% by mass, more preferably 0.05 to 5% by mass, and even more preferably 0.1 to 3% by mass. If the content is too low, the composition will tend to produce voids when cured at high temperatures, and if it is more than 10% by mass, the viscosity will become too high and there is a risk of poor handling properties.
  • Component (A-2) is a silicone oil that does not participate in the crosslinking of component (A-1) and does not contain aliphatic unsaturated bonds or SiH groups, and can be used alone or in combination of two or more. can.
  • the kinematic viscosity of component (A-2) at 25° C. is preferably 5 to 500 mm 2 /s, more preferably 10 to 300 mm 2 /s.
  • a hydrolyzable organopolysiloxane (A-2-1) having trifunctionality at one end and represented by the following general formula (1) is preferable.
  • R 1 is each independently an alkyl group having 1 to 6 carbon atoms
  • R 2 is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 18 carbon atoms and having no aliphatic unsaturated bond. one or more groups selected from the group, a is an integer from 5 to 120)
  • the hydrolyzable organopolysiloxane having trifunctionality at one end represented by the general formula (1) can treat the surface of the thermally conductive filler (A-3), and only assists in the high filling of the powder. Rather, by covering the powder surface, it is difficult for the powders to aggregate with each other, and this effect persists even at high temperatures, so it has the effect of improving the heat resistance of the thermally conductive silicone composition.
  • R 1 includes, for example, an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, and a propyl group, with a methyl group and an ethyl group being particularly preferred.
  • R 2 are each independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 18 carbon atoms, preferably 1 to 14 carbon atoms, and having no aliphatic unsaturated bond.
  • Specific examples include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, cyclohexyl group, octyl group, nonyl group, decyl group.
  • Alkyl groups such as phenyl, tolyl, xylyl and naphthyl groups; aralkyl groups such as benzyl, phenylethyl and phenylpropyl; some or all of the hydrogen atoms of these groups are fluorine , 3,3,3-trifluoropropyl group substituted with a halogen atom such as chlorine, etc., preferably an alkyl group, an aryl group, a 3,3,3-trifluoropropyl group, and more preferably a methyl group. group, phenyl group, and 3,3,3-trifluoropropyl group.
  • a is an integer of 5 to 120, preferably an integer of 10 to 90.
  • (A-2-1) When blending a hydrolyzable organopolysiloxane with trifunctionality at one end, its content is preferably 1.0 to 20% by mass, and 1.5 to 15% by mass in component (A). is more preferable, and even more preferably 2.0 to 10% by mass. It may be 100% by mass in component (A-2), and when (A-2-2) described below is blended, it is preferably 30 to 95% by mass in component (A-2).
  • a non-functional liquid silicone oil (A-2-2) having no reactive groups may be added.
  • the non-functional liquid silicone oil can be used alone or in combination of two or more.
  • the non-functional liquid silicone oil is an organopolysiloxane having a kinematic viscosity at 25° C. of 10 to 500,000 mm 2 /s, preferably 30 to 10,000 mm 2 /s.
  • a kinematic viscosity of the organopolysiloxane is lower than the above lower limit, oil bleed of the resulting thermally conductive silicone composition is likely to occur.
  • it is larger than the above-mentioned upper limit the viscosity of the conductive silicone composition obtained becomes high, and there is a possibility that the handleability becomes poor.
  • the non-functional liquid silicone oil may be one having the above kinematic viscosity, and conventionally known organopolysiloxanes can be used.
  • the molecular structure of organopolysiloxane (silicone oil) is not particularly limited, and may be linear, branched, cyclic, or the like. In particular, it is preferable to have a linear structure in which the main chain is composed of repeating diorganosiloxane units and both ends of the molecular chain are blocked with triorganosiloxy groups.
  • Organopolysiloxane as a non-functional liquid silicone oil can be represented by the following average compositional formula (5).
  • R 7 g SiO (4-g)/2 (5) (In the formula, R 7 is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 18 carbon atoms and having no aliphatic unsaturated bond. g is 1.8 to 2.2.)
  • R 7 is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 18 carbon atoms, preferably 1 to 14 carbon atoms, and having no aliphatic unsaturated bond. Specific examples include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, cyclohexyl group, octyl group, nonyl group, decyl group.
  • Alkyl groups such as phenyl, tolyl, xylyl and naphthyl groups; aralkyl groups such as benzyl, phenylethyl and phenylpropyl; some or all of the hydrogen atoms of these groups are fluorine , 3,3,3-trifluoropropyl group substituted with a halogen atom such as chlorine, etc., preferably an alkyl group, an aryl group, a 3,3,3-trifluoropropyl group, and more preferably a methyl group. group, phenyl group, and 3,3,3-trifluoropropyl group.
  • g is 1.8 to 2.2, preferably 1.9 to 2.1.
  • the resulting thermally conductive silicone composition can have the required good kinematic viscosity.
  • organopolysiloxane represented by the above average compositional formula (5) a linear organopolysiloxane represented by the following formula (6) is preferable.
  • R 8 is independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 18 carbon atoms and having no aliphatic unsaturated bond.
  • h is the dynamic behavior of the organopolysiloxane at 25°C. This is the number that gives a viscosity of 10 to 500,000 mm 2 /s.
  • R 8 are each independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 18 carbon atoms, preferably 1 to 14 carbon atoms, and having no aliphatic unsaturated bond.
  • the monovalent hydrocarbon group include the groups mentioned above. Among these, it is preferable that all R 8s are methyl groups.
  • h is a number such that the kinematic viscosity of the organopolysiloxane at 25° C. is 10 to 500,000 mm 2 /s, preferably 30 to 10,000 mm 2 /s, more preferably 100 to 8,000 mm 2 /s.
  • the content of component (A-2) in component (A) is preferably 1.0 to 20% by mass, more preferably 1.5 to 15% by mass, and even more preferably 2.0 to 10% by mass. If it is less than 1.0% by mass, the resulting conductive silicone composition may have a high viscosity and be difficult to handle. If it is more than 20% by mass, the conductive silicone composition may form voids when cured at high temperatures. may become more likely to occur.
  • the thermally conductive filler is for imparting thermal conductivity to the thermally conductive silicone composition of the present invention.
  • thermally conductive fillers include aluminum, silver, copper, nickel, zinc oxide, alumina (aluminum oxide), magnesium oxide, aluminum nitride, boron nitride, silicon nitride, diamond, and graphite.
  • two or more types can be used in combination. When two or more types are combined, the method for producing component (A) preferably includes a step of mixing them.
  • the average particle size of the thermally conductive filler is 0.1 to 150 ⁇ m, preferably 0.5 to 140 ⁇ m. If the average particle size is too small, the viscosity of the composition becomes too high, making it difficult to handle; if the average particle size is too large, the resulting composition tends to be non-uniform.
  • the shape of the thermally conductive filler may be either spherical or irregular.
  • the "average particle size” means the particle size at 50% of the integrated value in the volume-based particle size distribution determined by laser diffraction/scattering method. Measurement by laser diffraction/scattering may be performed using, for example, a Microtrac particle size analyzer MT3300EX (manufactured by Nikkiso Co., Ltd.).
  • the content of component (A-3) in component (A) is preferably 70 to 98.99% by mass, more preferably 80 to 98% by mass, and even more preferably 90 to 97% by mass.
  • the content is 70% by mass or more, it becomes easier to obtain the desired thermal conductivity, and when it is more than 98.99% by mass, the thermally conductive silicone composition tends to form voids when cured at high temperatures. There is a risk that
  • the method for producing the composition includes crosslinking components (A-1-1) and (A-1-2) to obtain component (A-1). , (A-2) and component (A-3) may be mixed, or in order to obtain component (A-1), (A-2) is added in advance before heating and then heated and mixed. Component (A-3) may then be mixed, or in order to obtain component (A-1), all of component (A-2) and component (A-3) may be added in advance before heating. It may be heated and mixed. In consideration of efficiency, it is preferable to add all of component (A-2) and component (A-3) before heating and then heat and mix.
  • the viscosity of the composition (A) at 25° C. is 100 to 2,000 Pa ⁇ s, preferably 200 to 1,500 Pa ⁇ s, and more preferably 300 to 1,000 Pa ⁇ s. If the viscosity is less than 100 Pa ⁇ s, more bubbles will be generated during curing of the thermally conductive silicone composition, and if the viscosity is more than 2,000 Pa ⁇ s, handling will be poor. Viscosity can be measured with a spiral viscometer at 25°C. Examples of the spiral viscometer include Malcolm Viscometer (type PC-10AA) manufactured by Malcolm Corporation.
  • the method for producing the composition (A) is not particularly limited, and the components contained in the composition (A) can be mixed into a trimix, twin mix, or planetary mixer (all registered trademarks of mixers manufactured by Inoue Seisakusho Co., Ltd.). , can be obtained by stirring and mixing with a mixer such as Ultra Mixer (registered trademark of mixer manufactured by Mizuho Industries Co., Ltd.) or Hivis Dispermix (registered trademark of mixer manufactured by Tokushu Kika Kogyo Co., Ltd.). can.
  • Ultra Mixer registered trademark of mixer manufactured by Mizuho Industries Co., Ltd.
  • Hivis Dispermix registered trademark of mixer manufactured by Tokushu Kika Kogyo Co., Ltd.
  • Component (B) is an organopolysiloxane having two or more alkenyl groups bonded to a silicon atom in one molecule, and can be used alone or in combination of two or more.
  • Component (B) is the same as component (A-1-1) used in preparing component (A-1), and suitable components are also the same.
  • the content of component (B) is 0.01 to 50 parts by weight, preferably 0.05 to 20 parts by weight, and more preferably 0.1 to 10 parts by weight, based on 100 parts by weight of (A).
  • content of (B) is less than 0.01 parts by mass, sufficient curing cannot be achieved, and when it is more than 50 parts by mass, the thermal conductivity becomes low.
  • Component (C) is an organohydrogenpolysiloxane having two or more silicon-bonded hydrogen atoms in one molecule, and can be used alone or in combination of two or more.
  • Component (C) is the same as component (A-1-2) used in preparing component (A-1), and suitable components are also the same.
  • the content of component (C) is such that the number of silicon-bonded hydrogen atoms in component (C) is 0.1 to 10 per alkenyl group in component (B),
  • the amount is preferably 0.3 to 7, more preferably 0.5 to 5. If the above value is less than 0.1, sufficient curing cannot be achieved, and if it is more than 10, the resulting conductive silicone composition will have too high a hardness, resulting in poor reliability.
  • Component (D) is a platinum-based catalyst, and can be used alone or in combination of two or more.
  • Component (D) is the same as component (A-1-3) used in preparing component (A-1), and suitable components are also the same.
  • the content of component (D) may be any effective amount and may be increased or decreased as appropriate depending on the desired curing speed, but it is usually 0.1 to 1% based on the mass of platinum atoms relative to component (A). ,000 ppm (mass), preferably 1 to 300 ppm. If this amount is too small, the addition reaction may be significantly slowed down or crosslinking may not occur. If this amount is too large, not only will the heat resistance of the cured product decrease, but also it will be disadvantageous in terms of cost since platinum is expensive.
  • Component (E) is an addition reaction control agent, and can be used alone or in combination of two or more.
  • Component (E) is the same as component (A-1-4) used in preparing component (A-1), and suitable components are also the same.
  • the content of component (E) varies depending on the amount of component (A) used and cannot be determined unconditionally, but is not particularly limited as long as it is an effective amount that can suppress the progress of the hydrosilylation reaction.
  • the amount is usually about 0.001 to 5 parts by weight, preferably 0.1 to 3 parts by weight, per 100 parts by weight of component (A). If the amount of component (E) is too small, sufficient pot life cannot be ensured, and if it is too large, the curability of the composition of the present invention will be reduced.
  • this component (E) can be diluted with an organic solvent such as toluene, xylene, isopropyl alcohol, etc., as necessary.
  • the thermally conductive silicone composition of the present invention may contain optional components other than those mentioned above, within a range that does not impair the effects of the present invention.
  • the method for producing a thermally conductive silicone composition includes mixing a previously prepared composition (A), components (B) to (D), optionally component (E), and other optional components.
  • Mixing devices include Trimix, Twin Mix, Planetary Mixer (all registered trademarks of mixers manufactured by Inoue Seisakusho Co., Ltd.), Ultra Mixer (registered trademarks of mixers manufactured by Mizuho Industries, Ltd.), and Hivis Dispermix (all registered trademarks of mixers manufactured by Mizuho Industries, Ltd.). Examples include mixers such as a registered trademark of Mixer manufactured by Tokushu Kika Kogyo Co., Ltd.).
  • the thermally conductive silicone composition of the present invention has a viscosity of 50 to 1,500 Pa ⁇ s at 25°C, and is grease-like.
  • the viscosity is preferably 100 to 700 Pa ⁇ s, more preferably 100 to 500 Pa ⁇ s. If the viscosity is less than 50 Pa ⁇ s, the shear resistance will be poor, and if the viscosity is more than 1,500 Pa ⁇ s, the handling property will be poor. Viscosity can be measured with a spiral viscometer at 25°C. Examples of the spiral viscometer include Malcolm Viscometer (type PC-10AA) manufactured by Malcolm Corporation.
  • the thermal conductivity of the thermally conductive silicone composition of the present invention is preferably 2.0 W/mK or more, more preferably 3.0 W/mK or more, for a sufficient heat dissipation effect.
  • the upper limit is not particularly limited, and is appropriately selected from, for example, 15.0 W/mK or less. Note that the thermal conductivity is a value measured by the hot disk method in accordance with ISO 22007-2.
  • the thermally conductive silicone composition of the present invention is curable, and the curing conditions for curing the thermally conductive silicone composition of the present invention by heating are not particularly limited, but are usually 80 to 200°C, preferably The temperature is 100 to 180°C for 30 minutes to 4 hours, preferably 30 minutes to 3 hours.
  • the shear modulus of the cured product of the thermally conductive silicone composition of the present invention is preferably 20,000 to 200,000 Pa.
  • the shear modulus of the cured product was measured in accordance with the regulations of ISO6721-10, and the details are as described in the Examples.
  • the average particle diameter measurement is a volume-based cumulative average diameter measured using a particle size analyzer Microtrac MT3300EX manufactured by Nikkiso Co., Ltd. ⁇ viscosity ⁇ The viscosity was measured at 25° C. using a Malcolm viscometer (type PC-10AA) manufactured by Malcolm Corporation. [Kinematic viscosity] Kinematic viscosity was measured at 25°C using an Ostwald viscometer.
  • compositions Each component was charged into a planetary mixer with the composition shown in Table 1, and components (AI to V) were prepared according to the following procedure. Component (A-1-1), component (A-2), and component (A-3) were placed in a planetary mixer and first stirred at 25° C. for 10 minutes. Then, after adding the components (A-1-2) and (A-1-3), the temperature was raised to 170°C, and the mixture was heated and mixed for 2 hours. -1-2) An addition reaction (hydrosilylation reaction) was carried out using the component to obtain compositions (AI to V) containing crosslinked silicone gels.
  • a composition (A-VI) was obtained in the same manner as (AI) except that (A-1-3), which is a platinum catalyst, was not included in the production method of (AI). That is, the (A-1-1) [1], (A-2-1) [1], (A-3) [3], and (A-3) [4] components in Table 1 were put into a planetary mixer. The mixture was first stirred at room temperature for 10 minutes. Thereafter, component (A-1-2) [1] was added, the temperature was raised to 170°C, and the mixture was heated and mixed for 2 hours to obtain a composition (A-VI). (A-VI) The viscosity of the composition was 150 Pa ⁇ s.
  • Alumina powder (aluminum oxide powder) (average particle size: 140 ⁇ m) [2] Alumina powder (aluminum oxide powder) (average particle size: 45 ⁇ m) [3] Aluminum powder (average particle size: 10 ⁇ m) [4] Zinc oxide powder (average particle size: 1.0 ⁇ m)
  • thermally conductive silicone composition was prepared according to the following procedure. All of the following steps were performed at room temperature. That is, components (A) and (B) were placed in a planetary mixer and stirred for 30 minutes. Thereafter, component (E) was added and stirred for 10 minutes, followed by component (D) and stirred for 10 minutes in the same manner. Thereafter, (C) was added and stirred for 15 minutes while degassing with a vacuum pump to obtain a thermally conductive silicone composition. The obtained thermally conductive silicone composition was evaluated as follows. The results are also listed in Tables 2 and 3.
  • Thermal conductivity was measured at 25° C. using TPS-2500S manufactured by Kyoto Electronics Industry Co., Ltd.

Abstract

(A)下記(A-1)、(A-2)及び(A-3) (A-1)シリコーンゲル架橋物、 (A-2)脂肪族不飽和結合及びSiH基をそれぞれ含有しないシリコーンオイル、 (A-3)熱伝導性充填剤 を含む組成物、 (B)ケイ素原子に結合したアルケニル基を、1分子中に2個以上有するオルガノポリシロキサン、 (C)ケイ素原子に結合した水素原子を、1分子中に2個以上有するオルガノハイドロジェンポリシロキサン、 (D)白金系触媒、及び (E)付加反応制御剤 を含有する、硬化性で、25℃における粘度が50~1,500Pa・sであり、組成物の加熱硬化中に、組成物中の気泡発生を抑制し、放熱性に優れ、高信頼性の熱伝導性シリコーン組成物。

Description

熱伝導性シリコーン組成物
 本発明は、硬化時の気泡発生が少ない熱伝導性シリコーン組成物に関する。
 プリント基板上に実装されるCPU等の電子部品は使用時の発熱による温度上昇によって性能が低下したり、破損したりすることがあるため、従来、電子部品と放熱フィン等の間に熱伝導性の良い放熱シートや、放熱グリースが用いられてきた。放熱シートは手軽に取り付けることができる利点があるが、CPU、放熱フィン等の表面は一見平滑に見えてもミクロ的に観れば凸凹があるので、実際はそれらの被着面に放熱シートを確実に密着させることはできず、空気層が残存する結果、放熱効果が期待通りに発揮されない不都合があった。
 それを解決するために、放熱シートの表面に粘着層等を設けて密着性を向上させたものも提案されているが、十分な結果が得られていない。放熱グリースはCPUや放熱フィン等の表面の凹凸に影響されることなく、それら被着面に良好に追随し密着性をもたらす。しかしながら、他の部品を汚したり、長時間使用するとオイルの流出したり等の問題が起こりがちである。そのため、液状シリコーンゴム組成物をポッティング剤や接着剤として用いる方法が提案されている(特許文献1参照)。
 ところで、一般的に、CPU等の電子部品は、シリコンチップとオルガニック基板の間をエポキシ樹脂系のアンダーフィル剤等で封止するが、シリコンチップ及びオルガニック基板、アンダーフィル剤はそれぞれ熱膨張率が異なる。そのため、温度変化により各部品、部材の熱膨張率の違いからシリコンチップ及び基板が反ってしまう。時には、シリコンチップの中央部に対して周辺部では数十ミクロン程度も反ってしまうこともある。しかしながら、シリコンチップ上に配置されるヒートスプレッダー又はヒートシンクは、構造体が大きく、高強度であるため反ることはない。したがって、シリコンチップとヒートスプレッダー又はヒートシンクとの間に挟まれる放熱材料は、シリコンチップの反りに追随できないと、剥離してしまう結果、熱抵抗が上昇し、所望する放熱性能が得られなくなる。そのため、使用される放熱材料にはシリコンチップの反りに追随できる柔軟性が必要となる。しかしながら、特許文献1に記載の組成物は、硬化後の硬化物が非常に硬いことから、CPU動作時に起こるシリコンチップの反りに追随出来ずに基材等から剥がれてしまことがある。すると、所望する放熱性能が得られないため、経時で熱抵抗が上昇する等の問題点が生じていた。
 このような問題点を解決するため、硬化後の弾性率を低く抑えたものも提案されているが(特許文献2参照)、弾性率を低く抑えると、組成物の加熱硬化中に、組成物中に気泡が発生しやすくなり、特にCPUの面積が大きくなるとそれが顕在化してしまう。気泡が発生すると所望する放熱性能が得られない等の問題が生じていた。
特開平8-208993号公報 特許第5047505号公報
 本発明は上記事情に鑑みなされたもので、組成物の加熱硬化中に、組成物中の気泡発生が抑制され、放熱性に優れ、高信頼性の熱伝導性シリコーン組成物を提供することを目的とする。
 本発明者らは、上記目的を達成するため鋭意検討した結果、熱伝導性シリコーン組成物中に、予め調製されたシリコーンゲル架橋物を含む組成物を配合することで、上記課題を解決することを見出し、本発明を完成した。
 従って、本発明は下記熱伝導性シリコーン組成物を提供する。
1.(A)下記(A-1)、(A-2)及び(A-3)
(A-1)シリコーンゲル架橋物、
(A-2)脂肪族不飽和結合及びSiH基をそれぞれ含有しないシリコーンオイル、
(A-3)熱伝導性充填剤
を含み、25℃における粘度が100~2,000Pa・sの組成物:100質量部、
(B)ケイ素原子に結合したアルケニル基を、1分子中に2個以上有するオルガノポリシロキサン:0.01~50質量部、
(C)ケイ素原子に結合した水素原子を、1分子中に2個以上有するオルガノハイドロジェンポリシロキサン:前記(B)成分中のアルケニル基1個に対して、(C)成分中のケイ素原子に結合した水素原子が0.1~10個となる量、
(D)白金系触媒:有効量、及び
(E)付加反応制御剤:有効量
を含有し、硬化性で25℃における粘度が50~1,500Pa・sである熱伝導性シリコーン組成物。
2.(A)成分が、
(A-1)シリコーンゲル架橋物:0.01~10質量%、
(A-2)下記一般式(1)
Figure JPOXMLDOC01-appb-C000002
(式中、R1は、それぞれ独立に、炭素数1~6のアルキル基、R2は、炭素数1~18の脂肪族不飽和結合を有しない非置換又は置換の1価炭化水素基の群の中から選択される1種もしくは2種以上の基、aは5~120の整数である。)
で表される片末端加水分解性オルガノポリシロキサン:1.0~20質量%
(A-3)平均粒径0.1~150μmの熱伝導性充填剤:70~98.99質量%を含む、1記載の熱伝導性シリコーン組成物。
3.(A-1)成分が、
(A-1-1)ケイ素原子に結合したアルケニル基を、1分子中に2個以上有するオルガノポリシロキサンと、
(A-1-2)ケイ素原子に結合した水素原子を、1分子中に2個以上有するオルガノハイドロジェンポリシロキサン:前記(A-1-1)成分中のアルケニル基1個に対して、(A-1-2)成分中のケイ素原子に結合した水素原子が0.1~20個となる量
との付加反応物である1又は2記載の熱伝導性シリコーン組成物。
4.(A-1-1)成分が、下記平均組成式(2)
  R3 b4 cSiO(4-b-c)/2     (2)
(式中、R3は、アルケニル基を表し、R4は、脂肪族不飽和結合を有しない非置換又は置換の1価炭化水素基を表し、bは0.0001~0.2の数であり、cは1.7~2.2の数であり、但しb+cは1.9~2.4を満たす数である。)
で表され、ケイ素原子に結合したアルケニル基を、1分子中に2個以上有するオルガノポリシロキサンである3記載の熱伝導性シリコーン組成物。
5.(A-2)成分中、25℃における動粘度が10~500,000mm2/sである無官能性液状シリコーンオイルを、5~70質量%含有する、1~4のいずれかに記載の熱伝導性シリコーン組成物。
 本発明によれば、組成物の加熱硬化中に、組成物中の気泡発生を抑制し、放熱性に優れ、高信頼性の熱伝導性シリコーン組成物を提供することができる。
 以下、本発明について詳細に説明する。
 本発明の伝導性シリコーン組成物は、
 (A)下記(A-1)、(A-2)及び(A-3)
(A-1)シリコーンゲル架橋物、
(A-2)脂肪族不飽和結合及びSiH基をそれぞれ含有しないシリコーンオイル、
(A-3)熱伝導性充填剤
を含み、25℃における粘度が100~2,000Pa・sの組成物:100質量部、
(B)ケイ素原子に結合したアルケニル基を、1分子中に2個以上有するオルガノポリシロキサン:0.01~50質量部、
(C)ケイ素原子に結合した水素原子を、1分子中に2個以上有するオルガノハイドロジェンポリシロキサン:前記(B)成分中のアルケニル基1個に対して、(C)成分中のケイ素原子に結合した水素原子が0.1~10.0個となる量、
(D)白金系触媒:有効量、及び
(E)付加反応制御剤:有効量
を含有し、硬化性で25℃における粘度が50~1,500Pa・sである、グリース状伝導性シリコーン組成物である。
[(A)成分]
 本発明の(A)成分は、下記(A)下記(A-1)、(A-2)及び(A-3)
(A-1)シリコーンゲル架橋物、
(A-2)脂肪族不飽和結合及びSiH基をそれぞれ含有しないシリコーンオイル、
(A-3)熱伝導性充填剤
を含み、25℃における粘度が100~2,000Pa・sの組成物であり、様々な(A-1)~(A-3)成分の組み合わせを用いることができる。
(A-1)
 シリコーンゲル架橋物は、本発明の熱伝導性シリコーン組成物のマトリックスとして使用される。(A-1)成分は1種単独で又は2種以上組み合わせて用いることができる。(A-1)成分としては、例えば、(A-1-1)ケイ素原子に結合したアルケニル基を、1分子中に2個以上有するオルガノポリシロキサンと、
(A-1-2)ケイ素原子に結合した水素原子を、1分子中に2個以上有するオルガノハイドロジェンポリシロキサン:前記(A-1-1)成分中のアルケニル基1個に対して、(A-1-2)成分中のケイ素原子に結合した水素原子の個数が0.1~20個となる量
との付加反応物が挙げられる。
(A-1-1)
 (A-1-1)ケイ素原子に結合したアルケニル基を、1分子中に2個以上有するオルガノポリシロキサンは、1種単独で又は2種以上組み合わせて用いることができる。(A-1-1)成分としては、下記平均組成式(2)
 R3 b4 cSiO(4-b-c)/2     (2)
(式中、R3は、アルケニル基を表し、R4は、脂肪族不飽和結合を有しない非置換又は置換の1価炭化水素基を表し、bは0.0001~0.2の数であり、cは1.7~2.2の数であり、但しb+cは1.9~2.4を満たす数である。)
で表され、ケイ素原子に結合したアルケニル基を、1分子中に2個以上有するオルガノポリシロキサンが挙げられる。
 R3はアルケニル基であり、炭素数が2~6のアルケニル基が好ましく、炭素数2~4のアルケニル基がより好ましい。その具体例としては、ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、イソブテニル基等の低級アルケニル基が挙げられ、ビニル基が好ましい。R4は、脂肪族不飽和結合を有しない非置換又は置換の1価炭化水素基であり、炭素数が1~10のものが好ましく、炭素数1~6のものがより好ましい。その具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、オクチル基、デシル基、ドデシル基等のアルキル基;フェニル基、トリル基等のアリール基;ベンジル基、フェニルエチル基等のアラルキル基;これらの基の水素原子の一部又は全部が、フッ素、塩素等のハロゲン原子で置換されたクロロメチル基、3,3,3-トリフルオロプロピル基等が挙げられるが、合成の容易さ等の観点から、メチル基、フェニル基、3,3,3-トリフルオロプロピル基が好ましい。
 bは0.0001~0.2の数であり、0.0005~0.1が好ましい。cは1.7~2.2の数であり、1.9~2.0が好ましく、b+cは、1.9~2.4を満たす数であり、1.95~2.05を満たす数であることが好ましい。
 (A-1-1)成分のオルガノポリシロキサンの分子構造は、特に限定されず、直鎖状;分子鎖の一部にR3SiO3/2単位、R4SiO3/2単位、SiO2単位(式中、R3及びR4で表される基は、上記で定義した通りである。)等を含む分岐状;環状;三次元網状(樹脂状)等のいずれでもよいが、主鎖が基本的にジオルガノシロキサン単位の繰り返しからなり、分子鎖両末端がトリオルガノシロキシ基で封鎖された直鎖状のジオルガノポリシロキサンが好ましい。
 (A-1-1)成分のオルガノポリシロキサンの動粘度は、25℃において10~100,000mm2/sが好ましく、100~50,000mm2/sがより好ましい。上記のような動粘度の範囲にすることで、得られる硬化物は、流動性、作業性により優れたものとなる。なお、動粘度は、オストワルド粘度計による25℃における値である(以下、同様)。
 以上の要件を満たす本成分のオルガノポリシロキサンとしては、例えば、下記一般式(3)
Figure JPOXMLDOC01-appb-C000003
(式中、R5は、それぞれ独立に、非置換又は置換の1価炭化水素基を表し、但しR5の1個以上は、アルケニル基であり、dは20~2,000の整数である。)
で表されるものが挙げられる。
 R5は、上記R3(アルケニル基)及びR4(脂肪族不飽和結合を有しない非置換又は置換の1価炭化水素基)で定義したものと同じであり、その炭素数、具体例等も同じである。好ましくは、R5の2個以上がアルケニル基であることが好ましい。dは20~2,000の整数であり、40~1,200が好ましく、50~600の整数がより好ましい。
 上記式(3)で表されるオルガノポリシロキサンの具体例としては、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン、分子鎖片末端トリメチルシロキシ基・片末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、分子鎖片末端トリメチルシロキシ基・片末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・ジフェニルシロキサン共重合体等が挙げられる。
(A-1-2)
 (A-1-2)ケイ素原子に結合した水素原子を、1分子中に2個以上有するオルガノハイドロジェンポリシロキサンは、1種単独で又は2種以上組み合わせて用いることができる。(A-1-2)成分は、上記(A-1-1)成分と反応して、架橋剤として作用するものである。(A-1-2)成分は、分子鎖非末端にケイ素原子に結合した水素原子(SiH基であり)を、1分子中に2個以上有することが必要である。
 (A-1-2)成分の分子構造は、上記要件を満たすものであれば特に限定されず、従来公知の、例えば、直鎖状、環状、分岐状、三次元網状(樹脂状)等のいずれであってもよい。中でも、取り扱い作業性、及び(A-1-1)成分を架橋して得られる硬化物の気泡発生抑制の観点から、1分子中のケイ素原子数(又は重合度)が、3~1,000個が好ましく、5~400個がより好ましく、10~300個がさらに好ましく、10~100個が特に好ましく、10~60個のものが最も好ましい。
 (A-1-2)オルガノハイドロジェンポリシロキサンの動粘度は、1~10,000mm2/sが好ましく、3~5,000mm2/sがより好ましく、5~3,000mm2/sがさらに好ましい。室温(25℃)で液状のものが好ましい。
 上記要件を満たすオルガノハイドロジェンポリシロキサンとしては、例えば、下記平均組成式(4)で表されるものが好ましい。
  R6 efSiO(4-e-f)/2     (4)
(式中、R6は、脂肪族不飽和結合を有しない非置換又は置換の1価炭化水素基を表し、eは0.7~2.2の数であり、fは0.001~0.5の数であり、但しe+fは0.8~2.5を満たす数である。)
 上記式(4)中、R6は、炭素数が1~10のものが好ましく、1~6の脂肪族不飽和結合を有しない非置換又は置換の1価炭化水素基がより好ましい。その具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、へキシル基、シクロヘキシル基、オクチル基、ノニル基、デシル基等のアルキル基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;ベンジル基、フェニルエチル基、フェニルプロピル基等のアラルキル基;これらの基の水素原子の一部又は全部が、フッ素、塩素等のハロゲン原子で置換された3,3,3-トリフルオロプロピル基等が挙げられ、アルキル基、アリール基、3,3,3-トリフルオロプロピル基が好ましく、メチル基、フェニル基、3,3,3-トリフルオロプロピル基がより好ましい。
 上記式(5)中、e、f、e+fは上述した通りであるが、eは0.9~2.1の数が好ましく、fは0.002~0.2の数が好ましく、0.005~0.1の数がより好ましい。e+fは1.0~2.3が好ましく、1.5~2.2がより好ましい。
 上記式(4)で表されるオルガノハイドロジェンポリシロキサンの分子構造は、特に限定されず、直鎖状、環状、分岐状、三次元網状(樹脂状)等のいずれであってもよい。中でも、1分子中のケイ素原子数及び動粘度が上述した範囲を満たすもので、直鎖状のものが好ましい。
 上記式(4)で表されるオルガノハイドロジェンポリシロキサンの具体例としては、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖メチルハイドロジェンシロキサン・ジメチルシロキサン・ジフェニルシロキサン共重合体、分子鎖片末端ジメチルハイドロジェンシロキシ基・片末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、分子鎖片末端ジメチルハイドロジェンシロキシ基・片末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジメチルシロキサン・ジフェニルシロキサン共重合体、(CH32HSiO1/2単位と(CH33SiO1/2単位と(CH3)HSiO2/2単位とSiO4/2単位とからなる共重合体、(CH32HSiO1/2単位と(CH33SiO1/2単位と(CH3)HSiO2/2単位と(CH32SiO2/2単位とSiO4/2単位とからなる共重合体、(CH32HSiO1/2単位と(CH3)HSiO2/2単位と(CH32SiO2/2単位とSiO4/2単位とからなる共重合体、(CH32HSiO1/2単位とSiO4/2単位と(CH3)HSiO2/2単位と(CH32SiO2/2単位と(C653SiO1/2単位とからなる共重合体、(CH32HSiO1/2単位と(CH33SiO1/2単位と(C652SiO2/2単位と(CH3)HSiO2/2単位と(CH32SiO2/2単位とSiO4/2単位とからなる共重合体等が挙げられる。
 (A-1-2)成分の量は、前記(A-1-1)成分中のアルケニル基1個に対して、(A-1-2)成分中のケイ素原子に結合した水素原子が0.1~20個となる量が好ましく、0.5~15個となる量がより好ましく、1.0~15個となる量がさらに好ましい。上記値0.1個以上とすることで、架橋密度が低くなりすぎることがなく、得られる伝導性シリコーン組成物の気泡発生をより抑制することができる。一方、20個より大きいと、得られる熱伝導性シリコーン組成物の粘度が高くなりすぎて、取り扱い性が悪くなるおそれがある。
(A-1-3)
 (A-1)成分に用いる(A-1-3)付加反応触媒としては、前記(A-1-1)成分中のケイ素原子結合アルケニル基と前記(A-1-2)成分中のケイ素原子結合水素原子との付加反応を促進させるための白金系触媒が挙げられ、1種単独で又は2種以上組み合わせて用いることができる。具体的には白金又は白金系化合物であり、従来公知のものを使用することができ、具体的には、白金ブラック;塩化白金酸;塩化白金酸のアルコール変性物;塩化白金酸とオレフィンアルデヒド、ビニルシロキサン、アセチレンアルコール類等の錯体等が挙げられる。
 (A-1-3)成分の量は、有効量であればよく、所望の硬化速度により適宜増減すればよいが、(A-1-1)成分に対して、白金原子の質量換算で、通常、0.1~1,000ppm(質量)であり、1~300ppmが好ましい。この量が少なすぎると、付加反応が著しく遅くなったり、架橋しなくなったりするおそれがある。この配合量が多すぎると、硬化物の耐熱性が低下するだけでなく、白金は高価であることからコスト面でも不利となる。
(A-1-4)
 (A-1)成分には、付加反応制御剤を使用してもよい。付加反応制御剤は1種単独で又は2種以上組み合わせて用いることができる。付加反応制御剤は、付加硬化型シリコーン組成物に使用される従来公知の制御剤を使用することができる。例えば、アセチレンアルコール類(例えば、1-エチニル-1-シクロヘキサノール、3,5-ジメチル-1-ヘキシン-3-オール)等のアセチレン化合物、トリブチルアミン、テトラメチルエチレンジアミン、ベンゾトリアゾール等の各種窒素化合物、トリフェニルホスフィン等の有機リン化合物、オキシム化合物、有機クロロ化合物等が挙げられる。
 (A-1-4)成分の量は、ヒドロシリル化反応の進行を抑制することができる有効量であればよく、特に制限されない。例えば、(A-1-1)成分100質量部に対して、通常、0.001~5質量部程度とすることがよく、0.1~3質量部が好ましい。(A-1-4)成分の配合量が少なすぎれば、十分な可使時間を確保することができず、また、多すぎると本発明組成物の硬化性が低下する。なお、この(A-1-4)成分は、組成物中への分散性を向上させるため、必要に応じて、トルエン、キシレン、イソプロピルアルコール等の有機溶剤で希釈して使用することもできる。
 (A-1)シリコーンゲル架橋物は、例えば、(A-1-3)付加反応触媒存在下において、(A-1-1)成分と(A-1-2)成分とを加熱混合、架橋、即ち付加反応(ハイドロシリル化反応)が進むことで得ることができる。反応温度は、通常50~180℃程度であるが、制限されるものではない。反応時間は加熱する温度にも影響されるが通常0.5~12時間で十分に反応は進む。このような処理が行われたものを「架橋物」と定義する。
 (A-1)成分の含有量は、(A)成分中0.01~10質量%が好ましく、0.05~5質量%がより好ましく、0.1~3質量%がさらに好ましい。含有量が少なすぎると、組成物が、高温での硬化時ボイドが出やすくなるし、10質量%より大きいと粘度が高くなりすぎて取り扱い性が悪くなるおそれがある。
(A-2)
 (A-2)成分は、(A-1)成分の架橋に関与しない、脂肪族不飽和結合及びSiH基をそれぞれ含有しないシリコーンオイルであり、1種単独で又は2種以上組み合わせて用いることができる。(A-2)成分の25℃における動粘度は5~500mm2/sが好ましく、10~300mm2/sがより好ましい。(A-2)成分としては、下記一般式(1)で表される片末端3官能の加水分解性オルガノポリシロキサン(A-2-1)が好ましい。
Figure JPOXMLDOC01-appb-C000004
(式中、R1は、それぞれ独立に、炭素数1~6のアルキル基、R2は、炭素数1~18の脂肪族不飽和結合を有しない非置換又は置換の1価炭化水素基の群の中から選択される1種もしくは2種以上の基、aは5~120の整数である。)
 一般式(1)で表される片末端3官能の加水分解性オルガノポリシロキサンは、(A-3)熱伝導性充填剤の表面を処理することができ、粉末の高充填化を補助するばかりでなく、粉末表面を覆うことにより粉末同士の凝集を起こり難くし、高温下でもその効果は持続するため、熱伝導性シリコーン組成物の耐熱性を向上させる働きがある。
 上記式(1)中、R1は、例えば、メチル基、エチル基、プロピル基等の炭素数1~6のアルキル基が挙げられるが、特にメチル基、エチル基が好ましい。R2は、互いに独立に、炭素数1~18、好ましくは1~14の脂肪族不飽和結合を有しない非置換又は置換の1価炭化水素基である。その具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、へキシル基、シクロヘキシル基、オクチル基、ノニル基、デシル基等のアルキル基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;ベンジル基、フェニルエチル基、フェニルプロピル基等のアラルキル基;これらの基の水素原子の一部又は全部が、フッ素、塩素等のハロゲン原子で置換された3,3,3-トリフルオロプロピル基等が挙げられ、好ましくはアルキル基、アリール基、3,3,3-トリフルオロプロピル基であり、より好ましくはメチル基、フェニル基、3,3,3-トリフルオロプロピル基である。aは5~120の整数であり、10~90の整数が好ましい。
 (A-2-1)片末端3官能の加水分解性オルガノポリシロキサンを配合する場合、その含有量は、(A)成分中1.0~20質量%が好ましく、1.5~15質量%がより好ましく、2.0~10質量%がさらに好ましい。(A-2)成分中100質量%でもよく、後述する(A-2-2)を配合する場合は、(A-2)成分中30~95質量%が好ましい。
 (A-2)成分としては、上記片末端3官能の加水分解性オルガノポリシロキサン以外にも、反応性基のない無官能性液状シリコーンオイル(A-2-2)を添加してもよい。無官能性液状シリコーンオイルは1種単独で又は2種以上組み合わせて用いることができる。
 無官能性液状シリコーンオイルは、25℃における動粘度が10~500,000mm2/s、好ましくは30~10,000mm2/sであるオルガノポリシロキサンである。該オルガノポリシロキサンの動粘度が上記下限値より低いと得られる熱伝導性シリコーン組成物のオイルブリードがで易くなる。また、上記上限値より大きいと、得られる伝導性シリコーン組成物の粘度が高くなり、取り扱い性が悪くなるおそれがある。
 無官能性液状シリコーンオイルは、上記動粘度を有するものであればよく、従来公知のオルガノポリシロキサンを使用することができる。オルガノポリシロキサン(シリコーンオイル)の分子構造は特に限定されず、直鎖状、分岐状、環状等のいずれであってもよい。特に、主鎖がジオルガノシロキサン単位の繰り返しからなり、分子鎖両末端がトリオルガノシロキシ基で封鎖された直鎖状構造を有するのがよい。
 無官能性液状シリコーンオイルとしてのオルガノポリシロキサンは、下記平均組成式(5)で表すことができる。
 R7 gSiO(4-g)/2     (5)
(式中、R7は、炭素数1~18の脂肪族不飽和結合を有しない非置換又は置換の1価炭化水素基である。gは1.8~2.2である。)
 R7は、炭素数1~18、好ましくは1~14の脂肪族不飽和結合を有しない非置換又は置換の1価炭化水素基である。その具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、へキシル基、シクロヘキシル基、オクチル基、ノニル基、デシル基等のアルキル基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;ベンジル基、フェニルエチル基、フェニルプロピル基等のアラルキル基;これらの基の水素原子の一部又は全部が、フッ素、塩素等のハロゲン原子で置換された3,3,3-トリフルオロプロピル基等が挙げられ、好ましくはアルキル基、アリール基、3,3,3-トリフルオロプロピル基であり、より好ましくはメチル基、フェニル基、3,3,3-トリフルオロプロピル基である。
 gは1.8~2.2であり、1.9~2.1が好ましい。gが上記範囲内にあることにより、得られる熱伝導性シリコーン組成物は要求される良好な動粘度を有することができる。
 上記平均組成式(5)で表されるオルガノポリシロキサンとしては、下記式(6)で表される直鎖状オルガノポリシロキサンが好ましい。
Figure JPOXMLDOC01-appb-C000005
(式中、R8は、互いに独立に、炭素数1~18の脂肪族不飽和結合を有しない非置換又は置換の1価炭化水素基である。hは該オルガノポリシロキサンの25℃における動粘度が10~500,000mm2/sとなる数である。)
 R8は、互いに独立に、炭素数1~18、好ましくは1~14の脂肪族不飽和結合を有しない非置換又は置換の1価炭化水素基である。該1価炭化水素基としては、上述した基が挙げられる。中でも、R8は全てメチル基であることが好ましい。hは該オルガノポリシロキサンの25℃における動粘度が10~500,000mm2/s、好ましくは30~10,000mm2/s、より好ましくは100~8,000mm2/sとなる数である。
 (A-2-2)無官能性液状シリコーンオイルを配合する場合、その含有量は、(A-2)成分中5~70質量%が好ましい。
 (A-2)成分の含有量は、(A)成分中1.0~20質量%が好ましく、1.5~15質量%がより好ましく、2.0~10質量%がさらに好ましい。1.0質量%より小さいと、得られる伝導性シリコーン組成物の粘度が高くなり、取り扱い性が悪くなるおそれがあり、20質量%より大きいと伝導性シリコーン組成物が、高温での硬化時ボイドが出やすくなるおそれがある。
(A-3)
 熱伝導性充填剤は、本発明の熱伝導性シリコーン組成物に熱伝導性を付与するためのものである。熱伝導性充填剤としては、例えば、アルミニウム、銀、銅、ニッケル、酸化亜鉛、アルミナ(酸化アルミニウム)、酸化マグネシウム、窒化アルミニウム、窒化ホウ素、窒化珪素、ダイヤモンド、グラファイトが挙げられ、1種単独で又は2種以上組み合わせて用いることができる。2種以上組み合わせる場合は、(A)成分の製造方法としては、これらを混合する工程を有することが好ましい。
 熱伝導性充填剤の平均粒径は0.1~150μmであり、0.5~140μmが好ましい。平均粒径が小さすぎると組成物の粘度が高くなりすぎて取り扱い性が悪くなり、大きすぎると、得られる組成物が不均一となりやすい。熱伝導性充填剤の形状は球状、不定形状どちらでもよい。
 本発明において「平均粒径」は、レーザー回折・散乱法によって求めた体積基準の粒度分布における積算値50%での粒径を意味する。レーザー回折・散乱法による測定は、例えば、マイクロトラック粒度分析計MT3300EX(日機装(株)社製)により行えばよい。
 (A-3)成分の含有量は、(A)成分中70~98.99質量%が好ましく、80~98質量%がより好ましく、90~97質量%がさらに好ましい。含有量を70質量%以上とすることで、目的とする熱伝導率をより得やすくなり、98.99質量%より大きいと、熱伝導性シリコーン組成物が、高温での硬化時ボイドが出やすくなるおそれがある。
(A)組成物の製造方法
 (A)組成物の製造方法としては、(A-1-1)成分と(A-1-2)成分を架橋させ、成分(A-1)を得てから、(A-2)と成分(A-3)を混合してもよいし、成分(A-1)を得るために、加熱前に予め(A-2)を投入してから加熱混合させ、その後成分(A-3)を混合してもよいし、(A-1)成分を得るために、加熱前に成分(A-2)及び成分(A-3)の全てを予め投入してから加熱混合してもよい。効率を考慮した場合、加熱前に成分(A-2)及び成分(A-3)の全てを予め投入してから加熱混合する方法が好ましい。
 (A)組成物の25℃における粘度は、100~2,000Pa・sであり、200~1,500Pa・sが好ましく、300~1,000Pa・sがより好ましい。粘度が100Pa・sより小さいと、熱伝導性シリコーン組成物の硬化中の気泡発生が多くなり、2,000Pa・sより大きいと、取り扱い性が悪くなる。粘度は、25℃にてスパイラル粘度計で測定できる。スパイラル粘度計としては、例えば、マルコム社のマルコム粘度計(タイプPC-10AA)が挙げられる。
 (A)組成物の製造方法は特に限定されず、上記(A)組成物に含まれる成分を、トリミックス、ツウィンミックス、プラネタリーミキサー(いずれも井上製作所(株)製混合機の登録商標)、ウルトラミキサー(みずほ工業(株)製混合機の登録商標)、ハイビスディスパーミックス(特殊機化工業(株)製混合機の登録商標)等の混合機にて、撹拌混合することで得ることができる。
[(B)成分]
 (B)成分は、ケイ素原子に結合したアルケニル基を、1分子中に2個以上有するオルガノポリシロキサンであり、1種単独で又は2種以上組み合わせて用いることができる。(B)成分は、(A-1)成分を調製する場合に用いる成分(A-1-1)と同一のものであり、好適な成分等も同じである。
 (B)成分の含有量は、(A)100質量部に対し、0.01~50質量部であり、0.05~20質量部が好ましく、0.1~10質量部がより好ましい。(B)の含有量が、0.01質量部より小さいと十分な硬化ができず、50質量部より大きいと、熱伝導率が小さくなる。
[(C)成分]
 (C)成分は、ケイ素原子に結合した水素原子を、1分子中に2個以上有するオルガノハイドロジェンポリシロキサンであり、1種単独で又は2種以上組み合わせて用いることができる。(C)成分は、(A-1)成分を調製する場合に用いる成分(A-1-2)と同一のものであり、好適な成分等も同じである。
 (C)成分の含有量は、前記(B)成分中のアルケニル基1個に対して、(C)成分中のケイ素原子に結合した水素原子が0.1~10個となる量であり、0.3~7個となる量が好ましく、0.5~5個となる量がより好ましい。上記値が0.1個より少ない場合には、十分な硬化ができず、10個より大きいと、得られる伝導性シリコーン組成物の硬度が高くなりすぎ、信頼性が悪くなる。
[(D)成分]
 (D)成分は、白金系触媒であり、1種単独で又は2種以上組み合わせて用いることができる。(D)成分は、(A-1)成分を調製する場合に用いる成分(A-1-3)と同一のものであり、好適な成分等も同じである。
 (D)成分の含有量は、有効量であればよく、所望の硬化速度により適宜増減すればよいが、(A)成分に対して、白金原子の質量換算で、通常、0.1~1,000ppm(質量)であり、1~300ppmが好ましい。この量が少なすぎると、付加反応が著しく遅くなったり、架橋しなくなったりするおそれがある。この配合量が多すぎると、硬化物の耐熱性が低下するだけでなく、白金は高価であることからコスト面でも不利となる。
[(E)成分]
 (E)成分は付加反応制御剤であり、1種単独で又は2種以上組み合わせて用いることができる。(E)成分は、(A-1)成分を調製する場合に用いる成分(A-1-4)と同一のものであり、好適な成分等も同じである。
 (E)成分の含有量は、上記(A)成分の使用量によっても異なり、一概にいえないが、ヒドロシリル化反応の進行を抑制することができる有効量であればよく、特に制限されない。例えば、(A)成分100質量部に対して、通常、0.001~5質量部程度とすることがよく、0.1~3質量部が好ましい。(E)成分の配合量が少なすぎれば、十分な可使時間を確保することができず、また、多すぎると本発明組成物の硬化性が低下する。なお、この(E)成分は、組成物中への分散性を向上させるため、必要に応じて、トルエン、キシレン、イソプロピルアルコール等の有機溶剤で希釈して使用することもできる。本発明の熱伝導性シリコーン組成物には、本発明の効果を損なわない範囲で、上記以外の任意成分を配合することもできる。
[熱伝導性シリコーン組成物の製造方法]
 熱伝導性シリコーン組成物の製造方法は、予め調製された(A)組成物と、(B)~(D)成分、必要に応じて(E)成分、その他の任意成分を混合することにより、得ることができる。混合装置としては、トリミックス、ツウィンミックス、プラネタリーミキサー(いずれも井上製作所(株)製混合機の登録商標)、ウルトラミキサー(みずほ工業(株)製混合機の登録商標)、ハイビスディスパーミックス(特殊機化工業(株)製混合機の登録商標)等の混合機等が挙げられる。
[熱伝導性シリコーン組成物]
 本発明の熱伝導性シリコーン組成物の25℃の粘度は、25℃における粘度が50~1,500Pa・sであり、グリース状である。粘度は100~700Pa・sが好ましく、100~500Pa・sがより好ましい。粘度が50Pa・sより小さいと、耐ズレ性が悪くなり、1,500Pa・sより大きいと取り扱い性が悪くなる。粘度は、25℃にてスパイラル粘度計で測定できる。スパイラル粘度計としては、例えば、マルコム社のマルコム粘度計(タイプPC-10AA)が挙げられる。
 本発明の熱伝導性シリコーン組成物の熱伝導率は、十分な放熱効果のため、2.0W/mK以上が好ましく、3.0W/mK以上がより好ましい。上限は特に限定されず、例えば、15.0W/mK以下から適宜選定される。なお、熱伝導率は、ISO 22007-2準拠のホットディスク法にて測定した値である。
 本発明の熱伝導性シリコーン組成物は硬化性であり、本発明の熱伝導性シリコーン組成物を加熱硬化する場合の硬化条件は、特に制限されるものでないが、通常80~200℃、好ましくは100~180℃で、30分~4時間、好ましくは30分~3時間である。
[硬化物]
 本発明の熱伝導性シリコーン組成物の硬化物のずり弾性率は、20,000~200,000Paが好ましい。硬化物のずり弾性率の測定方法はISO6721-10の規定に準拠したもので、詳細は実施例に記載の方法である。
 以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。測定方法を下記に示す。
〔平均粒径〕
 平均粒径測定は、日機装株式会社製の粒度分析計であるマイクロトラックMT3300EXにより測定した、体積基準の累積平均径である。
〔粘度〕
 粘度は、25℃にてマルコム社のマルコム粘度計(タイプPC-10AA)にて測定を行った。
〔動粘度〕
 動粘度は、25℃にてオストワルド粘度計にて測定した。
[(A-I~V)組成物]
 表1に示す組成で、各成分をプラネタリーミキサーに仕込み、以下の手順にて(A-I~V)成分を調製した。
 成分(A-1-1)、成分(A-2)及び(A-3)成分をプラネタリーミキサーに投入し、まず25℃にて10分間撹拌した。その後、(A-1-2)成分、(A-1-3)成分を投入してから、170℃に温度を上げ、そのまま2時間加熱混合して、(A-1-1)、(A-1-2)成分による付加反応(ハイドロシリル化反応)させ、シリコーンゲル架橋物を含む、(A-I~V)組成物を得た。
[(A-VI)成分:比較品]
 (A)においてシリコーンゲル架橋物を含有しないものとなる。(A-I)の製造方法において、白金触媒である(A-1-3)を含有しない以外は、(A-I)と同様の方法で、(A-VI)組成物を得た。
 即ち、表1の(A-1-1)[1]、(A-2-1)[1]、(A-3)[3]、(A-3)[4]成分をプラネタリーミキサーに投入し、まず室温にて10分間撹拌した。その後、(A-1-2)[1]成分を投入してから、170℃に温度を上げ、そのまま2時間加熱混合して、(A-VI)組成物を得た。(A-VI)組成物の粘度は150Pa・sであった。
Figure JPOXMLDOC01-appb-T000006
 使用した成分を下記に示す。なお、シロキサン単位の結合順序は下記に限定されるものではない(以下、同様)。
[(A-1-1)]
[1]両末端にビニル基を有する直鎖状の動粘度600mm2/sのジメチルポリシロキサン[2]両末端にビニル基を有する直鎖状の動粘度30,000mm2/sのジメチルポリシロキン
[(A-1-2)]
[1]
Figure JPOXMLDOC01-appb-C000007
 動粘度113mm2/s
[2]
Figure JPOXMLDOC01-appb-C000008
 動粘度25mm2/s
[(A-1-3)]
 白金-ジビニルテトラメチルジシロキサン錯体を上記(A-1-1)[1]と同じジメチルポリシロキサンに溶解した溶液(白金原子含有量:1質量%)
[(A-2-1)]
Figure JPOXMLDOC01-appb-C000009
 動粘度35mm2/s
[(A-2-2)]
 両末端にトリメチルシリル基を有する直鎖状の1,000mm2/sのジメチルポリシロキサン
(A-3)
[1]アルミナ粉末(酸化アルミニウム粉末)(平均粒径:140μm)
[2]アルミナ粉末(酸化アルミニウム粉末)(平均粒径:45μm)
[3]アルミニウム粉末(平均粒径:10μm)
[4]酸化亜鉛粉末(平均粒径:1.0μm)
 [実施例、比較例]
 表2,3に示す組成の各成分をプラネタリーミキサーに仕込み、以下の手順にて熱伝導性シリコーン組成物を調製した。以下工程はすべて室温にて行われた。
 即ち、(A)成分、(B)成分をプラネタリーミキサーに投入し、30分間撹拌した。その後、(E)成分を入れ10分間攪拌し、続いて(D)成分を投入してから、同様に10分間攪拌した。その後、(C)を投入し、真空ポンプにて脱気をかけながら15分間攪拌を行い、熱伝導性シリコーン組成物を得た。得られた熱伝導性シリコーン組成物について、下記評価を行った。結果を表2,3に併記する。
 使用した成分を下記に示す。
[(B)成分]
[I]両末端にビニル基を有する直鎖状の動粘度400mm2/sのジメチルポリシロキサン
[II]両末端にビニル基を有する直鎖状の動粘度30,000mm2/sのジメチルポリシロキサン((A-1-1)[2]と同じ)
[(C)成分]
[I]
Figure JPOXMLDOC01-appb-C000010
 動粘度28mm2/s
[II]((A-1-2)[1]と同じ)
Figure JPOXMLDOC01-appb-C000011
 動粘度113mm2/s
[(D)成分]
[I]白金-ジビニルテトラメチルジシロキサン錯体を上記(A-1-1)[1]と同じジメチルポリシロキサンに溶解した溶液(白金原子含有量:1質量%)(A-1-3)[1]と同じ)
[(E)成分]
[I]1-エチニル-1-シクロヘキサノール
〔熱伝導率〕
 熱伝導率は、京都電子工業株式会社製のTPS-2500Sにより、いずれも25℃において測定した。
〔ずり弾性率〕
 ISO6721-10の規定に準拠して、粘弾性測定装置(レオメトリック・サイエンティフィック社製、タイプRDAIII使用)を使用し、直径2.5cmの2枚のパラレルプレートを用いた(熱伝導性シリコーン組成物の厚みは2mmに設定)。測定は、まず室温から5℃/分で125℃まで昇温させ、125℃になってから2時間その温度を保持し熱伝導性シリコーン組成物を完全に硬化させた。その後、25℃まで冷却し、硬化後の熱伝導性シリコーン組成物のずり弾性率を測定した(周波数:1.0Rad/sec、ストレイン(変位):10%に設定)。
〔ボイド試験〕
 2枚のスライドガラスに本発明の熱伝導性シリコーン組成物を0.1g挟み込み、両端を市販のクリップで止め、1時間放置した。その後、そのテストピースを170℃のオーブンに投入して2時間加熱して硬化させた。2時間後、テストピースを取り出し、冷却後に熱伝導性シリコーン組成物に気泡が発生しているかどうかを目視観察した。気泡が発生していなければ「〇」、目視で見える気泡が発生していれば「×」とした。
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013

Claims (5)

  1.  (A)下記(A-1)、(A-2)及び(A-3)
    (A-1)シリコーンゲル架橋物、
    (A-2)脂肪族不飽和結合及びSiH基をそれぞれ含有しないシリコーンオイル、
    (A-3)熱伝導性充填剤
    を含み、25℃における粘度が100~2,000Pa・sの組成物:100質量部、
    (B)ケイ素原子に結合したアルケニル基を、1分子中に2個以上有するオルガノポリシロキサン:0.01~50質量部、
    (C)ケイ素原子に結合した水素原子を、1分子中に2個以上有するオルガノハイドロジェンポリシロキサン:前記(B)成分中のアルケニル基1個に対して、(C)成分中のケイ素原子に結合した水素原子が0.1~10個となる量、
    (D)白金系触媒:有効量、及び
    (E)付加反応制御剤:有効量
    を含有し、硬化性で25℃における粘度が50~1,500Pa・sである熱伝導性シリコーン組成物。
  2.  (A)成分が、
    (A-1)シリコーンゲル架橋物:0.01~10質量%、
    (A-2)下記一般式(1)
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1は、それぞれ独立に、炭素数1~6のアルキル基、R2は、炭素数1~18の脂肪族不飽和結合を有しない非置換又は置換の1価炭化水素基の群の中から選択される1種又は2種以上の基、aは5~120の整数である。)
    で表される片末端加水分解性オルガノポリシロキサン:1.0~20質量%
    (A-3)平均粒径0.1~150μmの熱伝導性充填剤:70~98.99質量%を含む、請求項1記載の熱伝導性シリコーン組成物。
  3.  (A-1)成分が、
    (A-1-1)ケイ素原子に結合したアルケニル基を、1分子中に2個以上有するオルガノポリシロキサンと、
    (A-1-2)ケイ素原子に結合した水素原子を、1分子中に2個以上有するオルガノハイドロジェンポリシロキサン:前記(A-1-1)成分中のアルケニル基1個に対して、(A-1-2)成分中のケイ素原子に結合した水素原子が0.1~20個となる量
    との付加反応物である請求項1又は2記載の熱伝導性シリコーン組成物。
  4.  (A-1-1)成分が、下記平均組成式(2)
     R3 b4 cSiO(4-b-c)/2     (2)
    (式中、R3は、アルケニル基を表し、R4は、脂肪族不飽和結合を有しない非置換又は置換の1価炭化水素基を表し、bは0.0001~0.2の数であり、cは1.7~2.2の数であり、但しb+cは1.9~2.4を満たす数である。)
    で表され、ケイ素原子に結合したアルケニル基を、1分子中に2個以上有するオルガノポリシロキサンである請求項3記載の熱伝導性シリコーン組成物。
  5.  (A-2)成分中、25℃における動粘度が10~500,000mm2/sである無官能性液状シリコーンオイルを、5~70質量%含有する、請求項1又は2記載の熱伝導性シリコーン組成物。
PCT/JP2023/029945 2022-09-02 2023-08-21 熱伝導性シリコーン組成物 WO2024048335A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022140213A JP2024035628A (ja) 2022-09-02 2022-09-02 熱伝導性シリコーン組成物
JP2022-140213 2022-09-02

Publications (1)

Publication Number Publication Date
WO2024048335A1 true WO2024048335A1 (ja) 2024-03-07

Family

ID=90099445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/029945 WO2024048335A1 (ja) 2022-09-02 2023-08-21 熱伝導性シリコーン組成物

Country Status (2)

Country Link
JP (1) JP2024035628A (ja)
WO (1) WO2024048335A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018177929A (ja) * 2017-04-11 2018-11-15 Jnc株式会社 インクジェット用インク、硬化膜、基板および電子部品
JP2018188559A (ja) * 2017-05-09 2018-11-29 信越化学工業株式会社 熱伝導性シリコーン組成物
WO2019138991A1 (ja) * 2018-01-15 2019-07-18 信越化学工業株式会社 シリコーン組成物
WO2020153217A1 (ja) * 2019-01-24 2020-07-30 信越化学工業株式会社 高熱伝導性シリコーン組成物及びその製造方法
JP2021098804A (ja) * 2019-12-23 2021-07-01 信越化学工業株式会社 熱伝導性シリコーン組成物
JP2021147431A (ja) * 2020-03-17 2021-09-27 信越化学工業株式会社 熱伝導性シリコーン組成物及びその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018177929A (ja) * 2017-04-11 2018-11-15 Jnc株式会社 インクジェット用インク、硬化膜、基板および電子部品
JP2018188559A (ja) * 2017-05-09 2018-11-29 信越化学工業株式会社 熱伝導性シリコーン組成物
WO2019138991A1 (ja) * 2018-01-15 2019-07-18 信越化学工業株式会社 シリコーン組成物
WO2020153217A1 (ja) * 2019-01-24 2020-07-30 信越化学工業株式会社 高熱伝導性シリコーン組成物及びその製造方法
JP2021098804A (ja) * 2019-12-23 2021-07-01 信越化学工業株式会社 熱伝導性シリコーン組成物
JP2021147431A (ja) * 2020-03-17 2021-09-27 信越化学工業株式会社 熱伝導性シリコーン組成物及びその製造方法

Also Published As

Publication number Publication date
JP2024035628A (ja) 2024-03-14

Similar Documents

Publication Publication Date Title
JP5233325B2 (ja) 熱伝導性硬化物及びその製造方法
JP5898139B2 (ja) 熱伝導性シリコーン組成物
JP4551074B2 (ja) 硬化性オルガノポリシロキサン組成物および半導体装置
JP5304588B2 (ja) 熱伝導性シリコーン組成物及びその硬化物
JP5472055B2 (ja) 熱伝導性シリコーングリース組成物
TWI822954B (zh) 導熱性矽氧組成物及其製造方法、以及導熱性矽氧硬化物
JP5843364B2 (ja) 熱伝導性組成物
JP2011178821A (ja) 熱伝導性シリコーン組成物及びその硬化物
JP5947267B2 (ja) シリコーン組成物及び熱伝導性シリコーン組成物の製造方法
TWI821238B (zh) 聚矽氧組成物
JP2020002236A (ja) 熱伝導性シリコーン組成物、熱伝導性シリコーンシート及びその製造方法
JP2015212318A (ja) 熱伝導性シリコーン組成物
JP2020128463A (ja) 熱伝導性粘着層を有する熱伝導性シリコーンゴムシート
WO2021225059A1 (ja) 熱伝導性シリコーン組成物及びその硬化物
TW201943768A (zh) 熱傳導性矽酮組成物及其硬化物
WO2016056286A1 (ja) 熱伝導性シリコーングリースを用いた半導体装置
JP7136065B2 (ja) 熱伝導性シリコーン組成物及び熱伝導性シリコーンシート
JP2007214224A (ja) 放熱性に優れる電子装置およびその製造方法
JP7467017B2 (ja) 熱伝導性シリコーン組成物及びその硬化物
JP7264850B2 (ja) 熱伝導性シリコーン組成物、その硬化物、及び放熱シート
WO2024048335A1 (ja) 熱伝導性シリコーン組成物
WO2021241097A1 (ja) 熱伝導性付加硬化型シリコーン組成物
EP4082970A1 (en) Thermally conductive silicone resin composition
TW201940596A (zh) 矽酮組成物
EP4333047A1 (en) Curable organopolysiloxane composition and semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23860098

Country of ref document: EP

Kind code of ref document: A1