WO2020153217A1 - 高熱伝導性シリコーン組成物及びその製造方法 - Google Patents

高熱伝導性シリコーン組成物及びその製造方法 Download PDF

Info

Publication number
WO2020153217A1
WO2020153217A1 PCT/JP2020/001236 JP2020001236W WO2020153217A1 WO 2020153217 A1 WO2020153217 A1 WO 2020153217A1 JP 2020001236 W JP2020001236 W JP 2020001236W WO 2020153217 A1 WO2020153217 A1 WO 2020153217A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
component
silicone composition
organopolysiloxane
parts
Prior art date
Application number
PCT/JP2020/001236
Other languages
English (en)
French (fr)
Inventor
也実 丸山
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to CN202080009770.6A priority Critical patent/CN113330074B/zh
Priority to EP20744719.4A priority patent/EP3916056B1/en
Priority to JP2020568099A priority patent/JP7111187B2/ja
Priority to KR1020217025812A priority patent/KR20210119434A/ko
Priority to US17/425,508 priority patent/US20210403785A1/en
Publication of WO2020153217A1 publication Critical patent/WO2020153217A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/50Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms by carbon linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/14Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • C08K2003/222Magnesia, i.e. magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • C08K2003/282Binary compounds of nitrogen with aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler

Definitions

  • the present invention relates to a high thermal conductivity silicone composition, and relates to a high thermal conductivity silicone composition excellent in high thermal conductivity, coating performance and deviation resistance, and a method for producing the same.
  • heat conductive materials used for the heat removal have been used. Proposed. In this case, there are two types of heat conductive materials: (1) a sheet-shaped material that is easy to handle, and (2) a paste-shaped material called a heat dissipation grease.
  • the sheet-like product of (1) has an advantage that it is not only easy to handle but also excellent in stability, but the contact heat resistance is inevitably large, so that the heat dissipation performance is inferior to that of the heat dissipation grease. It will be. In addition, since a certain degree of strength and hardness are required to maintain the sheet shape, it is not possible to absorb the tolerance generated between the element and the housing, and the stress may destroy the element. ..
  • the heat dissipation grease of (2) not only can it be applied to mass production of electric and electronic parts by using a coating device, etc., but also the contact heat resistance is low and the heat dissipation performance is excellent. There is. However, if the viscosity of the heat-dissipating grease is lowered to obtain good coating performance, the heat-dissipating grease will be displaced (pump-out phenomenon) due to cold heat shock of the element, etc. It sometimes caused a malfunction.
  • Patent Document 1 Japanese Patent Laid-Open No. 11-4995 in which bleeding of base oil is suppressed by combining with silane, liquid silicone, and heat having a constant thermal conductivity and a Mohs hardness of 6 or more.
  • a thermally conductive silicone composition excellent in thermal conductivity and dispensing property which is formed by combining a conductive inorganic filler and a thermally conductive inorganic filler having a constant thermal conductivity and a Mohs hardness of 5 or less
  • Patent Reference 2 JP-A No. 11-246884
  • a heat conductive grease composition comprising a combination of a specific base oil and metallic aluminum powder having an average particle size of 0.5 to 50 ⁇ m
  • Patent Document 3 JP 2000.
  • Patent Document 4 Japanese Patent Laid-Open No. 2000- 169873
  • Patent Document 5 JP-A-2003-301184
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a high thermal conductive silicone composition having excellent displacement resistance and coating properties, and a method for producing the same.
  • the inventors of the present invention have conducted extensive studies to achieve the above-mentioned target, and as a result, (A) an organopolysiloxane having an alkenyl group bonded to a silicon atom and (B) an organohydrogenpolysiloxane have a specific molar ratio (Si- H/Si-Vi) by combining the reaction product, (C) an inorganic filler having a specific average particle size, and (D) a thermally conductive inorganic filler having a specific average particle size in specific amounts.
  • the inventors have found that high thermal conductivity, good resistance to misalignment, and coatability can be obtained, and have completed the present invention.
  • the present invention provides the following high thermal conductivity silicone composition and a method for producing the same.
  • A an organopolysiloxane having an average of at least 0.1 alkenyl groups bonded to silicon atoms in one molecule, and
  • B hydrogen atoms (Si—H groups) bonded to silicon atoms in one molecule.
  • the organohydrogenpolysiloxane having at least one on average has a molar ratio of the alkenyl group bonded to the silicon atom in the component (A) and the Si-H group in the component (B) (Si-H/Si- Vi)
  • An organopolysiloxane which is a reaction product obtained by reacting at more than 8.0 and not more than 20.0, (C) an inorganic filler having an average particle size of 3 ⁇ m or less, selected from metal oxides and metal nitrides, and (D) a thermally conductive inorganic filler having an average particle size of 5 ⁇ m or more,
  • the thermal conductivity of the above silicone composition at 25° C. is 4 W/m ⁇ K or more in the hot disk method according to ISO 22007-2, and the absolute viscosity at 25° C. is 100 to 1,000 Pa ⁇ s.
  • Component (C) is 1 or 2 or more selected from aluminum oxide powder, zinc oxide powder, magnesium oxide, aluminum nitride and boron nitride powder having PZC (point of zero charge) of pH 6 or more 1 or 2
  • PZC point of zero charge
  • the component (E) is represented by the following general formula (1) -SiR 1 a (OR 2 ) 3-a (1)
  • R 1 is an unsubstituted or substituted monovalent hydrocarbon group
  • R 2 is an alkyl group, an alkoxyalkyl group or an acyl group
  • a is 0, 1 or 2.
  • the high thermal conductivity silicone composition according to 4 which is 50 to 600 parts by mass based on 100 parts by mass of the component (B). 6.
  • the above-mentioned components (A), (B), (C) and (D) and the platinum group metal-based curing catalyst are combined with the alkenyl group bonded to the silicon atom in the component (A) and the Si-in the component (B).
  • the present invention it is possible to provide a high thermal conductive silicone composition excellent in displacement resistance and coating properties and a method for producing the same.
  • This highly heat conductive silicone composition is suitable for removing heat from electric/electronic parts which generate heat during use.
  • the “high thermal conductivity silicone composition” may be referred to as a “silicone composition”.
  • the organopolysiloxane of the present invention comprises (A) an organopolysiloxane having an average of at least 0.1 alkenyl groups bonded to a silicon atom in one molecule, and (B) a hydrogen atom bonded to a silicon atom (Si- (H group), an organohydrogenpolysiloxane having an average of at least one H group per molecule, a mole of an alkenyl group bonded to a silicon atom in the component (A) and a Si—H group in the component (B). It is a reaction product (cured product) reacted at a ratio (Si-H/Si-Vi) of more than 8.0 and 20.0 or less.
  • (A), (B) component reaction product it may be simply referred to as “(A), (B) component reaction product”.
  • the alkenyl group-containing organopolysiloxane has an average of at least 0.1 alkenyl groups bonded to silicon atoms in one molecule, preferably at least 1 (usually 1 to 20) per molecule, more preferably 2 It has about 10 to 10. These may be used alone or in combination of two or more.
  • the molecular structure of the component (A) is not particularly limited, and examples thereof include a linear structure, a partially branched linear structure, a branched structure, a cyclic structure, and a branched cyclic structure. It is preferably a linear organopolysiloxane. Specifically, the molecular chain is mainly composed of repeating diorganosiloxane units, and both ends of the molecular chain are blocked with a triorganosiloxy group. The diorganopolysiloxane of is preferable.
  • the component (A) may be a polymer composed of a single siloxane unit or a copolymer composed of two or more kinds of siloxane units.
  • the position of the alkenyl group bonded to the silicon atom in the component (A) is not particularly limited, and the alkenyl group is either a silicon atom at the end of the molecular chain or a silicon atom at the non-end (in the middle of the molecular chain) of the molecular chain. May be bound only to or both of them may be bound.
  • Examples of the component (A) include the following average composition formula (2).
  • R 3 is independently an unsubstituted or substituted monovalent hydrocarbon group having no aliphatic unsaturated bond
  • R 4 is independently an alkenyl group
  • b is 0.5 to 2.5.
  • c is a positive number of 0.0001 to 0.2, and preferably 0.0005 to 0.1, provided that b+c is usually 0.
  • It is a positive number of 8 to 2.7, preferably 0.9 to 2.2.
  • an organopolysiloxane having at least 0.1 silicon-bonded alkenyl groups.
  • R 3 examples include an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms and containing no aliphatic unsaturated bond.
  • R 3 include alkyl groups such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, hexyl group, octyl group, decyl group; phenyl group, tolyl group, Aryl groups such as xylyl group and naphthyl group; cycloalkyl groups such as cyclopentyl group and cyclohexyl group; aralkyl groups such as benzyl group, 2-phenylethyl group, 3-phenylpropyl group; carbon atoms in these hydrocarbon groups Halogen atoms such as chlorine atoms, bromine atoms, iodine atoms, etc., in which some or all of the bonded hydrogen
  • a methyl group, a phenyl group, or a combination of both of them is preferable.
  • the component (A) in which R 3 is a methyl group, a phenyl group, or a combination of both is easy to synthesize and has good chemical stability.
  • R 3 is a methyl group, a phenyl group, or a combination of both of them and a 3,3,3-trifluoropropyl group. Is more preferable.
  • R 4 examples include alkenyl groups having 2 to 8 carbon atoms. Specific examples of R 4 include vinyl group, allyl group, 1-propenyl group, isopropenyl group, 1-butenyl group, isobutenyl group and hexenyl group. Of these, vinyl groups are preferred.
  • the component (A) in which R 4 is a vinyl group is easy to synthesize and has good chemical stability.
  • component (A) examples include dimethylsiloxy/methylvinylsiloxane copolymers capped with trimethylsiloxy groups at both molecular chain ends, methylvinylpolysiloxanes with trimethylsiloxy group capped at both molecular chain terminals, and dimethylsiloxy group capped dimethyl with both molecular chain ends.
  • Siloxane/methyl vinyl siloxane/methyl phenyl siloxane copolymer dimethylsiloxy group-capped dimethylsiloxane/methyl vinyl siloxane/diphenyl siloxane copolymer at both molecular chain ends, dimethyl polysiloxane dimethyl polysiloxane/molecular chain both ends blocked Dimethylvinylsiloxy group-blocked methylvinylpolysiloxane, dimethylvinylsiloxy group-blocked dimethylsiloxane/methylvinylsiloxane copolymer with both molecular chain terminals, dimethylvinylsiloxy group-blocked dimethylsiloxane/methylvinylsiloxane/methylphenylsiloxane block with both molecular chain terminals Polymer, dimethylvinylsiloxy group-capped dimethylsiloxane/methylvinylsiloxane/diphenylsiloxane copolymer, both
  • the viscosity of the component (A) at 25° C. is preferably 0.1 to 20,000 mPa ⁇ s, more preferably 10 to 1,000 mPa ⁇ s.
  • the viscosity is less than the above lower limit value, the heat conductive inorganic filler of the obtained silicone composition is likely to settle, and long-term storage stability may be insufficient.
  • the amount exceeds the above upper limit the resulting silicone composition is likely to be significantly lacking in fluidity, resulting in poor workability.
  • the absolute viscosity value is a value measured by a spiral viscometer such as Malcolm viscometer (type PC-10AA).
  • the component (B) is an organohydrogenpolysiloxane having an average of at least one hydrogen atom (Si—H group) bonded to a silicon atom in one molecule, and is used singly or in combination of two or more. be able to.
  • the component (B), an organohydrogenpolysiloxane is a curing agent for silicone compositions and is an average of 1 or more, preferably 2 or more (about 2 to 300), more preferably 3 or more (per molecule) in one molecule. It has hydrogen atoms (Si—H groups) bonded to silicon atoms (about 3 to 200).
  • the molecular structure of the component (B) is not particularly limited, and may be, for example, any of a linear, branched, cyclic, or three-dimensional network resinous material, and the following average composition formula (3). Can be used.
  • R 5 d H e SiO (4 -de) / 2 (3)
  • R 5 is an unsubstituted or substituted monovalent hydrocarbon group excluding an aliphatic unsaturated hydrocarbon group.
  • d is 1.0 to 3.0, preferably 0.5 to 2.5, (e is 0.05 to 2.0, preferably 0.01 to 1.0, and d+e is a positive number satisfying 0.5 to 3.0, preferably 0.8 to 2.5.)
  • R 5 is an alkyl group such as methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, isopropyl group, isobutyl group, tert-butyl group, cyclohexyl group; phenyl group, tolyl group, xylyl group An aryl group such as benzyl group, phenethyl group and the like; a halogenated alkyl group such as 3-chloropropyl group, 3,3,3-trifluoropropyl group and the like, excluding an aliphatic unsaturated bond, Examples thereof include unsubstituted or halogen-substituted monovalent hydrocarbon groups having 1 to 10 carbon atoms, preferably about 1 to 8 carbon atoms.
  • a methyl group, an ethyl group, a propyl group, a phenyl group and a 3,3,3-trifluoropropyl group
  • organohydrogenpolysiloxane as the component (B) include 1,1,3,3-tetramethyldisiloxane, 1,3,5,7-tetramethylcyclotetrasiloxane, and methylhydrogencyclo.
  • the viscosity of the component (B) at 25° C. is not particularly limited, but is preferably 0.5 to 1,000,000 mPa ⁇ s, more preferably 1 to 100,000 mPa ⁇ s.
  • the present invention provides a molar ratio (Si-H/Si-Vi) of an alkenyl group bonded to a silicon atom in the component (A) and a Si-H group in the component (B) of more than 8.0 and 20.0 or less. Since it contains the reaction product reacted in (2), the component (A) and the component (B) are blended in such a range.
  • the above molar ratio is preferably an amount of 10.0 to 15.0. When the above molar ratio is less than the lower limit value, depending on the conditions of other components, the organopolysiloxane composed of the reaction of the components (A) and (B) may be sufficient for the active sites of the component (C).
  • the elastic modulus does not increase at 150°C, and the storage elastic modulus ratio between 150°C and 25°C, G'(150°C)/G'(25°C), is less than 2
  • the silicone composition may be displaced during cycling, or the viscosity of the silicone composition may increase, resulting in a poorly coatable silicone composition.
  • the above molar ratio exceeds the upper limit, the active site of the component (C) is filled with the component (B) that has not reacted with the component (A), and the organopolycompound resulting from the reaction of the component (A) and the component (B).
  • the active site of (C) cannot be bridged by the Si—H group in siloxane, and the resulting silicone composition has a storage elastic modulus ratio of 150° C. to 25° C. G′(150° C.)/G′( 25° C.) is less than 2 and the silicone composition may be displaced during thermal cycling.
  • the molar ratio of (Si-H/Si-Vi) in the entire silicone composition is more than 8.0 and preferably 20.0 or less, more preferably 10.0 to 15.0.
  • the silicone composition preferably contains a platinum group metal-based curing catalyst that is an addition reaction catalyst for promoting the above reaction, and examples thereof include well-known catalysts used in the hydrosilylation reaction. These may be used alone or in combination of two or more. Of these, a hydrosilylation catalyst prepared by diluting a platinum complex such as chloroplatinic acid or chloroplatinate with an organopolysiloxane having a vinyl group such as an alkenyl group is preferable. This can be obtained by mixing a platinum complex and a vinyl group-containing organopolysiloxane. When the platinum complex contains a solvent such as toluene, the solvent may be removed after mixing.
  • a platinum group metal-based curing catalyst that is an addition reaction catalyst for promoting the above reaction, and examples thereof include well-known catalysts used in the hydrosilylation reaction. These may be used alone or in combination of two or more.
  • a hydrosilylation catalyst prepared by diluting a platinum complex such as chloroplatinic acid
  • a so-called catalytic amount may be used, and usually about 0.1 to 2,000 ppm in terms of mass of platinum group metal element based on the component (A).
  • the component (C) is an inorganic filler selected from metal oxides and metal nitrides and having an average particle size of 3 ⁇ m or less.
  • This inorganic filler is a component that has a large specific surface area and interacts with the reactants of the component (A) and component (B) in which Si—H groups are rich, thereby improving the storage elastic modulus at 150° C. Further, it is a component for adjusting the particle size distribution of the heat-conductive inorganic filler of the component (D) so as to be closest packed to increase the compounding amount and improve the heat conductivity of the silicone composition.
  • preferable materials include aluminum oxide powder, zinc oxide powder, magnesium oxide, aluminum nitride, and boron nitride powder. These are insulating materials, which can be industrially selected from a wide variety of particle sizes, are easily available in terms of resources, and are relatively inexpensive, and are therefore widely used as heat dissipation materials.
  • metal oxide --OH residue is present on the surface
  • metal nitride --NH 2 residue is present on the surface. Can be expected to work.
  • the component (C) is preferably an inorganic filler having a PZC (point of zero charge) of pH 6 or more.
  • PZC point of zero charge
  • pH 6 the number of sites interacting with Si—H on the surface of the inorganic filler is reduced, and the storage elastic modulus at 150° C. is not improved, which may cause deviation.
  • PZC is a pH at which the surface charges of metal oxides and metal nitrides become zero in an aqueous solution.
  • the inorganic filler of the component (C) used in the present invention it is possible to use an irregular shape, granulated powder, or a spherical shape, and among them, it is preferable to use a spherical inorganic filler from the viewpoint of filling property. ..
  • the average particle size of the component (C) is 3 ⁇ m or less, more preferably 0.5 to 2.5 ⁇ m. If the average particle size is too small, the fluidity of the silicone composition will decrease, and if the average particle size is too large, the number of sites that interact with the Si--H groups will decrease, resulting in a sufficient improvement in storage elastic modulus at 150°C. May not be seen.
  • the average particle diameter of the components (C) and (D) is measured by a laser diffraction/scattering method, for example, a volume cumulative average particle measured by Microtrac MT3300EX, which is a particle size distribution meter manufactured by Nikkiso Co., Ltd. It is a diameter value D 50 (or median diameter).
  • the content of the component (C) is preferably 50 to 5,000 parts by mass, and 100 to 4,000 parts by mass based on 100 parts by mass of the total of the components (A) and (B). More preferable.
  • the silicone composition obtained may have a deviation or a decrease in thermal conductivity.
  • the viscosity becomes high and the silicone composition becomes uniform. It can be difficult to apply.
  • the component (C) is preferably a mixture of the components (A) and (B) preheated and mixed.
  • the component (D) is a thermally conductive inorganic filler having an average particle size of 5 ⁇ m or more, and is made of aluminum, silver, copper, nickel, zinc oxide, aluminum oxide, silicon oxide, magnesium oxide, aluminum nitride, boron nitride, silicon nitride, Examples thereof include silicon carbide, diamond, graphite, metallic silicon, and the like, which may be used alone or in combination of two or more. Note that zinc oxide, aluminum oxide, magnesium oxide, aluminum nitride, and boron nitride overlap with the above-mentioned component (C), but have different average particle sizes.
  • the average particle size of the component (D) is 5 ⁇ m or more, preferably 5 to 200 ⁇ m, more preferably 6 to 100 ⁇ m. If the average particle size is less than 5 ⁇ m, the silicone composition becomes non-uniform and the deviation resistance deteriorates. If the average particle size is too large, the silicone composition may become non-uniform and the resistance to misalignment may deteriorate.
  • the content of the component (D) in the silicone composition is preferably 100 to 8,000 parts by mass, and more preferably 200 to 7,000 parts by mass, based on 100 parts by mass of the total of the components (A) and (B). More preferable.
  • the total content of the component (C) and the component (D) is 3,500 to 12,000 parts by mass based on 100 parts by mass of the total of the components (A) and (B), 4,000 to 10,000 parts by mass is preferable, more than 5,000 parts by mass and 9,000 parts by mass or less is more preferable, and more than 6,000 parts by mass and 9,000 parts by mass or less is further preferable. If the total content is less than the lower limit value, the thermal conductivity of 4 W/mK cannot be achieved, and if it exceeds the upper limit, sufficient coating performance cannot be obtained.
  • the mass ratio of (C):(D) is preferably 45:55 to 5:95.
  • the silicone composition of the present invention can be blended with (E) a hydrolyzable organopolysiloxane, the (E) component functions as a wetter, and the (C) component and the (D) component are (E) hydrolyzed. It becomes a surface-treated inorganic filler surface-treated with degradable organopolysiloxane, and maintains the fluidity of the silicone composition even when the silicone composition is highly filled with the components (C) and (D), and is excellent in this composition. It is possible to provide various handling properties.
  • R 1 is an unsubstituted or substituted monovalent hydrocarbon group
  • R 2 is an alkyl group, an alkoxyalkyl group or an acyl group
  • a is 0, 1 or 2.
  • An organopolysiloxane containing at least one silyl group in each molecule and having a viscosity at 25° C. of 0.1 to 30,000 mPa ⁇ s can be mentioned.
  • component (E) examples include organopolysiloxanes represented by the following general formula (4).
  • R 1 is independently an unsubstituted or substituted monovalent hydrocarbon group
  • R 2 is independently an alkyl group, an alkoxyalkyl group or an acyl group
  • m is an integer of 2 to 100
  • a is 0, 1 or 2.
  • R 1's each independently represents an unsubstituted or substituted monovalent hydrocarbon group, which preferably does not contain an aliphatic unsaturated group, and preferably has 1 to 10 carbon atoms, preferably 1 to 6 carbon atoms. More preferably, 1 to 3 is even more preferable. Examples thereof include a linear alkyl group, a branched alkyl group, a cyclic alkyl group, an aryl group, an aralkyl group, and a halogenated alkyl group.
  • Examples of the linear alkyl group include a methyl group, an ethyl group, a propyl group, a hexyl group, an octyl group, and a decyl group.
  • Examples of the branched chain alkyl group include an isopropyl group, an isobutyl group, a tert-butyl group, and a 2-ethylhexyl group.
  • Examples of the cyclic alkyl group include a cyclopentyl group and a cyclohexyl group.
  • Examples of the aryl group include a phenyl group and a tolyl group.
  • Examples of the aralkyl group include a 2-phenylethyl group and a 2-methyl-2-phenylethyl group.
  • Examples of the halogenated alkyl group include a 3,3,3-trifluoropropyl group, a 2-(nonafluorobutyl)ethyl group, and a 2-(heptadecafluorooctyl)ethyl group. Of these, a methyl group and a phenyl group are preferable as R 1 .
  • R 2's independently of each other are an alkyl group, an alkoxyalkyl group or an acyl group.
  • the number of carbon atoms is preferably 1-8.
  • the alkyl group include a straight-chain alkyl group, a branched-chain alkyl group, and a cyclic alkyl group, and specifically include the groups exemplified for R 1 .
  • the alkoxyalkyl group include a methoxyethyl group and a methoxypropyl group.
  • the acyl group include an acetyl group and an octanoyl group. Among them, as R 2 , an alkyl group is preferable, and a methyl group and an ethyl group are more preferable.
  • m is 2 to 100, preferably 5 to 50.
  • a is 0, 1 or 2, and is preferably 0.
  • preferred component (E) include the following.
  • the blending amount thereof is preferably 50 to 600 parts by mass, more preferably 60 to 500 parts by mass, relative to 100 parts by mass of the total of the components (A) and (B). If the amount is less than 50 parts by mass, the viscosity of the silicone composition may increase and ejection may become impossible. On the other hand, if the amount exceeds 600 parts by mass, the viscosity may be too low and the deviation resistance may be deteriorated.
  • the silicone composition of the present invention can be blended with any component other than the above components within a range that does not impair the effects of the present invention.
  • examples thereof include fillers, and one kind alone or a suitable combination of two or more kinds. You may use it.
  • clay such as wollastonite, talc, calcium sulfate, magnesium carbonate, kaolin; copper carbonate such as aluminum hydroxide, magnesium hydroxide, graphite, barite, malachite; nickel carbonate such as zalakite; barium carbonate such as witherite; Strontium carbonates such as strontianite; silicates such as forsterite, sillimanite, mullite, pyrophyllite, kaolinite, vermiculite; non-reinforcing fillers such as diatomaceous earth; organosilicon compounds on the surface of these fillers Examples include processed products.
  • the content of the filler in the silicone composition is preferably 100 parts by mass or less based on 100 parts by mass of the total of the components (A) and (B).
  • An adhesion-imparting agent may be added to improve the adhesiveness of the silicone composition.
  • the adhesion-imparting agent can be used alone or in combination of two or more kinds.
  • Specific examples of the adhesion-imparting agent include alkylvinylalkenyl dialkoxysilanes such as methylvinyldimethoxysilane, ethylvinyldimethoxysilane, methylvinyldiethoxysilane, and ethylvinyldiethoxysilane; methylvinyldioximesilane, ethylvinyldioximesilane.
  • Alkylalkenyl diacetoxy silanes such as; Alkenyl alkenyl diacetoxy silanes such as methyl vinyl diacetoxy silane and ethyl vinyl diacetoxy silane; Alkyl alkenyl dihydroxy silanes such as methyl vinyl dihydroxy silane and ethyl vinyl dihydroxy silane; Methyl trimethoxy silane and vinyl tri Methoxysilane, allyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, N-(2-aminoethyl)-3-aminopropyltrimethoxy Organotrialkoxysilanes such as silane, bis(trimethoxysilyl)propane, bis(trimethoxysilyl)hexane; triallyl isocyanurate, diallyl(3-trimeth
  • the content of the adhesion-imparting agent in the silicone composition is not particularly limited, but is 0.01 to 10 parts by mass based on 100 parts by mass of the total of the components (A) and (B). Is preferred.
  • the silicone composition of the present invention contains a reaction product (cured product) of the components (A) and (B), and as described above, the components (A), (B), (C) and (D). And a cured product obtained by curing a composition containing the component (E) and a platinum group metal-based curing catalyst, if necessary.
  • the absolute viscosity of the silicone composition at 25° C. is 100 to 1,000 Pa ⁇ s, preferably 150 to 800 Pa ⁇ s. If the absolute viscosity is less than 100 Pa ⁇ s, dripping of the silicone composition during coating will occur and the coating property will deteriorate. Further, the components (C) and (D) may settle during long-term storage.
  • a silicone composition having an absolute viscosity within the above range can be obtained by adjusting the degree of crosslinking between the components (A) and (B) and the amounts of the components (C) and (D).
  • the thermal conductivity of the high thermal conductivity silicone composition of the present invention is 4 W/m ⁇ K or higher, more preferably 5 W/m ⁇ K or higher.
  • the upper limit is not particularly limited, but can be 10 W/m ⁇ K or less. Since it has such excellent thermal conductivity, it is suitable for heat dissipation.
  • the storage elastic modulus is measured under the following rheometer measurement conditions, it is preferable that the ratio of G′(150° C.)/G′(25° C.) becomes large from the viewpoint of preventing deviation, and specifically, from 2 to 20 is preferable and 2 to 6 is more preferable.
  • HAAKE MARS made by Thermo Fisher Scientific
  • Measurement jig Parallel plate P20 Ti Measurement gap: 1.00 mm (liquid volume: 0.40 mL) Measurement mode: Fixed deformation-frequency dependence measurement Deformation condition: CD-Auto Strain 1.00 ⁇ 0.05% Measurement frequency: 0.1-10Hz Measurement temperature: 25°C ⁇ 1°C, after raising the temperature to 150°C at 15°C/min, 150°C ⁇ 1°C
  • the present invention will be specifically described by showing Examples and Comparative Examples, but the present invention is not limited to the following Examples.
  • the viscosities of the component (A), the component (B), and the silicone composition are values at 25° C. measured by the Malcolm viscometer shown below.
  • reaction mixture was suction-filtered, the filtrate was evaporated under reduced pressure, ethanol and excess divinyltetramethyldisiloxane were substantially removed, and then diluted with toluene to a total amount of 600 g (platinum: 0.5% by mass contained). ).
  • A Component (A-1) Dimethylpolysiloxane capped with dimethylvinylsiloxy groups at both molecular chain terminals having a viscosity of 600 mPas (vinyl group content: 0.015 mol/100 g)
  • A-2) Copolymer of dimethylsiloxy group/vinyldimethylsiloxy group-blocked dimethylsiloxane/diphenylsiloxane copolymer having a viscosity of 700 mPa ⁇ s (vinyl group content: 0.0049 mol/100 g)
  • Component (B-1) Organohydrogenpolysiloxane represented by the following formula (In the formula, Me is a methyl group, and the bonding order of each siloxane unit is not limited to the above.), (Si—H group content: 0.0055 mol/g)
  • C Inorganic filler (C-1) Zinc oxide type 2 (JIS standard, average particle size 1 ⁇ m): PZC 9.5 (C-2) Aluminum oxide powder (average particle size 1 ⁇ m): PZC 8.5 (C-3) Magnesium oxide powder (average particle size 1 ⁇ m): PZC 11.5 (C-4) Aluminum nitride powder (average particle size 1 ⁇ m): PZC 9.5 (C-5) Silicon carbide (average particle size 1 ⁇ m): PZC 4.0 (comparative product)
  • D Thermally conductive inorganic filler
  • D-1 Aluminum oxide powder (average particle size 10 ⁇ m)
  • D-2) Aluminum oxide powder (average particle size 45 ⁇ m)
  • a high thermal conductive silicone composition having the composition shown in the table was produced by the following method.
  • [Examples, Comparative Examples] Production of heat conductive silicone composition (A), (B), (C), (D), (E) component and hydrosilylation catalyst are blended at room temperature and mixed for 5 to 10 minutes using a planetary mixer. (The component (C) was used as a mixture in which the components (A) and (B) were preheated and mixed.). The resulting mixture was heated to 160° C. and mixed under normal pressure for 180 minutes and under reduced pressure for 60 minutes.
  • the characteristics of the heat conductive silicone composition were measured by the following methods. [Measurement of thermal conductivity] The measurement was performed at 25° C. using a hot disk method thermophysical property measuring device TPA-501 manufactured by Kyoto Electronics Manufacturing Co., Ltd.
  • Viscosity measurement The viscosity shows a value at 25° C., and the measurement was performed using a Malcolm viscometer (type PC-10AA). In the coating process of the silicone composition, it is considered that the viscosity of 1,000 Pa ⁇ s or more cannot be practically used.
  • Tables 1 and 2 show that the high thermal conductivity silicone composition of the present invention not only excels in thermal conductivity but also does not cause misalignment during cooling/heating cycles even when stored for a long period of time. It shows that it is excellent in removing heat from the electric and electronic parts that are generated.
  • the highly thermally conductive silicone composition of the present invention is excellent not only in thermal conductivity, but also in resistance to misalignment and coating properties, and thus is suitable for heat removal from electric/electronic parts that generate heat during use. is there.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

(A)ケイ素原子に結合したアルケニル基を有するオルガノポリシロキサンと、(B)ケイ素原子に結合した水素原子(Si-H基)を有するオルガノハイドロジェンポリシロキサンとを、(Si-H/Si-Vi)8.0を超え20.0以下で反応させた反応物であるオルガノポリシロキサン、 (C)金属酸化物及び金属窒化物から選ばれる平均粒径3μm以下の無機充填材、及び (D)平均粒径5μm以上の熱伝導性無機充填材、 を含有するシリコーン組成物であって、(C)成分と(D)成分の合計量が、(A)成分と(B)成分との合計100質量部に対して3,500~12,000質量部であり、該組成物の熱伝導率が4W/m・K以上であり、絶対粘度が100~1,000Pa・sであるシリコーン組成物とすることで、耐ズレ性と塗布性に優れた高熱伝導性シリコーン組成物及びその製造方法を提供することを目的とする。

Description

高熱伝導性シリコーン組成物及びその製造方法
 本発明は、高熱伝導性シリコーン組成物に関し、高熱伝導性及び塗布性能と耐ズレ性に優れた高熱伝導性シリコーン組成物及びその製造方法に関する。
 一般に、電気・電子部品は使用中に熱が発生するので、これらの部品を適切に動作させるためには除熱が必要であり、従来、その除熱用に使用する種々の熱伝導性材料が提案されている。この場合の熱伝導性材料としては、(1)取扱いが容易なシート状のものと、(2)放熱用グリースと称されるペースト状のものという2種類の形態のものがある。
 (1)のシート状のものは取扱いが容易であるだけでなく、安定性にも優れるという利点がある一方、接触熱抵抗が必然的に大きくなるため、放熱性能は放熱用グリースの場合より劣ることになる。また、シート状を保つためにはある程度の強度及び硬さが必要となるため、素子と筐体の間に生じる公差を吸収することができず、それらの応力によって素子が破壊されることもある。
 これに対し、(2)の放熱用グリースの場合には、塗布装置等を用いることによって電気・電子部品の大量生産にも適応できるだけでなく、接触熱抵抗が低いので放熱性能にも優れるという利点がある。しかしながら、良好な塗布性能を得るために放熱用グリースの粘度を低くした場合には、素子の冷熱衝撃等によって放熱グリースがずれ(ポンプアウト現象)、除熱が十分でなくなり、その結果、素子が誤作動を起こすことがあった。
 そこで、特定のオルガノポリシロキサンと、酸化亜鉛、アルミナ、窒化アルミニウム、窒化ホウ素、炭化ケイ素等の増稠剤、及び1分子中にケイ素原子に直結した水酸基を少なくとも1個有するオルガノポリシロキサン、ならびにアルコキシシランとを組み合わせてベースオイルのブリードを抑えた、グリース状シリコーン組成物(特許文献1:特開平11-4995号公報)、液状シリコーンと、一定の熱伝導率を有しモース硬度が6以上の熱伝導性無機充填材、及び一定の熱伝導率を有し、モース硬度が5以下の熱伝導性無機充填材を組み合わせてなる、熱伝導性及びディスペンス性に優れた熱伝導性シリコーン組成物(特許文献2:特開平11-246884号公報)、特定の基油と平均粒径が0.5~50μmの金属アルミニウム粉体とを組み合わせてなる熱伝導性グリース組成物(特許文献3:特開2000-63873号公報)、平均粒径の異なる2種の窒化アルミニウム粉末を混合して使用することにより、シリコーングリース中の窒化アルミニウムの充填率を高めたシリコーン組成物(特許文献4:特開2000-169873号公報)、オイルの粘性を高めてブリードアウトを抑制したシリコーン組成物(特許文献5:特開2003-301184号公報)等の、さらに高性能な熱伝導性シリコーン組成物が提案されてきた。
特開平11-4995号公報 特開平11-246884号公報 特開2000-63873号公報 特開2000-169873号公報 特開2003-301184号公報
 本発明は上記事情に鑑みなされたもので、耐ズレ性と塗布性に優れた高熱伝導性シリコーン組成物及びその製造方法を提供することを目的とする。
 本発明者は、上記目標を達成するため鋭意検討した結果、(A)ケイ素原子に結合したアルケニル基を有するオルガノポリシロキサンと、(B)オルガノハイドロジェンポリシロキサンとを、特定モル比(Si-H/Si-Vi)で反応させた反応物と、(C)特定の平均粒径の無機充填材、及び(D)特定の平均粒径の熱伝導性無機充填材を特定量で組み合わせることにより、高熱伝導性及び良好な耐ズレ性と塗布性を得ることができることを見出し、本発明をなすに至ったものである。
 従って、本発明は、下記高熱伝導性シリコーン組成物及びその製造方法を提供する。
1.(A)ケイ素原子に結合したアルケニル基を1分子中に平均して少なくとも0.1個有するオルガノポリシロキサンと、(B)ケイ素原子に結合した水素原子(Si-H基)を1分子中に平均して少なくとも1個有するオルガノハイドロジェンポリシロキサンとを、(A)成分中のケイ素原子に結合したアルケニル基と(B)成分中のSi-H基とのモル比(Si-H/Si-Vi)8.0を超え20.0以下で反応させた反応物であるオルガノポリシロキサン、
(C)金属酸化物及び金属窒化物から選ばれ、平均粒径3μm以下の無機充填材、及び
(D)平均粒径5μm以上の熱伝導性無機充填材、
を含有するシリコーン組成物であって、(C)成分と(D)成分の合計量が、(A)成分と(B)成分との合計100質量部に対して3,500~12,000質量部であり、上記シリコーン組成物の25℃における熱伝導率がISO 22007-2準拠のホットディスク法において、4W/m・K以上であり、25℃における絶対粘度が100~1,000Pa・sである高熱伝導性シリコーン組成物。
2.下記の条件のレオメータ測定、
 測定治具:パラレル・プレート P20 Ti
 測定ギャップ:1.00mm(液量:0.40mL)
 測定モード:固定変形量-周波数依存性測定
 変形条件:CD-Auto Strain 1.00±0.05%
 測定周波数:0.1~10Hz
 測定温度:25℃±1℃、15℃/分で150℃に昇温後、150℃±1℃
で貯蔵弾性率を測定した場合、G’(150℃)/G’(25℃)が2~20である1記載の高熱伝導性シリコーン組成物。
3.(C)成分が、PZC(ポイントオブゼロチャージ)がpH6以上である、酸化アルミニウム粉末、酸化亜鉛粉末、酸化マグネシウム、窒化アルミニウム及び窒化ホウ素粉末から選ばれる1種又は2種以上である1又は2記載の高熱伝導性シリコーン組成物。
4.さらに、(E)加水分解性オルガノポリシロキサンを含有する1~3のいずれかに記載の高熱伝導性シリコーン組成物。
5.(E)成分が、下記一般式(1)
-SiR1 a(OR23-a      (1)
(式中、R1は非置換又は置換の1価炭化水素基であり、R2はアルキル基、アルコキシアルキル基又はアシル基であり、aは0、1又は2である。)
で表されるシリル基を1分子中に少なくとも1個含有し、25℃での粘度が0.1~30,000mPa・sであるオルガノポリシロキサンであって、その配合量が、(A)成分と(B)成分との合計100質量部に対して50~600質量部である4記載の高熱伝導性シリコーン組成物。
6.上記(A)、(B)、(C)及び(D)成分と、白金族金属系硬化触媒とを、(A)成分中のケイ素原子に結合したアルケニル基と(B)成分中のSi-H基とのモル比(Si-H/Si-Vi)が8.0を超え20.0以下となるように混合する工程と、得られた混合物を100℃~180℃で30分~4時間加熱して、(A)成分と(B)成分とを反応させる工程を含む、1~3のいずれかに記載の高熱伝導性シリコーン組成物を製造する製造方法。
 本発明によれば、耐ズレ性と塗布性にも優れた高熱伝導性シリコーン組成物及びその製造方法を提供することができる。この高熱伝導性シリコーン組成物は、使用中に熱が発生する電気・電子部品からの除熱に好適である。以下、「高熱伝導性シリコーン組成物」を「シリコーン組成物」と記載する場合がある。
 以下、本発明について詳細に説明する。
[オルガノポリシロキサン]
 本発明のオルガノポリシロキサンは、(A)ケイ素原子に結合したアルケニル基を1分子中に平均して少なくとも0.1個有するオルガノポリシロキサンと、(B)ケイ素原子に結合した水素原子(Si-H基)を1分子中に平均して少なくとも1個有するオルガノハイドロジェンポリシロキサンとを、(A)成分中のケイ素原子に結合したアルケニル基と(B)成分中のSi-H基とのモル比(Si-H/Si-Vi)8.0を超え20.0以下で反応させた反応物(硬化物)である。以下、単に「(A),(B)成分反応物」と記載する場合がある。
[(A)成分]
 アルケニル基含有オルガノポリシロキサンは、ケイ素原子に結合したアルケニル基を1分子中に平均して少なくとも0.1個、好ましくはそれぞれの分子につき少なくとも1個(通常1~20個)、より好ましくは2~10個程度有するものである。これらは1種単独又は2種以上を適宜組み合わせて用いることができる。
 (A)成分の分子構造は特に限定されず、例えば、直鎖状構造、一部分岐を有する直鎖状構造、分岐鎖状構造、環状構造、分岐を有する環状構造が挙げられるが、通常、実質的に直鎖状のオルガノポリシロキサンであることが好ましく、具体的には、分子鎖が主にジオルガノシロキサン単位の繰り返しからなり、分子鎖両末端がトリオルガノシロキシ基で封鎖された直鎖状のジオルガノポリシロキサンであることが好ましい。また、(A)成分は、単一のシロキサン単位からなる重合体であっても、2種以上のシロキサン単位からなる共重合体であってもよい。さらに、(A)成分中のケイ素原子に結合したアルケニル基の位置は特に限定されず、このアルケニル基は分子鎖末端のケイ素原子及び分子鎖非末端(分子鎖途中)のケイ素原子のどちらか一方にのみ結合していてもよいし、これら両者に結合していてもよい。
 (A)成分としては、例えば、下記平均組成式(2)
 R3 b4 cSiO(4-b-c)/2      (2)
(式中、R3は独立に脂肪族不飽和結合を含有しない非置換又は置換の1価炭化水素基であり、R4は独立にアルケニル基を表し、bは、0.5~2.5、好ましくは0.8~2.2の正数であり、cは、0.0001~0.2、好ましくは0.0005~0.1の正数である。但し、b+cは、通常0.8~2.7、好ましくは0.9~2.2の正数である。)
で表され、ケイ素原子に結合したアルケニル基を少なくとも0.1個有するオルガノポリシロキサンが挙げられる。
 上記R3としては、例えば、炭素数1~10の脂肪族不飽和結合を含有しない非置換又は置換の1価炭化水素基が挙げられる。R3の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ヘキシル基、オクチル基、デシル基等のアルキル基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;シクロペンチル基、シクロヘキシル基等のシクロアルキル基;ベンジル基、2-フェニルエチル基、3-フェニルプロピル基等のアラルキル基;これらの炭化水素基中の炭素原子に結合した水素原子の一部又は全てが塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;シアノ基等によって置換された基、例えば、クロロメチル基、2-ブロモエチル基、3,3,3-トリフルオロプロピル基、シアノエチル基等が挙げられる。
 これらの中でも、メチル基、フェニル基又はこれら両者の組み合わせが好ましい。R3がメチル基、フェニル基又はこれら両者の組み合わせである(A)成分は、合成が容易であり、化学的安定性が良好である。また、(A)成分として特に耐溶剤性が良好なオルガノポリシロキサンを用いる場合には、R3はメチル基、フェニル基又はこれら両者の組み合わせと3,3,3-トリフルオロプロピル基との組み合わせであることがさらに好ましい。
 上記R4としては、例えば、炭素数2~8のアルケニル基が挙げられる。R4の具体例としては、ビニル基、アリル基、1-プロぺニル基、イソプロぺニル基、1-ブテニル基、イソブテニル基、ヘキセニル基等が挙げられる。これらの中でもビニル基が好ましい。R4がビニル基である(A)成分は、合成が容易であり、化学的安定性が良好である。
 (A)成分の具体例としては、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖メチルビニルポリシロキサン、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン・ジフェニルシロキサン共重合体、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端ジメチルビニルシロキシ基封鎖メチルビニルポリシロキサン、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン・ジフェニルシロキサン共重合体、分子鎖両末端ジビニルメチルシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端トリビニルシロキシ基封鎖ジメチルポリシロキサン、分子鎖末端トリメチルシロキシ基・ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン、分子鎖末端トリメチルシロキシ基・ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、分子鎖末端トリメチルシロキシ基・ジメチルビニルシロキシ基封鎖ジメチルシロキサン・ジフェニルシロキサン共重合体、分子鎖末端トリメチルシロキシ基・ジメチルビニルシロキシ基封鎖ジメチルシロキサン・ジフェニルシロキサン・メチルビニルシロキサン共重合体等が挙げられる。これらのオルガノポリシロキサンは、1種単独で使用しても、2種以上を組み合わせて使用してもよく、また重合度の異なる1種又は2種以上を併用してもよい。
 (A)成分の25℃における粘度は、0.1~20,000mPa・sが好ましく、10~1,000mPa・sがより好ましい。粘度が上記の下限値未満であると、得られるシリコーン組成物の熱伝導性無機充填材が沈降しやすくなり、長期の保存性に欠けるおそれがある。また、上記の上限を超えると、得られるシリコーン組成物は著しく流動性を欠いたものとなりやすく、作業性が劣ったものとなるおそれがある。なお、本発明において、絶対粘度値は、マルコム粘度計(タイプPC-10AA)等のスパイラル粘度計による測定値である。
[(B)成分]
 (B)成分はケイ素原子に結合した水素原子(Si-H基)を1分子中に平均して少なくとも1個有するオルガノハイドロジェンポリシロキサンであり、1種単独又は2種以上を適宜組み合わせて用いることができる。(B)成分のオルガノハイドロジェンポリシロキサンは、シリコーン組成物の硬化剤であり、1分子中に平均1個以上、好ましくは2個以上(2~300個程度)、より好ましくは3個以上(3~200個程度)のケイ素原子に結合した水素原子(Si-H基)を有するものである。(B)成分の分子構造は特に限定されず、例えば、直鎖状、分岐状、環状、又は三次元網状構造の樹脂状物のいずれのものであってもよく、下記平均組成式(3)で示されるものを用いることができる。
 R5 deSiO(4-d-e)/2      (3)
(式中、R5は脂肪族不飽和炭化水素基を除く、非置換又は置換の1価炭化水素基である。dは1.0~3.0、好ましくは0.5~2.5、eは0.05~2.0、好ましくは0.01~1.0であり、かつd+eは0.5~3.0、好ましくは0.8~2.5を満たす正数である。)
 上記R5としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、イソプロピル基、イソブチル基、tert-ブチル基、シクロヘキシル基等のアルキル基;フェニル基、トリル基、キシリル基等のアリール基;ベンジル基、フェネチル基等のアラルキル基;3-クロロプロピル基、3,3,3-トリフルオロプロピル基等のハロゲン化アルキル基等の、脂肪族不飽和結合を除く、通常、炭素数1~10、好ましくは1~8程度の非置換又はハロゲン置換の1価炭化水素基等が例示される。メチル基、エチル基、プロピル基、フェニル基、3,3,3-トリフルオロプロピル基が好ましく、メチル基がより好ましい。
 (B)成分のオルガノハイドロジェンポリシロキサンとして、具体的には、例えば、1,1,3,3-テトラメチルジシロキサン、1,3,5,7-テトラメチルシクロテトラシロキサン、メチルハイドロジェンシクロポリシロキサン、メチルハイドロジェンシロキサン・ジメチルシロキサン環状共重合体、トリス(ジメチルハイドロジェンシロキシ)メチルシラン、トリス(ジメチルハイドロジェンシロキシ)フェニルシラン、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖メチルハイドロジェンポリシロキサン、分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・ジフェニルシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・ジフェニルシロキサン・メチルハイドロジェンシロキサン共重合体、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、H(CH32SiO1/2単位とSiO2単位との共重合体、H(CH32SiO1/2単位と(CH33SiO1/2単位とSiO2単位との共重合体、さらに、これらのオルガノハイドロジェンポリシロキサンの2種以上の混合物等が挙げられる。
 (B)成分の25℃における粘度は特に限定されないが、0.5~1,000,000mPa・sが好ましく、1~100,000mPa・sがより好ましい。
 本発明は、(A)成分中のケイ素原子に結合したアルケニル基と(B)成分中のSi-H基とのモル比(Si-H/Si-Vi)8.0を超え20.0以下で反応させた反応物を含むものであるため、そのような範囲となるように、(A)成分と(B)成分とを配合する。上記モル比は、10.0~15.0とする量が好ましい。上記モル比が下限値未満であると、他の成分の条件によっては、(C)成分の活性サイトに対して、(A)成分と(B)成分の反応からなるオルガノポリシロキサン中に十分なSi-H残基がないため、150℃で高弾性率化せず、150℃と25℃の貯蔵弾性率比であるG’(150℃)/G’(25℃)が2未満となり、熱サイクル時にシリコーン組成物のズレが発生したり、シリコーン組成物の粘度が高くなり、塗布性が劣るシリコーン組成物になるおそれがある。一方、上記モル比が上限を超えると、(C)成分の活性サイトを(A)と未反応の(B)成分で埋めてしまい、(A)成分と(B)成分の反応からなるオルガノポリシロキサン中のSi-H基で(C)の活性サイトをブリッジすることができなくなり、得られるシリコーン組成物の150℃と25℃の貯蔵弾性率比であるG’(150℃)/G’(25℃)が2未満となり、熱サイクル時にシリコーン組成物のズレが発生するおそれがある。なお、シリコーン組成物全体の(Si-H/Si-Vi)のモル比は、8.0を超え20.0以下が好ましく、10.0~15.0がより好ましい。
 シリコーン組成物には、上記反応を促進するための付加反応触媒である白金族金属系硬化触媒を含有することが好ましく、ヒドロシリル化反応に用いられる触媒として周知の触媒が挙げられる。これらは1種単独又は2種以上を適宜組み合わせて用いることができる。中でも、塩化白金酸又は塩化白金酸塩等の白金錯体を、アルケニル基等のビニル基を有するオルガノポリシロキサンで希釈したヒドロシリル化触媒が好ましい。これは、白金錯体と、ビニル基を有するオルガノポリシロキサンとを混合することで得ることができる。白金錯体中にトルエン等の溶媒が含まれる場合は、混合後に溶媒を取り除くとよい。
 付加反応触媒を用いる場合は、所謂触媒量でよく、通常、(A)成分に対する白金族金属元素質量換算で0.1~2,000ppm程度がよい。
[(C)成分]
 (C)成分は、金属酸化物及び金属窒化物から選ばれ、平均粒径3μm以下の無機充填材である。この無機充填材は、比表面積が大きく、Si-H基がリッチに存在する(A),(B)成分反応物と相互作用することにより、150℃における貯蔵弾性率を向上させる成分である。また(D)成分の熱伝導性無機充填材の粒度分布を整えて、最密充填にして配合量を増大させ、シリコーン組成物の熱伝導率を向上させるための成分である。
 好ましい材料として、酸化アルミニウム粉末、酸化亜鉛粉末、酸化マグネシウム、窒化アルミニウム、窒化ホウ素粉末が挙げられる。これらは絶縁材料であり、工業的に広範囲な粒径の品種が選択可能であり、資源的に入手が容易であり、比較的安価で入手可能であることから、放熱材料として広範に用いられる。金属酸化物の場合には表面に-OH残基が存在し、金属窒化物の場合は表面に-NH2残基が存在するために、オルガノポリシロキサン中に存在するSi-H残基と相互作用することが期待できる。
 また、(C)成分はPZC(ポイントオブゼロチャージ)がpH6以上の無機充填材が好ましい。PZCがpH6未満であると、無機充填材表面のSi-Hと相互作用するサイト数が減ってしまい、150℃における貯蔵弾性率の向上が発現しないために、ズレが発生するおそれがある。PZCとは、水溶液中で金属酸化物及び金属窒化物の表面電荷がゼロになるpHである。
 本発明で用いられる(C)成分の無機充填材としては、不定形、造粒粉、球状でも使用可能であるが、その中でも特に充填性の観点から、球状無機充填材を使用することが好ましい。
 (C)成分の平均粒径は3μm以下であり、0.5~2.5μmがより好ましい。平均粒径が小さすぎると、シリコーン組成物の流動性が低下し、平均粒径が大きすぎるとSi-H基と相互作用をするサイト数が減り、150℃における十分な貯蔵弾性率の向上が見られないおそれがある。なお、本発明において、(C)及び(D)成分の平均粒径の測定は、レーザー回折・散乱法、例えば、日機装株式会社製の粒度分布計であるマイクロトラックMT3300EXにより測定した体積累積平均粒径値D50(又はメジアン径)である。
 シリコーン組成物中、(C)成分の含有量は、(A)成分と(B)成分との合計100質量部に対して50~5,000質量部が好ましく、100~4,000質量部がより好ましい。(C)成分の含有量が少なすぎると、得られるシリコーン組成物にズレの発生や熱伝導率の低下が見られるおそれがあり、一方、多すぎると高粘度になり、シリコーン組成物を均一に塗布することは困難になるおそれがある。なお、(C)成分は、(A)、(B)成分中に予め加熱混合された混合物であることが好ましい。
[(D)成分]
 (D)成分は、平均粒径5μm以上の熱伝導性無機充填材であり、アルミニウム、銀、銅、ニッケル、酸化亜鉛、酸化アルミニウム、酸化ケイ素、酸化マグネシウム、窒化アルミニウム、窒化ホウ素、窒化ケイ素、炭化ケイ素、ダイヤモンド、グラファイト、金属珪素等が挙げられ、1種単独又は2種以上を適宜組み合わせて用いることができる。なお、酸化亜鉛、酸化アルミニウム、酸化マグネシウム、窒化アルミニウム、窒化ホウ素は上記(C)成分と重複するが、平均粒径が相違する。
 (D)成分の平均粒径は5μm以上であり、5~200μmが好ましく、6~100μmがより好ましい。平均粒径が5μm未満だと、シリコーン組成物が不均一になり、耐ズレ性が悪くなる。平均粒径が大きすぎても、シリコーン組成物が不均一になり、耐ズレ性が悪くなるおそれがある。
 シリコーン組成物中、(D)成分の含有量は、(A)成分と(B)成分との合計100質量部に対して100~8,000質量部が好ましく、200~7,000質量部がより好ましい。
 シリコーン組成物中、(C)成分と(D)成分の合計含有量が、(A)成分と(B)成分との合計100質量部に対して3,500~12,000質量部であり、4,000~10,000質量部が好ましく、5,000質量部を超え9,000質量部以下がより好ましく、6,000質量部を超え9,000質量部以下がさらに好ましい。上記合計含有量が下限値未満であると熱伝導率4W/m・Kを達成できず、上限を超えると十分な塗布性能が得られない。また(C):(D)の質量比は、45:55~5:95が好ましい。
[(E)成分]
 本発明のシリコーン組成物には、(E)加水分解性オルガノポリシロキサンを配合することができ、(E)成分はウェッターとして機能し、(C)成分及び(D)成分が、(E)加水分解性オルガノポリシロキサンで表面処理された表面処理無機充填材となり、(C)及び(D)成分をシリコーン組成物に高充填しても、シリコーン組成物の流動性を保ち、この組成物に良好な取扱い性を付与することができる。
 (E)成分としては、下記一般式(1)
-SiR1 a(OR23-a      (1)
(式中、R1は非置換又は置換の1価炭化水素基であり、R2はアルキル基、アルコキシアルキル基又はアシル基であり、aは0、1又は2である。)
で表されるシリル基を1分子中に少なくとも1個含有し、25℃での粘度が0.1~30,000mPa・sであるオルガノポリシロキサンが挙げられる。
 (E)成分としては、下記一般式(4)で表されるオルガノポリシロキサンが挙げられる。
Figure JPOXMLDOC01-appb-C000001
(式中、R1は互いに独立に非置換又は置換の1価炭化水素基であり、R2は独立にアルキル基、アルコキシアルキル基又はアシル基であり、mは2~100の整数であり、aは0、1又は2である。)
 上記式中、R1は互いに独立に非置換又は置換の1価炭化水素基であり、脂肪族不飽和基を含有しないものが好ましく、炭素数は炭素数1~10が好ましく、1~6がより好ましく、1~3がさらに好ましい。例えば、直鎖状アルキル基、分岐鎖状アルキル基、環状アルキル基、アリール基、アラルキル基、及びハロゲン化アルキル基が挙げられる。直鎖状アルキル基としては、例えば、メチル基、エチル基、プロピル基、ヘキシル基、オクチル基、及びデシル基等が挙げられる。分岐鎖状アルキル基としては、例えば、イソプロピル基、イソブチル基、tert-ブチル基、及び2-エチルへキシル基等が挙げられる。環状アルキル基としては、例えば、シクロペンチル基、及びシクロヘキシル基等が挙げられる。アリール基としては、例えば、フェニル基、及びトリル基等が挙げられる。アラルキル基としては、例えば、2-フェニルエチル基、2-メチル-2-フェニルエチル基等が挙げられる。ハロゲン化アルキル基としては、例えば、3,3,3-トリフルオロプロピル基、2-(ノナフルオロブチル)エチル基、及び2-(ヘプタデカフルオロオクチル)エチル基等が挙げられる。中でも、R1として、メチル基及びフェニル基が好ましい。
 上記式中、R2は互いに独立に、アルキル基、アルコキシアルキル基又はアシル基である。炭素数は1~8が好ましい。アルキル基としては、例えば、直鎖状アルキル基、分岐鎖状アルキル基、及び環状アルキル基が挙げられ、詳細にはR1において例示した基が挙げられる。アルコキシアルキル基としては、例えば、メトキシエチル基、メトキシプロピル基等が挙げられる。アシル基としては、例えば、アセチル基、オクタノイル基等が挙げられる。中でも、R2としてはアルキル基が好ましく、メチル基、及びエチル基がより好ましい。mは2~100であり、好ましくは5~50である。aは0、1又は2であり、好ましくは0である。
 (E)成分の好適な具体例としては、下記のものが挙げられる。
Figure JPOXMLDOC01-appb-C000002
 (E)成分を配合する場合、その配合量は(A)成分と(B)成分との合計100質量部に対して50~600質量部が好ましく、60~500質量部がより好ましい。50質量部未満だと、シリコーン組成物が増粘して吐出不可となるおそれがあり、一方、600質量部を超えると粘度が低くなりすぎてしまい、耐ズレ性が低下するおそれがある。
[その他成分]
 本発明のシリコーン組成物には、本発明の効果を損なわない範囲で、上記以外の任意の成分を配合することができ、例えば、充填材が挙げられ、1種単独又は2種以上を適宜組み合わせて用いてもよい。例えば、ウォラストナイト、タルク、硫酸カルシウム、炭酸マグネシウム、カオリン等のクレー;水酸化アルミニウム、水酸化マグネシウム、グラファイト、バライト、マラカイト等の炭酸銅;ザラカイト等の炭酸ニッケル;ウィザライト等の炭酸バリウム;ストロンチアナイト等の炭酸ストロンチウム;フォーステライト、シリマナイト、ムライト、パイロフィライト、カオリナイト、バーミキュライト等のケイ酸塩;珪藻土等の非補強性の充填材;これらの充填材の表面を有機ケイ素化合物で処理したもの等が挙げられる。充填材を配合する場合、シリコーン組成物中の上記充填材の含有量は、(A)成分と(B)成分との合計100質量部に対して100質量部以下が好ましい。
 シリコーン組成物の接着性を向上させるために、接着付与剤を配合してもよい。接着付与剤は1種単独又は2種以上を適宜組み合わせて用いることができる。接着付与剤として、具体的には、メチルビニルジメトキシシラン、エチルビニルジメトキシシラン、メチルビニルジエトキシシラン、エチルビニルジエトキシシラン等のアルキルアルケニルジアルコキシシラン;メチルビニルジオキシムシラン、エチルビニルジオキシムシラン等のアルキルアルケニルジアキシムシラン;メチルビニルジアセトキシシラン、エチルビニルジアセトキシシラン等のアルキルアルケニルジアセトキシシラン;メチルビニルジヒドロキシシラン、エチルビニルジヒドロキシシラン等のアルキルアルケニルジヒドロキシシラン;メチルトリメトキシシラン、ビニルトリメトキシシラン、アリルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、ビス(トリメトキシシリル)プロパン、ビス(トリメトキシシリル)ヘキサン等のオルガノトリアルコキシシラン;トリアリルイソシアヌレート、ジアリル(3-トリメトキシシリル)イソシアヌレート、トリス(3-トリメトキシシリルプロピル)イソシアヌレート、トリス(3-トリエトキシシリルプロピル)イソシアヌレート、トリス(3-トリプロポキシシリルプロピル)イソシアヌレート等のイソシアヌレート化合物;テトラエチルチタネート、テトラプロピルチタネート、テトラブチルチタネート、テトラ(2-エチルヘキシル)チタネート、チタンエチルアセトネート、チタンアセチルアセトネート等のチタン化合物;エチルアセトアセテートアルミニウムジイソプロピレート、アルミニウムトリス(エチルアセトアセテート)、アルキルアセトアセテートアルミニウムジイソプロピレート、アルミニウムトリス(アセチルアセトネート)、アルミニウムモノアセチルアセトネートビス(エチルアセトアセテート)等のアルミニウム化合物;ジルコニウムアセチルアセトネート、ジルコニウムブトキシアセチルアセトネート、ジルコニウムビスアセチルアセトネート、ジルコニウムエチルアセトアセテート等のジルコニウム化合物が挙げられる。
 接着付与剤を配合する場合、シリコーン組成物中の接着付与剤の含有量は特に限定されないが、(A)成分と(B)成分との合計100質量部に対して0.01~10質量部が好ましい。
[製造方法]
 シリコーン組成物を製造する場合は、例えば、下記工程を含むものが挙げられる。
(I)上記(A)、(B)、(C)及び(D)成分と、必要に応じてさらに(E)成分と、白金族金属系硬化触媒とを、(A)成分中のケイ素原子に結合したアルケニル基と(B)成分中のSi-H基とのモル比(Si-H/Si-Vi)が8.0を超え20.0以下となるように混合する工程
(II)得られた混合物を100~180℃で30分~4時間加熱して、(A)成分と(B)成分とを反応させる工程
 (I)上記(A)、(B)、(C)及び(D)成分と、必要に応じてさらに(E)成分と、白金族金属系硬化触媒、場合によりその他成分を加えて、トリミックス、ツウィンミックス、プラネタリーミキサー(何れも井上製作所(株)製混合機の登録商標)、ウルトラミキサー(みずほ工業(株)製混合機の登録商標)、ハイビスディスパーミックス(特殊機化工業(株)製混合機の登録商標)等の混合機を用いて混合する。液状物と無機充填材を混合する温度は特に限定されず、室温で5~30分混合するとよい。
 (II)混合後に(A)成分と(B)成分とを反応させるために100~180℃で30分~4時間加熱する。加熱後減圧下で混合してもよい。
[シリコーン組成物]
 本発明のシリコーン組成物は、(A),(B)成分反応物(硬化物)を含有するものであり、上述したように、(A)、(B)、(C)及び(D)成分と、必要に応じてさらに(E)成分と、白金族金属系硬化触媒とを含む組成物を硬化した硬化物であってもよい。シリコーン組成物の25℃における絶対粘度は100~1,000Pa・sであり、150~800Pa・sが好ましい。絶対粘度が100Pa・s未満だと、塗布中のシリコーン組成物の液だれが生じ、塗布性が低下する。さらに、長期保管中に(C)成分及び(D)成分の沈降が生じるおそれがある。一方、1,000Pa・sを超えると、塗布性が低下して、生産効率が低下する。例えば、(A)成分と(B)成分の架橋度合や、(C)成分及び(D)成分の量を調整することで上記範囲の絶対粘度を有するシリコーン組成物を得ることができる。
 本発明の高熱伝導性シリコーン組成物の熱伝導率は、4W/m・K以上であり、5W/m・K以上がより好ましい。上限は特に限定されないが、10W/m・K以下とすることができる。このように優れた熱伝導率を有するため、放熱用として好適である。
 また、下記レオメータ測定条件で貯蔵弾性率を測定した場合、ズレ防止の点から、G’(150℃)/G’(25℃)の比率が大きくなる方が好ましく、具体的には、2~20が好ましく、2~6がより好ましい。測定機としては、HAAKE MARS(サーモフィッシャーサイエンティフィック製)を用いることができる。
 レオメータ測定条件
 測定治具:パラレル・プレート P20 Ti
 測定ギャップ:1.00mm(液量:0.40mL)
 測定モード:固定変形量-周波数依存性測定
 変形条件:CD-Auto Strain 1.00±0.05%
 測定周波数:0.1~10Hz
 測定温度:25℃±1℃、15℃/分で150℃に昇温後、150℃±1℃
 以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。なお、実施例中の粘度に関して、(A)成分、(B)成分、及びシリコーン組成物の粘度は、以下に示すマルコム粘度計で測定した25℃における値である。
 実施例及び比較例で使用した成分を下記に説明する。
[付加反応触媒]
 塩化白金酸H2PtCl6・6H2O(白金:37.6質量%含有)8.0gを還流コンデンサー、温度計、撹拌装置を取り付けた100mLの反応フラスコに入れ、次いでエタノールを40.0g及びジビニルテトラメチルジシロキサンを16.0g加えた。70℃で50時間加熱反応させた後、反応混合物を室温にて撹拌しながら炭酸水素ナトリウム16.0gを徐々に加えて2時間中和した。反応混合物を吸引濾過し、濾液を減圧留去し、エタノール及び過剰のジビニルテトラメチルジシロキサンを実質的に取り除いた後、トルエンで希釈し、全量を600gとした(白金:0.5質量%含有)。
 上述した白金-ビニルシロキサン錯体トルエン溶液に290gの粘度600mPa・sの分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサンを加えて撹拌し、トルエンを60℃/20torrで減圧留去し、実質的にトルエンを取り除いたものをヒドロシリル化触媒とした(白金:1.0質量%含有)。
(A)成分
(A-1)粘度600mPa・sの分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン(ビニル基含量:0.015mol/100g)
(A-2)粘度700mPa・sの分子鎖末端トリメチルシロキシ基・ビニルジメチルシロキシ基封鎖ジメチルシロキサン・ジフェニルシロキサン共重合体(ビニル基含量:0.0049mol/100g)
(B)成分
(B-1)下記式で表されるオルガノハイドロジェンポリシロキサン
Figure JPOXMLDOC01-appb-C000003
(式中、Meはメチル基であり、各シロキサン単位の結合順序は上記に限定されない。)、(Si-H基含量:0.0055mol/g)
(C)無機充填材
(C-1)酸化亜鉛2種(JIS規格、平均粒径1μm):PZC 9.5
(C-2)酸化アルミニウム粉末(平均粒径1μm):PZC 8.5
(C-3)酸化マグネシウム粉末(平均粒径1μm):PZC 11.5
(C-4)窒化アルミニウム粉末(平均粒径1μm):PZC 9.5
(C-5)炭化ケイ素(平均粒径1μm):PZC 4.0(比較品)
(D)熱伝導性無機充填材
(D-1)酸化アルミニウム粉末(平均粒径10μm)
(D-2)酸化アルミニウム粉末(平均粒径45μm)
(E)成分
(E-1)下記式で表されるオルガノポリシロキサン
Figure JPOXMLDOC01-appb-C000004
(F)成分
(F-1)上記の白金ヒドロシリル化触媒
 下記方法で、表に示す組成の高熱伝導性シリコーン組成物を製造した。
[実施例、比較例]
 熱伝導性シリコーン組成物の製造
 (A)、(B)、(C)、(D)、(E)成分及びヒドロシリル化触媒を室温で配合して、プラネタリーミキサーを用いて5~10分混合した((C)成分は(A)、(B)成分中に予め加熱混合された混合物として用いた。)。得られた混合物を160℃に加熱し、常圧化で180分、減圧下で60分混合した。
 熱伝導性シリコーン組成物の特性は次に示す方法にて測定した。
[熱伝導率測定]
 京都電子工業株式会社製ホットディスク法熱物性測定装置TPA-501を用いて、25℃において測定した。
[粘度測定]
 粘度は25℃における値を示し、その測定はマルコム粘度計(タイプPC-10AA)を用いた。シリコーン組成物の塗布プロセスにおいて、実用上1,000Pa・s以上の粘度は使用不可と考えられる。
[25℃、150℃のシリコーン組成物の貯蔵弾性の比率]
 得られたシリコーン組成物の25℃と150℃でのG’(せん断貯蔵弾性率)の比率を測定した。(150℃)/G’(25℃)
 下記の条件、
 測定治具:パラレル・プレート P20 Ti
 測定ギャップ:1.00mm(液量:0.40mL)
 測定モード:固定変形量-周波数依存性測定
 変形条件:CD-Auto Strain 1.00±0.05%
 測定周波数:0.1~10Hz
 測定温度:25℃±1℃、15℃/分で150℃に昇温後、150℃±1℃
で貯蔵弾性率を測定した場合、G’(150℃)/G’(25℃)の比率を算出した。
[シリコーン組成物のズレ性試験]
 調製したシリコーン組成物をガラス板上に0.325mL塗布して、1mmのスペーサーを挿入しガラス板で挟んで直径約20mm/厚さ1mmの円盤状のサンプルを作製した。
 ガラス板に挟まれたサンプルを、円盤が垂直状態になるように配置して、冷熱試験条件:-40℃/30分⇔150℃/30分の条件でサイクル試験を行い、サイクル250回後の状態を観察した。
 円盤状の硬化されたシリコーン組成物が元の位置からズレている場合は「ズレ有」、もとの位置から全くズレが発生しない場合を「ズレ無」とした。「ズレ無」が好ましい。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表1及び表2の結果は、本発明の高熱伝導性シリコーン組成物は、熱伝導率に優れるだけでなく、長期に保存しても冷熱サイクル時のズレが発生しないことから、使用中に熱が発生する電気・電子部品からの除熱に優れていることを示すものである。
 本発明の高熱伝導性シリコーン組成物は、熱伝導性に優れるだけでなく、耐ズレ性と塗布性が良好であるので、使用中に熱が発生する電気・電子部品からの除熱に好適である。

Claims (6)

  1.  (A)ケイ素原子に結合したアルケニル基を1分子中に平均して少なくとも0.1個有するオルガノポリシロキサンと、(B)ケイ素原子に結合した水素原子(Si-H基)を1分子中に平均して少なくとも1個有するオルガノハイドロジェンポリシロキサンとを、(A)成分中のケイ素原子に結合したアルケニル基と(B)成分中のSi-H基とのモル比(Si-H/Si-Vi)8.0を超え20.0以下で反応させた反応物であるオルガノポリシロキサン、
    (C)金属酸化物及び金属窒化物から選ばれ、平均粒径3μm以下の無機充填材、及び
    (D)平均粒径5μm以上の熱伝導性無機充填材、
    を含有するシリコーン組成物であって、(C)成分と(D)成分の合計量が、(A)成分と(B)成分との合計100質量部に対して3,500~12,000質量部であり、上記シリコーン組成物の25℃における熱伝導率がISO 22007-2準拠のホットディスク法において、4W/m・K以上であり、25℃における絶対粘度が100~1,000Pa・sである高熱伝導性シリコーン組成物。
  2.  下記の条件のレオメータ測定、
     測定治具:パラレル・プレート P20 Ti
     測定ギャップ:1.00mm(液量:0.40mL)
     測定モード:固定変形量-周波数依存性測定
     変形条件:CD-Auto Strain 1.00±0.05%
     測定周波数:0.1~10Hz
     測定温度:25℃±1℃、15℃/分で150℃に昇温後、150℃±1℃
    で貯蔵弾性率を測定した場合、G’(150℃)/G’(25℃)が2~20である請求項1記載の高熱伝導性シリコーン組成物。
  3.  (C)成分が、PZC(ポイントオブゼロチャージ)がpH6以上である、酸化アルミニウム粉末、酸化亜鉛粉末、酸化マグネシウム、窒化アルミニウム及び窒化ホウ素粉末から選ばれる1種又は2種以上である請求項1又は2記載の高熱伝導性シリコーン組成物。
  4.  さらに、(E)加水分解性オルガノポリシロキサンを含有する請求項1~3のいずれか1項記載の高熱伝導性シリコーン組成物。
  5.  (E)成分が、下記一般式(1)
    -SiR1 a(OR23-a      (1)
    (式中、R1は非置換又は置換の1価炭化水素基であり、R2はアルキル基、アルコキシアルキル基又はアシル基であり、aは0、1又は2である。)
    で表されるシリル基を1分子中に少なくとも1個含有し、25℃での粘度が0.1~30,000mPa・sであるオルガノポリシロキサンであって、その配合量が、(A)成分と(B)成分との合計100質量部に対して50~600質量部である請求項4記載の高熱伝導性シリコーン組成物。
  6.  上記(A)、(B)、(C)及び(D)成分と、白金族金属系硬化触媒とを、(A)成分中のケイ素原子に結合したアルケニル基と(B)成分中のSi-H基とのモル比(Si-H/Si-Vi)が8.0を超え20.0以下となるように混合する工程と、得られた混合物を100℃~180℃で30分~4時間加熱して、(A)成分と(B)成分とを反応させる工程を含む、請求項1~3のいずれか1項記載の高熱伝導性シリコーン組成物を製造する製造方法。
PCT/JP2020/001236 2019-01-24 2020-01-16 高熱伝導性シリコーン組成物及びその製造方法 WO2020153217A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202080009770.6A CN113330074B (zh) 2019-01-24 2020-01-16 高导热性有机硅组合物及其制造方法
EP20744719.4A EP3916056B1 (en) 2019-01-24 2020-01-16 Highly thermally conductive silicone composition and method for producing same
JP2020568099A JP7111187B2 (ja) 2019-01-24 2020-01-16 高熱伝導性シリコーン組成物及びその製造方法
KR1020217025812A KR20210119434A (ko) 2019-01-24 2020-01-16 고열전도성 실리콘 조성물 및 그 제조 방법
US17/425,508 US20210403785A1 (en) 2019-01-24 2020-01-16 Highly thermally conductive silicone composition and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-010407 2019-01-24
JP2019010407 2019-01-24

Publications (1)

Publication Number Publication Date
WO2020153217A1 true WO2020153217A1 (ja) 2020-07-30

Family

ID=71735453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/001236 WO2020153217A1 (ja) 2019-01-24 2020-01-16 高熱伝導性シリコーン組成物及びその製造方法

Country Status (7)

Country Link
US (1) US20210403785A1 (ja)
EP (1) EP3916056B1 (ja)
JP (1) JP7111187B2 (ja)
KR (1) KR20210119434A (ja)
CN (1) CN113330074B (ja)
TW (1) TWI824104B (ja)
WO (1) WO2020153217A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023189310A1 (ja) * 2022-03-28 2023-10-05 株式会社カネカ 熱伝導性樹脂組成物および組成物を硬化させてなる放熱部材
WO2024048335A1 (ja) * 2022-09-02 2024-03-07 信越化学工業株式会社 熱伝導性シリコーン組成物
WO2024195569A1 (ja) * 2023-03-22 2024-09-26 信越化学工業株式会社 熱伝導性シリコーン組成物及びその硬化物、ならびに製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115214202A (zh) * 2022-04-26 2022-10-21 北京科技大学 一种高导热层状热界面材料及其制备方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01246884A (ja) 1988-03-29 1989-10-02 Toshiba Corp ダイオードレーザ励起レーザ発振装置
JPH114995A (ja) 1997-06-17 1999-01-12 Ebara Corp ドライクリーニング装置
JPH11246884A (ja) 1998-02-27 1999-09-14 Shin Etsu Chem Co Ltd 熱伝導性シリコーン組成物
JP2000063873A (ja) 1998-08-21 2000-02-29 Shin Etsu Chem Co Ltd 熱伝導性グリース組成物及びそれを使用した半導体装置
JP2000169873A (ja) 1998-12-02 2000-06-20 Shin Etsu Chem Co Ltd シリコーングリース組成物
JP2003301184A (ja) 2002-04-12 2003-10-21 Hitachi Ltd 廃プラスチックの熱分解油化処理方法及び処理装置
JP2006169343A (ja) * 2004-12-15 2006-06-29 Shin Etsu Chem Co Ltd 放熱性シリコーングリース組成物の製造方法
JP2012102283A (ja) * 2010-11-12 2012-05-31 Shin-Etsu Chemical Co Ltd 熱伝導性シリコーングリース組成物
JP2012107152A (ja) * 2010-11-19 2012-06-07 Shin-Etsu Chemical Co Ltd 熱伝導性シリコーングリース組成物
WO2013168291A1 (ja) * 2012-05-11 2013-11-14 信越化学工業株式会社 熱伝導性シリコーングリース組成物
JP2014080546A (ja) * 2012-10-18 2014-05-08 Shin Etsu Chem Co Ltd シリコーン組成物
WO2019235293A1 (ja) * 2018-06-08 2019-12-12 信越化学工業株式会社 熱伝導性シリコーン組成物及びその製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001139818A (ja) * 1999-11-12 2001-05-22 Dow Corning Toray Silicone Co Ltd 熱伝導性シリコーンゴム組成物
JP4395753B2 (ja) * 2004-12-27 2010-01-13 信越化学工業株式会社 熱伝導部材の製造方法及びこの使用方法並びに放熱構造体
JP5574532B2 (ja) * 2009-10-08 2014-08-20 信越化学工業株式会社 熱伝導性シリコーンゴム複合シート
US8932031B2 (en) * 2010-11-03 2015-01-13 Xylem Ip Holdings Llc Modular diaphragm pumping system
US20130147600A1 (en) * 2011-12-09 2013-06-13 The Chamberlain Group, Inc. Access Authorization via Location-Aware Authorization Device
JP5783128B2 (ja) * 2012-04-24 2015-09-24 信越化学工業株式会社 加熱硬化型熱伝導性シリコーングリース組成物
CA2896300C (en) * 2013-01-22 2020-10-27 Shin-Etsu Chemical Co., Ltd. Heat conductive silicone composition, heat conductive layer, and semiconductor device
US9714178B2 (en) * 2014-01-23 2017-07-25 Drake Water Technologies, Inc. Method for selectively removing silica from strong brines using activated alumina
KR102348372B1 (ko) * 2014-04-09 2022-01-11 듀폰 도레이 스페셜티 머티리얼즈 가부시키가이샤 열전도성 실리콘 조성물 및 전기·전자 기기
JP6149831B2 (ja) * 2014-09-04 2017-06-21 信越化学工業株式会社 シリコーン組成物
JP6658866B2 (ja) * 2016-03-18 2020-03-04 信越化学工業株式会社 熱伝導性シリコーン組成物及び半導体装置
JP6708005B2 (ja) * 2016-06-20 2020-06-10 信越化学工業株式会社 熱伝導性シリコーンパテ組成物

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01246884A (ja) 1988-03-29 1989-10-02 Toshiba Corp ダイオードレーザ励起レーザ発振装置
JPH114995A (ja) 1997-06-17 1999-01-12 Ebara Corp ドライクリーニング装置
JPH11246884A (ja) 1998-02-27 1999-09-14 Shin Etsu Chem Co Ltd 熱伝導性シリコーン組成物
JP2000063873A (ja) 1998-08-21 2000-02-29 Shin Etsu Chem Co Ltd 熱伝導性グリース組成物及びそれを使用した半導体装置
JP2000169873A (ja) 1998-12-02 2000-06-20 Shin Etsu Chem Co Ltd シリコーングリース組成物
JP2003301184A (ja) 2002-04-12 2003-10-21 Hitachi Ltd 廃プラスチックの熱分解油化処理方法及び処理装置
JP2006169343A (ja) * 2004-12-15 2006-06-29 Shin Etsu Chem Co Ltd 放熱性シリコーングリース組成物の製造方法
JP2012102283A (ja) * 2010-11-12 2012-05-31 Shin-Etsu Chemical Co Ltd 熱伝導性シリコーングリース組成物
JP2012107152A (ja) * 2010-11-19 2012-06-07 Shin-Etsu Chemical Co Ltd 熱伝導性シリコーングリース組成物
WO2013168291A1 (ja) * 2012-05-11 2013-11-14 信越化学工業株式会社 熱伝導性シリコーングリース組成物
JP2014080546A (ja) * 2012-10-18 2014-05-08 Shin Etsu Chem Co Ltd シリコーン組成物
WO2019235293A1 (ja) * 2018-06-08 2019-12-12 信越化学工業株式会社 熱伝導性シリコーン組成物及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3916056A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023189310A1 (ja) * 2022-03-28 2023-10-05 株式会社カネカ 熱伝導性樹脂組成物および組成物を硬化させてなる放熱部材
WO2024048335A1 (ja) * 2022-09-02 2024-03-07 信越化学工業株式会社 熱伝導性シリコーン組成物
WO2024195569A1 (ja) * 2023-03-22 2024-09-26 信越化学工業株式会社 熱伝導性シリコーン組成物及びその硬化物、ならびに製造方法

Also Published As

Publication number Publication date
EP3916056B1 (en) 2023-12-13
JP7111187B2 (ja) 2022-08-02
TW202043373A (zh) 2020-12-01
EP3916056A4 (en) 2022-11-02
TWI824104B (zh) 2023-12-01
US20210403785A1 (en) 2021-12-30
JPWO2020153217A1 (ja) 2021-11-25
KR20210119434A (ko) 2021-10-05
EP3916056A1 (en) 2021-12-01
CN113330074B (zh) 2023-05-09
CN113330074A (zh) 2021-08-31

Similar Documents

Publication Publication Date Title
JP7136203B2 (ja) 熱伝導性シリコーン組成物及びその製造方法
WO2020153217A1 (ja) 高熱伝導性シリコーン組成物及びその製造方法
JP5783128B2 (ja) 加熱硬化型熱伝導性シリコーングリース組成物
JP5233325B2 (ja) 熱伝導性硬化物及びその製造方法
JP5372388B2 (ja) 熱伝導性シリコーングリース組成物
JP6014299B2 (ja) 熱伝導性シリコーン組成物及び半導体装置
JP6933198B2 (ja) 熱伝導性シリコーン組成物及びその製造方法
TWI682030B (zh) 加成式單一配方固化型導熱聚矽氧潤滑脂組成物
JP2019131734A (ja) 2液付加反応硬化型放熱シリコーン組成物及びその製造方法
JP6981914B2 (ja) 熱伝導性シリコーン組成物及びその硬化物
JP2018104615A (ja) シリコーン組成物およびその硬化物
WO2021149431A1 (ja) 熱伝導性シリコーン接着剤組成物
JP7276212B2 (ja) 熱伝導性シリコーン組成物及びその製造方法
JP2023114394A (ja) 熱伝導性シリコーン樹脂シートおよびその製造方法
JP7088123B2 (ja) 熱伝導性シリコーン組成物の製造方法
JP2021055007A (ja) 1液硬化型熱伝導性シリコーン組成物及びその製造方法
WO2024096000A1 (ja) 熱伝導性シリコーン組成物
JP7306278B2 (ja) 熱伝導性シリコーンポッティング組成物およびその硬化物
WO2024077435A1 (en) Thermally conductive silicone composition
JP2021001239A (ja) 熱硬化型熱伝導性シリコーンゴム組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20744719

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020568099

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217025812

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020744719

Country of ref document: EP

Effective date: 20210824