WO2019098290A1 - 二段階硬化型熱伝導性シリコーン組成物及びその製造方法 - Google Patents

二段階硬化型熱伝導性シリコーン組成物及びその製造方法 Download PDF

Info

Publication number
WO2019098290A1
WO2019098290A1 PCT/JP2018/042337 JP2018042337W WO2019098290A1 WO 2019098290 A1 WO2019098290 A1 WO 2019098290A1 JP 2018042337 W JP2018042337 W JP 2018042337W WO 2019098290 A1 WO2019098290 A1 WO 2019098290A1
Authority
WO
WIPO (PCT)
Prior art keywords
curing
component
silicone composition
thermally conductive
heat
Prior art date
Application number
PCT/JP2018/042337
Other languages
English (en)
French (fr)
Inventor
鈴村克之
Original Assignee
富士高分子工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士高分子工業株式会社 filed Critical 富士高分子工業株式会社
Priority to US16/494,520 priority Critical patent/US20200010621A1/en
Priority to EP18877955.7A priority patent/EP3712211A4/en
Priority to JP2019518323A priority patent/JPWO2019098290A1/ja
Priority to CN201880019979.3A priority patent/CN110546208A/zh
Publication of WO2019098290A1 publication Critical patent/WO2019098290A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • C08G77/08Preparatory processes characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/244Stepwise homogeneous crosslinking of one polymer with one crosslinking system, e.g. partial curing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/50Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms by carbon linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/14Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/243Two or more independent types of crosslinking for one or more polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides

Definitions

  • the present invention relates to a thermally conductive resin composition used for a thermally conductive component such as an electronic component and a method of manufacturing the same. More particularly, the present invention relates to a two-stage curing thermally conductive silicone composition in which curing proceeds at different temperatures and a method for producing the same.
  • the heat dissipation unit is attached to the heat generation unit such as the CPU in the electronic component that generates heat. Since the heat dissipating portion is often a metal, in order to improve the heat transfer between the heat producing portion and the heat dissipating portion, a sheet-like or gel-like thermally conductive composition is inserted between the heat producing portion and the heat dissipating portion. To improve the heat transferability.
  • Patent Document 1 discloses that a silicone rubber having a low hardness and a high impact resilience is prepared by pre-crosslinking a polyorganosiloxane in the presence of a catalytic amount of a platinum group metal compound, and blending the obtained pre-crosslinked body with an organic peroxide. It is proposed to get.
  • Patent Document 2 proposes that a surface print layer is provided on a base film, an ionic liquid is added to the surface print layer, primary vulcanization is performed, and secondary vulcanization is performed at a temperature higher than the temperature of the primary vulcanization. .
  • the present invention provides a two-stage curing thermally conductive silicone composition in which curing proceeds at different temperatures and a method for producing the same.
  • the two-stage curing thermally conductive silicone composition of the present invention is a two-stage curing thermally conductive silicone composition comprising a silicone component, thermally conductive particles, and a curing component, (A) 100 parts by weight of polyorganosiloxane, (B) 100 to 2500 parts by weight of thermally conductive particles relative to the component A, (C) a platinum group metal catalyst as a curing catalyst for the polyorganosiloxane; (D) 0.01 to 5 parts by weight of an organic peroxide relative to the component A, Including Primary curing is performed at a primary curing temperature, and secondary curing is possible above the primary curing temperature,
  • the thermal conductivity of the two-stage curing type thermally conductive silicone composition after the primary curing is 0.2 to 17 W / m ⁇ K, and the hardness is 5 to 80 in ASKER C.
  • the method for producing the two-stage curing thermally conductive silicone composition of the present invention is the method for producing the two-stage curing thermally conductive silicone composition of the present invention, and the predetermined shape is obtained after mixing the following components A to D: Molding the resultant into a primary curing at a primary curing temperature, (A) 100 parts by weight of polyorganosiloxane, (B) 100 to 2500 parts by weight of thermally conductive particles relative to the component A, (C) a platinum group metal catalyst as a curing catalyst for the polyorganosiloxane; (D) 0.01 to 5 parts by weight of an organic peroxide relative to the component A, Including The primarily cured molded article can be secondarily cured at a temperature higher than the first stage curing temperature, The molded product after the primary curing has a thermal conductivity of 0.2 to 17 W / m ⁇ K and a hardness of 5 to 80 in terms of ASKER C.
  • a method of manufacturing an electronic component of the present invention is a method of manufacturing an electronic component including a heat generating portion and a heat radiating portion,
  • the two-stage curing heat conductive silicone composition of the present invention is disposed between the heat generating part and the heat radiating part so as to be in contact with both the heat generating part and the heat radiating part. Heating at a temperature higher than the primary curing temperature of the conductive silicone composition to perform secondary curing; The heating is performed by the heat generated from the heat generating portion.
  • the present invention contains the components A to D and is subjected to primary curing at a primary curing temperature, and is capable of secondary curing at a temperature higher than the primary curing temperature, and two-stage curing thermally conductive after the primary curing
  • Two-stage curable thermally conductive silicone composition having a thermal conductivity of 0.2 to 17 W / m ⁇ K, a hardness of 5 to 80 at ASKER C, and a curing progress at different temperatures of the silicone composition
  • Two-stage curable thermally conductive silicone composition having a thermal conductivity of 0.2 to 17 W / m ⁇ K, a hardness of 5 to 80 at ASKER C, and a curing progress at different temperatures of the silicone composition
  • the two-stage curing type thermally conductive silicone composition of the present invention is stopped at the primary curing stage until it is disposed between the heat generating portion and the heat releasing portion and is soft, for example, between the heat generating portion and the heat releasing portion After being disposed between the heat generating portion and
  • FIGS. 1A-B are explanatory views showing a method of measuring the thermal conductivity of a sample in one embodiment of the present invention.
  • the two-stage curing type heat conductive silicone composition of the present invention (hereinafter sometimes abbreviated as "the silicone composition of the present invention") is cured at the primary curing temperature by the addition reaction curing action by the platinum group metal catalyst. At the secondary curing temperature which is higher than the primary curing temperature, the curing proceeds by the radical reaction curing action by the organic peroxide.
  • both the platinum group metal catalyst and the organic peroxide are blended together with the polyorganosiloxane and the thermally conductive particles to form, for example, a sheet, which is stopped at the primary curing stage.
  • thermosetting resin material at this stage is usually referred to as "B-stage” or "half cure” type, and is generally used for epoxy resin and the like.
  • the sheet in this state is soft and easy to be incorporated in the necessary place. Usually, it is shipped from the manufacturer at the primary curing stage, installed at the required place at the point of sale, and after incorporated, secondary curing is performed by the heat of the heat generating part.
  • the following components A to D are preferably used in the following amounts: (A) 100 parts by weight of polyorganosiloxane (B) 100 to 2500 parts by weight of thermally conductive particles (C) a platinum group metal catalyst (D) as a curing catalyst for the polyorganosiloxane (D) organic peroxide To 0.01 to 5 parts by weight of component A
  • (A) polyorganosiloxane is a main raw material of the addition-curable silicone polymer, contains a base polymer component and a crosslinking agent component described later, and is usually stored separately in the A solution and the B solution.
  • both the solution A and the solution B contain the base polymer component
  • the solution A further contains a curing catalyst such as a platinum group metal catalyst
  • the solution B further contains the crosslinker component.
  • the solution A, solution B, thermally conductive particles, organic peroxide, and, if necessary, additional platinum group metal catalyst, other colorants and the like are added and mixed, for example, into a sheet-like formed product Mold and cure primarily. Curing is also referred to as crosslinking or vulcanization.
  • the two-stage curing thermally conductive silicone composition of the present invention is subjected to primary curing at a primary curing temperature, and is capable of secondary curing at a temperature higher than the primary curing temperature.
  • the thermal conductivity of the sheet after primary curing is 0.2 to 17 W / m ⁇ K, preferably 0.5 to 15 W / m ⁇ K, and more preferably 1 to 10 W / m ⁇ K. If it is the said range, the heat from a heat-emitting part can be effectively transmitted to a thermal radiation part.
  • the hardness of the sheet after primary curing is 5 to 80 in ASKER C, preferably 10 to 75, and more preferably 15 to 70. If it is the said range, a sheet
  • the polyorganosiloxane used in the present invention preferably contains the following components in order to achieve two-stage curing.
  • the silicone composition of the present invention is preferably formed into a sheet. If it is in the form of a sheet, it can be easily incorporated between the heat generating portion and the radiator.
  • the difference between the hardness after primary curing and the hardness after secondary curing preferably exceeds 12 in ASKER C, and more preferably the difference is 15 or more.
  • the sheet-like silicone composition of the present invention at the primary curing stage is soft and easy to be incorporated in the required location, and after being disposed at the required location, it can be secondary cured by the heat of the heat generating part it can.
  • the hardness of the sheet-like silicone composition of the present invention after secondary curing is 40 or more by ASKER C because the adhesion of the silicone composition of the present invention to the heat generating portion and heat dissipating portion of the electronic component is good. Is more preferable, and 45 or more.
  • the following components A to D are mixed and then formed into a predetermined shape, for example, a sheet, and the resulting molded product is primarily cured at a primary curing temperature.
  • Process primary curing process
  • the two-stage curing thermally conductive silicone composition (primaryly cured molded article) of the present invention can be secondarily cured at a temperature higher than the primary curing temperature,
  • the thermal conductivity of the sheet after the primary curing is 0.2 to 17 W / m ⁇ K, and the hardness is 5 to 80 in ASKER C.
  • the primary curing temperature is preferably 100 ° C. or less, and the secondary curing temperature is preferably above the primary curing temperature.
  • a further preferable primary curing temperature is from normal temperature (25 ° C.) to 100 ° C.
  • a preferable secondary curing temperature is 120 to 170 ° C.
  • the secondary curing temperature may not be maintained at a constant temperature, and may be, for example, a temperature condition of repeating a heat cycle of ⁇ 40 ° C. to 170 ° C. Thereby, the addition reaction curing action by the platinum group metal catalyst in the primary curing step and the curing action by the organic peroxide reaction in the secondary curing step can be exhibited efficiently.
  • Base polymer component (a component in component A)
  • the base polymer component (component a) is an organopolysiloxane containing two or more alkenyl groups bonded to a silicon atom in one molecule, and an organopolysiloxane containing two alkenyl groups is the silicone rubber composition of the present invention
  • Main component (base polymer component) in This organopolysiloxane has, as alkenyl groups, two alkenyl groups bonded to silicon atoms, such as vinyl groups and allyl groups, each having 2 to 8 carbon atoms, particularly 2 to 6 carbon atoms, in one molecule.
  • the viscosity is preferably 10 to 1,000,000 mPa ⁇ s at 25 ° C., and particularly preferably 100 to 100,000 mPa ⁇ s from the viewpoint of workability and curability.
  • an organopolysiloxane having an average of 2 or more per molecule represented by the following general formula (1) and an alkenyl group bonded to a silicon atom at the end of a molecular chain is used.
  • the end is a linear organopolysiloxane blocked with a triorganosiloxy group.
  • the viscosity at 25 ° C. is preferably 10 to 1,000,000 mPa ⁇ s from the viewpoint of workability and curability.
  • this linear organopolysiloxane may contain a small amount of branched structure (trifunctional siloxane unit) in the molecular chain.
  • R 1 is an unsubstituted or substituted monovalent hydrocarbon group having no identical or different aliphatic unsaturated bond
  • R 2 is an alkenyl group
  • k is 0 or positive. It is an integer.
  • the unsubstituted or substituted monovalent hydrocarbon group having no aliphatic unsaturated bond of R 1 one having, for example, 1 to 10 carbon atoms, particularly 1 to 6 carbon atoms is preferable, and specifically, Alkyl groups such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl, pentyl, neopentyl, hexyl, cyclohexyl, octyl, nonyl and decyl; Group, aryl groups such as tolyl group, xylyl group and naphthyl group, aralkyl groups such as benzyl group, phenyleth
  • a halogen atom or cyano group for example, a halogen such as chloromethyl group, chloropropyl group, bromoethyl group or trifluoropropyl group Alkyl group, cyanoethyl group and the like.
  • the alkenyl group represented by R 2 is, for example, preferably one having 2 to 6 carbon atoms, and more preferably 2 to 3 carbon atoms, and specifically vinyl, allyl, propenyl, isopropenyl, butenyl, isobutenyl and hexenyl groups. And a cyclohexenyl group etc., preferably a vinyl group.
  • k is generally 0 or a positive integer satisfying 0 ⁇ k ⁇ 10,000, preferably an integer satisfying 5 ⁇ k ⁇ 2000, more preferably 10 ⁇ k ⁇ 1200. It is.
  • the organopolysiloxane of component a includes, for example, 3 or more, usually 3 to 30 alkenyl groups bonded to a silicon atom having 2 to 8 carbon atoms, especially 2 to 6 carbon atoms, such as vinyl and allyl, in one molecule.
  • 3 to 20 organopolysiloxanes may be used in combination.
  • the molecular structure may be linear, cyclic, branched or three-dimensional network molecular structure.
  • the main chain is composed of repeating diorganosiloxane units, and both ends of the molecular chain are blocked with a triorganosiloxy group, and a linear chain having a viscosity of 10 to 1,000,000 mPa ⁇ s at 25 ° C., particularly 100 to 100,000 mPa ⁇ s. -Like organopolysiloxane.
  • the alkenyl group may be attached to any part of the molecule.
  • it may include one bound to a silicon atom at the end of a molecular chain or at the end of a molecular chain (in the middle of a molecular chain).
  • each has 1 to 3 alkenyl groups on the silicon atoms at both ends of the molecular chain represented by the following general formula (2) (however, the alkenyl groups bonded to the silicon atoms at the molecular chain ends are both When the total number of terminal ends is less than 3, a linear chain having at least one alkenyl group (for example, as a substituent in a diorganosiloxane unit) bonded to a non-terminal (in the middle of the molecular chain) silicon atom (for example, as a substituent in a diorganosiloxane unit)
  • Organopolysiloxane having a viscosity of 10 to 1,000,000 mPa ⁇ s at 25 ° C. as described above is desirable from the viewpoint of workability, curability, etc.
  • This linear organopolysiloxane is a small amount of branched
  • the structure (trifunctional siloxane unit) may be contained in the molecular chain.
  • R 3 is an identical or different unsubstituted or substituted monovalent hydrocarbon group, and at least one is an alkenyl group.
  • R 4 is an unsubstituted or substituted monovalent hydrocarbon group having no identical or different aliphatic unsaturated bond,
  • R 5 is an alkenyl group, and l or m is 0 or a positive integer .
  • the monovalent hydrocarbon group for R 3 one having 1 to 10 carbon atoms, particularly 1 to 6 carbon atoms is preferable, and specifically, methyl group, ethyl group, propyl group, isopropyl group, butyl group, Alkyl group such as isobutyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, cyclohexyl group, octyl group, nonyl group and decyl group, aryl group such as phenyl group, tolyl group, xylyl group and naphthyl group, benzyl Groups, aralkyl groups such as phenylethyl group and phenylpropyl group, vinyl groups, allyl groups, propenyl groups, isopropenyl groups, butenyl groups, butenyl groups, hexenyl groups, alkenyl groups such as cyclo
  • the monovalent hydrocarbon group for R 4 one having 1 to 10 carbon atoms, particularly 1 to 6 carbon atoms is preferable, and the same ones as the specific examples of R 1 can be exemplified, but the alkenyl group is not included.
  • the alkenyl group represented by R 5 is preferably, for example, one having 2 to 6 carbon atoms, and more preferably 2 to 3 carbon atoms, and specific examples thereof include the same as R 2 in the general formula (1), preferably a vinyl group. It is.
  • l and m are generally 0 or a positive integer satisfying 0 ⁇ l + m ⁇ 10000, preferably 5 ⁇ l + m ⁇ 2000, more preferably 10 ⁇ l + m ⁇ 1200, and 0 ⁇ l / (l + m And so forth), preferably 0.0011 ⁇ l / (l + m) ⁇ 0.1.
  • the organohydrogenpolysiloxane b of the present invention acts as a crosslinking agent and forms a cured product by the addition reaction (hydrosilylation) between the SiH group in this component and the alkenyl group in the base polymer component.
  • the organohydrogenpolysiloxane may be any one having two or more hydrogen atoms (i.e., SiH groups) bonded to a silicon atom in one molecule, and the molecular structure of this organohydrogenpolysiloxane is May be any of linear, cyclic, branched, and three-dimensional network structures, but the number of silicon atoms in one molecule (that is, the degree of polymerization) is from 2 to 1,000, particularly from 2 to 300, It can be used.
  • the position of the silicon atom to which the hydrogen atom is bonded is not particularly limited, and may be at the end of the molecular chain or at the end (on the way).
  • examples of the organic group bonded to a silicon atom other than a hydrogen atom include an unsubstituted or substituted monovalent hydrocarbon group having no aliphatic unsaturated bond similar to R 1 of the general formula (1).
  • organohydrogenpolysiloxane which is the component b
  • those having the structures represented by the following general formulas (3) to (5) can be exemplified.
  • R 6 is an organic group containing at least one of a phenyl group, an epoxy group, an acryloyl group, a methacryloyl group and an alkoxy group.
  • L is an integer of 0 to 1,000, particularly an integer of 0 to 300, and M is an integer of 1 to 200.
  • Thermally conductive particles of component B are also referred to as thermally conductive fillers.
  • the heat conductive particles are preferably added in an amount of 100 to 2500 parts by weight with respect to 100 parts by weight of the component A which is a matrix component. Thereby, the thermal conductivity can be kept high.
  • the heat conductive particles are preferably at least one selected from alumina, zinc oxide, magnesium oxide, aluminum nitride, boron nitride, aluminum hydroxide and silica.
  • Various shapes such as spherical, scaly and polyhedral shapes can be used. When alumina is used, ⁇ -alumina having a purity of 99.5% by weight or more is preferable.
  • the specific surface area of the thermally conductive particles is preferably in the range of 0.06 to 10 m 2 / g.
  • the specific surface area is a BET specific surface area, and the measurement method conforms to JIS R1626.
  • the average particle size is preferably in the range of 0.1 to 100 ⁇ m.
  • the average particle size is measured by a laser diffraction light scattering method to measure D50 (median diameter).
  • this measuring instrument there is, for example, a laser diffraction / scattering particle distribution measuring apparatus LA-950S2 manufactured by Horiba, Ltd.
  • thermally conductive particles at least two inorganic particles having different average particle sizes may be used in combination. In this way, the thermally conductive inorganic particles having a small particle size are embedded between the large particle sizes, and can be packed in a close-packed state, resulting in high thermal conductivity.
  • the inorganic particles are R (CH 3 ) a Si (OR ′) 3-a (R is an unsubstituted or substituted organic group having 1 to 20 carbon atoms, R ′ is an alkyl group having 1 to 4 carbon atoms, a is 0 or It is preferable to surface-treat with the silane compound shown by 1), or its partial hydrolyzate.
  • the alkoxysilane compound (hereinafter referred to simply as "silane") is, by way of example, methyltrimethoxysilane, ethyltrimethoxysilane, propyltrimethoxysilane, butyltrimethoxysilane, pentyltrimethoxysilane, hexyltrimethoxysilane, hexyltriethoxy Silane, octyltrimethoxysilane, octyltriethoxysilane, decyltrimethoxysilane, decyltriethoxysilane, dodecyltrimethoxysilane, dodecyltriethoxysilane,
  • the said silane compound can be used 1 type or in mixture of 2 or more types.
  • a surface treatment agent alkoxysilane and one-end silanol siloxane may be used in combination.
  • the surface treatment mentioned here includes adsorption as well as covalent bonding.
  • the inorganic particles having an average particle diameter of 2 ⁇ m or more are preferably added in an amount of “(100 ⁇ specific surface area) / minimum coverage area of surface treatment agent” based on 100 parts by weight of the entire inorganic particles.
  • the platinum group metal catalyst which is the component C, is a component that accelerates the first stage curing of the composition containing the components A to D.
  • a catalyst used for a hydrosilylation reaction can be used.
  • platinum black platinum black, second platinum chloride, chloroplatinic acid, reaction product of chloroplatinic acid and monohydric alcohol, complex of chloroplatinic acid with olefins and vinylsiloxane, platinum-based catalyst such as platinum bisacetoacetate, palladium-based
  • platinum-based catalyst such as platinum bisacetoacetate
  • the catalyst includes platinum group metal catalysts such as rhodium catalysts.
  • the compounding amount of the C component may be an amount necessary for curing the A component, and preferably an amount sufficient to cure the A component, and can be appropriately adjusted according to the desired curing speed and the like.
  • a platinum group metal catalyst is usually included in the silicone component (eg, two-part room temperature cured silicone polymer) used to prepare the silicone composition of the present invention, but to further cure the A component, In the preparation of the silicone composition of the present invention, an additional platinum group metal catalyst may be mixed with the silicone component.
  • the compounding amount of the platinum group metal catalyst is preferably 0.01 to 1000 ppm in terms of metal atom weight relative to the component A.
  • the amount by which the component A cures sufficiently is an amount that allows the hardness of the primary cured product to be 5 to 80 in ASKER C.
  • Component D is a curing component that accelerates the second stage curing of the composition containing components A to D.
  • the component D is an organic peroxide, which generates radicals upon heating to cause a crosslinking reaction of the component A.
  • Component D includes benzoyl peroxide, acyl peroxides such as bis (p-methylbenzoyl) peroxide; di-tert-butyl peroxide, 2,5-dimethyl-2,5-di (tert-butylperoxy) hexane Examples are alkyl-based peroxides such as tert-butylcumyl peroxide, dicumyl peroxide, and ester-based organic peroxides such as tert-butyl perbenzoate.
  • the compounding amount of the component D is preferably 0.01 to 5 parts by weight, and more preferably 0.1 to 4 parts by weight with respect to 100 parts by weight of the component A.
  • the silicone composition of the present invention may contain other components as needed.
  • an inorganic pigment such as bengara, an alkyltrialkoxysilane or the like may be added for the purpose of surface treatment of a filler and the like.
  • an alkoxy group-containing silicone may be added.
  • the present invention can also provide the following method for producing an electronic component.
  • the method for producing an electronic component according to the present invention comprises placing the silicone composition according to the present invention in contact with both the heat generating portion and the heat releasing portion between the heat generating portion and the heat releasing portion. (Ii) a step of heating at a temperature higher than the primary curing temperature of the molded product) to perform secondary curing (secondary curing step).
  • the secondary curing may be performed by heat generated from the heat generating portion.
  • the heat generating unit and the heat releasing unit are conventionally known, and the heat generating unit is a semiconductor such as a computer (CPU), a transistor, a light emitting diode (LED), etc., and the heat releasing unit is often metal.
  • thermal conductivity of the primary cured product of the thermally conductive silicone rubber sheet was measured by a hot disk (in accordance with ISO / CD 22007-2). As shown in FIG. 1A, this thermal conductivity measuring apparatus 1 sandwiches a polyimide film sensor 2 between two samples (primary cured products) 3a and 3b, applies constant power to the sensor 2, and generates constant heat to generate a sensor 2 Analyze the thermal characteristics from the temperature rise value of The tip 2 of the sensor 2 has a diameter of 7 mm, and has a double spiral structure of electrodes, and the electrode for applied current 5 and the electrode for resistance value (electrode for temperature measurement) 6 are disposed in the lower part.
  • the thermal conductivity is calculated by the following equation (Equation 1).
  • Test condition Test speed: 1 mm / min
  • the maximum value (N) of the test force was taken as the adhesive breaking load (load at the breaking point), and the value obtained by dividing by the adhesive area (12.5 mm ⁇ 25 mm) was taken as tensile shear adhesive strength (MPa).
  • MPa tensile shear adhesive strength
  • Thermally conductive particles Three types of alumina particles listed in Table 1 were used. These alumina particles are added with a silane coupling agent (octyltriethoxysilane) at a proportion of 1% by mass, and stirred until uniform, and the stirred alumina particles are spread uniformly on tray etc. and dried at 100 ° C. for 2 hours The surface was treated by This prevented the loss of the curing acceleration which is the catalytic ability of the Pt catalyst.
  • the average particle size is D50 (median diameter) of the cumulative particle size distribution based on volume in the particle size distribution measurement by the laser diffraction light scattering method.
  • a laser diffraction / scattering particle distribution measuring apparatus LA-950S2 manufactured by Horiba, Ltd.
  • the average particle size of alumina particles (1) is 0.3 ⁇ m
  • the specific surface area is 7.0 m 2 / g
  • the average particle size of alumina particles (2) is 2 ⁇ m
  • the specific surface area is 1.0 m 2 / g
  • alumina particles (3 The average particle diameter of) is 35 ⁇ m
  • the specific surface area is 0.2 m 2 / g.
  • Platinum group metal catalyst A platinum-vinyldisiloxane complex was used as an additional platinum group metal catalyst.
  • the two-component room temperature curing silicone polymer contains a platinum group metal catalyst.
  • an additional platinum group metal catalyst is added in an amount of 3 parts by weight with respect to 100 parts by weight of the silicone component so that the polyorganosiloxane is sufficiently primary cured. did.
  • the amount of platinum group metal catalyst relative to the total of polyorganosiloxane and platinum group metal catalyst is 0.01 to 1000 ppm in terms of metal atom weight in all cases. It is a range value.
  • Examples 4 to 8, Reference Examples 1 to 2 Except using titanium oxide with an average particle size of 0.3 ⁇ m as a heat-resistant auxiliary agent, and using the additional platinum metal catalyst, the thermally conductive particles, and the pigment (bengara) in amounts shown in Tables 2 to 3 respectively
  • Each compound was prepared in the same manner as in Example 1.
  • the experiment was conducted in the same manner as in Example 1 except that the thermally conductive silicone rubber sheet was subjected to primary curing and secondary curing under the curing conditions shown in Tables 2-3.
  • Tables 2 to 3 the amount of each material is described in an amount (parts by weight) based on 100 parts by mass of the silicone component (two-component room temperature-cured silicone polymer).
  • a platinum group metal catalyst is contained in the two-component room temperature curing silicone polymer (silicone component).
  • silicone component room temperature curing silicone polymer
  • 4 parts by weight of an additional platinum group metal catalyst is added based on 100 parts by weight of the silicone component so that the polyorganosiloxane is sufficiently primary cured. Part was added.
  • the amount of platinum group metal catalyst relative to the total of polyorganosiloxane and platinum group metal catalyst is in the range of 0.01 to 1000 ppm in terms of metal atom weight. Is the value of
  • the thermally conductive silicone rubber sheet was subjected to primary curing at the primary curing temperature. Secondary curing was possible above the curing temperature. Further, the thermal conductivity of the sheet after primary curing was 4.5 W / m ⁇ K, and the ASKER C hardness was 27. On the other hand, the hardness of the secondary cured product was not as high as that of Examples 4 to 8 because the secondary curing temperature of the reference examples 1 and 2 was equal to or lower than that of the primary curing temperature.
  • Example 1 was measured except that the amounts shown in Table 4 were measured for each material, they were put into a kneading apparatus to prepare a compound, and the thermally conductive silicone rubber sheet was cured under the curing conditions shown in Table 4. The experiment was performed in the same manner as in.
  • the average particle size of the alumina particles (4) is 75 ⁇ m, and the specific surface area is 0.2 m 2 / g.
  • the platinum group metal catalyst comprises only the platinum group metal catalyst contained in the silicone component (two-component room temperature cured silicone polymer). It was used and no addition of platinum group metal catalyst was performed.
  • the primary cure of polyorganosiloxane was sufficiently performed only with the platinum group metal catalyst contained in the silicone component.
  • the amount of platinum group metal catalyst relative to the total of polyorganosiloxane and platinum group metal catalyst is in the range of 0.01 to 1000 ppm in terms of metal atom weight. The value of.
  • the amount of each material is described in an amount (parts by weight) based on 100 parts by mass of the silicone component (two-component room temperature cured silicone polymer).
  • the amount of the thermally conductive particles, the organic peroxide, and the other components added to 100 parts by mass of the siloxane each satisfy the preferable amount in the present invention described above.
  • the two-stage curing type heat conductive silicone composition of the present invention can be applied to various forms of products such as a sheet interposed between a heat generating part and a heat releasing part of a heat generating part.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

シリコーン成分と、熱伝導性粒子と、硬化成分を含む二段階硬化型熱伝導性シリコーン組成物3a,3bであって、(A)ポリオルガノシロキサン100重量部、(B)熱伝導性粒子をA成分に対して100~2500重量部、(C)前記ポリオルガノシロキサンの硬化触媒として白金族系金属触媒、(D)有機過酸化物をA成分に対して0.01~5重量部を含み、一次硬化温度で一次硬化をさせてあり、前記一次硬化温度より高温で二次硬化が可能であり、前記一次硬化後の二段階硬化型熱伝導性シリコーン組成物の熱伝導率が0.2~17W/m・Kであり、硬さがASKER Cで5~80である。

Description

二段階硬化型熱伝導性シリコーン組成物及びその製造方法
 本発明は、電子部品などの熱伝導部品などに使用される熱伝導性樹脂組成物及びその製造方法に関する。さらに詳しくは、異なる温度で硬化が進行する二段階硬化型熱伝導性シリコーン組成物及びその製造方法に関する。
 コンピュータ(CPU)、トランジスタ、発光ダイオード(LED)などの半導体は使用中に発熱し、その熱のためそれらを含む電子部品の性能が低下することがある。そのため発熱するような電子部品には、CPU等の発熱部に対して放熱部が取り付けられる。放熱部は金属であることが多いため発熱部と放熱部との熱の伝達性をよくするため、シート状やゲル状の熱伝導性組成物を発熱部と放熱部の間に挿入し、これらの密着度を高めて、熱の伝達性を高める方法がとられている。特許文献1には、ポリオルガノシロキサンに触媒量の白金族金属化合物存在下に予備架橋させ、得られた予備架橋体に有機過酸化物を配合し、硬度が低く高い反発弾性を有するシリコーンゴムを得ることが提案されている。特許文献2には、基材フィルムに表面印刷層を設け、表面印刷層にイオン液体を添加して一次加硫し、一次加硫の温度より高温で二次加硫することが提案されている。
特開2005-68273号公報 特開2014-065272号公報
 しかし、対象製品によっては、発熱部と放熱部の間に配置するまではシートが柔らかく、同個所に配置した後は、発熱部の熱により硬化を進行させる必要がある熱伝導性組成物が求められており、前記従来技術では対応できない問題があった。
 本発明は前記従来の問題を解決するため、異なる温度で硬化が進行する二段階硬化型熱伝導性シリコーン組成物及びその製造方法を提供する。
 本発明の二段階硬化型熱伝導性シリコーン組成物は、シリコーン成分と、熱伝導性粒子と、硬化成分を含む二段階硬化型熱伝導性シリコーン組成物であって、
(A)ポリオルガノシロキサン100重量部、
(B)熱伝導性粒子をA成分に対して100~2500重量部、
(C)前記ポリオルガノシロキサンの硬化触媒として白金族系金属触媒、
(D)有機過酸化物をA成分に対して0.01~5重量部、
を含み、
 一次硬化温度で一次硬化をさせてあり、前記一次硬化温度より高温で二次硬化が可能であり、
 前記一次硬化後の二段階硬化型熱伝導性シリコーン組成物の熱伝導率が0.2~17W/m・Kであり、硬さがASKER Cで5~80であることを特徴とする。
 本発明の二段階硬化型熱伝導性シリコーン組成物の製造方法は、本発明の二段階硬化型熱伝導性シリコーン組成物の製造方法であって、下記A~D成分を混合した後、所定形状に成形し、得られた成形物を一次硬化温度で一次硬化させる工程を含み、
(A)ポリオルガノシロキサン100重量部、
(B)熱伝導性粒子をA成分に対して100~2500重量部、
(C)前記ポリオルガノシロキサンの硬化触媒として白金族系金属触媒、
(D)有機過酸化物をA成分に対して0.01~5重量部、
を含み、
一次硬化された前記成形物は、前記一次硬化温度より高温で二次硬化が可能であり、
 前記一次硬化後の前記成形物の、熱伝導率が0.2~17W/m・Kであり、硬さがASKER Cで5~80であることを特徴とする。
 本発明の電子部品の製造方法は、発熱部と放熱部とを含む電子部品の製造方法であり、
 前記発熱部と前記放熱部の間に、本発明の二段階硬化型熱伝導性シリコーン組成物を前記発熱部と前記放熱部の両方に接するように配置した後、本発明の二段階硬化型熱伝導性シリコーン組成物の一次硬化温度より高温で加熱して、二次硬化させる工程を含み、
 前記加熱は、前記発熱部から発せられる熱によって行われる。
 本発明は、前記A~D成分を含み、一次硬化温度で一次硬化をさせてあり、前記一次硬化温度より高温で二次硬化が可能であり、前記一次硬化後の二段階硬化型熱伝導性シリコーン組成物の、熱伝導率が0.2~17W/m・Kであり、硬さがASKER Cで5~80であって、異なる温度で硬化が進行する二段階硬化型熱伝導性シリコーン組成物を提供できる。すなわち、本発明の二段階硬化型熱伝導性シリコーン組成物は、発熱部と放熱部の間に配置するまでは一次硬化の段階で止めてあり、柔らかいので、例えば、発熱部と放熱部の間に組み込みやすく、発熱部と放熱部の間に配置した後は、例えば、発熱部の熱により二次硬化し、硬化が進行する熱伝導性組成物を提供できる。
図1A-Bは本発明の一実施例における試料の熱伝導率の測定方法を示す説明図である。
 本発明の二段階硬化型熱伝導性シリコーン組成物(以下「本発明のシリコーン組成物」と略称する場合もある。)は、一次硬化温度では白金族系金属触媒による付加反応硬化作用により硬化が進行し、一次硬化温度より高温の二次硬化温度では有機過酸化物によるラジカル反応硬化作用により硬化が進行する。本発明の二段階硬化型熱伝導性シリコーン組成物は、白金族系金属触媒も有機過酸化物もポリオルガノシロキサン及び熱伝導性粒子とともに配合して例えばシート化し、一次硬化段階で止めてある。この段階の熱硬化性樹脂材料は、通常“Bステージ”ないしは“ハーフキュア”タイプといわれており、エポキシ樹脂等では一般的である。この状態のシートは柔らかく、必要個所に組み込みやすい。通常は一次硬化段階でメーカーから出荷され、販売先で必要個所に組み込み、組み込んだ後は、発熱部の熱により二次硬化する。
 本発明のシリコーン組成物の調製においては、下記のA~D成分を、好ましくは下記の量、使用する。
(A)ポリオルガノシロキサン100重量部
(B)熱伝導性粒子をA成分に対して100~2500重量部
(C)前記ポリオルガノシロキサンの硬化触媒として白金族系金属触媒
(D)有機過酸化物をA成分に対して0.01~5重量部
 このうち、(A)ポリオルガノシロキサンは、付加硬化型シリコーンポリマーの主原料であり、後述のベースポリマー成分と架橋剤成分を含み、通常は、A液とB液に分かれて保存されている。例えば、A液とB液の双方に前記ベースポリマー成分が含まれ、A液には、更に硬化触媒、例えば白金族系金属触媒が含まれ、B液には、更に前記架橋剤成分が含まれる。この状態で市販されている。通常は、このA液、B液、熱伝導性粒子、有機過酸化物、及び必要な場合、追加の白金族系金属触媒、その他着色剤などを加えて混合し、例えばシート状の成形物に成形し、一次硬化させる。硬化は架橋又は加硫ともいう。
 本発明の二段階硬化型熱伝導性シリコーン組成物は、一次硬化温度で一次硬化をさせてあり、一次硬化温度より高温で二次硬化が可能である。一次硬化後のシートの熱伝導率は0.2~17W/m・Kであり、0.5~15W/m・Kが好ましく、さらに好ましくは1~10W/m・Kである。前記の範囲であれば、発熱部からの熱を放熱部に有効に伝達できる。また、一次硬化後のシートの硬さはASKER Cで5~80であり、10~75が好ましく、さらに好ましくは15~70である。前記の範囲であれば、シートは柔らかく、必要個所に組み込みやすい。
 本発明で使用するポリオルガノシロキサンは、二段階硬化させるため、下記の成分を含むことが好ましい。
(a)ベースポリマー成分:1分子中に平均2個以上かつ分子鎖両末端のケイ素原子に結合したアルケニル基を含有する直鎖状オルガノポリシロキサン。
(b)架橋剤成分:1分子中に平均2個以上のケイ素原子に結合した水素原子を含有するオルガノハイドロジェンポリシロキサン。前記ケイ素原子に結合した水素原子のモル数は、前記ベースポリマー成分中のケイ素原子結合アルケニル基1モルに対して、1モル未満の量。
 本発明のシリコーン組成物は、シート状に成形されていることが好ましい。シート状であれば、発熱部と放熱体の間に組み込みやすい。
 本発明のシリコーン組成物は、一次硬化後の硬さと二次硬化後の硬さの差がASKER Cで12を超えることが好ましく、さらに好ましくは差が15以上である。これにより、一次硬化の段階の例えばシート状の本発明のシリコーン組成物は柔らかく、必要個所に組み込みやすく、必要個所に配置した後は発熱部の熱により二次硬化し、好ましい硬度にすることができる。二次硬化後の前記シート状の本発明のシリコーン組成物の硬さは、電子部品の発熱部と放熱部に対する本発明のシリコーン組成物の接着性が良好となることから、ASKER Cで40以上が好ましく、さらに好ましくは45以上である。
 本発明の二段階硬化型熱伝導性シリコーン組成物の製造方法は、下記A~D成分を混合した後、所定形状、例えばシート状に成形し、得られた成形物を一次硬化温度で一次硬化させる工程(一次硬化工程)を含む。
(A)ポリオルガノシロキサン100重量部、
(B)熱伝導性粒子をA成分に対して100~2500重量部、
(C)前記ポリオルガノシロキサンの硬化触媒として白金族系金属触媒
(D)有機過酸化物をA成分に対して0.01~5重量部、
 本発明の二段階硬化型熱伝導性シリコーン組成物(一次硬化された成形物)は、前記一次硬化温度より高温で二次硬化が可能であり、
 前記一次硬化後のシートの熱伝導率が0.2~17W/m・Kであり、硬さがASKER Cで5~80である。
 一次硬化温度は好ましくは100℃以下であり、二次硬化温度は前記一次硬化温度を超えるのが好ましい。さらに好ましい一次硬化温度は、常温(25℃)~100℃である。また、好ましい二次硬化温度は120~170℃である。二次硬化温度は、一定温度を保持しなくてもよく、例えば-40℃~170℃のヒートサイクルを繰り返す温度条件でもよい。これにより、前記一次硬化工程における白金族系金属触媒による付加反応硬化作用と、二次硬化工程における有機過酸化物反応による硬化作用を効率よく発揮できる。
 以下、各成分について説明する。
(1)ベースポリマー成分(A成分中のa成分)
 ベースポリマー成分(a成分)は、一分子中にケイ素原子に結合したアルケニル基を2個以上含有するオルガノポリシロキサンであり、アルケニル基を2個含有するオルガノポリシロキサンは本発明のシリコーンゴム組成物における主剤(ベースポリマー成分)である。このオルガノポリシロキサンは、アルケニル基として、ビニル基、アリル基等の炭素原子数2~8、特に2~6の、ケイ素原子に結合したアルケニル基を一分子中に2個有する。粘度は25℃で10~1000000mPa・s、特に100~100000mPa・sであることが作業性、硬化性などから望ましい。
 具体的には、下記一般式(1)で表される1分子中に平均2個以上かつ分子鎖末端のケイ素原子に結合したアルケニル基を含有するオルガノポリシロキサンを使用する。末端はトリオルガノシロキシ基で封鎖された直鎖状オルガノポリシロキサンである。25℃における粘度は10~1000000mPa・sのものが作業性、硬化性などから望ましい。なお、この直鎖状オルガノポリシロキサンは少量の分岐状構造(三官能性シロキサン単位)を分子鎖中に含有するものであってもよい。
Figure JPOXMLDOC01-appb-C000001
 一般式(1)中、R1は互いに同一又は異種の脂肪族不飽和結合を有さない非置換又は置換一価炭化水素基であり、R2はアルケニル基であり、kは0又は正の整数である。ここで、R1の脂肪族不飽和結合を有さない非置換又は置換の一価炭化水素基としては、例えば、炭素原子数1~10、特に1~6のものが好ましく、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、シクロヘキシル基、オクチル基、ノニル基、デシル基等のアルキル基、フェニル基、トリル基、キシリル基、ナフチル基等のアリール基、ベンジル基、フェニルエチル基、フェニルプロピル基等のアラルキル基、並びに、これらの基の水素原子の一部又は全部をフッ素、臭素、塩素等のハロゲン原子、シアノ基等で置換したもの、例えばクロロメチル基、クロロプロピル基、ブロモエチル基、トリフロロプロピル基等のハロゲン置換アルキル基、シアノエチル基等が挙げられる。R2のアルケニル基としては、例えば炭素原子数2~6、特に2~3のものが好ましく、具体的にはビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、イソブテニル基、ヘキセニル基、シクロヘキセニル基等が挙げられ、好ましくはビニル基である。一般式(1)において、kは、一般的には0≦k≦10000を満足する0又は正の整数であり、好ましくは5≦k≦2000、より好ましくは10≦k≦1200を満足する整数である。
 a成分のオルガノポリシロキサンとしては一分子中に例えばビニル基、アリル基等の炭素原子数2~8、特に2~6のケイ素原子に結合したアルケニル基を3個以上、通常、3~30個、好ましくは、3~20個程度有するオルガノポリシロキサンを併用しても良い。分子構造は直鎖状、環状、分岐状、三次元網状のいずれの分子構造のものであってもよい。好ましくは、主鎖がジオルガノシロキサン単位の繰り返しからなり、分子鎖両末端がトリオルガノシロキシ基で封鎖された、25℃での粘度が10~1000000mPa・s、特に100~100000mPa・sの直鎖状オルガノポリシロキサンである。
 アルケニル基は分子のいずれかの部分に結合していればよい。例えば、分子鎖末端、あるいは分子鎖非末端(分子鎖途中)のケイ素原子に結合しているものを含んでも良い。なかでも下記一般式(2)で表される分子鎖両末端のケイ素原子上にそれぞれ1~3個のアルケニル基を有し(但し、この分子鎖末端のケイ素原子に結合したアルケニル基が、両末端合計で3個未満である場合には、分子鎖非末端(分子鎖途中)のケイ素原子に結合したアルケニル基を、(例えばジオルガノシロキサン単位中の置換基として)、少なくとも1個有する直鎖状オルガノポリシロキサンであって、上記でも述べた通り25℃における粘度が10~1,000,000mPa・sのものが作業性、硬化性などから望ましい。なお、この直鎖状オルガノポリシロキサンは少量の分岐状構造(三官能性シロキサン単位)を分子鎖中に含有するものであってもよい。
Figure JPOXMLDOC01-appb-C000002
 一般式(2)中、R3は互いに同一又は異種の非置換又は置換一価炭化水素基であって、少なくとも1個がアルケニル基である。R4は互いに同一又は異種の脂肪族不飽和結合を有さない非置換又は置換一価炭化水素基であり、R5はアルケニル基であり、l,又はmは、0又は正の整数である。ここで、R3の一価炭化水素基としては、炭素原子数1~10、特に1~6のものが好ましく、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、シクロヘキシル基、オクチル基、ノニル基、デシル基等のアルキル基、フェニル基、トリル基、キシリル基、ナフチル基等のアリール基、ベンジル基、フェニルエチル基、フェニルプロピル基等のアラルキル基、ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、ヘキセニル基、シクロヘキセニル基、オクテニル基等のアルケニル基や、これらの基の水素原子の一部又は全部をフッ素、臭素、塩素等のハロゲン原子、シアノ基等で置換したもの、例えばクロロメチル基、クロロプロピル基、ブロモエチル基、トリフロロプロピル基等のハロゲン置換アルキル基やシアノエチル基等が挙げられる。
 また、R4の一価炭化水素基としても、炭素原子数1~10、特に1~6のものが好ましく、上記R1の具体例と同様のものが例示できるが、但しアルケニル基は含まない。R5のアルケニル基としては、例えば炭素数2~6、特に炭素数2~3のものが好ましく、具体的には前記一般式(1)のR2と同じものが例示され、好ましくはビニル基である。
 l,mは、一般的には0<l+m≦10000を満足する0又は正の整数であり、好ましくは5≦l+m≦2000、より好ましくは10≦l+m≦1200で、かつ0<l/(l+m)≦0.2、好ましくは、0.0011≦l/(l+m)≦0.1を満足する整数である。
(2)架橋剤成分(A成分中のb成分)
 本発明のb成分のオルガノハイドロジェンポリシロキサンは架橋剤として作用するものであり、この成分中のSiH基とベースポリマー成分中のアルケニル基とが付加反応(ヒドロシリル化)することにより硬化物を形成するものである。かかるオルガノハイドロジェンポリシロキサンは、一分子中にケイ素原子に結合した水素原子(即ち、SiH基)を2個以上有するものであればいずれのものでもよく、このオルガノハイドロジェンポリシロキサンの分子構造は、直鎖状、環状、分岐状、三次元網状構造のいずれであってもよいが、一分子中のケイ素原子の数(即ち、重合度)は2~1000、特に2~300程度のものを使用することができる。
 水素原子が結合するケイ素原子の位置は特に制約はなく、分子鎖の末端でも非末端(途中)でもよい。また、水素原子以外のケイ素原子に結合した有機基としては、前記一般式(1)のR1と同様の脂肪族不飽和結合を有さない非置換又は置換一価炭化水素基が挙げられる。
 b成分であるオルガノハイドロジェンポリシロキサンとしては下記一般式(3)~(5)で表される構造のものが例示できる。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
 上記の一般式中、R6はフェニル基、エポキシ基、アクリロイル基、メタアクリロイル基、アルコキシ基の少なくとも1種を含む有機基である。Lは0~1,000の整数、特には0~300の整数であり、Mは1~200の整数である。
(3)熱伝導性粒子(B成分)
 B成分の熱伝導性粒子は、熱伝導性フィラーとも言う。熱伝導性粒子は、マトリックス成分であるA成分100重量部に対して好ましくは100~2500重量部添加する。これにより熱伝導率を高く保つことができる。熱伝導性粒子としては、アルミナ,酸化亜鉛,酸化マグネシウム、窒化アルミ、窒化ホウ素、水酸化アルミ及びシリカから選ばれる少なくとも一つであることが好ましい。形状は球状,鱗片状,多面体状等様々なものを使用できる。アルミナを使用する場合は、純度99.5重量%以上のα-アルミナが好ましい。熱伝導性粒子の比表面積は0.06~10m2/gの範囲が好ましい。比表面積はBET比表面積であり、測定方法はJIS R1626にしたがう。平均粒子径は、0.1~100μmの範囲が好ましい。平均粒子径の測定はレーザー回折光散乱法により、D50(メジアン径)を測定する。この測定器としては、例えば堀場製作所製社製のレーザー回折/散乱式粒子分布測定装置LA-950S2がある。
 熱伝導性粒子として、平均粒子径が異なる少なくとも2つの無機粒子を併用してもよい。このようにすると大きな粒子径の間に小さな粒子径の熱伝導性無機粒子が埋まり、最密充填に近い状態で充填でき、熱伝導性が高くなるからである。
 無機粒子は、R(CH3aSi(OR’)3-a(Rは炭素数1~20の非置換または置換有機基、R’は炭素数1~4のアルキル基、aは0もしくは1)で示されるシラン化合物、もしくはその部分加水分解物で表面処理するのが好ましい。R(CH3aSi(OR’)3-a(Rは炭素数1~20の非置換または置換有機基、R’は炭素数1~4のアルキル基、aは0もしくは1)で示されるアルコキシシラン化合物(以下単に「シラン」という。)は、一例としてメチルトリメトキシラン,エチルトリメトキシラン,プロピルトリメトキシラン,ブチルトリメトキシラン,ペンチルトリメトキシラン,ヘキシルトリメトキシラン,ヘキシルトリエトキシシラン,オクチルトリメトキシシラン,オクチルトリエトキシラン,デシルトリメトキシシラン,デシルトリエトキシシラン,ドデシルトリメトキシシラン,ドデシルトリエトキシシラン,ヘキサドデシルトリメトキシシラン,ヘキサドデシルトリエトキシシシラン,オクタデシルトリメトキシシラン,オクタデシルトリエトキシシシラン等のシラン化合物がある。前記シラン化合物は、一種又は二種以上混合して使用することができる。表面処理剤として、アルコキシシランと片末端シラノールシロキサンを併用してもよい。ここでいう表面処理とは共有結合のほか吸着なども含む。平均粒子径2μm以上の無機粒子は、無機粒子全体を100重量部としたとき「(100×比表面積)/表面処理剤の最小被覆面積」以上添加するのが好ましい。
(4)白金族系金属触媒(C成分)
 C成分である白金族系金属触媒は、成分A~Dを含む組成物の一段階目の硬化を促進させる成分である。C成分としては、ヒドロシリル化反応に用いられる触媒を用いることができる。例えば白金黒、塩化第2白金、塩化白金酸、塩化白金酸と一価アルコールとの反応物、塩化白金酸とオレフィン類やビニルシロキサンとの錯体、白金ビスアセトアセテート等の白金系触媒、パラジウム系触媒、ロジウム系触媒などの白金族系金属触媒が挙げられる。C成分の配合量は、A成分の硬化に必要な量であればよく、好ましくはA成分が十分に硬化する量であればよく、所望の硬化速度などに応じて適宜調整することができる。白金族系金属触媒は、通常、本発明のシリコーン組成物の製造に使用されるシリコーン成分(例えば、2液室温硬化シリコーンポリマー)に含まれるが、更に、A成分を十分に硬化させるために、本発明のシリコーン組成物の製造において、前記シリコーン成分に追加の白金族系金属触媒を混合してもよい。白金族系金属触媒の前記配合量は、A成分に対して金属原子重量換算で、好ましくは0.01~1000ppmである。
 尚、白金族金属触媒について「A成分が十分に硬化する量」とは、一次硬化物の硬さが、ASKER Cで5~80とすることが可能な量である。
(5)有機過酸化物(D成分)
 D成分は、成分A~Dを含む組成物の二段階目の硬化を促進させる硬化成分である。D成分は、有機過酸化物であり、加熱によりラジカルを発生して、A成分の架橋反応を起こす。D成分としては、ベンゾイルペルオキシド、ビス(p-メチルベンゾイル)ペルオキシドのようなアシル系過酸化物;ジ-tert-ブチルペルオキシド、2,5-ジメチル-2,5-ジ(tert-ブチルペルオキシ)ヘキサン、tert-ブチルクミルペルオキシド、ジクミルペルオキシドのようなアルキル系ペルオキシド;ならびにtert-ブチルペルベンゾアートのようなエステル系有機過酸化物が例示される。D成分の配合量は、A成分100重量部に対して好ましくは0.01~5重量部であり、0.1~4重量部がより好ましい。
 (6)その他の成分
 本発明のシリコーン組成物には、必要に応じて前記以外の成分を配合することができる。例えばベンガラなどの無機顔料、フィラーの表面処理等の目的でアルキルトリアルコキシシランなどを添加してもよい。フィラー表面処理などの目的で添加する材料として、アルコキシ基含有シリコーンを添加しても良い。
 本発明は、下記の電子部品の製造方法を提供することもできる。
 本発明の電子部品の製造方法は、発熱部と放熱部の間に、本発明のシリコーン組成物を発熱部と放熱部の両方に接するように配置した後、本発明のシリコーン組成物(一次硬化された成形物)の一次硬化温度より高温で加熱しして二次硬化させる工程(二次硬化工程)を含む。前記二次硬化は、前記発熱部から発せられる熱によってなされてもよい。前記発熱部及び前記放熱部は、従来公知のものであり、前記発熱部は、コンピュータ(CPU)、トランジスタ、発光ダイオード(LED)などの半導体であり、前記放熱部は金属であることが多い。
 以下実施例を用いて説明する。本発明は実施例に限定されるものではない。各種パラメーターについては下記記載の方法で測定した。
<熱伝導率>
 熱伝導性シリコーンゴムシートの一次硬化物の熱伝導率は、ホットディスク(ISO/CD 22007-2準拠)により測定した。この熱伝導率測定装置1は図1Aに示すように、ポリイミドフィルム製センサ2を2個の試料(一次硬化物)3a,3bで挟み、センサ2に定電力をかけ、一定発熱させてセンサ2の温度上昇値から熱特性を解析する。センサ2は先端4が直径7mmであり、電極の2重スパイラル構造となっており、下部に印加電流用電極5と抵抗値用電極(温度測定用電極)6が配置されている。熱伝導率は以下の式(数1)で算出する。
Figure JPOXMLDOC01-appb-M000006
<硬さ>
 熱伝導性シリコーンゴムシートの一次硬化物及び二次硬化物の硬さは、ASKER Cに従い測定した。
<接着破断荷重、引張せん断接着強度>
 二次硬化された熱伝導性シリコーンゴムシートの接着強度をJIS K6850に規定の方法に従って測定した。具体的な測定条件は下記の通りである。
[測定条件]
測定器:オートグラフ AGS-X 島津製作所製
試料サイズ:一次硬化熱伝導性シリコーンゴムシート12.5mm×25mm×0.25mm
試験片:1対のアルミニウム合金板が上記試料を用いて接着されたものを試験片として用意した。
接着条件:試験片の接着部分に約6MPaの圧力をかけて1対のアルミニウム合金板と一次硬化熱伝導性シリコーンゴムシートとを密着させた後、150℃10時間加熱し、二次硬化させた。
試験条件:試験速度:1mm/min
 試験力の最大値(N)を接着破断荷重(破断点の荷重)とし、接着面積(12.5mm×25mm)で除した値を引張せん断接着強度(MPa)とした。結果は表4に示している。
(実施例1~3、比較例1)
1.材料成分
(1)ポリオルガノシロキサン(A成分)
 ポリオルガノシロキサンを含む2液室温硬化シリコーンポリマー(シリコーン成分)を使用した。一方の液(A液)には、ベースポリマー成分(A成分のうちのa成分)と白金族系金属触媒が含まれており、他方の液(B液)には、ベースポリマー成分(A成分のうちのa成分)と架橋剤成分(A成分のうちのb成分)であるオルガノハイドロジェンポリシロキサンが含まれる。
(2)熱伝導性粒子(B成分)
 表1に記載の3種のアルミナ粒子を使用した。これらのアルミナ粒子はシランカップリング剤(オクチルトリエトキシシラン)を1質量%の割合で添加し、均一になるまで撹拌し、撹拌したアルミナ粒子をトレ―等に均一に拡げ100℃で2時間乾燥させることにより表面処理した。これにより、Pt触媒の触媒能である硬化促進が損なわれることを防いだ。なお、平均粒子径は、レーザー回折光散乱法による粒度分布測定において、体積基準による累積粒度分布のD50(メジアン径)である。この測定器としては、例えば堀場製作所製社製のレーザー回折/散乱式粒子分布測定装置LA-950S2がある。アルミナ粒子(1)の平均粒子径は0.3μm、比表面積は 7.0m2/g、アルミナ粒子(2)の平均粒子径は2μm、比表面積は 1.0m2/g、アルミナ粒子(3)の平均粒子径は35μm、比表面積は 0.2m2/gである。
(3)白金族系金属触媒(C成分)
 追加の白金族系金属触媒として、白金-ビニルジシロキサン錯体を使用した。
 尚、上記の通り2液室温硬化シリコーンポリマー(シリコーン成分)には白金族系金属触媒が含まれている。実施例1~3、比較例1のシリコーン組成物の調製に際し、ポリオルガノシロキサンが十分に一次硬化するように、追加の白金族系金属触媒を、シリコーン成分100重量部に対して3重量部添加した。実施例1~3、比較例1のシリコーン組成物において、ポリオルガノシロキサンと白金族系金属触媒の合計に対する白金族系金属触媒の量は、いずれも、金属原子重量換算で0.01~1000ppmの範囲の値とした。
(4)有機過酸化物(D成分)
 有機過酸化物としてアルキルペルオキシドを使用した。
2.コンパウンド
 各材料について前記表1に示す量を計量し、それらを混錬装置に入れてコンパウンドとした。
 尚、表1において、各材料の量を、シリコーン成分(2液室温硬化シリコーンポリマー)を100質量部とした場合の量(重量部)で記載しているが、いずれのコンパウンドにおいても、ポリオルガノシロキサン100質量部に対する、熱伝導性粒子、有機過酸化物、その他の成分の添加量は、各々、既述の本発明における好ましい量を満たしている。
3.シート成形加工
 離型処理をしたポリエステルフィルムで前記コンパウンドを挟み込み、等速ロールにて厚み2.0mmのシート状に成形し、100℃10分加熱硬化し、熱伝導性シリコーンゴムシートを成形した。二次硬化は170℃で12時間とした。熱伝導性シリコーンゴムシートの物性は表1にまとめて示す。
Figure JPOXMLDOC01-appb-T000007
 表1から明らかなとおり、実施例1~3は白金族系金属触媒と有機過酸化物を併用していたため、熱伝導性シリコーンゴムシートは一次硬化温度で一次硬化をさせてあり、一次硬化温度より高温で二次硬化が可能であった。また、一次硬化後のシートの熱伝導率は4.5W/m・Kであり、ASKER C硬さは20~21であった。これに対して比較例1は過酸化物を使用しなかったため、二次硬化後の熱伝導性シリコーンゴムシート(二次硬化物)の硬さは実施例1~3ほどには高くならなかった。硬さが高くないということは、硬化が不十分であり、ゴム強度が上がらないため、引張せん断接着強度は低くなる。
 (実施例4~8、参考例1~2)
 耐熱助剤として平均粒子径0.3μmの酸化チタンを使用し、追加の白金系金属触媒、熱伝導性粒子、顔料(ベンガラ)の使用量を、各々表2~3に示す量としたこと以外は実施例1と同様に各コンパウンドを調製した。また、表2~3に示した硬化条件で熱伝導性シリコーンゴムシートを一次硬化及び二次硬化させたこと以外は、実施例1と同様にして実験をした。
 尚、表2~3において、各材料の量を、シリコーン成分(2液室温硬化シリコーンポリマー)を100質量部とした場合の量(重量部)で記載しているが、いずれのコンパウンドにおいても、ポリオルガノシロキサン100質量部に対する、熱伝導性粒子、有機過酸化物、その他の成分の添加量は、各々、既述の本発明における好ましい量を満たしている。
 また、上記の通り2液室温硬化シリコーンポリマー(シリコーン成分)には白金族系金属触媒が含まれている。実施例4~8、参考例1~2のシリコーン組成物の調製に際し、ポリオルガノシロキサンが十分に一次硬化するように、追加の白金族系金属触媒を、シリコーン成分100重量部に対して4重量部添加した。実施例4~8、参考例1~2のシリコーン組成物において、ポリオルガノシロキサンと白金族系金属触媒の合計に対する白金族系金属触媒の量は、金属原子重量換算で0.01~1000ppmの範囲の値である。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 表2~3から明らかなとおり、実施例4~8は白金族系金属触媒と有機過酸化物を併用していたため、熱伝導性シリコーンゴムシートは一次硬化温度で一次硬化をさせてあり、一次硬化温度より高温で二次硬化が可能であった。また、一次硬化後のシートの熱伝導率は4.5W/m・Kであり、ASKER C硬さは27であった。これに対して参考例1~2は二次硬化温度が一次硬化温度と同等又は低かったため、二次硬化物の硬さは実施例4~8ほどには高くならなかった。
 (実施例9~10、比較例2~3)
 各材料について表4に示す量を計量し、それらを混錬装置に入れてコンパウンドを調製し、表4に示した硬化条件で熱伝導性シリコーンゴムシートを硬化させたこと以外は、実施例1と同様にして実験をした。アルミナ粒子(4)の平均粒子径は75μm、比表面積は 0.2m2/gである。
 尚、実施例9~10、比較例2~3のシリコーン組成物の調製では、白金族系金属触媒は、シリコーン成分(2液室温硬化シリコーンポリマー)に含まれている白金族系金属触媒のみを使用し、白金族系金属触媒の追加は行わなかった。シリコーン成分に含まれる白金族系金属触媒のみで、ポリオルガノシロキサンの一次硬化が十分に行えた。実施例9~10、比較例2~3のシリコーン組成物において、ポリオルガノシロキサンと白金族系金属触媒の合計に対する白金族系金属触媒の量は、金属原子重量換算で0.01~1000ppmの範囲の値とした。
 また、表4において、各材料の量を、シリコーン成分(2液室温硬化シリコーンポリマー)を100質量部とした場合の量(重量部)で記載しているが、いずれのコンパウンドにおいても、ポリオルガノシロキサン100質量部に対する、熱伝導性粒子、有機過酸化物、その他の成分の添加量は、各々、既述の本発明における好ましい量を満たしている。
Figure JPOXMLDOC01-appb-T000010
 表4から明らかなとおり、実施例9~10は白金族系金属触媒と有機過酸化物を併用していたため、熱伝導性シリコーンゴムシートは一次硬化温度で一次硬化をさせてあり、一次硬化温度より高温で二次硬化が可能であった。また、一次硬化後のシートの熱伝導率は1.8W/m・Kであり、ASKER C硬さは8~35であり、比較例2~3よりも接着強度が向上していた。これに対して比較例2~3は過酸化物を使用しなかったため、二次硬化後の熱伝導性シリコーンゴムシート(二次硬化物)の硬さは実施例1~3ほどには高くならなかった。
 本発明の二段階硬化型熱伝導性シリコーン組成物は、発熱部品の発熱部と放熱部との間に介在させるシートなど様々な形態の製品に適用できる。
1 熱伝導率測定装置
2 センサ
3a,3b 試料
4 センサ2の先端
5 印加電流用電極
6 抵抗値用電極(温度測定用電極)

Claims (10)

  1.  シリコーン成分と、熱伝導性粒子と、硬化成分を含む二段階硬化型熱伝導性シリコーン組成物であって、
    (A)ポリオルガノシロキサン100重量部、
    (B)熱伝導性粒子をA成分に対して100~2500重量部、
    (C)前記ポリオルガノシロキサンの硬化触媒として白金族系金属触媒、
    (D)有機過酸化物をA成分に対して0.01~5重量部、
    を含み、
     一次硬化温度で一次硬化をさせてあり、前記一次硬化温度より高温で二次硬化が可能であり、
     前記一次硬化後の二段階硬化型熱伝導性シリコーン組成物の熱伝導率が0.2~17W/m・Kであり、硬さがASKER Cで5~80であることを特徴とする二段階硬化型熱伝導性シリコーン組成物。
  2.  前記白金族系金属触媒をA成分に対して金属原子重量換算で0.01~1000ppm含む、請求項1に記載の二段階硬化型熱伝導性シリコーン組成物。
  3.  前記ポリオルガノシロキサンは、下記の成分を含む請求項1又は2に記載の二段階硬化型熱伝導性シリコーン組成物。
    (a)ベースポリマー成分:1分子中に平均2個以上かつ分子鎖両末端のケイ素原子に結合したアルケニル基を含有する直鎖状オルガノポリシロキサン。
    (b)架橋剤成分:1分子中に平均2個以上のケイ素原子に結合した水素原子を含有するオルガノハイドロジェンポリシロキサン。
     前記ケイ素原子に結合した水素原子のモル数は、前記ベースポリマー成分中のケイ素原子結合アルケニル基1モルに対して、1モル未満の量である。
  4.  前記シリコーン組成物はシート状に成形されている請求項1~3のいずれかに記載の二段階硬化型熱伝導性シリコーン組成物。
  5.  前記一次硬化は白金族系金属触媒による付加反応硬化であり、前記二次硬化は過酸化物反応による硬化である請求項1~4のいずれかに記載の二段階硬化型熱伝導性シリコーン組成物。
  6.  前記二次硬化後の二段階硬化型熱伝導性シリコーン組成物の硬さは、ASKER Cで40以上である請求項1~5のいずれかに記載の二段階硬化型熱伝導性シリコーン組成物。
  7.  請求項1~6のいずれかに記載の二段階硬化型熱伝導性シリコーン組成物の製造方法であって、
     下記A~D成分を混合した後、所定形状に成形し、得られた成形物を一次硬化温度で一次硬化させる工程を含み、
     一次硬化された前記成形物は、前記一次硬化温度より高温で二次硬化が可能であり、
     一次硬化後の前記成形物の、熱伝導率が0.2~17W/m・Kであり、硬さがASKER Cで5~80であることを特徴とする二段階硬化型熱伝導性シリコーン組成物の製造方法。
    (A)ポリオルガノシロキサン100重量部
    (B)熱伝導性粒子をA成分に対して100~2500重量部
    (C)前記ポリオルガノシロキサンの硬化触媒として白金族系金属触媒
    (D)有機過酸化物をA成分に対して0.01~5重量部
  8.  前記白金族系金属触媒をA成分に対して金属原子重量換算で0.01~1000ppm含む、請求項7に記載の二段階硬化型熱伝導性シリコーン組成物の製造方法。
  9.  前記一次硬化温度が100℃以下であり、前記二次硬化温度が前記一次硬化温度を超える請求項7又は8に記載の二段階硬化型熱伝導性シリコーン組成物の製造方法。
  10.  発熱部と放熱部とを含む電子部品の製造方法であって、
     前記発熱部と前記放熱部の間に、請求項1~6のいずれかの項に記載の二段階硬化型熱伝導性シリコーン組成物を前記発熱部と前記放熱部の両方に接するように配置した後、前記一次硬化温度より高温で加熱して二次硬化させる工程を含み、
     前記加熱は、前記発熱部から発せられる熱によって行われる、電子部品の製造方法。
PCT/JP2018/042337 2017-11-17 2018-11-15 二段階硬化型熱伝導性シリコーン組成物及びその製造方法 WO2019098290A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/494,520 US20200010621A1 (en) 2017-11-17 2018-11-15 Two-step curable thermally conductive silicone composition and method for producing same
EP18877955.7A EP3712211A4 (en) 2017-11-17 2018-11-15 TWO-STAGE CURABLE THERMAL CONDUCTIVE SILICONE COMPOSITION AND MANUFACTURING PROCESS FOR IT
JP2019518323A JPWO2019098290A1 (ja) 2017-11-17 2018-11-15 二段階硬化型熱伝導性シリコーン組成物及びその製造方法
CN201880019979.3A CN110546208A (zh) 2017-11-17 2018-11-15 二阶段固化型导热性有机硅组合物及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-222098 2017-11-17
JP2017222098 2017-11-17

Publications (1)

Publication Number Publication Date
WO2019098290A1 true WO2019098290A1 (ja) 2019-05-23

Family

ID=66537803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/042337 WO2019098290A1 (ja) 2017-11-17 2018-11-15 二段階硬化型熱伝導性シリコーン組成物及びその製造方法

Country Status (6)

Country Link
US (1) US20200010621A1 (ja)
EP (1) EP3712211A4 (ja)
JP (1) JPWO2019098290A1 (ja)
CN (1) CN110546208A (ja)
TW (1) TW201922939A (ja)
WO (1) WO2019098290A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020075411A1 (ja) * 2018-10-12 2020-04-16 信越化学工業株式会社 付加硬化型シリコーン組成物及びその製造方法
WO2020084899A1 (ja) * 2018-10-22 2020-04-30 信越化学工業株式会社 付加硬化型シリコーン組成物
JP6705067B1 (ja) * 2019-03-07 2020-06-03 富士高分子工業株式会社 熱伝導性シート及びその製造方法
WO2020179115A1 (ja) * 2019-03-07 2020-09-10 富士高分子工業株式会社 熱伝導性シート及びその製造方法
WO2021161580A1 (ja) * 2020-02-13 2021-08-19 富士高分子工業株式会社 耐熱性シリコーン樹脂組成物及び耐熱性シリコーン樹脂複合材料
JP6969035B1 (ja) * 2020-11-16 2021-11-24 富士高分子工業株式会社 熱伝導性シリコーン組成物、これを用いたシート及びその製造方法
WO2022102148A1 (ja) * 2020-11-16 2022-05-19 富士高分子工業株式会社 熱伝導性シリコーン組成物、これを用いたシート及びその製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201638223A (zh) * 2015-03-31 2016-11-01 羅傑斯公司 雙溫度固化型聚矽氧組合物、其製造方法及由其製備之物件
CN114729192B (zh) * 2020-07-07 2024-04-26 富士高分子工业株式会社 导热性有机硅凝胶组合物、导热性有机硅凝胶片材及其制造方法
EP4113592A4 (en) * 2020-09-03 2023-11-08 Fuji Polymer Industries Co., Ltd. THERMALLY CONDUCTIVE SILICONE HEAT DISSIPATION MATERIAL
EP4352147A1 (en) * 2021-06-08 2024-04-17 Henkel AG & Co. KGaA Thermally conductive composition

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05140456A (ja) * 1991-11-20 1993-06-08 Shin Etsu Chem Co Ltd 熱伝導性シリコーンゴム組成物の製造方法
JP2005068273A (ja) 2003-08-22 2005-03-17 Ge Toshiba Silicones Co Ltd ポリオルガノシロキサン組成物およびその製造方法ならびにシリコーンゴム成形品
JP2010013521A (ja) * 2008-07-02 2010-01-21 Shin-Etsu Chemical Co Ltd 熱伝導性シリコーン組成物
JP2013147600A (ja) * 2012-01-23 2013-08-01 Shin-Etsu Chemical Co Ltd 熱伝導性シリコーン組成物及びその硬化物
JP2014065272A (ja) 2012-09-27 2014-04-17 Shin Etsu Polymer Co Ltd オフセット印刷用ブランケットおよびその製造方法
WO2016103654A1 (ja) * 2014-12-26 2016-06-30 東レ・ダウコーニング株式会社 硬化性オルガノポリシロキサン組成物、それからなる半導体用封止剤および半導体装置
WO2016160750A1 (en) * 2015-03-31 2016-10-06 Rogers Corporation Dual temperature curable silicone compositions, methods of manufacture, and articles prepared therefrom
JP2017075218A (ja) * 2015-10-14 2017-04-20 信越化学工業株式会社 絶縁放熱シート

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0462012A (ja) * 1990-06-25 1992-02-27 Toray Dow Corning Silicone Co Ltd シリコーンゴム成形品の製造方法及び該成形品製造用の成形材料
US5925709A (en) * 1996-08-29 1999-07-20 Shin-Etsu Chemical Co., Ltd. Method for the preparation of silicone rubber
JP3807995B2 (ja) * 2002-03-05 2006-08-09 ポリマテック株式会社 熱伝導性シート
JP2004176016A (ja) * 2002-11-29 2004-06-24 Shin Etsu Chem Co Ltd 熱伝導性シリコーン組成物及びその成形体
WO2014124367A1 (en) * 2013-02-11 2014-08-14 Dow Corning Corporation Method for forming thermally conductive thermal radical cure silicone compositions
JP6261287B2 (ja) * 2013-11-05 2018-01-17 東京エレクトロン株式会社 プラズマ処理装置
JP2017155136A (ja) * 2016-03-02 2017-09-07 サムスン エレクトロニクス カンパニー リミテッド 無機酸化物含有硬化性シリコーン樹脂組成物及びそれを用いて形成される光学部材
WO2019216190A1 (ja) * 2018-05-08 2019-11-14 富士高分子工業株式会社 熱伝導性シート、これを用いた実装方法及びこれを用いた接合方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05140456A (ja) * 1991-11-20 1993-06-08 Shin Etsu Chem Co Ltd 熱伝導性シリコーンゴム組成物の製造方法
JP2005068273A (ja) 2003-08-22 2005-03-17 Ge Toshiba Silicones Co Ltd ポリオルガノシロキサン組成物およびその製造方法ならびにシリコーンゴム成形品
JP2010013521A (ja) * 2008-07-02 2010-01-21 Shin-Etsu Chemical Co Ltd 熱伝導性シリコーン組成物
JP2013147600A (ja) * 2012-01-23 2013-08-01 Shin-Etsu Chemical Co Ltd 熱伝導性シリコーン組成物及びその硬化物
JP2014065272A (ja) 2012-09-27 2014-04-17 Shin Etsu Polymer Co Ltd オフセット印刷用ブランケットおよびその製造方法
WO2016103654A1 (ja) * 2014-12-26 2016-06-30 東レ・ダウコーニング株式会社 硬化性オルガノポリシロキサン組成物、それからなる半導体用封止剤および半導体装置
WO2016160750A1 (en) * 2015-03-31 2016-10-06 Rogers Corporation Dual temperature curable silicone compositions, methods of manufacture, and articles prepared therefrom
JP2017075218A (ja) * 2015-10-14 2017-04-20 信越化学工業株式会社 絶縁放熱シート

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3712211A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020075411A1 (ja) * 2018-10-12 2021-09-02 信越化学工業株式会社 付加硬化型シリコーン組成物及びその製造方法
WO2020075411A1 (ja) * 2018-10-12 2020-04-16 信越化学工業株式会社 付加硬化型シリコーン組成物及びその製造方法
JP7476793B2 (ja) 2018-10-12 2024-05-01 信越化学工業株式会社 付加硬化型シリコーン組成物及びその製造方法
WO2020084899A1 (ja) * 2018-10-22 2020-04-30 信越化学工業株式会社 付加硬化型シリコーン組成物
JP7476795B2 (ja) 2018-10-22 2024-05-01 信越化学工業株式会社 付加硬化型シリコーン組成物
JPWO2020084899A1 (ja) * 2018-10-22 2021-09-16 信越化学工業株式会社 付加硬化型シリコーン組成物
US11667825B2 (en) 2019-03-07 2023-06-06 Fuji Polymer Industries Co., Ltd. Thermally conductive sheet and method for producing the same
JP6705067B1 (ja) * 2019-03-07 2020-06-03 富士高分子工業株式会社 熱伝導性シート及びその製造方法
WO2020179115A1 (ja) * 2019-03-07 2020-09-10 富士高分子工業株式会社 熱伝導性シート及びその製造方法
JP6935162B1 (ja) * 2020-02-13 2021-09-15 富士高分子工業株式会社 耐熱性シリコーン樹脂組成物及び耐熱性シリコーン樹脂複合材料
WO2021161580A1 (ja) * 2020-02-13 2021-08-19 富士高分子工業株式会社 耐熱性シリコーン樹脂組成物及び耐熱性シリコーン樹脂複合材料
WO2022102148A1 (ja) * 2020-11-16 2022-05-19 富士高分子工業株式会社 熱伝導性シリコーン組成物、これを用いたシート及びその製造方法
JP6969035B1 (ja) * 2020-11-16 2021-11-24 富士高分子工業株式会社 熱伝導性シリコーン組成物、これを用いたシート及びその製造方法

Also Published As

Publication number Publication date
TW201922939A (zh) 2019-06-16
EP3712211A4 (en) 2021-07-21
JPWO2019098290A1 (ja) 2020-10-01
CN110546208A (zh) 2019-12-06
US20200010621A1 (en) 2020-01-09
EP3712211A1 (en) 2020-09-23

Similar Documents

Publication Publication Date Title
WO2019098290A1 (ja) 二段階硬化型熱伝導性シリコーン組成物及びその製造方法
JP5015436B2 (ja) 熱伝導性シリコーンエラストマー、熱伝導媒体および熱伝導性シリコーンエラストマー組成物
US20100140538A1 (en) Silicone elastomer composition and silicone elastomer
WO2020137086A1 (ja) 熱伝導組成物及びこれを用いた熱伝導性シート
CN113396055B (zh) 具有热传导性粘着层的热传导性硅酮橡胶片及其制造方法
KR20160084808A (ko) 열전도성 실리콘 조성물 및 경화물, 및 복합 시트
JP6987210B2 (ja) 熱伝導性シート
KR20210114507A (ko) 열전도성 조성물 및 그 제조 방법
JP6692512B1 (ja) 熱伝導組成物及びこれを用いた熱伝導性シート
WO2020179115A1 (ja) 熱伝導性シート及びその製造方法
JP4395753B2 (ja) 熱伝導部材の製造方法及びこの使用方法並びに放熱構造体
JP2007119589A (ja) 熱伝導性シリコーンゴム組成物
JP2018053260A (ja) 熱伝導性シリコーン組成物及び硬化物並びに複合シート
KR20190034562A (ko) 열전도성 시트
JP6778846B1 (ja) 耐熱性熱伝導性組成物及び耐熱性熱伝導性シート
JP6705067B1 (ja) 熱伝導性シート及びその製造方法
KR102570407B1 (ko) 내열성 열전도성 조성물 및 내열성 열전도성 시트
JP7041793B1 (ja) シリコーンゲル組成物及びシリコーンゲルシート
JP6932872B1 (ja) 熱伝導性シリコーンゲル組成物
JP7217079B1 (ja) 熱伝導性組成物及びこれを用いた熱伝導性シートとその製造方法
WO2023135857A1 (ja) 熱伝導性組成物及びこれを用いた熱伝導性シートとその製造方法
TW202235579A (zh) 熱傳導性組成物及其製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019518323

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18877955

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018877955

Country of ref document: EP

Effective date: 20200617