WO2020066290A1 - 鉛蓄電池 - Google Patents

鉛蓄電池 Download PDF

Info

Publication number
WO2020066290A1
WO2020066290A1 PCT/JP2019/030263 JP2019030263W WO2020066290A1 WO 2020066290 A1 WO2020066290 A1 WO 2020066290A1 JP 2019030263 W JP2019030263 W JP 2019030263W WO 2020066290 A1 WO2020066290 A1 WO 2020066290A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
electrode plate
active material
lead
plate
Prior art date
Application number
PCT/JP2019/030263
Other languages
English (en)
French (fr)
Inventor
智史 柴田
真也 菅
大哉 海藤
Original Assignee
古河電池株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018182542A external-priority patent/JP6670903B1/ja
Priority claimed from JP2018182543A external-priority patent/JP6705874B2/ja
Priority claimed from JP2018182541A external-priority patent/JP6705873B2/ja
Application filed by 古河電池株式会社 filed Critical 古河電池株式会社
Priority to US17/253,084 priority Critical patent/US20210167363A1/en
Priority to CN201980028342.5A priority patent/CN112042041B/zh
Priority to DE112019002286.5T priority patent/DE112019002286B4/de
Publication of WO2020066290A1 publication Critical patent/WO2020066290A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • H01M4/16Processes of manufacture
    • H01M4/22Forming of electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/12Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/12Construction or manufacture
    • H01M10/128Processes for forming or storing electrodes in the battery container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/044Activating, forming or electrochemical attack of the supporting material
    • H01M4/0445Forming after manufacture of the electrode, e.g. first charge, cycling
    • H01M4/0447Forming after manufacture of the electrode, e.g. first charge, cycling of complete cells or cells stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/56Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of lead
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/73Grids for lead-acid accumulators, e.g. frame plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0005Acid electrolytes
    • H01M2300/0011Sulfuric acid-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/70Arrangements for stirring or circulating the electrolyte
    • H01M50/73Electrolyte stirring by the action of gas on or in the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a lead storage battery.
  • charge control vehicles equipped with a charge control system and an idling stop system for the purpose of improving fuel efficiency and reducing emissions
  • idle stop vehicles Is sometimes the mainstream.
  • the state of charge or deterioration of the lead storage battery is determined on the vehicle side, and based on the result, charging / discharging of the lead storage battery and idling stop of the engine are controlled.
  • lead storage batteries used in charge control vehicles and idling stop vehicles were required to have high durability and charge acceptability as well as accuracy in determining the state of charge and the state of deterioration.
  • a method of determining the state of charge or the state of deterioration of a lead storage battery a method of measuring the internal resistance of the lead storage battery is known.
  • the internal resistance of the lead storage battery may increase due to various factors other than the charged state and the deteriorated state, it is not easy to accurately determine the charged state and the deteriorated state.
  • the object of the present invention is to provide a lead-acid battery in which an increase in internal resistance is suppressed and a charged state or a deteriorated state can be accurately determined by a method for measuring internal resistance.
  • a positive electrode plate having a positive electrode active material containing lead dioxide and a negative electrode plate having a negative electrode active material containing metallic lead are alternately stacked with a plurality of separators interposed therebetween.
  • the gist of the present invention is that the electrode group is immersed in an electrolytic solution, and the flatness of the positive electrode plate after formation is 4.0 mm or less.
  • FIG. 1 is a partial cross-sectional view illustrating a structure of a lead storage battery according to an embodiment of the present invention. It is a figure explaining the measuring method of the flatness of an electrode plate.
  • FIG. 3 is a diagram of a positive electrode plate schematically showing the occurrence of a curve due to a difference in the degree of thick coating of a positive electrode active material. It is sectional drawing explaining the thick coating degree ratio of both plate surfaces of a positive electrode plate.
  • an electrode plate group in which a plurality of positive electrode plates and a plurality of negative electrode plates are alternately stacked via a separator is housed in a battery case under a predetermined group pressure.
  • a ribbed separator provided with a rib on the base surface is used as an electrode plate because a diffusion channel for electrolyte and a gas discharge channel required for the charge / discharge reaction are required between the electrodes of the electrode group.
  • a method is used in which a gap is provided to be a diffusion flow path for an electrolytic solution or a discharge flow path for a gas by being interposed therebetween.
  • the cause of the bending of the -electrode plate has been found by the present inventors to be as follows.
  • an attempt is made to form an active material layer of the same thickness on both plate surfaces of the substrate, but the same thickness is formed on both plate surfaces. It is not easy to form an active material layer having a different thickness, and an active material layer having a different thickness may be formed.
  • the thickness of the active material layer 102B formed on the left plate surface 101b is larger than the thickness of the active material layer 102A formed on the right plate surface 101a of the substrate 101 of the electrode plate 100. It is bigger.
  • the electrode plate is formed such that the plate surface 101b with the larger thickness of the active material layer 102B becomes a convex surface and the plate surface 101a with the smaller thickness of the active material layer 102A becomes a concave surface. 100 curves.
  • the present inventor has found that if the curvature of the electrode plate is suppressed, the increase in internal resistance due to formation, charging and discharging, etc. is suppressed, and the state of charge and the state of deterioration are accurately determined by a method of measuring the internal resistance.
  • the present inventors have found that a lead-acid battery capable of performing the above-mentioned operations can be obtained, and have completed the present invention. That is, in the lead storage battery according to one embodiment of the present invention, a plurality of positive electrode plates having a positive electrode active material containing lead dioxide and a plurality of negative electrode plates having a negative electrode active material containing metal lead are interposed via a separator.
  • the electrode group is a lead-acid battery immersed in an electrolytic solution, and the flatness of the positive electrode plate after formation is 4.0 mm or less. It is preferable that the flatness of all the positive electrode plates in the electrode plate group be 4.0 mm or less. In addition, between the positive electrode plate and the negative electrode plate, the positive electrode plate is more likely to be curved during chemical formation. From this, it is important to control the flatness of the positive electrode plate to be small in order to achieve the object of the present invention.
  • the lead storage battery according to the present embodiment includes an electrode plate group 1 in which a plurality of positive electrode plates 10 and a plurality of negative electrode plates 20 are alternately stacked with a separator 30 interposed therebetween.
  • the electrode plate group 1 is housed in the battery case 41 together with an electrolytic solution (not shown) so that the laminating direction is along the horizontal direction (that is, the plate surfaces of the positive electrode plate 10 and the negative electrode plate 20 are along the vertical direction). It is immersed in the electrolytic solution in the battery case 41.
  • the positive electrode plate 10 is, for example, filled with a positive electrode active material containing lead dioxide in the openings of a plate-like lattice made of a lead alloy, and on the both plate surfaces of the plate-like lattice made of a lead alloy, An active material layer made of the contained positive electrode active material was formed.
  • the negative electrode plate 20 for example, while filling the negative electrode active material containing metal lead into the openings of the plate-shaped lattice made of a lead alloy, while adding metal lead to both plate surfaces of the plate-shaped lattice made of a lead alloy. An active material layer composed of a contained negative electrode active material was formed.
  • the plate-like lattice body serving as the substrate of the positive electrode plate 10 and the negative electrode plate 20 can be manufactured by a casting method, a punching method, or an expanding method.
  • the separator 30 is, for example, a porous film made of resin, glass, or the like.
  • Current collecting ears 11 and 21 are formed on the upper ends of the positive electrode plate 10 and the negative electrode plate 20, respectively.
  • the current collecting ears 11 of each positive electrode plate 10 are connected by a positive electrode strap 13, and the current collecting ears of each negative electrode plate 20 are collected.
  • the ears 21 are connected by a negative strap 23.
  • the positive strap 13 is connected to one end of the positive terminal 15, the negative strap 23 is connected to one end of the negative terminal 25, and the other end of the positive terminal 15 and the other end of the negative terminal 25 are connected to the opening of the battery case 41. It penetrates a lid 43 that closes the part, and is exposed to the outside of the case body of the lead storage battery including the battery case 41 and the lid 43.
  • the flatness of the positive electrode plate 10 after formation is 4.0 mm or less. As the value of the flatness is smaller, the positive electrode plate 10 is flatter, and gas bubbles are less likely to adhere to the surface of the positive electrode plate 10. If the flatness of the positive electrode plate 10 after formation is 4.0 mm or less, the gas is easily discharged to the outside of the electrode plate group 1, so that the increase in the internal resistance of the lead-acid battery is suppressed and the internal resistance is measured. This makes it possible to accurately determine the state of charge and the state of deterioration.
  • the method of making the flatness of the positive electrode plate 10 after chemical formation 4.0 mm or less is not particularly limited. May be corrected to make the flatness 4.0 mm or less. As described above, if the thicknesses of the active material layers formed on both surfaces of the positive electrode plate are different, the positive electrode plate is curved during chemical formation, so that the active material layers having substantially the same thickness are formed on both plate surfaces. By subjecting the positive electrode plate to chemical conversion, the flatness can be reduced to 4.0 mm or less while suppressing the curvature.
  • Examples of the method for forming the active material layers having the same thickness on both plate surfaces include the following two methods.
  • the first method is to cut the larger active material layer of the positive electrode plate before laminating the positive electrode plate in which the active material layers having different thicknesses are formed on both plate surfaces with the negative electrode plate and the separator.
  • This is a method of making the thickness of the active material layer smaller than that of the smaller active material layer. If it is attempted to form active material layers on both surfaces of the positive electrode plate at the same time, it is difficult to form active material layers of the same thickness.
  • This is a method in which an active material layer having the same thickness is formed by filling an opening one surface at a time to form an active material layer.
  • the flatness of the positive electrode plate 10 after the formation is less than 0.5 mm, the gas is easily discharged to the outside of the electrode plate group 1, but when the electrode plate group 1 is accommodated in the battery case 41, The group pressure applied to the electrode plate group 1 by the inner wall surface of the tank 41 may be insufficient. As a result, the positive electrode active material is likely to be softened or dropped, and the performance and life of the lead storage battery may be reduced. Therefore, it is preferable that the flatness of the positive electrode plate 10 after the formation be 0.5 mm or more.
  • the flatness of the positive electrode plate can be measured by a method specified in JIS B0419: 1991. That is, as shown in FIG. 2, the positive electrode plate is positioned such that the plate surface of the positive electrode plate and the flat surface of the base are substantially parallel to each other on the plane of the base, and the convex surface of the curved positive electrode plate faces upward. Is placed, and the distance h between the vertex of the convex surface of the curved positive electrode plate (the part farthest from the plane of the base) and the plane of the base is measured. Then, a value obtained by subtracting the thickness of the positive electrode plate from the distance h is defined as flatness.
  • the electrode plate is curved, and a lead storage battery having an electrode plate having a flatness of 4.0 mm or less has not been confirmed.
  • a flat electrode plate that is not curved is drawn in the drawing of Patent Literature 1, it is drawn flat for convenience, and the electrode plate is actually not flat but curved.
  • the knowledge that the gas is confined inside the electrode group due to the curvature of the electrode plate and the internal resistance rises has not been known at all by those skilled in the art.
  • the lead storage battery according to the present embodiment As described above, in the lead storage battery according to the present embodiment, an increase in internal resistance due to formation, constant-voltage charging, or the like is unlikely to occur, and an internal resistance after charging is rapidly reduced.
  • the lead storage battery according to the present embodiment also has excellent durability and high charge acceptability (high charging efficiency and can be charged in a short time). Therefore, the lead storage battery according to the present embodiment is suitable as a lead storage battery that is mounted on a vehicle that performs charge control such as a charge control vehicle and an idling stop vehicle and is mainly used in a partially charged state.
  • the partially charged state is a state where the state of charge is, for example, more than 70% and less than 100%.
  • the lead storage battery according to the present embodiment is used not only as a power source for starting an internal combustion engine of a vehicle, but also as an electric vehicle, an electric forklift, an electric bus, an electric motorcycle, an electric scooter, a small electric moped, a golf cart, an electric It can also be used as a power source for locomotives and the like. Furthermore, the lead storage battery according to the present embodiment can also be used as a lighting power supply and a standby power supply. Alternatively, it can also be used as a power storage device for electric energy generated by solar power generation, wind power generation, or the like.
  • the flatness of the negative electrode plate after formation is not particularly limited, but may be as small as the positive electrode plate after formation, for example, 4.0 mm. The following may be used. Further, the flatness of the positive electrode plate after formation and the flatness of the negative electrode plate after formation may be the same or different, but are preferably different. For example, if the ratio of the flatness of the negative electrode plate to the flatness of the positive electrode plate is set to 50% or more and 80% or less on average in the electrode plate group, gas hardly stays in the electrode plate group, and Gas emission is likely to occur.
  • the lead storage battery according to the present embodiment will be described in more detail.
  • the degree of curvature of the portion above the vertical center of the positive electrode plate which is an outlet when gas bubbles are discharged from the electrode group to the outside, is small, the gas stays in the electrode group. Since it is difficult to discharge the lead storage battery, an increase in the internal resistance of the lead storage battery is suppressed. Therefore, if the flatness of the portion above the vertical center of the positive electrode plate after formation is 4.0 mm or less, the effect of suppressing an increase in the internal resistance of the lead-acid battery is exhibited.
  • the density of the positive electrode active material included in the positive electrode plate is not particularly limited, but is preferably from 4.2 g / cm 3 to 4.6 g / cm 3 , and preferably from 4.4 g / cm 3 to 4.6 g / cm 3. More preferably, it is not more than cm 3 . If the density of the positive electrode active material is within the above numerical range, the positive electrode active material is unlikely to soften or fall off, so that the effect of improving the life of the lead storage battery is exhibited.
  • the composition of the electrolytic solution is not particularly limited, and an electrolytic solution used for a general lead-acid battery can be applied without any problem.However, in order to make the charge acceptability of the lead-acid battery excellent, the electrolyte preferably contains aluminum, and the content of aluminum ions in the electrolyte is preferably 0.01 mol / L or more. However, when the content of the aluminum ion in the electrolyte is high, it is difficult for the gas to be discharged to the outside from the electrode plate group. Therefore, the content of the aluminum ion in the electrolyte should be 0.3 mol / L or less. preferable. Further, the electrolyte may contain sodium ions. The content of sodium ions in the electrolytic solution can be 0.002 mol / L or more and 0.05 mol / L or less.
  • the group pressure applied to electrode group As described above, when the electrode group is accommodated in the battery case, a group pressure is applied to the electrode group by the inner wall surface of the battery case. However, if the group pressure is insufficient, the positive electrode active material is softened. And the battery may easily fall off, and the performance and life of the lead storage battery may be reduced. On the other hand, if the group pressure is too high, gas may stay in the positive electrode active material, and the internal resistance of the lead storage battery may increase. Therefore, the group pressure applied to the electrode plate group is preferably set to 10 kPa or less.
  • Lead dioxide includes an orthorhombic ⁇ phase ( ⁇ -lead dioxide) and a tetragonal ⁇ phase ( ⁇ -lead dioxide).
  • the ratio ⁇ / ( ⁇ + ⁇ ) of the mass ⁇ of ⁇ -lead dioxide and the mass ⁇ of ⁇ -lead dioxide contained in the positive electrode active material is preferably 20% or more and 40% or less. With such a configuration, the stratification of the electrolytic solution is unlikely to occur, so that the effect of improving the life of the lead storage battery is exhibited.
  • ⁇ -lead dioxide is poor in porosity and has a small specific surface area, and therefore has a low discharge capacity, but has a low softening rate because crystal disintegration proceeds very slowly.
  • ⁇ -lead dioxide is rich in porosity and has a large specific surface area, and therefore has a large discharge capacity, but has a high softening rate due to rapid crystal collapse. Therefore, in order to achieve both long life of the lead storage battery and excellent discharge capacity, the ratio ⁇ / ( ⁇ + ⁇ ) of the mass ⁇ of ⁇ -lead dioxide and the mass ⁇ of ⁇ -lead dioxide contained in the positive electrode active material is required. It is preferable that ⁇ -lead dioxide and ⁇ -lead dioxide are dispersed in the positive electrode active material so as to be 20% or more and 40% or less.
  • the ratio ⁇ / ( ⁇ + ⁇ ) of the mass ⁇ of ⁇ -lead dioxide and the mass ⁇ of ⁇ -lead dioxide is less than 20%, the life of the lead storage battery may be insufficient.
  • the ratio ⁇ / ( ⁇ + ⁇ ) of the mass ⁇ of ⁇ -lead dioxide and the mass ⁇ of ⁇ -lead dioxide is larger than 40%, the capacity of the lead storage battery may be reduced.
  • the average diameter of the pores of the positive electrode active material is preferably 0.07 ⁇ m or more and 0.20 ⁇ m or less, and the porosity of the positive electrode active material is 30% or more and 50% or less. Preferably, there is.
  • the average diameter of the pores of the positive electrode active material is less than 0.07 ⁇ m, the utilization rate of the active material may be reduced. On the other hand, when the average diameter of the pores of the positive electrode active material is larger than 0.20 ⁇ m, the internal resistance of the lead storage battery may increase. Further, the softening of the positive electrode active material may easily occur.
  • the method for measuring the average diameter of the pores of the positive electrode active material is not particularly limited, but can be measured, for example, by a mercury intrusion method.
  • the porosity of the positive electrode active material is less than 30%, sulfuric acid hardly permeates into the active material, and the utilization rate of the active material may be reduced. On the other hand, if the porosity of the positive electrode active material exceeds 50%, the life of the active material may be reduced because the density of the active material is reduced.
  • the method for measuring the porosity of the positive electrode active material is not particularly limited, but can be measured, for example, by a mercury intrusion method.
  • the surface roughness Ra of the surface of the positive electrode plate is not particularly limited, but is preferably 0.20 mm or less. If the surface roughness Ra of the surface of the positive electrode plate is larger than 0.20 mm, the gas tends to stay in the concave and convex portions of the surface of the positive electrode plate, and the internal resistance may increase. However, if the surface roughness Ra of the surface of the positive electrode plate is less than 0.05 mm, the sedimentation speed of sulfuric acid generated on the surface of the positive electrode plate during charging is increased, and there is a possibility that stratification of the electrolytic solution is likely to occur.
  • the distance between the adjacent positive electrode plate and negative electrode plate in the electrode plate group is not particularly limited, but is preferably 0.60 mm or more and 0.90 mm or less between any of the electrode plates.
  • the distance between the adjacent positive electrode plate and negative electrode plate is less than 0.60 mm, the amount of sulfuric acid existing between the electrode plates is reduced, so that the capacity of the lead storage battery may be reduced.
  • the distance between the adjacent positive electrode plate and negative electrode plate is larger than 0.90 mm, the liquid resistance increases, and the internal resistance of the lead storage battery may increase. Moreover, the internal resistance of the lead storage battery may increase due to the stagnation of the gas.
  • the distance between the adjacent positive electrode plate and negative electrode plate is preferably 0.60 mm or more and 0.90 mm or less, but in the present invention, the electrode plate is provided at any position on the plate surface of the electrode plate. It means that the distance between them is 0.60 mm or more and 0.90 mm or less.
  • the content of iron contained in the positive electrode active material in the fully charged state (for example, after chemical conversion) of the lead storage battery is not particularly limited, but is preferably 3.5 ppm or more and 20.0 ppm or less.
  • the content of iron contained in the positive electrode active material in the fully charged state of the lead storage battery is not particularly limited, but is preferably 3.5 ppm or more and 20.0 ppm or less.
  • the content of iron contained in the positive electrode active material in the fully charged state of the lead storage battery is less than 3.5 ppm, the amount of gas generated on the positive electrode plate decreases, and thus the electrolyte is not sufficiently stirred. In addition, the electrolyte may be easily stratified.
  • iron and stainless steel manufacturing devices are often used in the manufacturing process of lead-acid batteries. Since iron derived from these devices is mixed in, the iron contained in the positive electrode active material in the fully charged state of the lead-acid battery is used. It is difficult to make the content less than 3.5 ppm.
  • a mixer for mixing lead powder which is a material for the paste of the positive electrode active material, with water or sulfuric acid
  • a hopper for supplying the material to the mixer are often made of acid-resistant stainless steel. Therefore, in order to make the content of iron contained in the positive electrode active material in the fully charged state of the lead storage battery less than 3.5 ppm, the manufacturing apparatus used in the manufacturing process of the lead storage battery is formed of non-ferrous metal or ceramics. Or an additional step of removing iron is required, which leads to an increase in the manufacturing cost of the lead storage battery.
  • the iron present in the lead-acid battery repeatedly moves through the electrolytic solution to the positive electrode during charging and to the negative electrode during discharging via the electrolyte (shuttle effect). Therefore, the gas generating effect of iron is not limited to the positive electrode. , Also occur in the negative electrode. Therefore, when the separator has a bag shape, the same effect of stirring the electrolyte can be expected regardless of whether the positive electrode plate or the negative electrode plate is housed in the bag-shaped separator. The degree increases.
  • the cause of the bending of the electrode plate is a difference in the thickness of the active material layers formed on both surfaces of the electrode plate. Therefore, in order to make the flatness of the positive electrode plate after chemical formation 4.0 mm or less, the positive electrode after chemical formation with respect to the thickness of the active material layer of the positive electrode active material formed on one plate surface of the positive electrode plate after chemical formation It is preferable that the ratio of the thickness of the active material layer of the positive electrode active material formed on the other plate surface of the plate (hereinafter, also referred to as “thickness ratio”) be 0.67 or more and 1.33 or less. .
  • the positive electrode plate 100 after the formation is filled with the positive electrode active material containing lead dioxide in the opening 101 c of the positive electrode substrate 101, which is a plate-like lattice, while the positive electrode plate 101 Positive electrode active material layers 102A and 102B made of a positive electrode active material containing lead dioxide are formed on plate surfaces 101a and 101b, respectively.
  • the ratio B / A of the thickness B of the positive electrode active material layer 102B on the other plate surface 101b of the positive electrode substrate 101 to the thickness A of the positive electrode active material layer 102A on one plate surface 101a of the positive electrode substrate 101 is: It is preferably 0.67 or more and 1.33 or less.
  • the thickness ratio of the active material layer of the positive electrode active material before chemical formation is 0.67 or more.
  • the formation may be performed at 1.33 or less. Even if the volume of the positive electrode active material changes during the formation of the positive electrode plate, the thick coating degree ratio does not change before and after the chemical formation as long as the formation conditions of both surfaces of the positive electrode plate are the same.
  • the thickness ratio of the positive electrode plate after chemical conversion is within the above numerical range, it is easy to make the flatness of the positive electrode plate after chemical formation 4.0 mm or less. As a result, the gas is easily discharged to the outside of the electrode group, so that an increase in the internal resistance of the lead storage battery is suppressed, and the charged state and the deterioration state can be accurately determined by a method of measuring the internal resistance. .
  • the thickness of the active material layer of the positive electrode active material is a distance between the surface of the positive electrode plate and the plate surface of the positive electrode substrate facing the positive electrode plate, that is, a virtual straight line orthogonal to the surface of the positive electrode plate. , The length from the surface of the positive electrode plate to the plate surface of the positive electrode substrate.
  • the surface of the positive electrode plate is a single flat surface in which steps, bends, curvatures, and the like do not substantially exist on a macro scale (about several tens ⁇ m to several mm).
  • the thickness of the active material layer of the positive electrode active material may be a value obtained by measuring the distance between the surface of the positive electrode plate and the plate surface of the positive electrode substrate at one place, or the surface of the positive electrode plate and the plate surface of the positive electrode substrate. May be the average of the values obtained by measuring the distances between a plurality of points.
  • the distance from the surface of the bone may be measured, and the measured value may be used as the thickness of the active material layer of the positive electrode active material.
  • the distance between the surface of the positive electrode plate and the surface of the lattice bone is measured in the plurality of lattice bones, and the average of the measured values is used as the positive electrode active material. May be the thickness of the active material layer.
  • the cross-sectional shape of the lattice bone of the plate-shaped lattice body (the cross-sectional shape when cut along a plane perpendicular to the longitudinal direction of the lattice bone) is basically rectangular, the surface of the positive electrode plate faces the surface thereof. Parallel to the surface of the lattice bone (see FIG. 4).
  • the plate-like lattice may be twisted or distorted during the manufacturing process. If the plate-like lattice body is twisted or distorted, the surface of the lattice bone is inclined or curved with respect to the surface of the positive electrode plate. Is non-parallel.
  • the shortest distance between the surface of the lattice plate and the surface of the positive electrode plate is measured for each lattice bone.
  • the average of the measured values may be defined as the thickness of the active material layer of the positive electrode active material.
  • the thick coating degree ratio in the present invention is defined as the thickness of the active material layer of the positive electrode active material formed on one plate surface of the positive electrode plate after chemical formation, and the thickness of the positive electrode active material formed on the other plate surface of the positive electrode plate after chemical formation. This is the ratio of the thickness of the active material layer of the material, and the thickness of the active material layer of the positive electrode active material on either of the two surfaces of the positive electrode plate may be calculated as a denominator.
  • the thickness may be calculated using the thickness of the active material layer of the positive electrode active material on the upper surface side of the plate surface as a denominator and the thickness of the active material layer of the positive electrode active material on the lower surface side as a numerator.
  • a plurality of the positive electrode plates and the negative electrode plates manufactured as described above were alternately laminated with a separator made of a porous synthetic resin interposed therebetween to prepare an electrode plate group.
  • This electrode plate group was housed in a battery case, and the current collecting ears of each positive electrode plate were connected by a positive electrode strap, and the current collecting ears of each negative electrode plate were connected by a negative electrode strap.
  • the positive strap was connected to one end of the positive terminal, and the negative strap was connected to one end of the negative terminal.
  • the opening of the battery case was closed with a lid.
  • the positive electrode terminal and the negative electrode terminal passed through the lid, and the other end of the positive electrode terminal and the other end of the negative electrode terminal were exposed to the outside of the lead-acid battery.
  • An electrolyte was injected from a liquid inlet formed in the lid, and the liquid inlet was sealed with a stopper to obtain a lead storage battery.
  • the battery size was M-42, and the number of positive electrode plates and the number of negative electrode plates included in the electrode plate group were six.
  • the positive electrode plate and the negative electrode plate were manufactured by a continuous manufacturing method.
  • the flatness of the positive electrode plate after chemical formation was adjusted by changing the thick coating ratio of the active material layer of the positive electrode active material formed on both surfaces of the positive electrode plate before chemical formation.
  • the thickness of the separator was adjusted such that a predetermined group pressure was applied to the electrode plate group.
  • the density of the positive electrode active material of the positive electrode plate is 4.4 g / cm 3 .
  • the ratio ⁇ / ( ⁇ + ⁇ ) of the mass ⁇ of ⁇ -lead dioxide and the mass ⁇ of ⁇ -lead dioxide contained in the positive electrode active material is 30%.
  • the average diameter of the pores of the positive electrode active material is 0.10 ⁇ m, and the porosity of the positive electrode active material is 30%.
  • the surface roughness Ra of the surface of the positive electrode plate is 0.10 mm.
  • the distance between the adjacent positive and negative electrode plates is 0.60 mm.
  • the electrolyte used contained aluminum sulfate at a concentration of 0.1 mol / L.
  • the measured value of the internal resistance was defined as an “initial value”.
  • constant voltage charging was performed on the fully charged lead storage battery after aging, and the internal resistance was measured immediately after the constant voltage charging was completed.
  • This measured value of the internal resistance was defined as “the value immediately after charging”.
  • the conditions for constant voltage charging are a maximum current of 100 A, a control voltage of 14.0 V, and a charging time of 10 minutes (the lead-acid battery has a 5-hour rate capacity (rated capacity) of 32 Ah).
  • the constant voltage charging was completed, the battery was allowed to stand for 1 hour, and the internal resistance after the standing was measured.
  • the measured value of the internal resistance was defined as “the value after standing”.
  • the flatness of the positive electrode plate was measured as follows. First, the thickness is measured at a plurality of locations on the positive electrode plate using a micrometer, and the average value is defined as the thickness of the positive electrode plate. Next, as shown in FIG. 2, the positive electrode is placed on the flat surface of the base such that the plate surface of the positive electrode plate and the flat surface of the base are substantially parallel to each other, and the convex surface of the curved positive electrode plate faces upward. The plate is placed, and the distance h between the vertex of the convex surface of the curved positive electrode plate and the plane of the base is measured using a height gauge. Then, a value obtained by subtracting the thickness of the positive electrode plate from the distance h is defined as flatness.
  • the condition A that the rate of increase in the value immediately after charging with respect to the initial value is 10% or less, and the rate of increase in the value after standing still with respect to the initial value is 5% or less, or
  • both the condition B that the rate of increase in the value after standing still is a value lower by 4% or more is satisfied, it is determined that the increase in the internal resistance is significantly suppressed, and in Table 1, it is determined by a circle. Indicated. When only one of the conditions A and B is satisfied, it is determined that the increase in the internal resistance is sufficiently suppressed, but it cannot be said that it is notably suppressed. Indicated by the mark. When neither of the conditions A and B is satisfied, it is determined that the suppression of the increase in the internal resistance is slightly insufficient or completely insufficient, and is indicated by a cross in Table 1.
  • the group pressure applied to the electrode plate group is preferably set to 10 kPa or less in order for the internal resistance increased by the constant voltage charging to quickly return to the initial value.
  • the stratification of the electrolytic solution and the battery life were evaluated by a 17.5% DOD life test described in EN No. 50342-6: 2015 of the European standard (EN standard). That is, the following operations (1), (2), and (3) are repeated for a plurality of cycles, and when the voltage reaches 10 V, it is determined that the battery has reached the end of its life. The difference in specific gravity between the upper part and the lower part of the liquid was measured.
  • the evaluation results are shown in Tables 5 and 6. From the evaluation results shown in Tables 5 and 6, when the ⁇ ratio ⁇ / ( ⁇ + ⁇ ) of lead dioxide is 20% or more and 40% or less, the increase in internal resistance is sufficiently suppressed and the rate of decrease in internal resistance is fast. You can see that. Further, it can be seen that the battery life of the lead storage battery is excellent, and the stratification of the electrolyte does not easily occur.
  • the utilization rate of the active material was determined by measuring a discharge capacity after performing a 5-hour rate discharge test.
  • the evaluation results are shown in Tables 7, 8, 9, and 10.
  • Regarding the utilization rate when the measured value of the discharge capacity was 32 Ah or more, which is the rated capacity of M-42, it was judged that the utilization rate was remarkably excellent.
  • the measured value of the discharge capacity is 30 Ah or more and less than 32 Ah, it is determined that the utilization factor is sufficiently excellent, but cannot be said to be remarkably excellent.
  • the measured value of the discharge capacity was less than 30 Ah, it was determined that the utilization rate was slightly insufficient or completely insufficient.
  • the average diameter of the pores of the positive electrode active material is 0.07 ⁇ m or more and 0.20 ⁇ m or less, or the porosity of the positive electrode active material is 30% or more and 50% or less.
  • the rise of the internal resistance is remarkably suppressed and the rate of decrease of the internal resistance is fast.
  • the utilization rate of the active material is remarkably excellent.
  • Charge acceptance was evaluated as follows.
  • the lead storage battery was fully charged, and after confirming that the temperature of the electrolytic solution was in the range of 23 ° C. or more and 27 ° C. or less, the battery was discharged at a 5-hour rate current for 0.5 hour.
  • the lead storage battery is allowed to stand at a temperature of 23 ° C. or more and 27 ° C. or less for 20 hours, and after confirming that the temperature of the electrolytic solution is in a range of 23 ° C. or more and 27 ° C. or less, the temperature of 23 ° C. or more and 27 ° C. or less is used.
  • Constant voltage charging was performed at a temperature of 13.9 V to 14.1 V and a maximum current of 100 A, and the charging current was measured 5 seconds after the start of charging.
  • Table 13 shows the evaluation results.
  • the charging current is higher than the reference example in which the concentration of aluminum ions in the electrolytic solution is 0 mol / L by 10 A or more, it is indicated by a circle in Table 13 and exceeds 0 A. If it is higher than 10 A, it is indicated by a triangle in Table 13.
  • the charging current is the same value as that of the reference example or lower than that of the reference example, it is indicated by a cross in Table 13.
  • Table 13 shows the results.
  • the comprehensive judgment showed a mark ⁇ , and at least one of the rate of increase of the internal resistance and the charge acceptability was marked with a ⁇ .
  • the comprehensive judgment shows x mark.
  • Table 14 shows the evaluation results.
  • the battery life evaluation results are indicated by a circle in Table 14 when the battery life is 800 cycles or more, and are indicated by a cross in Table 14 when the battery life is less than 800 cycles.
  • comprehensive evaluation was performed by comprehensively evaluating the rate of increase of the internal resistance, the charge acceptability, and the battery life.
  • Table 14 shows the results. In Table 14, when all of the increase rate of the internal resistance, the charge acceptability, and the battery life were judged to be ⁇ , the comprehensive judgment showed the mark ⁇ , and the increase rate of the internal resistance, the charge acceptability, and the battery life If at least one of them is a judgment of a mark or a mark x, the comprehensive judgment indicates a mark of x.
  • the concentration of sodium ions in the electrolyte is preferably from 0.002 mol / L to 0.05 mol / L. Since lignin used as an additive for the negative electrode is generally a sodium salt, if the concentration of sodium ions is less than 0.002 mol / L, the amount of lignin added will be reduced. The service life will be shortened.
  • a punching method (a punching method) of punching a sheet of lead or a lead alloy (for example, a rolled sheet) to produce a plate-like lattice body, or a method of punching a sheet of lead or a lead alloy and then paralleling the sheet surface is performed.
  • An expanding method in which a lattice structure is formed by stretching in the direction is given.
  • a lead of a positive electrode active material was manufactured by kneading lead powder mainly composed of lead monoxide with water and dilute sulfuric acid, further mixing and kneading additives as necessary.
  • a lead of a negative electrode active material was manufactured by kneading lead powder mainly composed of lead monoxide with water and dilute sulfuric acid, further mixing and kneading additives as necessary.
  • a plurality of positive electrode plates and negative electrode plates manufactured as described above were alternately laminated with a separator made of a porous synthetic resin interposed therebetween to prepare an electrode plate group.
  • This electrode plate group was housed in a battery case, and the current collecting ears of each positive electrode plate were connected by a positive electrode strap, and the current collecting ears of each negative electrode plate were connected by a negative electrode strap.
  • the positive strap was connected to one end of the positive terminal, and the negative strap was connected to one end of the negative terminal.
  • the battery size was M-42, and the number of positive electrode plates and the number of negative electrode plates included in the electrode plate group were six.
  • the opening of the battery case was closed with a lid.
  • the positive electrode terminal and the negative electrode terminal passed through the lid, and the other end of the positive electrode terminal and the other end of the negative electrode terminal were exposed to the outside of the lead-acid battery.
  • An electrolytic solution was injected from a liquid injection port formed in the lid, and the liquid injection port was sealed with a stopper, and a battery case was formed.
  • the time from the injection of the electrolytic solution to the start of energization for chemical formation was 30 minutes, and the amount of electricity for chemical formation was 230%.
  • the electrolyte sulfuric acid containing a predetermined amount of iron was used.
  • This electrolyte was prepared by adding ferrous sulfate to industrial sulfuric acid. See Table 15 for the iron content in the electrolyte.
  • the specific gravity of each of the prepared electrolytes is 1.23. Since iron moves to the positive electrode during charging and to the negative electrode during discharging via the electrolytic solution, iron contained in the electrolytic solution before chemical formation moves to the positive electrode after chemical formation (fully charged state). I have. Therefore, the content of iron in the electrolytic solution before chemical conversion and the content of iron in the positive electrode active material in a fully charged state have substantially the same value.
  • the flatness of the positive electrode plate after chemical formation was adjusted by changing the thick coating ratio of the active material layer of the positive electrode active material formed on both surfaces of the positive electrode plate before chemical formation.
  • the method of adjusting the flatness of the positive electrode plate after chemical formation is not limited to the method of changing the thick coating degree ratio, and another method may be used. A method for measuring the flatness of the positive electrode plate after the chemical formation will be described later in detail.
  • the thickness of the separator was adjusted such that a predetermined group pressure was applied to the electrode plate group.
  • the density of the positive electrode active material of the positive electrode plate is 4.4 g / cm 3 .
  • the ratio ⁇ / ( ⁇ + ⁇ ) of the mass ⁇ of ⁇ -lead dioxide and the mass ⁇ of ⁇ -lead dioxide contained in the positive electrode active material is 30%.
  • the average diameter of the pores of the positive electrode active material is 0.10 ⁇ m, and the porosity of the positive electrode active material is 30%.
  • the surface roughness Ra of the surface of the positive electrode plate is 0.10 mm.
  • the distance between the adjacent positive and negative electrode plates is 0.60 mm.
  • the electrolyte used contained aluminum sulfate at a concentration of 0.1 mol / L.
  • the flatness of the positive electrode plate and the iron content in the positive electrode active material were measured. Table 15 shows the results.
  • the flatness of the positive electrode plate was measured as follows. First, the thickness is measured at a plurality of locations on the positive electrode plate using a micrometer, and the average value is defined as the thickness of the positive electrode plate. Next, as shown in FIG. 2, the positive electrode is placed on the flat surface of the base such that the plate surface of the positive electrode plate and the flat surface of the base are substantially parallel to each other, and the convex surface of the curved positive electrode plate faces upward.
  • the plate is placed, and the distance h between the vertex of the convex surface of the curved positive electrode plate and the plane of the base is measured using a height gauge. Then, a value obtained by subtracting the thickness of the positive electrode plate from the distance h is defined as flatness.
  • the measured value of the internal resistance was defined as an “initial value”.
  • constant voltage charging was performed on the fully charged lead storage battery after aging, and the internal resistance was measured immediately after the constant voltage charging was completed.
  • This measured value of the internal resistance was defined as “the value immediately after charging”.
  • the conditions for constant voltage charging are a maximum current of 100 A, a control voltage of 14.0 V, and a charging time of 10 minutes (the lead-acid battery has a 5-hour rate capacity (rated capacity) of 32 Ah).
  • the constant voltage charging was completed, the battery was allowed to stand for 1 hour, and the internal resistance after the standing was measured.
  • the measured value of the internal resistance was defined as “the value after standing”.
  • condition A that the rate of increase in the value immediately after charging with respect to the initial value is 10% or less, and the rate of increase in the value after standing still with respect to the initial value is 5% or less, or
  • condition B that the rate of increase in the value after standing still is a value lower by 4% or more is satisfied, it is determined that the increase in the internal resistance has been significantly suppressed. Indicated.
  • Table 15 shows the evaluation results.
  • Table 15 shows the evaluation results.
  • Table 15 when the difference in specific gravity between the upper part and the lower part of the electrolyte is less than 0.100, it is indicated by a circle in Table 15, and when the difference is 0.100 or more and 0.145 or less.
  • Table 15 is indicated by a mark, and when it exceeds 0.145, it is indicated by a cross in Table 15.
  • the amount of reduction of the electrolytic solution when the amount of reduction of the electrolytic solution is less than 36.0 g, it is indicated by a circle in Table 15, and when the amount is 36.0 g or more and 40.0 g or less, it is indicated by a triangle in Table 15, and 40 In the case where the weight is more than 0.0 g, it is indicated by an X in Table 15. Note that the amount of the original electrolyte before the reduction was 475 g.
  • both evaluation results of the difference between the specific gravity at the upper part and the lower part of the electrolyte and the determination result of the reduction amount of the electrolyte were combined and evaluated, and in Table 15, when both the determination results were ⁇ , the results were indicated by ⁇ .
  • Indicates that one of the judgment results was ⁇ and the other judgment result was ⁇ or ⁇ , and was indicated by X if at least one of the judgment results was ⁇ .
  • the larger the content of iron contained in the positive electrode active material in the fully charged state the larger the amount of gas generated from the positive electrode and the negative electrode during charging, so that the stirring of the electrolytic solution is performed more efficiently, Stratification was suppressed. Further, as the flatness of the positive electrode plate is smaller, gas generated from the positive electrode and the negative electrode is less likely to stay in the gap between the positive electrode plate and the negative electrode plate, so that a larger amount of gas is released into the electrolytic solution. As a result, it is considered that the stirring of the electrolytic solution is performed more efficiently, and the stratification is suppressed.
  • the thickness of the substrate (plate-like lattice) manufactured by the continuous manufacturing method is smaller than that of the substrate (plate-like lattice) manufactured by the casting method. More specifically, since the thickness of the substrate manufactured by the continuous manufacturing method depends on the thickness of the sheet prepared in advance, the influence of the technical level of the manufacturer and the accuracy of the mold used is smaller than that of the casting method. And variations are less likely to occur. Therefore, when a positive electrode plate is manufactured using a substrate manufactured by a continuous manufacturing method, the variation in the thickness of the positive electrode plate becomes smaller than when a substrate manufactured by a casting method is used, and the curvature of the positive electrode plate during chemical formation is reduced. Is suppressed.
  • the variation in the thickness of the positive electrode plate is small, but it is preferable that the parameter R (which will be described later in detail) indicating the degree of the variation in the thickness of the positive electrode plate be in the range of 10 ⁇ m or more and 30 ⁇ m or less.
  • a lead of a positive electrode active material was manufactured by kneading lead powder mainly composed of lead monoxide with water and dilute sulfuric acid, further mixing and kneading additives as necessary.
  • a lead of a negative electrode active material was manufactured by kneading lead powder mainly composed of lead monoxide with water and dilute sulfuric acid, further mixing and kneading additives as necessary.
  • a plurality of positive electrode plates and negative electrode plates manufactured as described above were alternately laminated with a separator made of a porous synthetic resin interposed therebetween to prepare an electrode plate group.
  • This electrode plate group was housed in a battery case, and the current collecting ears of each positive electrode plate were connected by a positive electrode strap, and the current collecting ears of each negative electrode plate were connected by a negative electrode strap.
  • the positive strap was connected to one end of the positive terminal, and the negative strap was connected to one end of the negative terminal.
  • the battery size was D31. The group pressure was adjusted according to the thickness of the separator.
  • the opening of the battery case was closed with a lid.
  • the positive electrode terminal and the negative electrode terminal passed through the lid, and the other end of the positive electrode terminal and the other end of the negative electrode terminal were exposed to the outside of the lead-acid battery.
  • An electrolytic solution was injected from a liquid injection port formed in the lid, and the liquid injection port was sealed with a stopper, and a battery case was formed.
  • sulfuric acid containing a predetermined amount of aluminum ions was used as an electrolytic solution. This electrolyte was prepared by adding aluminum sulfate to industrial sulfuric acid.
  • the active material layer of the positive electrode active material containing lead dioxide was formed on both surfaces of the electrode plate, and the active material layer of the negative electrode active material containing metallic lead was formed on both the electrode plates. And a chemically converted negative electrode plate formed on the plate surface.
  • Various measurements and evaluations were performed on the obtained lead-acid batteries of Examples 1001 to 1060, Comparative Examples 1001 to 1039, and the conventional example. The details and methods of the measurement and evaluation will be described below.
  • the density of the positive electrode active material of the positive electrode plate is as shown in Tables 16 to 19.
  • the ratio ⁇ / ( ⁇ + ⁇ ) of the mass ⁇ of ⁇ -lead dioxide and the mass ⁇ of ⁇ -lead dioxide contained in the positive electrode active material is 30%.
  • the average diameter of the pores of the positive electrode active material is 0.10 ⁇ m, and the porosity of the positive electrode active material is 30%.
  • the surface roughness Ra of the surface of the positive electrode plate is 0.10 mm.
  • the distance between the adjacent positive and negative electrode plates is 0.60 mm.
  • the electrolyte used contained aluminum sulfate at a concentration of 0.1 mol / L.
  • the flatness of the positive electrode plate after the formation was measured.
  • the flatness of the positive electrode plate was adjusted by changing the thickness ratio of the active material layer of the positive electrode active material formed on both surfaces of the positive electrode plate before chemical conversion. Thickness ratio and flatness are as shown in Tables 16 to 19.
  • the flatness of the positive electrode plate after the formation was measured as follows.
  • the thickness is measured at a plurality of locations on the positive electrode plate using a micrometer, and the average value is defined as the thickness of the positive electrode plate.
  • the positive electrode is placed on the flat surface of the base such that the plate surface of the positive electrode plate and the flat surface of the base are substantially parallel to each other, and the convex surface of the curved positive electrode plate faces upward.
  • the plate is placed, and the distance h between the vertex of the convex surface of the curved positive electrode plate and the plane of the base is measured using a height gauge.
  • a value obtained by subtracting the thickness of the positive electrode plate from the distance h is defined as flatness.
  • the degree of variation in the thickness of the positive electrode plate after chemical formation was evaluated as follows.
  • the thickness of the positive electrode plate was measured using a micrometer manufactured by Mitutoyo Corporation. The measurement was made at a total of five locations including the vicinity of the corner of the rectangular positive electrode plate and the center. The measured value was substituted into the following mathematical formula to calculate a parameter R (unit: ⁇ m) indicating the degree of variation in the thickness of the positive electrode plate.
  • T i is each measured value of the thickness of the positive electrode plate
  • T ave is an average value calculated from each measured value of the thickness of the positive electrode plate
  • n is the number of measurement points of the thickness of the positive electrode plate (in the present example). The case represents 5).
  • Tables 16 to 19 show the evaluation results of the thickness variation.
  • the positive electrode plate whose parameter R is 30 ⁇ m and 50 ⁇ m uses a substrate manufactured by a casting method.
  • the positive electrode plate having the parameters R of 10 ⁇ m and 15 ⁇ m uses a substrate manufactured by a continuous manufacturing method.
  • a constant current discharge of 2.5 ⁇ I 20 (I 20 is a 20-hour rate current and the unit is A) at an ambient temperature of 25 ° C. is performed for 2.5 hours. After a while, the state of charge (SOC) is adjusted to 50%.
  • SOC state of charge
  • a constant current constant voltage charge is performed at a current of 7 ⁇ I 20 A and a voltage of 14.4 V for 2400 seconds, and a constant current discharge is performed at a current of 7 ⁇ I 20 A for 1800 seconds. Is repeated as 85 cycles.
  • the operations (1) to (3) are repeated many cycles while measuring the voltage of the lead storage battery at 10-second intervals.
  • the voltage of the lead storage battery was less than 10 V, it was determined that the life of the lead storage battery was reached.
  • the results are shown in Tables 16 to 19.
  • the life values shown in Tables 16 to 19 are relative values when the life of the lead storage battery of the conventional example is set to 100. When the life was longer than 100, it was determined that the PSOC life performance (life in a partially charged state) was excellent.
  • condition A that the rate of increase in the value immediately after charging with respect to the initial value is 10% or less, and the rate of increase in the value after standing still with respect to the initial value is 5% or less, or
  • condition B that the rate of increase of the value after standing still is a value lower by 4% or more is satisfied, it is determined that the increase of the internal resistance is significantly suppressed, and Indicated by the mark.
  • the thick coating degree ratio B / A of the positive electrode plate is 0.67 or more and 1.33 or less, the positive electrode plate has a thicker coating ratio than that of 0.50 or 1.50. Since the numerical value of the flatness is small (curvature is small), there has been a tendency that stratification is easily suppressed and a rise rate of the internal resistance tends to be low. In particular, when the thickness ratio B / A of the positive electrode plate was 1.00, the numerical value of the flatness of the positive electrode plate was smaller, the stratification was less likely to occur, and the rise rate of the internal resistance was low. It is considered that the stratification was suppressed because the gas generated on the positive electrode plate rose in the electrolytic solution and the electrolytic solution was stirred.
  • the PSOC life performance was excellent.
  • the density of the positive electrode active material is 4.3 g / cm 3 and 4.7 g / cm 3
  • the PSOC life performance is lower than when the density is 4.4 g / cm 3 or more and 4.6 g / cm 3 or less. Tended to be.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

内部抵抗の上昇が抑制され、内部抵抗を測定する方法により充電状態や劣化状態を正確に判定することが可能な鉛蓄電池を提供する。鉛蓄電池は、二酸化鉛を含有する正極活物質を有する正極板(10)と、金属鉛を含有する負極活物質を有する負極板(20)とが、セパレータ(30)を介して複数枚交互に積層された極板群(1)を備える。この極板群(1)は電解液に浸漬されている。そして、化成後の正極板(10)の平面度が4.0mm以下である。

Description

鉛蓄電池
 本発明は鉛蓄電池に関する。
 近年の自動車市場では、燃費の向上や排出ガスの低減を目的とした、充電制御システムやアイドリングストップシステムを搭載した車両(以下、これらの車両を「充電制御車」、「アイドリングストップ車」と記すこともある)が主流となっている。これらの車両においては、車両側で鉛蓄電池の充電状態や劣化状態を判定し、その結果に基づいて、鉛蓄電池の充放電やエンジンのアイドリングストップを制御するようになっている。
 しかしながら、充電制御システムやアイドリングストップシステムを使用した場合には、鉛蓄電池に大きな負荷がかかるため、短寿命化しやすかった。例えば、いずれのシステムにおいても鉛蓄電池の充放電が頻繁に繰り返されるため、活物質の軟化や脱落が発生して早期に容量低下が生じるおそれがあった。また、アイドリングストップ車では鉛蓄電池の充電状態が低下しやすいので、鉛蓄電池の充電受入性が不十分だと、不動態化した硫酸鉛が極板の表面に蓄積するサルフェーションが進行し、内部抵抗の上昇と早期の容量低下が生じるおそれがあった。
 このような事情から、充電制御車やアイドリングストップ車に用いられる鉛蓄電池は、高い耐久性と充電受入性に加えて、充電状態や劣化状態を判定する際の正確性が求められた。鉛蓄電池の充電状態や劣化状態を判定する手法として、鉛蓄電池の内部抵抗を測定する方法が知られている。しかしながら、鉛蓄電池の内部抵抗は、充電状態、劣化状態以外の様々な要因で上昇する場合があるため、充電状態や劣化状態の正確な判定は容易ではなかった。
日本国特許公開公報 2017年第92001号
 本発明は、内部抵抗の上昇が抑制され、内部抵抗を測定する方法により充電状態や劣化状態を正確に判定することが可能な鉛蓄電池を提供することを課題とする。
 本発明の一態様に係る鉛蓄電池は、二酸化鉛を含有する正極活物質を有する正極板と、金属鉛を含有する負極活物質を有する負極板とが、セパレータを介して複数枚交互に積層された極板群を備え、極板群が電解液に浸漬され、化成後の正極板の平面度が4.0mm以下であることを要旨とする。
 本発明に係る鉛蓄電池は、内部抵抗の上昇が抑制され、内部抵抗を測定する方法により充電状態や劣化状態を正確に判定することが可能である。
本発明の一実施形態に係る鉛蓄電池の構造を説明する部分断面図である。 極板の平面度の測定方法を説明する図である。 正極活物質の厚塗り度の差による湾曲の発生を模式的に示した正極板の図である。 正極板の両板面の厚塗り度比を説明する断面図である。
 本発明の一実施形態について説明する。なお、以下に説明する実施形態は本発明の一例を示したものであって、本発明は本実施形態に限定されるものではない。また、本実施形態には種々の変更又は改良を加えることが可能であり、そのような変更又は改良を加えた形態も本発明に含まれ得る。
 本発明者が鋭意検討した結果、鉛蓄電池の内部抵抗の上昇に関して新たな知見が見出されたので、以下に詳細に説明する。
 鉛蓄電池においては、正極板と負極板とがセパレータを介して複数枚交互に積層された極板群が、所定の群圧が負荷された状態で電槽内に収容されている。このとき、極板群の極板間には、充放電反応に必要な電解液の拡散流路やガスの排出流路が必要であるため、ベース面にリブを設けたリブ付きセパレータを極板間に介在させて、電解液の拡散流路やガスの排出流路となる隙間を確保する手法が一般的である。
 しかしながら、このようなリブ付きセパレータを用いた場合でも、内部抵抗が上昇したまま維持され、下がりにくい場合があった。このような内部抵抗が高止まりした鉛蓄電池について本発明者が調査した結果、極板群を構成する極板が湾曲しており、湾曲した極板の縁部にガスの気泡が引っかかり、極板に付着した状態となっていることが判明した。そして、ガスの気泡が極板に付着した結果、ガスが極板群内に閉じ込められて滞留し、活物質と電解液との接触面積(すなわち、反応が生じる部分の面積)が減少するため、鉛蓄電池の内部抵抗が上昇することが判明した。
 また、隣接する極板間の距離が湾曲により小さくなるため、ガスが極板間に閉じこめられやすくなり、極板群の外部に出にくいことも分かった。
 さらに、極板が湾曲していても内部抵抗が高止まりしない鉛蓄電池が存在することも分かった。この事実から、極板の湾曲の大きさや湾曲の形状によっては、極板群内にガスが滞留しにくい場合があるということが分かった。
 極板が湾曲する原因は、本発明者の検討により、以下の通りであることが判明した。基板の表面に活物質からなる活物質層を形成し極板を製造する際には、基板の両板面に同一厚さの活物質層を形成しようとするが、両板面に同一厚さの活物質層を形成することは容易ではなく、異なる厚さの活物質層が形成されてしまうこともある。例えば、図3の例であれば、極板100の基板101の右側の板面101aに形成された活物質層102Aの厚さよりも、左側の板面101bに形成された活物質層102Bの厚さの方が大きい。
 このように基板101の両板面101a、101bに形成された活物質層102A、102Bの厚さが異なると、図3に示すように、化成によって極板100が湾曲して、略椀状に変形する。そして、図3に示すように、活物質層102Bの厚さが大きい方の板面101bが凸面となり、活物質層102Aの厚さが小さい方の板面101aが凹面となるように、極板100が湾曲する。
 以上の検討結果から、本発明者は、極板の湾曲を抑えれば、化成、充放電等による内部抵抗の上昇が抑制され、内部抵抗を測定する方法により充電状態や劣化状態を正確に判定することが可能な鉛蓄電池が得られることを見出し、本発明を完成するに至った。
 すなわち、本発明の一実施形態に係る鉛蓄電池は、二酸化鉛を含有する正極活物質を有する正極板と、金属鉛を含有する負極活物質を有する負極板とが、セパレータを介して複数枚交互に積層された極板群を備え、極板群が電解液に浸漬された鉛蓄電池であり、化成後の正極板の平面度が4.0mm以下であることを特徴とするものである。極板群内の全ての正極板の平面度が4.0mm以下であることが好ましい。
 なお、正極板と負極板とでは、化成時に正極板の方が湾曲しやすい。このことから、本発明の目的を達成するためには、正極板の平面度を小さく制御することが重要となる。
 本発明の一実施形態に係る鉛蓄電池の構造について、図1を参照しながら、さらに詳細に説明する。本実施形態に係る鉛蓄電池は、正極板10と負極板20とがセパレータ30を介して複数枚交互に積層された極板群1を備えている。この極板群1は、その積層方向が水平方向に沿うように(すなわち、正極板10及び負極板20の板面が鉛直方向に沿うように)、図示しない電解液とともに電槽41内に収容され、電槽41内で電解液に浸漬されている。
 正極板10は、例えば、鉛合金からなる板状格子体の開口部に、二酸化鉛を含有する正極活物質を充填しつつ、鉛合金からなる板状格子体の両板面に、二酸化鉛を含有する正極活物質からなる活物質層を形成したものである。負極板20は、例えば、鉛合金からなる板状格子体の開口部に、金属鉛を含有する負極活物質を充填しつつ、鉛合金からなる板状格子体の両板面に、金属鉛を含有する負極活物質からなる活物質層を形成したものである。正極板10、負極板20の基板である板状格子体は、鋳造法、打ち抜き法、エキスパンド方式で製造することができる。セパレータ30は、例えば、樹脂、ガラス等からなる多孔質の膜状体である。
 正極板10及び負極板20の上端部には、それぞれ集電耳11、21が形成されており、各正極板10の集電耳11は正極ストラップ13で連結され、各負極板20の集電耳21は負極ストラップ23で連結されている。そして、正極ストラップ13は正極端子15の一端に接続され、負極ストラップ23は負極端子25の一端に接続されており、正極端子15の他端及び負極端子25の他端が、電槽41の開口部を閉塞する蓋43を貫通して、電槽41と蓋43からなる鉛蓄電池のケース体の外部に露出している。
 このような構造を有する本実施形態に係る鉛蓄電池において、化成後の正極板10の平面度は4.0mm以下とされている。平面度の数値が小さいほど正極板10は平らであり、ガスの気泡が正極板10の表面に付着しにくい。化成後の正極板10の平面度が4.0mm以下であれば、ガスは極板群1の外部に排出されやすくなるので、鉛蓄電池の内部抵抗の上昇が抑制され、内部抵抗を測定する方法により充電状態や劣化状態を正確に判定することが可能となる。
 化成後の正極板10の平面度を4.0mm以下とする方法は特に限定されるものではなく、化成による湾曲を抑える方法により鉛蓄電池を製造してもよいし、化成により湾曲した正極板10を矯正して平面度を4.0mm以下としてもよい。
 前述したように、正極板の両板面に形成した活物質層の厚さが異なると、化成時に正極板に湾曲が生じるので、両板面に略同一厚さの活物質層が形成された正極板を化成に供すれば、湾曲を抑えて平面度を4.0mm以下とすることができる。
 両板面に同一厚さの活物質層を形成する方法としては、例えば、以下の2つの方法を挙げることができる。第一の方法は、厚さの異なる活物質層が両板面に形成された正極板を、負極板及びセパレータと積層する前に、正極板の厚さの大きい方の活物質層を削って、厚さの小さい方の活物質層と厚さを一致させる方法である。
 正極板の両板面に同時に活物質層を形成しようとすると、同一厚さの活物質層を形成することが難しくなるので、第二の方法は、正極活物質のペーストを板状格子体の開口部に片面ずつ充填して活物質層を形成することにより、同一厚さの活物質層を形成する方法である。
 ただし、化成後の正極板10の平面度が0.5mm未満の場合は、ガスが極板群1の外部に排出されやすくなるものの、極板群1を電槽41内に収容した際に電槽41の内壁面により極板群1に負荷される群圧が不十分となるおそれがある。その結果、正極活物質の軟化や脱落が生じやすくなり、鉛蓄電池の性能や寿命が低下する場合がある。よって、化成後の正極板10の平面度は0.5mm以上とすることが好ましい。
 正極板の平面度は、JIS B0419:1991に規定された方法によって測定することができる。すなわち、図2に示すように、基台の平面上に、正極板の板面と基台の平面とが略平行をなすように、且つ、湾曲した正極板の凸面を上方に向けて正極板を載置して、湾曲した正極板の凸面の頂点(基台の平面から最も離れた部分)と基台の平面との間の距離hを測定する。そして、この距離hから正極板の厚さを差し引いた値を平面度とする。
 なお、従来の鉛蓄電池においても極板は湾曲しており、平面度が4.0mm以下の極板を有する鉛蓄電池は確認されていなかった。例えば特許文献1の図面には、湾曲していない平らな極板が描画されているが、便宜上、平らに描画されているのであって、実際には極板は平らではなく湾曲していた。また、極板の湾曲によってガスが極板群の内部に閉じ込められ内部抵抗が上昇するという知見は、当業者においても全く知られていなかった。
 以上のように、本実施形態に係る鉛蓄電池は、化成、定電圧充電等による内部抵抗の上昇が生じにくく、充電後の内部抵抗の低下も早い。また、本実施形態に係る鉛蓄電池は、優れた耐久性と高い充電受入性(充電効率が高く短時間で充電可能)も有している。よって、本実施形態に係る鉛蓄電池は、充電制御車、アイドリングストップ車のような充電制御を行う車両に搭載され且つ主に部分充電状態で用いられる鉛蓄電池として好適である。なお、部分充電状態とは、充電状態が例えば70%超過100%未満の状態である。
 また、本実施形態に係る鉛蓄電池は、車両の内燃機関を起動する電源としての用途のみならず、電動自動車、電動フォークリフト、電動バス、電動バイク、電動スクータ、小型電動モペッド、ゴルフ用カート、電気機関車等の動力電源としても使用可能である。さらに、本実施形態に係る鉛蓄電池は、照明用電源、予備電源としても使用可能である。あるいは、太陽光発電、風力発電等により発電された電気エネルギーの蓄電装置としても使用可能である。
 なお、本実施形態に係る鉛蓄電池においては、化成後の負極板の平面度は特に限定されるものではないが、化成後の正極板と同様に平面度は小さくてもよく、例えば4.0mm以下としてもよい。また、化成後の正極板の平面度と化成後の負極板の平面度は、同一であってもよいし異なっていてもよいが、異なっている方が好ましい。例えば、正極板の平面度に対する負極板の平面度の比を、極板群内において平均で50%以上80%以下とすれば、極板群内にガスが滞留しにくく、極板群からのガスの排出が生じやすい。
 以下に、本実施形態に係る鉛蓄電池について、さらに詳細に説明する。
〔正極板の湾曲の形状について〕
 前述したように、正極板の湾曲の形状によっては、極板群内にガスが滞留しにくい場合があり、化成後の正極板が湾曲していても内部抵抗が高止まりしない鉛蓄電池が存在する。例えば、湾曲した正極板の凸面の頂点が、鉛蓄電池内に配されている状態の正極板の鉛直方向中央よりも下方側部分に位置するような湾曲形状であれば、ガスの気泡の出口となる鉛直方向中央よりも上方側部分の湾曲度合いは小さいと言えるので、ガスは極板群内に滞留しにくい。
 すなわち、ガスの気泡が極板群から外部に排出される際の出口となる部分である、正極板の鉛直方向中央よりも上方側部分の湾曲度合いが小さければ、ガスは極板群内に滞留しにくく排出されやすいので、鉛蓄電池の内部抵抗の上昇が抑制される。よって、化成後の正極板のうち、鉛直方向中央よりも上方側部分の平面度が4.0mm以下であれば、鉛蓄電池の内部抵抗の上昇が抑制されるという効果が奏される。
〔正極活物質の密度について〕
 正極板が有する正極活物質の密度は特に限定されるものではないが、4.2g/cm3以上4.6g/cm3以下であることが好ましく、4.4g/cm3以上4.6g/cm3以下であることがより好ましい。正極活物質の密度が上記数値範囲内であれば、正極活物質の軟化や脱落が生じにくいので、鉛蓄電池の寿命が向上するという効果が奏される。
〔電解液について〕
 電解液の組成は特に限定されるものではなく、一般的な鉛蓄電池に使用される電解液を問題なく適用することができるが、鉛蓄電池の充電受入性を優れたものとするためには、電解液にアルミニウムが含有されていることが好ましく、電解液中のアルミニウムイオンの含有量は0.01モル/L以上とすることが好ましい。ただし、電解液中のアルミニウムイオンの含有量が高いと、ガスが極板群から外部に排出されにくくなるため、電解液中のアルミニウムイオンの含有量は0.3モル/L以下とすることが好ましい。
 また、電解液はナトリウムイオンを含有していてもよい。電解液中のナトリウムイオンの含有量は、0.002モル/L以上0.05モル/L以下とすることができる。
〔極板群に負荷される群圧について〕
 前述したように、極板群を電槽内に収容した際には電槽の内壁面により極板群に群圧が負荷されるが、群圧が不十分であると、正極活物質の軟化や脱落が生じやすくなり、鉛蓄電池の性能や寿命が低下する場合がある。一方、群圧が高すぎると、正極活物質中にガスが滞留して、鉛蓄電池の内部抵抗が上昇するおそれがある。よって、極板群に負荷される群圧は10kPa以下とすることが好ましい。
〔正極活物質が含有する二酸化鉛について〕
 二酸化鉛には、斜方晶系であるα相(α-二酸化鉛)と、正方晶系のβ相(β-二酸化鉛)がある。正極活物質が含有するα-二酸化鉛の質量αとβ-二酸化鉛の質量βの比率α/(α+β)は、20%以上40%以下であることが好ましい。このような構成であれば、電解液の成層化が生じにくいので、鉛蓄電池の寿命が向上するという効果が奏される。
 α-二酸化鉛は、多孔性に乏しく比表面積が小さいため放電能力が小さいが、結晶の崩壊が極めて徐々に進行するため軟化速度が小さい。一方、β-二酸化鉛は、多孔性に富み比表面積が大きいため放電能力が大きい反面、結晶の崩壊が速く進み軟化速度が大きい。よって、鉛蓄電池の長寿命化と優れた放電能力との両立のためには、正極活物質が含有するα-二酸化鉛の質量αとβ-二酸化鉛の質量βの比率α/(α+β)が20%以上40%以下となるように、正極活物質内にα-二酸化鉛とβ-二酸化鉛が分散していることが好ましい。
 α-二酸化鉛の質量αとβ-二酸化鉛の質量βの比率α/(α+β)が20%より小さいと、鉛蓄電池の寿命が不十分となるおそれがある。一方、α-二酸化鉛の質量αとβ-二酸化鉛の質量βの比率α/(α+β)が40%より大きいと、鉛蓄電池の容量が低下するおそれがある。
〔正極活物質が有する細孔について〕
 正極活物質が多孔質である場合は、正極活物質が有する細孔の平均直径は0.07μm以上0.20μm以下であることが好ましく、正極活物質の多孔度は30%以上50%以下であることが好ましい。
 正極活物質が有する細孔の平均直径が0.07μm未満であると、活物質の利用率が低下するおそれがある。一方、正極活物質が有する細孔の平均直径が0.20μmよりも大きいと、鉛蓄電池の内部抵抗が上昇するおそれがある。また、正極活物質の軟化が生じやすくなるおそれがある。正極活物質が有する細孔の平均直径の測定方法は特に限定されるものではないが、例えば水銀圧入法によって測定することができる。
 正極活物質の多孔度が30%未満であると、活物質中に硫酸が浸透しにくくなり、活物質の利用率が低下するおそれがある。一方、正極活物質の多孔度が50%超過であると、活物質の密度が低下するため、寿命が低下するおそれがある。
 正極活物質の多孔度の測定方法は特に限定されるものではないが、例えば水銀圧入法によって測定することができる。
〔正極板の表面の表面粗さRaについて〕
 正極板の表面の表面粗さRaは特に限定されるものではないが、0.20mm以下であることが好ましい。正極板の表面の表面粗さRaが0.20mmよりも大きいと、正極板の表面の凹凸の凹部内にガスが滞留しやすくなるため、内部抵抗が上昇するおそれがある。ただし、正極板の表面の表面粗さRaが0.05mm未満であると、充電時に正極板の表面で生成する硫酸の沈降速度が速くなり、電解液の成層化が生じやすくなるおそれがある。
〔隣接する正極板と負極板との間の距離について〕
 極板群内において隣接する正極板と負極板との間の距離は、特に限定されるものではないが、いずれの極板間においても0.60mm以上0.90mm以下であることが好ましい。
 隣接する正極板と負極板との間の距離が0.60mm未満であると、極板間に存在する硫酸の量が少なくなるので、鉛蓄電池の容量が低下するおそれがある。一方、隣接する正極板と負極板との間の距離が0.90mmよりも大きいと、液抵抗が大きくなり、鉛蓄電池の内部抵抗が上昇するおそれがある。また、ガスの滞留により、鉛蓄電池の内部抵抗が上昇するおそれがある。
 なお、隣接する正極板と負極板との間の距離は0.60mm以上0.90mm以下であることが好ましいが、本発明においては、極板の板面上のいずれの部位においても、両極板間の距離が0.60mm以上0.90mm以下であることを意味する。
〔満充電状態における正極活物質中に含有される鉄の含有量について〕
 鉛蓄電池の満充電状態(例えば化成後)における正極活物質中に含有される鉄の含有量は、特に限定されるものではないが、3.5ppm以上20.0ppm以下であることが好ましい。正極活物質中に鉄が含有されていると、正極板上でガスが発生しやすくなる。そして、発生したガスが電解液中を上昇することにより、電解液が撹拌され、成層化が抑制される。鉛蓄電池の満充電状態における正極活物質中に含有される鉄の含有量が上記の範囲内であれば、正極板上で発生するガスの量が電解液の撹拌に対して好適な量となるので、電解液の成層化がより抑制されることとなる。
 鉛蓄電池の満充電状態における正極活物質中に含有される鉄の含有量が3.5ppm未満であると、正極板上で発生するガスの量が少なくなるため、電解液が十分に撹拌されず、電解液の成層化が生じやすくなるおそれがある。また、鉛蓄電池の製造工程において鉄やステンレス製の製造装置が多く使用されており、これら装置に由来する鉄が混入するため、鉛蓄電池の満充電状態における正極活物質中に含有される鉄の含有量を3.5ppm未満とすることは困難である。
 例えば、正極活物質のペーストの材料である鉛粉を水や硫酸と混合するミキサーや、ミキサーに材料を供給するためのホッパーなどは、耐酸性のステンレスで形成されることが多い。したがって、鉛蓄電池の満充電状態における正極活物質中に含有される鉄の含有量を3.5ppm未満とするには、鉛蓄電池の製造工程において使用される製造装置を非鉄金属やセラミックス等で形成するか、鉄を除去する工程を追加する必要が生じるため、鉛蓄電池の製造コストの増大につながる。
 一方、鉛蓄電池の満充電状態における正極活物質中に含有される鉄の含有量が20.0ppm超過であると、電解液の電気分解が促進され、正極板上で発生する酸素ガス等のガスの量が多くなるため、電解液の減液が多くなって鉛蓄電池が短寿命化するとともに、鉛蓄電池の内部抵抗が上昇するおそれがある。さらに、自己放電が促進されるため、電圧の降下量が大きくなるおそれがある。
 なお、鉛蓄電池内に存在する鉄は、充電時には正極へ、放電時には負極へと、電解液を介して移動を繰り返す(シャトル効果)ので、鉄によるガス発生効果は正極に限定されるものではなく、負極においても生じる。そのため、セパレータが袋状である場合は、正極板及び負極板のいずれを袋状のセパレータ内に収容する構成であっても、同様の電解液撹拌効果が期待できるので、鉛蓄電池の設計の自由度が高まる。
〔厚塗り度比について〕
 前述したように、極板が湾曲する原因は、極板の両板面に形成された活物質層の厚さの違いである。よって、化成後の正極板の平面度を4.0mm以下とするためには、化成後の正極板の一方の板面に形成された正極活物質の活物質層の厚さに対する化成後の正極板の他方の板面に形成された正極活物質の活物質層の厚さの比(以下「厚塗り度比」と記すこともある)を0.67以上1.33以下とすることが好ましい。
 図4を用いて説明すると、化成後の正極板100は、板状格子体である正極基板101の開口部101c内に、二酸化鉛を含有する正極活物質を充填しつつ、正極基板101の両板面101a、101b上に、二酸化鉛を含有する正極活物質からなる正極活物質層102A、102Bをそれぞれ形成したものである。そして、正極基板101の一方の板面101a上の正極活物質層102Aの厚さAに対する正極基板101の他方の板面101b上の正極活物質層102Bの厚さBの比B/Aは、0.67以上1.33以下であることが好ましい。
 なお、化成後の正極活物質の活物質層の厚塗り度比を0.67以上1.33以下とするには、化成前の正極活物質の活物質層の厚塗り度比を0.67以上1.33以下として化成を行えばよい。正極板の化成の過程で正極活物質に体積変化が生じたとしても、正極板の両板面の化成条件が同一条件である限りは、厚塗り度比が化成前後で変化することはない。
 化成後の正極板の厚塗り度比を上記の数値範囲内とすれば、化成後の正極板の平面度を4.0mm以下とすることが容易である。その結果、ガスは極板群の外部に排出されやすくなるので、鉛蓄電池の内部抵抗の上昇が抑制され、内部抵抗を測定する方法により充電状態や劣化状態を正確に判定することが可能となる。
 なお、正極活物質の活物質層の厚さとは、正極板の表面と、これに対向する正極基板の板面との間の距離であり、すなわち、正極板の表面に直交する仮想直線のうち、正極板の表面から正極基板の板面までの部分の長さである。正極板の表面は、段差、屈曲、湾曲等がマクロスケール(数十μm~数mm程度)においては実質的に存在しない一つの平坦な平面である。正極活物質の活物質層の厚さは、正極板の表面と正極基板の板面との間の距離を1箇所測定して得た値でもよいし、正極板の表面と正極基板の板面との間の距離を複数箇所測定して得た値の平均値でもよい。
 例えば、正極基板として板状格子体を用いた場合には、正極板の表面と、板状格子体の格子網目を形成する縦横の格子骨の表面とが対向するので、正極板の表面と格子骨の表面との間の距離を測定して、その測定値を正極活物質の活物質層の厚さとすればよい。また、板状格子体において格子骨は複数並んでいるので、複数の格子骨において、正極板の表面と格子骨の表面との間の距離を測定し、それら測定値の平均値を正極活物質の活物質層の厚さとしてもよい。
 また、板状格子体の格子骨の断面形状(格子骨の長手方向に直交する平面で切断した場合の断面の形状)は、基本的には矩形であるので、正極板の表面とこれに対向する格子骨の表面とは平行をなす(図4を参照)。ただし、エキスパンド方式で製造した板状格子体では、製造過程で板状格子体に捩れや歪みが生じる場合がある。板状格子体に捩れや歪みが生じた場合には、格子骨の表面が正極板の表面に対して傾斜するか又は曲面状となるため、正極板の表面とこれに対向する格子骨の表面とは非平行となる。このような場合には、正極板の表面と格子骨の表面との間の距離は測定箇所によって大きく異なるので、各格子骨において、格子骨の表面と正極板の表面との最短距離を測定し、それらの測定値の平均値を正極活物質の活物質層の厚さとするとよい。
 本発明における厚塗り度比は、化成後の正極板の一方の板面に形成された正極活物質の活物質層の厚さに対する化成後の正極板の他方の板面に形成された正極活物質の活物質層の厚さの比であり、正極板の両板面のうちいずれの面の正極活物質の活物質層の厚さを分母として算出しても差し支えない。例えば、化成後の正極板を、その両板面が鉛直方向に直交するような姿勢で且つ集電耳が右上側に位置するようにして、平面上に載置した状態において、正極板の両板面のうち上面側の正極活物質の活物質層の厚さを分母とし、下面側の正極活物質の活物質層の厚さを分子として比を算出し、厚塗り度比としてもよい。
〔実施例〕
 以下に実施例及び比較例を示して、本発明をさらに具体的に説明する。
(A)内部抵抗の上昇に対する正極板の平面度の影響についての検討
 まず、Pb-Ca系又はPb-Ca-Sn系の鉛合金からなる板状格子体を鋳造し、該板状格子体の所定の位置に集電耳を形成した。次に、一酸化鉛を主成分とする鉛粉を水と希硫酸で混練し、さらに必要に応じて添加剤を混合し練り合わせて、正極活物質のペーストを製造した。同様に、一酸化鉛を主成分とする鉛粉を水と希硫酸で混練し、さらに必要に応じて添加剤を混合し練り合わせて、負極活物質のペーストを製造した。
 そして、正極活物質のペーストを板状格子体に充填した後に、熟成及び乾燥を行い、さらに、化成槽において化成を行って、極板の両板面に二酸化鉛を含有する正極活物質の活物質層が形成された即用式(化成済み)の正極板を得た。同様に、負極活物質のペーストを板状格子体に充填した後に、熟成及び乾燥を行い、さらに、化成槽において化成を行って、極板の両板面に金属鉛を含有する負極活物質の活物質層が形成された即用式(化成済み)の負極板を得た。正極板については、後述する方法により平面度を測定した。
 上記のようにして作製した正極板と負極板とを、多孔質の合成樹脂からなるセパレータを介在させつつ交互に複数枚積層して、極板群を作製した。この極板群を電槽内に収納し、各正極板の集電耳を正極ストラップで連結し、各負極板の集電耳を負極ストラップで連結した。そして、正極ストラップは正極端子の一端に接続し、負極ストラップは負極端子の一端に接続した。
 さらに、蓋で電槽の開口部を閉塞した。正極端子と負極端子は、蓋を貫通させ、正極端子の他端と負極端子の他端を鉛蓄電池の外部に露出させた。蓋に形成された注液口から電解液を注入し、注液口を栓体により封口して鉛蓄電池を得た。
 電池サイズはM-42とし、極板群を構成する正極板の枚数を6枚、負極板の枚数を7枚とした。正極板と負極板は連続製法により作製した。化成後の正極板の平面度は、化成前の正極板の両板面に形成された正極活物質の活物質層の厚塗り度比を変更することで調整した。
 また、セパレータの厚さは、極板群に所定の群圧が負荷されるように調整した。正極板が有する正極活物質の密度は、4.4g/cm3である。正極活物質が含有するα-二酸化鉛の質量αとβ-二酸化鉛の質量βの比率α/(α+β)は、30%である。正極活物質が有する細孔の平均直径は0.10μmであり、正極活物質の多孔度は30%である。正極板の表面の表面粗さRaは0.10mmである。隣接する正極板と負極板との間の距離は0.60mmである。電解液は、硫酸アルミニウムを0.1モル/Lの濃度で含有するものを使用した。
 次に、作製した鉛蓄電池に対して初充電を行った後に、エージングを48時間施した。そして、鉛蓄電池の内部抵抗を測定した。この内部抵抗測定値を、「初期値」とした。
 続いて、エージング後の満充電状態の鉛蓄電池に対して定電圧充電を行い、定電圧充電終了直後の内部抵抗を測定した。この内部抵抗測定値を、「充電直後の値」とした。定電圧充電の条件は、最大電流100A、制御電圧14.0V、充電時間10分間である(この鉛蓄電池は、5時間率容量(定格容量)を32Ahとする)。
 定電圧充電が終了したら1時間静置し、静置後の内部抵抗を測定した。この内部抵抗測定値を、「静置後の値」とした。
 正極板の平面度は、以下のようにして測定した。まず、マイクロメータを用いて、正極板の複数箇所において厚さを測定し、その平均値を正極板の厚さとする。次に、図2に示すように、基台の平面上に、正極板の板面と基台の平面とが略平行をなすように、且つ、湾曲した正極板の凸面を上方に向けて正極板を載置し、ハイトゲージを用いて、湾曲した正極板の凸面の頂点と基台の平面との間の距離hを測定する。そして、この距離hから正極板の厚さを差し引いた値を平面度とする。
 これらの結果を表1に示す。内部抵抗の初期値、充電直後の値、静置後の値を用いて、内部抵抗の上昇率を算出した。初期値に対する充電直後の値の上昇率は、([充電直後の値]-[初期値])/[初期値]により算出し、初期値に対する静置後の値の上昇率は、([静置後の値]-[初期値])/[初期値]により算出した。
 そして、初期値に対する充電直後の値の上昇率が10%以下であるという条件Aと、初期値に対する静置後の値の上昇率が5%以下であるか又は充電直後の値の上昇率に対して静置後の値の上昇率が4%以上低い値であるという条件Bとを両方満たす場合は、内部抵抗の上昇が顕著に抑制されていると判定し、表1においては○印で示した。
 条件Aと条件Bのいずれか一方の条件のみを満たす場合は、内部抵抗の上昇が十分に抑制されているものの、顕著に抑制されているとまでは言えないと判定し、表1においては△印で示した。条件Aと条件Bのいずれも満たさない場合は、内部抵抗の上昇の抑制が若干不十分又は全く不十分であると判定し、表1においては×印で示してある。
Figure JPOXMLDOC01-appb-T000001
 表1に示す結果から、正極板の平面度が4.0mm以下である実施例1~4は、内部抵抗の上昇が顕著に抑制されていることが分かる。
 これに対して、正極板の平面度が5.0mmである比較例1は、初期値に対する充電直後の値の上昇率が高いことが分かる。また、初期値に対する静置後の値の上昇率も高いことから、内部抵抗の低下速度が遅いことが分かる。
(B)内部抵抗の上昇に対する群圧の影響についての検討
 次に、極板群に負荷される群圧の影響について検討した。鉛蓄電池の構成、製造方法、及び、評価方法については、極板群に所定の群圧が負荷されるようにセパレータの厚さを調整した点を除いて、上記(A)の検討の場合と同様である。評価結果を表2にまとめて示す。
 表2に示す評価結果から、正極板の平面度が4.0mm以下であっても、群圧が20kPaであると、初期値に対する静置後の値の上昇率が高く、内部抵抗の低下速度が若干遅いことが分かる。これは、群圧が高いために、極板群からガスが排出されにくくなっていることが原因であると考えられる。これらの結果から、定電圧充電により上昇した内部抵抗が初期値に早く戻るようにするためには、極板群に負荷される群圧を10kPa以下とすることが好ましいことが分かる。
Figure JPOXMLDOC01-appb-T000002
(C)鉛蓄電池の性能に対する正極活物質の密度の影響についての検討
 正極活物質の密度の影響について検討した。鉛蓄電池の構成及び製造方法については、正極活物質の密度が異なる点を除いて、特に断りがない限り、上記(A)の検討の場合と同様である。鉛蓄電池の性能については、上記(A)の検討と同様に内部抵抗の上昇について評価するとともに、電解液の成層化と電池寿命についても評価した。
 電解液の成層化と電池寿命については、欧州規格(EN規格)のEN 50342-6:2015に記載の17.5%DOD寿命試験により評価した。すなわち、下記の(1)、(2)、(3)の操作を複数サイクル繰り返し、電圧が10Vになったら寿命に達したと判定し、それまで行ったサイクル数を電池寿命とするとともに、電解液の上部と下部での比重の差を測定した。
 (1)充電状態(SOC)を50%に調整する。
 (2)放電深度(DOD)17.5%の充放電を85回繰り返す。
 (3)満充電にして20HR容量試験を実施する。容量試験終了後、再び満充電を実施する。
 評価結果を表3、4に示す。電池寿命が800サイクル以上であるという条件Cと、電解液の成層化(電解液の上部と下部での比重の差)が0.03以下であるという条件Dとを両方満たす場合は、鉛蓄電池の性能が顕著に優れていると判定し、表4においては○印で示した。条件Cと条件Dのいずれか一方の条件のみを満たす場合は、鉛蓄電池の性能が十分に優れているものの、顕著に優れているとまでは言えないと判定し、表4においては△印で示した。条件Cと条件Dのいずれも満たさない場合は、鉛蓄電池の性能が若干不十分又は全く不十分であると判定し、表4においては×印で示した。
 表3、4に示す評価結果から、正極活物質の密度が4.2g/cm3以上4.6g/cm3以下であると、内部抵抗の上昇が顕著に抑制されているとともに内部抵抗の低下速度が速いことが分かる。また、鉛蓄電池の電池寿命が優れており、且つ、電解液の成層化が生じにくいことが分かる。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
(D)鉛蓄電池の性能に対する二酸化鉛のαβ比率の影響についての検討
 正極活物質が含有するα-二酸化鉛の質量αとβ-二酸化鉛の質量βの比率α/(α+β)の影響について検討した。鉛蓄電池の構成及び製造方法については、二酸化鉛のαβ比率が異なる点を除いて、特に断りがない限り、上記(A)の検討の場合と同様である。鉛蓄電池の性能については、上記(A)の検討と同様に内部抵抗の上昇について評価するとともに、上記(C)の検討と同様に電解液の成層化と電池寿命についても評価した。
 評価結果を表5、6に示す。表5、6に示す評価結果から、二酸化鉛のαβ比率α/(α+β)が20%以上40%以下であると、内部抵抗の上昇が十分に抑制されているとともに内部抵抗の低下速度が速いことが分かる。また、鉛蓄電池の電池寿命が優れており、且つ、電解液の成層化が生じにくいことが分かる。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
(E)鉛蓄電池の性能に対する正極活物質が有する細孔の平均直径及び正極活物質の多孔度の影響についての検討
 正極活物質が有する細孔の平均直径及び正極活物質の多孔度の影響について検討した。鉛蓄電池の構成及び製造方法については、正極活物質が有する細孔の平均直径又は正極活物質の多孔度が異なる点を除いて、特に断りがない限り、上記(A)の検討の場合と同様である。鉛蓄電池の性能については、上記(A)の検討と同様に内部抵抗の上昇について評価するとともに、活物質の利用率についても評価した。
 活物質の利用率については、5時間率放電試験を実施した後に放電容量を測定することにより求めた。
 評価結果を表7、8、9、10に示す。利用率については、放電容量の測定値が、M-42の定格容量である32Ah以上であった場合は、利用率が顕著に優れていると判定し、表8、10においては○印で示した。放電容量の測定値が30Ah以上32Ah未満であった場合は、利用率が十分に優れているものの、顕著に優れているとまでは言えないと判定し、表8、10においては△印で示した。放電容量の測定値が30Ah未満であった場合は、利用率が若干不十分又は全く不十分であると判定し、表8、10においては×印で示した。
 表7、8、9、10に示す評価結果から、正極活物質が有する細孔の平均直径が0.07μm以上0.20μm以下の場合や、正極活物質の多孔度が30%以上50%以下である場合は、内部抵抗の上昇が顕著に抑制されているとともに内部抵抗の低下速度が速いことが分かる。また、活物質の利用率が顕著に優れていることが分かる。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
(F)内部抵抗の上昇に対する正極板の表面の表面粗さRaの影響についての検討
 正極板の表面の表面粗さRaの影響について検討した。鉛蓄電池の構成、製造方法、及び、評価方法については、正極板の表面の表面粗さRaが異なる点を除いて、特に断りがない限り、上記(A)の検討の場合と同様である。評価結果を表11に示す。
 表11に示す評価結果から、正極板の表面の表面粗さRaが0.20mm以下であると、内部抵抗の上昇が顕著に抑制されているとともに内部抵抗の低下速度が速いことが分かる。
Figure JPOXMLDOC01-appb-T000011
(G)内部抵抗の上昇に対する正極板と負極板との間の距離の影響についての検討
 隣接する正極板と負極板との間の距離(以下「極板間距離」と記すこともある)の影響について検討した。鉛蓄電池の構成、製造方法、及び、評価方法については、極板間距離が異なる点を除いて、特に断りがない限り、上記(A)の検討の場合と同様である。評価結果を表12に示す。
 表12に示す評価結果から、極板間距離が0.60mm以上0.90mm以下であると、内部抵抗の上昇が顕著に抑制されているとともに内部抵抗の低下速度が速いことが分かる。
Figure JPOXMLDOC01-appb-T000012
(H)内部抵抗の上昇及び充電受入性に対する電解液中のアルミニウムイオンの濃度の影響についての検討
 電解液中のアルミニウムイオンの濃度の影響について検討した。鉛蓄電池の構成及び製造方法については、電解液中のアルミニウムイオンの濃度が異なる点を除いて、特に断りがない限り、上記(A)の検討の場合と同様である。鉛蓄電池の性能については、上記(A)の検討と同様に内部抵抗の上昇について評価するとともに、充電受入性についても評価した。
 充電受入性は、以下のようにして評価した。鉛蓄電池に対して完全充電を施し、電解液の温度が23℃以上27℃以下の範囲内であることを確認した後に、5時間率電流で0.5時間放電した。次に、鉛蓄電池を23℃以上27℃以下の温度で20時間静置し、電解液の温度が23℃以上27℃以下の範囲内であることを確認した後に、23℃以上27℃以下の温度、13.9V以上14.1V以下の電圧、最大電流100Aとの条件で定電圧充電を行い、充電開始5秒後の充電電流を測定した。
 評価結果を表13に示す。充電受入性の評価結果については、電解液中のアルミニウムイオンの濃度が0モル/Lである参考例に比べて、充電電流が10A以上高い場合は、表13においては○印で示し、0A超過10A未満高い場合は、表13においては△印で示した。また、充電電流が参考例と同値か又は参考例よりも低い場合は、表13においては×印で示した。
 さらに、内部抵抗の上昇率と充電受入性の評価結果を総合して、総合判定を行った。結果を表13に示す。表13においては、内部抵抗の上昇率と充電受入性の両方が○印の判定であった場合は、総合判定は○印を示し、内部抵抗の上昇率と充電受入性の少なくとも一方が△印又は×印の判定であった場合は、総合判定は×印を示してある。
Figure JPOXMLDOC01-appb-T000013
 電解液にアルミニウムイオンを添加すると、充電受入性が向上することが知られている。しかしながら、平面度が大きい極板を使用した鉛蓄電池において、電解液にアルミニウムイオンを添加した場合は、平面度が大きくなることによって極板間にガスが溜まり、内部抵抗が上昇するため、アルミニウムイオンの添加効果が小さくなることが分かった。
 また、電解液にアルミニウムイオンやナトリウムイオンを過剰に添加すると、電解液の抵抗及び粘度が上昇するためガスが抜けにくくなり、内部抵抗がより上昇しやすいことが分かった。よって、平面度とともに、電解液中のアルミニウムイオン及びナトリウムイオンの濃度を適正なものとすることが重要である。
(I)内部抵抗の上昇及び充電受入性に対する電解液中のナトリウムイオンの濃度の影響についての検討
 電解液中のナトリウムイオンの濃度の影響について検討した。鉛蓄電池の構成及び製造方法については、電解液中のアルミニウムイオン及びナトリウムイオンの濃度が異なる点を除いて、特に断りがない限り、上記(H)の検討の場合と同様である。鉛蓄電池の性能については、上記(H)の検討と同様に内部抵抗の上昇と充電受入性について評価するとともに、上記(C)の検討と同様に電池寿命についても評価した。
 評価結果を表14に示す。電池寿命の評価結果については、電池寿命が800サイクル以上である場合は、表14においては○印で示し、800サイクル未満である場合は、表14においては×印で示した。
 さらに、内部抵抗の上昇率と充電受入性と電池寿命の評価結果を総合して、総合判定を行った。結果を表14に示す。表14においては、内部抵抗の上昇率と充電受入性と電池寿命の全てが○印の判定であった場合は、総合判定は○印を示し、内部抵抗の上昇率と充電受入性と電池寿命のうち少なくとも一つが△印又は×印の判定であった場合は、総合判定は×印を示してある。
Figure JPOXMLDOC01-appb-T000014
 電解液中のナトリウムイオンの存在は有害であり、アルミニウムイオン等による充電率改善効果を阻害していることが分かった。電解液中のナトリウムイオンの濃度は、0.002モル/L以上0.05モル/L以下であることが好ましい。
 負極の添加剤として用いられるリグニンは一般にナトリウム塩であるため、ナトリウムイオンの濃度を0.002モル/L未満とすると、リグニンの添加量を削減することになるため、この点で却って鉛蓄電池の寿命を低下させることになる。
(J)内部抵抗の上昇に対する正極活物質中に含有される鉄の含有量の影響についての検討
 まず、Pb-Ca系又はPb-Ca-Sn系の鉛合金からなる板状格子体を鋳造し、該板状格子体の所定の位置に集電耳を形成した。なお、板状格子体は、鋳造法に限定されず連続製法により作製してもよい。連続製法としては、鉛又は鉛合金のシート(例えば圧延シート)を打ち抜いて板状格子体を作製する打ち抜き法(パンチング法)や、鉛又は鉛合金のシートを押し抜いた後にシート面に平行な方向に伸張して格子構造を形成するエキスパンド法があげられる。
 次に、一酸化鉛を主成分とする鉛粉を水と希硫酸で混練し、さらに必要に応じて添加剤を混合し練り合わせて、正極活物質のペーストを製造した。同様に、一酸化鉛を主成分とする鉛粉を水と希硫酸で混練し、さらに必要に応じて添加剤を混合し練り合わせて、負極活物質のペーストを製造した。
 そして、正極活物質のペーストを板状格子体に充填した後に、熟成及び乾燥を行った。同様に、負極活物質のペーストを板状格子体に充填した後に、熟成及び乾燥を行った。上記のようにして作製した正極板と負極板とを、多孔質の合成樹脂からなるセパレータを介在させつつ交互に複数枚積層して、極板群を作製した。この極板群を電槽内に収納し、各正極板の集電耳を正極ストラップで連結し、各負極板の集電耳を負極ストラップで連結した。そして、正極ストラップは正極端子の一端に接続し、負極ストラップは負極端子の一端に接続した。電池サイズはM-42とし、極板群を構成する正極板の枚数を6枚、負極板の枚数を7枚とした。
 さらに、蓋で電槽の開口部を閉塞した。正極端子と負極端子は、蓋を貫通させ、正極端子の他端と負極端子の他端を鉛蓄電池の外部に露出させた。蓋に形成された注液口から電解液を注入し、注液口を栓体により封口して、電槽化成を行った。電解液の注入から化成のための通電開始までの時間(すなわちソーキング時間)は30分間、化成のための電気量は230%とした。
 電解液としては、所定量の鉄を含有する硫酸を用いた。この電解液は、工業硫酸に硫酸第一鉄を添加することによって調製した。電解液中の鉄の含有量については、表15を参照。調製した電解液の比重は、いずれも1.23である。なお、鉄は、充電時には正極へ、放電時には負極へと、電解液を介して移動するので、化成前の電解液に含有される鉄は、化成後(満充電状態)では正極へ移動している。よって、化成前の電解液中の鉄の含有量と、満充電状態における正極活物質中に含有される鉄の含有量とは、ほぼ同一の値となる。
 このような化成により、二酸化鉛を含有する正極活物質の活物質層が極板の両板面に形成された化成済みの正極板と、金属鉛を含有する負極活物質の活物質層が極板の両板面に形成された化成済みの負極板と、を備える鉛蓄電池を得た。
 化成後の正極板の平面度は、化成前の正極板の両板面に形成された正極活物質の活物質層の厚塗り度比を変更することで調整した。ただし、化成後の正極板の平面度を調整する方法は、前述の厚塗り度比を変更する方法に限定されるものではなく、他の方法を用いても差し支えない。化成後の正極板の平面度の測定方法については、後に詳述する。
 また、セパレータの厚さは、極板群に所定の群圧が負荷されるように調整した。正極板が有する正極活物質の密度は、4.4g/cm3である。正極活物質が含有するα-二酸化鉛の質量αとβ-二酸化鉛の質量βの比率α/(α+β)は、30%である。正極活物質が有する細孔の平均直径は0.10μmであり、正極活物質の多孔度は30%である。正極板の表面の表面粗さRaは0.10mmである。隣接する正極板と負極板との間の距離は0.60mmである。電解液は、硫酸アルミニウムを0.1モル/Lの濃度で含有するものを使用した。
 次に、化成終了後直ちに、正極板の平面度と正極活物質中に含有される鉄の含有量とを測定した。結果を表15に示す。なお、正極板の平面度は、以下のようにして測定した。まず、マイクロメータを用いて、正極板の複数箇所において厚さを測定し、その平均値を正極板の厚さとする。次に、図2に示すように、基台の平面上に、正極板の板面と基台の平面とが略平行をなすように、且つ、湾曲した正極板の凸面を上方に向けて正極板を載置し、ハイトゲージを用いて、湾曲した正極板の凸面の頂点と基台の平面との間の距離hを測定する。そして、この距離hから正極板の厚さを差し引いた値を平面度とする。
 次に、作製した鉛蓄電池に対して初充電を行った後に、エージングを48時間施した。そして、鉛蓄電池の内部抵抗を測定した。この内部抵抗測定値を、「初期値」とした。
 続いて、エージング後の満充電状態の鉛蓄電池に対して定電圧充電を行い、定電圧充電終了直後の内部抵抗を測定した。この内部抵抗測定値を、「充電直後の値」とした。定電圧充電の条件は、最大電流100A、制御電圧14.0V、充電時間10分間である(この鉛蓄電池は、5時間率容量(定格容量)を32Ahとする)。
 定電圧充電が終了したら1時間静置し、静置後の内部抵抗を測定した。この内部抵抗測定値を、「静置後の値」とした。
 これらの結果を表15に示す。内部抵抗の初期値、充電直後の値、静置後の値を用いて、内部抵抗の上昇率を算出した。初期値に対する充電直後の値の上昇率は、([充電直後の値]-[初期値])/[初期値]により算出し、初期値に対する静置後の値の上昇率は、([静置後の値]-[初期値])/[初期値]により算出した。
 そして、初期値に対する充電直後の値の上昇率が10%以下であるという条件Aと、初期値に対する静置後の値の上昇率が5%以下であるか又は充電直後の値の上昇率に対して静置後の値の上昇率が4%以上低い値であるという条件Bとを両方満たす場合は、内部抵抗の上昇が顕著に抑制されていると判定し、表15においては○印で示した。
 条件Aと条件Bのいずれか一方の条件のみを満たす場合は、内部抵抗の上昇が十分に抑制されているものの、顕著に抑制されているとまでは言えないと判定し、表15においては△印で示した。条件Aと条件Bのいずれも満たさない場合は、内部抵抗の上昇の抑制が若干不十分又は全く不十分であると判定し、表15においては×印で示してある。
 また、電解液の成層化と電池寿命については、欧州規格(EN規格)のEN 50342-6:2015に記載の17.5%DOD寿命試験により評価した。すなわち、下記の(1)、(2)、(3)の操作を複数サイクル繰り返し、電圧が10Vになったら寿命に達したと判定し、それまで行ったサイクル数を電池寿命とするとともに、電解液の上部と下部での比重の差と電解液の減液量とを、雰囲気温度25℃において測定した。
 (1)充電状態(SOC)を50%に調整する。
 (2)放電深度(DOD)17.5%の充放電を85回繰り返す。
 (3)満充電にして20HR容量試験を実施する。容量試験終了後、再び満充電を実施する。
 評価結果を表15に示す。電解液の成層化については、電解液の上部と下部での比重の差が0.100未満である場合は、表15においては○印で示し、0.100以上0.145以下である場合は、表15においては△印で示し、0.145超過である場合は、表15においては×印で示した。
 また、電解液の減液量が36.0g未満である場合は、表15においては○印で示し、36.0g以上40.0g以下である場合は、表15においては△印で示し、40.0g超過である場合は、表15においては×印で示した。なお、減液前の元の電解液の量は、475gである。
 さらに、電解液の上部と下部での比重の差と電解液の減液量の両判定結果を合わせて統合評価し、表15においては、両方の判定結果が○であった場合は○印で示し、一方の判定結果が△で且つ他方の判定結果が○又は△であった場合は△印で示し、少なくとも一方の判定結果が×であった場合は×印で示した。
 さらに、上記した電解液の比重の差と減液量とを合わせた統合評価と、内部抵抗の上昇率との判定結果を総合して、総合判定を行った。表15においては、一方の判定結果が○で且つ他方の判定結果が○又は△であった場合は○印で示し、両方の判定結果が△であった場合は△印で示し、少なくとも一方の判定結果が×であった場合は×印で示した。
Figure JPOXMLDOC01-appb-T000015
 まず、表15の平面度と内部抵抗の関係から、平面度が小さいほど内部抵抗が低いことが分かる。これは、平面度が小さいほどガスが正極板の表面に滞留しにくくなり、極板群の外部に排出されやすくなるので、鉛蓄電池の内部抵抗の上昇が抑制されためと考えられる。そして、化成後の正極板の平面度が4.0mm以下であれば、鉛蓄電池の内部抵抗の上昇が十分に抑制されるため、内部抵抗を測定する方法により充電状態や劣化状態を正確に判定することが可能となる。
 また、満充電状態における正極活物質中に含有される鉄の含有量が少ないほど、電解液の上部と下部での比重の差が大きくなる傾向があり、成層化が生じやすく、満充電状態における正極活物質中に含有される鉄の含有量が多いほど、電解液の上部と下部での比重の差が小さくなる傾向があり、成層化が抑制された。例えば、比較例906は比重の差が大きく成層化が生じているのに対し、比較例907、908は比較例906よりも比重の差が小さく、比較例909、910は比重の差がさらに小さく成層化は抑制された。そして、平面度が同一である鉛蓄電池においては(例えば、平面度が1.0mmである実施例905~908及び比較例2においては)、いずれも上記と同様の傾向が見られた。
 一方、電解液の減液量については、電解液の上部と下部での比重の差とは逆の傾向があり、満充電状態における正極活物質中に含有される鉄の含有量が少ないほど、電解液の減液量が少なくなる傾向があり、満充電状態における正極活物質中に含有される鉄の含有量が多いほど、電解液の減液量が多くなる傾向があった。
 他方、満充電状態における正極活物質中に含有される鉄の含有量が同一である鉛蓄電池においては(例えば、鉄の含有量が4.00ppmである実施例902、906、910、914、918、比較例907においては)、平面度が小さいほど、電解液の上部と下部での比重の差が小さくなる傾向が見られた。平面度が小さいほど、正極板と負極板との間隔や正極板とセパレータとの間隔が小さくなるため、正極板と負極板との間の隙間や正極板とセパレータとの間の隙間にガスが滞留しにくくなり、より多量のガスが電解液中に放出される。その結果、電解液の撹拌がより効率的に行われるため、成層化が抑制されると考えられる。
 さらに、満充電状態における正極活物質中に含有される鉄の含有量が多いほど、充電時に正極及び負極から発生するガスの量が多くなるため、電解液の撹拌がより効率的に行われ、成層化は抑制された。さらに、正極板の平面度が小さいほど、正極及び負極から発生するガスが正極板と負極板との間の隙間に滞留しにくくなるため、より多量のガスが電解液中に放出される。その結果、電解液の撹拌がより効率的に行われ、成層化は抑制されると考えられる。
(K)内部抵抗の上昇に対する正極活物質層の厚さの比の影響についての検討
 まず、Pb-Ca系又はPb-Ca-Sn系の鉛合金からなる板状格子体を、鋳造法又は連続製法で作製し、該板状格子体の所定の位置に集電耳を形成した。連続製法としては、プレス加工機等を用いて鉛合金製の圧延シートを打ち抜く打ち抜き法(パンチング法)を採用した。
 連続製法で作製された基板(板状格子体)は、鋳造法で作製された基板(板状格子体)と比較して厚さのバラツキが小さい。詳述すると、連続製法で作製された基板の厚さは、予め用意されたシートの厚さに依存するため、鋳造法に比べると製造者の技術レベルや使用する金型の精度の影響が小さく、バラツキが生じにくい。そのため、連続製法で作製された基板を用いて正極板を製造すると、鋳造法で作製された基板を用いた場合よりも、正極板の厚さのバラツキが小さくなり、化成時の正極板の湾曲が抑制される。正極板の厚さのバラツキは小さい方が好ましいが、正極板の厚さのバラツキの度合いを表すパラメータR(詳細は後述する)を10μm以上30μm以下の範囲内とすることが好ましい。
 次に、一酸化鉛を主成分とする鉛粉を水と希硫酸で混練し、さらに必要に応じて添加剤を混合し練り合わせて、正極活物質のペーストを製造した。同様に、一酸化鉛を主成分とする鉛粉を水と希硫酸で混練し、さらに必要に応じて添加剤を混合し練り合わせて、負極活物質のペーストを製造した。
 そして、正極活物質のペーストを板状格子体に充填した後に、熟成及び乾燥を行った。同様に、負極活物質のペーストを板状格子体に充填した後に、熟成及び乾燥を行った。上記のようにして作製した正極板と負極板とを、多孔質の合成樹脂からなるセパレータを介在させつつ交互に複数枚積層して、極板群を作製した。この極板群を電槽内に収納し、各正極板の集電耳を正極ストラップで連結し、各負極板の集電耳を負極ストラップで連結した。正極ストラップは正極端子の一端に接続し、負極ストラップは負極端子の一端に接続した。電池サイズはD31とした。群圧はセパレータの厚さによって調整した。
 さらに、蓋で電槽の開口部を閉塞した。正極端子と負極端子は、蓋を貫通させ、正極端子の他端と負極端子の他端を鉛蓄電池の外部に露出させた。蓋に形成された注液口から電解液を注入し、注液口を栓体により封口して、電槽化成を行った。電解液としては、所定量のアルミニウムイオンを含有する硫酸を用いた。この電解液は、工業硫酸に硫酸アルミニウムを添加することによって調製した。
 化成により、二酸化鉛を含有する正極活物質の活物質層が極板の両板面に形成された化成済みの正極板と、金属鉛を含有する負極活物質の活物質層が極板の両板面に形成された化成済みの負極板と、を備える鉛蓄電池を得た。
 得られた実施例1001~1060、比較例1001~1039、及び従来例の鉛蓄電池について、種々の測定及び評価を行った。測定及び評価の内容、方法について、以下に説明する。
 なお、正極板が有する正極活物質の密度は、表16~19に示す通りである。正極活物質が含有するα-二酸化鉛の質量αとβ-二酸化鉛の質量βの比率α/(α+β)は、30%である。正極活物質が有する細孔の平均直径は0.10μmであり、正極活物質の多孔度は30%である。正極板の表面の表面粗さRaは0.10mmである。隣接する正極板と負極板との間の距離は0.60mmである。電解液は、硫酸アルミニウムを0.1モル/Lの濃度で含有するものを使用した。
(正極板の平面度)
 化成後の正極板の平面度を測定した。正極板の平面度は、化成前の正極板の両板面に形成された正極活物質の活物質層の厚塗り度比を変更することで調整した。厚塗り度比と平面度は、表16~19に示す通りである。化成後の正極板の平面度は、以下のようにして測定した。
 まず、マイクロメータを用いて、正極板の複数箇所において厚さを測定し、その平均値を正極板の厚さとする。次に、図2に示すように、基台の平面上に、正極板の板面と基台の平面とが略平行をなすように、且つ、湾曲した正極板の凸面を上方に向けて正極板を載置し、ハイトゲージを用いて、湾曲した正極板の凸面の頂点と基台の平面との間の距離hを測定する。そして、この距離hから正極板の厚さを差し引いた値を平面度とする。
(正極板の厚さのバラツキの度合い)
 化成後の正極板の厚さのバラツキの度合いを、以下のようにして評価した。株式会社ミツトヨ製のマイクロメーターを用いて、正極板の厚さを測定した。測定箇所は、矩形をなす正極板の角部の近傍部分と中央部分との合計5箇所とした。測定値を下記の数式に代入し、正極板の厚さのバラツキの度合いを表すパラメータR(単位はμm)を算出した。
Figure JPOXMLDOC01-appb-M000016
 上記の数式中のTiは正極板の厚さの各測定値、Taveは正極板の厚さの各測定値から算出した平均値、nは正極板の厚さの測定点数(本例の場合は5)を表す。
 厚さのバラツキの評価結果を表16~19に示す。なお、パラメータRが30μm、50μmである正極板は、鋳造法で製造された基板が用いられたものである。また、パラメータRが10μm、15μmである正極板は、連続製法で製造された基板が用いられたものである。
(充電受入性)
 雰囲気温度25℃にて、5時間率電流で30分間定電流放電を行い、充電状態(SOC)を90%に調整した後に、電流100A、電圧14.0Vで定電流定電圧充電を60秒間実施した。このとき、定電流定電圧充電の開始5秒後の充電電流を測定し、この充電電流で充電受入性を評価した。
 結果を表16~19に示す。なお、表16~19に示した充電電流の数値は、従来例の鉛蓄電池の充電電流を100とした場合の相対値である。そして、充電電流が100よりも大きい場合は、充電受入性が優れていると判定した。
(電解液の成層化及び電池寿命の評価)
 電解液の成層化と電池寿命については、欧州規格(EN規格)のEN 50342-6:2015に記載の17.5%DOD寿命試験によって評価した。すなわち、下記の(1)、(2)、及び(3)に示すような操作を繰り返し行って、電解液の成層化と電池寿命を評価した。
 (1)満充電状態の鉛蓄電池に対して、雰囲気温度25℃にて、電流4×I20(I20は20時間率電流であり、単位はAである)で定電流放電を2.5時間行い、充電状態(SOC)を50%に調整する。
 (2)上記充電状態の調整が終了したら、電流7×I20A、電圧14.4Vで定電流定電圧充電を2400秒間実施し、さらに電流7×I20Aで定電流放電を1800秒間行うという操作を1サイクルとし、85サイクル繰り返す。
 (3)上記85サイクルの操作が終了したら、電流2×I20A、電圧16Vで定電流定電圧充電を18時間実施し、さらに鉛蓄電池の電圧が10.5Vとなるまで電流I20Aで定電流放電を行い、さらに電流5×I20A、電圧16Vで定電流定電圧充電を24時間実施する。
 これら一連の操作(1)~(3)を1周期として、鉛蓄電池の電圧を10秒間隔で測定しながら、操作(1)~(3)を何周期も繰り返し行い、上記周期中の放電時において鉛蓄電池の電圧が10V未満となったら、鉛蓄電池が寿命に至ったと判定した。結果を表16~19に示す。なお、表16~19に示した寿命の数値は、従来例の鉛蓄電池の寿命を100とした場合の相対値である。そして、寿命が100よりも大きい場合は、PSOC寿命性能(部分充電状態における寿命)が優れていると判定した。
 また、上記の電池寿命の評価において鉛蓄電池が寿命に至ったと判定されたら、電解液の上部と下部での比重の差を測定し、その測定値で成層化の状況を評価した。比重の測定は、株式会社MonotaRO製の光学比重計(バッテリークーラントテスター)を用いて行った。結果を表16~19に示す。なお、表16~19に示した比重の差の数値は、従来例の鉛蓄電池の比重の差を100とした場合の相対値である。そして、比重の差が小さいほど成層化が抑制されていると判定した。
(内部抵抗の上昇の評価)
 作製した鉛蓄電池に対して初充電を行った後に、エージングを48時間施した。そして、鉛蓄電池の内部抵抗を測定した。この内部抵抗測定値を、「初期値」とした。
 続いて、エージング後の満充電状態の鉛蓄電池に対して定電圧充電を行い、定電圧充電終了直後の内部抵抗を測定した。この内部抵抗測定値を、「充電直後の値」とした。定電圧充電の条件は、最大電流100A、制御電圧14.0V、充電時間10分間である(この鉛蓄電池は、5時間率容量(定格容量)を32Ahとする)。
 定電圧充電が終了したら1時間静置し、静置後の内部抵抗を測定した。この内部抵抗測定値を、「静置後の値」とした。
 これらの結果を表16~19に示す。内部抵抗の初期値、充電直後の値、静置後の値を用いて、内部抵抗の上昇率を算出した。初期値に対する充電直後の値の上昇率は、([充電直後の値]-[初期値])/[初期値]により算出し、初期値に対する静置後の値の上昇率は、([静置後の値]-[初期値])/[初期値]により算出した。
 そして、初期値に対する充電直後の値の上昇率が10%以下であるという条件Aと、初期値に対する静置後の値の上昇率が5%以下であるか又は充電直後の値の上昇率に対して静置後の値の上昇率が4%以上低い値であるという条件Bとを両方満たす場合は、内部抵抗の上昇が顕著に抑制されていると判定し、表16~19においては○印で示した。
 条件Aと条件Bのいずれか一方の条件のみを満たす場合は、内部抵抗の上昇が十分に抑制されているものの、顕著に抑制されているとまでは言えないと判定し、表16~19においては△印で示した。条件Aと条件Bのいずれも満たさない場合は、内部抵抗の上昇の抑制が若干不十分又は全く不十分であると判定し、表16~19においては×印で示してある。
 さらに、上記した電解液の比重の差の数値(相対値)と、内部抵抗の上昇率の判定結果とを総合して、総合判定を行った。表16~19においては、電解液の比重の差が90以下であり、且つ、内部抵抗の上昇率の判定結果が○又は△であった場合は○印で示し、それ以外の場合は×印で示した。
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
 表16~19から分かるように、正極板の厚塗り度比B/Aが0.67以上1.33以下である場合は、0.50及び1.50である場合と比べて、正極板の平面度の数値が小さい(湾曲が小さい)ために、成層化が抑制されやすい傾向と内部抵抗の上昇率が低い傾向とがあった。特に、正極板の厚塗り度比B/Aが1.00である場合は、正極板の平面度の数値がより小さくなり、成層化がより生じにくく且つ内部抵抗の上昇率が低かった。正極板上で発生したガスが電解液中を上昇することにより、電解液が撹拌されたため、成層化が抑制されたものと考えられる。
 また、正極板の厚さのバラツキの度合いを表すパラメータRが小さいと、充電受入性が優れる傾向が見られた。正極板の厚さのバラツキの度合いを表すパラメータRが50μmであると、10μm、15μm、30μmである場合と比べて、充電受入性及びPSOC寿命性能が低い傾向があった。これは、正極板の表面に凹凸が存在することにより、正極板にクラックが発生しやすくなるため、その影響で充電受入性及びPSOC寿命性能が低下すると推測される。また、充電受入性の低下に伴って、成層化も生じやすくなっていると考えられる。
 さらに、正極活物質の密度が4.4g/cm3以上4.6g/cm3以下である場合は、PSOC寿命性能が優れていた。正極活物質の密度が4.3g/cm3及び4.7g/cm3である場合は、4.4g/cm3以上4.6g/cm3以下である場合と比べて、PSOC寿命性能が低くなる傾向があった。
    1   極板群
   10   正極板
   20   負極板
   30   セパレータ

Claims (11)

  1.  二酸化鉛を含有する正極活物質を有する正極板と、金属鉛を含有する負極活物質を有する負極板とが、セパレータを介して複数枚交互に積層された極板群を備え、前記極板群が電解液に浸漬され、化成後の前記正極板の平面度が4.0mm以下である鉛蓄電池。
  2.  前記正極活物質が含有するα-二酸化鉛の質量αとβ-二酸化鉛の質量βの比率α/(α+β)が20%以上40%以下である請求項1に記載の鉛蓄電池。
  3.  前記正極活物質が有する細孔の平均直径が0.07μm以上0.20μm以下であり、前記正極活物質の多孔度が30%以上50%以下である請求項1又は請求項2に記載の鉛蓄電池。
  4.  前記正極板の表面の表面粗さRaが0.20mm以下である請求項1~3のいずれか一項に記載の鉛蓄電池。
  5.  隣接する前記正極板と前記負極板との間の距離がいずれも0.60mm以上0.90mm以下である請求項1~4のいずれか一項に記載の鉛蓄電池。
  6.  満充電状態における前記正極活物質中に含有される鉄の含有量が3.5ppm以上20.0ppm以下である請求項1~5のいずれか一項に記載の鉛蓄電池。
  7.  部分充電状態で使用される鉛蓄電池であって、化成後の前記正極板は、前記正極活物質からなる正極活物質層が正極基板の両板面上にそれぞれ配されてなり、前記正極基板の一方の板面上の前記正極活物質層の厚さに対する前記正極基板の他方の板面上の前記正極活物質層の厚さの比が0.67以上1.33以下である請求項1~5のいずれか一項に記載の鉛蓄電池。
  8.  化成後の前記正極板が略椀状に湾曲しており、湾曲した前記正極板の凸面の頂点が、前記正極板の鉛直方向中央よりも下方側部分に位置する請求項1~7のいずれか一項に記載の鉛蓄電池。
  9.  前記正極活物質の密度が4.2g/cm3以上4.6g/cm3以下である請求項1~8のいずれか一項に記載の鉛蓄電池。
  10.  前記電解液のアルミニウムイオンの含有量が0.01モル/L以上0.3モル/L以下である請求項1~9のいずれか一項に記載の鉛蓄電池。
  11.  前記極板群に負荷された群圧が10kPa以下である請求項1~10のいずれか一項に記載の鉛蓄電池。
PCT/JP2019/030263 2018-09-27 2019-08-01 鉛蓄電池 WO2020066290A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/253,084 US20210167363A1 (en) 2018-09-27 2019-08-01 Lead Storage Battery
CN201980028342.5A CN112042041B (zh) 2018-09-27 2019-08-01 铅蓄电池
DE112019002286.5T DE112019002286B4 (de) 2018-09-27 2019-08-01 Bleisäurebatterie

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2018-182541 2018-09-27
JP2018182542A JP6670903B1 (ja) 2018-09-27 2018-09-27 鉛蓄電池
JP2018-182543 2018-09-27
JP2018182543A JP6705874B2 (ja) 2018-09-27 2018-09-27 鉛蓄電池
JP2018-182542 2018-09-27
JP2018182541A JP6705873B2 (ja) 2018-09-27 2018-09-27 鉛蓄電池

Publications (1)

Publication Number Publication Date
WO2020066290A1 true WO2020066290A1 (ja) 2020-04-02

Family

ID=69952039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/030263 WO2020066290A1 (ja) 2018-09-27 2019-08-01 鉛蓄電池

Country Status (4)

Country Link
US (1) US20210167363A1 (ja)
CN (1) CN112042041B (ja)
DE (1) DE112019002286B4 (ja)
WO (1) WO2020066290A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020140772A (ja) * 2019-02-26 2020-09-03 古河電池株式会社 鉛蓄電池用正極板、及びそれを用いた液式鉛蓄電池
WO2023149301A1 (ja) * 2022-02-03 2023-08-10 古河電気工業株式会社 鉛蓄電池システム及び鉛蓄電池の寿命推定方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3993101A1 (en) * 2020-10-28 2022-05-04 Indian Oil Corporation Limited Uni-electrogrid lead acid battery and process of making the same and performance thereof
CN114122334A (zh) * 2021-10-28 2022-03-01 天能电池集团股份有限公司 一种梯度型铅蓄电池正极板及蓄电池
CN114256515A (zh) * 2021-11-02 2022-03-29 浙江长兴绿色电池科技有限公司 排气式启停用铅酸蓄电池动态充电接受能力的研究方法

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5866261A (ja) * 1981-10-16 1983-04-20 Matsushita Electric Ind Co Ltd 鉛蓄電池用電極の製造法
JPH01176661A (ja) * 1987-12-29 1989-07-13 Matsushita Electric Ind Co Ltd 鉛蓄電池
JPH01298654A (ja) * 1988-05-26 1989-12-01 Matsushita Electric Ind Co Ltd 密閉形鉛蓄電池の製造法
JPH0294257A (ja) * 1988-09-29 1990-04-05 Matsushita Electric Ind Co Ltd 鉛蓄電池の製造方法
JPH02177256A (ja) * 1988-12-28 1990-07-10 Japan Storage Battery Co Ltd ペースト式鉛蓄電池用極板の製造方法
JPH0745274A (ja) * 1993-07-29 1995-02-14 Shin Kobe Electric Mach Co Ltd 鉛蓄電池用陽極板およびその製造法
JPH11111274A (ja) * 1997-10-07 1999-04-23 Yuasa Corp 鉛蓄電池
JP2003338310A (ja) * 2002-05-20 2003-11-28 Matsushita Electric Ind Co Ltd 鉛蓄電池
JP2008243487A (ja) * 2007-03-26 2008-10-09 Furukawa Battery Co Ltd:The 鉛電池
JP2008243606A (ja) * 2007-03-27 2008-10-09 Furukawa Battery Co Ltd:The 鉛蓄電池
JP2009016256A (ja) * 2007-07-06 2009-01-22 Gs Yuasa Corporation:Kk 鉛蓄電池
JP2014192079A (ja) * 2013-03-28 2014-10-06 Furukawa Battery Co Ltd:The セパレータおよび鉛蓄電池
JP2016184475A (ja) * 2015-03-25 2016-10-20 日立化成株式会社 鉛蓄電池の製造方法
JP2017174791A (ja) * 2016-03-22 2017-09-28 古河電池株式会社 鉛蓄電池
WO2017170422A1 (ja) * 2016-03-30 2017-10-05 日立化成株式会社 鉛蓄電池、マイクロハイブリッド車及びアイドリングストップシステム車

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AR067238A1 (es) * 2007-03-20 2009-10-07 Commw Scient Ind Res Org Dispositivos optimizados para el almacenamiento de energia
CN102738434B (zh) * 2011-03-31 2014-03-05 松下蓄电池(沈阳)有限公司 铅蓄电池
TWI479717B (zh) * 2013-11-28 2015-04-01 Csb Battery Co Ltd Lead-acid capacitor batteries and the preparation of lead-acid battery method
JP6682817B2 (ja) 2015-11-17 2020-04-15 株式会社Gsユアサ 鉛蓄電池およびその製造方法
US20170222214A1 (en) * 2016-02-02 2017-08-03 Gs Yuasa International, Ltd. Positive electrode plate for lead-acid battery, lead-acid battery and method of manufacturing positive electrode plate for lead-acid battery

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5866261A (ja) * 1981-10-16 1983-04-20 Matsushita Electric Ind Co Ltd 鉛蓄電池用電極の製造法
JPH01176661A (ja) * 1987-12-29 1989-07-13 Matsushita Electric Ind Co Ltd 鉛蓄電池
JPH01298654A (ja) * 1988-05-26 1989-12-01 Matsushita Electric Ind Co Ltd 密閉形鉛蓄電池の製造法
JPH0294257A (ja) * 1988-09-29 1990-04-05 Matsushita Electric Ind Co Ltd 鉛蓄電池の製造方法
JPH02177256A (ja) * 1988-12-28 1990-07-10 Japan Storage Battery Co Ltd ペースト式鉛蓄電池用極板の製造方法
JPH0745274A (ja) * 1993-07-29 1995-02-14 Shin Kobe Electric Mach Co Ltd 鉛蓄電池用陽極板およびその製造法
JPH11111274A (ja) * 1997-10-07 1999-04-23 Yuasa Corp 鉛蓄電池
JP2003338310A (ja) * 2002-05-20 2003-11-28 Matsushita Electric Ind Co Ltd 鉛蓄電池
JP2008243487A (ja) * 2007-03-26 2008-10-09 Furukawa Battery Co Ltd:The 鉛電池
JP2008243606A (ja) * 2007-03-27 2008-10-09 Furukawa Battery Co Ltd:The 鉛蓄電池
JP2009016256A (ja) * 2007-07-06 2009-01-22 Gs Yuasa Corporation:Kk 鉛蓄電池
JP2014192079A (ja) * 2013-03-28 2014-10-06 Furukawa Battery Co Ltd:The セパレータおよび鉛蓄電池
JP2016184475A (ja) * 2015-03-25 2016-10-20 日立化成株式会社 鉛蓄電池の製造方法
JP2017174791A (ja) * 2016-03-22 2017-09-28 古河電池株式会社 鉛蓄電池
WO2017170422A1 (ja) * 2016-03-30 2017-10-05 日立化成株式会社 鉛蓄電池、マイクロハイブリッド車及びアイドリングストップシステム車

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020140772A (ja) * 2019-02-26 2020-09-03 古河電池株式会社 鉛蓄電池用正極板、及びそれを用いた液式鉛蓄電池
JP7002489B2 (ja) 2019-02-26 2022-01-20 古河電池株式会社 鉛蓄電池用正極板、及びそれを用いた液式鉛蓄電池
WO2023149301A1 (ja) * 2022-02-03 2023-08-10 古河電気工業株式会社 鉛蓄電池システム及び鉛蓄電池の寿命推定方法

Also Published As

Publication number Publication date
DE112019002286T5 (de) 2021-03-18
CN112042041A (zh) 2020-12-04
US20210167363A1 (en) 2021-06-03
DE112019002286B4 (de) 2021-08-26
CN112042041B (zh) 2021-08-13

Similar Documents

Publication Publication Date Title
JP6670903B1 (ja) 鉛蓄電池
WO2020066290A1 (ja) 鉛蓄電池
JP2021057327A (ja) 液式鉛蓄電池
JP2021163612A (ja) 鉛蓄電池
JP2021111491A (ja) 液式鉛蓄電池
JP2009199735A (ja) 制御弁式鉛蓄電池の製造方法
JP6705873B2 (ja) 鉛蓄電池
JP2021163618A (ja) 鉛蓄電池
JP2021163608A (ja) 鉛蓄電池
JP6705874B2 (ja) 鉛蓄電池
JP6817264B2 (ja) 鉛蓄電池
JP7002518B2 (ja) 鉛蓄電池
JP7065127B2 (ja) 液式鉛蓄電池
JP7097403B2 (ja) 鉛蓄電池
JP2020053296A (ja) 鉛蓄電池
JP2020053292A (ja) 鉛蓄電池
JP2020053298A (ja) 鉛蓄電池
JP7128483B2 (ja) 鉛蓄電池
JP2021163617A (ja) 鉛蓄電池
JP2021163616A (ja) 鉛蓄電池
JP2021163610A (ja) 鉛蓄電池
JP2021163611A (ja) 鉛蓄電池
JP2021163537A (ja) 鉛蓄電池
JP2021163613A (ja) 鉛蓄電池
JP2021163609A (ja) 鉛蓄電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19867464

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19867464

Country of ref document: EP

Kind code of ref document: A1