WO2020062816A1 - 一种混合酸改性的锌钴双金属氰化物催化剂及其制备方法 - Google Patents

一种混合酸改性的锌钴双金属氰化物催化剂及其制备方法 Download PDF

Info

Publication number
WO2020062816A1
WO2020062816A1 PCT/CN2019/080505 CN2019080505W WO2020062816A1 WO 2020062816 A1 WO2020062816 A1 WO 2020062816A1 CN 2019080505 W CN2019080505 W CN 2019080505W WO 2020062816 A1 WO2020062816 A1 WO 2020062816A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
catalyst
zinc
water
cobalt
Prior art date
Application number
PCT/CN2019/080505
Other languages
English (en)
French (fr)
Inventor
罗铭
毛红兵
Original Assignee
杭州普力材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910224871.4A external-priority patent/CN110964191B/zh
Application filed by 杭州普力材料科技有限公司 filed Critical 杭州普力材料科技有限公司
Priority to EP19865969.0A priority Critical patent/EP3858889B1/en
Publication of WO2020062816A1 publication Critical patent/WO2020062816A1/zh
Priority to US17/215,868 priority patent/US20210213431A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds

Definitions

  • the invention relates to the field of chemistry, in particular to a mixed acid-modified zinc-cobalt double metal cyanide catalyst and a preparation method thereof.
  • Double metal cyanide (DMC) catalyst was first reported by General Tire & Rubber Company of the United States in the 1960s and was originally used to catalyze the ring-opening polymerization of epoxy compounds to prepare polyether polyols (see Figure 1). Type of catalyst.
  • the polyether polyol prepared by DMC has the characteristics of low unsaturation, high molecular weight and narrow distribution, which is obviously superior to the traditional KOH catalyst. Since the 1980s, DMC catalysts have gradually gained importance and applied in industry and scientific research.
  • an improved DMC catalyst can effectively catalyze the copolymerization of epoxy compounds and carbon dioxide to synthesize polymers having polycarbonate chains and polyether chains in a structure.
  • This reaction can be divided into two categories based on whether an initiator (or chain transfer agent) is added to the system:
  • One type is that without adding any auxiliary or chain transfer agent, the reaction can obtain a polycarbonate polymer with a certain mechanical strength with a molecular weight of tens of thousands and a certain amount of cyclic carbonate by-products (as shown in the figure) As shown in Figure 2), a large number of papers and patents have reported this chemical reaction.
  • the most widely used epoxide is propylene oxide (PO), on the one hand due to its lower price and on the other hand its relatively high storage and transportation safety.
  • Polycarbonate obtained by the catalytic reaction of propylene oxide and carbon dioxide in DMC becomes polypropylene carbonate (PPC for short).
  • PPC polycarbonate and polyether structures, depending on the structure of the polyether and polycarbonate structures.
  • PPC generally has a glass transition temperature of 20 to 37 ° C (which can be understood as the temperature at which plastic deforms when heated).
  • the industry has also actively developed the application of PPC as a general-purpose plastic, but due to its low deformation temperature, it is difficult Replace or compete with existing plastics.
  • Polycarbonate polyether polyols can be prepared by copolymerizing epoxy compounds with carbon dioxide and initiators containing active H-functional groups. Including polycarbonate chain and polyether chain formed by homopolymerization of epoxy compounds, it has both high Young's modulus and flexibility, making it a raw material that can be used to prepare polyurethane materials. This reaction is shown in Fig. 3, where the product shown in Fig.
  • DMC catalyst is generally formed by precipitation reaction of water-soluble metal cyanide complex and metal compound in the presence of an organic complexing agent.
  • DMC catalyst is a heterogeneous catalyst, that is, it is insoluble in any solvent, and is always in a dispersed state of particles in the reaction system.
  • the composition and structure of DMC catalysts are very complex and belong to non-stoichiometric ratio, that is, their composition structure cannot be written as an integer composition of certain molecules.
  • the method for synthesizing the preparation of zinc-cobalt DMC catalysts can be summarized as: using water-soluble metal salts or water-soluble salts containing two metals, zinc and cobalt
  • the metal cyanide is co-precipitated in a water-soluble solvent, and a ligand, a chelating agent, or an organic complexing agent can also be added to the water-soluble solution at the same time. After the precipitate is obtained, the precipitate is washed and dried to finally obtain a zinc-cobalt DMC catalyst.
  • the solvents and raw materials used in the above methods are all neutral and do not contain free hydrogen ions, that is, do not contain acidic substances.
  • Zinc-cobalt zinc-cobalt DMC catalyst is to synthesize a core active component as hexacyanide by using a metal salt or metal cyanide of zinc-cobalt two metals in a ball mill by dry milling or adding a water-soluble solvent to wet milling.
  • Zinc-cobalt zinc-cobalt DMC catalyst For example, the paper Z. Li et al. European Journal of Polymer Journal 47, 2011, 2152-2157 uses deionized water and tert-butanol as solvents, and uses zinc chloride and potassium hexacyanocobaltate as raw materials for ball milling and wet milling. A zinc-cobalt DMC catalyst was prepared.
  • the above method is still essentially forming a zinc hexacyanocobaltate component.
  • the preparation process of ball milling is used to reduce the microscopic particle size of zinc hexacyanocobaltate and promote the formation of amorphous zinc hexacyanocobaltate. No acid was added to the system as a synthetic raw material or modifier.
  • the double metal cyanide catalyst used in it does not specifically describe its synthesis method, and the catalyst is used to catalyze glycerol alkoxylation
  • the catalyst is used to catalyze glycerol alkoxylation
  • its role is to prevent the deactivation of the catalyst, because the acid can interact with the substrate acid-sensitive starting glycerin to avoid the deactivation of the catalyst, which does not involve the catalyst preparation process, let alone
  • the performance of the catalyst is improved by controlling the preparation conditions of the catalyst.
  • Chinese invention patent CN107200837A in the process of synthesizing polyether using a double metal cyanide catalyst, an acid is added as an auxiliary agent, which also neutralizes the residue of the basic catalyst in the raw material, thereby ensuring the activity of the double metal cyanide catalyst. It involves the synthesis and preparation of the catalyst, and it does not improve the performance of the catalyst by controlling the preparation conditions of the catalyst.
  • Chinese invention patent CN101851329A discloses a method for acidifying a system when a double metal cyanide catalyst catalyzes the synthesis of polyethers. This method adds a certain proportion of inorganic or organic acids for acidification according to the weight of the raw material polyol in the starting material.
  • Chinese invention patent CN101108896A discloses a method for producing a high-water-resistant polyether.
  • the catalyst is initiated by using a double metal cyanide catalyst, and an inorganic proton acid or an organic acid is introduced into the reactor for acidification in an amount of 10 ppm to 2000 ppm. It is also calculated based on the weight of the starting polyol, and its function is to neutralize the basic impurities of the starting polyol to ensure the activity of the catalyst in the process.
  • Cide patent CN1299300A discloses a method for adding a certain amount of protonic acid before the polymerization reaction to reduce the high molecular weight impurities generated during the preparation of the polyether polyol from the double metal cyanide complex catalyst.
  • the method of double metal cyanide The complex catalyst has been synthesized in advance.
  • Proton-added acid is equivalent to an improvement of the polymerization process before the polymerization reaction proceeds.
  • Patent WO2011160797 discloses an improved method for DMC catalyst, that is, treating the synthesized or existing DMC catalyst with Bronsted acid and organic ligands.
  • Initiators are important or even the only means to control the molecular weight of the final polymer.
  • the proportion of initiators that need to be added is high (generally 1/50 to 1 of the moles of epoxy monomers) / 90), under such conditions, most of the catalysts will lose their activity, or very few will still remain weakly active, but the reaction time will be significantly extended (more than 12 hours) before the polymer is obtained. This is because the reaction time is actually because Higher proportions of initiator lead to catalyst passivation, which lengthens the process of catalyst activation of reactants (extended for several hours). It takes longer response time and more energy consumption, which increases production costs.
  • the technical problem to be solved by the present invention is to provide a zinc-cobalt double metal cyanide (zinc-cobalt DMC) catalyst with higher catalytic activity and selectivity and a preparation method thereof.
  • a higher initiator addition ratio the amount of initiator added is 1 of the moles of epoxy monomer) / 50 ⁇ 1/90
  • reaction time 1 ⁇ 2 hours monomer conversion rate is greater than 50%
  • carbon dioxide fixation rate ie, carbonate structure on the polymer main chain
  • a first object of the present invention is to provide a mixed acid-modified zinc-cobalt double metal cyanide catalyst.
  • the metal elements of the catalyst are only zinc and cobalt, except for impurities.
  • the catalyst is obtained by reacting a water-soluble metal salt of zinc and cobalt in a water-soluble solvent, and the water-soluble metal salt of cobalt is a cyanide salt of cobalt;
  • the catalyst is modified by a mixed acid during synthesis, and the mixed acid includes at least one organic acid and at least one water-soluble inorganic acid, wherein:
  • the water-soluble inorganic acid is selected from dilute sulfuric acid and dilute hydrochloric acid, and has a pH between 0 and 5; preferably 0 to 4; more preferably 1 to 3; more preferably 1 to 2;
  • the organic acid is selected from any one or more of succinic acid, glutaric acid, phthalic acid, iminodiacetic acid, pyromellitic acid, and butanetetracarboxylic acid.
  • the water-soluble inorganic The molar ratio of the acid to the organic acid is 1:10 to 10: 1.
  • the metal coordination cyanide may generate a highly toxic hydrogen cyanide (HCN) gas and cause fatal harm to humans.
  • HCN hydrogen cyanide
  • the strong acid may also damage the coordination structure of the compound. Therefore, those skilled in the art cannot use acids to participate in the synthesis of zinc-cobalt DMC catalysts.
  • a specific mixed acid is added according to a specific ratio to modify it. Under such a reaction system, the mixed acid not only does not cause cyanide decomposition and generation. Very toxic hydrogen cyanide.
  • the mixed acid participates in the co-precipitation process of the water-soluble zinc salt and the water-soluble cobalt cyanide cobalt salt.
  • the mixed acid produces a synergistic effect, and the inorganic acid undergoes a metal coordination reaction.
  • a three-dimensional porous network structure with a polymetallic center and multiple bridges is formed, and the presence of an inorganic protonic acid destroys the potentially formed crystal lattice. Due to the synergistic effect of these two points, not only the specific surface area of the catalyst is increased, but also The existence of lattice is reduced, the ratio of amorphous and amorphous structure of the catalyst is increased, and the performance of the catalyst such as the thermal stability is also greatly improved.
  • the catalyst activity is improved, the activation energy barrier of the polymerization raw material substrate can be reduced, and the catalytic reaction can be completed at a relatively lower temperature and a lower catalyst concentration.
  • the inorganic protonic acid must use non-oxidizing and non-reducing dilute sulfuric acid and dilute hydrochloric acid, so as to ensure the provision of free hydrogen ions and not to affect the valence and coordination number of the metal due to the redox reaction.
  • it must be equipped with an organic acid with coordination ability.
  • the organic acid is selected from any one or any of succinic acid, glutaric acid, phthalic acid, iminodiacetic acid, pyromellitic acid, and butanetetracarboxylic acid.
  • organic acids are used because the organic acids have metal coordination ability, the number of coordinating teeth is 2 to 4, and the number of chemical bonds between adjacent coordinating oxygen atoms is 5 to 6,
  • the experimental results show that such organic acids can provide a relatively stable and steric hindrance with a suitable size, which is conducive to the coordination environment of the polymerization monomers in contact with the active sites.
  • the ratio of amorphous and amorphous structures of the catalyst is increased, not only the specific surface area is increased, but also the thermal stability and other properties of the catalyst are greatly improved.
  • the present invention uses washing and drying to characterize the precipitated insolubles mainly composed of zinc-cobalt double metal cyanide prepared by the above method, and finds that it has an extremely high proportion of amorphous structure.
  • the coordination environment of zinc and cobalt and the atoms to which they are coordinated are complex and diverse.
  • this catalyst When this catalyst is used to catalyze the copolymerization of carbon dioxide and epoxy compounds, it exhibits excellent activity and selectivity, which can be reflected at lower temperatures. Activity, shorter catalytic time, polymer product is formed even in 5 minutes in a kettle reaction, this activity has not been achieved in the existing zinc-cobalt DMC catalyst reports.
  • the mechanism of mixed acid modification to promote zinc-cobalt DMC catalyst is explained here.
  • the mixed acid during the preparation of zinc-cobalt DMC catalyst increases the coordination diversity of the metal center and destroys the crystal growth of the co-precipitated product of water-soluble zinc salt and water-soluble cobalt cyanide salt. It is generally believed that the lower the crystallinity of a DMC catalyst, the higher its catalytic activity.
  • the reasons may be: 1) The amorphous aggregated structure is actually an aggregate of nano-scale polycrystalline grains, which provides more specific surface area and possible catalytic active centers for the DMC catalyst, thereby increasing the catalyst's dispersibility and the The contact area of the reaction monomer; 2) DMC synthesized under the condition of excess ZnCl2.
  • the coordinated surface Zn active center is easy to coordinate with the reactive monomer and initiate a reaction.
  • the mixed acid participates in the co-precipitation process of the water-soluble zinc salt and the water-soluble cobalt cyanide cobalt salt.
  • the acid produces a synergistic effect, and the inorganic acid undergoes a metal coordination reaction to form a polymetallic center.
  • the three-dimensional porous network morphology of multi-bridge bonding and the presence of inorganic protonic acid destroy the potentially formed crystal lattice.
  • the double metal cyanide catalyst provided by the present invention contains two metal elements, zinc and cobalt; the catalyst may also contain impurities in the raw material, and the impurities are a small amount of other impurity metals, such as metal potassium, sodium, etc. Content ⁇ 1wt%. A small amount of impurity metals will not cause complete deactivation of the catalyst, but the lower the proportion of impurity metals, the better the catalyst activity.
  • the double metal cyanide catalyst of the present invention is obtained by reacting a water-soluble metal salt of zinc and cobalt in a water-soluble solvent.
  • the water-soluble metal salt of cobalt is a cyanide salt of cobalt; the catalyst is modified by a mixed acid during synthesis
  • the mixed acid comprises at least one organic acid and at least one water-soluble inorganic acid, wherein:
  • the water-soluble inorganic acid is selected from dilute sulfuric acid and dilute hydrochloric acid, and the pH value is between 0-5; preferably 0-4; more preferably 1-3; more preferably 1-2.
  • the dilute sulfuric acid refers to an aqueous solution of H 2 SO 4 , which can be diluted by adding concentrated sulfuric acid to deionized water to obtain a pH value between 0 and 5.
  • the dilute hydrochloric acid refers to an aqueous solution of HCl, which can be obtained by diluting concentrated hydrochloric acid with deionized water.
  • the pH is between 0 and 5.
  • the total basicity of raw materials and solvents used in the preparation of the zinc-cobalt DMC catalyst is less than 0.1 wt%.
  • Alkalinity refers to the total mass fraction of substances in the system that can neutralize with acidic substances. Such substances include strong bases, weak bases, strong bases and weak acid salts.
  • the measurement method is acid titration. For example, a laboratory titrator or a digital titrator can be used to measure the alkalinity of the system.
  • the raw materials may contain basic impurities.
  • the basic impurities will neutralize with the modified mixed acid in the system, affect the actual amount of the modified acid added, and the modification effect of the acid will also be affected.
  • the total alkalinity means that the basic substance in the raw material and the solvent is less than 0.1% by weight.
  • Dilute sulfuric acid and dilute hydrochloric acid were selected because they are both non-oxidizing and non-reducing acids.
  • Non-oxidizing and non-reducing properties indicate that the two acids do not have redox ability and will not cause redox reactions on metal ions in the system. It changes in valence.
  • Oxidizing acids such as dilute nitric acid, permanganic acid, perchloric acid, and reducing acids such as hydroiodic acid and hydrosulfuric acid are not within the scope of the present invention.
  • the pH value of the water-soluble inorganic acid used is controlled between 0 and 5. It cannot be too low or too high, and the pH value is too low. For example, pH ⁇ 0, it means that the acidity is too strong. According to the experimental results of the present invention, it cannot be prepared. A DMC catalyst was obtained. Excessive acidity will weaken the coordination and bridging ability of organic acids to metal atoms, which will cause the three-dimensional structure of the catalyst to be destroyed or the proportion will be reduced, which will prevent the catalyst from being synthesized.
  • the pH value is too high, that is, when the pH is more than 5, the acidity of the inorganic acid used is too weak, and the effect of destroying the crystal lattice and increasing the amorphous ratio of the catalyst cannot be achieved, and the catalyst activity is reduced. Therefore, it is most suitable to use a water-soluble inorganic acid to control the pH between 0 and 5.
  • the molar ratio of zinc to cobalt in the catalyst is 1: 5 to 5: 1, preferably 1: 4 to 4: 1, more preferably 1: 3 to 3: 1, and still more preferably 1: 2 to 2 :1.
  • the molar ratio of zinc and cobalt in the catalyst does not correspond to the molar ratio of the two metal elements in the zinc salt and the cobalt salt during the feeding.
  • the molar ratio of zinc and cobalt in the catalyst will also be affected by the type of modified acid. And the effect of proportion.
  • the molar ratio of the water-soluble inorganic acid to the organic acid is 1: 8 to 8: 1, more preferably 1: 5 to 5: 1, and still more preferably 1: 3 to 3: 1.
  • the microscopic morphology of the catalyst is polyhedral particles, and the particle size is 1-100 nm.
  • the ratio of the amorphous amorphous state of the catalyst is> 90%, and the proportion of the amorphous amorphous state in the catalyst is characterized by X-ray diffraction (XRD).
  • water-soluble metal salt of zinc is selected from any one or more of zinc chloride, zinc bromide, zinc iodide, zinc sulfate, and zinc acetate.
  • water-soluble metal salt of cobalt is selected from the group consisting of sodium hexacyanocobalt (III) and potassium hexacyanocobalt (III) acid.
  • a second object of the present invention is to provide a method for preparing a catalyst in any of the forms described above, including the following steps:
  • the acid comprises at least one organic acid and at least one water-soluble inorganic acid, wherein:
  • the water-soluble inorganic acid is selected from dilute sulfuric acid and dilute hydrochloric acid, and has a pH between 0 and 5; preferably 0 to 4; more preferably 1 to 3; more preferably 1 to 2;
  • the organic acid is selected from any one or more of succinic acid, glutaric acid, phthalic acid, iminodiacetic acid, pyromellitic acid, and butanetetracarboxylic acid; the water-soluble inorganic
  • the molar ratio of acid to organic acid is 1: 10 ⁇ 10: 1;
  • step i) The catalyst obtained in step i) is separated, washed and dried multiple times until the pH of the washing solution is 6-7, to obtain a zinc-cobalt double metal cyanide catalyst.
  • the pH of the system will change from acidic to nearly neutral.
  • the water-soluble zinc salt in step i) is selected from the group consisting of zinc chloride, zinc bromide, zinc iodide, zinc sulfate, and zinc acetate.
  • the water-soluble cobalt salt in step i) is selected from the group consisting of sodium hexacyanocobalt (III) and potassium hexacyanocobalt (III).
  • each step is performed at one or more temperatures of 10 ° C to 100 ° C. It is preferably 10 to 80 ° C, more preferably 20 to 60 ° C, and still more preferably 20 to 40 ° C.
  • the molar ratio of the water-soluble zinc salt and the water-soluble cobalt salt in the step i) is 1: 5 to 5: 1, preferably 1: 4 to 4: 1, and more preferably 1: 3 to 3: 1. It is more preferably 1: 2 to 2: 1.
  • the total mass ratio of the water-soluble zinc salt and the water-soluble cobalt salt to the mass ratio of the aqueous solvent is 1: 1 to 1: 200. It is preferably 1: 1 to 1: 100, more preferably 1: 1 to 1:50, more preferably 1: 1 to 1:20, more preferably 1: 1 to 1:10, and still more preferably 1: 1 to 1: 5.
  • the total molar ratio of the water-soluble zinc salt and the water-soluble cobalt salt to the total molar ratio of the mixed acid is 1:10 to 10: 1, preferably 1: 5 to 5: 1. It is more preferably 1: 4 to 4: 1, more preferably 1: 3 to 3: 1, and still more preferably 1: 2 to 2: 1.
  • the molar ratio of the inorganic acid to the organic acid is 1:10 to 10: 1, preferably 1: 5 to 5: 1. It is more preferably 1: 4 to 4: 1, more preferably 1: 3 to 3: 1, and still more preferably 1: 2 to 2: 1.
  • the aqueous solvent is selected from water, methanol, ethanol, propanol and its isomers, butanol and its isomers, pentanol and its isomers, hexanol and its isomers, heptanol and Any one or more of its isomers.
  • Isomers refer to compounds that have the same molecular formula but different structures. Taking butanol and its isomers as examples, it includes several isomers such as 1-butanol, isobutanol, and tert-butanol.
  • a third object of the present invention is to provide a chemical reaction.
  • the chemical reaction uses any of the catalysts described above or a catalyst prepared by any of the preparation methods described above to perform a chemical reaction.
  • the chemical reaction is a polymerization reaction
  • the polymerization reaction is a copolymerization of an epoxy compound and carbon dioxide.
  • the copolymerization of the epoxy compound and carbon dioxide is shown in FIG. 3.
  • the initiator in FIG. 3 may be selected from ethylene glycol, diethylene glycol, 1,2-propylene glycol, 1,3-propanediol, and 1,4-butane.
  • Glycol 1,5-pentanediol, 1,6-hexanediol, 1,4-cyclohexanedimethanol, neopentyl glycol, glycerol, trimethylolpropane, trimethylolethane, 1 , 2,4-butanetriol, 1,2,6-hexanetriol, pentaerythritol, dipentaerythritol, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid Any of acid, dodecanedioic acid, terephthalic acid, isophthalic acid, phthalic acid, pyromellitic acid, pyromellitic acid, catechol, resorcinol, and hydroquinone One or any number.
  • the polymerization reaction is performed in a continuous reactor, the polymerization reaction pressure is 1 to 20 MPa, and the reaction temperature is 50 to 150 ° C; preferably, the reaction pressure is 2 to 15 MPa and the reaction temperature is 60 to 120 °C; more preferably, the reaction pressure is 3 to 10 MPa, the reaction temperature is 70 to 110 °C; more preferably, the reaction pressure is 4 to 6 MPa, and the reaction temperature is 80 to 100 °C.
  • the polymerization reaction further includes a step of premixing the reaction raw materials.
  • the pressure of the premixing step is 0.1 to 2 MPa and the temperature is 10 to 60 ° C.
  • the premixing pressure is 0.2 to 1 MPa and the temperature is 30. ⁇ 50 ° C.
  • the time of the premixing step is 0.1 to 12 hours; preferably, the premixing time is 1 to 6 hours; more preferably, the premixing time is 1 to 3 hours. Under this pressure, the copolymerization reaction does not occur in advance.
  • the average residence time in the continuous reactor is 0.5 to 10 hours.
  • the retention time is 1 to 8 hours; more preferably, the retention time is 3 to 6 hours.
  • the average residence time can be determined from the ratio between the volume flow rate and the reactor volume, where the reactor volume is obtained from the inner diameter of the tube or each tube or the length of the tube or the total length of each tube section. If the residence time is too short, the conversion is usually incomplete, and too long a residence time is often disadvantageous in terms of space-time yield and thus makes the process less economically feasible.
  • the continuous reactor is a tubular reactor.
  • the tubular reactor is composed of continuous tube sections.
  • the continuous reactor is preferably made of stainless steel, but other materials can be used as long as the materials are compatible in terms of raw materials / products, pressure, and the like.
  • the continuous reactor may be constructed of continuous pipe sections or one or two or more pipes connected in series or in parallel, and the pipe structure may have different properties such as different inner diameters.
  • the inner diameter of the continuous reactor may be the same throughout the length or may vary.
  • the inner diameter of the tubular reactor is 10 mm to 500 mm.
  • the inner diameter is 50 mm to 400 mm, and more preferably, the inner diameter is 100 mm to 400 mm.
  • the ratio of the tube length L to the tube diameter dR of the tube reactor is L / dR> 50.
  • a continuous reactor having an inner diameter of 10 to 100 mm can be preferably operated without built-in parts.
  • a continuous reactor with an inner diameter of> 100 mm to 500 mm may preferably contain one or more static mixers or a combination of static mixers and heat exchangers (cooling coils).
  • the entire volume of the continuous reactor is filled with a liquid / suspension.
  • this liquid or suspension is single-phase as far as the liquid is concerned, in particular to ensure good substance exchange. This is usually achieved by the temperature and pressure given in the retention steps described above.
  • the dried and ground zinc-cobalt DMC catalyst e.g., a vacuum oven at 100 ° C
  • an active hydrogen functional initiator e.g., a vacuum oven at 100 ° C
  • an epoxy compound and carbon dioxide are preferably continuously pumped through one or more tubes.
  • the molar ratio of the reaction participants varies depending on the desired polymer.
  • the dried zinc-cobalt DMC catalyst is preferably added as a suspension in one or more active hydrogen-functional initiators.
  • the normal concentration of the zinc-cobalt DMC catalyst in the catalyst suspension is 0.01 to 5 wt%, preferably 0.05 to 0.5 wt%, based on the catalyst suspension containing the DMC catalyst and an active hydrogen functional group initiator.
  • the suspension should in any case be able to be transferred by a conventional pump, such as a diaphragm pump.
  • reaction pressure 1 to 20 MPa, preferably 2 to 15 MPa, more preferably 3 to 10 MPa, and more preferably 4 to 6 MPa.
  • the actual reaction occurs (that is, one or more epoxy compounds and carbon dioxide in zinc cobalt Addition of DMC catalyst to one or more active hydrogen functional initiators).
  • the resulting product (polycarbonate polyether polyol) was collected in a container.
  • the epoxy compound is selected from the group consisting of ethylene oxide, propylene oxide, 1,2-butylene oxide, 2,3-butylene oxide, styrene oxide, cyclohexene oxide, and epoxy chloride Any one or more of propane.
  • the molar ratio of the initiator added to the epoxy monomer is 1:20 to 1: 200; preferably, the molar ratio is 1:50 to 1: 100.
  • the initiator is selected from ethylene glycol, diethylene glycol, 1,2-propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6- Hexanediol, 1,4-cyclohexanedimethanol, neopentyl glycol, glycerol, trimethylolpropane, trimethylolethane, 1,2,4-butanetriol, 1,2,6- Hexatriol, pentaerythritol, dipentaerythritol, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedioic acid, terephthalic acid, m-benzene Any one or more of dicarboxylic acid, phthalic acid, pyromellitic acid, pyromellitic acid, catechol, resorcino
  • the double metal cyanide catalyst for polymerization provided by the present invention contains only two metal elements, zinc and cobalt, in addition to impurities, and is modified by a specific ratio of mixed acid during the synthetic preparation.
  • the mixed acid contains at least one organic acid and At least one water-soluble inorganic acid, and the molar ratio of the water-soluble inorganic acid to the organic acid is 1:10 to 10: 1.
  • zinc and cobalt in the raw materials are fed in the form of metal salts.
  • the bonded three-dimensional porous network structure not only increases the specific surface area, but also destroys and reduces the existence of the crystal lattice, increases the proportion of the amorphous and amorphous structure of the catalyst, and also greatly improves the thermal stability of the catalyst. And other performance.
  • the catalyst activity is improved, the activation energy barrier of the polymerization monomer can be reduced, and the catalytic reaction can be completed at a relatively lower temperature and a lower catalyst concentration.
  • the zinc-cobalt DMC catalyst provided by the present invention has the following outstanding advantages:
  • the mass ratio of catalyst to epoxy monomer is less than 1/1000, under the condition of higher proportion of initiator addition (the initiator addition amount is 1/50 to 1/90 of the moles of epoxy monomer) At a higher reaction temperature (90-100 ° C), it exhibits higher catalytic activity (with a reaction time of 1 to 2 hours, and the monomer conversion rate is greater than 50%).
  • the synthesized polymer structure contains a higher proportion of polymer. Carbonate structure (mole percentage> 50%), that is, carbon dioxide fixation rate.
  • Figure 1 is a schematic diagram of a catalyst-catalyzed ring-opening polymerization of an epoxy compound to prepare a polyether polyol.
  • R 1 is a hydrogen atom
  • R 2 is selected from methyl, ethyl, and n Propyl, isopropyl, n-butyl, phenyl, benzyl, phenoxy, phenoxymethylene, allyloxymethylene, vinyl, chloromethyl
  • R 1 and R 2 may be a hydrogen atom at the same time, or may form a cyclohexyl group together; n is a positive integer, and the degree of polymerization of the polymer is imaginary.
  • Figure 2 is a schematic diagram of the equation of the by-products of DMC-catalyzed epoxy compounds, carbon dioxide to produce polycarbonate polymers, and cyclic carbonates.
  • R 1 is a hydrogen atom
  • R 2 is selected from Methyl, ethyl, n-propyl, isopropyl, n-butyl, phenyl, benzyl, phenoxy, phenoxymethylene, allyloxymethylene, vinyl, chloromethyl
  • R 1 and R 2 may be hydrogen atoms at the same time or may form a cyclohexyl group together; m and n are positive integers, and the degree of polymerization of the polymer is imaginary.
  • Figure 3 is a schematic diagram of the reaction of DMC to catalyze the copolymerization of epoxy compounds, carbon dioxide and initiator to prepare polycarbonate polyether polyols.
  • R 1 is a hydrogen atom
  • R 2 is selected from Methyl, ethyl, n-propyl, isopropyl, n-butyl, phenyl, benzyl, phenoxy, phenoxymethylene, allyloxymethylene, vinyl, chloromethyl
  • R 1 and R 2 may be hydrogen atoms at the same time, or may form a cyclohexyl group together;
  • R is an organic group, such as an alkyl group, a phenyl group, an alkylcarbonyl group, a phenylcarbonyl group, etc .;
  • m, n is a positive integer, the degree
  • FIG. 4 is a nuclear magnetic hydrogen spectrum of a crude polycarbonate polyether polyol.
  • Figure 5 is a graph of a polycarbonate polyether polyol gel permeation chromatogram.
  • the DMC catalyst prepared in Examples 1 to 8 was used to suspend the initiator and epoxide in a premixed container so that the specified catalyst concentration was reached in the mixed solution, and the components were mixed for a certain time at the specified temperature and pressure. The mixture did not react.
  • the mixed suspension is pumped from the mixer to the continuous reactor at a suitable flow rate.
  • the continuous reactor is controlled at the specified reaction temperature and pressure. Each component stays in the continuous reactor for a specified retention time.
  • the obtained products polycarbonate polyether polyol, cyclic propylene carbonate, and unreacted epoxide
  • the obtained products were collected in a container, and the crude product was characterized by nuclear magnetic hydrogen spectrum. The ratio of polymer to cyclic small molecules in the crude product was calculated.
  • the NMR test is performed to calculate the ratio of the polycarbonate link to the polyether link on the polymer main chain.
  • the polymer main chain has only polycarbonate links and polyether links.
  • the percentages of both add up to 100%.
  • the number average molecular weight and molecular weight distribution of the polymer were determined by gel permeation chromatography. The results are shown in Table 2.
  • the concentration (wt%) of the catalyst in the turbidity in the parameter is the mass ratio of the catalyst to the epoxide mentioned above.
  • the zinc-cobalt DMC catalyst prepared by the method of the present invention can be in a higher ratio (1/50 to 1/90 of the mole number of epoxide, and the mass ratio of catalyst to epoxide is less than 1/2000)
  • the presence of an initiator exhibits a higher catalytic activity at a higher reaction temperature (90 to 100 ° C) (with a reaction time of 1 to 2 hours, and the conversion rate of the compound is greater than 50%), and the synthesized polymer structure contains a higher proportion Polycarbonate structure (molar percentage> 50%).
  • the higher proportion of polycarbonate chains in such polyol structures can give polyurethane materials more excellent Young's modulus and water resistance, weather resistance and other properties when used as raw materials for synthetic polyurethane materials.
  • the nuclear magnetic resonance hydrogen spectrum of the product of Example 17 is shown in FIG. 4, and the gel permeation chromatogram of the polymer product of Example 17 is shown in FIG. 5.
  • Catalyst number D1 was prepared according to the method of acid-treated double metal cyanide complex catalyst disclosed in Chinese patent CN1299300A. Compared with the catalyst prepared in Example 1 of the present invention, the reaction conditions were the same as in Example 9. The polymer prepared by using catalyst D1 The ether polyol product has no carbonate chain in the polymer main chain, has no fixing and utilization effect on carbon dioxide, and has no selectivity compared with the catalyst of the present invention.
  • catalyst number D5 is prepared. Compared with the catalyst prepared in Example 5 of the present invention, the reaction conditions are the same as in Example 13. Polycarbonate polyether prepared by using catalyst D5 Polyol products, cyclic products are 40%, carbonate links in the polymer main chain is 30%, polyether links are 70%. Compared with the results of Example 13 of the present invention, the selectivity to polymer products is lower than that of the present invention, and the selectivity to carbon dioxide fixation is also much lower than the results of the present invention.
  • the timing of the addition of the modified acid is different: the double metal cyanide complex catalyst of the patent WO2011160797 has been synthesized in advance, and the protonated acid is added before the polymerization reaction, which is equivalent to the polymerization process An improvement.
  • the mixed acid modification in the present invention must be added during the synthesis of the double metal cyanide complex catalyst, and in addition to the proton acid, an aprotic acid (that is, the organic acid proposed by the present invention) must also be added at the same time. Synergy can achieve better catalytic activity and selectivity of the present invention.
  • Example 2 The same method for preparing a zinc-cobalt DMC catalyst as in Example 1 was used, with the only difference being that only the protonic acid (using dilute sulfuric acid as an example) was used and no organic acid was used for modification.
  • Example 2 The same method for preparing a zinc-cobalt DMC catalyst as in Example 1 was used, with the only difference being that only the organic acid (using succinic acid as an example) was modified without adding the inorganic protonic acid.
  • the obtained catalyst was used to catalyze the polymerization reaction under the reaction conditions of Example 9. It was inactive, indicating that when only an organic acid was added, the system could form a precipitated metal complex, but without the coordinated modification of the organic acid, the above obtained The precipitate has no catalytic activity for polymerization.
  • Comparative Examples 3 and 4 show that in the preparation of the DMC catalyst of the present invention, it is necessary to use both organic and inorganic acids to modify and prepare the catalyst. Two types of acids are indispensable. Modification with one type of acid alone cannot be obtained. DMC catalyst that effectively catalyzes polymerization.
  • Example 2 The same method for preparing a zinc-cobalt DMC catalyst as in Example 2 was used, the only difference being that the pH value of the dilute hydrochloric acid used was 6. Modified with dilute hydrochloric acid and glutaric acid
  • the catalyst is processed into powder particles by mechanical grinding under anhydrous drying conditions before use.
  • the obtained catalyst was used to catalyze the polymerization reaction under the reaction conditions of Example 10.
  • the conversion rate was measured to be only about 5%.
  • the polymer in the NMR-characterized product was mainly a polyether structure (85%), and the polycarbonate structure was only 15%. It is proved that the catalyst has a certain activity, but the activity and selectivity are poor. The activity was much lower than the catalyst activity in Example 10.
  • the conversion rate in Example 10 was 90%, the polycarbonate structure was 91%, and the polyether structure was 9%. It is shown that when the pH value of the inorganic protonic acid is greater than 5, that is, the acidity is weak, the acid cannot destroy the crystalline structure of the polymer, which reduces the activity and selectivity of the catalyst.
  • Example 2 The same method for preparing a zinc-cobalt DMC catalyst as in Example 2 was used, with the only difference being that the pH value of the dilute hydrochloric acid used was -1. Modified with dilute hydrochloric acid and glutaric acid (dilute hydrochloric acid and glutaric acid in a molar ratio of 5: 1)
  • Example 2 The same method for preparing a zinc-cobalt DMC catalyst as in Example 2 was used, with the only difference being that a metal salt (cadmium bromide) of a third metal other than zinc and cobalt (taking metal cadmium as an example) was used in place of this method
  • a metal salt cadmium bromide
  • cobalt taking metal cadmium as an example
  • the catalyst is processed into powder particles by mechanical grinding under anhydrous drying conditions before use.
  • the obtained catalyst was catalyzed for polymerization under the reaction conditions of Example 10, and was inactive, indicating that when the metal zinc was replaced with another metal, the obtained precipitate had no catalytic activity for the polymerization.
  • Example 2 The same method for preparing a zinc-cobalt DMC catalyst as in Example 2 was used, with the only difference being that a metal salt (sodium hexacyanonickel) of a third metal (in the case of metal nickel) other than zinc and cobalt was used instead
  • a metal salt sodium hexacyanonickel
  • a third metal in the case of metal nickel
  • the catalyst is processed into powder particles by mechanical grinding under anhydrous drying conditions before use.
  • the obtained catalyst was catalyzed for the polymerization reaction under the reaction conditions of Example 10, and showed no activity, indicating that when the metal cobalt was replaced with other metals, the obtained precipitate had no catalytic activity for the polymerization reaction.
  • Example 2 The same method for preparing a zinc-cobalt DMC catalyst as in Example 2 was used. The only difference was that in addition to zinc and cobalt, a metal salt (ferric chloride) of a third metal (using metal iron as an example) was added for synthesis and preparation. A catalyst containing three metal elements.
  • the catalyst is processed into powder particles by mechanical grinding under anhydrous drying conditions before use.
  • the obtained catalyst was used to catalyze the polymerization reaction under the reaction conditions of Example 10.
  • the conversion rate was measured to be only about 3%.
  • the polymer in the NMR characterization product was mainly a polyether structure (90%), and the polycarbonate structure was only 10%. It is proved that the catalyst has a certain activity, but the activity and selectivity are poor. The activity was much lower than the catalyst activity in Example 10.
  • the conversion rate in Example 10 was 90%, the polycarbonate structure was 91%, and the polyether structure was 9%. It is shown that, when the third metal is added, although the catalyst still retains a certain degree of activity, the activity and selectivity of the catalyst are greatly reduced.
  • Example 2 The same method for preparing a zinc-cobalt DMC catalyst as in Example 2 was used, with the only difference being that the dilute hydrochloric acid was replaced with another type of inorganic protonic acid (hydrobromic acid as an example) for synthesis to prepare the catalyst.
  • dilute hydrochloric acid was replaced with another type of inorganic protonic acid (hydrobromic acid as an example) for synthesis to prepare the catalyst.
  • the catalyst is processed into powder particles by mechanical grinding under anhydrous drying conditions before use.
  • the obtained catalyst was used to catalyze the polymerization reaction under the reaction conditions of Example 10.
  • the conversion rate was measured to be only about 5%.
  • the polymer was mainly a small molecule cyclic carbonate, and there was almost no polymer. product. It is shown that when dilute hydrochloric acid is replaced with other inorganic protonic acids, the catalyst has low catalytic activity and almost no polymer product selectivity.
  • Example 2 The same method for preparing a zinc-cobalt DMC catalyst as in Example 2 was used, with the only difference being that other types of organic acids (taking adipic acid as an example) were used in place of glutaric acid for synthesis to prepare the catalyst.
  • the catalyst is processed into powder particles by mechanical grinding under anhydrous drying conditions before use.
  • the obtained catalyst was used to catalyze the polymerization reaction under the reaction conditions of Example 10.
  • the conversion rate was measured to be only about 5%.
  • the polymer was mainly a small molecule cyclic carbonate, and there was almost no polymer. product. It is shown that when dilute hydrochloric acid is replaced with other inorganic protonic acids, the catalyst has low catalytic activity and almost no polymer product selectivity.
  • Example 2 Using the same method for preparing a zinc-cobalt DMC catalyst as in Example 2, the only difference is that the molar ratio of inorganic proton acid to organic acid is 11: 1.
  • Example 2 Using the same method for preparing a zinc-cobalt DMC catalyst as in Example 2, the only difference is that the molar ratio of the inorganic proton acid to the organic acid is 1:11.
  • the catalyst is processed into powder particles by mechanical grinding under anhydrous drying conditions before use.
  • the catalyst is inactive when the molar ratio of inorganic protonic acid and organic acid is less than 1:10.
  • A Prepare a metal catalyst according to a published patent method: Put a mixed solution containing 41 parts by weight of ethylene glycol and 4 parts by weight of water into a preparation tank equipped with a stirrer at room temperature and normal pressure, and 1.5 parts by weight of hexacyanide Potassium cobaltate and zinc chloride (molar ratio 1: 5) were added to the mixed solution, stirred and dissolved, and 3.8 parts by weight of a diluted sulfuric acid and succinic acid mixed solution (both molar ratio 1: 5) were added and stirred and mixed Then, 2.4 parts by weight of tetra-n-butyl titanate was added, followed by stirring for 30 minutes to dissolve, thereby preparing a catalyst D14-A.
  • the reaction conditions were the same as those in Example 9, and the catalyst D14-A has no catalytic activity for the copolymerization of carbon dioxide and propylene oxide.
  • Catalyst D14-B has no catalytic activity for catalyzing the copolymerization of carbon dioxide and propylene oxide.
  • the metal catalyst is prepared according to the published patent method of A above. The only difference is that tetra-n-butyl titanate is used instead of tetra-n-butyl titanate to prepare catalyst D14-C. Compared with the catalyst prepared in Example 1 of the invention, The conditions were the same as in Example 9. Catalyst D14-C had no catalytic activity for catalyzing the copolymerization of carbon dioxide and propylene oxide.
  • Catalyst D14-D has no catalytic activity for catalyzing the copolymerization of carbon dioxide and propylene oxide.
  • a catalyst having the technical effects of the present invention must be strictly fulfilled in order to obtain a catalyst having the technical effects of the present invention.
  • the catalyst is obtained by reacting a water-soluble metal salt of zinc and cobalt in a water-soluble solvent.
  • the metal salt is a cyanide salt of cobalt;
  • the catalyst is modified by a mixed acid during synthesis, and the mixed acid includes at least one organic acid and at least one water-soluble inorganic acid, wherein: the water-soluble inorganic acid is selected Self-diluted sulfuric acid and dilute hydrochloric acid, and the pH value is between 0 and 5;
  • the organic acid is selected from succinic acid, glutaric acid, phthalic acid, iminodiacetic acid, pyromellitic acid, butane Any one or more of tetracarboxylic acids, and the molar ratio of the water-soluble inorganic acid to the organic acid is 1:10 to 10: 1.
  • the technical effect of the present invention refers to: under common industrial conditions where the mass ratio of catalyst to epoxy monomer is less than 1/1000, the initiator is added at a higher proportion (the initiator is added to 1/50 of the mole of epoxy monomer) ⁇ 1/90) under high reaction temperature (90 ⁇ 100 °C), exhibit high catalytic activity (with reaction time of 1-2 hours, monomer conversion rate is greater than 50%), and synthesized polymer structure Contains a higher proportion of the polycarbonate structure (molar percentage> 50%).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明提供一种双金属氰化物催化剂,制备双金属氰化物催化剂的方法和利用双金属氰化物催化剂催化聚合反应方法。所述催化剂的金属元素除杂质外仅为锌和钴两种金属元素;所述催化剂由锌和钴的水溶性金属盐在水溶性溶剂中反应得到;所述催化剂合成时由混合酸改性,所述的混合酸包含至少一种有机酸和至少一种水溶性无机酸,其中:所述的水溶性无机酸选自稀硫酸、稀盐酸,且pH值在0~5之间;所述的有机酸选自丁二酸、戊二酸、邻苯二甲酸、亚胺基二乙酸、均苯四甲酸、丁烷四羧酸的任意一种或任意多种,所述水溶性无机酸与有机酸的摩尔比值为1:10~10:1。本发明的催化剂的活性高、热稳定性强,可以实现在相对更低的催化剂浓度和更高的引发剂浓度时对聚合反应体现更高的催化活性和聚合物产物以及聚合物主链上聚碳酸酯链节的更高选择性。

Description

一种混合酸改性的锌钴双金属氰化物催化剂及其制备方法 技术领域
本发明涉及化学领域,尤其涉及一种混合酸改性的锌钴双金属氰化物催化剂及其制备方法。
背景技术
双金属氰化物(Double metal cyanide,简称DMC)催化剂是上世纪六十年代由美国通用轮胎橡胶公司首次报道,最初用于催化环氧化合物开环聚合制备聚醚多元醇(如图1所示)的一类催化剂。DMC制备的聚醚多元醇具有低不饱和度、高分子量和窄分布等特点,明显优于传统的KOH催化剂。从上世纪80年代开始,DMC催化剂在工业和科研上就逐渐得到重视和应用。迄今为止,由DMC催化剂制备的低不饱和度、高分子量、窄分布聚醚多元醇已经成为巴斯夫、拜耳、陶氏化学、浙江皇马化工集团等公司的主打产品之一。除此之外,国内外还针对其催化性质和应用领域进行了大量的研究。
近年来,经过改进的DMC催化剂可有效催化环氧化合物与二氧化碳共聚,合成得到一类结构中同时含有聚碳酸酯链节以及聚醚链节的聚合物。根据是否向体系加入引发剂(或者称为链转移剂)可以将该反应分为两大类:
一类是不额外加入任何助剂或者链转移剂的情况下,该反应可以得到分子量数万的具有一定机械强度的聚碳酸酯聚合物,并伴有一定量的环状碳酸酯副产物(如图2所示),目前已有大量论文及专利报道该化学反应。在该反应的工业化进程中,得到最广泛采用的环氧化物是环氧丙烷(PO),一方面由于其价格较低,另一方面由于其相对较高的储存运输安全性。环氧丙烷与二氧化碳在DMC催化反应得到的聚碳酸酯成为聚碳酸丙烯酯(简称PPC),PPC分子结构中兼有聚碳酸酯和聚醚结构,取决于结构中聚醚和聚碳酸酯结构的比例,PPC一般具有20~37℃的玻璃化转变温度(可理解为塑料受热发生变形的温度),业界也积极开发了PPC作为一种通用塑料的应用,但是由于其变形温度较低,很难对现有的塑料进行替代或竞争。
该反应的另一大类是向体系中加入引发剂,通过将环氧化合物和二氧化碳以及含有活泼H-官能团的引发剂共聚合可以制备得到聚碳酸酯聚醚多元醇,该聚合物结构中同时包含聚碳酸酯链节以及环氧化合物均聚生成的聚醚链节,使其兼具高杨氏模量以及柔性,使其成为可以用来制备聚氨酯材料的原料。这种反应如图3所示,其中这里对于聚碳酸酯聚醚多元醇在图3中所示的产物仅应理解为表示原则上可以在得到的聚碳酸酯聚醚多元醇中找到具有所示结构的链段,但是链段的顺序、数目和长度以及引发剂的OH官能度可以变化且不局限于图3中所示的聚碳酸酯聚醚多元醇。该反应是十分有利于环境保护以及减能减排的,原因在于该反应将温室气体二氧化碳作为原料转变为聚合物材料。另外该反应也常常伴有副产物——环状碳酸酯,该物质也是一种常见的工业产品,在该反应中可以分离提纯后进行后期销售。需注意,本发明发明的锌钴双金属氰化物催化剂是用来催化图3所示的反应,而不是用来催化图1和图2的反应。
DMC催化剂一般由水溶性金属氰化络合物和金属化合物在有机配位剂的存在下沉淀反应而成。DMC催化剂是非均相催化剂,即不溶于任何溶剂,在反应体系中一直处于微粒分散状态。DMC催化剂的成分和结构都很复杂,且属于非化学计量比,即其组成结构不能够写成某些分子的整数组成。到目前为止,对于涉及环氧化物的几类聚合反应,人们普遍发现基于锌钴(Zn-Co)和锌镍(Zn-Ni)的这两类DMC催化剂在催化活性上具有更佳的效果,而锌钴(Zn-Co)DMC催化剂在产物选择性方面要更优于锌镍(Zn-Ni)DMC催化剂,因此锌-钴DMC催化剂更具有工业化前景。还有一些引 入第三种或更多种金属的DMC催化剂,根据已有报道文献显示,引入的第三种或更多种金属并未能起到活性位点的作用,此类催化剂活性和选择性并不比锌钴(Zn-Co)和锌镍(Zn-Ni)的这两类DMC催化剂优秀,另外,引入更多种的金属导致工艺更加复杂,对工业化无益。
现有技术中,例如中国授权发明专利CN100484984C、CN104987502B、CN1063984C、CN1289194C、CN101928390B、CN102580780B,合成制备锌-钴DMC催化剂的方法可以总结为:使用含有锌钴两种金属的水溶性金属盐或水溶性金属氰化物在水溶性溶剂中共沉淀,在水溶性溶液中也可以同时加入配体或者鳌合剂或者有机络合剂,得到沉淀后,对沉淀进行洗涤和干燥,最终得到锌钴DMC催化剂。以上方法使用的溶剂以及原料全部为中性,不含有游离态氢离子,即不含有酸性物质。
现有技术中,另外一类合成锌钴DMC催化剂的方法是对其进行掺杂或者负载,在本领域中可统一理解为掺杂。例如中国授权发明专利CN101003622B采用正硅酸酯或钛酸酯进行共沉淀法合成并水解得到以硅酸盐或钛酸盐掺杂或负载的锌钴DMC催化剂;中国授权发明专利CN101831064B采用稀土金属配位化合物对六氰合钴酸锌进行掺杂。以上方法本质上其活性成分仍然是稀土配合物以及部分无定型态的六氰合钴酸锌。以上方法使用的溶剂以及原料全部为中性,不含有游离态氢离子,即不含有酸性物质。
现有技术中,另外一类合成锌钴DMC催化剂的方法是采用锌钴两种金属的金属盐或金属氰化物在球磨机内通过干磨或者加入水溶性溶剂湿磨合成核心活性组分为六氰合钴酸锌的锌钴DMC催化剂。例如论文《Z.Li et al.European Polymer Journal.47,2011,2152~2157》采用去离子水和叔丁醇为溶剂,以氯化锌和六氰合钴酸钾为原料进行球磨湿磨法制备得到锌钴DMC催化剂。以上方法本质上仍然是形成六氰合钴酸锌成分,球磨的制备工艺是用来减小六氰合钴酸锌的微观粒径,促进非晶态六氰合钴酸锌的形成。体系中未加入任何酸作为合成原料或者改性剂。
在已报道的与双金属氰化物催化剂相关联的专利中,也存在某些向体系中加入酸性物质(可以是有机酸或无机酸)的案例,加入酸性物质的目的是中和反应原料中的碱性物质,但酸性物质本身不参与合成DMC催化剂的过程,也就是,酸性物质对DMC的结构和活性不产生任何影响。此类技术称之为“酸处理(acid-treated)”例如:中国授权发明专利CN1116336C中,在其使用的双金属氰化物催化剂未具体阐述其合成方法,在使用该催化剂催化甘油烷氧基化时,在反应器中加入有效量的酸,其作用是防止催化剂失活,因为该酸可以和底物酸敏感起始物甘油作用,避免催化剂失活,不涉及到催化剂的制备过程,更不是通过控制催化剂的制备条件来改善催化剂的性能。中国发明专利CN1589966A中,在制备双金属氰化物催化剂时,加入酸性物质(盐酸)用来中和其采用的廉价高碱度的氯化锌盐,显而易见地,加入酸的目的是改善原料碱度,使其达到中性,满足其后续步骤的使用。所以一方面加入酸性物质的量是根据其原始物料的碱度设计的,未有体现对催化剂生成过程中结构的影响,另外该合成方法中未加入有机酸类,也不能对催化剂生成过程中的金属配位情况进行改善。中国发明专利CN1670007A中,在采用双金属氰化物催化剂合成聚醚的工艺中,在起始物料中加入酸性物质,其作用是用于中和起始原料中的碱性物质,该发明专利说明书0030段明确记载,强碱使DMC催化剂钝化,其工艺中采用的原料低聚起始物制备中使用的碱性催化剂会对其合成过程中的DMC催化剂活性产生影响或破坏,因此在起始物中加入酸性物质进行中和或适当酸化,以保证其合成聚醚工艺中DMC催化剂活性。其加入的酸性物质仅为工艺中的助剂,不涉及到DMC催化剂的合成制备,更不是通过控制催化剂的制备条件来改善催化剂的性能。中国发明专利 CN107200837A中,在采用双金属氰化物催化剂合成聚醚的工艺中,加入酸作为助剂,其作用也是中和原料中的碱性催化剂残留,进而保证双金属氰化物催化剂的活性,不涉及催化剂的合成制备,更不是通过控制催化剂的制备条件来改善催化剂的性能。中国发明专利CN101851329A公开了一种在双金属氰化物催化剂催化合成聚醚时对体系进行酸化的方法,该方法根据起始物中原料多元醇的重量加入一定比例的无机酸或有机酸进行酸化,其用途也是对起始物多元醇的碱性杂质物质进行中和,以保证工艺中催化剂的活性,不涉及催化剂的合成制备,更不是通过控制催化剂的制备条件来改善催化剂的性能。中国发明专利CN101108896A公开了一种耐高含水量的聚醚的生产方法,在采用双金属氰化物催化剂催化起始,在反应器中引入10ppm~2000ppm的无机质子酸或有机酸进行酸化,其用量也是根据起始物多元醇的重量计算得到,其功能也是对起始物多元醇的碱性杂质物质进行中和,以保证工艺中催化剂的活性,不涉及催化剂的合成制备,更不是通过控制催化剂的制备条件来改善催化剂的性能。中国发明专利CN1299300A公开了一种在聚合反应之前加入一定量的质子酸用以降低双金属氰化物络合物催化剂制备聚醚多元醇过程中生成的高分子量杂质的方法,该方法的双金属氰化物络合物催化剂是已经提前合成好了,加质子酸是在聚合反应进行之前,相当于对聚合过程的一种改进。专利WO2011160797公开了一种对DMC催化剂的改进方法,即对已合成好的或者已有的DMC催化剂用布朗斯特酸和有机配体进行处理。
目前工业上采用锌钴DMC催化剂合成聚碳酸酯聚醚多元醇时(如图3所示)存在的问题是,在工业上,加入催化剂与加入的环氧单体质量比至少要≤1/1000(即1000ppm,即0.1wt%)时,总体的生产成本和催化剂残留的成本才相对较低,才有经济价值,否则由于催化剂加入量过多导致生产成本提高,该催化剂就没有应用价值。需要重点提及的是,作为一种工业原料,聚碳酸酯聚醚多元醇分子量较低的品种(数均分子量500~2000)应用面更广泛,更有商业价值,在反应初始的原料中加入引发剂是控制最终聚合物分子量的重要甚至可以说是唯一手段。对于目标合成分子量较小(数均分子量500~2000)的聚碳酸酯聚醚多元醇时,需要加入的引发剂的比例是较高的(一般是环氧单体摩尔数的1/50~1/90),此种条件下,大分部催化剂会丧失活性,或者有极少数仍保持微弱活性,但是反应时间大幅延长(超过12小时)才会得到聚合物,这都是由于反应时间实际是因为较高比例的引发剂导致催化剂钝化,加长了催化剂对反应物的活化过程的时间(延长了数小时)。耗费更长的反应时间和更多的能耗,增加了生产成本。
除此之外,在上述较高比例引发剂加入量的的条件下,合成得到的聚碳酸酯聚醚多元醇结构中聚碳酸酯的结构比例会降低(<50%),即对二氧化碳的固定率降低。因为较高比例的引发剂的加入会导致大量催化剂活性位点被淬灭或占据,宏观体现为催化剂活性降低甚至失活。二氧化碳固定率的降低表明聚合物中成本低廉的二氧化碳原料的比重降低,则说明成本更高的环氧化物的比重提高了,这样一方面导致聚合物的生产成本提高,另一方面对节能减排(消耗二氧化碳)的效果也有所降低。
发明内容
为克服现有技术的不足,本发明所要解决的技术问题是提供一种合成具有更高催化活性和选择性的锌钴双金属氰化物(锌钴DMC)催化剂及其制备方法,在具有工业生产价值的催化剂加入量比例的条件下(催化剂与环氧化物质量比≤1/1000,即0.1wt%)实现在更高的引发剂加入比例(引发剂加入量是环氧单体摩尔数的1/50~1/90)条件下依然保持高催化活性(反应时间1~2小时,单体 转化率大于50%),制备得到分子量分布窄,二氧化碳固定率(即聚合物主链上碳酸酯结构)>50%的聚碳酸酯聚醚多元醇。
为解决本发明的技术问题,本发明的第一个目的是提供一种混合酸改性的锌钴双金属氰化物催化剂,所述催化剂的金属元素除杂质外仅为锌和钴两种金属元素;所述催化剂由锌和钴的水溶性金属盐在水溶性溶剂中反应得到,所述钴的水溶性金属盐为钴的氰化物盐;
所述催化剂合成时由混合酸改性,所述的混合酸包含至少一种有机酸和至少一种水溶性无机酸,其中:
所述的水溶性无机酸选自稀硫酸、稀盐酸,且pH值在0~5之间;优选0~4;更优选1~3;更优选1~2;
所述的有机酸选自丁二酸、戊二酸、邻苯二甲酸、亚胺基二乙酸、均苯四甲酸、丁烷四羧酸的任意一种或任意多种,所述水溶性无机酸与有机酸的摩尔比值为1:10~10:1。
根据本领域公知,有酸或强酸存在时,金属配位氰化物可能生成剧毒的氰化氢(HCN)气体,对人造成致命伤害,不仅如此,强酸也可能破坏化合物的配位结构。因此,本领域人员在合成制备锌钴DMC催化剂的过程中不能采用酸类物质参与合成。然而意外地,本发明在溶液中制备锌钴DMC催化剂的过程中,按照特定的比例加入特定的混合酸改性,在这样的反应体系下,所述的混合酸不仅不会导致氰化物分解生成剧毒氰化氢,相反地,混合酸加入后,混合酸参与到水溶性锌盐和水溶性氰化物钴盐的共沉淀过程中,混合酸产生协同作用,无机酸发生金属的配位反应,形成了多金属中心、多桥联键合的立体多孔网状结构,同时无机质子酸的存在破坏了潜在形成的晶格,由于这两点协同作用,不仅增加了催化剂的比表面积,也破坏或者减少了晶格的存在,提高了催化剂的非晶态、无定型结构比例,同时也大大提高了催化剂的热稳定性等性能。提高了催化剂的活性,可以降低聚合原料底物的活化能垒,可以实现在相对更低的温度以及更低的催化剂浓度时完成催化反应。需要强调的是,无机质子酸必须采用非氧化性、非还原性的稀硫酸和稀盐酸,这样能保证游离态氢离子的提供,并且不会因为氧化还原反应影响金属的化合价和配位数。另外必须搭配具有配位能力的有机酸,有机酸选自丁二酸、戊二酸、邻苯二甲酸、亚胺基二乙酸、均苯四甲酸、丁烷四羧酸的任意一种或任意多种,采用上述有机酸的原因是上述有机酸具有金属配位能力,且配齿数目为2~4个,且相邻近的配位氧原子之间的化学键数目介于5~6个,经试验结果表明这样的有机酸可以提供一个相对稳定且空间位阻大小合适,有利于聚合单体接触活性位点的配位环境,在特定比例的无机酸与有机酸的协同作用下,首先发生金属的配位反应,有机酸与金属形成了多金属中心、多桥联键合的立体多孔网状形貌,然后有机酸提供的酸性环境可以对形成的配位金属化合物产生作用,破坏或者减少了晶格的存在,提高了催化剂的非晶态、无定型结构比例,不仅增加了比表面积,也同时也大大提高了催化剂的热稳定性等性能。
令人惊奇的是,本发明通过洗涤和干燥的方式对上述方法制得的以锌钴双金属氰化物为主体的沉淀不溶物进行处理后进行表征,发现具有极高比例的非晶态结构,且锌和钴的配位环境以及对其配位的原子都复杂多样,在采用该催化剂催化二氧化碳与环氧化合物共聚时展现了优异的活性和选择性,可以在较低温度下即可体现催化活性,催化时间更短,在釜式反应中即使5分钟也生成了聚合物产物,这种活性在已有的锌钴DMC催化剂报道中未曾实现。
在此解释混合酸改性提升锌钴DMC催化剂的机理。简而言之,在锌钴DMC催化剂制备过程中的混合酸,增加了金属中心的配位多样性,并且破坏了水溶性锌盐和水溶性钴氰化物盐共沉淀产物 晶体的生长。一般认为DMC催化剂结晶度越低,则其催化活性也越高。原因可能是:1)无定形聚集态结构实际上是纳米尺度多晶晶粒的聚集体,为DMC催化剂提供了更多的比表面积和可能的催化活性中心,从而增加了催化剂的分散性以及与反应单体的接触面积;2)过量ZnCl2条件下合成得到的DMC,由于体相中Zn数目受制于与CN的配位,因此过量的Zn主要分布在表面,形成更多的不饱和的或弱配位的表面Zn活性中心,容易与反应单体配位而引发反应。在本发明中,混合酸加入后,混合酸参与到水溶性锌盐和水溶性氰化物钴盐的共沉淀过程中,酸产生协同作用,无机酸发生金属的配位反应,形成了多金属中心、多桥联键合的立体多孔网状形貌,同时无机质子酸的存在破坏了潜在形成的晶格,由于这两点协同作用,不仅增加了比表面积,也破坏或者减少了晶格的存在,提高了催化剂的非晶态、无定型结构比例,同时也大大提高了催化剂的热稳定性等性能。提高了催化剂的活性,可以降低聚合原料底物的活化能垒,可以实现在相对更低的温度以及更低的催化剂浓度时可以完成催化反应。
本发明提供的双金属氰化物催化剂包含锌和钴两种金属元素;所述催化剂还可能由于原料中含有杂质,所述的杂质为少量其他杂质金属,例如金属钾、钠等,所述杂质的含量≤1wt%。少量杂质金属不会造成催化剂的完全失活,但杂质金属比例越低,催化剂活性相对越好。
本发明的双金属氰化物催化剂由锌和钴的水溶性金属盐在水溶性溶剂中反应得到,所述钴的水溶性金属盐为钴的氰化物盐;所述催化剂合成时由混合酸改性,所述的混合酸包含至少一种有机酸和至少一种水溶性无机酸,其中:
所述的水溶性无机酸选自稀硫酸、稀盐酸,且pH值在0~5之间;优选0~4;更优选1~3;更优选1~2。
所述稀硫酸是指H 2SO 4的水溶液,可由浓硫酸加入去离子水稀释得到pH值在0~5之间;所述稀盐酸是指HCl的水溶液,可由浓盐酸加入去离子水稀释得到pH值在0~5之间。
进一步的,所述锌钴DMC催化剂的制备使用的原料和溶剂总碱度小于0.1wt%。碱度是指体系中能与酸性物质发生中和作用的物质的总质量分数。这类物质包括强碱、弱碱、强碱弱酸盐等。测量的方法是酸滴定法。例如,可以用实验室的滴定器、或数字滴定器对体系的碱度进行测定。原料中可能含有碱性杂质,碱性杂质会与体系中的改性混合酸发生中和作用,影响加入改性酸的实际起作用的量,以及酸起到的改性效果也会受到影响。所述总碱度就是指原料和溶剂中的碱性物质小于0.1wt%。
选择稀硫酸与稀盐酸是由于二者属于非氧化性、非还原性酸,非氧化性和非还原性表示两种酸不具有氧化还原能力,不会对体系中的金属离子进行氧化还原反应导致其发生化合价的变化。诸如稀硝酸、高锰酸、高氯酸等氧化性酸以及氢碘酸、氢硫酸等还原性酸,不在本发明的使用范围内。
所采用的水溶性无机酸的pH值控制在0~5之间,不能过低或过高,pH值过低,例如pH<0,则代表酸性过强,根据本发明的实验结果,无法制备得到DMC催化剂。酸性过强会减弱有机酸对金属原子的配位桥联能力,进而导致催化剂的三维立体结构破坏或者比例减少,导致催化剂无法合成。相反,如果pH值过高,即pH>5时,由于使用的无机酸酸性太弱,无法起到破坏晶格、提高催化剂无定型态比例的效果,进而催化剂活性降低。因此采用水溶性无机酸的pH值控制在0~5之间最为合适。
进一步的,所述催化剂中的锌和钴元素的摩尔比为1:5~5:1,优选1:4~4:1,更优选1:3~3:1,更优选1:2~2:1。
催化剂中的锌和钴元素的摩尔比与加料时锌盐和钴盐中两种金属元素的摩尔比不存在对应关系,催化剂中的锌和钴元素的摩尔比还会受到加入改性酸的种类和比例的影响。
进一步的,所述水溶性无机酸与有机酸的摩尔比值为1:8~8:1,更优选1:5~5:1,更优选1:3~3:1。
进一步的,所述催化剂微观形貌为多面体颗粒,所述颗粒尺寸为1~100nm。
进一步的,所述的催化剂无定型非结晶比例>90%,通过X射线衍射(XRD)表征催化剂中无定型非晶态的比例。
进一步的,所述锌的水溶性金属盐选自氯化锌、溴化锌、碘化锌、硫酸锌、醋酸锌的任意一种或任意多种。
进一步的,所述钴的水溶性金属盐选自六氰合钴(III)酸钠、六氰合钴(III)酸钾。
本发明的第二个目的是提供如前所述任何一种形式的催化剂的制备方法,包含以下步骤:
i)使至少一种水溶性锌盐与至少一种水溶性钴盐,所述的水溶性钴盐为钴的氰化物盐,在混合酸存在下,在水性溶剂里进行反应,所述的混合酸包含至少一种有机酸和至少一种水溶性无机酸,其中:
所述的水溶性无机酸选自稀硫酸、稀盐酸,且pH值在0~5之间;优选0~4;更优选1~3;更优选1~2;
所述的有机酸选自丁二酸、戊二酸、邻苯二甲酸、亚胺基二乙酸、均苯四甲酸、丁烷四羧酸的任意一种或任意多种;所述水溶性无机酸与有机酸的摩尔比值为1:10~10:1;
ii)对步骤i)得到的催化剂进行分离、洗涤和干燥多次至其洗涤液pH为6~7,得到锌钴双金属氰化物催化剂。将体系pH值洗涤至6~7的过程中不引入碱,仅通过用溶剂洗涤多次洗掉游离态的酸,体系pH值会由酸性转变为接近中性。
进一步的,步骤i)中水溶性锌盐选自氯化锌、溴化锌、碘化锌、硫酸锌、醋酸锌。
进一步的,步骤i)中水溶性钴盐选自六氰合钴(III)酸钠、六氰合钴(III)酸钾。
进一步的,各步骤在10℃~100℃的一个或多个温度下进行。优选10~80℃,更优选20~60℃,更优选20~40℃。
进一步的,步骤i)中水溶性锌盐和水溶性钴盐的加料时的摩尔比为1:5~5:1,优选1:4~4:1,更优选1:3~3:1,更优选1:2~2:1。
进一步的,所述水溶性锌盐和水溶性钴盐的总质量与水性溶剂的质量比值为1:1~1:200。优选1:1~1:100,更优选1:1~1:50,更优选1:1~1:20,更优选1:1~1:10,更优选1:1~1:5。
进一步的,所述水溶性锌盐和水溶性钴盐的总摩尔比与混合酸的总摩尔比值为1:10~10:1,优选1:5~5:1。更优选1:4~4:1,更优选1:3~3:1,更优选1:2~2:1。
进一步的,所述无机酸与有机酸的摩尔比值为1:10~10:1,优选1:5~5:1。更优选1:4~4:1,更优选1:3~3:1,更优选1:2~2:1。
进一步的,所述水性溶剂选自水、甲醇、乙醇、丙醇及其异构体、丁醇及其异构体、戊醇及其异构体、己醇及其异构体、庚醇及其异构体任意一种或任意多种。异构体是指化合物具有相同分子式,但具有不同结构,以丁醇及其异构体为例,包括1-丁醇、异丁醇、叔丁醇等几种异构体。
本发明的第三个目的是提供一种化学反应,所述的化学反应采用如前所述任何一种催化剂或者如前所述任何一种制备方法制得的催化剂进行化学反应。
进一步的,所述的化学反应为聚合反应,所述的聚合反应为环氧化合物与二氧化碳的共聚。
所述环氧化合物与二氧化碳的共聚如图3所示,图3中的引发剂可以选自乙二醇、二乙二醇、1,2-丙二醇,1,3-丙二醇,1,4-丁二醇、1,5-戊二醇、1,6-己二醇、1,4-环己烷二甲醇、新戊二醇、甘油、三羟甲基丙烷、三羟甲基乙烷、1,2,4-丁三醇、1,2,6-己三醇、季戊四醇、双季戊四醇、丁二酸、戊二酸、己二酸、庚二酸、辛二酸、壬二酸、癸二酸、十二烷二酸、对苯二甲酸、间苯二甲酸、邻苯二甲酸、均苯三甲酸、均苯四甲酸、邻苯二酚、间苯二酚、对苯二酚中的任意一种或任意多种。
进一步的,所述聚合反应是在连续反应器中进行的,所述聚合反应压力为1~20MPa,反应温度为50~150℃;优选地,反应压力为2~15MPa,反应温度为60~120℃;更优选地,反应压力为3~10MPa,反应温度为70~110℃;更优选地,反应压力为4~6MPa,反应温度为80~100℃。
进一步的,所述的聚合反应还包括将反应原料预混步骤,所述预混步骤的压力为0.1~2MPa,温度为10~60℃;优选地,预混压力为0.2~1MPa,温度为30~50℃。
进一步的,所述预混步骤的时间为0.1~12小时;优选地,预混时间为1~6小时;更优选地,预混时间为1~3小时。在此压力下体系不会提前发生共聚反应。
进一步的,在连续反应器中平均停留时间为0.5~10小时。优选地,保留时间为1~8小时;更优选地,保留时间为3~6小时。平均停留时间可以由体积流速和反应器容积之间的比率测定,其中反应器容积由管或各个管的内径或管的长度或各个管区段的总长度得到。如果停留时间太短,转化通常不完全,太长的停留时间在空间-时间产率方面通常是不利的并由此使得该方法经济上不太可行。
进一步的,所述的连续反应器为管式反应器。所述管式反应器是由连续的管段构成的。
连续反应器优选由不锈钢制成,但是也可以使用其它材料,条件是所述材料在原料/产物、压力等方面是相容的。
进一步的,连续反应器可以由连续的管段或一个或两个及以上串联或并联在一起的管构造而成,管构造可以具有不同性能如不同的内径。所述连续反应器的内径在整个长度上可以相同或可以变化。所述管式反应器的内径为10mm~500mm。优选地,内径为50mm~400mm,更优选地,内径为100mm~400mm。所述管式反应器的管长L与管直径dR之比为L/dR>50。
原则上,也可以沿着连续反应器具有几个添加点,使得环氧化合物或几种环氧化合物与活泼氢官能团引发剂的混合物或活泼氢官能团引发剂的混合物可以在反应器的不同点加入。这使得调控分子量更为多方式,使得聚合物端基的控制更为精准多样。另外,也可以在反应器的添加点加入二氧化碳,补充二氧化碳的消耗,促进反应进行。
具有10mm~100mm的内径的连续反应器可以优选没有内置件的情况下操作。具有>100mm至500mm的内径的连续反应器可以优选含有一个或多个静态混合器或静态混合器和热交换机(冷却旋管)的结合。
有利的是连续反应器的整体容积用液体/悬浮液填充。理想地此液体或悬浮液就液体来说是单相的,以便特别地保证好的物质交换。这通常通过在上述保留步骤中给出的温度和压力来实现。
在所述方法中,优选地将干燥和磨碎的锌钴DMC催化剂(例如在100℃真空烘箱)、活泼氢官能团引发剂和环氧化合物和二氧化碳连续地泵送通过一个或多个管。反应参与物的摩尔比率根据所需聚合物而变化。
所述干燥的锌钴DMC催化剂优选地作为在一种或多种活泼氢官能团引发剂中的悬浮液形式加入。
所述锌钴DMC催化剂在催化剂悬浮液中的通常浓度为0.01~5wt%,优选0.05~0.5wt%,基于包含DMC催化剂和活泼氢官能团引发剂的催化剂悬浮液计。悬浮液应当在任何情况下都保持能够通过常规的泵(例如隔膜泵)传输。
有利的是将锌钴DMC催化剂在使用前研磨到一定的颗粒尺寸。小于500μm的颗粒证明是适用的。原则上,甚至更小的颗粒尺寸是甚至更好的,以便避免堵塞。
简述工艺流程,将由一种或多种活泼氢官能团引发剂和研磨并经干燥的DMC催化剂以及二氧化碳在搅拌的储料罐中混合,在10~60℃,压力为0.1~2MPa,优选30~50℃,压力为0.2~1MPa条件下进行混合,其中所得的混合物未发生反应。组成的悬浮液,使用泵(例如隔膜泵)泵送到连续反应器中。使连续反应器达到50~150℃,优选60~120℃,更优选70~110℃,更优选80~100℃的温度(优选地通过热交换器或可恒温控制的油浴),优选地将其调整到1~20MPa,优选2~15MPa,更优选3~10MPa,更优选4~6MPa的反应压力,在此条件下发生实际的反应(即一种或多种环氧化合物和二氧化碳在锌钴DMC催化剂存在下加成到一种或多种活泼氢官能团引发剂上)。借助于背压阀调节以保持二氧化碳需要的恒定压力。将所得产物(聚碳酸酯聚醚多元醇)收集在容器中。
进一步的,所述的环氧化合物选自环氧乙烷、环氧丙烷、1,2-环氧丁烷、2,3-环氧丁烷,氧化苯乙烯,氧化环己烯,环氧氯丙烷中的任意一种或任意多种。
进一步的,加入引发剂与环氧单体的摩尔比为1:20~1:200;优选地,摩尔比为1:50~1:100。
进一步的,所述引发剂选自乙二醇、二乙二醇、1,2-丙二醇,1,3-丙二醇,1,4-丁二醇、1,5-戊二醇、1,6-己二醇、1,4-环己烷二甲醇、新戊二醇、甘油、三羟甲基丙烷、三羟甲基乙烷、1,2,4-丁三醇、1,2,6-己三醇、季戊四醇、双季戊四醇、丁二酸、戊二酸、己二酸、庚二酸、辛二酸、壬二酸、癸二酸、十二烷二酸、对苯二甲酸、间苯二甲酸、邻苯二甲酸、均苯三甲酸、均苯四甲酸、邻苯二酚、间苯二酚、对苯二酚中的任意一种或任意多种。
本发明提供的用于聚合反应的双金属氰化物催化剂除杂质外仅包含锌和钴两种金属元素,并且在合成制备时由特定比例的混合酸改性,混合酸包含至少一种有机酸和至少一种水溶性无机酸,所述水溶性无机酸与有机酸的摩尔比值为1:10~10:1。在制备过程中,原料中锌和钴是以金属盐的形式投料,这些成分以及同时加入的用于改性的混合酸产生协同作用,发生金属的配位反应,形成了多金属中心、多桥联键合的立体多孔网状结构,不仅增大了比表面积,也破坏、减少了晶格的存在,提高了催化剂的非晶态、无定型结构比例,同时也大大提高了催化剂的热稳定性等性能。提高了催化剂的活性,可以降低聚合单体的活化能垒,可以实现在相对更低的温度以及更低的催化剂浓度时可以完成催化反应。
相比现有其他方法制备得到的锌钴DMC催化剂,本发明提供的锌钴DMC催化剂兼具以下突出优势:
在催化剂与环氧单体质量比小于1/1000的工业常见条件下,在较高比例引发剂加入量(引发剂加入量是环氧单体摩尔数的1/50~1/90)条件下,在较高反应温度(90~100℃)下,展现较高的催化活性(在反应时间1~2小时,单体转化率大于50%),合成的聚合物结构中含有较高比例的聚碳酸酯结构(摩尔百分比>50%),即二氧化碳固定率。
附图说明
图1是催化剂催化环氧化合物开环聚合制备聚醚多元醇方程式示意图,图1中,当环氧化物为单取代结构时,R 1为氢原子,R 2选自甲基、乙基、正丙基、异丙基、正丁基、苯基、苄基、苯氧基、苯 氧亚甲基、烯丙基氧亚甲基、乙烯基、氯甲基;当环氧化物为双取代结构时,R 1、R 2可以同时为氢原子,也可以同时共同构成环己基;n为正整数,虚指聚合物的聚合度。
图2是DMC催化环氧化合物、二氧化碳制备聚碳酸酯聚合物和环状碳酸酯副产物方程式示意图,图2中,当环氧化物为单取代结构时,R 1为氢原子,R 2选自甲基、乙基、正丙基、异丙基、正丁基、苯基、苄基、苯氧基、苯氧亚甲基、烯丙基氧亚甲基、乙烯基、氯甲基;当环氧化物为双取代结构时,R 1、R 2可以同时为氢原子,也可以同时共同构成环己基;m,n为正整数,虚指聚合物的聚合度。
图3是DMC催化环氧化合物、二氧化碳与引发剂共聚合制备聚碳酸酯聚醚多元醇反应示意图,图3中,当环氧化物为单取代结构时,R 1为氢原子,R 2选自甲基、乙基、正丙基、异丙基、正丁基、苯基、苄基、苯氧基、苯氧亚甲基、烯丙基氧亚甲基、乙烯基、氯甲基;当环氧化物为双取代结构时,R 1、R 2可以同时为氢原子,也可以同时共同构成环己基;R为有机基团,例如烷基、苯基、烷羰基、苯羰基等;m,n为正整数,虚指聚合物的聚合度;x为大于或等于2的正整数,代表所采用引发剂单分子中羟基的数量。
图4是聚碳酸酯聚醚多元醇粗产物核磁氢谱图。
图5是聚碳酸酯聚醚多元醇凝胶渗透色谱曲线图。
具体实施方式
以下结合具体实施例对上述方案做进一步说明。应理解,这些实施例是用于说明本发明而不限于限制本发明的范围。实施例中采用的实施条件可以根据具体厂家的条件做进一步调整,未注明的实施条件通常为常规实验中的条件。
本发明通过举例而非给出限制的方式来进行说明。应注意的是,在本公开文件中所述的“一”或“一种”实施方式未必是指同一种具体实施方式,而是指至少有一种。
下文将描述本发明的各个方面。然而,对于本领域中的技术人员显而易见的是,可根据本发明的仅一些或所有方面来实施本发明。为说明起见,本文给出具体的编号、材料和配置,以使人们能够透彻地理解本发明。然而,对于本领域中的技术人员将显而易见的是,本发明无需具体的细节即可实施。在其他例子中,为不使本发明费解而省略或简化了众所周知的特征。
将各种操作作为多个分立的步骤而依次进行描述,且以最有助于理解本发明的方式来说明;然而,不应将按次序的描述理解为暗示这些操作必然依赖于顺序。
将根据典型种类的反应物来说明各种实施方式。对于本领域中的技术人员将显而易见的是,本发明可使用任意数量的不同种类的反应物来实施,而不只是那些为说明目的而在这里给出的反应物。此外,也将显而易见的是,本发明并不局限于任何特定的混合示例。
实施例1-8
锌-钴DMC催化剂的制备
各参数如表1所示
称取一定质量的钴盐和锌盐,在水性溶剂中溶解后持续搅拌。加入无机酸和有机酸,在温度i)下搅拌数小时,持续有沉淀生成。将上述浊液经抽滤进行干燥得到滤饼。用水性溶剂将滤饼在温度ii)下重新浆化洗涤,搅拌数小时后抽滤干燥得到滤饼,在温度ii)下重复上述浆化、洗涤、干燥步骤多次,直至体系液体pH为6~7。将固体产物在80~100℃真空条件下进一步干燥得到最终催化剂,催化剂在使用前通过机械研磨在无水干燥条件下加工成粉末颗粒。
表1
Figure PCTCN2019080505-appb-000001
实施例9~18
所有反应条件、参数以及产物参数如表2所示,反应步骤如下总述:
使用实施例1~8中制备的DMC催化剂,在预混容器中悬浮于引发剂和环氧化物中,使得在混合液中达到指定的催化剂浓度,各组分在指定温度和气压下混合一定时间,混合物未发生反应。将混合悬浮液以合适流速由混合器泵送到连续反应器中。连续反应器控制在指定反应温度和压力下。各组分在连续反应器中停留指定的保留时间。将所得产物(聚碳酸酯聚醚多元醇和环状碳酸丙烯酯以及未反应的环氧化物)收集在容器中,对粗产物进行核磁氢谱表征计算粗产物中聚合物与环状小分子的比例,对聚合物纯化后再进行核磁氢谱测试,计算得到聚合物主链上聚碳酸酯链节与聚醚链节的比例,聚合物主链上仅有聚碳酸酯链节和聚醚链节两种结构,二者的百分比相加为100%。对聚合物通过凝胶渗透色谱法测定数均分子量以及分子量分布。结果如表2所示。参数中催化剂在浊液中的浓度(wt%)即上文提到的催化剂与环氧化物的质量比。
表2
Figure PCTCN2019080505-appb-000002
1所用催化剂来源。 2引发剂:环氧化物摩尔比例。 3转化率:在指定反应时间后体系中环氧化物原料的转化率,根据粗产物核磁氢谱( 1H NMR)计算得到。 4粗产物中环状小分子(碳酸丙烯酯)的摩尔百分比,根据产物核磁氢谱( 1H NMR)计算得到。 5聚合物链节中聚碳酸酯结构和聚醚结构的摩 尔比,根据产物核磁氢谱( 1H NMR)计算得到。 6聚合物数均分子量,通过凝胶渗透色谱测定(GPC)。 7聚合物分子量分布,通过凝胶渗透色谱测定(GPC)。
由以上实施例可以说明通过本发明的方法制备得到的锌钴DMC催化剂可以在较高比例(环氧化物摩尔数的1/50~1/90,催化剂与环氧化物质量比小于1/2000)引发剂存在,在较高反应温度(90~100℃)下,展现较高的催化活性(在反应时间1~2小时,化物转化率大于50%),合成的聚合物结构中含有较高比例的聚碳酸酯结构(摩尔百分比>50%)。此类多元醇结构中较高比例的聚碳酸酯链节在用作原料合成聚氨酯材料时可以赋予聚氨酯材料更优秀的杨氏模量以及耐水性、耐候性等性能。
实施例17的产物核磁共振氢谱如图4所示,实施例17聚合物产物凝胶渗透色谱图如图5所示。
对比例1
按照中国专利CN1299300A公开的酸处理双金属氰化物络合物催化剂的方法制备得到催化剂编号D1,与本发明实施例1制备的催化剂对比,反应条件与实施例9相同,利用催化剂D1制得的聚醚多元醇产物,聚合物主链不含有碳酸酯链节,对二氧化碳无固定和利用效果,与本发明催化剂相比无选择性。
该方法与本发明有本质区别:第一、改性酸加入的时机不同:中国专利CN1299300A的双金属氰化物络合物催化剂是已经提前合成好了,加质子酸是在聚合反应进行之前,相当于对聚合过程的一种改进。而本发明加混合酸改性是必须在双金属氰化物络合物催化剂合成的过程中加入,并且除了加入质子酸以外还必须同时加入非质子酸(即本发明提出的有机酸),混合酸协同作用才能达到本发明更佳的催化活性和选择性。第二、上述专利仅加入的是质子酸,而本发明是混合酸(包括质子酸和无机非质子酸),酸的种类不同,作用也不相同。
对比例2
按照专利WO2011160797公开的一种对DMC催化剂的改进方法,制备得到催化剂编号D5,与本发明实施例5制备的催化剂对比,反应条件与实施例13相同,利用催化剂D5制得的聚碳酸酯聚醚多元醇产物,环状产物为40%,聚合物主链中碳酸酯链节为30%,聚醚链节为70%。与本发明实施例13结果相比,对聚合物产物的选择性低于本发明,对二氧化碳固定的选择性也远低于本发明结果。
该方法与本发明有本质区别:改性酸加入的时机不同:专利WO2011160797的双金属氰化物络合物催化剂是已经提前合成好了,加质子酸是在聚合反应进行之前,相当于对聚合过程的一种改进。而本发明加混合酸改性是必须在双金属氰化物络合物催化剂合成的过程中加入,并且除了加入质子酸以外还必须同时加入非质子酸(即本发明提出的有机酸),混合酸协同作用才能达到本发明更佳的催化活性和选择性。
对比例3
采用与实施例1相同的制备锌-钴DMC催化剂的方法,唯一区别是只使用质子酸(以稀硫酸为例)而不加有机酸进行改性。
称取六氰合钴(III)酸钾和氯化锌(摩尔比1:5),加入到与金属盐质量相等的水和甲醇的共混溶剂中并搅拌。待稳定均匀后加入稀硫酸(pH值为1)(金属盐与酸摩尔比为1:4),在10℃下搅拌,无沉淀生成。可以明确证明,在不加入有机酸而只加入无机酸的条件下,体系不会产生共沉淀,也即不会有催化剂生成。
对比例4
采用与实施例1相同的制备锌-钴DMC催化剂的方法,唯一区别是只使用有机酸(以丁二酸为例)而不加无机质子酸进行改性。
称取六氰合钴(III)酸钾和氯化锌(摩尔比1:5),加入到与金属盐质量相等的水和甲醇的共混溶剂中并搅拌。待稳定均匀后加入丁二酸(金属盐与酸摩尔比为1:4),在10℃下搅拌2小时,持续有沉淀生成。将上述浊液经抽滤进行干燥得到滤饼。用水性溶剂将滤饼重新浆化洗涤,在80℃搅拌12小时后抽滤干燥得到滤饼,重复多次,至体系液相pH为6~7。将固体产物在80℃真空条件下进一步干燥得到最终催化剂,催化剂在使用前通过机械研磨在无水干燥条件下加工成粉末颗粒。
将所得催化剂在实施例9的反应条件下实施对聚合反应的催化,无活性,表明:只加入有机酸时,体系可以生成沉淀的金属配位化合物,但是没有有机酸的协同改性,以上得到的沉淀并无对聚合反应的催化活性。
对比例3和4说明在制备本发明的DMC催化剂时,同时使用有机酸和无机酸共同对催化剂改性制备是必要条件,两类酸缺一不可,单独采用一类酸进行改性,无法得到有效催化聚合反应的DMC催化剂。
对比例5
采用与实施例2相同的制备锌-钴DMC催化剂的方法,唯一区别是使用的稀盐酸pH值为6。使用稀盐酸和戊二酸混合酸改性
称取六氰合钴(III)酸钠和溴化锌(摩尔比1:4),加入到质量为金属盐质量5倍的水和叔丁醇的共混溶剂中并搅拌。待稳定均匀后加入稀盐酸(pH值为6)和戊二酸混合酸(金属盐与酸摩尔比为4:1,稀盐酸和戊二酸摩尔比为5:1),在100℃下搅拌3小时,持续有沉淀生成。将上述浊液经抽滤进行干燥得到滤饼。用水性溶剂将滤饼重新浆化洗涤,在60℃下搅拌6小时后抽滤干燥得到滤饼,重复多次,至体系液相pH为6~7。将固体产物在80℃真空条件下进一步干燥得到最终催化剂,催化剂在使用前通过机械研磨在无水干燥条件下加工成粉末颗粒。
将所得催化剂在实施例10的反应条件下实施对聚合反应的催化,测得转化率仅为5%左右,核磁表征产物中聚合物主要为聚醚结构(85%),聚碳酸酯结构仅为15%。证明该催化剂具有一定的活性,但是活性和选择性都较差。活性远低于实施例10中的催化剂活性,实施例10中转化率为90%,聚碳酸酯结构为91%,聚醚结构为9%。表明:在加入无机质子酸的pH值>5,即酸性较弱时,酸无法对聚合物的晶态结构进行破坏,降低了催化剂的活性和选择性。
对比例6
采用与实施例2相同的制备锌-钴DMC催化剂的方法,唯一区别是使用的稀盐酸pH值为-1。使用稀盐酸和戊二酸混合酸改性(稀盐酸和戊二酸摩尔比为5:1)
在合成时无法得到沉淀物,无法正常合成催化剂。表明:在加入的无机质子酸的pH值<0时,酸性过强,会破坏金属的配位和桥联,无法正常合成催化剂。
对比例7
采用与实施例2相同的制备锌-钴DMC催化剂的方法,唯一区别是使用除了锌和钴之外的第三种金属(以金属镉为例)的金属盐(溴化镉)替代本方法中的锌盐进行合成,即用第三种金属替代金属锌。
使用稀盐酸和戊二酸混合酸改性
称取六氰合钴(III)酸钠和溴化镉(摩尔比1:4),加入到质量为金属盐质量5倍的水和叔丁醇的共混溶剂中并搅拌。待稳定均匀后加入稀盐酸(pH值为2)和戊二酸混合酸(金属盐与酸摩尔比为4:1,稀盐酸和戊二酸摩尔比为5:1),在100℃下搅拌3小时,持续有沉淀生成。将上述浊液经抽滤进行干燥得到滤饼。用水性溶剂将滤饼重新浆化洗涤,在60℃下搅拌6小时后抽滤干燥得到滤饼,重复多次,至体系液相pH为6~7。将固体产物在80℃真空条件下进一步干燥得到最终催化剂,催化剂在使用前通过机械研磨在无水干燥条件下加工成粉末颗粒。
将所得催化剂在实施例10的反应条件下实施对聚合反应的催化,无活性,表明:用其他金属替代金属锌时,得到的沉淀物并无对聚合反应的催化活性。
对比例8
采用与实施例2相同的制备锌-钴DMC催化剂的方法,唯一区别是使用除了锌和钴之外的第三种金属(以金属镍为例)的金属盐(六氰合镍酸钠)替代本方法中的钴盐进行合成,即用第三种金属替代金属钴
使用稀盐酸和戊二酸混合酸改性
称取六氰合镍酸钠和溴化锌(摩尔比1:4),加入到质量为金属盐质量5倍的水和叔丁醇的共混溶剂中并搅拌。待稳定均匀后加入稀盐酸(pH值为2)和戊二酸混合酸(金属盐与酸摩尔比为4:1,稀盐酸和戊二酸摩尔比为5:1),在100℃下搅拌3小时,持续有沉淀生成。将上述浊液经抽滤进行干燥得到滤饼。用水性溶剂将滤饼重新浆化洗涤,在60℃下搅拌6小时后抽滤干燥得到滤饼,重复多次,至体系液相pH为6~7。将固体产物在80℃真空条件下进一步干燥得到最终催化剂,催化剂在使用前通过机械研磨在无水干燥条件下加工成粉末颗粒。
将所得催化剂在实施例10的反应条件下实施对聚合反应的催化,无活性,表明:用其他金属替代金属钴时,得到的沉淀物并无对聚合反应的催化活性。
对比例9
采用与实施例2相同的制备锌-钴DMC催化剂的方法,唯一区别是除了锌和钴之外,加入第三种金属(以金属铁为例)的金属盐(氯化铁)进行合成,制备含有三种金属元素的催化剂。
使用稀盐酸和戊二酸混合酸改性
称取六氰合钴(III)酸钠、溴化锌和氯化铁(摩尔比1:4:1),加入到质量为金属盐质量5倍的水和叔丁醇的共混溶剂中并搅拌。待稳定均匀后加入稀盐酸(pH值为2)和戊二酸混合酸(金属盐与酸摩尔比为4:1,稀盐酸和戊二酸摩尔比为5:1),在100℃下搅拌3小时,持续有沉淀生成。将上述浊液经抽滤进行干燥得到滤饼。用水性溶剂将滤饼重新浆化洗涤,在60℃下搅拌6小时后抽滤干燥得到滤饼,重复多次,至体系液相pH为6~7。将固体产物在80℃真空条件下进一步干燥得到最终催化剂,催化剂在使用前通过机械研磨在无水干燥条件下加工成粉末颗粒。
将所得催化剂在实施例10的反应条件下实施对聚合反应的催化,测得转化率仅为3%左右,核磁表征产物中聚合物主要为聚醚结构(90%),聚碳酸酯结构仅为10%。证明该催化剂具有一定的活性,但是活性和选择性都较差。活性远低于实施例10中的催化剂活性,实施例10中转化率为90%,聚碳酸酯结构为91%,聚醚结构为9%。表明:在加入第三种金属时,催化剂虽然仍能保留一定程度的活性,但是催化剂的活性和选择性大大降低。
对比例10
采用与实施例2相同的制备锌-钴DMC催化剂的方法,唯一区别是用其他种类的无机质子酸(以氢溴酸为例)替换稀盐酸进行合成,制备催化剂。
使用氢溴酸和戊二酸混合酸改性
称取六氰合钴(III)酸钠和溴化锌(摩尔比1:4),加入到质量为金属盐质量5倍的水和叔丁醇的共混溶剂中并搅拌。待稳定均匀后加入氢溴酸(pH值为2)和戊二酸混合酸(金属盐与酸摩尔比为4:1,氢溴酸和戊二酸摩尔比为5:1),在100℃下搅拌3小时,持续有沉淀生成。将上述浊液经抽滤进行干燥得到滤饼。用水性溶剂将滤饼重新浆化洗涤,在60℃下搅拌6小时后抽滤干燥得到滤饼,重复多次,至体系液相pH为6~7。将固体产物在80℃真空条件下进一步干燥得到最终催化剂,催化剂在使用前通过机械研磨在无水干燥条件下加工成粉末颗粒。
将所得催化剂在实施例10的反应条件下实施对聚合反应的催化,测得转化率仅为5%左右,且根据核磁表征产物中聚合物主要为小分子的环状碳酸酯,几乎没有聚合物产物。表明:在用其他无机质子酸替换稀盐酸时,催化剂催化活性很低,且几乎无聚合物产物选择性。
对比例11
采用与实施例2相同的制备锌-钴DMC催化剂的方法,唯一区别是用其他种类的有机酸(以己二酸为例)替换戊二酸进行合成,制备催化剂。
使用稀盐酸和己二酸混合酸改性
称取六氰合钴(III)酸钠和溴化锌(摩尔比1:4),加入到质量为金属盐质量5倍的水和叔丁醇的共混溶剂中并搅拌。待稳定均匀后加入稀盐酸(pH值为2)和己二酸混合酸(金属盐与酸摩尔比为4:1,稀盐酸和己二酸摩尔比为5:1),在100℃下搅拌3小时,持续有沉淀生成。将上述浊液经抽滤进行干燥得到滤饼。用水性溶剂将滤饼重新浆化洗涤,在60℃下搅拌6小时后抽滤干燥得到滤饼,重复多次,至体系液相pH为6~7。将固体产物在80℃真空条件下进一步干燥得到最终催化剂,催化剂在使用前通过机械研磨在无水干燥条件下加工成粉末颗粒。
将所得催化剂在实施例10的反应条件下实施对聚合反应的催化,测得转化率仅为5%左右,且根据核磁表征产物中聚合物主要为小分子的环状碳酸酯,几乎没有聚合物产物。表明:在用其他无机质子酸替换稀盐酸时,催化剂催化活性很低,且几乎无聚合物产物选择性。
对比例12
采用与实施例2相同的制备锌-钴DMC催化剂的方法,唯一区别是无机质子酸和有机酸的摩尔比为11:1。
使用稀盐酸和戊二酸混合酸改性
称取六氰合钴(III)酸钠和溴化锌(摩尔比1:4),加入到质量为金属盐质量5倍的水和叔丁醇的共混溶剂中并搅拌。待稳定均匀后加入稀盐酸(pH值为2)和戊二酸混合酸(金属盐与酸摩尔比为4:1,稀盐酸和戊二酸摩尔比为11:1),在100℃下搅拌3小时,无法得到沉淀物,无法正常合成催化剂。表明:在加入的无机质子酸和有机酸的摩尔比大于10:1时,会破坏金属的配位和桥联,无法正常合成催化剂。
对比例13
采用与实施例2相同的制备锌-钴DMC催化剂的方法,唯一区别是无机质子酸和有机酸的摩尔比为1:11。
使用稀盐酸和戊二酸混合酸改性
称取六氰合钴(III)酸钠和溴化锌(摩尔比1:4),加入到质量为金属盐质量5倍的水和叔丁醇的共混溶剂中并搅拌。待稳定均匀后加入稀盐酸(pH值为2)和戊二酸混合酸(金属盐与酸摩尔比为4:1,稀盐酸和戊二酸摩尔比为1:11),在100℃下搅拌3小时,持续有沉淀生成。将上述浊液经抽滤进行干燥得到滤饼。用水性溶剂将滤饼重新浆化洗涤,在60℃下搅拌6小时后抽滤干燥得到滤饼,重复多次,至体系液相pH为6~7。将固体产物在80℃真空条件下进一步干燥得到最终催化剂,催化剂在使用前通过机械研磨在无水干燥条件下加工成粉末颗粒。
表明:在加入的无机质子酸和有机酸的摩尔比小于1:10时,催化剂无活性。
对比例14
A:根据已公开专利方法制备金属催化剂:将包含41重量份乙二醇和4重量份水的混合液在室温常压下放入配有搅拌器的制备槽中,将1.5重量份的六氰合钴酸钾和氯化锌(摩尔比1:5)加至混合液中,搅拌并溶解,再加入3.8重量份的稀硫酸和丁二酸混合液(二者摩尔比1:5)搅拌并混合,然后添加2.4重量份的钛酸四正丁酯,然后搅拌30分钟以进行溶解,从而制得催化剂D14-A,与本发明实施例1制备的催化剂对比,反应条件与实施例9相同,催化剂D14-A对催化二氧化碳与环氧丙烷共聚无催化活性。
B:按照上述A已公开专利方法制备金属催化剂:唯一区别在于用锆酸四正丁酯替换钛酸四正丁酯,制备得到催化剂D14-B,与本发明实施例1制备的催化剂对比,反应条件与实施例9相同,催化剂D14-B对催化二氧化碳与环氧丙烷共聚无催化活性。
C:按照上述A已公开专利方法制备金属催化剂:唯一区别在于用铪酸四正丁酯替换钛酸四正丁酯,制备得到催化剂D14-C,与本发明实施例1制备的催化剂对比,反应条件与实施例9相同,催化剂D14-C对催化二氧化碳与环氧丙烷共聚无催化活性。
D:按照上述A已公开专利方法制备金属催化剂:唯一区别在于用氯化钴替换六氰合钴酸钾,制备得到催化剂D14-D,与本发明实施例1制备的催化剂对比,反应条件与实施例9相同,催化剂D14-D对催化二氧化碳与环氧丙烷共聚无催化活性。
综上对比例可知,必须严格满足以下的所有条件才能制得具有本发明技术效果的催化剂:所述催化剂由锌和钴的水溶性金属盐在水溶性溶剂中反应得到,所述钴的水溶性金属盐为钴的氰化物盐;所述催化剂合成时由混合酸改性,所述的混合酸包含至少一种有机酸和至少一种水溶性无机酸,其中:所述的水溶性无机酸选自稀硫酸、稀盐酸,且pH值在0~5之间;所述的有机酸选自丁二酸、戊二酸、邻苯二甲酸、亚胺基二乙酸、均苯四甲酸、丁烷四羧酸的任意一种或任意多种,所述水溶性无机酸与有机酸的摩尔比值为1:10~10:1。
本发明技术效果是指:在催化剂与环氧单体质量比小于1/1000的工业常见条件下,在较高比例引发剂加入量(引发剂加入量是环氧单体摩尔数的1/50~1/90)条件下,在较高反应温度(90~100℃)下,展现较高的催化活性(在反应时间1~2小时,单体转化率大于50%),合成的聚合物结构中含有较高比例的聚碳酸酯结构(摩尔百分比>50%)。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (28)

  1. 一种混合酸改性的锌钴双金属氰化物催化剂,其特征在于:所述催化剂的金属元素除杂质外仅为锌和钴两种金属元素;
    所述催化剂由锌和钴的水溶性金属盐在水溶性溶剂中反应得到,所述钴的水溶性金属盐为钴的氰化物盐;
    所述催化剂合成时由混合酸改性,所述的混合酸包含至少一种有机酸和至少一种水溶性无机酸,其中:所述的水溶性无机酸选自稀硫酸、稀盐酸,且pH值在0~5之间;优选0~4;更优选1~3;更优选1~2;
    所述的有机酸选自丁二酸、戊二酸、邻苯二甲酸、亚胺基二乙酸、均苯四甲酸、丁烷四羧酸的任意一种或任意多种,所述水溶性无机酸与有机酸的摩尔比值为1:10~10:1。
  2. 根据权利要求1所述的催化剂,其特征在于:所述催化剂中的锌和钴元素的摩尔比为1:5~5:1,优选1:4~4:1,更优选1:3~3:1,更优选1:2~2:1。
  3. 根据权利要求1所述的催化剂,其特征在于:所述水溶性无机酸与有机酸的摩尔比值为1:8~8:1,更优选1:5~5:1,更优选1:3~3:1。
  4. 根据权利要求1-3任一项所述的催化剂,其特征在于:催化剂微观形貌为不规则多面体颗粒,所述颗粒尺寸为1~100nm。
  5. 根据权利要求1-4任一项所述的催化剂,其特征在于:催化剂无定型非结晶比例>90%。
  6. 一种权利要求1-5之一的混合酸改性的锌钴双金属氰化物催化剂的制备方法,包含以下步骤:
    i)使至少一种水溶性锌盐与至少一种水溶性钴盐,所述的水溶性钴盐为钴的氰化物盐,在混合酸存在下,在水性溶剂里进行反应,所述的混合酸包含至少一种有机酸和至少一种水溶性无机酸,其中:
    所述的水溶性无机酸选自稀硫酸、稀盐酸,且pH值在0~5之间;优选0~4;更优选1~3;更优选1~2;
    所述的有机酸选自丁二酸、戊二酸、邻苯二甲酸、亚胺基二乙酸、均苯四甲酸、丁烷四羧酸的任意一种或任意多种;所述水溶性无机酸与有机酸的摩尔比值为1:10~10:1;
    ii)对步骤i)得到的催化剂进行分离、洗涤和干燥多次至其洗涤液pH为6~7,得到混合酸改性的锌钴双金属氰化物催化剂。
  7. 根据权利要求6的制备方法,其特征在于,步骤i)中水溶性锌盐选自氯化锌、溴化锌、碘化锌、硫酸锌、醋酸锌的任意一种或任意多种。
  8. 根据权利要求6的制备方法,其特征在于,步骤i)中水溶性钴盐选自六氰合钴(III)酸钠、六氰合钴(III)酸钾。
  9. 根据权利要求6的制备方法,其特征在于,所述步骤i)和步骤ii)在10℃~100℃的一个或多个温度下进行;优选10~80℃,更优选20~60℃,更优选20~40℃。
  10. 根据权利要求6的制备方法,其特征在于,步骤i)中水溶性锌盐和水溶性钴盐加料时的摩尔比为1:5~5:1,优选1:4~4:1,更优选1:3~3:1,更优选1:2~2:1。
  11. 根据权利要求6的制备方法,其特征在于,所述水溶性锌盐和水溶性钴盐的总质量与水性溶剂的质量比值为1:1~1:200,优选1:1~1:100,更优选1:1~1:50,更优选1:1~1:20,更优选1:1~1:10,更优选1:1~1:5。
  12. 根据权利要求6的制备方法,其特征在于,所述水溶性锌盐和水溶性钴盐的总摩尔数与混合酸总摩尔数的比值为1:10~10:1,优选1:5~5:1,更优选1:4~4:1,更优选1:3~3:1,更优选1:2~2:1。
  13. 根据权利要求6的制备方法,其特征在于,所述水溶性无机酸与有机酸的摩尔比值为1:8~8:1,更优选1:5~5:1,更优选1:3~3:1。
  14. 根据权利要求6的制备方法,其特征在于,所述水性溶剂选自水、甲醇、乙醇、丙醇及其异构体、丁醇及其异构体、戊醇及其异构体、己醇及其异构体、庚醇及其异构体任意一种或任意多种。
  15. 一种化学反应,其特征在于,所述的化学反应采用权利要求1-6任一项所述的催化剂或者权利要求6-14任一项所述的制备方法制得的催化剂进行化学反应。
  16. 根据权利要求15所述的化学反应,其特征在于,所述的化学反应为聚合反应,所述的聚合反应为环氧化合物与二氧化碳的共聚。
  17. 根据权利要求15或16所述的化学反应,其特征在于,所述聚合反应是在连续反应器中进行的,所述聚合反应压力为1~20MPa,反应温度为50~150℃;优选地,反应压力为2~15MPa,反应温度为60~120℃;更优选地,反应压力为3~10MPa,反应温度为70~110℃;更优选地,反应压力为4~6MPa,反应温度为80~100℃。
  18. 根据权利要求17所述的化学反应,其特征在于,所述的聚合反应还包括将反应原料预混步骤,所述预混步骤的压力为0.1~2MPa,温度为10~60℃;优选地,预混压力为0.2~1MPa,温度为30~50℃。
  19. 根据权利要求18所述的化学反应,其特征在于,所述预混步骤的时间为0.1~12小时;优选地,预混时间为1~6小时;更优选地,预混时间为1~3小时。
  20. 根据权利要求17所述的化学反应,其特征在于,在连续反应器中平均停留时间为0.5~10小时;优选地,平均停留时间为1~8小时;更优选地,平均停留时间为3~6小时。
  21. 根据权利要求17所述的化学反应,其特征在于,所述的连续反应器为管式反应器。
  22. 根据权利要求21所述的化学反应,其特征在于,所述管式反应器是由连续的管段构成的。
  23. 根据权利要求21所述的化学反应,其特征在于,所述管式反应器的内径为10mm~500mm。优选地,内径为50mm~400mm,更优选地,内径为100mm~400mm。
  24. 根据权利要求21所述的化学反应,其特征在于,所述管式反应器的管长L与管直径dR之比为L/dR>50。
  25. 根据权利要求16-24任一项所述的化学反应,其特征在于,所述的环氧化合物选自环氧乙烷、环氧丙烷、1,2-环氧丁烷、2,3-环氧丁烷、氧化苯乙烯、氧化环己烯、环氧氯丙烷中的任意一种或任意多种。
  26. 根据权利要求16-24任一项所述的化学反应,其特征在于,所述聚合反应的反应原料还包括引发剂。
  27. 根据权利要求26所述的化学反应,加入引发剂与环氧化合物的摩尔比为1:20~1:200;优选地,摩尔比为1:50~1:100。
  28. 根据权利要求27所述的化学反应,其特征在于,所述引发剂选自乙二醇、二乙二醇、1,2-丙二醇,1,3-丙二醇,1,4-丁二醇、1,5-戊二醇、1,6-己二醇、1,4-环己烷二甲醇、新戊二醇、甘油、三羟甲基丙烷、三羟甲基乙烷、1,2,4-丁三醇、1,2,6-己三醇、季戊四醇、双季戊四醇、丁二酸、戊二酸、己二酸、庚二酸、辛二酸、壬二酸、癸二酸、十二烷二酸、对苯二甲酸、间苯二甲酸、邻苯二甲酸、均苯三甲酸、均苯四甲酸、邻苯二酚、间苯二酚、对苯二酚中的任意一种或任意多种。
PCT/CN2019/080505 2018-09-29 2019-03-29 一种混合酸改性的锌钴双金属氰化物催化剂及其制备方法 WO2020062816A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19865969.0A EP3858889B1 (en) 2018-09-29 2019-03-29 Mixed acid-modified zinc-cobalt two-metal cyanide catalyst and preparation method thereof
US17/215,868 US20210213431A1 (en) 2018-09-29 2021-03-29 Mixed-acid modified zinc-cobalt double metal cyanide catalyst and preparation method thereof

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201811145851.X 2018-09-29
CN201811145851 2018-09-29
CN201910108123.X 2019-02-02
CN201910108123 2019-02-02
CN201910199743.9 2019-03-15
CN201910199743 2019-03-15
CN201910224871.4 2019-03-24
CN201910224871.4A CN110964191B (zh) 2018-09-29 2019-03-24 一种混合酸改性的锌钴双金属氰化物催化剂及其制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/215,868 Continuation US20210213431A1 (en) 2018-09-29 2021-03-29 Mixed-acid modified zinc-cobalt double metal cyanide catalyst and preparation method thereof

Publications (1)

Publication Number Publication Date
WO2020062816A1 true WO2020062816A1 (zh) 2020-04-02

Family

ID=69950936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/080505 WO2020062816A1 (zh) 2018-09-29 2019-03-29 一种混合酸改性的锌钴双金属氰化物催化剂及其制备方法

Country Status (1)

Country Link
WO (1) WO2020062816A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115124710A (zh) * 2022-07-25 2022-09-30 万华化学集团股份有限公司 一种高活性双金属氰化物催化剂及其制备方法和用途
CN115710164A (zh) * 2022-12-26 2023-02-24 常州大学 一种异壬醇聚氧乙烯醚的制备方法及其应用方法
CN116730401A (zh) * 2023-05-23 2023-09-12 杭州普力材料科技有限公司 一种从dmc催化剂污泥中高选择性吸附回收钴的方法

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1063984C (zh) 1993-11-23 2001-04-04 阿克奥化学技术公司 改进的双金属氰化物络合催化剂
CN1299300A (zh) 1998-05-05 2001-06-13 拜尔安特卫普有限公司 酸处理双金属氰化物络合催化剂
CN1360608A (zh) * 1999-07-09 2002-07-24 陶氏化学公司 采用多元羧酸制备金属氰化物催化剂的方法
CN1116336C (zh) 1997-09-17 2003-07-30 阿科化学技术公司 双金属氰化物催化甘油的直接聚烷氧基化
CN1500554A (zh) * 2002-11-13 2004-06-02 中国石油化工股份有限公司 双金属氰化物催化剂
CN1589966A (zh) 2003-09-05 2005-03-09 中国石化集团天津石油化工公司 用酸处理金属盐制备双金属氰化物催化剂
CN1670007A (zh) 2004-03-19 2005-09-21 拜尔材料科学有限责任公司 在双金属氰化物催化工艺中起始物进料流的酸化
CN1289194C (zh) 2001-08-31 2006-12-13 拜尔材料科学股份公司 用于制备聚醚多元醇的双金属氰化物催化剂
CN101003622A (zh) 2007-01-18 2007-07-25 浙江大学 一种负载型双金属氰化络合物催化剂及其制备方法和应用
CN101108896A (zh) 2006-07-20 2008-01-23 拜尔材料科学有限公司 耐高含水量的聚醚生产方法
CN100484984C (zh) 2007-02-12 2009-05-06 江苏中科金龙化工股份有限公司 双金属催化剂及其制备方法与用途
CN101831064A (zh) 2009-12-29 2010-09-15 中国科学院长春应用化学研究所 用于co2-环氧丙烷共聚合的双金属氰化物-稀土配合物复合催化剂
CN101928390A (zh) 2010-08-13 2010-12-29 浙江大学 一种金属氰化物配位催化剂及其制备方法和应用
WO2011160797A1 (en) 2010-06-23 2011-12-29 Basf Se Modified double metal cyanide catalysts, process for the preparation by treatment of crystalline dmc catalyst with bronsted acid and use thereof
CN102580780A (zh) 2011-12-19 2012-07-18 浙江大学 一种双组分双金属催化剂的合成方法及应用
CN104987502A (zh) 2015-07-24 2015-10-21 中国科学院长春应用化学研究所 共沉淀型双金属氰化物催化剂、其制备方法及其应用
CN107200837A (zh) 2016-03-18 2017-09-26 淮安巴德聚氨酯科技有限公司 一种利用dmc催化剂循环制备聚醚多元醇的方法

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1063984C (zh) 1993-11-23 2001-04-04 阿克奥化学技术公司 改进的双金属氰化物络合催化剂
CN1116336C (zh) 1997-09-17 2003-07-30 阿科化学技术公司 双金属氰化物催化甘油的直接聚烷氧基化
CN1299300A (zh) 1998-05-05 2001-06-13 拜尔安特卫普有限公司 酸处理双金属氰化物络合催化剂
CN1360608A (zh) * 1999-07-09 2002-07-24 陶氏化学公司 采用多元羧酸制备金属氰化物催化剂的方法
CN1289194C (zh) 2001-08-31 2006-12-13 拜尔材料科学股份公司 用于制备聚醚多元醇的双金属氰化物催化剂
CN1500554A (zh) * 2002-11-13 2004-06-02 中国石油化工股份有限公司 双金属氰化物催化剂
CN1589966A (zh) 2003-09-05 2005-03-09 中国石化集团天津石油化工公司 用酸处理金属盐制备双金属氰化物催化剂
US20100234647A1 (en) * 2004-03-19 2010-09-16 Bayer Materialscience Llc Starter feed stream acidification in dmc-catalyzed process
CN1670007A (zh) 2004-03-19 2005-09-21 拜尔材料科学有限责任公司 在双金属氰化物催化工艺中起始物进料流的酸化
CN101851329A (zh) 2004-03-19 2010-10-06 拜尔材料科学有限责任公司 在双金属氰化物催化工艺中起始物进料流的酸化
CN101108896A (zh) 2006-07-20 2008-01-23 拜尔材料科学有限公司 耐高含水量的聚醚生产方法
CN101003622A (zh) 2007-01-18 2007-07-25 浙江大学 一种负载型双金属氰化络合物催化剂及其制备方法和应用
CN100484984C (zh) 2007-02-12 2009-05-06 江苏中科金龙化工股份有限公司 双金属催化剂及其制备方法与用途
CN101831064A (zh) 2009-12-29 2010-09-15 中国科学院长春应用化学研究所 用于co2-环氧丙烷共聚合的双金属氰化物-稀土配合物复合催化剂
WO2011160797A1 (en) 2010-06-23 2011-12-29 Basf Se Modified double metal cyanide catalysts, process for the preparation by treatment of crystalline dmc catalyst with bronsted acid and use thereof
CN101928390A (zh) 2010-08-13 2010-12-29 浙江大学 一种金属氰化物配位催化剂及其制备方法和应用
CN102580780A (zh) 2011-12-19 2012-07-18 浙江大学 一种双组分双金属催化剂的合成方法及应用
CN104987502A (zh) 2015-07-24 2015-10-21 中国科学院长春应用化学研究所 共沉淀型双金属氰化物催化剂、其制备方法及其应用
CN107200837A (zh) 2016-03-18 2017-09-26 淮安巴德聚氨酯科技有限公司 一种利用dmc催化剂循环制备聚醚多元醇的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3858889A4 *
Z. LI ET AL., EUROPEAN POLYMER JOURNAL, vol. 47, 2011, pages 2152 - 2157

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115124710A (zh) * 2022-07-25 2022-09-30 万华化学集团股份有限公司 一种高活性双金属氰化物催化剂及其制备方法和用途
CN115124710B (zh) * 2022-07-25 2023-05-26 万华化学集团股份有限公司 一种高活性双金属氰化物催化剂及其制备方法和用途
CN115710164A (zh) * 2022-12-26 2023-02-24 常州大学 一种异壬醇聚氧乙烯醚的制备方法及其应用方法
CN116730401A (zh) * 2023-05-23 2023-09-12 杭州普力材料科技有限公司 一种从dmc催化剂污泥中高选择性吸附回收钴的方法
CN116730401B (zh) * 2023-05-23 2023-12-08 合肥普力先进材料科技有限公司 一种从dmc催化剂污泥中高选择性吸附回收钴的方法

Similar Documents

Publication Publication Date Title
CN110964191B (zh) 一种混合酸改性的锌钴双金属氰化物催化剂及其制备方法
WO2020062816A1 (zh) 一种混合酸改性的锌钴双金属氰化物催化剂及其制备方法
WO2012019405A1 (zh) 一种金属氰化物配位催化剂及其制备方法和应用
CN101081877B (zh) 聚合催化剂体系及其制备和使用方法
CN101440159B (zh) 脂肪族聚碳酸酯的合成方法
CN112390940B (zh) 一种聚酯合成用催化剂
CN110964192B (zh) 一种用于制备二氧化碳基聚碳酸酯的混合酸改性双金属氰化物催化剂及其制备方法
CN110204700B (zh) 一种高效制备聚对苯二甲酸丙二醇酯(ptt)的方法
JP2008540080A (ja) 複合金属シアン化物錯体触媒の製造法
CN106084197A (zh) 一种窄分布聚醚的制备方法
CN104530410A (zh) 一种高分子量不饱和聚醚大单体及其制备方法和应用
WO2023217161A1 (zh) 一种锌配位聚合物催化剂及其制备方法和应用
CN113072692B (zh) 一种用于聚酯合成的高分散性钛系催化剂制备方法
CN113101952B (zh) 一种Bi4O5I2/Bi5O7I复合光催化剂及其制备方法、应用
CN111087597A (zh) 高活性聚醚多元醇的制备方法
CN103183712B (zh) 一种双金属氰化物催化剂的制备方法
US9562134B2 (en) Catalyst for the production of polyols having lower amounts of high molecular weight tail
CN114874078B (zh) 一种高异构体含量丙二醇苯醚的合成方法
CN117986563B (zh) 一种聚醚合成用多孔型复合金属催化剂及其制备方法
CN111250099B (zh) 一种复合金属氧化物催化剂的制备方法及应用
KR101375507B1 (ko) 금속 산화물 담지 금속시안염 촉매, 그 제조 방법 및 이를 사용하는 폴리에테르 폴리올 제조방법
CN113200845A (zh) 一种用于聚碳酸亚丙酯生产的柱状结构戊二酸锌催化剂的制备方法
CN1151889C (zh) 醇盐法制备3-羟基丙醛加氢催化剂
CN118255817A (zh) 复合改性的双金属氰化络合物催化剂及其制备方法和应用
CN103894206B (zh) 高活性铜基催化剂、制备方法及其用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19865969

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019865969

Country of ref document: EP

Effective date: 20210429