WO2020059852A1 - 電気機器内の鉄心の励磁システム、電気機器内の鉄心の励磁方法、プログラムおよびインバータ電源の変調動作設定装置 - Google Patents

電気機器内の鉄心の励磁システム、電気機器内の鉄心の励磁方法、プログラムおよびインバータ電源の変調動作設定装置 Download PDF

Info

Publication number
WO2020059852A1
WO2020059852A1 PCT/JP2019/036953 JP2019036953W WO2020059852A1 WO 2020059852 A1 WO2020059852 A1 WO 2020059852A1 JP 2019036953 W JP2019036953 W JP 2019036953W WO 2020059852 A1 WO2020059852 A1 WO 2020059852A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron core
excitation signal
core
exciting
harmonics
Prior art date
Application number
PCT/JP2019/036953
Other languages
English (en)
French (fr)
Inventor
保郎 大杉
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to MX2021001104A priority Critical patent/MX2021001104A/es
Priority to RU2021101692A priority patent/RU2769676C1/ru
Priority to KR1020217002532A priority patent/KR102529816B1/ko
Priority to CA3103649A priority patent/CA3103649C/en
Priority to US17/256,067 priority patent/US11671049B2/en
Priority to BR112020025068-6A priority patent/BR112020025068A2/pt
Priority to JP2020549117A priority patent/JP6996640B2/ja
Priority to CN201980050654.6A priority patent/CN112514242B/zh
Priority to EP19861693.0A priority patent/EP3855614A4/en
Publication of WO2020059852A1 publication Critical patent/WO2020059852A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/085Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation wherein the PWM mode is adapted on the running conditions of the motor, e.g. the switching frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/12Measuring magnetic properties of articles or specimens of solids or fluids
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/327Means for protecting converters other than automatic disconnection against abnormal temperatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P31/00Arrangements for regulating or controlling electric motors not provided for in groups H02P1/00 - H02P5/00, H02P7/00 or H02P21/00 - H02P29/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0023Electronic aspects, e.g. circuits for stimulation, evaluation, control; Treating the measured signals; calibration
    • G01R33/0041Electronic aspects, e.g. circuits for stimulation, evaluation, control; Treating the measured signals; calibration using feed-back or modulation techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/12Measuring magnetic properties of articles or specimens of solids or fluids
    • G01R33/123Measuring loss due to hysteresis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/12Measuring magnetic properties of articles or specimens of solids or fluids
    • G01R33/14Measuring or plotting hysteresis curves
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to an excitation system for an iron core in an electric device, a method for exciting an iron core in an electric device, a program, and a modulation operation setting device for an inverter power supply.
  • an inverter power supply is used as a power supply device for driving a motor of a train, a hybrid car, a home appliance, or the like.
  • a reactor is used as a filter circuit of the inverter power supply.
  • the inverter power supply is configured using a switching circuit having a plurality of switching elements. When the switching element performs a switching operation or the like, the time waveform of the exciting current output from the inverter power supply becomes a waveform in which a harmonic is superimposed on a fundamental wave. For this reason, there is a possibility that the temperature of the electric device (iron core) increases and the efficiency of the electric device decreases.
  • Patent Literature 1 discloses a reactor core in which the ratio of iron loss when excited by a waveform including a harmonic component to iron loss when excited by a sine wave alone is less than 1.15. Further, Patent Document 2 discloses that a three-phase motor is driven by a sinusoidal current by superimposing a current having the same amplitude and opposite phase as a harmonic component of the exciting current when the three-phase motor is driven by the PWM inverter on the exciting current. It is disclosed that the iron loss can be reduced to 1.05 times that of the case of driving.
  • the present invention has been made in view of the above problems, and has as its object to reduce iron loss of an iron core that is excited using an inverter power supply.
  • An excitation system for an iron core in an electric device includes an electric device having an iron core, an inverter power supply that outputs an excitation signal including harmonics to the electric device to excite the iron core, and a modulation operation of the inverter power supply.
  • a modulation operation setting device for setting an iron core in an electric device, wherein the modulation operation setting device includes a hysteresis loop indicating a relationship between a magnetic flux density and a magnetic field strength of the iron core. It has a function as setting means for setting the modulation operation of the inverter power supply based on the relationship between the maximum value and the minimum value of the magnetic field strength, and the relationship between the maximum value and the minimum value of the magnetic field strength is determined by the inverter power supply.
  • the iron loss of the iron core when exciting the iron core with an excitation signal containing harmonics, the iron loss when exciting the iron core with the excitation signal excluding the harmonics Characterized in that than mental iron loss is adjusted relationships to be smaller.
  • An excitation system for an iron core in an electric device includes an electric device having an iron core, an inverter power supply that outputs an excitation signal including harmonics to the electric device to excite the iron core, and a modulation operation of the inverter power supply.
  • a modulation operation setting device for setting an iron core in an electric device, wherein the modulation operation setting device is configured to excite the iron core with an excitation signal including harmonics by the inverter power supply.
  • the modulation operation of the inverter power supply is set based on the relationship of the area of the closed region formed by Therefore, the iron loss of the iron core when exciting the iron core with an excitation signal containing harmonics is adjusted to be smaller than the iron loss of the iron core when exciting the iron core with the excitation signal excluding the harmonics. It is characterized in that the relationship is established.
  • An excitation system for an iron core in an electric device includes an electric device having an iron core, an inverter power supply that outputs an excitation signal including harmonics to the electric device to excite the iron core, and a modulation operation of the inverter power supply.
  • a modulation operation setting device for setting an iron core in an electric device, wherein the modulation operation setting device is configured to excite the iron core with an excitation signal including harmonics by the inverter power supply.
  • the modulation operation of the inverter power supply is set on the basis of the relationship, and the relationship is such that the iron core is excited by an excitation signal excluding the harmonics.
  • the relationship is such that the iron core is excited by an excitation signal excluding the harmonics.
  • the plurality of minor loops included in the hysteresis loop in the case of exciting the core with an excitation signal including harmonics by the inverter power supply At least one is a portion located on a side where the magnetic field strength is smaller than a hysteresis loop when exciting the core with the excitation signal excluding the harmonics, and the core is excited with the excitation signal excluding the harmonics.
  • the area of the closed region created by the hysteresis loop in the case where the magnetic field intensity is larger than the hysteresis loop in the case where the core is excited by the excitation signal excluding the harmonics With the hysteresis loop when exciting the iron core with the excitation signal excluding When the core loss is larger than the area of the closed region, and the iron core is excited by an excitation signal containing harmonics by the inverter power supply, the iron loss of the iron core is excited by the excitation signal excluding the harmonics. Wherein the relationship is adjusted so as to be smaller than the iron loss of the iron core.
  • An excitation system for an iron core in an electric device includes an electric device having an iron core, an inverter power supply that outputs an excitation signal including harmonics to the electric device to excite the iron core, and a modulation operation of the inverter power supply.
  • a modulation operation setting device for setting an iron core in an electric device, wherein the modulation operation setting device is configured to excite the iron core with an excitation signal including harmonics by the inverter power supply.
  • the modulation operation of the inverter power supply is set on the basis of the relationship, and the relationship is such that the iron core is excited by an excitation signal excluding the harmonics.
  • the relationship is such that the iron core is excited by an excitation signal excluding the harmonics.
  • the plurality of minor loops included in the hysteresis loop in the case of exciting the core with an excitation signal including harmonics by the inverter power supply At least one is a portion located on the side where the magnetic field strength is large with respect to a hysteresis loop when exciting the core with the excitation signal excluding the harmonics, and the core is excited with the excitation signal excluding the harmonics.
  • the area of the closed region formed by the hysteresis loop in the case where the magnetic field intensity is smaller than the hysteresis loop in the case where the iron core is excited by the excitation signal excluding the harmonics With the hysteresis loop when exciting the iron core with the excitation signal excluding When the core loss is larger than the area of the closed region, and the iron core is excited by an excitation signal containing harmonics by the inverter power supply, the iron loss of the iron core is excited by the excitation signal excluding the harmonics. Wherein the relationship is adjusted so as to be smaller than the iron loss of the iron core.
  • the method of exciting an iron core in an electric device of the present invention is a method of exciting an iron core in an electric device related to an inverter power supply that outputs an excitation signal including harmonics to the electric device to excite the iron core of the electric device,
  • the method of exciting the iron core in the electric device is based on the relationship between the maximum value and the minimum value of the magnetic field strength in the minor loop of the hysteresis loop indicating the relationship between the magnetic flux density of the core and the magnetic field strength.
  • a characteristic is that the relationship is adjusted so as to be smaller than the iron loss of the iron core when the iron core is excited by the excitation signal excluding the harmonics.
  • the method of exciting an iron core in an electric device of the present invention is a method of exciting an iron core in an electric device related to an inverter power supply that outputs an excitation signal including harmonics to the electric device to excite the iron core of the electric device,
  • the method of exciting the iron core in the electric device includes a minor loop of a hysteresis loop of a magnetic field strength and a magnetic flux density generated in the iron core when the iron core is excited by an excitation signal including harmonics by the inverter power supply,
  • the modulation operation of the inverter power supply is performed based on a relationship between an area of a closed region formed by a hysteresis loop of a magnetic field intensity and a magnetic flux density generated in the core when exciting the core with an excitation signal excluding harmonics.
  • the relationship is such that the iron loss of the iron core when the iron core is excited by an excitation signal containing harmonics by the inverter power supply is high. Characterized in that said core relationship is adjusted to be smaller than the iron loss in the case of exciting the iron core by the excitation signal excluding the waves.
  • the method of exciting an iron core in an electric device of the present invention is a method of exciting an iron core in an electric device related to an inverter power supply that outputs an excitation signal including harmonics to the electric device to excite the iron core of the electric device
  • the method of exciting the iron core in the electric device includes a minor loop of a hysteresis loop of a magnetic field strength and a magnetic flux density generated in the iron core when the iron core is excited by an excitation signal including harmonics by the inverter power supply,
  • a setting step of setting a modulation operation of the inverter power supply based on a relationship between a magnetic field strength when exciting the core with an excitation signal excluding harmonics and a hysteresis loop of a magnetic flux density generated in the core.
  • the relationship is defined as a region where the magnetic flux density of the hysteresis loop increases when the iron core is excited by an excitation signal excluding the harmonics.
  • the excitation signal excluding the harmonics In at least a part of, at least one of a plurality of minor loops included in a hysteresis loop when exciting the iron core with an excitation signal containing harmonics by the inverter power supply, the excitation signal excluding the harmonics, The area of the closed region created by the portion where the magnetic field strength is smaller than the hysteresis loop when exciting the iron core and the hysteresis loop when exciting the iron core with the excitation signal excluding the harmonics, A portion where the magnetic field strength is higher than the hysteresis loop when the core is excited by the excitation signal excluding the harmonic, and a hysteresis loop when the core is excited by the excitation signal excluding the harmonic.
  • the method of exciting an iron core in an electric device of the present invention is a method of exciting an iron core in an electric device related to an inverter power supply that outputs an excitation signal including harmonics to the electric device to excite the iron core of the electric device
  • the method of exciting the iron core in the electric device includes a minor loop of a hysteresis loop of a magnetic field strength and a magnetic flux density generated in the iron core when the iron core is excited by an excitation signal including harmonics by the inverter power supply,
  • a setting step of setting a modulation operation of the inverter power supply based on a relationship between a magnetic field strength when exciting the core with an excitation signal excluding harmonics and a hysteresis loop of a magnetic flux density generated in the core.
  • the relationship is defined as a region where the magnetic flux density of the hysteresis loop decreases when the iron core is excited by an excitation signal excluding the harmonics.
  • the excitation signal excluding the harmonics In at least a part of, at least one of a plurality of minor loops included in a hysteresis loop when exciting the iron core with an excitation signal containing harmonics by the inverter power supply, the excitation signal excluding the harmonics, The area of the closed region formed by the portion located on the side where the magnetic field strength is large with respect to the hysteresis loop when exciting the iron core and the hysteresis loop when exciting the iron core with the excitation signal excluding the harmonics, A portion where the magnetic field strength is smaller than a hysteresis loop when the core is excited by the excitation signal excluding the harmonic, and a hysteresis loop when the core is excited by the excitation signal excluding the harmonic.
  • a program according to the present invention causes a computer to function as each means of an excitation system for an iron core in the electric device.
  • a modulation operation setting device for an inverter power supply is a modulation operation setting device for an inverter power supply that outputs an excitation signal including harmonics to the electric device to excite an iron core of the electric device.
  • the operation setting device sets a modulation operation of the inverter power supply based on a relationship between a maximum value and a minimum value of the magnetic field strength in a minor loop of a hysteresis loop indicating a relationship between the magnetic flux density of the iron core and the magnetic field strength,
  • the relationship between the maximum value and the minimum value of the magnetic field strength is such that the iron loss of the iron core when exciting the iron core with an excitation signal containing harmonics by the inverter power supply is the same as the core signal with the excitation signal excluding the harmonics. Characterized in that the relationship is adjusted so as to be smaller than the iron loss of the iron core when exciting the iron core.
  • a modulation operation setting device for an inverter power supply is a modulation operation setting device for an inverter power supply that outputs an excitation signal including harmonics to the electric device to excite an iron core of the electric device.
  • the operation setting device includes a minor loop of a hysteresis loop of a magnetic field intensity and a magnetic flux density generated in the iron core when exciting the iron core with an excitation signal including harmonics by the inverter power supply, and an excitation excluding the harmonics.
  • a modulation operation of the inverter power supply is set based on a relationship between a magnetic field strength when exciting the iron core with a signal and a hysteresis loop of a magnetic flux density generated in the iron core and an area of a closed region.
  • the iron loss of the iron core when exciting the iron core with an excitation signal containing harmonics by the inverter power supply Characterized in that said core relationship is adjusted to be smaller than the iron loss in the case of exciting the iron core by the excitation signals except.
  • a modulation operation setting device for an inverter power supply is a modulation operation setting device for an inverter power supply that outputs an excitation signal including harmonics to the electric device to excite an iron core of the electric device.
  • the operation setting device includes a minor loop of a hysteresis loop of a magnetic field intensity and a magnetic flux density generated in the iron core when exciting the iron core with an excitation signal including harmonics by the inverter power supply, and an excitation excluding the harmonics.
  • a modulation operation of the inverter power supply is set based on a relationship between a magnetic field intensity when exciting the core with a signal and a hysteresis loop of a magnetic flux density generated in the core, and the relationship excludes the harmonics.
  • at least one of a plurality of minor loops included in a hysteresis loop when the core is excited by an excitation signal including harmonics by the inverter power supply excites the core with an excitation signal excluding the harmonics.
  • the area of the closed region formed by the portion located on the side where the magnetic field strength is small with respect to the hysteresis loop in the case and the hysteresis loop in the case where the core is excited by the excitation signal excluding the harmonics is the harmonics.
  • the iron loss of the iron core when exciting the iron core is a relationship adjusted so as to be smaller than the iron loss of the iron core when exciting the iron core with the excitation signal excluding the harmonics. I do.
  • a modulation operation setting device for an inverter power supply is a modulation operation setting device for an inverter power supply that outputs an excitation signal including harmonics to the electric device to excite an iron core of the electric device.
  • the operation setting device includes a minor loop of a hysteresis loop of a magnetic field intensity and a magnetic flux density generated in the iron core when exciting the iron core with an excitation signal including harmonics by the inverter power supply, and an excitation excluding the harmonics.
  • a modulation operation of the inverter power supply is set based on a relationship between a magnetic field intensity when exciting the core with a signal and a hysteresis loop of a magnetic flux density generated in the core, and the relationship excludes the harmonics.
  • the area of the closed region formed by the portion located on the side where the magnetic field strength is large with respect to the hysteresis loop in the case and the hysteresis loop in the case where the core is excited by the excitation signal excluding the harmonics is the harmonics.
  • the hysteresis loop is formed by a portion located on the side where the magnetic field strength is small with respect to the hysteresis loop when the core is excited by the removed excitation signal, and a hysteresis loop when the core is excited by the excitation signal from which the harmonic is removed.
  • the area becomes larger than the area of the closed region, and the excitation power including the harmonics is increased by the inverter power supply.
  • the iron loss of the iron core when exciting the iron core is a relationship adjusted so as to be smaller than the iron loss of the iron core when exciting the iron core with the excitation signal excluding the harmonics. I do.
  • FIG. 4 is a diagram illustrating an example of an operation of a PWM inverter. It is a figure which shows the 1st example of the hysteresis loop of the iron core when exciting by a sine wave, and the hysteresis loop of the iron core when exciting by a harmonic.
  • FIG. 3 is a diagram in which two hysteresis loops shown in FIG. 2 are overlapped.
  • FIG. 3 is a diagram showing a time waveform of a magnetic flux density when the hysteresis loop shown in FIG. 2 is obtained.
  • FIG. 6 is a diagram showing two hysteresis loops shown in FIG. 5 in an overlapping manner.
  • FIG. 7 is an enlarged view showing regions A (and I), B, and C in FIG. 6.
  • FIG. 7 is an enlarged view of areas D, E, and F in FIG. 6.
  • FIG. 7 is an enlarged view of a region G, H in FIG. 6.
  • FIG. 6 is a diagram showing a time waveform of a magnetic flux density when the hysteresis loop shown in FIG. 5 is obtained.
  • FIG. 10 is a diagram showing a time change of the integrated value of the small area HdB in the hysteresis loop shown in FIGS. It is a figure which shows an example of the relationship between the relative magnetic permeability of the soft magnetic body board (magnetic steel plate) which comprises an iron core, and magnetic field intensity.
  • FIG. 4 is a diagram illustrating an example of a relationship between a carrier frequency and a modulation rate and an iron loss ratio. It is a figure showing an example of composition of an excitation system of an iron core in electric equipment.
  • 5 is a flowchart illustrating an example of an operation of an excitation system for an iron core in an electric device.
  • FIG. 1 is a diagram illustrating an example of the operation of the PWM inverter.
  • FIG. 1 shows a time waveform of a fundamental wave, a carrier wave (carrier wave), and an output voltage.
  • the upper part shows the waveforms of the fundamental wave and the carrier wave
  • the lower part shows the waveform of the output voltage.
  • the fundamental wave 101a the amplitude of 101b and E 0, the amplitude of the carrier wave 102 (and the output voltage 103) and E c.
  • the amplitude E 0 of the fundamental waves 101a and 101b corresponds to the peak value of the voltage applied to the electric device
  • the amplitude E c of the carrier wave 102 corresponds to the peak value of the output voltage of the inverter.
  • the output voltage 103 of the PWM inverter, the carrier wave 102, the fundamental wave 101a, in accordance with the magnitude relationship between 101b, the value is a pulse signal which becomes E c or 0 (zero).
  • the modulation factor m of the PWM inverter is represented by E 0 ⁇ E c .
  • the operation method of the PWM inverter is not limited to the method shown in FIG. 1, but may be another known method such as a multi-level method.
  • the iron loss W [W / kg] of the iron core is obtained from the area surrounded by a hysteresis loop of the magnetic field strength H [A / m] and the magnetic flux density B [T] generated in the iron core. Specifically, the iron loss W of the iron core is obtained as in the following equation (1).
  • is the density [kg / m 3 ]
  • f is the excitation frequency [Hz]
  • V is the core volume [m 3 ].
  • the present inventors have focused on the fact that if the area of the hysteresis loop can be reduced, iron loss can be reduced.
  • the magnetic field strength H may be reduced without changing the magnetic flux density B.
  • the present inventor proposes that the same core is excited by an excitation signal whose time waveform is a sine wave that does not include harmonics, and that the time waveform is a waveform in which a harmonic is superimposed on the sine wave.
  • the respective hysteresis loops with and without the signal excitation were investigated. The results are shown in FIGS.
  • a sine wave whose time waveform does not include a harmonic is referred to as a sine wave as necessary
  • a waveform obtained by superimposing a harmonic on the sine wave is referred to as a harmonic as necessary.
  • FIG. 2 is a diagram showing an example of a core hysteresis loop when excited by a sine wave (FIG. 2A) and an example of a core hysteresis loop when excited by a harmonic (FIG. 2B).
  • FIG. 3 is a diagram in which the hysteresis loop of the iron core when excited by the sine wave shown in FIG. 2A and the hysteresis loop of the iron core when excited by harmonics shown in FIG. is there.
  • FIG. 3A shows the entire hysteresis loop
  • FIG. 3B shows an enlarged part of FIG. 3A.
  • the hysteresis loop of the iron core when excited by harmonics has a minor loop that oscillates in a short cycle as shown in FIG.
  • the minor loop in the hysteresis loop in the case of excitation by harmonics is defined as a starting point at the intersection with the hysteresis loop in the case of excitation by a sine wave when the magnetic field strength H changes with time in a direction of increasing.
  • the range up to the point where the hysteresis loop intersects with the sine wave when the magnetic field strength H changes with time in the increasing direction is defined as one minor loop. Therefore, on the scales shown in FIGS.
  • FIG. 2 shows the result when the modulation factor m of the PWM inverter is 0.2 and the carrier frequency (frequency of the carrier wave) is 100 [kHz].
  • a part of the hysteresis loop HL when exciting the iron core with the excitation signal from which the harmonics have been removed is indicated by a “sine wave”, and the excitation signal including the harmonics
  • a part of the hysteresis loop when the iron core is excited by is indicated by “harmonics (reference example)”.
  • the hysteresis loop when exciting the iron core with an excitation signal containing harmonics includes a plurality of minor loops.
  • One minor loop M among a plurality of minor loops included in FIG. 3B has the point M1 as a start point and the point M5 as an end point.
  • the point M1 is an intersection with the hysteresis loop HL when the core is excited by the excitation signal excluding harmonics when the magnetic field strength H changes with time (to the right in FIG. 3B). is there.
  • the maximum value of the magnetic field strength H in the minor loop M corresponds to the magnetic field strength H at a point M2 on the minor loop M.
  • a point M3 on the minor loop M is a hysteresis in the case where the core is excited by an excitation signal excluding harmonics when the magnetic field strength H changes with time (to the left in FIG. 3B). This is the intersection with the loop HL.
  • the minimum value of the magnetic field strength H in the minor loop M corresponds to the magnetic field strength H at a point M4 on the minor loop M.
  • the point M5 on the minor loop M corresponds to the end point of the minor loop M.
  • the point M5 corresponds to a start point of a minor loop adjacent to the minor loop M (a minor loop located above the minor loop M in FIG.
  • a minor loop as shown in FIG. 3B occurs in the hysteresis loop of the iron core when excited by harmonics.
  • of the maximum value Hmax of the magnetic field strength H in the minor loop exceeds the absolute value
  • the maximum value Hmax of the magnetic field strength H in the minor loop is the maximum value of the magnetic field strength H in one minor loop.
  • the minimum value Hmin of the magnetic field strength H in the minor loop is the minimum value of the magnetic field strength H in one minor loop.
  • the iron loss of the iron core when excited by a sine wave and the iron loss of the iron core when excited by a harmonic are 10.84 [W / kg], respectively. It was 88 [W / kg].
  • FIG. 4 is a diagram showing a time waveform of the magnetic flux density B when the hysteresis loops shown in FIGS. 2 and 3 are obtained.
  • the time on the horizontal axis in FIG. 4 is the time when the reference time is set to 0 (that is, the value on the horizontal axis in FIG. 4 is the same as the elapsed time from time 0). This is the same in FIGS. 10 and 11 described later.
  • the waveform rate of the time waveform 401 of the magnetic flux density B when excited by the sine wave and the waveform rate of the time waveform 402 of the magnetic flux density B when excited by the harmonic are 1.1108 and 1.1155, respectively.
  • the inventor can reduce the area of the hysteresis loop and reduce iron loss of the iron core. I thought that I could do it. Therefore, in the region shown in FIG. 3B, the absolute value
  • the modulation factor m and the carrier frequency of the PWM inverter were adjusted so as to exceed
  • FIG. 5 is a diagram showing an example of a core hysteresis loop when excited by a sine wave (FIG. 5A) and an example of a core hysteresis loop when excited by a harmonic (FIG. 5B).
  • FIG. 6 is a diagram in which the hysteresis loop of the iron core when excited by the sine wave shown in FIG. 5A and the hysteresis loop of the iron core when excited by the harmonic shown in FIG. is there.
  • FIG. 6 shows the entire hysteresis loop.
  • 7 to 9 are views showing a part of FIG. 6 in an enlarged manner. Specifically, FIGS.
  • the region shown in FIG. 3B corresponds to the region (region C) shown in FIG. 7C.
  • the third minor loop MA from the top (M1 to M2 to M3 to M4 to M5) and the second minor loop MB from the top (M5 to M5) M6 to M7 to M8 to M9) it was possible to make the absolute value
  • is referred to as a “first minor loop” in claim 2.
  • the third minor loop MA from the top (M1 to M2 to M3 to M4 to M5) and the second minor loop MB from the top (M5 to M6 to M7 to M8 to M9) are respectively This corresponds to the “first minor loop” of claim 2.
  • the excitation signal including the harmonic by the inverter power supply is included in the hysteresis loop (the hysteresis loop shown by “Harmonics (Example)” in FIG.
  • the minimum value of the magnetic field strength H in the minor loop MA that is, The absolute value [Hmin] of the difference between the value of the magnetic field strength H at the point M4 and the value of the magnetic field strength H at the reference point M1 is equal to the value of the magnetic field strength H at the minor loop MA.
  • Daine i.e., the value of the magnetic field intensity H at the point M2 on the minor loop MA
  • a minor loop adjusted so as to satisfy the relationship of [Hmin]> [Hmax] is referred to as a “third minor loop” in claim 5.
  • the reference point (the start point of the third minor loop) is defined as the “first reference point” in claim 5.
  • the minor loop MA (M1 to M2 to M3 to M4 to M5) corresponds to the "third minor loop” of claim 5
  • the point M1 corresponds to the minor loop MA. This corresponds to a “first reference point”.
  • the magnetic field intensity H in the minor loop MB is The absolute value [Hmin] of the difference between the minimum value (that is, the value of the magnetic field strength H at the point M8 on the minor loop MB) and the value of the magnetic field strength H at the reference point M5 is the maximum value of the magnetic field strength H at the minor loop MB.
  • the minor loop MB (M5 to M6 to M7 to M8 to M9) corresponds to the "third minor loop” in claim 5, and the point M5 corresponds to the "first reference point” in claim 5 corresponding to the minor loop MB. Equivalent to. Only one minor loop or a plurality of minor loops corresponding to the “third minor loop” may exist in at least a part of the region where the magnetic flux density B of the hysteresis loop increases.
  • the reference point corresponding to the “first reference point” corresponds to the number of “third minor loops”, and even if only one reference point exists in at least a part of the region where the magnetic flux density B of the hysteresis loop increases. , There may be more than one.
  • the point M1 is a “first reference point” corresponding to the minor loop MB (third minor loop) as the “first reference point” corresponding to the minor loop MA (third minor loop).
  • and [Hmin]> [Hmax] may be satisfied simultaneously in one minor loop.
  • the “first minor loop” and the “third minor loop” can be the same minor loop.
  • and [Hmin]> [Hmax] are all satisfied.
  • a hysteresis loop when the iron core is excited by an excitation signal including harmonics by the inverter power supply (a hysteresis loop indicated by “harmonics (example)” in FIG. 7C).
  • a hysteresis loop HL (FIG.
  • the core is also given a sine wave excitation signal containing no harmonic.
  • the hysteresis loop HL (the hysteresis loop indicated by “sine wave” in FIG. 7 (c)) when exciting the magnetic field, and the portion located on the side where the magnetic field strength is small (left side in FIG. 7 (c)).
  • the area S3 of the closed regions M7 to M8 to M9 to M7 formed by the HL and the HL has a larger magnetic field strength with respect to the hysteresis loop HL (the hysteresis loop indicated by “sine wave” in FIG. 7C) (FIG. 7).
  • (C) is larger than the area S4 of the closed regions M5 to M6 to M7 to M5 formed by the portion located on the right side of (c) and the hysteresis loop HL.
  • the excitation signal including the harmonics is supplied by the inverter power supply.
  • the minimum value of the magnetic field strength H in the minor loop MA that is, The absolute value [Hmin] of the difference between the value of the magnetic field strength H at the point M4) and the value of the magnetic field strength H at the reference point M1 is the magnetic field strength in the minor loop MA.
  • the maximum value of H (that is, the value of the magnetic field intensity H at the point M2 on the minor loop MA) and satisfies the absolute value [Hmax]
  • H the maximum value of H at the reference point M1.
  • the minor loop MA (M1 to M2 to M3 to M4 to M5) corresponds to the “third minor loop” in claim 5
  • the point M1 corresponds to the “first reference” in claim 5.
  • Point " Assuming that the starting point M5 (intersection with the hysteresis loop HL) of the third minor loop MB (M5 to M6 to M7 to M8 to M9) from the bottom in FIG.
  • the absolute value [Hmin] of the difference between the minimum value (that is, the value of the magnetic field strength H at the point M8 on the minor loop MB) and the value of the magnetic field strength H at the reference point M5 is the maximum value of the magnetic field strength H at the minor loop MB.
  • the value (ie, the value of the magnetic field strength H at the point M6 on the minor loop MB) and the value of the magnetic field strength H at the reference point M5 satisfy a relationship that exceeds the absolute value [Hmax].
  • the minor loop MB (M5 to M6 to M7 to M8 to M9) corresponds to the "third minor loop" in claim 5, and the point M5 corresponds to the "first reference point” in claim 5 corresponding to the minor loop MB. Equivalent to.
  • a plurality of minor loops corresponding to the “first minor loop” exist in a region where the magnetic flux density B of the hysteresis loop increases. Even if there is only one minor loop corresponding to "" in the region where the magnetic flux density B of the hysteresis loop increases, the core loss of the iron core can be reduced. In the example shown in FIG. 7C and FIG.
  • a plurality of minor loops corresponding to the “third minor loop” exist in a region where the magnetic flux density B of the hysteresis loop increases, and the “first reference point” Are present in the region where the magnetic flux density B of the hysteresis loop increases, but only one minor loop corresponding to the “third minor loop” exists in the region where the magnetic flux density B of the hysteresis loop increases. Even in the case of performing iron core loss, the core loss of the iron core can be reduced. In this case, only one point corresponding to the “first reference point” exists in the region where the magnetic flux density B of the hysteresis loop increases.
  • a hysteresis loop in a case where the iron core is excited by an excitation signal including harmonics by the inverter power supply (a hysteresis loop shown by “harmonics (example)” in FIG. 8A)) 8A, a hysteresis loop HL (FIG. 8) in which the core is excited by a sine wave excitation signal that does not include harmonics in the second minor loop MA from the bottom in FIG.
  • a closed region M3 to M4 to be formed by a portion located on the side where the magnetic field strength is small (left side in FIG. 8A) and the hysteresis loop HL.
  • the area S1 of M5 to M3 is on the side where the magnetic field strength is larger (the right side of FIG. 8A) with respect to the hysteresis loop HL (the hysteresis loop indicated by “sine wave” in FIG. 8A). Larger than the area S2 of the closed region M1 ⁇ M2 ⁇ M3 ⁇ M1 made by the location part and the hysteresis loop HL.
  • the core is not supplied with the sine wave excitation signal containing no harmonic.
  • the hysteresis loop HL (the "hysteresis loop indicated by the" sine wave “in FIG. 8A)" when exciting the magnetic field, and the portion located on the side where the magnetic field strength is small (left side in FIG. 8A).
  • the area S3 of the closed regions M7 to M8 to M9 to M7 formed by the HL and the HL is on the side where the magnetic field strength is larger than the hysteresis loop HL (the hysteresis loop indicated by “sine wave” in FIG. 8A) (FIG. 8).
  • the right side of (a)) is larger than the area S4 of the closed regions M5 to M6 to M7 to M5 formed by the hysteresis loop HL.
  • the iron loss of the iron core when excited by a sine wave and the iron loss of the iron core when excited by a harmonic are 10.84 [W], respectively. / Kg] and 5.47 [W / kg].
  • the relationship between the maximum value Hmax and the minimum value Hmin of the magnetic field strength H in the minor loop is adjusted, or included in the hysteresis loop indicated by “Harmonics (Example)” in FIG.
  • the absolute value [Hmin] of the difference between the minimum value of the magnetic field strength H in the minor loop and the value of the magnetic field strength at the reference point M1, and the maximum value of the magnetic field strength H in the minor loop and the value of the magnetic field strength at the reference point M1 By adjusting the relationship between the absolute value of the difference [Hmax] and the minor loop included in the hysteresis loop indicated by “Harmonics (Example)” in FIG. ) To adjust the relationship between the areas S1 and S3 of the portion located inside the hysteresis loop and the areas S2 and S4 of the portion located outside the hysteresis loop indicated by a “sine wave”. In the iron loss of the core in the case of excitation, it is found that can be smaller than the iron loss of the iron core when excited by a sine wave.
  • FIG. 10 is a diagram showing a time waveform of the magnetic flux density B when the hysteresis loops shown in FIGS. 5 to 9 are obtained.
  • Times A to I shown in FIG. 10 respectively correspond to regions A to I shown in FIG. 6 (for example, changes in magnetic flux density B and magnetic field strength H near time A shown in FIG. A (as shown in FIG. 7A)).
  • the waveform rate of the time waveform 1001 of the magnetic flux density B when excited by the sine wave and the waveform rate of the time waveform 1002 of the magnetic flux density B when excited by the harmonic are 1.1108 and 1.1154, respectively. Are approximately the same.
  • the magnetic field strength H can be reduced without largely changing the effective value (ie, magnetic energy) of the magnetic flux density in the iron core. This indicates that the iron loss of the iron core can be made smaller than when the iron core is excited by a sine wave.
  • FIG. 11 is a diagram showing a time change of the integrated value of the small area HdB in the hysteresis loops shown in FIGS. 2 and 5 to 9.
  • the small area HdB is a product of the value of the magnetic field strength H and the variation dB of the magnetic flux density B per unit time.
  • regions A, B, C, D, and E in FIG. 6 see the arrow line 501 in FIG.
  • the small area HdB is plotted on the horizontal axis (magnetic field).
  • this is the area of the strip-shaped area surrounded by the hysteresis loop of the area and the vertical axis (the axis of the magnetic flux density B).
  • the variation dB of the magnetic flux density B per unit time is a positive value.
  • regions E, F, G, H, and I in FIG. 6 see an arrow line 502 in FIG.
  • the small area HdB is plotted on the horizontal axis (magnetic field intensity H Is the area of a strip-shaped region surrounded by the hysteresis loop of the region and the vertical axis (the axis of the magnetic flux density B) when the hysteresis loop is cut in parallel with the axis.
  • H I magnetic field intensity
  • H I the area of a strip-shaped region surrounded by the hysteresis loop of the region
  • the vertical axis the axis of the magnetic flux density B
  • times A to I shown in FIG. 11 correspond to regions A to I shown in FIG. 6, respectively.
  • HdB from time A to time I is integrated, an integrated value of the minute area HdB for one round of the hysteresis loop is obtained. Therefore, the iron loss value can be calculated from the integrated value of the minute area HdB at the time I by using the density, the frequency, and the volume of the iron core based on the equation (1).
  • a graph 1101 shows the integrated value of the minute region HdB when the iron core is excited by the sine wave.
  • a graph 1102 shows the integrated value of the small area HdB when the iron core is excited by the harmonics in which the magnetic flux density B and the magnetic field strength H change like the hysteresis loop shown in FIGS. Show.
  • a graph 1103 shows the integrated value of the small area HdB when the iron core is excited by the harmonics in which the magnetic flux density B and the magnetic field strength H change like the hysteresis loop shown in FIGS. Show.
  • of the minimum value Hmin of the magnetic field strength H in a part of the minor loop in the region C is the magnetic field strength H in the case where the iron core is excited by a sine wave.
  • of the maximum value Hmax is smaller than the absolute value
  • of the minimum value Hmin of the magnetic field strength H in a part of the minor loop in the region C is the absolute value
  • of the minimum value Hmin of the magnetic field strength H in the minor loop is the maximum value of the magnetic field strength H in the minor loop. If the PWM inverter is operated so as to exceed the absolute value
  • the first operation may be performed on at least one minor loop in at least a part of the region where the magnetic flux density B increases in the hysteresis loop, and the core loss of the iron core can be reduced.
  • the region where the magnetic flux density B increases in the hysteresis loop and the region where the magnetic flux density B decreases in the hysteresis loop are only reversed in the relationship between the increase and decrease of the magnetic flux density B and the magnetic field strength H.
  • the regions F, G, and H in FIG. 6 regions in which the magnetic flux density of the hysteresis loop is reduced when the core is excited by the excitation signal excluding the harmonic
  • the case where the core is excited by the excitation signal including the harmonic is used.
  • the starting point of the minor loop of the hysteresis loop is when the core is excited by an excitation signal excluding harmonics when the magnetic field strength H of the minor loop is changing with time (for example, leftward in FIG. 9). This is the intersection with the hysteresis loop. Therefore, what has been described with reference to FIGS. 5 to 11 also applies to a region where the magnetic flux density B decreases in the hysteresis loop. That is, in at least a part (part or all) of the region where the magnetic flux density B is reduced in the hysteresis loop, the maximum value Hmax of the magnetic field strength H in the minor loop (corresponding to the "second minor loop" in claim 3).
  • the iron core will be sinusoidal. Of the iron core can be reduced as compared with the case of exciting the PWM inverter (in the following description, operating the PWM inverter in this manner is referred to as a second operation as necessary). Only one minor loop or a plurality of minor loops corresponding to the “second minor loop” may exist in the region where the magnetic flux density B of the hysteresis loop is reduced. That is, in the example shown in FIG. 6 (regions F, G, and H) and FIGS.
  • the above-described second operation of the PWM inverter is not realized, but the second operation of the PWM inverter is not realized.
  • the iron core is excited by the excitation signal containing harmonics by the inverter power supply by realizing the operation of the above, the iron loss of the core is excited by the excitation signal (sine wave excitation signal) excluding the harmonics. Iron loss of the iron core can be reduced.
  • a plurality of hysteresis loops included in a case where an iron core is excited by an excitation signal including harmonics by an inverter power supply are used.
  • the absolute value [Hmax] of the difference between the maximum value of the magnetic field strength H in each of the minor loops and the value of the magnetic field strength H at the reference point (the starting point of the minor loop) is equal to the minimum value of the magnetic field strength H in the minor loop M. Do not satisfy the relation exceeding the absolute value [Hmin] of the difference from the value of the magnetic field strength H at the reference point (the start point of the minor loop).
  • the maximum value of the magnetic field strength H in each of a plurality of minor loops (corresponding to the “fourth minor loop”) included in a hysteresis loop when an iron core is excited by an excitation signal containing harmonics by an inverter power supply.
  • the absolute value [Hmax] of the difference between the magnetic field intensity H at the reference point (the start point of the minor loop) (corresponding to the “second reference point” in claim 6) is the magnetic field intensity at the minor loop M.
  • the iron loss of the iron core when exciting the iron core with the excitation signal containing harmonics by the power supply is smaller than the iron loss of the iron core when exciting the iron core with the excitation signal (sine wave excitation signal) excluding harmonics.
  • Rukoto can. Only one minor loop or a plurality of minor loops corresponding to the “fourth minor loop” may be present in at least a part of the region where the magnetic flux density B of the hysteresis loop is reduced.
  • the reference point corresponding to the “second reference point” corresponds to the number of “fourth minor loops”, and even if only one reference point exists in at least a part of the region where the magnetic flux density B of the hysteresis loop decreases. , There may be more than one. Also, the relationship of
  • FIG. 6 regions F, G, and H
  • FIGS. 8C to 9B an example in which the magnetic flux density of the hysteresis loop is reduced
  • it is indicated by “harmonics (Example)”.
  • the position is located inside the hysteresis loop indicated by “sine wave” in FIGS. 8C to 9B (right side in FIGS. 8C to 9B).
  • the area of the portion (closed region) that is located is not larger than the area of the portion (closed region) located outside (the left side in FIGS. 8C to 9B).
  • the sine wave is indicated by FIGS. 8C to 9B.
  • the area of the portion (closed region) located inside (the right side of FIGS. 8C to 9B) of the hysteresis loop is located outside (the left side of FIGS. 8C to 9B).
  • an excitation signal that is, a sine wave excitation signal
  • a region where the absolute value of the magnetic field strength H of the iron core is 100 [A / m] or less (in the example shown in FIG. 6, a region C (a region shown in FIG. 7C)) and a region G (a region shown in FIG. 9A). In the region)), it is preferable to execute the first operation or the second operation on the PWM inverter.
  • a region where the absolute value of the magnetic field strength H is 100 [A / m] or less (the region C (the region shown in FIG.
  • of the minimum value Hmin of the magnetic field strength H in one or more minor loops is equal to the maximum value Hmax of the magnetic field strength H in the minor loop.
  • of the minimum value Hmin of the magnetic field strength H in the minor loop is the absolute value of the maximum value Hmax of the magnetic field strength H in the minor loop.
  • Figure 12 is a diagram showing an example of the relationship between the relative permeability mu r and the magnetic field strength H of the soft magnetic material plates constituting the core (magnetic steel sheets).
  • the relative magnetic permeability ⁇ r on the vertical axis indicates a relative value where the maximum value is 1.
  • a graph is shown for a soft magnetic plate (electromagnetic steel plate) constituting an iron core used in obtaining the results shown in FIGS.
  • a large relative permeability corresponds to a small skin depth.
  • a small skin depth means a large eddy current density. Since the eddy current is generated in a direction that obstructs the change of the magnetic flux, the magnetic field strength H tends to change so as to obstruct the flow of the exciting current (in a region where the magnetic flux density B increases in the hysteresis loop, the magnetic field strength H decreases. In the region where the magnetic flux density B decreases in the hysteresis loop, the magnetic field strength H tends to increase.) Thus, towards the core relative permeability mu r is large, the first operation and the second operation is facilitated.
  • the first operation and the second operation are realized by, for example, changing the modulation factor m and the carrier frequency of the PWM inverter.
  • FIG. 13 is a diagram illustrating an example of the relationship between the carrier frequency and the modulation factor m and the iron loss ratio.
  • the iron loss ratio is obtained by dividing the iron loss of the iron core when excited by a sine wave waveform (PWM inverter) on which a harmonic is superimposed by the iron loss of the iron core when excited by the sine wave not including the harmonic. Value.
  • PWM inverter sine wave waveform
  • the modulation rate m when the modulation rate m is in the range of 0.4 to 1.0 and the carrier frequency is in the range of 50 [kHz] or more (100 [kHz] or less), the first Is realized, and the iron loss of the iron core can be made smaller than the iron loss of the iron core when excited by a sine wave that does not include harmonics.
  • the modulation factor m when the modulation factor m is 2.0 and the carrier frequency is in the range of 5 kHz to 15 kHz, the first operation is realized, and the sine wave including no harmonic is used.
  • the iron loss of the iron core can be made smaller than the iron loss of the iron core when excited.
  • the modulation factor m is 2.0 and the carrier frequency is in the range of 20 kHz or more (100 kHz or less)
  • the iron loss of the iron core is excited by a sine wave that does not include harmonics. It is equivalent to the iron loss of the iron core in the case.
  • the modulation factor m and the carrier frequency are other than the above, the first operation is not realized, and the iron loss of the iron core is made smaller than the iron loss of the iron core when excited by a sine wave that does not include harmonics. Can not do.
  • the first operation and the second operation can be realized as follows. First, the same or equivalent electrical equipment and PWM inverter as those actually used are prepared. Then, the excitation signal is output from the PWM inverter to the electric device, and the hysteresis loop and the iron loss of the iron core when the core of the electric device is excited are measured by changing the modulation factor m and the carrier frequency. I do. Further, a signal obtained by removing harmonics from the excitation signal output from the PWM inverter is output to the electric device, and the iron loss of the iron core when the core of the electric device is excited is measured. Note that an electromagnetic field analysis (numerical analysis) may be performed instead of these measurements.
  • the modulation factor m and the carrier frequency at which the first operation is realized are searched. At this time, for example, it is obtained by measuring or analyzing a hysteresis loop (including a minor loop), and it can be confirmed from the hysteresis loop that the first operation is realized.
  • the modulation factor m and the carrier frequency at which the second operation is realized are searched. Then, among the searched modulation rate m and carrier frequency, the iron loss of the iron core when the iron core was excited by the excitation signal from the PWM inverter excited the iron core by a signal obtained by removing harmonics from the excitation signal. Select the one that is less than the iron loss of the core.
  • the region of the hysteresis loop in which the first operation (the second operation) is performed is a region (a magnetic flux density B and a region supposed to be a region where the magnetic flux density B increases (decreases)) in the hysteresis loop. (Area determined by the magnetic field strength H).
  • the electric device when the electric device does not perform a steady operation (that is, the excitation condition is changed), as many sets of the modulation factor m and the carrier frequency as selected for the first operation are used. Is preferably stored. This is so that the modulation factor m and the carrier frequency that satisfy the operation command of the electric device can be selected as much as possible. This is the same for the modulation factor m and the carrier frequency selected for the second operation.
  • the operation command of the electric device includes a target value (target range) of the operating state of the motor.
  • the target value (target range) of the operating state of the motor includes a target value (target range) of the rotation speed of the motor and a target value (target range) of the torque.
  • the first operation is performed. Is instructed to operate at the modulation factor m and the carrier frequency stored in association with the area of the hysteresis loop in which the above operation is performed.
  • the information is stored in association with the area of the hysteresis loop for performing the second operation.
  • the PWM inverter is instructed to operate at the modulation rate m and the carrier frequency.
  • FIG. 14 is a diagram illustrating an example of a configuration of an excitation system for an iron core in an electric device.
  • an excitation system of an iron core in an electric device will be abbreviated as an excitation system as necessary.
  • the excitation system has an electric device 1410, a PWM inverter 1420, and a modulation operation setting device 1430.
  • the electric device 1410 is not particularly limited as long as it is an electric device having an iron core.
  • a motor, a reactor, a transformer (a transformer, a current transformer, a transformer), or the like can be used as the electric device 1410.
  • the electric device may be a single-phase device or a three-phase device.
  • a three-phase motor when the winding is distributed winding, coils of a plurality of phases are wound around one tooth of the stator core. For this reason, the magnetic flux in the stator core becomes complicated, and there is a possibility that the range of the modulation rate m and the carrier frequency that can reduce the iron loss of the iron core cannot be specified. Therefore, for the three-phase motor, it is preferable to use a concentrated winding three-phase motor as the electric device 1410.
  • the PWM inverter 1420 is a power supply that excites the iron core of the electric device 1410. In the present embodiment, it is assumed that the PWM inverter 1420 can continuously change the carrier wave amplitude E c (modulation rate m of the PWM inverter) and the carrier frequency.
  • the hardware of the modulation operation setting device 1430 is realized by using, for example, an information processing device including a CPU, a ROM, a RAM, an HDD, and various interfaces, or a PLC (Programmable Logic Controller).
  • the modulation operation setting device 1430 functions as a setting unit that sets the modulation operation of the inverter power supply.
  • the modulation information storage unit 1431 stores modulation information.
  • the modulation information is information in which a region of a hysteresis loop that performs the first operation or the second operation and a parameter that determines the modulation operation are associated with each other.
  • the inverter power supply is controlled by the PWM method. Therefore, the parameters that determine the modulation operation include the modulation rate m and the carrier frequency as described in the section ⁇ Knowledge>.
  • the method of obtaining the modulation information is as described in the section ⁇ Knowledge>.
  • the first operation and the second operation are performed in a region where the absolute value of the magnetic field strength H of the iron core is 100 [A / m] or less.
  • the hysteresis area determination unit 1432 determines whether the modulation information corresponding to the current values of the magnetic flux density B and the magnetic field strength H of the iron core of the electric device 1410 is stored in the modulation information storage unit 1431.
  • the magnetic flux density B of the iron core of the electric device 1410 is determined, for example, by arranging a search coil for detecting the magnetic flux of the iron core of the electric device 1410 and determining the Faraday's law of electromagnetic induction from the electromotive force induced in the search coil. Can be derived based on the Further, the magnetic field strength H of the iron core of the electric device 1410 can be derived from the exciting current flowing through the electric device 1410 based on Ampere's law, for example. Further, an H coil can be provided in the electric device 1410 to measure the magnetic field strength H.
  • the hysteresis area determination unit 1432 sets the magnetic flux density B and the magnetic field strength H of the core of the electric device 1410 in a hysteresis loop area for performing the first operation or a hysteresis loop area for performing the second operation. It is determined whether there is a current value of.
  • the current values of the magnetic flux density B and the magnetic field strength H of the iron core of the electric device 1410 are within the region of the hysteresis loop for performing the first operation or the region of the hysteresis loop for performing the second operation. If not, the hysteresis area determination unit 1432 determines that the modulation information corresponding to the current values of the magnetic flux density B and the magnetic field strength H of the iron core of the electric device 1410 is not stored in the modulation information storage unit 1431, and indicates that. The information is output to the PWM signal generation unit 1433.
  • the hysteresis area determination unit 1432 determines whether the current values of the magnetic flux density B and the magnetic field strength H of the iron core of the electric device 1410 are different from the hysteresis loop area for performing the first operation and the hysteresis loop area for performing the second operation. Is determined to be within the range.
  • the hysteresis area determination unit 1432 When the current values of the magnetic flux density B and the magnetic field strength H of the iron core of the electric device 1410 are within the area of the hysteresis loop for performing the first operation, the hysteresis area determination unit 1432 performs the first operation. It is determined whether there is modulation information including a modulation rate m and a carrier frequency satisfying the operation command of the electric device 1410 in the modulation information including the region of the hysteresis loop to be performed.
  • the hysteresis region determination unit 1432 determines that the modulation information corresponding to the current values of the magnetic flux density B and the magnetic field strength H of the iron core of the electric device 1410 is not stored in the modulation information storage unit 1431, and outputs information indicating that to the PWM signal generation unit. 1433.
  • the hysteresis region determination unit 1432 determines It is determined that the modulation information corresponding to the current values of the magnetic flux density B and the magnetic field strength H of the iron core of the electric device 1410 is stored in the modulation information storage unit 1431. Then, the hysteresis area determination unit 1432 selects one of the modulation information including the modulation rate m and the carrier frequency that satisfy the operation command of the electric device 1410, and outputs the information specifying the selected modulation information to the PWM signal generation unit 1433. Output to
  • the selection of the modulation information can be performed according to a preset rule such as selecting the modulation information with the smallest modulation rate m.
  • the hysteresis area determination unit 1432 includes the modulation information including the area of the hysteresis loop that performs the first operation. In addition, it can be configured not to determine whether there is modulation information including the modulation rate m and the carrier frequency that satisfy the operation command of the electric device 1410.
  • the hysteresis area determination unit 1432 selects one of the modulation information including the area of the hysteresis loop for performing the first operation, and outputs information specifying the selected modulation information to the PWM signal generation unit 1433. I do.
  • the hysteresis area determination unit 1432 determines whether the current values of the magnetic flux density B and the magnetic field strength H of the iron core of the electric device 1410 are within the hysteresis loop area for performing the second operation.
  • the information specifying the modulation information or the modulation information is stored in the modulation information storage unit 1431 in the same manner as when the current values of the magnetic flux density B and the magnetic field strength H are within the area of the hysteresis loop for performing the first operation.
  • Information indicating that the information is not stored is output to the PWM signal generation unit 1433.
  • the PWM signal generation unit 1433 When the information that specifies the modulation information corresponding to the current values of the magnetic flux density B and the magnetic field strength H of the iron core of the electric device 1410 is output from the hysteresis area determination unit 1432, the PWM signal generation unit 1433 includes the information in the modulation information.
  • the parameters (modulation rate m and carrier frequency) that determine the modulation operation to be performed are read from the modulation information storage unit 1431.
  • PWM signal generation section 1433 generates a PWM signal including information necessary for generating a fundamental wave and a carrier wave, and outputs the PWM signal to PWM inverter 1420.
  • the information can include parameters that can be changed when the PWM inverter 1420 generates the fundamental wave and the carrier wave, such as the amplitude E c of the carrier wave, the carrier frequency, and the frequency of the fundamental wave.
  • the PWM signal generation unit 1433 determines that the modulation information corresponding to the current values of the magnetic flux density B and the magnetic field strength H of the iron core of the electric device 1410 is not stored in the modulation information storage unit 1431 by the hysteresis area determination unit 1432.
  • the indicated information is output, adjustment of the relationship between the maximum value Hmax and the minimum value Hmin of the magnetic field strength H in the minor loop for the reduction of iron loss (parameter (modulation rate m and carrier frequency) for determining the modulation operation) Adopt a value that does not contribute to).
  • the PWM signal generation unit 1433 generates a PWM signal including information necessary for generating a fundamental wave and a carrier wave based on the adopted values, and outputs the PWM signal to the PWM inverter 1420.
  • a parameter (modulation rate m and carrier frequency) that determines the modulation operation when performing the first operation or the second operation can be used. Note that even if such parameters are set, the first operation or the second operation cannot be performed in a region where the change in the magnetic flux density B is less than the change in the magnetic field strength H. That is, even if such parameters are set, they do not contribute to the reduction of iron loss (adjustment of the relationship between the maximum value Hmax and the minimum value Hmin of the magnetic field strength H in the minor loop).
  • the operation of the PWM inverter with the parameter that determines the modulation operation for performing the first operation or the second operation is continued over one cycle of the hysteresis loop.
  • the iron loss of the iron core can be reduced as compared with the case where excitation is performed with a sine wave in which no harmonic is superimposed (see graphs 1101 and 1103 in FIG. 11). Therefore, with this configuration, the loss of the iron core can be more reliably reduced.
  • parameters (modulation rate m and carrier frequency) that determine the modulation operation may be set so as to return to the operation of the existing PWM inverter.
  • the PWM inverter 1420 performs the PWM modulation operation based on the PWM signal output from the PWM signal generation unit 1433 as described above, and excites the iron core in the electric device 1410.
  • step S1501 when the start of the operation of the electric device 1410 is instructed, the PWM signal generation unit 1433 outputs a PWM signal including information necessary for generating a fundamental wave and a carrier wave to the PWM inverter 1420.
  • the start of the operation of the electric device 1410 is instructed.
  • the parameters (modulation rate m and carrier frequency) that determine the modulation operation output at this time are not particularly limited.
  • the parameters (modulation rate m and carrier frequency) that determine the modulation operation output at this time can be set to values that are predetermined as values at the start of operation.
  • step S1502 the hysteresis area determination unit 1432 acquires (derives) the current values of the magnetic flux density B and the magnetic field strength H of the iron core of the electric device 1410.
  • step S1503 the hysteresis area determination unit 1432 stores the modulation information corresponding to the current values of the magnetic flux density B and the magnetic field strength H of the iron core of the electric device 1410 acquired in step S1502 in the modulation information storage unit 1431. Is determined. As a result of this determination, if the modulation information corresponding to the current values of the magnetic flux density B and the magnetic field strength H of the iron core of the electric device 1410 is stored in the modulation information storage unit 1431, the process proceeds to step S1504.
  • hysteresis area determination section 1432 outputs to PWM signal generation section 1433 information for specifying modulation information corresponding to the current values of magnetic flux density B and magnetic field strength H of the iron core of electric device 1410.
  • the electric device 1410 does not perform a steady operation (that is, the excitation condition is changed)
  • the modulation information including the modulation rate m and the carrier frequency that satisfy the operation command of the electric device 1410 is specified, and the PWM signal generation unit 1433.
  • the PWM signal generation unit 1433 stores parameters (modulation rate m and carrier frequency) that determine the modulation operation included in the modulation information specified by the information output in step S1504, in the modulation information storage unit 1431. Read from Then, the PWM signal generation unit 1433 generates a fundamental wave and a carrier wave based on the parameters (modulation rate m and carrier frequency) that determine the read modulation operation and information on the fundamental wave input from the outside. Generates a PWM signal including information necessary for.
  • step S1506 the PWM signal generation unit 1433 outputs a PWM signal to the PWM inverter 1420.
  • the PWM inverter 1420 performs a PWM modulation operation based on the PWM signal, and excites an iron core in the electric device 1410.
  • step S1507 the modulation operation setting device 1430 determines whether to end the operation of the electric device 1410. This determination can be realized, for example, based on whether or not the operator has performed an operation for terminating the operation of the electric device 1410 on the user interface of the modulation operation setting device 1430.
  • step S1502 If the result of this determination is that the operation of electric device 1410 is not to be terminated, processing returns to step S1502, and excitation of the iron core in electric device 1410 is continued. If it is determined in step S1507 that the operation of the electric device 1410 is to be ended, the processing in the flowchart of FIG. 15 ends.
  • step S1503 If it is determined in step S1503 that the modulation information corresponding to the current values of the magnetic flux density B and the magnetic field strength H of the iron core of the electric device 1410 acquired in step S1502 is not stored in the modulation information storage unit 1431, the process proceeds. Proceeds to step S1508.
  • the hysteresis area determination unit 1432 outputs to the PWM signal generation unit 1433 information indicating that there is no modulation information corresponding to the current values of the magnetic flux density B and the magnetic field strength H of the iron core of the electric device 1410. I do.
  • step S1509 the PWM signal generation unit 1433 sets the parameters (modulation rate m and carrier frequency) that determine the modulation operation to the maximum value Hmax and the minimum value Hmax of the magnetic field strength H in the minor loop for reducing the iron loss. Hmin). Then, PWM signal generating section 1433 generates a PWM signal including information necessary for generating a fundamental wave and a carrier wave. Then, the process proceeds to step S1506 described above, and the PWM signal generation unit 1433 outputs the PWM signal to the PWM inverter 1420.
  • the parameters modulation rate m and carrier frequency
  • the modulation operation setting device 1430 adjusts the relationship between the maximum value Hmax and the minimum value Hmin of the magnetic field strength in the minor loop of the hysteresis loop, so that the The modulation operation of the PWM inverter 1420 is set such that the iron loss of the iron core becomes smaller than the iron loss of the iron core when the iron core of the electric device is excited by the signal excluding the wave.
  • the modulation operation setting device 1430 sets the absolute value
  • the PWM inverter 1420 is operated so as to exceed (below) the absolute value
  • modulation information is obtained including not only the modulation factor m and the carrier frequency, but also other parameters (such as the amplitude of a carrier wave and the amplitude of a fundamental wave) that determine the modulation operation. Is also good.
  • the iron loss of the iron core is made smaller than the iron loss of the iron core when excited by a signal obtained by removing a harmonic component from the excitation signal output from the PWM inverter 1420 (that is, the maximum value of the magnetic flux density B is changed). If the relationship between the maximum value Hmax and the minimum value Hmin of the magnetic field strength H in the minor loop is adjusted so that the area of the hysteresis loop is reduced, the first operation and the second operation are not necessarily performed. It is not necessary. In FIG.
  • the rate of increase (the amount of increase per unit time) of the integrated value of the minute area HdB is the integration of the minute area HdB when the iron core is excited by a sine wave. If the value is smaller than the value (graph 1101), the core loss of the iron core can be reduced.
  • the main loss of the electric device 1410 is copper loss in addition to iron loss.
  • the copper loss can be reduced by increasing the space for disposing the coil in the electric device 1410 to reduce the current density of the coil (increase the cross-sectional area of the coil) and reduce the DC resistance of the coil.
  • a main loss of the inverter power supply is a switching loss. Switching loss can be reduced by, for example, synchronizing a plurality of inverter power supplies and operating them in parallel to reduce the current flowing through each switching element.
  • the modulation information (modulation operation is determined so that the iron loss of the iron core is smaller than the iron loss of the iron core when the iron core of the electric device is excited by a signal obtained by removing the harmonic from the excitation signal containing the harmonic.
  • the modulation is performed so that the loss of the entire excitation system (the sum of the loss of the electric device 1410 (mainly iron loss and copper loss) and the loss of the PWM inverter 1420 (mainly switching loss)) is reduced.
  • Information (parameters that determine the modulation operation) may be obtained.
  • ⁇ Fourth modification In the present embodiment, an example has been described in which a PWM inverter is used as the inverter power supply.
  • the inverter power supply is not limited to one having a PWM inverter.
  • Parameters (modulation rate m and carrier frequency in the present embodiment) that determine the modulation operation of the inverter power supply are determined based on the modulation method in the inverter power supply. For example, when a PAM (Pulse Amplitude Modulation) inverter is used, the ratio between the DC voltage supplied to the inverter unit and the output voltage to the motor is included in the parameters that determine the modulation operation.
  • PAM Pulse Amplitude Modulation
  • the embodiments of the present invention described above can be realized by a computer executing a program. Further, a computer-readable recording medium on which the program is recorded and a computer program product such as the program can also be applied as an embodiment of the present invention.
  • the recording medium for example, a flexible disk, a hard disk, an optical disk, a magneto-optical disk, a CD-ROM, a magnetic tape, a nonvolatile memory card, a ROM, and the like can be used.
  • the embodiments of the present invention described above are merely examples of specific embodiments for carrying out the present invention, and the technical scope of the present invention should not be interpreted in a limited manner. Things. That is, the present invention can be implemented in various forms without departing from the technical idea or the main features.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

インバータ電源を用いて励磁される鉄心の鉄損を低減する。インバータ電源の変調動作設定装置1430は、系全体の損失(鉄損、銅損、およびスイッチング損失)が(高調波を含まない)目標波形で当該電気機器を動作させたときの系全体の損失を下回るように、マイナーループにおける磁界強度Hの最大値Hmaxおよび最小値Hminを制御する。

Description

電気機器内の鉄心の励磁システム、電気機器内の鉄心の励磁方法、プログラムおよびインバータ電源の変調動作設定装置
 本発明は、電気機器内の鉄心の励磁システム、電気機器内の鉄心の励磁方法、プログラムおよびインバータ電源の変調動作設定装置に関するものである。
 本願は、2018年9月21日に、日本に出願された特願2018-177724号に基づき優先権を主張し、その内容をここに援用する。
 例えば、電車、ハイブリッド自動車、家電製品等のモータを駆動する電源装置として、インバータ電源が用いられる。また、インバータ電源のフィルタ回路としてリアクトルが用いられる。インバータ電源は、複数のスイッチング素子を有するスイッチング回路を用いて構成される。スイッチング素子がスイッチング動作を行うこと等によって、インバータ電源から出力される励磁電流の時間波形は、基本波に高調波が重畳された波形になる。このため、当該電気機器(鉄心)の温度上昇や、当該電気機器の効率の低下を招く虞がある。
 そこで、特許文献1には、正弦波単独で励磁したときの鉄損に対する、高調波成分を含む波形により励磁したときの鉄損の比を1.15未満とするリアクトル鉄心が開示されている。
 また、特許文献2には、PWMインバータで三相モータを駆動した場合の励磁電流の高調波成分と同振幅かつ逆位相の電流を当該励磁電流に重畳させることで、正弦波電流で三相モータを駆動した場合の1.05倍に鉄損を低減することができることが開示されている。
特開平9-45534号公報 特許第4995518号公報
 しかしながら、特許文献1に記載の技術では、高調波成分を含む波形により励磁したときの鉄損が、正弦波単独で励磁したときの鉄損よりも大きくなることが許容される。また、特許文献2に記載の手法では、正弦波電流で三相モータを駆動した場合よりも鉄損が増加する。
 本発明は、以上のような問題点に鑑みてなされたものであり、インバータ電源を用いて励磁される鉄心の鉄損を低減することを目的とする。
 本発明の電気機器内の鉄心の励磁システムは、鉄心を有する電気機器と、前記鉄心を励磁するために高調波を含む励磁信号を前記電気機器に出力するインバータ電源と、前記インバータ電源の変調動作を設定する変調動作設定装置と、を有する電気機器内の鉄心の励磁システムであって、前記変調動作設定装置は、前記鉄心の磁束密度と磁界強度との関係を示すヒステリシスループのマイナーループにおける前記磁界強度の最大値と最小値との関係に基づいて、前記インバータ電源の変調動作を設定する設定手段としての機能を有し、前記磁界強度の最大値と最小値との関係は、前記インバータ電源により高調波を含む励磁信号で前記鉄心を励磁する場合の前記鉄心の鉄損が、前記高調波を除いた励磁信号で前記鉄心を励磁する場合の前記鉄心の鉄損よりも小さくなるように調整された関係であることを特徴とする。
 本発明の電気機器内の鉄心の励磁システムは、鉄心を有する電気機器と、前記鉄心を励磁するために高調波を含む励磁信号を前記電気機器に出力するインバータ電源と、前記インバータ電源の変調動作を設定する変調動作設定装置と、を有する電気機器内の鉄心の励磁システムであって、前記変調動作設定装置は、前記インバータ電源により高調波を含む励磁信号で前記鉄心を励磁する場合における磁界強度と前記鉄心内に発生する磁束密度とのヒステリシスループのマイナーループと、前記高調波を除いた励磁信号で前記鉄心を励磁する場合における磁界強度と前記鉄心内に発生する磁束密度とのヒステリシスループとで作られる閉領域の面積の関係に基づいて、前記インバータ電源の変調動作を設定し、前記関係は、前記インバータ電源により高調波を含む励磁信号で前記鉄心を励磁する場合の前記鉄心の鉄損が、前記高調波を除いた励磁信号で前記鉄心を励磁する場合の前記鉄心の鉄損よりも小さくなるように調整された関係であることを特徴とする。
 本発明の電気機器内の鉄心の励磁システムは、鉄心を有する電気機器と、前記鉄心を励磁するために高調波を含む励磁信号を前記電気機器に出力するインバータ電源と、前記インバータ電源の変調動作を設定する変調動作設定装置と、を有する電気機器内の鉄心の励磁システムであって、前記変調動作設定装置は、前記インバータ電源により高調波を含む励磁信号で前記鉄心を励磁する場合における磁界強度と前記鉄心内に発生する磁束密度とのヒステリシスループのマイナーループと、前記高調波を除いた励磁信号で前記鉄心を励磁する場合における磁界強度と前記鉄心内に発生する磁束密度とのヒステリシスループとの関係に基づいて、前記インバータ電源の変調動作を設定し、前記関係は、前記高調波を除いた励磁信号で前記鉄心を励磁する場合の前記ヒステリシスループの前記磁束密度が増加する領域の少なくとも一部において、前記インバータ電源により高調波を含む励磁信号で前記鉄心を励磁する場合におけるヒステリシスループに含まれる複数のマイナーループのうち少なくとも一つは、前記高調波を除いた励磁信号で前記鉄心を励磁する場合におけるヒステリシスループに対して磁界強度が小さい側に位置する部分と、前記高調波を除いた励磁信号で前記鉄心を励磁する場合におけるヒステリシスループとで作られる閉領域の面積が、前記高調波を除いた励磁信号で前記鉄心を励磁する場合におけるヒステリシスループに対して磁界強度が大きい側に位置する部分と、前記高調波を除いた励磁信号で前記鉄心を励磁する場合におけるヒステリシスループとで作られる閉領域の面積よりも大きくなり、前記インバータ電源により高調波を含む励磁信号で前記鉄心を励磁する場合の前記鉄心の鉄損が、前記高調波を除いた励磁信号で前記鉄心を励磁する場合の前記鉄心の鉄損よりも小さくなるように調整された関係であることを特徴とする。
 本発明の電気機器内の鉄心の励磁システムは、鉄心を有する電気機器と、前記鉄心を励磁するために高調波を含む励磁信号を前記電気機器に出力するインバータ電源と、前記インバータ電源の変調動作を設定する変調動作設定装置と、を有する電気機器内の鉄心の励磁システムであって、前記変調動作設定装置は、前記インバータ電源により高調波を含む励磁信号で前記鉄心を励磁する場合における磁界強度と前記鉄心内に発生する磁束密度とのヒステリシスループのマイナーループと、前記高調波を除いた励磁信号で前記鉄心を励磁する場合における磁界強度と前記鉄心内に発生する磁束密度とのヒステリシスループとの関係に基づいて、前記インバータ電源の変調動作を設定し、前記関係は、前記高調波を除いた励磁信号で前記鉄心を励磁する場合の前記ヒステリシスループの前記磁束密度が減少する領域の少なくとも一部において、前記インバータ電源により高調波を含む励磁信号で前記鉄心を励磁する場合におけるヒステリシスループに含まれる複数のマイナーループのうち少なくとも一つは、前記高調波を除いた励磁信号で前記鉄心を励磁する場合におけるヒステリシスループに対して磁界強度が大きい側に位置する部分と、前記高調波を除いた励磁信号で前記鉄心を励磁する場合におけるヒステリシスループとで作られる閉領域の面積が、前記高調波を除いた励磁信号で前記鉄心を励磁する場合におけるヒステリシスループに対して磁界強度が小さい側に位置する部分と、前記高調波を除いた励磁信号で前記鉄心を励磁する場合におけるヒステリシスループとで作られる閉領域の面積よりも大きくなり、前記インバータ電源により高調波を含む励磁信号で前記鉄心を励磁する場合の前記鉄心の鉄損が、前記高調波を除いた励磁信号で前記鉄心を励磁する場合の前記鉄心の鉄損よりも小さくなるように調整された関係であることを特徴とする。
 本発明の電気機器内の鉄心の励磁方法は、電気機器の鉄心を励磁するために高調波を含む励磁信号を前記電気機器に出力するインバータ電源に関する電気機器内の鉄心の励磁方法であって、前記電気機器内の鉄心の励磁方法は、前記鉄心の磁束密度と磁界強度との関係を示すヒステリシスループのマイナーループにおける前記磁界強度の最大値と最小値との関係に基づいて、前記インバータ電源の変調動作を設定する設定工程を有し、前記磁界強度の最大値と最小値との関係は、前記インバータ電源により高調波を含む励磁信号で前記鉄心を励磁する場合の前記鉄心の鉄損が、前記高調波を除いた励磁信号で前記鉄心を励磁する場合の前記鉄心の鉄損よりも小さくなるように調整された関係であることを特徴とする。
 本発明の電気機器内の鉄心の励磁方法は、電気機器の鉄心を励磁するために高調波を含む励磁信号を前記電気機器に出力するインバータ電源に関する電気機器内の鉄心の励磁方法であって、前記電気機器内の鉄心の励磁方法は、前記インバータ電源により高調波を含む励磁信号で前記鉄心を励磁する場合における磁界強度と前記鉄心内に発生する磁束密度とのヒステリシスループのマイナーループと、前記高調波を除いた励磁信号で前記鉄心を励磁する場合における磁界強度と前記鉄心内に発生する磁束密度とのヒステリシスループとで作られる閉領域の面積の関係に基づいて、前記インバータ電源の変調動作を設定し、前記関係は、前記インバータ電源により高調波を含む励磁信号で前記鉄心を励磁する場合の前記鉄心の鉄損が、前記高調波を除いた励磁信号で前記鉄心を励磁する場合の前記鉄心の鉄損よりも小さくなるように調整された関係であることを特徴とする。
 本発明の電気機器内の鉄心の励磁方法は、電気機器の鉄心を励磁するために高調波を含む励磁信号を前記電気機器に出力するインバータ電源に関する電気機器内の鉄心の励磁方法であって、前記電気機器内の鉄心の励磁方法は、前記インバータ電源により高調波を含む励磁信号で前記鉄心を励磁する場合における磁界強度と前記鉄心内に発生する磁束密度とのヒステリシスループのマイナーループと、前記高調波を除いた励磁信号で前記鉄心を励磁する場合における磁界強度と前記鉄心内に発生する磁束密度とのヒステリシスループとの関係に基づいて、前記インバータ電源の変調動作を設定する設定工程を有し、前記関係は、前記高調波を除いた励磁信号で前記鉄心を励磁する場合の前記ヒステリシスループの前記磁束密度が増加する領域の少なくとも一部において、前記インバータ電源により高調波を含む励磁信号で前記鉄心を励磁する場合におけるヒステリシスループに含まれる複数のマイナーループのうち少なくとも一つは、前記高調波を除いた励磁信号で前記鉄心を励磁する場合におけるヒステリシスループに対して磁界強度が小さい側に位置する部分と、前記高調波を除いた励磁信号で前記鉄心を励磁する場合におけるヒステリシスループとで作られる閉領域の面積が、前記高調波を除いた励磁信号で前記鉄心を励磁する場合におけるヒステリシスループに対して磁界強度が大きい側に位置する部分と、前記高調波を除いた励磁信号で前記鉄心を励磁する場合におけるヒステリシスループとで作られる閉領域の面積よりも大きくなり、前記インバータ電源により高調波を含む励磁信号で前記鉄心を励磁する場合の前記鉄心の鉄損が、前記高調波を除いた励磁信号で前記鉄心を励磁する場合の前記鉄心の鉄損よりも小さくなるように調整された関係であることを特徴とする。
 本発明の電気機器内の鉄心の励磁方法は、電気機器の鉄心を励磁するために高調波を含む励磁信号を前記電気機器に出力するインバータ電源に関する電気機器内の鉄心の励磁方法であって、前記電気機器内の鉄心の励磁方法は、前記インバータ電源により高調波を含む励磁信号で前記鉄心を励磁する場合における磁界強度と前記鉄心内に発生する磁束密度とのヒステリシスループのマイナーループと、前記高調波を除いた励磁信号で前記鉄心を励磁する場合における磁界強度と前記鉄心内に発生する磁束密度とのヒステリシスループとの関係に基づいて、前記インバータ電源の変調動作を設定する設定工程を有し、前記関係は、前記高調波を除いた励磁信号で前記鉄心を励磁する場合の前記ヒステリシスループの前記磁束密度が減少する領域の少なくとも一部において、前記インバータ電源により高調波を含む励磁信号で前記鉄心を励磁する場合におけるヒステリシスループに含まれる複数のマイナーループのうち少なくとも一つは、前記高調波を除いた励磁信号で前記鉄心を励磁する場合におけるヒステリシスループに対して磁界強度が大きい側に位置する部分と、前記高調波を除いた励磁信号で前記鉄心を励磁する場合におけるヒステリシスループとで作られる閉領域の面積が、前記高調波を除いた励磁信号で前記鉄心を励磁する場合におけるヒステリシスループに対して磁界強度が小さい側に位置する部分と、前記高調波を除いた励磁信号で前記鉄心を励磁する場合におけるヒステリシスループとで作られる閉領域の面積よりも大きくなり、前記インバータ電源により高調波を含む励磁信号で前記鉄心を励磁する場合の前記鉄心の鉄損が、前記高調波を除いた励磁信号で前記鉄心を励磁する場合の前記鉄心の鉄損よりも小さくなるように調整された関係であることを特徴とする。
 本発明のプログラムは、前記電気機器内の鉄心の励磁システムの各手段としてコンピュータを機能させることを特徴とする。
 本発明のインバータ電源の変調動作設定装置は、電気機器の鉄心を励磁するために高調波を含む励磁信号を前記電気機器に出力するインバータ電源の変調動作設定装置であって、前記インバータ電源の変調動作設定装置は、前記鉄心の磁束密度と磁界強度との関係を示すヒステリシスループのマイナーループにおける前記磁界強度の最大値と最小値との関係に基づいて、前記インバータ電源の変調動作を設定し、前記磁界強度の最大値と最小値との関係は、前記インバータ電源により高調波を含む励磁信号で前記鉄心を励磁する場合の前記鉄心の鉄損が、前記高調波を除いた励磁信号で前記鉄心を励磁する場合の前記鉄心の鉄損よりも小さくなるように調整された関係であることを特徴とする。
 本発明のインバータ電源の変調動作設定装置は、電気機器の鉄心を励磁するために高調波を含む励磁信号を前記電気機器に出力するインバータ電源の変調動作設定装置であって、前記インバータ電源の変調動作設定装置は、前記インバータ電源により高調波を含む励磁信号で前記鉄心を励磁する場合における磁界強度と前記鉄心内に発生する磁束密度とのヒステリシスループのマイナーループと、前記高調波を除いた励磁信号で前記鉄心を励磁する場合における磁界強度と前記鉄心内に発生する磁束密度とのヒステリシスループとで作られる閉領域の面積の関係に基づいて、前記インバータ電源の変調動作を設定し、前記関係は、前記インバータ電源により高調波を含む励磁信号で前記鉄心を励磁する場合の前記鉄心の鉄損が、前記高調波を除いた励磁信号で前記鉄心を励磁する場合の前記鉄心の鉄損よりも小さくなるように調整された関係であることを特徴とする。
 本発明のインバータ電源の変調動作設定装置は、電気機器の鉄心を励磁するために高調波を含む励磁信号を前記電気機器に出力するインバータ電源の変調動作設定装置であって、前記インバータ電源の変調動作設定装置は、前記インバータ電源により高調波を含む励磁信号で前記鉄心を励磁する場合における磁界強度と前記鉄心内に発生する磁束密度とのヒステリシスループのマイナーループと、前記高調波を除いた励磁信号で前記鉄心を励磁する場合における磁界強度と前記鉄心内に発生する磁束密度とのヒステリシスループとの関係に基づいて、前記インバータ電源の変調動作を設定し、前記関係は、前記高調波を除いた励磁信号で前記鉄心を励磁する場合の前記ヒステリシスループの前記磁束密度が増加する領域の少なくとも一部において、前記インバータ電源により高調波を含む励磁信号で前記鉄心を励磁する場合におけるヒステリシスループに含まれる複数のマイナーループのうち少なくとも一つは、前記高調波を除いた励磁信号で前記鉄心を励磁する場合におけるヒステリシスループに対して磁界強度が小さい側に位置する部分と、前記高調波を除いた励磁信号で前記鉄心を励磁する場合におけるヒステリシスループとで作られる閉領域の面積が、前記高調波を除いた励磁信号で前記鉄心を励磁する場合におけるヒステリシスループに対して磁界強度が大きい側に位置する部分と、前記高調波を除いた励磁信号で前記鉄心を励磁する場合におけるヒステリシスループとで作られる閉領域の面積よりも大きくなり、前記インバータ電源により高調波を含む励磁信号で前記鉄心を励磁する場合の前記鉄心の鉄損が、前記高調波を除いた励磁信号で前記鉄心を励磁する場合の前記鉄心の鉄損よりも小さくなるように調整された関係であることを特徴とする。
 本発明のインバータ電源の変調動作設定装置は、電気機器の鉄心を励磁するために高調波を含む励磁信号を前記電気機器に出力するインバータ電源の変調動作設定装置であって、前記インバータ電源の変調動作設定装置は、前記インバータ電源により高調波を含む励磁信号で前記鉄心を励磁する場合における磁界強度と前記鉄心内に発生する磁束密度とのヒステリシスループのマイナーループと、前記高調波を除いた励磁信号で前記鉄心を励磁する場合における磁界強度と前記鉄心内に発生する磁束密度とのヒステリシスループとの関係に基づいて、前記インバータ電源の変調動作を設定し、前記関係は、前記高調波を除いた励磁信号で前記鉄心を励磁する場合の前記ヒステリシスループの前記磁束密度が減少する領域の少なくとも一部において、前記インバータ電源により高調波を含む励磁信号で前記鉄心を励磁する場合におけるヒステリシスループに含まれる複数のマイナーループのうち少なくとも一つは、前記高調波を除いた励磁信号で前記鉄心を励磁する場合におけるヒステリシスループに対して磁界強度が大きい側に位置する部分と、前記高調波を除いた励磁信号で前記鉄心を励磁する場合におけるヒステリシスループとで作られる閉領域の面積が、前記高調波を除いた励磁信号で前記鉄心を励磁する場合におけるヒステリシスループに対して磁界強度が小さい側に位置する部分と、前記高調波を除いた励磁信号で前記鉄心を励磁する場合におけるヒステリシスループとで作られる閉領域の面積よりも大きくなり、前記インバータ電源により高調波を含む励磁信号で前記鉄心を励磁する場合の前記鉄心の鉄損が、前記高調波を除いた励磁信号で前記鉄心を励磁する場合の前記鉄心の鉄損よりも小さくなるように調整された関係であることを特徴とする。
 本発明によれば、インバータ電源を用いて励磁される鉄心の鉄損を低減することができる。
PWMインバータの動作の一例を説明する図である。 正弦波で励磁した場合の鉄心のヒステリシスループと、高調波で励磁した場合の鉄心のヒステリシスループの第1の例を示す図である。 図2に示す2つのヒステリシスループを重ねて示した図である。 図2に示すヒステリシスループを得たときの磁束密度の時間波形を示す図である。 正弦波で励磁した場合の鉄心のヒステリシスループと、高調波で励磁した場合の鉄心のヒステリシスループの第2の例を示す図である。 図5に示す2つのヒステリシスループを重ねて示す図である。 図6の領域A(およびI)、B、Cの部分を拡大して示す図である。 図6の領域D、E、Fの部分を拡大して示す図である。 図6の領域G、Hの部分を拡大して示す図である。 図5に示すヒステリシスループを得たときの磁束密度の時間波形を示す図である。 図2、5~9に示すヒステリシスループにおける微小面積HdBの積算値の時間変化を示す図である。 鉄心を構成する軟磁性体板(電磁鋼板)の比透磁率と磁界強度との関係の一例を示す図である。 キャリア周波数および変調率と鉄損比率との関係の一例を示す図である。 電気機器内の鉄心の励磁システムの構成の一例を示す図である。 電気機器内の鉄心の励磁システムの動作の一例を説明するフローチャートである。
 以下、図面を参照しながら、本発明の一実施形態を説明する。
<PWMインバータの概要>
 本実施形態では、電気機器の鉄心を励磁するインバータ電源が、PWM(Pulse Width Modulation)方式で制御される場合を例に挙げて説明する。このようなインバータをPWMインバータと呼称することにする。そこで、まず、PWMインバータの概要を説明する。
 図1は、PWMインバータの動作の一例を説明する図である。図1は、基本波、キャリア波(搬送波)、および出力電圧の時間波形を示す。図1において、上段に基本波およびキャリア波の波形を示し、下段に出力電圧の波形を示す。また、図1において、基本波101a、101bの振幅をE0とし、キャリア波102(および出力電圧103)の振幅をEcとする。基本波101a、101bの振幅E0は、電気機器に印加される電圧の波高値に対応し、キャリア波102の振幅Ecは、インバータの出力電圧の波高値に対応する。
 図1に示すように、PWMインバータの出力電圧103は、キャリア波102と、基本波101a、101bとの大小関係に応じて、値がEcまたは0(ゼロ)となるパルス信号である。ここで、PWMインバータの変調率mは、E0÷Ecで表される。尚、PWMインバータの動作方式は、図1に示す方式に限定されず、マルチレベル方式など公知の他方式とすることもできる。
<知見>
 次に、本発明者が得た知見について説明する。
 鉄心の鉄損W[W/kg]は、磁界強度H[A/m]と、鉄心内に発生する磁束密度B[T]とのヒステリシスループにより囲まれる面積から求められる。具体的に鉄心の鉄損Wは、以下の(1)式のようにして求められる。
Figure JPOXMLDOC01-appb-M000001
 ここで、ρは、密度[kg/m3]、fは、励磁周波数[Hz]、Vは、鉄心の体積[m3]である。
 本発明者は、ヒステリシスループの面積を低減することができれば、鉄損を低減することができることに着目した。ヒステリシスループを低減するためには、磁束密度Bの大きさを変えずに、磁界強度Hを低減すればよい。
 まず、本発明者は、同一の鉄心に対し、時間波形が高調波を含まない正弦波である励磁信号で励磁した場合と、時間波形が当該正弦波に高調波が重畳された波形である励磁信号で励磁した場合とのそれぞれのヒステリシスループを調査した。その結果を図2および図3に示す。尚、以下の説明では、時間波形が高調波を含まない正弦波を、必要に応じて正弦波と称し、正弦波に高調波が重畳された波形を、必要に応じて高調波と称する。
 図2は、正弦波で励磁した場合の鉄心のヒステリシスループ(図2(a))と、高調波で励磁した場合の鉄心のヒステリシスループ(図2(b))の一例を示す図である。図3は、図2(a)に示す正弦波で励磁した場合の鉄心のヒステリシスループと、図2(b)に示す高調波で励磁した場合の鉄心のヒステリシスループとを重ねて示した図である。図3(a)は、ヒステリシスループの全体を示し、図3(b)は、図3(a)の一部分を拡大して示す。高調波で励磁した場合の鉄心のヒステリシスループは、図3(b)に示すように短周期で振動するマイナーループを有する。ここで、高調波で励磁した場合のヒステリシスループにおけるマイナーループは、磁界強度Hが増大する方向に時間変化している時の、正弦波で励磁した場合のヒステリシスループとの交点を始点として、次に同様に磁界強度Hが増大している方向に時間変化している時に正弦波で励磁した場合のヒステリシスループと交わる点までの範囲を、一つのマイナーループとする。このため、図2(b)および図3(a)に示すスケールでは、この振動する線(複数のマイナーループ)が判別できないほど近接していることにより、塗りつぶされているように見える。尚、図2(および図3)は、PWMインバータの変調率mを0.2とし、キャリア周波数(キャリア波の周波数)を100[kHz]とした結果である。
 つまり、図3(b)に示す例では、高調波を除いた励磁信号で鉄心を励磁する場合のヒステリシスループHLの一部が、「正弦波」によって示されており、高調波を含む励磁信号で鉄心を励磁する場合のヒステリシスループの一部が、「高調波(参考例)」によって示されている。
 高調波を含む励磁信号で鉄心を励磁する場合のヒステリシスループには、複数のマイナーループが含まれる。図3(b)に含まれる複数のマイナーループのうちの1つのマイナーループMは、点M1を始点とし、点M5を終点とする。
 点M1は、磁界強度Hが増大する方向(図3(b)の右向き)に時間変化している時の、高調波を除いた励磁信号で鉄心を励磁する場合のヒステリシスループHLとの交点である。
 このマイナーループMにおける磁界強度Hの最大値は、このマイナーループM上の点M2における磁界強度Hに相当する。
 このマイナーループM上の点M3は、磁界強度Hが低減する方向(図3(b)の左向き)に時間変化している時の、高調波を除いた励磁信号で鉄心を励磁する場合のヒステリシスループHLとの交点である。
 このマイナーループMにおける磁界強度Hの最小値は、このマイナーループM上の点M4における磁界強度Hに相当する。
 上述したように、このマイナーループM上の点M5は、このマイナーループMの終点に相当する。また、点M5は、このマイナーループMに隣接するマイナーループ(マイナーループMよりも図3(b)の上側に位置するマイナーループ)の始点に相当する。
 高調波で励磁した場合の鉄心のヒステリシスループには、図3(b)に示すようなマイナーループが発生する。図3(b)に示す領域においては、マイナーループにおける磁界強度Hの最大値Hmaxの絶対値|Hmax|は、マイナーループにおける磁界強度Hの最小値Hminの絶対値|Hmin|を上回る(|Hmax|>|Hmin|)。
 「マイナーループにおける磁界強度Hの最大値Hmax」とは、1つのマイナーループにおける磁界強度Hの最大値である。
 「マイナーループにおける磁界強度Hの最小値Hmin」とは、1つのマイナーループにおける磁界強度Hの最小値である。
 そして、図2~図3に示す例において、正弦波で励磁した場合の鉄心の鉄損、高調波で励磁した場合の鉄心の鉄損は、それぞれ、10.84[W/kg]、17.88[W/kg]であった。
 図4は、図2~図3に示すヒステリシスループを得たときの磁束密度Bの時間波形を示す図である。尚、図4の横軸の時刻は、基準となる時刻を0とした場合の時刻である(即ち、図4の横軸の値は、時刻0からの経過時間と同じである)。このことは、後述する図10および図11においても同じである。
 正弦波で励磁した場合の磁束密度Bの時間波形401の波形率、高調波で励磁した場合の磁束密度Bの時間波形402の波形率は、それぞれ、1.1108、1.1155であり、両者共に、正弦波の波形率(=π/2√2≒1.1107)と略同じであった。従って、正弦波で励磁した場合の鉄心の鉄損よりも、高調波で励磁した場合の鉄心の鉄損が大きくなるのは、磁界強度Hが増加することに起因すると考えられる。
 以上のことから、本発明者は、マイナーループにおける磁界強度Hの最大値Hmaxと最小値Hminとの関係を調整すれば、ヒステリシスループの面積を低減させることができ、鉄心の鉄損を低減することができることを着想した。
 そこで、図3(b)に示す領域において、少なくとも一部のマイナーループにおける磁界強度Hの最小値Hminの絶対値|Hmin|が、当該マイナーループにおける磁界強度Hの最大値Hmaxの絶対値|Hmax|を上回る(|Hmax|<|Hmin|)ようにPWMインバータの変調率mおよびキャリア周波数を調整した。その結果を、図5~図9に示す。図5~図9では、PWMインバータの変調率mが0.4であり、キャリア波の周波数が100[kHz]である場合を例示する。
 図5は、正弦波で励磁した場合の鉄心のヒステリシスループ(図5(a))と、高調波で励磁した場合の鉄心のヒステリシスループ(図5(b))の一例を示す図である。図6は、図5(a)に示す正弦波で励磁した場合の鉄心のヒステリシスループと、図5(b)に示す高調波で励磁した場合の鉄心のヒステリシスループとを重ねて示した図である。図6は、ヒステリシスループの全体を示す。図7~図9は、図6の一部分を拡大して示す図である。具体的に図7(a)、図7(b)、図7(c)、図8(a)、図8(b)、図8(c)、図9(a)、図9(b)は、それぞれ、図6に示す領域A(およびI)、B、C、D、E、F、G、Hを拡大して示す図である。
 図3(b)に示す領域は、図7(c)に示す領域(領域C)に対応する。図7(c)に示す領域Cに含まれる3つのマイナーループのうち、上から3番目のマイナーループMA(M1~M2~M3~M4~M5)と上から2番目のマイナーループMB(M5~M6~M7~M8~M9)において、磁界強度Hの最小値Hminの絶対値|Hmin|が、磁界強度Hの最大値Hmaxの絶対値|Hmax|を上回るようにすることができた。
 ここで、|Hmin|>|Hmax|の関係を満たすように調整されるマイナーループを、請求項2の「第1マイナーループ」とする。図7(c)では、上から3番目のマイナーループMA(M1~M2~M3~M4~M5)と上から2番目のマイナーループMB(M5~M6~M7~M8~M9)は、各々、請求項2の「第1マイナーループ」に相当する。
 また、図7(c)に示す領域C(つまり、高調波を除いた励磁信号で鉄心を励磁する場合のヒステリシスループHLの磁束密度が増加する領域)では、インバータ電源により高調波を含む励磁信号で鉄心を励磁する場合におけるヒステリシスループ(図7(c)に「高調波(実施例)」で示すヒステリシスループ」)に含まれる3つのマイナーループのうちの図7(c)の上から3番目のマイナーループMA(M1~M2~M3~M4~M5)の始点M1(ヒステリシスループHLとの交点)を基準点とすると、マイナーループMAにおける磁界強度Hの最小値(つまり、マイナーループMA上の点M4における磁界強度Hの値)と、基準点M1における磁界強度Hの値との差の絶対値[Hmin]が、マイナーループMAにおける磁界強度Hの最大値(つまり、マイナーループMA上の点M2における磁界強度Hの値)と、基準点M1における磁界強度Hの値との差の絶対値[Hmax]を上回る関係を満足している。
 ここで、[Hmin]>[Hmax]の関係を満たすように調整されるマイナーループを、請求項5の「第3マイナーループ」とする。また、基準点(第3マイナーループの始点)を、請求項5の「第1基準点」とする。図7(c)では、マイナーループMA(M1~M2~M3~M4~M5)は請求項5の「第3マイナーループ」に相当し、点M1は、マイナーループMAに対応する請求項5の「第1基準点」に相当する。
 図7(c)の上から2番目のマイナーループMB(M5~M6~M7~M8~M9)の始点M5(ヒステリシスループHLとの交点)を基準点とすると、マイナーループMBにおける磁界強度Hの最小値(つまり、マイナーループMB上の点M8における磁界強度Hの値)と、基準点M5における磁界強度Hの値との差の絶対値[Hmin]が、マイナーループMBにおける磁界強度Hの最大値(つまり、マイナーループMB上の点M6における磁界強度Hの値)と、基準点M5における磁界強度Hの値との差の絶対値[Hmax]を上回る関係を満足している。マイナーループMB(M5~M6~M7~M8~M9)は請求項5の「第3マイナーループ」に相当し、点M5は、マイナーループMBに対応する請求項5の「第1基準点」に相当する。
 「第3マイナーループ」に相当するマイナーループは、ヒステリシスループの磁束密度Bが増加する領域の少なくとも一部に、1つのみ存在しても、複数存在してもよい。また、一つの「第3マイナーループ」に対応する「第1基準点」は、一つのみ決定され、「第3マイナーループ」が複数存在する場合は、「第3マイナーループ」毎に、各々対応する「第1基準点」が存在する。よって、「第1基準点」に相当する基準点は、「第3マイナーループ」の数に対応し、ヒステリシスループの磁束密度Bが増加する領域の少なくとも一部に、1つのみ存在しても、複数存在してもよい。例えば、図7(c)では、マイナーループMA(第3マイナーループ)に対応する「第1基準点」として点M1が、マイナーループMB(第3マイナーループ)に対応する「第1基準点」である点M5が、各々決定される。
 また、|Hmin|>|Hmax|および[Hmin]>[Hmax]の関係が、一つのマイナーループにおいて同時に満たされる場合がある。この場合は、「第1マイナーループ」と「第3マイナーループ」とが同じマイナーループとなり得る。例えば、図7(c)のマイナーループMAおよびマイナーループMBでは、|Hmin|>|Hmax|および[Hmin]>[Hmax]の関係が、いずれも満たされている。
 さらに、図7(c)に示す例では、下記の関係も満足している。
 図7(c)に示す領域Cでは、インバータ電源により高調波を含む励磁信号で鉄心を励磁する場合におけるヒステリシスループ(図7(c)に「高調波(実施例)」で示すヒステリシスループ」)に含まれる3つのマイナーループのうちの図7(c)の上から3番目のマイナーループMAにおいて、高調波を含まない正弦波の励磁信号で鉄心を励磁する場合のヒステリシスループHL(図7(c)に「正弦波」で示すヒステリシスループ」)に対して、磁界強度が小さい側(図7(c)の左側)に位置する部分とヒステリシスループHLとで作られる閉領域M3~M4~M5~M3の面積S1が、そのヒステリシスループHL(図7(c)に「正弦波」で示すヒステリシスループ)に対して磁界強度が大きい側(図7(c)の右側)に位置する部分とヒステリシスループHLとで作られる閉領域M1~M2~M3~M1の面積S2よりも大きい。
 また、図7(c)に示す領域Cに含まれる3つのマイナーループのうちの図7(c)の上から2番目のマイナーループMBにおいても、高調波を含まない正弦波の励磁信号で鉄心を励磁する場合のヒステリシスループHL(図7(c)に「正弦波」で示すヒステリシスループ」)に対して、磁界強度が小さい側(図7(c)の左側)に位置する部分とヒステリシスループHLとで作られる閉領域M7~M8~M9~M7の面積S3が、そのヒステリシスループHL(図7(c)に「正弦波」で示すヒステリシスループ)に対して磁界強度が大きい側(図7(c)の右側)に位置する部分とヒステリシスループHLとで作られる閉領域M5~M6~M7~M5の面積S4よりも大きい。
 また、図8(a)に示す領域D(つまり、高調波を除いた励磁信号で鉄心を励磁する場合のヒステリシスループHLの磁束密度が増加する領域)では、インバータ電源により高調波を含む励磁信号で鉄心を励磁する場合におけるヒステリシスループ(図8(a)に「高調波(実施例)」で示すヒステリシスループ」)に含まれる複数のマイナーループのうちの例えば図8(a)の下から2番目のマイナーループMA(M1~M2~M3~M4~M5)の始点M1(ヒステリシスループHLとの交点)を基準点とすると、マイナーループMAにおける磁界強度Hの最小値(つまり、マイナーループMA上の点M4における磁界強度Hの値)と、基準点M1における磁界強度Hの値との差の絶対値[Hmin]が、マイナーループMAにおける磁界強度Hの最大値(つまり、マイナーループMA上の点M2における磁界強度Hの値)と、基準点M1における磁界強度Hの値との差の絶対値[Hmax]を上回る関係を満足している。ここで、マイナーループMA(M1~M2~M3~M4~M5)は請求項5の「第3マイナーループ」に相当し、点M1は、マイナーループMAに対応する請求項5の「第1基準点」に相当する。
 図8(a)の下から3番目のマイナーループMB(M5~M6~M7~M8~M9)の始点M5(ヒステリシスループHLとの交点)を基準点とすると、マイナーループMBにおける磁界強度Hの最小値(つまり、マイナーループMB上の点M8における磁界強度Hの値)と、基準点M5における磁界強度Hの値との差の絶対値[Hmin]が、マイナーループMBにおける磁界強度Hの最大値(つまり、マイナーループMB上の点M6における磁界強度Hの値)と、基準点M5における磁界強度Hの値との差の絶対値[Hmax]を上回る関係を満足している。マイナーループMB(M5~M6~M7~M8~M9)は請求項5の「第3マイナーループ」に相当し、点M5は、マイナーループMBに対応する請求項5の「第1基準点」に相当する。
 図7(c)および図8(a)に示す例では、「第1マイナーループ」に相当するマイナーループが、ヒステリシスループの磁束密度Bが増加する領域に複数存在するが、「第1マイナーループ」に相当するマイナーループが、ヒステリシスループの磁束密度Bが増加する領域に1つのみ存在する場合であっても、鉄心の鉄損を低減することができる。
 図7(c)および図8(a)に示す例では、「第3マイナーループ」に相当するマイナーループが、ヒステリシスループの磁束密度Bが増加する領域に複数存在し、「第1基準点」に相当する点が、ヒステリシスループの磁束密度Bが増加する領域に複数存在するが、「第3マイナーループ」に相当するマイナーループが、ヒステリシスループの磁束密度Bが増加する領域に1つのみ存在する場合であっても、鉄心の鉄損を低減することができる。この場合には、「第1基準点」に相当する点が、ヒステリシスループの磁束密度Bが増加する領域に1つのみ存在する。
 また、図8(a)に示す例では、下記の関係も満足している。
 図8(a)に示す領域Dでは、インバータ電源により高調波を含む励磁信号で鉄心を励磁する場合におけるヒステリシスループ(図8(a)に「高調波(実施例)」で示すヒステリシスループ」)に含まれる複数のマイナーループのうちの例えば図8(a)の下から2番目のマイナーループMAにおいて、高調波を含まない正弦波の励磁信号で鉄心を励磁する場合のヒステリシスループHL(図8(a)に「正弦波」で示すヒステリシスループ」)に対して、磁界強度が小さい側(図8(a)の左側)に位置する部分とヒステリシスループHLとで作られる閉領域M3~M4~M5~M3の面積S1が、そのヒステリシスループHL(図8(a)に「正弦波」で示すヒステリシスループ)に対して磁界強度が大きい側(図8(a)の右側)に位置する部分とヒステリシスループHLとで作られる閉領域M1~M2~M3~M1の面積S2よりも大きい。
 また、図8(a)に示す領域Dに含まれる複数のマイナーループのうちの図8(a)の下から3番目のマイナーループMBにおいても、高調波を含まない正弦波の励磁信号で鉄心を励磁する場合のヒステリシスループHL(図8(a)に「正弦波」で示すヒステリシスループ」)に対して、磁界強度が小さい側(図8(a)の左側)に位置する部分とヒステリシスループHLとで作られる閉領域M7~M8~M9~M7の面積S3が、そのヒステリシスループHL(図8(a)に「正弦波」で示すヒステリシスループ)に対して磁界強度が大きい側(図8(a)の右側)に位置する部分とヒステリシスループHLとで作られる閉領域M5~M6~M7~M5の面積S4よりも大きい。
 そのような調整が行われた図5~図9に示す例では、正弦波で励磁した場合の鉄心の鉄損、高調波で励磁した場合の鉄心の鉄損が、それぞれ、10.84[W/kg]、5.47[W/kg]になった。このように、マイナーループにおける磁界強度Hの最大値Hmaxおよび最小値Hminの関係を調整することにより、あるいは、図7(c)などに「高調波(実施例)」で示すヒステリシスループに含まれるマイナーループにおける磁界強度Hの最小値と基準点M1における磁界強度の値との差の絶対値[Hmin]と、そのマイナーループにおける磁界強度Hの最大値と基準点M1における磁界強度の値との差の絶対値[Hmax]との関係を調整することにより、あるいは、図7(c)などに「高調波(実施例)」で示すヒステリシスループに含まれるマイナーループのうちの、図7(c)などに「正弦波」で示すヒステリシスループの内側に位置する部分の面積S1、S3と外側に位置する部分の面積S2、S4との関係を調整することにより、高調波で励磁した場合の鉄心の鉄損を、正弦波で励磁した場合の鉄心の鉄損よりも小さくすることができることが分かる。
 図10は、図5~図9に示すヒステリシスループを得たときの磁束密度Bの時間波形を示す図である。図10に示す時刻A~Iは、それぞれ、図6に示す領域A~Iに対応する(例えば、図10に示す時刻A付近における磁束密度Bと磁界強度Hの変化は、図6に示す領域A内のようになる(図7(a)に示すようになる))。
 正弦波で励磁した場合の磁束密度Bの時間波形1001の波形率、高調波で励磁した場合の磁束密度Bの時間波形1002の波形率は、それぞれ、1.1108、1.1154であり、両者は、略同じである。従って、マイナーループにおける磁界強度Hの最大値Hmaxおよび最小値Hminの関係を調整しても、鉄心における磁束密度の実効値(即ち、磁気エネルギー)を大きく変えることなく、磁界強度Hを減少させることができ、これにより、正弦波で鉄心を励磁する場合よりも鉄心の鉄損を小さくすることができることが分かる。
 図11は、図2、図5~図9に示すヒステリシスループにおける微小面積HdBの積算値の時間変化を示す図である。微小面積HdBは、磁界強度Hの値と、単位時間における磁束密度Bの変化量dBとの積である。ただし、図11では、HdBの積算値を、正弦波で鉄心を励磁した場合の時刻I(=0.005[s])における値を1とした場合の相対値で示す。
 具体的に、ヒステリシスループにおいて磁束密度Bが増加する領域(図6の領域A、B、C、D、E)では(図5の矢印線501を参照)、微小面積HdBは、横軸(磁界強度Hの軸)に平行に、ヒステリシスループを切った場合の、当該領域のヒステリシスループと縦軸(磁束密度Bの軸)とにより囲まれる短冊状の領域の面積である。このときの単位時間における磁束密度Bの変化量dBは正の値である。また、ヒステリシスループにおいて磁束密度Bが減少する領域(図6の領域E、F、G、H、I)では(図5の矢印線502を参照)、微小面積HdBは、横軸(磁界強度Hの軸)に平行に、ヒステリシスループを切った場合の、当該領域のヒステリシスループと縦軸(磁束密度Bの軸)とにより囲まれる短冊状の領域の面積である。このときの単位時間における磁束密度Bの変化量dBは負の値である。
 図10と同様に、図11に示す時刻A~Iは、それぞれ、図6に示す領域A~Iに対応する。時刻Aから時刻IまでのHdBを積算すると、ヒステリシスループ一周分の微小領域HdBの積算値が得られる。従って、時刻Iにおける微小領域HdBの積算値から、(1)式に基づいて、密度、周波数、鉄心の体積を使うことで鉄損値を算出することができる。
 図11において、グラフ1101(正弦波)は、正弦波で鉄心を励磁した場合の微小領域HdBの積算値を示す。グラフ1102(高調波(参考例))は、磁束密度Bおよび磁界強度Hが図2~図3に示すヒステリシスループのように変化する高調波で鉄心を励磁した場合の微小領域HdBの積算値を示す。グラフ1103(高調波(実施例))は、磁束密度Bおよび磁界強度Hが図5~図9に示すヒステリシスループのように変化する高調波で鉄心を励磁した場合の微小領域HdBの積算値を示す。
 グラフ1101、1102に示すように、正弦波で鉄心を励磁した場合と、領域Cの一部のマイナーループにおける磁界強度Hの最小値Hminの絶対値|Hmin|が、当該マイナーループにおける磁界強度Hの最大値Hmaxの絶対値|Hmax|を下回る(|Hmax|>|Hmin|)ようにする場合(図3(b)に示す場合)には、磁界強度Hの変化に対し磁束密度Bの変化が小さい領域以外の領域で、微小領域HdBの積算値は増大する。これに対し、グラフ1103に示すように、領域Cの一部のマイナーループにおける磁界強度Hの最小値Hminの絶対値|Hmin|が、当該マイナーループにおける磁界強度Hの最大値Hmaxの絶対値|Hmax|を上回る(|Hmax|<|Hmin|)ようにする(つまり、図7(c)に示すようにする)と、時刻C付近を中心とする時間帯において、微小領域HdBの積算値が低減することが分かる。
 以上のことから、以下のことが分かる。
 ヒステリシスループにおいて磁束密度Bが増加する領域の少なくとも一部(一部または全部)において、マイナーループにおける磁界強度Hの最小値Hminの絶対値|Hmin|が、当該マイナーループにおける磁界強度Hの最大値Hmaxの絶対値|Hmax|を上回る(|Hmax|<|Hmin|)ように(つまり、図7(c)に示す例のように)PWMインバータを動作させれば、正弦波で鉄心を励磁した場合よりも鉄心の鉄損を低減することができる(以下の説明では、このようにPWMインバータを動作させることを必要に応じて第1の動作と称する)。第1の動作は、ヒステリシスループにおいて磁束密度Bが増加する領域の少なくとも一部において、一つ以上のマイナーループに対して行われれば良く、鉄心の鉄損を低減することができる。
 一方、ヒステリシスループにおいて磁束密度Bが増加する領域と、当該ヒステリシスループにおいて磁束密度Bが低減する領域とは、磁束密度Bおよび磁界強度Hの増減の関係が逆になるだけである。例えば図6の領域F、G、H(高調波を除いた励磁信号で鉄心を励磁する場合のヒステリシスループの磁束密度が低減する領域)では、高調波を含む励磁信号で鉄心を励磁する場合のヒステリシスループのマイナーループの始点は、そのマイナーループの磁界強度Hが低減する方向(例えば図9の左向き)に時間変化している時の、高調波を除いた励磁信号で鉄心を励磁する場合のヒステリシスループとの交点である。従って、図5~図11を参照しながら説明したことは、ヒステリシスループにおいて磁束密度Bが低減する領域においても適用される。即ち、ヒステリシスループにおいて磁束密度Bが低減する領域の少なくとも一部(一部または全部)において、マイナーループ(請求項3の「第2マイナーループ」に相当する。)における磁界強度Hの最大値Hmaxの絶対値|Hmax|が、当該マイナーループにおける磁界強度Hの最小値Hminの絶対値|Hmin|を上回る(|Hmin|<|Hmax|)ようにPWMインバータを動作させれば、正弦波で鉄心を励磁した場合よりも鉄心の鉄損を低減することができる(以下の説明では、このようにしてPWMインバータを動作させることを必要に応じて第2の動作と称する)。「第2マイナーループ」に相当するマイナーループは、ヒステリシスループの磁束密度Bが低減する領域に、1つのみ存在しても、複数存在してもよい。
 つまり、図6(領域F、G、H)、図8(c)~図9(b)に示す例では、上述したPWMインバータの第2の動作が実現されていないが、PWMインバータの第2の動作を実現することによって、インバータ電源により高調波を含む励磁信号で鉄心を励磁する場合の鉄心の鉄損を、高調波を除いた励磁信号(正弦波の励磁信号)で鉄心を励磁する場合の鉄心の鉄損より小さくすることができる。
 図6(領域F、G、H)、図8(c)~図9(b)に示す例では、インバータ電源により高調波を含む励磁信号で鉄心を励磁する場合のヒステリシスループに含まれる複数のマイナーループのそれぞれにおける磁界強度Hの最大値と、基準点(そのマイナーループの始点)における磁界強度Hの値との差の絶対値[Hmax]が、マイナーループMにおける磁界強度Hの最小値と、基準点(そのマイナーループの始点)における磁界強度Hの値との差の絶対値[Hmin]を上回る関係を満足していない。
 インバータ電源により高調波を含む励磁信号で鉄心を励磁する場合のヒステリシスループに含まれる複数のマイナーループ(請求項6の「第4マイナーループ」に相当する。)のそれぞれにおける磁界強度Hの最大値と、基準点(そのマイナーループの始点)(請求項6の「第2基準点」に相当する。)における磁界強度Hの値との差の絶対値[Hmax]が、マイナーループMにおける磁界強度Hの最小値と、基準点(そのマイナーループの始点)における磁界強度Hの値との差の絶対値[Hmin]を上回る([Hmin]<[Hmax])関係を満足させることによっても、インバータ電源により高調波を含む励磁信号で鉄心を励磁する場合の鉄心の鉄損を、高調波を除いた励磁信号(正弦波の励磁信号)で鉄心を励磁する場合の鉄心の鉄損より小さくすることができる。
 「第4マイナーループ」に相当するマイナーループは、ヒステリシスループの磁束密度Bが低減する領域の少なくとも一部に、1つのみ存在しても、複数存在してもよい。また、一つの「第4マイナーループ」に対応する「第2基準点」は、一つのみ決定され、「第4マイナーループ」が複数存在する場合は、「第4マイナーループ」毎に、各々対応する「第2基準点」が存在する。よって、「第2基準点」に相当する基準点は、「第4マイナーループ」の数に対応し、ヒステリシスループの磁束密度Bが低減する領域の少なくとも一部に、1つのみ存在しても、複数存在してもよい。また、|Hmin|<|Hmax|および[Hmin]<[Hmax]の関係が、一つのマイナーループにおいて同時に満たされる場合がある。この場合は、「第2マイナーループ」と「第4マイナーループ」とが同じマイナーループとなり得る。
 また、図6(領域F、G、H)、図8(c)~図9(b)に示す例(ヒステリシスループの磁束密度が減少する例)では、「高調波(実施例)」で示すヒステリシスループに含まれるマイナーループのうちの、図8(c)~図9(b)に「正弦波」で示すヒステリシスループの内側(図8(c)~図9(b)の右側)に位置する部分(閉領域)の面積が、外側(図8(c)~図9(b)の左側)に位置する部分(閉領域)の面積より大きくされていない。
 ヒステリシスループの磁束密度が減少する例において、「高調波(実施例)」で示すヒステリシスループに含まれるマイナーループのうちの、図8(c)~図9(b)に「正弦波」で示すヒステリシスループの内側(図8(c)~図9(b)の右側)に位置する部分(閉領域)の面積を、外側(図8(c)~図9(b)の左側)に位置する部分(閉領域)の面積より大きくすることによっても、インバータ電源により高調波を含む励磁信号で鉄心を励磁する場合の鉄心の鉄損を、高調波を除いた励磁信号(正弦波の励磁信号)で鉄心を励磁する場合の鉄心の鉄損より小さくすることができる。
 ここで、ヒステリシスループにおいて、磁界強度Hの変化に対し磁束密度Bの変化が小さい領域(例えば、図6に示す領域A、B、D、E、F、H、I)では、PWMインバータに対して第1の動作および第2の動作が実行されにくい(|Hmax|<|Hmin|または|Hmin|<|Hmax|にすることが難しい)。従って、以上のようなPWMインバータの制御は、磁界強度Hの絶対値が小さく、磁界強度Hの変化に対し磁束密度Bの変化が大きい領域(例えば、図6に示す領域C、G)、即ち透磁率が大きい領域で行うのが好ましい。
 具体的には、ヒステリシスループに含まれる複数の領域(例えば図6に示す領域A~I)のうち、高調波を除いた励磁信号(つまり、正弦波の励磁信号)で鉄心を励磁する場合に鉄心の磁界強度Hの絶対値が100[A/m]以下になる領域(図6に示す例では、領域C(図7(c)に示す領域)、領域G(図9(a)に示す領域))で、PWMインバータに対して第1の動作または第2の動作を実行するのが好ましい。
 磁界強度Hの絶対値が100[A/m]以下の領域(図6に示す例では、領域C(図7(c)に示す領域)、領域G(図9(a)に示す領域))の全てで第1の動作および第2の動作のいずれかを実現するのが好ましいが、一部のみで第1の動作および第2の動作のいずれかを実現していればよい。例えば、ヒステリシスループにおいて磁束密度が増加する領域の一部において、一つ以上のマイナーループにおける磁界強度Hの最小値Hminの絶対値|Hmin|が、当該マイナーループにおける磁界強度Hの最大値Hmaxの絶対値|Hmax|を上回る領域があれば、その他の一部において、マイナーループにおける磁界強度Hの最小値Hminの絶対値|Hmin|が、当該マイナーループにおける磁界強度Hの最大値Hmaxの絶対値|Hmax|を上回らなくてもよい。
 図12は、鉄心を構成する軟磁性体板(電磁鋼板)の比透磁率μrと磁界強度Hとの関係の一例を示す図である。ここで、縦軸の比透磁率μrは、最大値を1とした相対値を記載している。また、図2~図11に示す結果を得る際に用いた鉄心を構成する軟磁性体板(電磁鋼板)に対するグラフを示している。
 ここで、磁界強度Hが100[A/m]以下の領域における比透磁率μrが大きい鉄心を用いた方が、前述した第1の動作および第2の動作が容易になる。以下、このことについて説明する。
 比透磁率が大きいということは、表皮深さが小さいことに対応する。表皮深さが小さいことは、渦電流密度が大きいことを意味する。渦電流は、磁束の変化を妨げる向きに発生するため、励磁電流の流れを妨げるように磁界強度Hが変化し易くなる(ヒステリシスループにおいて磁束密度Bが増加する領域では、磁界強度Hが低減し易くなり、ヒステリシスループにおいて磁束密度Bが低減する領域では、磁界強度Hが増加し易くなる)。従って、比透磁率μrが大きい鉄心の方が、第1の動作および第2の動作が容易になる。
 第1の動作および第2の動作は、前述したように、例えば、PWMインバータの変調率mおよびキャリア周波数を可変とすることで実現される。
 図13は、キャリア周波数および変調率mと鉄損比率との関係の一例を示す図である。鉄損比率は、高調波が重畳された正弦波の波形(PWMインバータ)で励磁した場合の鉄心の鉄損を、当該高調波を含まない当該正弦波で励磁した場合の鉄心の鉄損で割った値である。図13に示す例では、変調率mが0.4以上1.0以下の範囲であり、且つ、キャリア周波数が50[kHz]以上(100[kHz]以下)の範囲である場合に、第1の動作が実現され、高調波を含まない正弦波で励磁した場合の鉄心の鉄損よりも鉄心の鉄損を小さくすることができる。また、変調率mが2.0であり、且つ、キャリア周波数が5[kHz]以上15[kHz]以下の範囲にある場合に、第1の動作が実現され、高調波を含まない正弦波で励磁した場合の鉄心の鉄損よりも鉄心の鉄損を小さくすることができる。また、変調率mが2.0であり、キャリア周波数が20[kHz]以上(100[kHz]以下)の範囲である場合に、鉄心の鉄損は、高調波を含まない正弦波で励磁した場合の鉄心の鉄損と同等になる。一方、変調率mおよびキャリア周波数がそれ以外の場合には、第1の動作が実現されず、高調波を含まない正弦波で励磁した場合の鉄心の鉄損よりも鉄心の鉄損を小さくすることができない。
 従って、例えば、以下のようにして第1の動作および第2の動作を実現することができる。
 まず、実際に使用する電気機器およびPWMインバータと同じまたは同等のものを用意する。そして、PWMインバータから励磁信号を電気機器に出力して当該電気機器の鉄心を励磁させたときのヒステリシスループおよび鉄心の鉄損を測定することを、変調率m、およびキャリア周波数を変更して実施する。また、PWMインバータから出力される励磁信号から高調波を除いた信号を当該電気機器に出力して当該電気機器の鉄心を励磁させたときの鉄心の鉄損を測定する。尚、これらの測定に代えて、電磁場解析(数値解析)を行ってもよい。
 そして、第1の動作が実現される変調率mおよびキャリア周波数を探索する。このとき、例えば、(マイナーループを含む)ヒステリシスループを測定または解析することにより得て、当該ヒステリシスループから、第1の動作が実現されることを確認することができる。第2の動作についても同様にして第2の動作が実現される変調率mおよびキャリア周波数を探索する。
 そして、探索した変調率mおよびキャリア周波数の中から、PWMインバータから励磁信号で鉄心を励磁させた場合の鉄心の鉄損が、当該励磁信号から高調波を除いた信号で当該鉄心を励磁させた場合の鉄心の鉄損を下回るものを選択する。
 そして、第1の動作を実施するヒステリシスループの領域と、第1の動作に対して選択した変調率mおよびキャリア周波数とを相互に関連付けた情報を変調情報として記憶する。同様に、第2の動作を実施するヒステリシスループの領域と、第2の動作に対して選択した変調率mおよびキャリア周波数とを相互に関連付けた情報を変調情報として記憶する。尚、変調情報における、第1の動作(第2の動作)を実施するヒステリシスループの領域とは、ヒステリシスループにおいて、磁束密度Bが増加(減少)する領域として想定される領域(磁束密度Bと磁界強度Hとにより定まる領域)である。
 このとき、電気機器が定常動作をしない(即ち、励磁条件が変更される)電気機器である場合、第1の動作に対して選択した変調率mおよびキャリア周波数の組として、可及的に多くの組を記憶しておくのが好ましい。電気機器の動作指令を満たす変調率mおよびキャリア周波数を可及的に選択できるようにするためである。このことは、第2の動作に対して選択した変調率mおよびキャリア周波数についても同じである。
 例えば、電気機器がモータであれば、電気機器の動作指令には、モータの運転状態の目標値(目標範囲)が含まれる。モータの運転状態の目標値(目標範囲)には、モータの回転数の目標値(目標範囲)とトルクの目標値(目標範囲)とが含まれる。
 その後、PWMインバータを用いて電気機器の鉄心を励磁する際に、電気機器の鉄心の磁束密度Bおよび磁界強度Hが、第1の動作を実施するヒステリシスループの領域内にある場合、当該第1の動作を実施するヒステリシスループの領域に関連付けて記憶しておいた変調率mおよびキャリア周波数で動作することをPWMインバータに指示する。同様に、電気機器の鉄心の磁束密度Bおよび磁界強度Hが、第2の動作を実施するヒステリシスループの領域内にある場合、当該第2の動作を実施するヒステリシスループの領域に関連付けて記憶しておいた変調率mおよびキャリア周波数で動作することをPWMインバータに指示する。
<電気機器内の鉄心の励磁システム>
 図14は、電気機器内の鉄心の励磁システムの構成の一例を示す図である。以下の説明では、電気機器内の鉄心の励磁システムを、必要に応じて、励磁システムと略称する。
 図14において、励磁システムは、電気機器1410と、PWMインバータ1420と、変調動作設定装置1430とを有する。
 電気機器1410は、鉄心を有する電気機器であれば、特に限定されない。例えば、電気機器1410として、モータ、リアクトル、およびトランス(変圧器、変流器、変成器)等を用いることができる。電気機器は、単相のものでも三相のものでもよい。三相モータにおいては、分布巻きとすると、ステータコアの1つのティースに複数の相のコイルが巻き回される。このため、ステータコアにおける磁束が複雑になるため、鉄心の鉄損を低減できる変調率mおよびキャリア周波数の範囲が特定できなくなる虞がある。従って、三相モータについては、集中巻きの三相モータを電気機器1410として用いるのが好ましい。
 PWMインバータ1420は、電気機器1410の鉄心を励磁する電源である。本実施形態では、PWMインバータ1420は、キャリア波の振幅Ec(PWMインバータの変調率m)およびキャリア周波数を連続的に変更することができるものとする。
 以下に、変調動作設定装置1430が有する機能の一例を説明する。尚、変調動作設定装置1430のハードウェアは、例えば、CPU、ROM、RAM、HDD、および各種のインターフェースを備える情報処理装置や、PLC(Programmable Logic Controller)を用いることにより実現される。変調動作設定装置1430は、インバータ電源の変調動作を設定する設定手段として機能する。
 変調情報記憶部1431は、変調情報を記憶する。変調情報は、第1の動作または第2の動作を実施するヒステリシスループの領域と、変調動作を定めるパラメータとが相互に関連付けられた情報である。本実施形態では、インバータ電源がPWM方式で制御される。従って、変調動作を定めるパラメータは、<知見>の項で説明したように変調率mおよびキャリア周波数を含む。変調情報の求め方は、<知見>の項で説明した通りである。ここでは、ヒステリシスループにおいて、磁界強度Hの絶対値が100[A/m]以下の領域(詳細には、高調波を除いた励磁信号(つまり、正弦波の励磁信号)で鉄心を励磁する場合に鉄心の磁界強度Hの絶対値が100[A/m]以下になる領域)で第1の動作および第2の動作を実施するものとする。
 ヒステリシス領域判定部1432は、電気機器1410の鉄心の磁束密度Bおよび磁界強度Hの現在値に対応する変調情報が変調情報記憶部1431に記憶されているか否かを判定する。
 ここで、電気機器1410の鉄心の磁束密度Bは、例えば、電気機器1410の鉄心の磁束を検出するためのサーチコイルを配置し、サーチコイルに誘起される起電力からファラデーの電磁誘導の法則に基づいて導出することができる。また、電気機器1410の鉄心の磁界強度Hは、例えば、電気機器1410に流れる励磁電流からアンペールの法則に基づいて導出することができる。また、電気機器1410内にHコイルを設置し、磁界強度Hを測定することもできる。
 まず、ヒステリシス領域判定部1432は、第1の動作を実施するヒステリシスループの領域、または、第2の動作を実施するヒステリシスループの領域内に、電気機器1410の鉄心の磁束密度Bおよび磁界強度Hの現在値があるか否かを判定する。
 この判定の結果、第1の動作を実施するヒステリシスループの領域、または、第2の動作を実施するヒステリシスループの領域内に、電気機器1410の鉄心の磁束密度Bおよび磁界強度Hの現在値がない場合、ヒステリシス領域判定部1432は、電気機器1410の鉄心の磁束密度Bおよび磁界強度Hの現在値に対応する変調情報が変調情報記憶部1431に記憶されていないと判定し、そのことを示す情報を、PWM信号生成部1433に出力する。
 一方、第1の動作を実施するヒステリシスループの領域、または、第2の動作を実施するヒステリシスループの領域内に、電気機器1410の鉄心の磁束密度Bおよび磁界強度Hの現在値がある場合、ヒステリシス領域判定部1432は、電気機器1410の鉄心の磁束密度Bおよび磁界強度Hの現在値が、第1の動作を実施するヒステリシスループの領域および第2の動作を実施するヒステリシスループの領域の何れの範囲内にあるかを判定する。
 そして、ヒステリシス領域判定部1432は、電気機器1410の鉄心の磁束密度Bおよび磁界強度Hの現在値が、第1の動作を実施するヒステリシスループの領域内にある場合、当該第1の動作を実施するヒステリシスループの領域を含む変調情報の中に、電気機器1410の動作指令を満たす変調率mおよびキャリア周波数を含む変調情報があるか否かを判定する。
 この判定の結果、第1の動作を実施するヒステリシスループの領域を含む変調情報の中に、電気機器1410の動作指令を満たす変調率mおよびキャリア周波数を含む変調情報がなければ、ヒステリシス領域判定部1432は、電気機器1410の鉄心の磁束密度Bおよび磁界強度Hの現在値に対応する変調情報が変調情報記憶部1431に記憶されていないと判定し、そのことを示す情報を、PWM信号生成部1433に出力する。
 一方、第1の動作を実施するヒステリシスループの領域を含む変調情報の中に、電気機器1410の動作指令を満たす変調率mおよびキャリア周波数を含む変調情報があれば、ヒステリシス領域判定部1432は、電気機器1410の鉄心の磁束密度Bおよび磁界強度Hの現在値に対応する変調情報が変調情報記憶部1431に記憶されていると判定する。そして、ヒステリシス領域判定部1432は、電気機器1410の動作指令を満たす変調率mおよびキャリア周波数を含む変調情報のうちの1つを選択し、選択した変調情報を特定する情報をPWM信号生成部1433に出力する。
 変調情報の選択は、例えば、変調率mが最も小さい変調情報を選択するといった予め設定されたルールに従って行うことができる。
 また、電気機器1410が定常動作をする(即ち、励磁条件が変更されない)電気機器である場合、ヒステリシス領域判定部1432は、第1の動作を実施するヒステリシスループの領域を含む変調情報の中に、電気機器1410の動作指令を満たす変調率mおよびキャリア周波数を含む変調情報があるか否かを判定しないようにすることができる。この場合、ヒステリシス領域判定部1432は、第1の動作を実施するヒステリシスループの領域を含む変調情報のうちの1つを選択し、選択した変調情報を特定する情報をPWM信号生成部1433に出力する。
 また、ヒステリシス領域判定部1432は、電気機器1410の鉄心の磁束密度Bおよび磁界強度Hの現在値が、第2の動作を実施するヒステリシスループの領域内にある場合にも、電気機器1410の鉄心の磁束密度Bおよび磁界強度Hの現在値が、第1の動作を実施するヒステリシスループの領域内にある場合と同様に、変調情報を特定する情報、または、変調情報が変調情報記憶部1431に記憶されていないことを示す情報をPWM信号生成部1433に出力する。
 PWM信号生成部1433は、ヒステリシス領域判定部1432から、電気機器1410の鉄心の磁束密度Bおよび磁界強度Hの現在値に対応する変調情報を特定する情報が出力されると、当該変調情報に含まれる変調動作を定めるパラメータ(変調率mおよびキャリア周波数)を、変調情報記憶部1431から読み出す。そして、PWM信号生成部1433は、基本波およびキャリア波を生成するために必要な情報を含むPWM信号を生成し、PWMインバータ1420に出力する。当該情報には、例えば、キャリア波の振幅Ec、キャリア周波数、基本波の周波数等、PWMインバータ1420で基本波およびキャリア波を生成する際に変更することができるパラメータを含めることができる。
 一方、PWM信号生成部1433は、ヒステリシス領域判定部1432により、電気機器1410の鉄心の磁束密度Bおよび磁界強度Hの現在値に対応する変調情報が変調情報記憶部1431に記憶されていないことを示す情報が出力されると、変調動作を定めるパラメータ(変調率mおよびキャリア周波数)として、鉄損の低減(のためのマイナーループにおける磁界強度Hの最大値Hmaxと最小値Hminとの関係の調整)に寄与しない値を採用する。そして、PWM信号生成部1433は、採用した値に基づいて、基本波およびキャリア波を生成するために必要な情報を含むPWM信号を生成し、PWMインバータ1420に出力する。
 このときの変調動作を定めるパラメータの値として、例えば、第1の動作または第2の動作を行うときの変調動作を定めるパラメータ(変調率mおよびキャリア周波数)を用いることができる。尚、このようなパラメータを設定しても、磁界強度Hの変化に対し磁束密度Bの変化が鈍る領域では、第1の動作または第2の動作を実施することができない。即ち、このようなパラメータを設定しても、鉄損の低減(のためのマイナーループにおける磁界強度Hの最大値Hmaxと最小値Hminとの関係の調整)に寄与しない。
 しかしながら、<知見>の項で説明したように、第1の動作または第2の動作を行うときの変調動作を定めるパラメータでPWMインバータを動作させることを、ヒステリシスループの一周期に亘って継続して行っても、鉄心の鉄損を、高調波が重畳されていない正弦波で励磁した場合よりも低減することができる(図11のグラフ1101、1103を参照)。従って、このようにすれば、鉄心の損失を、より確実に低減することができる。ただし、必ずしもこのようにする必要はなく、既存のPWMインバータにおける動作に戻るように、変調動作を定めるパラメータ(変調率mおよびキャリア周波数)を設定してもよい。
 PWMインバータ1420は、以上のようにしてPWM信号生成部1433から出力されるPWM信号に基づいてPWM方式の変調動作を実施し、電気機器1410内の鉄心を励磁する。
<動作フローチャート>
 次に、図15のフローチャートを参照しながら、本実施形態の駆動システムの動作の一例を説明する。
 まず、ステップS1501において、PWM信号生成部1433は、電気機器1410の運転の開始が指示されると、基本波およびキャリア波を生成するために必要な情報を含むPWM信号をPWMインバータ1420に出力することにより、電気機器1410の運転の開始を指示する。このときに出力される変調動作を定めるパラメータ(変調率mおよびキャリア周波数)は、特に限定されない。例えば、このときに出力される変調動作を定めるパラメータ(変調率mおよびキャリア周波数)を、運転開始時の値として予め定められている値とすることができる。
 次に、ステップS1502において、ヒステリシス領域判定部1432は、電気機器1410の鉄心の磁束密度Bおよび磁界強度Hの現在値を取得(導出)する。
 次に、ステップS1503において、ヒステリシス領域判定部1432は、ステップS1502で取得した電気機器1410の鉄心の磁束密度Bおよび磁界強度Hの現在値に対応する変調情報が変調情報記憶部1431に記憶されているか否かを判定する。この判定の結果、電気機器1410の鉄心の磁束密度Bおよび磁界強度Hの現在値に対応する変調情報が変調情報記憶部1431に記憶されている場合、処理は、ステップS1504に進む。
 処理がステップS1504に進むと、ヒステリシス領域判定部1432は、電気機器1410の鉄心の磁束密度Bおよび磁界強度Hの現在値に対応する変調情報を特定する情報をPWM信号生成部1433に出力する。電気機器1410が定常動作をしない(即ち、励磁条件が変更される)電気機器である場合、電気機器1410の動作指令を満たす変調率mおよびキャリア周波数を含む変調情報が特定され、PWM信号生成部1433に出力される。
 次に、ステップS1504において、PWM信号生成部1433は、ステップS1504で出力された情報で特定される変調情報に含まれる変調動作を定めるパラメータ(変調率mおよびキャリア周波数)を、変調情報記憶部1431から読み出す。そして、PWM信号生成部1433は、当該読み出した変調動作を定めるパラメータ(変調率mおよびキャリア周波数)と、外部から入力される基本波の情報とに基づいて、基本波およびキャリア波を生成するために必要な情報を含むPWM信号を生成する。
 次に、ステップS1506において、PWM信号生成部1433は、PWM信号をPWMインバータ1420に出力する。PWMインバータ1420は、PWM信号に基づいてPWM方式の変調動作を実施し、電気機器1410内の鉄心を励磁する。
 次に、ステップS1507において、変調動作設定装置1430は、電気機器1410の動作を終了させるか否かを判定する。この判定は、例えば、オペレータが、変調動作設定装置1430のユーザインターフェースに対して、電気機器1410の動作を終了させるための操作を行ったか否かによって実現することができる。
 この判定の結果、電気機器1410の動作を終了させない場合、処理はステップS1502に戻り、電気機器1410内の鉄心の励磁を継続させる。そして、ステップS1507において、電気機器1410の動作を終了させると判定されると、図15のフローチャートによる処理が終了する。
 前述したステップS1503において、ステップS1502で取得した電気機器1410の鉄心の磁束密度Bおよび磁界強度Hの現在値に対応する変調情報が変調情報記憶部1431に記憶されていないと判定されると、処理は、ステップS1508に進む。処理がステップS1508に進むと、ヒステリシス領域判定部1432は、電気機器1410の鉄心の磁束密度Bおよび磁界強度Hの現在値に対応する変調情報がないことを示す情報をPWM信号生成部1433に出力する。
 次に、ステップS1509において、PWM信号生成部1433は、変調動作を定めるパラメータ(変調率mおよびキャリア周波数)を、鉄損の低減(のためのマイナーループにおける磁界強度Hの最大値Hmaxと最小値Hminとの関係の調整)に寄与しない値とする。そして、PWM信号生成部1433は、基本波およびキャリア波を生成するために必要な情報を含むPWM信号を生成する。そして、処理は、前述したステップS1506に進み、PWM信号生成部1433は、当該PWM信号をPWMインバータ1420に出力する。
<まとめ>
 以上のように本実施形態では、変調動作設定装置1430は、ヒステリシスループのマイナーループにおける磁界強度の最大値Hmaxと最小値Hminとの関係が調整されることにより、高調波を含む励磁信号から高調波を除いた信号で電気機器の鉄心を励磁する場合の当該鉄心の鉄損よりも当該鉄心の鉄損が小さくなるように、PWMインバータ1420の変調動作を設定する。具体的には、変調動作設定装置1430は、ヒステリシスループにおいて磁束密度Bが増加(減少)する領域の一部において、一部のマイナーループにおける磁界強度Hの最小値Hminの絶対値|Hmin|が、当該マイナーループにおける磁界強度Hの最大値Hmaxの絶対値|Hmax|を上回る(下回る)ようにPWMインバータ1420を動作させる。従って、インバータ電源を用いて励磁される鉄心の鉄損を低減することができる。
<変形例>
<<第1の変形例>>
 本実施形態では、第1の動作および第2の動作の双方を実施する場合を例に挙げて説明した。しかしながら、第1の動作または第2の動作のみを実施してもよい。このようにする場合であって、電気機器が、定常動作をする(即ち、励磁条件が変更されない)電気機器である場合、ヒステリシス領域判定部1432は、必ずしも必要ではない。即ち、第1の動作のみを実施する場合には、第1の動作に対する変調率mおよびキャリア周波数を継続して選択することができる。同様に、第2の動作のみを実施する場合には、第2の動作に対して選択する変調率mおよびキャリア周波数を継続して選択することができる。また、より確実に鉄損を低減するために、変調率mおよびキャリア周波数に加えて、変調動作を定めるその他のパラメータ(キャリア波の振幅や基本波の振幅等)も含めて変調情報を求めてもよい。
<<第2の変形例>>
 また、PWMインバータ1420から出力される励磁信号から高調波成分を除いた信号で励磁した場合の鉄心の鉄損よりも鉄心の鉄損が小さくなるように(即ち、磁束密度Bの最大値を変えずに、ヒステリシスループの面積が小さくなるように)、マイナーループにおける磁界強度Hの最大値Hmaxおよび最小値Hminの関係が調整されれば、必ずしも、第1の動作および第2の動作を実行しなくてもよい。図11において、微小領域HdBの積算値が減少しなくても、微小領域HdBの積算値の増加率(単位時間あたりの増加量)が、正弦波で鉄心を励磁した場合の微小領域HdBの積算値(グラフ1101)よりも小さければ、鉄心の鉄損を低減することができるからである。
<<第3の変形例>>
 本実施形態では、鉄心の鉄損の低減のみを考慮する場合を例に挙げて説明した。例えば、鉄心の発熱による昇温のために、電気機器1410としての動作が保証されなくなるのを抑制する必要がある等、他の部分よりも鉄心の発熱を抑制する必要がある場合がある。このような場合には、鉄心の鉄損の低減が、他の部分の損失の低減よりも優先される。
 尚、電気機器1410の主な損失としては、鉄損の他に銅損がある。銅損は、電気機器1410におけるコイルの配置スペースを大きくしてコイルの電流密度を低減し(コイルの断面積を大きくし)、コイルの直流抵抗を低減することにより、低減することができる。また、インバータ電源の主な損失として、スイッチング損失がある。スイッチング損失は、例えば、複数のインバータ電源を同期させて並列に動作させることにより、各スイッチング素子に流れる電流を小さくすることにより、低減することができる。
 しかしながら、電気機器1410の損失の内訳として、鉄損よりも銅損またはスイッチング損失の占める割合が多い場合がある。その場合、鉄損のみの低減を目的として変調動作を決定したとしても電気機器の効率が改善しない場合がある。そこで、高調波を含む励磁信号から高調波を除いた信号で電気機器の鉄心を励磁する場合の当該鉄心の鉄損よりも当該鉄心の鉄損が小さくなるように、変調情報(変調動作を定めるパラメータ)を求めることに代えて、励磁システム全体の損失(電気機器1410の損失(主として鉄損および銅損)とPWMインバータ1420の損失(主としてスイッチング損失)との和)が小さくなるように、変調情報(変調動作を定めるパラメータ)を求めるようにしてもよい。
<<第4の変形例>>
 本実施形態では、インバータ電源としてPWMインバータを用いる場合を例に挙げて説明した。しかしながら、インバータ電源は、PWMインバータを有するものに限定されない。インバータ電源の変調動作を定めるパラメータ(本実施形態では変調率mとキャリア周波数)は、インバータ電源における変調方式に基づいて定められる。例えば、PAM(Pulse Amplitude Modulation)インバータを用いる場合には、インバータ部に供給される直流電圧とモータへの出力電圧の比が変調動作を定めるパラメータに含まれる。
<<その他の変形例>>
 尚、以上説明した本発明の実施形態は、コンピュータがプログラムを実行することによって実現することができる。また、前記プログラムを記録したコンピュータ読み取り可能な記録媒体及び前記プログラム等のコンピュータプログラムプロダクトも本発明の実施形態として適用することができる。記録媒体としては、例えば、フレキシブルディスク、ハードディスク、光ディスク、光磁気ディスク、CD-ROM、磁気テープ、不揮発性のメモリカード、ROM等を用いることができる。
 また、以上説明した本発明の実施形態は、何れも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその技術思想、またはその主要な特徴から逸脱することなく、様々な形で実施することができる。
 1410:電気機器、1420:PWMインバータ、1430:変調動作設定装置、1431:変調情報記憶部、1432:ヒステリシス領域判定部、1433:PWM信号生成部

Claims (20)

  1.  鉄心を有する電気機器と、前記鉄心を励磁するために高調波を含む励磁信号を前記電気機器に出力するインバータ電源と、前記インバータ電源の変調動作を設定する変調動作設定装置と、を有する電気機器内の鉄心の励磁システムであって、
     前記変調動作設定装置は、前記鉄心の磁束密度と磁界強度との関係を示すヒステリシスループのマイナーループにおける前記磁界強度の最大値と最小値との関係に基づいて、前記インバータ電源の変調動作を設定する設定手段としての機能を有し、
     前記磁界強度の最大値と最小値との関係は、前記インバータ電源により高調波を含む励磁信号で前記鉄心を励磁する場合の前記鉄心の鉄損が、前記高調波を除いた励磁信号で前記鉄心を励磁する場合の前記鉄心の鉄損よりも小さくなるように調整された関係であることを特徴とする電気機器内の鉄心の励磁システム。
  2.  前記設定手段は、
     前記高調波を除いた励磁信号で前記鉄心を励磁する場合の前記ヒステリシスループの前記磁束密度が増加する領域の少なくとも一部において、前記高調波を含む励磁信号で前記鉄心を励磁する場合の前記ヒステリシスループのうちのいずれか1つのマイナーループである第1マイナーループにおける磁界強度の最大値と最小値との関係として、磁界強度の最小値の絶対値が、前記第1マイナーループにおける磁界強度の最大値の絶対値を上回る関係が得られるように、前記インバータ電源の変調動作を設定することを特徴とする請求項1に記載の電気機器内の鉄心の励磁システム。
  3.  前記設定手段は、
     前記高調波を除いた励磁信号で前記鉄心を励磁する場合の前記ヒステリシスループの前記磁束密度が低減する領域の少なくとも一部において、前記高調波を含む励磁信号で前記鉄心を励磁する場合の前記ヒステリシスループのうちのいずれか1つのマイナーループである第2マイナーループにおける磁界強度の最大値と最小値との関係として、磁界強度の最大値の絶対値が、前記第2マイナーループにおける磁界強度の最小値の絶対値を上回る関係が得られるように、前記インバータ電源の変調動作を設定することを特徴とする請求項1または2に記載の電気機器内の鉄心の励磁システム。
  4.  前記設定手段は、
     前記ヒステリシスループに含まれる複数の領域のうち、前記高調波を除いた励磁信号で前記鉄心を励磁する場合に前記鉄心の磁界強度の絶対値が100[A/m]以下になる領域において、前記磁界強度の最大値と最小値の関係が得られるように、前記インバータ電源の変調動作を設定することを特徴とする請求項1~3の何れか1項に記載の電気機器内の鉄心の励磁システム。
  5.  前記設定手段は、
     前記高調波を除いた励磁信号で前記鉄心を励磁する場合の前記ヒステリシスループの前記磁束密度が増加する領域の少なくとも一部において、前記高調波を含む励磁信号で前記鉄心を励磁する場合の前記ヒステリシスループのマイナーループにおける磁界強度の最大値と最小値との関係として、
     前記高調波を含む励磁信号で前記鉄心を励磁する場合の前記ヒステリシスループのうちのいずれか1つのマイナーループである第3マイナーループと、前記高調波を除いた励磁信号で前記鉄心を励磁する場合の前記ヒステリシスループとの交点の一つを第1基準点とし、
     前記第3マイナーループにおける磁界強度の最小値と、前記第1基準点における磁界強度の値との差の絶対値が、
     前記第3マイナーループにおける磁界強度の最大値と、前記第1基準点における磁界強度の値との差の絶対値を上回る関係が得られるように、前記インバータ電源の変調動作を設定することを特徴とする請求項1に記載の電気機器内の鉄心の励磁システム。
  6.  前記設定手段は、
     前記高調波を除いた励磁信号で前記鉄心を励磁する場合の前記ヒステリシスループの前記磁束密度が低減する領域の少なくとも一部において、前記高調波を含む励磁信号で前記鉄心を励磁する場合の前記ヒステリシスループのマイナーループにおける磁界強度の最大値と最小値との関係として、
     前記高調波を含む励磁信号で前記鉄心を励磁する場合の前記ヒステリシスループのうちのいずれか1つのマイナーループである第4マイナーループと、前記高調波を除いた励磁信号で前記鉄心を励磁する場合の前記ヒステリシスループとの交点の一つを第2基準点とし、
     前記第4マイナーループにおける磁界強度の最大値と、前記第2基準点における磁界強度の値との差の絶対値が、
     前記第4マイナーループにおける磁界強度の最小値と、前記第2基準点における磁界強度の値との差の絶対値を上回る関係が得られるように、前記インバータ電源の変調動作を設定することを特徴とする請求項1または5に記載の電気機器内の鉄心の励磁システム。
  7.  鉄心を有する電気機器と、前記鉄心を励磁するために高調波を含む励磁信号を前記電気機器に出力するインバータ電源と、前記インバータ電源の変調動作を設定する変調動作設定装置と、を有する電気機器内の鉄心の励磁システムであって、
     前記変調動作設定装置は、前記インバータ電源により高調波を含む励磁信号で前記鉄心を励磁する場合における磁界強度と前記鉄心内に発生する磁束密度とのヒステリシスループのマイナーループと、前記高調波を除いた励磁信号で前記鉄心を励磁する場合における磁界強度と前記鉄心内に発生する磁束密度とのヒステリシスループとで作られる閉領域の面積の関係に基づいて、前記インバータ電源の変調動作を設定し、前記関係は、前記インバータ電源により高調波を含む励磁信号で前記鉄心を励磁する場合の前記鉄心の鉄損が、前記高調波を除いた励磁信号で前記鉄心を励磁する場合の前記鉄心の鉄損よりも小さくなるように調整された関係であることを特徴とする電気機器内の鉄心の励磁システム。
  8.  鉄心を有する電気機器と、前記鉄心を励磁するために高調波を含む励磁信号を前記電気機器に出力するインバータ電源と、前記インバータ電源の変調動作を設定する変調動作設定装置と、を有する電気機器内の鉄心の励磁システムであって、
     前記変調動作設定装置は、前記インバータ電源により高調波を含む励磁信号で前記鉄心を励磁する場合における磁界強度と前記鉄心内に発生する磁束密度とのヒステリシスループのマイナーループと、前記高調波を除いた励磁信号で前記鉄心を励磁する場合における磁界強度と前記鉄心内に発生する磁束密度とのヒステリシスループとの関係に基づいて、前記インバータ電源の変調動作を設定し、
     前記関係は、前記高調波を除いた励磁信号で前記鉄心を励磁する場合の前記ヒステリシスループの前記磁束密度が増加する領域の少なくとも一部において、
     前記インバータ電源により高調波を含む励磁信号で前記鉄心を励磁する場合におけるヒステリシスループに含まれる複数のマイナーループのうち少なくとも一つは、前記高調波を除いた励磁信号で前記鉄心を励磁する場合におけるヒステリシスループに対して磁界強度が小さい側に位置する部分と、前記高調波を除いた励磁信号で前記鉄心を励磁する場合におけるヒステリシスループとで作られる閉領域の面積が、前記高調波を除いた励磁信号で前記鉄心を励磁する場合におけるヒステリシスループに対して磁界強度が大きい側に位置する部分と、前記高調波を除いた励磁信号で前記鉄心を励磁する場合におけるヒステリシスループとで作られる閉領域の面積よりも大きくなり、
     前記インバータ電源により高調波を含む励磁信号で前記鉄心を励磁する場合の前記鉄心の鉄損が、前記高調波を除いた励磁信号で前記鉄心を励磁する場合の前記鉄心の鉄損よりも小さくなるように調整された関係であることを特徴とする電気機器内の鉄心の励磁システム。
  9.  鉄心を有する電気機器と、前記鉄心を励磁するために高調波を含む励磁信号を前記電気機器に出力するインバータ電源と、前記インバータ電源の変調動作を設定する変調動作設定装置と、を有する電気機器内の鉄心の励磁システムであって、
     前記変調動作設定装置は、前記インバータ電源により高調波を含む励磁信号で前記鉄心を励磁する場合における磁界強度と前記鉄心内に発生する磁束密度とのヒステリシスループのマイナーループと、前記高調波を除いた励磁信号で前記鉄心を励磁する場合における磁界強度と前記鉄心内に発生する磁束密度とのヒステリシスループとの関係に基づいて、前記インバータ電源の変調動作を設定し、
     前記関係は、前記高調波を除いた励磁信号で前記鉄心を励磁する場合の前記ヒステリシスループの前記磁束密度が減少する領域の少なくとも一部において、
     前記インバータ電源により高調波を含む励磁信号で前記鉄心を励磁する場合におけるヒステリシスループに含まれる複数のマイナーループのうち少なくとも一つは、前記高調波を除いた励磁信号で前記鉄心を励磁する場合におけるヒステリシスループに対して磁界強度が大きい側に位置する部分と、前記高調波を除いた励磁信号で前記鉄心を励磁する場合におけるヒステリシスループとで作られる閉領域の面積が、前記高調波を除いた励磁信号で前記鉄心を励磁する場合におけるヒステリシスループに対して磁界強度が小さい側に位置する部分と、前記高調波を除いた励磁信号で前記鉄心を励磁する場合におけるヒステリシスループとで作られる閉領域の面積よりも大きくなり、
     前記インバータ電源により高調波を含む励磁信号で前記鉄心を励磁する場合の前記鉄心の鉄損が、前記高調波を除いた励磁信号で前記鉄心を励磁する場合の前記鉄心の鉄損よりも小さくなるように調整された関係であることを特徴とする電気機器内の鉄心の励磁システム。
  10.  前記変調動作設定装置は、
     前記ヒステリシスループに含まれる複数の領域のうち、前記高調波を除いた励磁信号で前記鉄心を励磁する場合に前記鉄心の磁界強度の絶対値が100[A/m]以下になる領域において、前記磁界強度の最大値と最小値の関係が得られるように、前記インバータ電源の変調動作を設定することを特徴とする請求項7~9の何れか1項に記載の電気機器内の鉄心の励磁システム。
  11.  前記インバータ電源は、PWM(Pulse Width Modulation)インバータを有し、
     前記設定手段または前記変調動作設定装置は、変調率とキャリア波の周波数を設定することにより、前記インバータ電源の変調動作を設定することを特徴とする請求項1~10の何れか1項に記載の電気機器内の鉄心の励磁システム。
  12.  電気機器の鉄心を励磁するために高調波を含む励磁信号を前記電気機器に出力するインバータ電源に関する電気機器内の鉄心の励磁方法であって、
     前記電気機器内の鉄心の励磁方法は、前記鉄心の磁束密度と磁界強度との関係を示すヒステリシスループのマイナーループにおける前記磁界強度の最大値と最小値との関係に基づいて、前記インバータ電源の変調動作を設定する設定工程を有し、
     前記磁界強度の最大値と最小値との関係は、前記インバータ電源により高調波を含む励磁信号で前記鉄心を励磁する場合の前記鉄心の鉄損が、前記高調波を除いた励磁信号で前記鉄心を励磁する場合の前記鉄心の鉄損よりも小さくなるように調整された関係であることを特徴とする電気機器内の鉄心の励磁方法。
  13.  電気機器の鉄心を励磁するために高調波を含む励磁信号を前記電気機器に出力するインバータ電源に関する電気機器内の鉄心の励磁方法であって、
     前記電気機器内の鉄心の励磁方法は、前記インバータ電源により高調波を含む励磁信号で前記鉄心を励磁する場合における磁界強度と前記鉄心内に発生する磁束密度とのヒステリシスループのマイナーループと、前記高調波を除いた励磁信号で前記鉄心を励磁する場合における磁界強度と前記鉄心内に発生する磁束密度とのヒステリシスループとで作られる閉領域の面積の関係に基づいて、前記インバータ電源の変調動作を設定し、前記関係は、前記インバータ電源により高調波を含む励磁信号で前記鉄心を励磁する場合の前記鉄心の鉄損が、前記高調波を除いた励磁信号で前記鉄心を励磁する場合の前記鉄心の鉄損よりも小さくなるように調整された関係であることを特徴とする電気機器内の鉄心の励磁方法。
  14.  電気機器の鉄心を励磁するために高調波を含む励磁信号を前記電気機器に出力するインバータ電源に関する電気機器内の鉄心の励磁方法であって、
     前記電気機器内の鉄心の励磁方法は、前記インバータ電源により高調波を含む励磁信号で前記鉄心を励磁する場合における磁界強度と前記鉄心内に発生する磁束密度とのヒステリシスループのマイナーループと、前記高調波を除いた励磁信号で前記鉄心を励磁する場合における磁界強度と前記鉄心内に発生する磁束密度とのヒステリシスループとの関係に基づいて、前記インバータ電源の変調動作を設定する設定工程を有し、
     前記関係は、前記高調波を除いた励磁信号で前記鉄心を励磁する場合の前記ヒステリシスループの前記磁束密度が増加する領域の少なくとも一部において、
     前記インバータ電源により高調波を含む励磁信号で前記鉄心を励磁する場合におけるヒステリシスループに含まれる複数のマイナーループのうち少なくとも一つは、前記高調波を除いた励磁信号で前記鉄心を励磁する場合におけるヒステリシスループに対して磁界強度が小さい側に位置する部分と、前記高調波を除いた励磁信号で前記鉄心を励磁する場合におけるヒステリシスループとで作られる閉領域の面積が、前記高調波を除いた励磁信号で前記鉄心を励磁する場合におけるヒステリシスループに対して磁界強度が大きい側に位置する部分と、前記高調波を除いた励磁信号で前記鉄心を励磁する場合におけるヒステリシスループとで作られる閉領域の面積よりも大きくなり、
     前記インバータ電源により高調波を含む励磁信号で前記鉄心を励磁する場合の前記鉄心の鉄損が、前記高調波を除いた励磁信号で前記鉄心を励磁する場合の前記鉄心の鉄損よりも小さくなるように調整された関係であることを特徴とする電気機器内の鉄心の励磁方法。
  15.  電気機器の鉄心を励磁するために高調波を含む励磁信号を前記電気機器に出力するインバータ電源に関する電気機器内の鉄心の励磁方法であって、
     前記電気機器内の鉄心の励磁方法は、前記インバータ電源により高調波を含む励磁信号で前記鉄心を励磁する場合における磁界強度と前記鉄心内に発生する磁束密度とのヒステリシスループのマイナーループと、前記高調波を除いた励磁信号で前記鉄心を励磁する場合における磁界強度と前記鉄心内に発生する磁束密度とのヒステリシスループとの関係に基づいて、前記インバータ電源の変調動作を設定する設定工程を有し、
     前記関係は、前記高調波を除いた励磁信号で前記鉄心を励磁する場合の前記ヒステリシスループの前記磁束密度が減少する領域の少なくとも一部において、
     前記インバータ電源により高調波を含む励磁信号で前記鉄心を励磁する場合におけるヒステリシスループに含まれる複数のマイナーループのうち少なくとも一つは、前記高調波を除いた励磁信号で前記鉄心を励磁する場合におけるヒステリシスループに対して磁界強度が大きい側に位置する部分と、前記高調波を除いた励磁信号で前記鉄心を励磁する場合におけるヒステリシスループとで作られる閉領域の面積が、前記高調波を除いた励磁信号で前記鉄心を励磁する場合におけるヒステリシスループに対して磁界強度が小さい側に位置する部分と、前記高調波を除いた励磁信号で前記鉄心を励磁する場合におけるヒステリシスループとで作られる閉領域の面積よりも大きくなり、
     前記インバータ電源により高調波を含む励磁信号で前記鉄心を励磁する場合の前記鉄心の鉄損が、前記高調波を除いた励磁信号で前記鉄心を励磁する場合の前記鉄心の鉄損よりも小さくなるように調整された関係であることを特徴とする電気機器内の鉄心の励磁方法。
  16.  請求項1~11の何れか1項に記載の電気機器内の鉄心の励磁システムの各手段としてコンピュータを機能させることを特徴とするプログラム。
  17.  電気機器の鉄心を励磁するために高調波を含む励磁信号を前記電気機器に出力するインバータ電源の変調動作設定装置であって、
     前記インバータ電源の変調動作設定装置は、前記鉄心の磁束密度と磁界強度との関係を示すヒステリシスループのマイナーループにおける前記磁界強度の最大値と最小値との関係に基づいて、前記インバータ電源の変調動作を設定し、
     前記磁界強度の最大値と最小値との関係は、前記インバータ電源により高調波を含む励磁信号で前記鉄心を励磁する場合の前記鉄心の鉄損が、前記高調波を除いた励磁信号で前記鉄心を励磁する場合の前記鉄心の鉄損よりも小さくなるように調整された関係であることを特徴とするインバータ電源の変調動作設定装置。
  18.  電気機器の鉄心を励磁するために高調波を含む励磁信号を前記電気機器に出力するインバータ電源の変調動作設定装置であって、
     前記インバータ電源の変調動作設定装置は、前記インバータ電源により高調波を含む励磁信号で前記鉄心を励磁する場合における磁界強度と前記鉄心内に発生する磁束密度とのヒステリシスループのマイナーループと、前記高調波を除いた励磁信号で前記鉄心を励磁する場合における磁界強度と前記鉄心内に発生する磁束密度とのヒステリシスループとで作られる閉領域の面積の関係に基づいて、前記インバータ電源の変調動作を設定し、前記関係は、前記インバータ電源により高調波を含む励磁信号で前記鉄心を励磁する場合の前記鉄心の鉄損が、前記高調波を除いた励磁信号で前記鉄心を励磁する場合の前記鉄心の鉄損よりも小さくなるように調整された関係であることを特徴とするインバータ電源の変調動作設定装置。
  19.  電気機器の鉄心を励磁するために高調波を含む励磁信号を前記電気機器に出力するインバータ電源の変調動作設定装置であって、
     前記インバータ電源の変調動作設定装置は、前記インバータ電源により高調波を含む励磁信号で前記鉄心を励磁する場合における磁界強度と前記鉄心内に発生する磁束密度とのヒステリシスループのマイナーループと、前記高調波を除いた励磁信号で前記鉄心を励磁する場合における磁界強度と前記鉄心内に発生する磁束密度とのヒステリシスループとの関係に基づいて、前記インバータ電源の変調動作を設定し、
     前記関係は、前記高調波を除いた励磁信号で前記鉄心を励磁する場合の前記ヒステリシスループの前記磁束密度が増加する領域の少なくとも一部において、
     前記インバータ電源により高調波を含む励磁信号で前記鉄心を励磁する場合におけるヒステリシスループに含まれる複数のマイナーループのうち少なくとも一つは、前記高調波を除いた励磁信号で前記鉄心を励磁する場合におけるヒステリシスループに対して磁界強度が小さい側に位置する部分と、前記高調波を除いた励磁信号で前記鉄心を励磁する場合におけるヒステリシスループとで作られる閉領域の面積が、前記高調波を除いた励磁信号で前記鉄心を励磁する場合におけるヒステリシスループに対して磁界強度が大きい側に位置する部分と、前記高調波を除いた励磁信号で前記鉄心を励磁する場合におけるヒステリシスループとで作られる閉領域の面積よりも大きくなり、
     前記インバータ電源により高調波を含む励磁信号で前記鉄心を励磁する場合の前記鉄心の鉄損が、前記高調波を除いた励磁信号で前記鉄心を励磁する場合の前記鉄心の鉄損よりも小さくなるように調整された関係であることを特徴とするインバータ電源の変調動作設定装置。
  20.  電気機器の鉄心を励磁するために高調波を含む励磁信号を前記電気機器に出力するインバータ電源の変調動作設定装置であって、
     前記インバータ電源の変調動作設定装置は、前記インバータ電源により高調波を含む励磁信号で前記鉄心を励磁する場合における磁界強度と前記鉄心内に発生する磁束密度とのヒステリシスループのマイナーループと、前記高調波を除いた励磁信号で前記鉄心を励磁する場合における磁界強度と前記鉄心内に発生する磁束密度とのヒステリシスループとの関係に基づいて、前記インバータ電源の変調動作を設定し、
     前記関係は、前記高調波を除いた励磁信号で前記鉄心を励磁する場合の前記ヒステリシスループの前記磁束密度が減少する領域の少なくとも一部において、
     前記インバータ電源により高調波を含む励磁信号で前記鉄心を励磁する場合におけるヒステリシスループに含まれる複数のマイナーループのうち少なくとも一つは、前記高調波を除いた励磁信号で前記鉄心を励磁する場合におけるヒステリシスループに対して磁界強度が大きい側に位置する部分と、前記高調波を除いた励磁信号で前記鉄心を励磁する場合におけるヒステリシスループとで作られる閉領域の面積が、前記高調波を除いた励磁信号で前記鉄心を励磁する場合におけるヒステリシスループに対して磁界強度が小さい側に位置する部分と、前記高調波を除いた励磁信号で前記鉄心を励磁する場合におけるヒステリシスループとで作られる閉領域の面積よりも大きくなり、
     前記インバータ電源により高調波を含む励磁信号で前記鉄心を励磁する場合の前記鉄心の鉄損が、前記高調波を除いた励磁信号で前記鉄心を励磁する場合の前記鉄心の鉄損よりも小さくなるように調整された関係であることを特徴とするインバータ電源の変調動作設定装置。
PCT/JP2019/036953 2018-09-21 2019-09-20 電気機器内の鉄心の励磁システム、電気機器内の鉄心の励磁方法、プログラムおよびインバータ電源の変調動作設定装置 WO2020059852A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
MX2021001104A MX2021001104A (es) 2018-09-21 2019-09-20 Sistema para excitar nucleo de hierro en dispositivos electricos, metodo para excitar nucleo de hierro en dispositivos electricos, programa, y dispositivo de ajuste de operacion de modulacion para la fuente de suministro de energia del inversor.
RU2021101692A RU2769676C1 (ru) 2018-09-21 2019-09-20 Система для возбуждения железного сердечника в электрическом устройстве, способ возбуждения железного сердечника в электрическом устройстве, устройство настройки операции модуляции для инверторного источника питания
KR1020217002532A KR102529816B1 (ko) 2018-09-21 2019-09-20 전기 기기 내의 철심의 여자 시스템, 전기 기기 내의 철심의 여자 방법, 프로그램이 기록된 컴퓨터 판독 가능한 기록 매체 및 인버터 전원의 변조 동작 설정 장치
CA3103649A CA3103649C (en) 2018-09-21 2019-09-20 Methods, systems and devices for reducing iron losses in an electric machine excited by an inverter power supply
US17/256,067 US11671049B2 (en) 2018-09-21 2019-09-20 System for exciting iron core in electric device, method for exciting iron core in electric device, program, and modulation operation-setting device for inverter power supply
BR112020025068-6A BR112020025068A2 (pt) 2018-09-21 2019-09-20 sistema para excitação do núcleo de ferro em dispositivo elétrico, método para excitação do núcleo de ferro em dispositivo elétrico, programa e dispositivo de configuração de operação de modulação para fonte de alimentação de inversor
JP2020549117A JP6996640B2 (ja) 2018-09-21 2019-09-20 電気機器内の鉄心の励磁システム、電気機器内の鉄心の励磁方法、プログラムおよびインバータ電源の変調動作設定装置
CN201980050654.6A CN112514242B (zh) 2018-09-21 2019-09-20 电气设备内的铁芯的励磁系统、励磁方法、程序及变换器电源的调制动作设定装置
EP19861693.0A EP3855614A4 (en) 2018-09-21 2019-09-20 IRON CORE EXCITATION SYSTEM IN ELECTRICAL MACHINE, IRON CORE EXCITATION METHOD IN ELECTRICAL MACHINE, MODULATION OPERATION PROGRAM AND DEVICE FOR AN INVERTER POWER SOURCE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018177724 2018-09-21
JP2018-177724 2018-09-21

Publications (1)

Publication Number Publication Date
WO2020059852A1 true WO2020059852A1 (ja) 2020-03-26

Family

ID=69887210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/036953 WO2020059852A1 (ja) 2018-09-21 2019-09-20 電気機器内の鉄心の励磁システム、電気機器内の鉄心の励磁方法、プログラムおよびインバータ電源の変調動作設定装置

Country Status (11)

Country Link
US (1) US11671049B2 (ja)
EP (1) EP3855614A4 (ja)
JP (1) JP6996640B2 (ja)
KR (1) KR102529816B1 (ja)
CN (1) CN112514242B (ja)
BR (1) BR112020025068A2 (ja)
CA (2) CA3203071A1 (ja)
MX (1) MX2021001104A (ja)
RU (1) RU2769676C1 (ja)
TW (1) TWI728474B (ja)
WO (1) WO2020059852A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113835052A (zh) * 2021-09-17 2021-12-24 国网江苏省电力有限公司盐城供电分公司 一种基于激励信号的铁芯磁场检测方法
CN115308493A (zh) * 2022-07-11 2022-11-08 浙江大学 一种电工钢铁芯损耗测试方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0945534A (ja) 1995-08-01 1997-02-14 Nkk Corp 重畳波特性の優れたリアクトル鉄心
JP2006191775A (ja) * 2005-01-07 2006-07-20 Mitsubishi Electric Corp 電動機装置
JP2012010513A (ja) * 2010-06-25 2012-01-12 Nippon Steel Corp モータ駆動装置
JP4995518B2 (ja) 2006-09-14 2012-08-08 三菱電機株式会社 交流電動機の制御装置およびその鉄損抑制用重畳電流の演算方法
JP2018177724A (ja) 2017-04-18 2018-11-15 花王株式会社 外用薬

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4124425B2 (ja) * 2002-07-29 2008-07-23 三菱電機株式会社 電動機およびその駆動装置
CA2659088C (en) 2006-07-24 2013-07-09 Kabushiki Kaisha Toshiba Variable-flux motor drive system
JP5134846B2 (ja) * 2007-03-26 2013-01-30 株式会社東芝 永久磁石電動機ドライブシステム
TWM356205U (en) * 2008-12-12 2009-05-01 Fortune Electric Co Ltd Amorphous alloy core structure and transformer thereof
JP5381218B2 (ja) * 2009-03-25 2014-01-08 日産自動車株式会社 電動機の制御装置
JP5609376B2 (ja) * 2010-07-27 2014-10-22 富士電機株式会社 鉄損の推定方法
CN102540111A (zh) * 2011-12-22 2012-07-04 江苏宏安变压器有限公司 一种新型非晶合金干变拉板结构及其涡流在线监测方法
WO2013099258A1 (ja) * 2011-12-27 2013-07-04 Jfeスチール株式会社 方向性電磁鋼板
CN105874704B (zh) * 2014-01-09 2018-09-07 三菱电机株式会社 同步电动机、其驱动电路、鼓风机、以及空调机
EP3264583B1 (en) 2015-02-25 2019-12-04 Hitachi Mitsubishi Hydro Corporation Variable-speed generator-motor device and variable-speed generator-motor system
JP6610346B2 (ja) * 2016-03-09 2019-11-27 日本製鉄株式会社 磁気特性解析装置、磁気特性解析方法、及びコンピュータプログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0945534A (ja) 1995-08-01 1997-02-14 Nkk Corp 重畳波特性の優れたリアクトル鉄心
JP2006191775A (ja) * 2005-01-07 2006-07-20 Mitsubishi Electric Corp 電動機装置
JP4995518B2 (ja) 2006-09-14 2012-08-08 三菱電機株式会社 交流電動機の制御装置およびその鉄損抑制用重畳電流の演算方法
JP2012010513A (ja) * 2010-06-25 2012-01-12 Nippon Steel Corp モータ駆動装置
JP2018177724A (ja) 2017-04-18 2018-11-15 花王株式会社 外用薬

Also Published As

Publication number Publication date
KR102529816B1 (ko) 2023-05-09
BR112020025068A2 (pt) 2021-03-23
CN112514242B (zh) 2024-02-20
KR20210024115A (ko) 2021-03-04
CN112514242A (zh) 2021-03-16
JPWO2020059852A1 (ja) 2021-08-30
TWI728474B (zh) 2021-05-21
EP3855614A1 (en) 2021-07-28
EP3855614A4 (en) 2022-06-01
JP6996640B2 (ja) 2022-01-17
CA3203071A1 (en) 2020-03-26
US11671049B2 (en) 2023-06-06
TW202025615A (zh) 2020-07-01
CA3103649A1 (en) 2020-03-26
CA3103649C (en) 2023-10-03
US20210273595A1 (en) 2021-09-02
RU2769676C1 (ru) 2022-04-04
MX2021001104A (es) 2021-03-31

Similar Documents

Publication Publication Date Title
Shimizu et al. A practical iron loss calculation for AC filter inductors used in PWM inverters
WO2020059852A1 (ja) 電気機器内の鉄心の励磁システム、電気機器内の鉄心の励磁方法、プログラムおよびインバータ電源の変調動作設定装置
EP2800454B1 (en) Induction heating cooker
JP2007026728A (ja) 誘導加熱方法及び焼入方法
TWI713296B (zh) 載波頻率設定方法、馬達驅動系統及載波頻率設定裝置
JP2010193684A (ja) 電源装置
JP6369267B2 (ja) 鉄損測定装置、鉄損測定方法、およびプログラム
JP2007073400A (ja) 誘導加熱装置
JP4246106B2 (ja) 飽和可能リアクトルを備えた電気アーク溶接機の電源
Boehm et al. Influence of pulse width modulation (PWM) on the iron losses of electrical steel
KR20070008833A (ko) 전자유도가열기 및 그 제어방법
JPH11121159A (ja) 電磁調理器
JP4363355B2 (ja) 誘導加熱装置
JP2667008B2 (ja) 電磁調理器
JP2019175691A (ja) 誘導加熱装置およびその駆動制御方法
JP2006015163A (ja) 生体内部加熱用磁束照射装置
JP2003257608A (ja) 誘導加熱調理器
JP2008027922A (ja) 誘導加熱調理器
JP2004030965A (ja) 誘導加熱装置
JP2005293941A (ja) 誘導加熱調理器
WO2012160752A1 (ja) 変圧器およびアーク放電加工装置
JPH1052754A (ja) アーク加工用電源装置
JP2012010513A (ja) モータ駆動装置
Yun Magnetic Properties of Electrical Steel Sheets with Motor Control Excitation
JP2019120604A (ja) 鉄損測定方法および鉄損測定システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19861693

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2020549117

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 3103649

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020025068

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20217002532

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112020025068

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20201208

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019861693

Country of ref document: EP

Effective date: 20210421