WO2020054844A1 - 導電性インク及びカーボン配線基板 - Google Patents

導電性インク及びカーボン配線基板 Download PDF

Info

Publication number
WO2020054844A1
WO2020054844A1 PCT/JP2019/036084 JP2019036084W WO2020054844A1 WO 2020054844 A1 WO2020054844 A1 WO 2020054844A1 JP 2019036084 W JP2019036084 W JP 2019036084W WO 2020054844 A1 WO2020054844 A1 WO 2020054844A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
strain
binder resin
poly
carbon
Prior art date
Application number
PCT/JP2019/036084
Other languages
English (en)
French (fr)
Inventor
徹平 荒木
毅 関谷
惇 ▲桑▼原
石井 伸晃
英樹 大籏
Original Assignee
国立大学法人大阪大学
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学, 昭和電工株式会社 filed Critical 国立大学法人大阪大学
Priority to JP2020546222A priority Critical patent/JPWO2020054844A1/ja
Priority to US17/274,995 priority patent/US20220056295A1/en
Priority to KR1020217001070A priority patent/KR20210021031A/ko
Priority to EP19860573.5A priority patent/EP3851501A1/en
Priority to CN201980048289.5A priority patent/CN112469788A/zh
Publication of WO2020054844A1 publication Critical patent/WO2020054844A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/033Printing inks characterised by features other than the chemical nature of the binder characterised by the solvent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/037Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/106Printing inks based on artificial resins containing macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/14Printing inks based on carbohydrates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • G01B7/18Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge using change in resistance
    • G01B7/20Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge using change in resistance formed by printed-circuit technique
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/095Dispersed materials, e.g. conductive pastes or inks for polymer thick films, i.e. having a permanent organic polymeric binder
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/282Applying non-metallic protective coatings for inhibiting the corrosion of the circuit, e.g. for preserving the solderability
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0242Shape of an individual particle
    • H05K2201/026Nanotubes or nanowires
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/032Materials
    • H05K2201/0323Carbon

Definitions

  • the present invention relates to a conductive ink suitable for forming a resistive film of a resistive strain sensor and a carbon wiring substrate using the conductive ink.
  • a mechanical sensor such as a pressure sensor or an acceleration sensor uses a strain sensor element (strain gauge) for detecting a deformation amount of an object to be measured.
  • a strain sensor element including a strain resistance thin film that deforms in accordance with the strain of a measurement target, the amount of deformation of the measurement target can be detected by measuring the electric resistance of the strain resistance thin film.
  • Foil gauges, semiconductor sensors, and optical fiber sensors are well known as resistance strain sensor elements.
  • the strain detection range of a strain gauge for concrete using a thin metal foil for the sensor portion is narrow because the thin metal foil is easily broken, and can detect only about 2% strain.
  • the pie gauge can detect a large distortion, but has a special installation method, and is inferior in large area and constant observability.
  • organic-based printed resistors are widely known as being capable of forming a resistor at low cost (for example, JP-A-59-22387 (Patent Document 1)).
  • the gauge factor is small, and the resistance value change due to temperature and humidity is large, so there is a problem in using it as a strain gauge.
  • thermosetting resin for example, Japanese Patent Application Laid-Open No. 7-243805 (Patent Document 2)
  • the thermosetting resin is generally hard and brittle, so that a large distortion occurs. Cannot detect.
  • a soft resin such as rubber
  • it is considered that the creep is large and it is not suitable for detecting static strain.
  • the known carbon wiring board has a large resin-rich composition and has no gap, so that the strain detection range is narrow.
  • An object of the present invention is to provide a conductive ink suitable for an inexpensive carbon wiring substrate having a wide strain detection range and a carbon wiring substrate using the same.
  • the present invention includes the following embodiments.
  • the binder resin (B) is contained in an amount of 0.5 to 23 parts by mass with respect to 100 parts by mass, and the mass ratio of the cellulose compound (B1) to the polyN-vinyl compound (B2) is 80:20. ⁇ 40: 60, and the solvent (C) contains water (C1).
  • the binder resin (B) is contained in an amount of 0.5 to 23 parts by mass with respect to 100 parts by mass of the carbonaceous conductive material (A), and is mixed with the cellulose compound (B1) and the poly-N-vinyl compound (B2).
  • the binder resin (B) is contained in an amount of 0.5 to 23 parts by mass, and the mass ratio of the cellulose compound (B1) to the polyN-vinyl compound (B2) is 80:20 to 40:60.
  • an inexpensive carbon wiring substrate having a wide strain detection range can be manufactured.
  • this carbon wiring substrate as a strain sensor, it is effective in measuring infrastructure structures such as concrete structures that require large area measurement.
  • "wide" strain sensing range means 0-10%.
  • FIG. 6 is a diagram showing the results of strain sensitivity measurement (changes in resistance and strain with time) when a 1% strain is applied to the carbon wiring substrate of Example 1.
  • FIG. 9 is a diagram showing a result of strain sensitivity measurement (change in resistance with time for each repetition) with a 1% strain applied to the carbon wiring substrate of Example 1.
  • FIG. 14 is a diagram illustrating a configuration of a strain sensor according to a fourth embodiment.
  • embodiments for carrying out the present invention (hereinafter, referred to as embodiments) will be described.
  • a first embodiment of the present invention is a conductive ink, which comprises a carbonaceous conductive material (A), a binder resin (B) containing a cellulose compound (B1) and a poly N-vinyl compound (B2), and a solvent (C). ), 0.5 to 23 parts by mass of the binder resin (B) with respect to 100 parts by mass of the carbonaceous conductive material (A), and the cellulose compound (B1) and the poly-N-vinyl compound It is characterized in that the blending ratio with (B2) is from 80:20 to 40:60.
  • each component will be described.
  • Carbonaceous conductive material (A) The carbonaceous conductive material (A) used for the conductive ink of the present embodiment is carbonaceous. It is preferable to use graphite powder as the carbonaceous conductive material. Graphite powder includes natural graphite powder, artificial graphite powder, and quiche graphite powder, but in order to obtain a stable resistance value on the wiring board, the quality is stable because it is a primary particle with few impurities and solid inside. Preferred artificial graphite powder is preferred.
  • the average particle size of the carbonaceous conductive material (A) is preferably 25 ⁇ m or less.
  • the average particle size is 25 ⁇ m or less, it is preferable because problems such as the brittleness of the carbon wiring formed on the insulating substrate and the decrease in the printing applicability of the conductive paste hardly occur. More preferably, it is 5 to 20 ⁇ m, and still more preferably 10 to 15 ⁇ m.
  • Means "average particle diameter" and D 50 value determined by a laser diffraction scattering method is herein (mass basis). However, if it is 20% by mass or less of the total solid content of the conductive ink, it can be used in combination with other carbon powders such as carbon black, fullerenes, and carbon nanotubes. However, when a fibrous material such as a carbon nanotube is used in combination, the fiber length is preferably 50 ⁇ m or less, and more preferably 40 ⁇ m or less.
  • Binder resin (B) The binder resin (B) used in the conductive ink of the present embodiment forms a carbon wiring substrate such as a carbonaceous conductive material (A) which is carbonaceous or an insulating resin substrate on which a wiring pattern is formed using the conductive ink. And a function of uniformly and stably dispersing the carbonaceous conductive material (A) in the conductive ink and other optional components that can be blended as necessary. , A cellulose compound (B1) and a poly-N-vinyl compound (B2) as essential components.
  • Examples of the cellulose compound (B1) include methyl cellulose, ethyl cellulose, propyl cellulose, carboxymethyl cellulose [CMC], and celluloses containing metal salts thereof. Among them, carboxymethylcellulose [CMC] and sodium salt of carboxymethylcellulose [CMCNa] are preferable.
  • poly N-vinyl compound (B2) examples include poly N-vinyl formamide, poly N-vinyl acetamide or poly N-vinyl propioamide, poly N-vinyl pyrrolidone, poly N-vinyl caprolactam and the like.
  • these poly-N-vinyl compounds (B2) homopolymers in which the polymer is composed of a single monomer unit can be suitably used, but less than 50 mol%, preferably 30 mol% or less, more preferably Those containing other monomer units in an amount of 20 mol% or less, more preferably 10 mol% or less can be used.
  • poly N-vinylacetamide is preferred.
  • the binder resin (B) includes, as other polymers, polyacrylic acid, polyvinyl alcohol, polyvinyl acetal, a sulfonic acid group-containing water-soluble polymer (such as polystyrene sulfonic acid), a phosphate group-containing water-soluble polymer (such as polyphosphoric acid), and the like. Polymers in which some or all of the acid groups of these polymers have been converted into salts (such as sodium salts) may be included in a range that does not adversely affect the performance.
  • a salt of carboxymethyl cellulose [CMC] (sodium carboxymethyl cellulose [CNCNa]) and poly N-vinyl acetamide [PNVA] may be used. Mixtures are preferred.
  • the mass ratio of the cellulose compound (B1) to the poly N-vinyl compound (B2) is such that the cellulose compound (B1): poly N-vinyl compound (B2) [mass ratio] is 80:20 to 40:60, The ratio is preferably from 70:30 to 45:55, and more preferably from 60:40 to 50:50.
  • the binder resin (B) of the conductive ink is contained in an amount of 0.5 to 23 parts by mass, more preferably 2 to 20 parts by mass, more preferably 5 to 20 parts by mass, per 100 parts by mass of the carbonaceous conductive material (A). It is more preferably contained by mass, particularly preferably from 10 to 20 parts by mass.
  • Solvent (C) In the conductive ink of the present embodiment, the binder resin (B) is dissolved in addition to the carbonaceous conductive material (A) and the binder resin (B) containing the cellulose compound (B1) and the polyN-vinyl compound (B2). Solvent (C). Since the binder resin (B) is solid at room temperature, a solvent that dissolves the binder resin (B) is required to form an ink. Water (C1) is an essential component as a solvent, and may further contain an organic solvent (C2) as necessary.
  • Water (C1) is a solvent mainly for dissolving the poly-N-vinyl compound (B2) and preferably does not contain metal ions or organic impurities, and preferably uses purified water such as ion-exchanged water or distilled water. it can.
  • purified water such as ion-exchanged water or distilled water.
  • the organic solvent (C2) serves as a solvent for dissolving a non-water-soluble cellulose compound when it is used, and is compounded for improving the workability of printing using the conductive ink.
  • the organic solvent (C2) an organic solvent having an evaporation rate at 25 ° C. lower than that of water and soluble in water is preferable.
  • Organic solvents which evaporate at 25 ° C. slower than water and are soluble in water include glycols such as ethylene glycol and propylene glycol, terpineols such as ⁇ - or ⁇ -terpineol, methyl carbitol and ethyl carbitol.
  • the mixing ratio (mass ratio) of the water (C1) and the organic solvent (C2) depends on the type of the binder resin to be dissolved, but (C1) / (C2) is in the range of 99/1 to 20/80. It is more preferable to be in the range of 98/2 to 40/60, and even more preferable to be in the range of 98/2 to 50/50.
  • the amount of the solvent (C) is adjusted according to the printing method so that the conductive ink has an appropriate viscosity. For example, when screen printing is performed, the viscosity of the conductive ink is preferably in the range of 0.1 to 500 Pa ⁇ s.
  • the organic solvent (C2) in the conductive ink is preferably 1 to 50 parts by mass based on 100 parts by mass of the carbonaceous conductive material (A). Within this range, problems such as a decrease in the solubility of the binder resin (B) and the emulsifier and a decrease in the dispersibility of the carbonaceous conductive material (A) hardly occur. Note that a non-aqueous solvent can be added as long as the performance of the conductive ink is not impaired.
  • non-aqueous solvents examples include diethyl carbonate, methyl ethyl carbonate, di-n-propyl carbonate, methyl-n-propyl carbonate, ethyl-n-propyl carbonate, methyl isopropyl carbonate, ethyl-n-propyl carbonate, ethyl isopropyl carbonate, and diisopropyl carbonate.
  • Chain carbonates such as -n-propyl carbonate, diisopropyl carbonate, 3-fluoropropylmethyl carbonate, propylene carbonate, ethylene carbonate, butylene carbonate, 4-chloro-1,3-dioxolan-2-one, 4-fluoro-1 Cyclic carbonates such as 2,3-dioxolan-2-one, 4-trifluoromethyl-1,3-dioxolan-2-one, vinylene carbonate and dimethylvinylene carbonate S, ketones such as N- methyl-2-pyrrolidone, toluene, xylene, aromatic hydrocarbons such as tetramethyl benzene.
  • the conductive ink of the present embodiment includes improved compatibility of water (C1) with the organic solvent (C2) used in combination with water (C1), improved uniform dispersion of the carbonaceous conductive material (A) in the ink, and the like.
  • An emulsifier (D) can be further included depending on the purpose. Examples of the emulsifier (D) include anionic emulsifiers such as an alkylbenzene sulfonate, a higher fatty acid salt, an alkyl sulfate, an alkyl sulfonate and an alkyl ether sulfate.
  • the amount of the emulsifier (D) is preferably 0.1 to 10 parts by mass based on 100 parts by mass of the carbonaceous conductive material (A). Within this range, an effect of improving compatibility between water (C1) and the organic solvent (C2) is exhibited, and a decrease in water resistance due to remaining after drying can be suppressed.
  • the conductive ink of the present embodiment may further contain a preservative, a leveling agent, a thickening agent, an anti-settling agent, and the like, if necessary, as long as the performance of the conductive ink is not adversely affected.
  • the conductive ink of the present embodiment can be prepared by uniformly mixing the above components with a mixing means such as a grinder, a propeller stirrer, a kneader, a roll, a pot mill, or the like.
  • the preparation temperature is not particularly limited, and for example, it can be prepared at room temperature.
  • a second embodiment of the present invention is a carbon wiring substrate, and has a wiring pattern made of the conductive ink of the first embodiment on an insulating substrate.
  • the “wiring pattern made of conductive ink” means a wiring pattern containing at least the carbonaceous conductive material (A) and the binder resin (B) by evaporating the solvent (C) from the conductive ink.
  • the material of the insulating substrate examples include resins such as polyimide, liquid crystal polymer, polyethylene terephthalate, polyethylene naphthalate, polybenzoxazole [PBO], and epoxy resin.
  • a sheet-like insulating resin substrate having a thickness of 10 to 500 ⁇ m is preferable. . Within this thickness range, workability is good and strain sensing performance is also good.
  • the carbon wiring substrate of the present embodiment is obtained by performing a wet offset printing, a dry offset printing, a letterpress printing, a waterless lithographic printing, a gravure printing, a flexographic printing of a wiring pattern of a desired shape on an insulating substrate using the conductive ink of the first embodiment. It can be manufactured by applying a printing application method such as screen printing or intaglio printing. Among the above printing and coating methods, screen printing which can relatively easily form a predetermined pattern with an emulsion is preferable. After printing or coating, the solvent contained in the conductive ink is evaporated (dried) at room temperature or by heating.
  • the heating temperature is preferably in the range of 30 to 180 ° C, more preferably in the range of 60 to 150 ° C, and more preferably in the range of 90 to 120 ° C, depending on the material of the insulating substrate to be used. More preferably, Within this temperature range, a wiring pattern can be formed without damaging the insulating substrate.
  • the drying time is preferably from 1 to 360 minutes, more preferably from 15 to 120 minutes, even more preferably from 30 to 60 minutes.
  • the wiring pattern of the carbon wiring substrate formed on the insulating substrate by the conductive ink of the first embodiment is preferably covered with a resin film.
  • the resin film is preferably made of a material having mechanical strength and low moisture permeability (moisture permeability) for the purpose of protecting the wiring pattern.
  • moisture permeability moisture permeability
  • the resin film alone has a limit in moisture resistance (barrier) properties, the above-mentioned resin film is limited. It is more preferable to use a resin film made of the same material (polyimide, polyethylene terephthalate, etc.) as the insulating substrate and having a moisture-resistant (barrier) layer on one surface.
  • the moisture-resistant (barrier) layer examples include a deposited film of silica (SiO 2 ) and aluminum, an aluminum foil, and the like. Among them, a silica (SiO 2 ) vapor-deposited film (having a thickness of 1 ⁇ m or less) is preferable.
  • the method of coating the wiring pattern with the resin film is not particularly limited, and a commercially available laminator can be used.
  • the resin film is provided with an adhesive layer (for example, a low-density polyethylene (LLDPE) layer) on the main surface opposite to the main surface provided with the moisture-resistant (barrier) layer, which covers the wiring pattern and allows good adhesion to the insulating substrate. It is preferable to use one provided.
  • the resin film may be simply laminated so as to cover the entire surface of the wiring pattern on the wiring pattern forming surface of the carbon wiring substrate. It is preferable that the end face of the carbon wiring board is inserted between the resin films so as not to protrude.
  • the wiring pattern of the carbon wiring board is preferably linear having a length of 30 to 120 mm and a width of 0.5 to 10 mm.
  • a folded pattern as shown in FIG. 1 may be used to increase the wiring length in order to obtain a resistance value required for strain measurement and to shorten the entire length of the wiring board.
  • the resin solution was completely dissolved by treating with an ultrasonic homogenizer (Sonicifier (registered trademark), 250-Advanced, 200W, manufactured by BRANSON) at an output of 20% for 8 minutes, and then a scale graphite powder (Showa Showa) 8 g of SCMG (registered trademark) XR-S (average particle size: 12 ⁇ m) manufactured by Denko Corporation and a 4% by weight aqueous solution of poly N-vinylacetamide (PNVA (registered trademark)) (GE191-053, manufactured by Showa Denko KK, weight average molecular weight) : 1.5 million [catalog value]) and further sufficiently mixed and dispersed using an ultrasonic homogenizer (Sonicifier (registered trademark), 250-Advanced, 200W, manufactured by BRANSON) at a power of 50% or less for a total of 15 minutes or more.
  • an ultrasonic homogenizer Sonicifier (registered trademark), 250-Advanced, 200W, manufactured by BRANSON
  • the mixture was stirred at 1200 rpm for 3 minutes using Awatori Rintaro (registered trademark) manufactured by Shinky Corporation, and then uniformly mixed at 2,000 rpm for 5 minutes. Thereafter, the mixture was concentrated until the viscosity was in the range of 0.5 to 50 Pa ⁇ s, to obtain a conductive ink.
  • Awatori Rintaro registered trademark manufactured by Shinky Corporation
  • Comparative Examples 1 to 8 A conductive ink was obtained in the same manner as in Example 1 except that the charged composition was changed to the composition shown in Table 1 (the numerical value of each component means parts by mass).
  • Methylcellulose, a binder resin used in Comparative Examples was methylcellulose 400 manufactured by Wako Pure Chemical Industries, Chitin was BiNFi-s manufactured by Sugino Machine Co. (using SF 2 O- 200), and chitosan was BiNFi manufactured by Sugino Machine Co., Ltd.
  • the insulating resin substrate used was a polyimide film (UPIREX (registered trademark) S25, thickness 25 ⁇ m, manufactured by Ube Industries). It contains all the wiring patterns extending in the longitudinal direction after drying, and has a width of 10 mm and a length of 150 mm so as to partially break the electrode portions (portions extending in the direction perpendicular to the longitudinal direction) located at the ends.
  • One wiring pattern was cut out in such a shape as follows.
  • a sensor terminal for monitoring the resistance value change with a multimeter (manufactured by Keithley) using a silver paste adhesive (SX-ECA48 manufactured by Cemedine) is provided, and a printing distortion sensor is provided.
  • they may be referred to as the carbon wiring boards of Example 1 and Comparative Examples 1 to 8 or the print distortion sensors of Example 1 and Comparative Examples 1 to 8, respectively).
  • the criteria for the appearance (visual) of the wiring pattern shape formed by the screen printing method of the conductive ink are as follows. :: Fading and bleeding did not occur and printing was possible without problems. ⁇ : Fading and bleeding occurred.
  • the adhesion between the wiring and the substrate formed by the screen printing method of the conductive ink is based on JIS K-5-6 adhesion (cross cut method) using a test pattern on which a solid film of 20 mm ⁇ 20 mm is printed. Then, based on the classification corresponding to the state in which the eyes were peeled off, the determination was made according to the following criteria. ⁇ : Classification 0, 1 ⁇ : Classification 2, 3 ⁇ : Classification 4, 5
  • Table 1 shows the evaluation results of the wiring pattern shape appearance and the adhesion to the substrate.
  • ⁇ Method for measuring volume resistivity of carbon wiring board The resistance between two points 1 cm apart in the longitudinal direction of the wiring pattern is measured with a hand tester (U1242B manufactured by Agilent Technologies), and the film thickness of the wiring pattern is measured using a microscope (VK-X200 manufactured by Keyence). The resistivity was calculated.
  • the carbon wiring board was set in a precision universal tester (Autograph AG-X manufactured by Shimadzu Corporation). The distance between the chucks at the time of setting was 70 mm, and was pulled at a test speed of 0.5 mm / min until the distance between the chucks became 70.7 mm, and 1% strain was generated in the length direction of the wiring pattern (the length of the carbon wiring substrate). Gave.
  • An external force (load) is applied to the carbon wiring board so that 1% strain is generated as described above, and after maintaining the state for 60 seconds, a series of operations for releasing the external force (load) (releasing the strain) is repeated for 10 cycles. (Hereinafter referred to as a cycle test).
  • a cycle test a series of operations for releasing the external force (load) (releasing the strain) is repeated for 10 cycles.
  • a change in resistance value when an external force (load) was applied in a cycle was measured by a multimeter (manufactured by Keithley) connected to the sensor terminal.
  • the difference (R 2 ⁇ R 10 ) between the maximum resistance value (R 2 ) during the load holding in the second cycle and the minimum resistance value (R 10 ) during the load holding in the 10th cycle is the amount of change in the cycle resistance value ( ⁇ ).
  • the normalized resistance change amount ((R 2 ⁇ R 10 ) / R S ) was calculated by dividing the resistance value before the occurrence of strain (initial resistance value: R S ), and these were used as performance indexes. . It was empirically found that the reproducibility of the measurement result with respect to the dynamic strain was good when the normalized resistance value change amount was 0.05 or less, so the strain sensing performance was judged to be good.
  • the amount of change (R 2s -R 2e ) from the resistance value (R 2S ) at the start of holding the external force (load) in the second cycle to the resistance value (R 2e ) at the end of holding is determined by the initial resistance value (R S ) and a normalized resistance change rate ((R 2s -R 2e ) / 60R S ) (s ⁇ 1 ) calculated by dividing the product by the product of the external force (load) time and 60 seconds.
  • Table 1 shows the measurement results of the normalized resistance change amount and the normalized resistance change rate.
  • FIGS. 2 and 3 and Table 1 show the results of the cycle test of the printing strain sensor produced using the conductive ink obtained in Example 1 and giving 1% strain (normalized resistance value change rate and standardized resistance value change rate). ).
  • Table 1 also shows the cycle test results of a print distortion sensor produced using each of the conductive inks obtained in Comparative Examples 1 to 3 and subjected to 1% distortion.
  • FIG. 2 is a diagram showing the results of strain sensitivity measurement (changes in resistance and strain with time) when a 1% strain was applied to the carbon wiring substrate (printing strain sensor) of Example 1. The ordinate on the left side of FIG.
  • FIG. 2 indicates the resistance ratio (the ratio between the aging resistance value when an external force (load) is applied to the carbon wiring substrate and the initial resistance value before the external force (load) is applied (indicated by a broken line in the figure)).
  • the vertical axis on the right is the magnitude (%) of strain applied to the carbon wiring substrate (indicated by a solid line in the figure), and the horizontal axis is elapsed time.
  • FIG. 3 is a diagram showing the results of strain sensitivity measurement (temporal change in resistance with each repetition) when a 1% strain was applied to the carbon wiring substrate (printing strain sensor) of Example 1.
  • the vertical axis in FIG. 3 represents the resistance difference for each cycle (the difference between the resistance value when an external force (load) is applied to the carbon wiring board and the resistance value when the external force (load) is released), and the horizontal axis represents each resistance. This is the time taken for the cycle.
  • the normalized resistance value change amount of the carbon wiring board (printing distortion sensor) of Example 1 is 0.03, and the reproducibility to dynamic strain is sufficiently high.
  • the normalized resistance value change rate is 7.6 ⁇ 10 ⁇ 5 (s ⁇ 1 ), and it can be seen that the reproducibility to static strain is sufficiently high.
  • the linearity of the resistance value change behavior with respect to strain is also high. That is, as shown in FIG. 3, it can be seen that the resistance value change is constant (the gradient is linear) while the strain is gradually applied and gradually reduced at a constant rate.
  • Examples 1 to 3 and Comparative Examples 9 to 13 Effects of Binder Resin Amount and Mixing Ratio
  • Each component was mixed according to the composition shown in Table 2 (the numerical value of each component means parts by mass) to obtain a conductive ink.
  • Example 1 is the same as Table 1.
  • the addition amount and the mixing ratio of the binder resin were determined for the combined use of sodium carboxymethylcellulose and poly N-vinylacetamide having excellent dynamic strain and static strain characteristics from the results shown in Table 1. The effect of was considered.
  • Table 2 shows the examination results.
  • the evaluation method is the same as that of the first embodiment.
  • Example 2 When the amount of the binder resin added is smaller than that in Example 1 as in Example 2, both the normalized resistance value change amount and the normalized resistance value change rate tend to improve. However, when the adhesion to the substrate and the flexibility of ease of handling are considered, there is a limit to the reduction in the amount of addition. On the other hand, when the added amount of the binder resin is larger than that in Example 1 (Comparative Examples 9 to 12), both the normalized resistance value change amount and the normalized resistance value change rate tend to gradually deteriorate. Further, in Example 3, in which the content of sodium carboxymethylcellulose was equivalent to 75% of the binder resin, the absolute value of the normalized resistance change rate was slightly (slightly less than 7%) higher than in Example 1, in which the content was 50%.
  • Comparative Example 13 which was 25%, the absolute value of the normalized resistance value change rate was increased by 40% or more.
  • the binder of Comparative Example 12 was used, the volume resistivity of the wiring pattern was too high to follow the change in the resistance value, or there was a problem that the adhesion between the wiring pattern and the substrate was remarkably inferior. No tests were performed.
  • Examples 4 and 5 Evaluation of influence of resin film lamination
  • Carbon wiring (thickness: 30 to 50 ⁇ m) was formed on a polyimide film using a conductive ink in which a 1: 1 (mass ratio) mixture of sodium carboxymethylcellulose and polyN-vinylacetamide whose mixing ratio is described in Table 3 was used as a binder resin.
  • Table 3 shows the results of evaluating the moisture resistance of the strain sensor obtained by laminating the carbon wiring board on which the wiring pattern was formed with a resin film.
  • the method of evaluating the standardized resistance value change amount and the standardized resistance value change rate is the same as that in the first embodiment.
  • the polyimide film was previously immersed in a 4% by mass aqueous solution of sodium hydroxide for 1 minute, washed with distilled water, and then water was removed.
  • a wiring pattern is printed on the polyimide film after the above treatment in the same manner as in Example 1, dried, and the obtained printed dried product is sandwiched between two resin films and laminated to obtain a carbon wiring substrate.
  • a laminator (L405A3 manufactured by Asuka, set temperature: 140 ° C., feed rate: about 11 mm / sec) was used for lamination. Before lamination, the resin film was previously provided with an opening corresponding to the resistance measuring position of the carbon wiring, and the resin film was laminated with the opening aligned with the resistance measuring position of the wiring.
  • a terminal for monitoring a change in resistance value with a multimeter (manufactured by Keithley) is provided with a silver paste adhesive (SX-ECA48 manufactured by Cemedine) at a position for measuring resistance of the exposed carbon wiring, and printing distortion is caused. I got a sensor.
  • Example 4 Tech barrier (registered trademark) LS (manufactured by Mitsubishi Chemical Corporation) having a 1 ⁇ m or less silica vapor deposition film 16 on one main surface of a 12 ⁇ m thick PET film 14 and having a 1 ⁇ m or less protective layer 18 thereon. ) Is used as a part of the resin film 12, and the other main surface of the PET film 14 is a resin film 12 having a low-density polyethylene (LLDPE) layer 20 having a thickness of 50 ⁇ m. Both surfaces of the film 24 and the low-density polyethylene (LLDPE) layer 20 of each resin film 12 are laminated so as to face each other.
  • LLDPE low-density polyethylene
  • FIG. 4 shows the configuration of the strain sensor according to the fourth embodiment.
  • Example 5 a 20- ⁇ m-thick polyethylene film was used in place of the PET film 14 and a 15- ⁇ m-thick aluminum foil was used in place of the silica vapor-deposited film 16 in Example 4 (FIG. 4).
  • a PET film having a thickness of 12 ⁇ m was used instead of the layer 18.
  • a hot melt adhesive layer having a thickness of about 18 ⁇ m is used in place of the low density polyethylene (LLDPE) layer 20, and both sides of the polyimide film 24 and the hot melt adhesive layer of the resin film 12 are laminated so as to face each other. I have.
  • LLDPE low density polyethylene
  • the carbon wiring boards of Examples 1 and 4 and 5 were held for 20 minutes in an atmosphere at a temperature of 20 ° C. and a relative humidity of 50% RH and a temperature of 20 ° C. and a relative humidity of 90% RH, respectively.
  • Table 3 shows the results of calculating the amount of change as the amount of change in resistance per minute.
  • Example 4 laminated with a resin film provided with a SiO 2 (silica) vapor-deposited film, the standardized resistance value change amount, the standardized resistance value change rate, and the linearity of the resistance value change behavior with respect to strain were all unlaminated. High performance equivalent to Example 1) was observed.
  • Example 5 in which the resin film provided with the aluminum foil was laminated, there was no large change in the normalized resistance value change amount, but the absolute value of the normalized resistance value change rate was larger than that in Example 4. (I am getting worse).
  • Examples 6 to 8 Evaluation of influence of distortion
  • a 5% strain was applied by the same operation (cycle test) as in Example 1 except that the chuck was pulled at a test speed of 0.5 mm / min until the distance between the chucks became 73.5 mm and a 5% strain was applied. Then, the normalized resistance value change amount and the normalized resistance value change rate were calculated. Further, as Example 7, the normalized resistance value change was performed by the same operation (cycle test) as in Example 1 except that the test was performed at a test speed of 0.5 mm / min and the distance between the chucks became 77 mm, and 10% strain was applied. The amount and normalized resistance change rate were calculated.
  • Example 8 a 5% strain was applied by the same operation as in Example 4 except that a 5% strain was applied at a test speed of 0.5 mm / min until the distance between the chucks became 73.5 mm.
  • the normalized resistance value change amount and the normalized resistance value change rate were calculated.
  • Example 6 the normalized resistance value change amount was 0.34 and the normalized resistance value change rate was 84 ⁇ 10 ⁇ 5 (s ⁇ 1 ).
  • Example 7 the normalized resistance value change amount was 0.52, and the normalized resistance value change rate was 254 ⁇ 10 ⁇ 5 (s ⁇ 1 ).
  • Example 8 the normalized resistance value change amount was 0.26, and the normalized resistance value change rate was 131 ⁇ 10 ⁇ 5 (s ⁇ 1 ). Both the normalized resistance change amount and the normalized resistance change rate tended to increase as the applied strain increased, but in both cases, the resistance value could be measured repeatedly (detection of strain) without problems such as wiring breakage.
  • Example 7 the normalized resistance value change amount was 0.52, and the normalized resistance value change rate was 254 ⁇ 10 ⁇ 5 (s ⁇ 1 ).
  • Example 8 the normalized resistance value change amount was 0.26, and the normalized resistance value change rate was 131 ⁇ 10 ⁇ 5 (s ⁇ 1 ).
  • strain sensor 10 strain sensor, 12 resin film, 14 PET film, 16 silica deposited film, 18 protective layer, 20 low density polyethylene (LLDPE) layer, 22 wiring pattern, 24 polyimide film, 26 terminal (silver paste adhesive), 28 covered wiring .
  • LLDPE low density polyethylene

Abstract

【課題】広い歪み検知範囲を有する安価なカーボン配線基板用に好適な導電性インク及びそれを用いたカーボン配線基板を提供する。 【解決手段】炭素質導電材料(A)と、セルロース化合物(B1)およびポリN-ビニル化合物(B2)を含むバインダー樹脂(B)と、溶媒(C)と、を含み、前記炭素質導電材料(A)100質量部に対して前記バインダー樹脂(B)を0.5~23質量部含み、かつ、前記セルロース化合物(B1)とポリN-ビニル化合物(B2)との質量配合比が80:20~40:60であり、かつ、前記溶媒(C)が水(C1)を含むことを特徴とする導電性インク及びその導電性インクを用いて形成された配線パターンを有するカーボン配線基板である。

Description

導電性インク及びカーボン配線基板
 本発明は、抵抗式歪みセンサの抵抗膜形成に好適な導電性インク及びそれを用いたカーボン配線基板に関するものである。
 圧力センサ、加速度センサ等の力学的センサには、測定対象物の変形量を検出する歪センサ素子(歪ゲージ)を使用することが知られている。測定対象物の歪に応じて変形する歪抵抗薄膜を備えた歪センサ素子では、歪抵抗薄膜の電気抵抗を計測することにより、測定対象物の変形量を検出することができる。
 抵抗式歪みセンサ素子としては、箔ゲージおよび半導体式センサ、光ファイバ式センサがよく知られている。しかし、これらを大面積構造物で用いるにはコスト面等で問題がある。センサ部分に薄い金属箔を使用しているコンクリート用歪みゲージの歪み検知範囲は、薄い金属箔が断線しやすいため狭く、2%歪み程度までしか検知できない。これに対して、パイゲージは大歪みを検知できるが、設置方法が特殊であり、大面積・常時観測性に劣る。
 一方、有機物系印刷抵抗体は、安価に抵抗体を形成することができるものとして広く知られている(例えば、特開昭59-22387号公報(特許文献1))が、これを歪みセンサとして使用した場合、そのゲージ率は小さく、温湿度による抵抗値変化が大きいために、歪みゲージとして使用するには問題があった。
 また、既知の有機系印刷抵抗体は、熱硬化性樹脂を用いる場合(例えば、特開平7-243805号公報(特許文献2))、一般的に熱硬化性樹脂は硬くて脆いので大歪みの検知ができない。ゴム等軟質樹脂を用いる場合はクリープが大きく、静歪み検知に向かないと考えられる。既知のカーボン配線基板は樹脂リッチ配合が多く、空隙ができないため歪み検知範囲が狭いと推測される。
特開昭59-22387号公報 特開平7-243805号公報
 本発明は、広い歪み検知範囲を有する安価なカーボン配線基板用に好適な導電性インク及びそれを用いたカーボン配線基板を提供することを課題とする。
 本発明者は印刷抵抗体に高い環境耐性と広い歪み検知範囲を併せ持たせるために鋭意検討した結果、本発明を想到した。すなわち、本発明は以下の実施態様を含む。
 [1]炭素質導電材料(A)と、セルロース化合物(B1)およびポリN-ビニル化合物(B2)を含むバインダー樹脂(B)と、溶媒(C)と、を含み、前記炭素質導電材料(A)100質量部に対して前記バインダー樹脂(B)を0.5~23質量部含み、かつ、前記セルロース化合物(B1)とポリN-ビニル化合物(B2)との質量配合比が80:20~40:60であり、かつ、前記溶媒(C)が水(C1)を含むことを特徴とする導電性インク。
 [2]前記セルロース化合物(B1)がカルボキシメチルセルロースナトリウムであり、前記ポリN-ビニル化合物(B2)がポリNービニルアセトアミドである[1]に記載の導電性インク。
 [3]前記炭素質導電材料(A)が平均粒径25μm以下のグラファイト粉末である[1]または[2]に記載の導電性インク。
 [4]絶縁基板上に、炭素質導電材料(A)と、セルロース化合物(B1)およびポリN-ビニル化合物(B2)を含むバインダー樹脂(B)と、溶媒(C)と、を含み、前記炭素質導電材料(A)100質量部に対して前記バインダー樹脂(B)を0.5~23質量部含み、かつ、前記セルロース化合物(B1)とポリN-ビニル化合物(B2)との質量配合比が80:20~40:60であり、かつ、前記溶媒(C)が水(C1)を含む導電性インクを用いて形成された配線パターンを有するカーボン配線基板。
 [5]炭素質導電材料(A)と、セルロース化合物(B1)およびポリN-ビニル化合物(B2)を含むバインダー樹脂(B)と、を含み、前記炭素質導電材料(A)100質量部に対して前記バインダー樹脂(B)を0.5~23質量部含み、かつ、前記セルロース化合物(B1)とポリN-ビニル化合物(B2)との質量配合比が80:20~40:60である配線パターンを有するカーボン配線基板。
 [6]前記配線パターンが樹脂フィルムにより被覆されている[4]または[5]に記載のカーボン配線基板。
 [7]前記樹脂フィルムがシリカ膜を有するものである[6]に記載のカーボン配線基板。
 本発明の導電性インクを用いることにより、広い歪み検知範囲を有する安価なカーボン配線基板が製造できる。このカーボン配線基板を歪センサとして用いることにより、コンクリート構造物など、大面積の測定を要求されるインフラ構造物の測定に効果を発揮する。本明細書において「広い」歪検知範囲とは0~10%を意味する。
各実施例、比較例で用いたカーボン配線基板の配線パターンを示す図である。 実施例1のカーボン配線基板に1%歪を与えた歪み感知性測定(抵抗および歪みの経時変化)結果を示す図である。 実施例1のカーボン配線基板に1%歪を与えた歪み感知性測定(反復回数毎の抵抗の経時変化)結果を示す図である。 実施例4の歪みセンサの構成を示す図である。
 以下、本発明を実施するための形態(以下、実施形態という)を説明する。
 本発明の第一の実施形態は導電性インクであり、炭素質導電材料(A)と、セルロース化合物(B1)およびポリN-ビニル化合物(B2)を含むバインダー樹脂(B)と、溶媒(C)と、を含み、前記炭素質導電材料(A)100質量部に対して前記バインダー樹脂(B)を0.5~23質量部含み、かつ、前記セルロース化合物(B1)とポリN-ビニル化合物(B2)との質量配合比が80:20~40:60であることを特徴とする。以下各構成成分について説明する。
炭素質導電材料(A)
 本実施形態の導電性インクに用いる炭素質導電材料(A)は、炭素質である。炭素質導電材料としては、グラファイト粉末を用いることが好ましい。グラファイト粉末には、天然黒鉛粉、人造黒鉛粉、キッシュ黒鉛粉があるが、配線基板において安定な抵抗値を得るためには、不純物が少なく粒子内部が中実な一次粒子であるため品質が安定している人造黒鉛粉が好ましい。炭素質導電材料(A)の平均粒径は25μm以下であることが好ましい。平均粒径が25μm以下であると、絶縁基板上に形成したカーボン配線が脆くなったり、導電性ペーストの印刷塗布性が低下したりする不具合が発生し難く好ましい。より好ましくは5~20μmであり、さらに好ましくは10~15μmである。本明細書において「平均粒径」とはレーザー回折・散乱法により求められるD50値(質量基準)を意味する。但し、導電性インクの固形分全体の20質量%以下であれば、カーボンブラックやフラーレン類、カーボンナノチューブなどその他のカーボン粉末と併用することができる。但し、カーボンナノチューブのような繊維状のものを併用する場合、その繊維長が50μm以下のものを用いることが好ましく、40μm以下のものを用いることがより好ましい。
バインダー樹脂(B)
 本実施形態の導電性インクに用いるバインダー樹脂(B)は、炭素質である炭素質導電材料(A)や導電性インクを用いて配線パターンが形成される絶縁樹脂基板など、カーボン配線基板を構成する材料同士を結着させる機能を有するとともに、導電性インク中の炭素質導電材料(A)、その他必要に応じて配合することができる任意成分を均一、安定に分散させる機能を有する必要があり、セルロース化合物(B1)およびポリN-ビニル化合物(B2)を必須成分として含む。
 セルロース化合物(B1)としては、メチルセルロース、エチルセルロース、プロピルセルロース、カルボキシメチルセルロース[CMC]およびこれらの金属塩を含むセルロース類が挙げられる。これらの中でもカルボキシメチルセルロース[CMC]、カルボキシメチルセルロースのナトリウム塩[CMCNa]が好ましい。
 ポリN-ビニル化合物(B2)としては、ポリN-ビニルホルムアミド、ポリN-ビニルアセトアミドまたはポリN-ビニルプロピオアミド、ポリN-ビニルピロリドン、ポリN-ビニルカプロラクタム等が挙げられる。これらのポリN-ビニル化合物(B2)は、ポリマーが単一のモノマー単位により構成されるホモポリマーを好適に使用することができるが、50モル%未満、好ましくは30モル%以下、より好ましくは20モル%以下、さらに好ましくは10モル%以下で他のモノマー単位を含むものを使用することができる。これらの中でも水溶性が高いものを用いると、インク中の導電性炭素材料の分散性が向上するので好適である。これらの中でもポリN-ビニルアセトアミドが好ましい。
 バインダー樹脂(B)には、その他のポリマーとして、ポリアクリル酸、ポリビニルアルコール、ポリビニルアセタール、スルホン酸基含有水溶性ポリマー(ポリスチレンスルホン酸等)、リン酸基含有水溶性ポリマー(ポリリン酸等)及びこれらのポリマーの酸基の一部又は全部が塩(ナトリウム塩等)となったポリマー等を性能に悪影響を与えない範囲で含んでもよい。
 上記セルロース化合物(B1)とポリN-ビニル化合物(B2)との相溶性が良好な組合せとして、カルボキシメチルセルロース[CMC]の塩(カルボキシメチルセルロースナトリウム[CNCNa])とポリN-ビニルアセトアミド[PNVA]の混合物が好適である。
 セルロース化合物(B1)とポリN-ビニル化合物(B2)との質量配合比は、セルロース化合物(B1):ポリN-ビニル化合物(B2)[質量比]が80:20~40:60であり、70:30~45:55であることが好ましく、60:40~50:50がより好ましい。また、導電性インクのバインダー樹脂(B)は、炭素質導電材料(A)100質量部に対して、0.5~23質量部含み、2~20質量部含むことがより好ましく、5~20質量部含むことがさらに好ましく、10~20質量部含むことが特に好ましい。
溶媒(C)
 本実施形態の導電性インクには、炭素質導電材料(A)と、セルロース化合物(B1)およびポリN-ビニル化合物(B2)を含むバインダー樹脂(B)以外に、バインダー樹脂(B)を溶解する溶媒(C)を含む。上記バインダー樹脂(B)は常温で固体であるため、インク化するためにはバインダー樹脂(B)を溶解する溶媒が必要である。溶媒として水(C1)は必須成分であり、さらに有機溶媒(C2)を必要に応じて含むことができる。
 水(C1)は、主としてポリN-ビニル化合物(B2)を溶解するための溶媒であり、金属イオンや有機系不純物を含有しないものが好ましく、イオン交換水や蒸留水など精製水を好適に使用できる。導電性インク中の水(C1)は、炭素質導電材料(A)100質量部に対して100質量部以上含むことで良好な印刷特性を発現する粘度となる。
 セルロース化合物(B1)には、水溶性のもの(メチルセルロース、カルボキシメチルセルロース[CMC]等)と非水溶性のもの(エチルセルロース、プロピルセルロース等)とがある。有機溶媒(C2)は、水溶性ではないセルロース化合物を用いる場合にそれを溶解させるための溶媒となるとともに、導電性インクを用いた印刷の作業性を改良するために配合される。導電性インクの溶媒として水のみを使用する場合、連続印刷中に水が徐々に蒸発し、導電性インクの粘度が上昇する不具合が発生する。そのため、有機溶媒(C2)としては、25℃における蒸発速度が水よりも遅くかつ水に可溶な有機溶剤が好ましい。25℃での蒸発速度が水よりも遅くかつ水に可溶な有機溶剤としては、エチレングリコール、プロピレングリコール等のグリコール類、α-若しくはβ-テルピネオール等のテルピネオール類、メチルカルビトール、エチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル等のグリコールエーテル類、セロソルブアセテート、エチルセロソルブアセテート、ブチルセロソルブアセテート、カルビトールアセテート、エチルカルビトールアセテート、ブチルカルビトールアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート等の酢酸エステル類等が挙げられる。これらの中でも、テルピネオール類、グリコールエーテル類が高沸点、低粘度等の点で好ましい。これらの有機溶剤は、単独で使用してもかまわないし、二種類以上を組み合わせて使用してもよい。
 上記水(C1)および有機溶媒(C2)の混合比(質量比)は、溶解するバインダー樹脂の種類にも依るが、(C1)/(C2)が99/1~20/80の範囲とすることが好ましく、98/2~40/60の範囲とすることがより好ましく、98/2~50/50の範囲とすることがさらに好ましい。溶媒(C)は印刷方法に応じて導電性インクが適正な粘度となるように配合量を調整する。一例としてスクリーン印刷を行う場合には導電性インク粘度が0.1~500Pa・sの範囲とすることが好ましい。
 導電性インク中の有機溶媒(C2)は、炭素質導電材料(A)100質量部に対して1~50質量部が好ましい。この範囲であると、バインダー樹脂(B)や乳化剤の溶解性低下や炭素質導電材料(A)の分散性低下等の不具合が起こり難く好ましい。なお、導電性インクの性能を損なわない限り、非水系溶剤を添加することができる。非水系溶剤としては、ジエチルカーボネート、メチルエチルカーボネート、ジ-n-プロピルカーボネート、メチル-n-プロピルカーボネート、エチル-n-プロピルカーボネート、メチルイソプロピルカーボネート、エチル-n-プロピルカーボネート、エチルイソプロピルカーボネート、ジ-n-プロピルカーボネート、ジイソプロピルカーボネート、3-フルオロプロピルメチルカーボネート等の鎖状カーボネート類、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、4-クロロ-1,3-ジオキソラン-2-オン、4-フルオロ-1,3-ジオキソラン-2-オン、4-トリフルオロメチル-1,3-ジオキソラン-2-オン、ビニレンカーボネート、ジメチルビニレンカーボネート等の環状カーボネート類、N-メチル-2-ピロリドン等のケトン類、トルエン、キシレン、テトラメチルベンゼン等の芳香族炭化水素類等が挙げられる。
 本実施形態の導電性インクには、水(C1)と併用する有機溶媒(C2)の水(C1)との相溶性改良、インク中の炭素質導電材料(A)の均一分散性改良等の目的に応じてさらに乳化剤(D)を含むことができる。乳化剤(D)としては、アルキルベンゼンスルホン酸塩、高級脂肪酸塩、アルキル硫酸エステル塩、アルキルスルホン酸塩、アルキルエーテル硫酸塩等のアニオン性乳化剤等が挙げられる。具体的には、CH(CH)nSOM、CH(CH)mSOM、CH(CH)oCOOM、H(CH)pCOO(CHCHO)qH、(NaSO)CH((CH)rCH)((CH)sCH)(式中、Mは1価のカチオン;nは2~16の整数;mは2~16の整数;oは2~16の整数;pは2~40の整数;qは2~45の整数;r+s=10~20の整数である)等の炭化水素系乳化剤が挙げられる。なかでも、直鎖アルキル(C=6~14)ベンゼンスルホン酸ナトリウム[LAS]が好ましい。乳化剤(D)は、炭素質導電材料(A)100質量部に対して0.1~10質量部が好ましい。この範囲であると、水(C1)と有機溶媒(C2)との相溶性向上効果が発現し、乾燥後残存することによる耐水性低下を抑えることができる。
 本実施形態の導電性インクには、その他導電性インクの性能に悪影響を及ぼさない範囲で必要に応じて防腐剤、レベリング剤、増粘剤、沈降防止剤等を配合することができる。
 本実施形態の導電性インクは、上記配合成分を、擂潰機、プロペラ撹拌機、ニーダー、ロール、ポットミルなどのような混合手段により、均一に混合して調製することができる。調製温度は、特に限定されず、たとえば常温で調製することができる。
 本発明の第二の実施形態はカーボン配線基板であり、絶縁基板上に前記第一の実施形態の導電性インクよりなる配線パターンを有する。なお、「導電性インクよりなる配線パターン」とは、導電性インクから溶媒(C)が蒸発して、炭素質導電材料(A)とバインダー樹脂(B)を少なくとも含む配線パターンを意味する。
 絶縁基板の材質としては、ポリイミド、液晶ポリマー、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリベンゾオキサゾール[PBO]、エポキシ樹脂等の樹脂が挙げられ、10~500μmの厚みを持つシート状の絶縁樹脂基板が好ましい。この厚み範囲であると、作業性が良好であり、歪み感知性能も良好である。
 本実施形態のカーボン配線基板は、第一の実施形態の導電性インクにより絶縁基板上に所望形状の配線パターンをウェットオフセット印刷、ドライオフセット印刷、凸版印刷、水無平版印刷、グラビア印刷、フレキソ印刷、スクリーン印刷又は凹版印刷などの印刷塗布方法を適用して形成することにより製造できる。上記印刷塗布方法のうち、乳剤で所定のパターンを比較的容易に形成できるスクリーン印刷が好ましい。印刷または塗布の後、常温で、または加熱によって、導電性インクに含まれる溶媒を揮散(乾燥)させる。加熱する場合は、使用する絶縁基板の材質にもよるが、加熱温度を30~180℃の範囲とすることが好ましく、60~150℃の範囲とすることがより好ましく、90~120℃の範囲とすることがさらに好ましい。この温度範囲であれば、絶縁基板へのダメージを与えることなく配線パターンを形成することができる。乾燥時間は、1~360分が好ましく、15~120分がより好ましく、30~60分がさらに好ましい。
 第一の実施形態の導電性インクにより絶縁基板上に形成されたカーボン配線基板の配線パターンは、樹脂フィルムにより被覆されることが好ましい。樹脂フィルムは、配線パターンの保護のため、機械的強度を有するとともに水分透過性(透湿性)の低い材質のものが好ましいが、樹脂フィルム単独では耐湿(バリア)性に限界があるので、前述の絶縁基板と同材質(ポリイミド、ポリエチレンテレフタレート等)の樹脂フィルムの片面に耐湿(バリア)層を備えたものを用いることがより好ましい。耐湿(バリア)層としてはシリカ(SiO)やアルミニウム等の蒸着膜やアルミニウム箔等が挙げられる。なかでもシリカ(SiO)蒸着膜(厚みが1μm以下)が好ましい。樹脂フィルムによる配線パターンの被覆方法は特に制限はなく、市販のラミネータを使用することができる。なお、樹脂フィルムは耐湿(バリア)層を備えた主面と反対の主面に、配線パターンを被覆し、絶縁基板と良好な密着が可能な接着層(例えば低密度ポリエチレン(LLDPE)層)を備えたものを使用することが好ましい。樹脂フィルムは、カーボン配線基板の配線パターン形成面に配線パターン全面を被覆するようにラミネートするだけでもよいが、カーボン配線基板の配線パターン非形成面、すなわち裏面にも樹脂フィルムをラミネートし、2枚の樹脂フィルム間にカーボン配線基板の端面がはみださないようにはさみこむような構成とすることが好ましい。
 カーボン配線基板の配線パターンは、長さが30~120mm、幅が0.5~10mmの線状が好ましい。歪の測定に必要な抵抗値を得るため、配線長を長く、配線基板の全長を短くするため、図1のような折り返しパターンとしてもよい。
 以下に、本発明の実施例及び比較例を示し、本発明をさらに詳細に説明するが、本発明は下記の例に何ら限定されるものではない。
<導電性インクの調製>
実施例1
 表1に示す組成(各成分の数値は質量部を意味する)に従い、シンキー社製あわとり練太郎(登録商標)ARV-310用の所定容器(容量:150mL)にカルボキシメチルセルロースナトリウム(CMCNa、東京化成工業製 n(繰り返し単位数)=500)0.8gと溶媒(主溶剤:水)19.2gを仕込み、混合分散させた4質量%水溶液(樹脂溶液)を調製した。この樹脂溶液に超音波ホモジナイザー(BRANSON社製Sonifier(登録商標),250-Advanced,200W)を用いて出力20%の条件で8分間処理することにより完全に溶解させた後、鱗片黒鉛粉末(昭和電工社製、SCMG(登録商標)XR-S、平均粒径:12μm)8gおよびポリN-ビニルアセトアミド(PNVA(登録商標))4質量%水溶液(昭和電工社製、GE191-053、重量平均分子量:150万[カタログ値])20gを加え、さらに超音波ホモジナイザー(BRANSON社製Sonifier(登録商標),250-Advanced,200W)を用いて出力50%以下の条件で計15分間以上充分に混合分散し、グラファイト分散ペースト48gを得た。このペーストに、溶媒(副溶剤:テルピネオール、富士フイルム和光純薬社製 異性体混合物)0.8g、乳化剤(LAS(直鎖アルキル(C=6~14)ベンゼンスルホン酸ナトリウム)[富士フイルム和光純薬社製]を1質量%水溶液に調整)0.3gを添加し、回転型攪拌機(PRIMIX社製ホモディスパー2.5型)を用いて1000rpm、2分間略均一に混合(粗混合)後、シンキー社製あわとり練太郎(登録商標)を用いて1200rpm、3分間攪拌後2000rpm、5分間攪拌にて均一混合した。その後、粘度が0.5~50Pa・sの範囲に入るまで濃縮し、導電性インクを得た。
比較例1~8
 表1に示す組成(各成分の数値は質量部を意味する)に仕込み組成を変更した以外は実施例1と同様に導電性インクを得た。比較例で使用したバインダー樹脂であるメチルセルロ-スは和光純薬工業社製メチルセルロース400であり、キチンはスギノマシン社製BiNFi-s(SF-200使用)であり、キトサンはスギノマシン社製BiNFi-s(EF-080使用)であり、ポリN-ビニルアセトアミドGE191-103(PNVA(登録商標)、昭和電工社製、重量平均分子量:90万[カタログ値])は約10質量%水溶液である。
Figure JPOXMLDOC01-appb-T000001
<導電性インクを用いたカーボン配線基板の作製>
 半自動スクリーン印刷機(マイクロ・テック社製MT-320)を用いて上記実施例1、比較例1~8で得た導電性インクにより歪み感知性測定用配線パターンを絶縁樹脂基板上に印刷し、カーボン配線基板を作製した。配線パターンの形状が図1に示される。図1において、乾燥後の配線パターンが40~80μm厚になるよう、同一の5つの配線パターンをスクリーン印刷法で印刷した。印刷された配線基板をボックスオーブンにて、大気雰囲気下60℃、30分間、その後100℃、30分間乾燥した。用いた絶縁樹脂基板はポリイミドフィルム(宇部興産社製ユーピレックス(登録商標)S25、厚み25μm)である。乾燥後長手方向に延在する配線パターンを全て含み、端部に位置する電極部(長手方向に直交する方向に伸びている部分)を一部破断するように、幅が10mm、長さが150mmとなる形状に1つの配線パターンを切り出した。カーボン配線の抵抗測定用位置(電極部)に銀ペースト接着剤(セメダイン社製 SX-ECA48)で抵抗値変化をマルチメータ(ケースレー社製)にてモニタリングするためのセンサ端子を設け印刷歪みセンサを得た(以後、それぞれ実施例1、比較例1~8のカーボン配線基板または実施例1、比較例1~8の印刷歪みセンサということがある)。
 上記導電性インクのスクリーン印刷法により形成された配線パターン形状外観(目視)の判断基準は以下の通りである。
 ○:かすれ、にじみが発生せず、問題なく印刷できている
 ×:かすれ、にじみが発生している
 上記導電性インクのスクリーン印刷法により形成された配線と基板との密着性は、20mm×20mmのベタ膜を印刷したテストパターンを用い、JIS K-5-6付着性(クロスカット法)に準拠し、目の剥がれた状態に対応する分類に基づき以下の判断基準により判定した。
 ○:分類0,1
 △:分類2,3
 ×:分類4,5
 配線パターン形状外観及び基板との密着性の評価結果を表1に示す。
<カーボン配線基板の体積抵抗率測定方法>
 ハンドテスタ-(Agilent Technologies製 U1242B)で配線パターンの長手方向に1cm離れた2点間の抵抗を計測するとともに、顕微鏡(Keyence製 VK-X200)で配線パターンの膜厚を計測し、両者より体積抵抗率を算出した。
<カーボン配線基板の歪み感知性測定方法>
 上記カーボン配線基板を精密万能試験器(島津製作所製オートグラフAG-X)にセットした。セット時のチャック間距離は70mmであり、試験速度0.5mm/minでチャック間距離が70.7mmになるまで引っ張り、上記配線パターンの長さ(カーボン配線基板の長手)方向に1%歪みを与えた。
 このように1%の歪みが発生するようカーボン配線基板に外力(負荷)をかけ、その状態で60秒間保持した後外力(負荷)を解放する(歪みを解放する)一連の操作を10サイクル反復した(以後、サイクル試験ということがある。)。この際、動歪みに対しての感知性を評価するため、外力(負荷)をサイクル印加した際の抵抗値変化を、センサ端子に接続されたマルチメータ(ケースレー社製)にて測定した。
 2サイクル目の負荷保持中の最大抵抗値(R)と10サイクル目の負荷保持中の最小抵抗値(R10)との差(R-R10)をサイクル抵抗値変化量(Ω)とした。また、それを歪発生前の抵抗値(初期抵抗値:R)で除して規格化抵抗値変化量((R-R10)/R)を算出し、これらを性能指標とした。規格化抵抗値変化量が0.05以下である場合に動歪みに対する測定結果の再現性が良好であることが経験的に認められるので、歪み感知性能が良好と判断した。
 また、静歪みに対しての感知性を評価するため、上記規格化抵抗値変化量の場合と同様にして配線パターンの長さ(カーボン配線基板の長手)方向に1%歪みを保持印加した際の抵抗値変化を測定した。2サイクル目の外力(負荷)保持開始時の抵抗値(R2S)から保持終了時の抵抗値(R2e)への変化量(R2s-R2e)を歪発生前の初期抵抗値(R)および外力(負荷)時間60秒の積で除して算出される規格化抵抗値変化率((R2s-R2e)/60R)(s-1)を算出し、これらを性能指標とした。規格化抵抗値変化率が±10×10-5(s-1)以内である場合に静歪みに対する安定性が良好(歪みを加えて保持している間の抵抗値変化がゼロに近い)であることが経験的に認められるので、歪み感知性能が良好と判断した。
 規格化抵抗値変化量及び規格化抵抗値変化率の測定結果を表1に示す。
実施例1、比較例1~8(バインダー樹脂組成の影響検討)
 実施例1で得た導電性インクを用いて作製し、1%歪みを与えた印刷歪みセンサのサイクル試験結果を図2、3および表1(規格化抵抗値変化量及び規格化抵抗値変化率)に示す。また、比較例1~3で得た各導電性インクを用いて作製し、1%歪みを与えた印刷歪みセンサのサイクル試験結果も表1に示す。なお、図2は、実施例1のカーボン配線基板(印刷歪みセンサ)に1%歪を与えた歪み感知性測定(抵抗および歪みの経時変化)結果を示す図である。図2の左の縦軸が抵抗比(カーボン配線基板に外力(負荷)をかけたときの経時抵抗値と外力(負荷)をかける前の初期抵抗値との比(図中破線で表示))であり、右の縦軸がカーボン配線基板に与えた歪の大きさ(%)(図中実線で表示)であり、横軸が経過時間である。また、図3は、実施例1のカーボン配線基板(印刷歪みセンサ)に1%歪を与えた歪み感知性測定(反復回数毎の抵抗の経時変化)結果を示す図である。図3の縦軸が、サイクル毎の抵抗差(カーボン配線基板に外力(負荷)をかけたときの抵抗値と外力(負荷)を解放したときの抵抗値の差)であり、横軸が各サイクルに要した時間である。
 図2、3の結果から、実施例1のカーボン配線基板(印刷歪みセンサ)では規格化抵抗値変化量は0.03であり、動歪みに対する再現性が十分高いことがわかる。また、規格化抵抗値変化率も7.6×10-5(s-1)であり、静歪みに対する再現性も十分高いことがわかる。さらに、歪みに対する抵抗値変化挙動の直線性も高くなっている。すなわち、図3に示されるように、一定の割合で歪みを徐々に加えている間および徐々に減らしている間での抵抗値変化が一定である(勾配の直線性がよい)ことがわかる。一方、比較例1~3のバインダーを使用した場合、規格化抵抗値変化量は0.03以上、規格化抵抗値変化率も7.6×10-5(s-1)超となり、両特性が低下している。なお、比較例4~8のバインダーを使用した場合は、配線パターンの体積抵抗率が高い、または配線パターンと基板との密着性にやや劣る等の不具合があったため、サイクル試験を行わなかった。
実施例1~3、比較例9~13(バインダー樹脂量、配合比の影響検討)
 表2に示す組成(各成分の数値は質量部を意味する)に従って各成分を混合して導電性インクを得た。なお実施例1は、表1と同じである。このようにして得た導電性インクを使用し、表1の結果から動歪みおよび静歪みの両特性の良かったカルボキシメチルセルロースナトリウムおよびポリN-ビニルアセトアミド併用系に関して、バインダー樹脂の添加量および配合比の影響を検討した。検討結果を表2に示す。評価方法は前述の実施例1と同様である。実施例2のように実施例1よりもバインダー樹脂添加量を少なくした場合、規格化抵抗値変化量、規格化抵抗値変化率ともに改善傾向がみられる。ただし、基板への密着性、扱いやすさの柔軟性を考慮した場合、添加量の削減には限界がある。一方、実施例1よりもバインダー樹脂添加量を多くした場合(比較例9~12)、規格化抵抗値変化量、規格化抵抗値変化率ともに徐々に悪化する傾向がみられる。また、カルボキシメチルセルロースナトリウムの含有率がバインダー樹脂の75%に相当する実施例3では50%である実施例1に対して規格化抵抗値変化率の絶対値は若干(7%弱)高くなっている程度であるのに対して、25%である比較例13では規格化抵抗値変化率の絶対値が40%以上高くなった。なお、比較例12のバインダーを使用した場合は、配線パターンの体積抵抗率が高過ぎ抵抗値変化を追えない、または配線パターンと基板との密着性に顕著に劣る等の不具合があったため、サイクル試験を行わなかった。
Figure JPOXMLDOC01-appb-T000002
実施例4、5(樹脂フィルムラミネートの影響検討)
 表3に配合比を記載したカルボキシメチルセルロースナトリウムおよびポリN-ビニルアセトアミドの1:1(質量比)混合物をバインダー樹脂に使用した導電性インクを用いてポリイミドフィルム上に30~50μm厚でカーボン配線(配線パターン)を形成したカーボン配線基板を、樹脂フィルムでラミネートした歪みセンサの耐湿性評価の結果を表3に示す。なお、規格化抵抗値変化量及び規格化抵抗値変化率の評価方法は、前述の実施例1と同様である。
 樹脂フィルムとポリイミドフィルムとの接着性を高めるため、事前にポリイミドフィルムを4質量%の水酸化ナトリウム水溶液に1分間浸漬する処理を行った後、蒸留水で水洗し、その後水分を除去した。
 上記処理後のポリイミドフィルム上に、実施例1と同様にして配線パターンを印刷し、乾燥させ、得られた印刷乾燥物を2枚の樹脂フィルムの間に挟み込みラミネートすることでカーボン配線基板を得た。ラミネートにはラミネータ(アスカ社製L405A3、設定温度:140℃、送り速度:約11mm/秒)を用いた。樹脂フィルムにはラミネート前に予めカーボン配線の抵抗測定用位置に対応するように開口部を設け、その開口部を配線の抵抗測定用位置に位置合わせした状態でラミネートした。そして、露出されたカーボン配線の抵抗測定用位置に、銀ペースト接着剤(セメダイン社製SX-ECA48)により、抵抗値変化をマルチメータ(ケースレー社製)にてモニタリングするための端子を設け印刷歪みセンサを得た。
 実施例4では、厚み12μmのPETフィルム14の一方の主面に1μm以下のシリカ蒸着膜16を備え、その上に1μm以下の保護層18を有するテックバリア(登録商標)LS(三菱ケミカル社製)を樹脂フィルム12の一部とし、PETフィルム14の他方の主面には厚み50μmの低密度ポリエチレン(LLDPE)層20を備えた樹脂フィルム12を用いており、配線パターン22が形成されたポリイミドフィルム24の両面とそれぞれの樹脂フィルム12の低密度ポリエチレン(LLDPE)層20とが対向するようにラミネートされている。また、配線パターン22には、上記開口部に位置合わせした端子26が設けられ、端子26には、マルチメータ(ケースレー社製)に接続するための被覆配線28が設けられている。実施例4の歪みセンサの構成を図4に示す。
 実施例5では、上記実施例4(図4)について、PETフィルム14の代わりに厚み20μmのポリエチレンフィルムを使用し、シリカ蒸着膜16の代わりに厚み15μmのアルミニウム箔を使用し、その上に保護層18の代わりに厚み12μmのPETフィルムを使用した。また、低密度ポリエチレン(LLDPE)層20の代わりに厚み約18μmのホットメルト接着剤層を使用し、ポリイミドフィルム24の両面と樹脂フィルム12のホットメルト接着剤層とが対向するようにラミネートされている。
 実施例1および実施例4、5のカーボン配線基板を温度20℃、相対湿度50%RHおよび温度20℃、相対湿度90%RHの雰囲気下でそれぞれ20分間保持し、20分保持前後の抵抗値変化量を1分間当たりの抵抗値変化量として算出した結果を表3に示した。
 SiO(シリカ)蒸着膜を備えた樹脂フィルムでラミネートした実施例4は、規格化抵抗値変化量、規格化抵抗値変化率、歪みに対する抵抗値変化挙動の直線性、全てにおいてラミネートなし(実施例1)と同等の高い性能が認められた。一方、アルミニウム箔を備えた樹脂フィルムでラミネートした実施例5では、規格化抵抗値変化量に大きな変化はないが、規格化抵抗値変化率の絶対値が実施例4に比べると大きくなっている(悪化している)。
 カルボキシメチルセルロースナトリウムおよびポリN-ビニルアセトアミドの1:1(質量比)混合物をバインダー樹脂に使用し、樹脂フィルムでラミネートしたセンサ(実施例4、5)を高温高湿環境に静置しても、抵抗値上昇率(Ω/min)はごく微量である。一方、ラミネートしていないセンサ(実施例1)を同環境に静置した場合、抵抗値上昇率(Ω/min)の上昇が認められる(特に、温度20℃、相対湿度90%RHの雰囲気下)。このことからカーボン配線を樹脂フィルムで被覆することで耐湿性が向上することがわかり、良好な耐環境性の発現が期待できる。
Figure JPOXMLDOC01-appb-T000003
実施例6~8(歪みの影響検討)
 実施例6として、試験速度0.5mm/minでチャック間距離が73.5mmになるまで引っ張り、5%歪みを与えた以外は実施例1と同様の操作(サイクル試験)により5%歪みを与えた際の規格化抵抗値変化量および規格化抵抗値変化率を算出した。また、実施例7として、試験速度0.5mm/minでチャック間距離が77mmになるまで引っ張り、10%歪みを与えた以外は実施例1と同様の操作(サイクル試験)により規格化抵抗値変化量および規格化抵抗値変化率を算出した。さらに、実施例8として、試験速度0.5mm/minでチャック間距離が73.5mmになるまで引っ張り5%歪みを与えた以外は実施例4と同様の操作により5%歪みを与えた際の規格化抵抗値変化量および規格化抵抗値変化率を算出した。
 実施例6では、規格化抵抗値変化量が0.34、規格化抵抗値変化率が84×10-5(s-1))であった。また、実施例7では、規格化抵抗値変化量が0.52、規格化抵抗値変化率が254×10-5(s-1)であった。さらに、実施例8では、規格化抵抗値変化量が0.26、規格化抵抗値変化率が131×10-5(s-1))であった。規格化抵抗値変化量、規格化抵抗値変化率ともに加えた歪みが大きくなるにしたがい大きくなる傾向を示したが、いずれも配線の破断等の不具合なく繰り返し抵抗値を測定(歪みを検知)できた。
 10 歪みセンサ、12 樹脂フィルム、14 PETフィルム、16 シリカ蒸着膜、18 保護層、20 低密度ポリエチレン(LLDPE)層、22 配線パターン、24 ポリイミドフィルム、26 端子(銀ペースト接着剤)、28 被覆配線。

Claims (7)

  1.  炭素質導電材料(A)と、セルロース化合物(B1)およびポリN-ビニル化合物(B2)を含むバインダー樹脂(B)と、溶媒(C)と、を含み、前記炭素質導電材料(A)100質量部に対して前記バインダー樹脂(B)を0.5~23質量部含み、かつ、前記セルロース化合物(B1)とポリN-ビニル化合物(B2)との質量配合比が80:20~40:60であり、かつ、前記溶媒(C)が水(C1)を含むことを特徴とする導電性インク。
  2.  前記セルロース化合物(B1)がカルボキシメチルセルロースナトリウムであり、前記ポリN-ビニル化合物(B2)がポリNービニルアセトアミドである請求項1に記載の導電性インク。
  3.  前記炭素質導電材料(A)が平均粒径25μm以下のグラファイト粉末である請求項1または2に記載の導電性インク。
  4.  絶縁基板上に、炭素質導電材料(A)と、セルロース化合物(B1)およびポリN-ビニル化合物(B2)を含むバインダー樹脂(B)と、溶媒(C)と、を含み、前記炭素質導電材料(A)100質量部に対して前記バインダー樹脂(B)を0.5~23質量部含み、かつ、前記セルロース化合物(B1)とポリN-ビニル化合物(B2)との質量配合比が80:20~40:60であり、かつ、前記溶媒(C)が水(C1)を含む導電性インクを用いて形成された配線パターンを有するカーボン配線基板。
  5.  炭素質導電材料(A)と、セルロース化合物(B1)およびポリN-ビニル化合物(B2)を含むバインダー樹脂(B)と、を含み、前記炭素質導電材料(A)100質量部に対して前記バインダー樹脂(B)を0.5~23質量部含み、かつ、前記セルロース化合物(B1)とポリN-ビニル化合物(B2)との質量配合比が80:20~40:60である配線パターンを有するカーボン配線基板。
  6.  前記配線パターンが樹脂フィルムにより被覆されている請求項4または5に記載のカーボン配線基板。
  7.  前記樹脂フィルムがシリカ膜を有するものである請求項6に記載のカーボン配線基板。
     
PCT/JP2019/036084 2018-09-13 2019-09-13 導電性インク及びカーボン配線基板 WO2020054844A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020546222A JPWO2020054844A1 (ja) 2018-09-13 2019-09-13 導電性インク及びカーボン配線基板
US17/274,995 US20220056295A1 (en) 2018-09-13 2019-09-13 Electroconductive ink and carbon wiring substrate
KR1020217001070A KR20210021031A (ko) 2018-09-13 2019-09-13 도전성 잉크 및 카본 배선 기판
EP19860573.5A EP3851501A1 (en) 2018-09-13 2019-09-13 Electroconductive ink and carbon wiring substrate
CN201980048289.5A CN112469788A (zh) 2018-09-13 2019-09-13 导电性墨液及碳配线基板

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018171415 2018-09-13
JP2018171414 2018-09-13
JP2018-171414 2018-09-13
JP2018-171415 2018-09-13

Publications (1)

Publication Number Publication Date
WO2020054844A1 true WO2020054844A1 (ja) 2020-03-19

Family

ID=69776722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/036084 WO2020054844A1 (ja) 2018-09-13 2019-09-13 導電性インク及びカーボン配線基板

Country Status (7)

Country Link
US (1) US20220056295A1 (ja)
EP (1) EP3851501A1 (ja)
JP (1) JPWO2020054844A1 (ja)
KR (1) KR20210021031A (ja)
CN (1) CN112469788A (ja)
TW (1) TW202022063A (ja)
WO (1) WO2020054844A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114025483A (zh) * 2020-11-30 2022-02-08 益阳市明正宏电子有限公司 一种提高碳油板电测良率的加工方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5922387A (ja) 1982-07-28 1984-02-04 北陸電気工業株式会社 フレキシブル印刷抵抗回路基板の製造方法
JPH07243805A (ja) 1994-03-02 1995-09-19 Alps Electric Co Ltd 歪ゲージ用抵抗インクおよび歪ゲージ
JP2009277783A (ja) * 2008-05-13 2009-11-26 Japan Gore Tex Inc 導電性接着剤ならびにそれを用いた電気二重層キャパシタ用電極および電気二重層キャパシタ
WO2014002885A1 (ja) * 2012-06-26 2014-01-03 東レ株式会社 カーボンナノチューブ含有組成物の分散液および導電性成形体
JP2016121241A (ja) * 2014-12-24 2016-07-07 昭和電工株式会社 薄膜印刷用導電性組成物及び薄膜導電パターン形成方法
WO2017060497A1 (en) * 2015-10-07 2017-04-13 Cambridge Enterprise Limited Layered materials and methods for their processing
JP2017149920A (ja) * 2016-02-22 2017-08-31 東洋インキScホールディングス株式会社 導電性組成物、蓄電デバイス用下地層付き集電体、蓄電デバイス用電極、及び蓄電デバイス

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS608372A (ja) * 1983-06-29 1985-01-17 Mitsui Toatsu Chem Inc 導体形成用ペ−スト
JP4706637B2 (ja) * 2004-11-29 2011-06-22 Dic株式会社 導電性ペースト、及び導電性ペーストの製造方法
US9236162B2 (en) * 2012-04-26 2016-01-12 Osaka University Transparent conductive ink and transparent conductive pattern forming method
JP2014067566A (ja) * 2012-09-25 2014-04-17 Bando Chem Ind Ltd 導電ペースト
KR101442681B1 (ko) * 2012-11-09 2014-09-24 엔젯 주식회사 전도성 나노 잉크 조성물, 이를 이용한 전극선 및 투명전극
DE102013100662B4 (de) * 2013-01-23 2018-09-20 Deutsche Institute Für Textil- Und Faserforschung Denkendorf Markierungszusammensetzung, deren Verwendung und diese enthaltende Gegenstände
JP5767268B2 (ja) * 2013-04-02 2015-08-19 太陽誘電株式会社 回路モジュール及びその製造方法
WO2016136971A1 (ja) * 2015-02-27 2016-09-01 株式会社フジクラ タッチセンサ用配線体、タッチセンサ用配線基板及びタッチセンサ
JP2016173933A (ja) * 2015-03-17 2016-09-29 昭和電工株式会社 導電性ペースト、導電パターン及び導電パターンの製造方法
GB201512946D0 (en) * 2015-07-22 2015-09-02 Cambridge Entpr Ltd And Novalia Ltd Nanoplatelet dispersions, methods for their production and uses thereof
JP6755972B2 (ja) * 2016-02-15 2020-09-16 スケッチオン インコーポレイテッド スキンプリントソリューションシステム及びスキンプリンタ
JP2017199323A (ja) * 2016-04-28 2017-11-02 富士フイルム株式会社 タッチセンサー用導電シート、タッチセンサー用導電シートの製造方法、タッチセンサー、タッチパネル積層体、タッチパネル、透明絶縁層形成用組成物
JP6543005B2 (ja) * 2016-12-01 2019-07-10 昭和電工株式会社 透明導電基板及びその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5922387A (ja) 1982-07-28 1984-02-04 北陸電気工業株式会社 フレキシブル印刷抵抗回路基板の製造方法
JPH07243805A (ja) 1994-03-02 1995-09-19 Alps Electric Co Ltd 歪ゲージ用抵抗インクおよび歪ゲージ
JP2009277783A (ja) * 2008-05-13 2009-11-26 Japan Gore Tex Inc 導電性接着剤ならびにそれを用いた電気二重層キャパシタ用電極および電気二重層キャパシタ
WO2014002885A1 (ja) * 2012-06-26 2014-01-03 東レ株式会社 カーボンナノチューブ含有組成物の分散液および導電性成形体
JP2016121241A (ja) * 2014-12-24 2016-07-07 昭和電工株式会社 薄膜印刷用導電性組成物及び薄膜導電パターン形成方法
WO2017060497A1 (en) * 2015-10-07 2017-04-13 Cambridge Enterprise Limited Layered materials and methods for their processing
JP2017149920A (ja) * 2016-02-22 2017-08-31 東洋インキScホールディングス株式会社 導電性組成物、蓄電デバイス用下地層付き集電体、蓄電デバイス用電極、及び蓄電デバイス

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KARAGIANNIDIS PANAGIATIS G. ET AL.: "Microfluidization of Graphite and Formulation of Graphene-Based Conductive Inks", ACS NANO, vol. 11, no. 3, 28 March 2017 (2017-03-28), pages 2742 - 2755, XP055693456, ISSN: 1936-0851, DOI: 10.1021/acsnano.6b07735 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114025483A (zh) * 2020-11-30 2022-02-08 益阳市明正宏电子有限公司 一种提高碳油板电测良率的加工方法

Also Published As

Publication number Publication date
US20220056295A1 (en) 2022-02-24
KR20210021031A (ko) 2021-02-24
CN112469788A (zh) 2021-03-09
JPWO2020054844A1 (ja) 2021-09-16
TW202022063A (zh) 2020-06-16
EP3851501A1 (en) 2021-07-21

Similar Documents

Publication Publication Date Title
KR102071237B1 (ko) 도공액, 도공막, 및 복합 재료
JP2023080287A (ja) 熱伝導率を高めたナノ多孔質複合セパレータ
US8083970B2 (en) Electroconductive carbon fibril-based inks and coatings
WO2020124628A1 (zh) 离子纸、离电子式柔性压力传感器及其制备方法
JP2016523434A (ja) リチウムイオン電池の生産および支持体付フレキシブル電極を調製することのための印刷または噴霧堆積法
JP5554552B2 (ja) 透明導電膜及びその製造方法
KR20100040033A (ko) 고전도성 페이스트 조성물 및 이의 제조방법
WO2020054844A1 (ja) 導電性インク及びカーボン配線基板
WO2014047219A1 (en) Transparent conductive films with carbon nanotubes, inks to form the films and corresponding processes
Torvinen et al. Pigment-cellulose nanofibril composite and its application as a separator-substrate in printed supercapacitors
JP6371769B2 (ja) 透明電極およびその製造方法
JP6325364B2 (ja) 透明導電性コーティング組成物、透明導電性シート及びその製造方法、並びに透明導電パターン形成方法
US8728566B2 (en) Method of making carbon nanotube composite materials
WO2020203417A1 (ja) 導電性インクおよびカーボン配線基板
JP6837472B2 (ja) 透明導電膜
CN110564335A (zh) 碳纳米管电磁屏蔽散热薄膜及其制备方法
Suthanthiraraj et al. Electrical and structural properties of poly (ethylene oxide)/silver triflate polymer electrolyte system dispersed with MgO nanofillers
JP2018517238A (ja) パターニングされた透明導電膜及びこのようなパターニングされた透明導電膜の製造方法
JPWO2016068054A1 (ja) 熱電変換素子および熱電変換モジュール
JP2008031205A (ja) 導電性フィルムおよび当該フィルムを用いたタッチパネル
CA3052749A1 (en) Molecular ink with improved thermal stability
JP6656450B1 (ja) 電子部品搬送トレイ・キャリアテープ用のシートとそれを用いた電子部品搬送トレイ・キャリアテープ
KR20100096869A (ko) 음이온 계면 활성제를 이용한 수분산 폴리(3, 4-에틸렌다이옥시싸이오펜)용액을 사용한 압전 필름스피커
JP6347687B2 (ja) レジスト組成物及びそれを用いた透明導電性パターンシートの製造方法、並びに透明導電性パターンシート
US20180132350A1 (en) Articles and substrates providing improved performance of printable electronics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19860573

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020546222

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217001070

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019860573

Country of ref document: EP

Effective date: 20210413