WO2020124628A1 - 离子纸、离电子式柔性压力传感器及其制备方法 - Google Patents

离子纸、离电子式柔性压力传感器及其制备方法 Download PDF

Info

Publication number
WO2020124628A1
WO2020124628A1 PCT/CN2018/123781 CN2018123781W WO2020124628A1 WO 2020124628 A1 WO2020124628 A1 WO 2020124628A1 CN 2018123781 W CN2018123781 W CN 2018123781W WO 2020124628 A1 WO2020124628 A1 WO 2020124628A1
Authority
WO
WIPO (PCT)
Prior art keywords
ionic
ion
liquid
cellulose
paper
Prior art date
Application number
PCT/CN2018/123781
Other languages
English (en)
French (fr)
Inventor
常煜
李森
Original Assignee
钛深科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 钛深科技(深圳)有限公司 filed Critical 钛深科技(深圳)有限公司
Publication of WO2020124628A1 publication Critical patent/WO2020124628A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M1/00Inking and printing with a printer's forme
    • B41M1/12Stencil printing; Silk-screen printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M7/00After-treatment of prints, e.g. heating, irradiating, setting of the ink, protection of the printed stock
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/10Coatings without pigments
    • D21H19/14Coatings without pigments applied in a form other than the aqueous solution defined in group D21H19/12
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/10Coatings without pigments
    • D21H19/14Coatings without pigments applied in a form other than the aqueous solution defined in group D21H19/12
    • D21H19/20Coatings without pigments applied in a form other than the aqueous solution defined in group D21H19/12 comprising macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/10Coatings without pigments
    • D21H19/14Coatings without pigments applied in a form other than the aqueous solution defined in group D21H19/12
    • D21H19/20Coatings without pigments applied in a form other than the aqueous solution defined in group D21H19/12 comprising macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H19/22Polyalkenes, e.g. polystyrene
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/14Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators

Definitions

  • the invention belongs to the technical field of sensors, and particularly relates to an ion paper and a preparation method of an ionized flexible pressure sensor made of ion gel composite materials.
  • Flexible pressure sensing technology is a two-dimensional pressure sensing element made of flexible materials.
  • Traditional non-flexible pressure sensing elements use metal cantilever beams, silicon-based stress plates and other inflexible materials.
  • Flexible pressure sensors are different. They mostly use polymer membranes, fiber structure materials, etc. as sensor construction materials.
  • the flexible pressure sensor is mainly composed of electrodes and functional material layers. Most of the electrodes use highly conductive metals, conductive carbon materials, conductive ceramic materials, and conductive polymer materials, and form specific circuit patterns.
  • the functional material layers mainly include conductor materials, dielectric materials, piezoelectric materials, triboelectric materials, and ionic materials.
  • the corresponding flexible sensing mechanisms are also mainly divided into piezoresistive, parallel capacitive, piezoelectric Type, triboelectric type, ionized type.
  • Ionized pressure sensor is a new pressure sensing technology based on the principle of interface electric double layer capacitance.
  • This pressure sensor uses materials rich in freely movable anions and cations, such as high-boiling-point solutions of electrolytes, ionic liquids, polyelectrolytes, and ionic liquid gels.
  • electrolytes such as electrolytes, ionic liquids, polyelectrolytes, and ionic liquid gels.
  • This electric double layer is a nano-scale capacitor structure formed by ion arrangement.
  • the capacitance per unit area is more than 1000 times that of traditional parallel plate capacitors.
  • the interface capacitance is mainly positively related to the contact area between the electrode and the ionic material, and the ionized pressure sensor is based on this. Under the pressure, the contact area between the ionic material and the electrode increases , The sensor capacitance also increases accordingly.
  • the interface capacitive pressure sensing mechanism is a brand-new sensing mechanism different from the existing resistive, capacitive and piezoelectric sensing.
  • interface capacitance can reach hundreds of nF or even uF level, compared with the parallel plate capacitive sensor of dozens of pF, its sensitivity is increased by more than 1000 times, and it has strong anti-interference ability to human body and environmental capacitance noise.
  • interface capacitive pressure sensors have better linear response in a certain pressure range.
  • conductive materials such as graphene and carbon nanotubes
  • ionic materials can be prepared into solutions, inks, and slurries In other forms, it can be more conveniently prepared into a ionic material layer by various processing methods such as dip coating, blade coating, inkjet, printing and so on.
  • the interface capacitive pressure sensor can detect static pressure while having a fast mechanical response speed.
  • Ionized pressure sensing technology has developed a variety of forms, including a variety of flexible pressure sensing forms based on polymer films, nanofabrics, ionic gel elastomers, and ultra-thin coatings on the surface.
  • the current ionized pressure sensor has shortcomings in terms of foldability.
  • the embodiment of the invention provides a preparation method of ionized flexible pressure sensor made of ion paper and ion gel composite material, aiming to solve the problem of insufficient foldability of the existing ionized pressure sensor.
  • the cellulose-reinforced ionic gel composite material includes liquid ionic material, polymer and cellulose, and is reinforced with cellulose
  • the total weight of the ionic gel composite material is 100%, and the weight percentages of the liquid ionic material, polymer and cellulose are as follows:
  • Liquid ionic materials 1 ⁇ 80%
  • the cellulose is selected from cellulose for papermaking
  • the polymer is selected from polymers capable of forming a gel material with the liquid ionic material.
  • An ionized flexible pressure sensor is a foldable flexible pressure sensor, including an electrode area and an ion area, wherein at least the ion area is made of cellulose-reinforced ion gel composite material , And the cellulose-reinforced ionic gel composite material includes liquid ionic material, polymer and cellulose, and the total weight of the cellulose-reinforced ionic gel composite material is 100%, the liquid ionic material, polymer The weight percentage of cellulose and cellulose is as follows:
  • Liquid ionic materials 1 ⁇ 80%
  • the cellulose is selected from cellulose for papermaking
  • the polymer is selected from polymers capable of forming a gel material with the liquid ionic material.
  • a preparation method of an ionized flexible pressure sensor includes the following steps:
  • An adhesive is provided at the design part of the ion paper base material, and the ion paper base material is folded so that the ion area and the electrode area are face-to-face bonded to form a preset electrode pattern to obtain a foldable ion Electronic flexible pressure sensor; or
  • the preparation method of the flexible pressure sensor includes the following steps:
  • a paper substrate provided with cellulose material is printed with electrode material in a predetermined electrode area of the paper substrate according to a predetermined electrode pattern, and ion ink is printed in a predetermined ion area of the paper substrate to form an electrode area and ions Area; wherein, the ionic ink contains liquid ionic materials, polymers and additives;
  • An adhesive is provided at a design portion of the paper substrate, and the paper substrate is folded, so that the ion region and the electrode region are face-to-face bonded to form a preset electrode pattern to obtain a foldable ionized type Flexible pressure sensor.
  • the ion paper provided by the present invention is made of cellulose-reinforced ion gel composite material, and the cellulose-reinforced ion gel composite material includes liquid ion material, polymer and cellulose.
  • the liquid ionic material is used as a matrix functional material to give the ion paper excellent ion conductivity;
  • the polymer is used to fix the liquid ionic material in the ion paper to prevent its diffusion or precipitation, Improve its weather resistance;
  • the introduction of the cellulose provides a fibrous microstructure, provides a rough surface for sensing the pressure change when the ion paper is used as a sensor, and at the same time gives the ion paper excellent folding performance.
  • cellulose-reinforced ionic gel composite material as a raw material for the preparation of ion paper can impart excellent ion conductivity, printability, weather resistance and foldability to the ion paper, and the resulting ion paper can be used as The functional material of the flexible pressure sensor is used to prepare a foldable and shearable flexible pressure sensor.
  • An ionized flexible pressure sensor provided by the present invention includes an electrode area and an ion area, wherein at least the ion area is made of the ion paper of the present invention. Since the ion paper has excellent ion conductivity, weather resistance and foldability, the foldability, sensitivity and weather resistance of the flexible pressure sensor can be improved.
  • the preparation method of the ionized flexible pressure sensor provided by the present invention directly uses ion paper as the substrate to prepare the patterned electrode, and then performs the folding process; or firstly deposit the electrode material and the liquid ion-containing material on the cellulose substrate , Polymer and additive ionic inks, after forming the electrode area and the ion area, the folding process is performed, which not only gives the obtained flexible pressure sensor excellent foldability, but also the obtained flexible pressure sensor has good weather resistance and high Sensitivity.
  • a two-dimensional or multi-dimensional flexible pressure sensor can be prepared by folding.
  • FIG. 1 is a schematic diagram of a preparation process of a first flexible pressure sensor provided by an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a preparation process of a second flexible pressure sensor provided by an embodiment of the present invention
  • FIG. 3 is a pressure-capacitance curve diagram of a two-dimensional ionized flexible pressure sensor provided in Embodiment 1 of the present invention.
  • FIG. 4 is a schematic diagram of a three-dimensional ionized flexible pressure sensor provided by Embodiment 2 of the present invention.
  • first and second are used for description purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated.
  • the features defined as “first” and “second” may explicitly or implicitly include one or more of the features.
  • the meaning of “plurality” is two or more, unless otherwise specifically limited.
  • first and second are used for description purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated.
  • the features defined as “first” and “second” may explicitly or implicitly include one or more of the features.
  • the meaning of “plurality” is two or more, unless otherwise specifically limited.
  • Paper is a kind of aggregate material whose main component is natural cellulose or artificial cellulose. It has a special fibrous microstructure, as well as the characteristics of degradability, high biocompatibility and low cost. In addition, paper also has many characteristics that other materials do not have completely, such as printability, cutability, adhesiveness and foldability. In view of this,
  • a first aspect of the embodiments of the present invention provides an ion paper made of cellulose-reinforced ion gel composite material, and the cellulose-reinforced ion gel composite material includes liquid ion material, polymer and fiber Based on the total weight of cellulose-reinforced ionic gel composite material as 100%, the weight percent content of the liquid ionic material, polymer and cellulose is as follows:
  • Liquid ionic materials 1 ⁇ 80%
  • the cellulose is selected from cellulose for papermaking
  • the polymer is selected from polymers capable of forming a gel material with the liquid ionic material.
  • the ion paper provided by the embodiment of the present invention is made of cellulose-reinforced ion gel composite material, and the cellulose-reinforced ion gel composite material includes liquid ion material, polymer and cellulose.
  • the liquid ionic material is used as a matrix functional material to give the ion paper excellent ion conductivity;
  • the polymer is used to fix the liquid ionic material in the ion paper to prevent its diffusion or precipitation, Improve its weather resistance;
  • the introduction of the cellulose provides a fibrous microstructure, provides a rough surface for sensing the pressure change when the ion paper is used as a sensor, and at the same time gives the ion paper excellent folding performance.
  • cellulose-reinforced ionic gel composite material as a raw material for the preparation of ion paper can impart excellent ion conductivity, printability, weather resistance and foldability to the ion paper, and the resulting ion paper can be used as The functional material of the flexible pressure sensor is used to prepare a foldable and shearable flexible pressure sensor.
  • the liquid ionic material is used as a matrix functional material to give the ionic paper excellent ion conduction performance, thereby providing functional guarantee for preparing an ionized pressure sensor using the ionic paper.
  • the liquid ionic material is selected from at least one of ionic liquid, ionic liquid solution, and solid electrolyte solution, and the solvent in the ionic liquid solution and solid electrolyte solution remains in the ionic paper.
  • the ionic liquid is an ionic compound that is liquid at a temperature of 10°C to 35°C.
  • the ionic liquid may be selected from at least one of imidazole-based ionic liquids, quaternary ammonium salt-based ionic liquids, pyridine-based ionic liquids, pyrrole-based ionic liquids, piperidine-based ionic liquids, of course, not limited to this.
  • the preferred type of ionic liquid is liquid at normal temperature (10°C ⁇ 35°C) and has good ionic conductivity, so that the resulting ionic paper can effectively exert its function when used as an ionization sensor.
  • the ionic liquid high-boiling point organic solution is a solution formed by dissolving the ionic liquid in a high-boiling point and high-polarity organic solvent (it can be understood as adding a high-boiling point and high-polarity organic solvent in different levels to the ionic liquid to form a corresponding ionic liquid Solution), and the high-boiling point and high-polarity organic solvent is an organic solvent having a boiling point of not less than 200°C and containing at least one of a hydroxyl group, an amine group, an ester group, an amide group, and a carboxyl group in the molecular structure.
  • the high-boiling point and high-polarity organic solvent has a high boiling point and is not easily volatilized, and due to the large polarity of the solvent, it can effectively dissolve the ionic compounds with high polarity.
  • the ionic liquid in the ionic liquid solution, is selected from at least one of imidazole ionic liquid, quaternary ammonium salt ionic liquid, pyridine ionic liquid, pyrrole ionic liquid, piperidine ionic liquid
  • the high boiling point and high polarity organic solvent is selected from at least one of dibutyl phthalate, tributyl citrate, nitromethylpyrrolidone, dimethyl sulfoxide, glycerin, and ethylene glycol.
  • the preferred type of ionic liquid is liquid at normal temperature (10°C ⁇ 35°C) and has good ionic conductivity, so that the resulting ionic paper can effectively exert its function when used as an ionization sensor.
  • the preferred type of organic solvent has good solubility in the ionic liquid. More importantly, the above organic solvent has a high boiling point and is not easily volatile. It can be properly retained in the ionic paper as an ion conduction medium when preparing the ionic paper , To further improve the ionic conductivity of ionic liquids.
  • the weight percentage content of the ionic liquid is 50% to 70%, and the weight percentage content of the high-boiling high-polarity organic solvent is 30 % ⁇ 50%, at this time, the finished ion paper has more excellent ion conductivity.
  • the solid electrolyte high-boiling organic solution is a solution formed by a solid ionic compound in a high-boiling high-polar organic solvent at a temperature of 10°C to 35°C, and the high-boiling high-polar organic solvent has a boiling point of An organic solvent that is lower than 200°C and contains at least one of hydroxyl group, amine group, ester group, amide group, and carboxyl group in the molecular structure.
  • the high-boiling point and high-polarity organic solvent has a high boiling point and is not easily volatilized, and due to the large polarity of the solvent, it can effectively dissolve the ionic compounds with high polarity.
  • the ionic compound in the solid electrolyte solution, is selected from at least one of a small molecule electrolyte (non-polymer small molecule electrolyte) and a polymer electrolyte;
  • the high boiling point and high polarity organic solvent is selected From at least one of dibutyl phthalate, tributyl citrate, nitromethylpyrrolidone, dimethyl sulfoxide, glycerin, and ethylene glycol.
  • the preferred type of organic solvent has good solubility to the ionic compound. More importantly, the above organic solvent has a high boiling point and is not easily volatile.
  • the weight percentage content of the ionic compound is 50% to 70%, and the weight percentage of the high-boiling high-polar organic solvent The content is 30% ⁇ 50%. At this time, the ion paper made has more excellent ion conductivity.
  • the weight percentage content of the liquid ionic material is 1% to 80%, specifically 1%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%.
  • the polymer is used to fix the liquid ionic material in the ionic paper, prevent its diffusion or precipitation, and improve its weather resistance.
  • the liquid ionic material will form a gel with the polymer and be fixed, therefore, it will not diffuse or Precipitation, so as to avoid the problem that the liquid ionic material diffuses into the electrode area or the content is reduced after precipitation and separation, which leads to the problem of reduced sensitivity of the ionized flexible pressure sensor.
  • the fixing effect of the polymer on the liquid ionic material can improve the weather resistance and safety of the ionic paper (some liquid ionic materials have certain toxicity), and then when the ionic paper is used in ionized flexible sensors At the same time, improve the weather resistance of the ionized flexible sensor.
  • the polymer is selected from polymers capable of forming a gel material with the liquid ionic material.
  • the polymer is selected from at least one of a polymer monomer containing a hydroxyl group, a carboxyl group, an amide group, an amino group, a nitro group, a halogen atom, an ester group, a cyano group, and a urethane group.
  • the polymer formed by the monomer containing the above active functional group has a strong polarity and has a good fixing effect on the liquid ionic material.
  • the polymer is selected from at least one of polyvinyl alcohol, polyurethane, polyamide, polyvinylidene fluoride, and polyacrylate. These polymers have strong polarity and can be combined with liquid ionic materials, so that the liquid ionic materials are imprisoned in ionic paper without diffusion, transfer or precipitation.
  • a polymer that is more stable and more compatible with the liquid ionic material during gel formation is selected.
  • the hydrophilic liquid ionic material lithium hexafluorophosphate glycerol solution is preferably combined with selected polyvinyl alcohol to form a gel
  • the hydrophobic lithium hexafluoromethanesulfonate dibutyl phthalate solution is preferably combined with polyacrylic acid
  • the combination of ester polymers forms a gel
  • the liquid ionic material with moderate hydrophobicity, 1-butyl-3-methylimidazole trifluoromethanesulfonate is preferably combined with a polyurethane polymer to form a gel.
  • Polyvinyl alcohol contains hydroxyl groups
  • polyurethane contains urethane groups
  • polyamide contains amide groups
  • polyvinylidene fluoride contains halogen atom groups
  • polyacrylate contains ester groups.
  • the weight percentage of the polymer is 1% to 80%, specifically 1%, 5%, 10 %, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%.
  • cellulose another important raw material for ion paper
  • the cellulose may be natural cellulose or artificial cellulose.
  • the cellulose must be cellulose for papermaking, so that the formed ionic paper has good high biocompatibility, degradability, printability, shearability, adhesion and foldability.
  • the introduction of cellulose can form ion paper with a fibrous microstructure on the surface, so that when ion paper is used as a sensor material, it can effectively sense.
  • the cellulose may be selected from but not limited to woody plant fibers, bast fibers, mineral fibers, synthetic papermaking fibers, etc., preferably woody plant fibers.
  • the weight percentage content of the cellulose is 19% to 80%, specifically 19%, 20%, 25 %, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%. If the weight of the cellulose is too low, due to insufficient surface roughness, when the resulting ionic paper is used as a sensor material, the pressure change is not obvious, thereby reducing the overall performance of the sensor.
  • the weight percentage content of the cellulose is 20% to 50%, when the obtained ionic paper is used as a sensor material Good sensitivity, high resolution and fast response speed.
  • a second aspect of an embodiment of the present invention provides an ionized flexible pressure sensor.
  • the ionized flexible pressure sensor is a foldable flexible pressure sensor, including an electrode area and an ion area, wherein at least the ion area is reinforced with cellulose Made of ionic gel composite material, and the cellulose-reinforced ionic gel composite material includes liquid ionic material, polymer and cellulose, and the total weight of cellulose-reinforced ionic gel composite material is 100%
  • the weight percent content of the liquid ionic material, polymer and cellulose is as follows:
  • Liquid ionic materials 1 ⁇ 80%
  • the cellulose is selected from cellulose for papermaking
  • the polymer is selected from polymers capable of forming a gel material with the liquid ionic material.
  • the ionized flexible pressure sensor provided by the embodiment of the present invention is a foldable ionized pressure sensor, which includes an electrode area and an ion area, wherein at least the ion area is made of ion paper according to the present invention. Since the ion paper has excellent ion conductivity, weather resistance and foldability, the foldability, sensitivity and weather resistance of the flexible pressure sensor can be improved.
  • the foldable ionizable flexible pressure sensor includes an ion paper substrate, and a patterned electrode bonded to the ion paper substrate.
  • the area where the patterned electrode is located forms an electrode area, and the area other than the patterned electrode forms an ion area. Further, the ion area and the electrode area are relatively folded to form a folded flexible pressure sensor.
  • the foldable ionizable flexible pressure sensor includes a paper substrate, and a patterned electrode formed on the paper substrate, and combined with the paper substrate and in addition to the patterned electrode Patterned ion paper pattern. Further, the ion area and the electrode area are relatively folded to form a folded flexible pressure sensor.
  • the cellulose-reinforced ionic gel composite material is the material for preparing ionic paper of the present invention.
  • the selection of liquid ionic materials, polymers and cellulose is the same as in the above-mentioned ionic paper.
  • the liquid ionic material is selected from at least one of ionic liquid, ionic liquid high-boiling organic solution, and solid electrolyte high-boiling organic solution, wherein,
  • the ionic liquid is an ionic compound that is liquid at a temperature of 10°C to 35°C;
  • the ionic liquid high-boiling organic solution is a solution formed by dissolving the ionic liquid in a high-boiling high-polar organic solvent, and the high-boiling high-polar organic solvent has a boiling point of not less than 200°C, and the molecular structure contains hydroxyl groups, An organic solvent of at least one of an amine group, an ester group, an amide group, and a carboxyl group;
  • the solid electrolyte high-boiling organic solution is a solution formed by a solid ionic compound in a high-boiling high-polar organic solvent at a temperature of 10°C to 35°C, and the high-boiling high-polar organic solvent has a boiling point of An organic solvent that is lower than 200°C and contains at least one of hydroxyl group, amine group, ester group, amide group, and carboxyl group in the molecular structure.
  • the ionic liquid solution is selected from at least one selected from the group consisting of imidazole-based ionic liquids, quaternary ammonium salt-based ionic liquids, pyridine-based ionic liquids, pyrrole-based ionic liquids, and piperidine-based ionic liquids.
  • the ionic liquid is selected from at least one of imidazole ionic liquid, quaternary ammonium salt ionic liquid, pyridine ionic liquid, pyrrole ionic liquid, and piperidine ionic liquid;
  • the high boiling point and high polarity organic solvent is selected from at least one of dibutyl phthalate, tributyl citrate, nitromethylpyrrolidone, dimethyl sulfoxide, glycerin, and ethylene glycol.
  • the ionic compound is selected from at least one of a small molecule electrolyte and a polymer electrolyte;
  • the high boiling point and highly polar organic solvent is selected from dibutyl phthalate and citric acid At least one of tributyl ester, nitromethylpyrrolidone, dimethyl sulfoxide, glycerin, and ethylene glycol.
  • the polymer is selected from polymers capable of forming a gel material with the liquid ionic material.
  • the polymer is selected from at least one of a polymer monomer containing a hydroxyl group, a carboxyl group, an amide group, an amino group, a nitro group, a halogen atom, an ester group, a cyano group, and a urethane group.
  • the polymer is at least one selected from polyvinyl alcohol, polyurethane, polyamide, polyvinylidene fluoride, and polyacrylate.
  • the ionized flexible pressure sensor provided by the embodiment of the present invention not only has the advantages of high sensitivity, high signal-to-noise ratio, high anti-interference, etc. possessed by the ionized flexible pressure sensing mechanism, but also has the unique low cost of paper , High biocompatibility, degradable, printable, shearable, adhesive, foldable.
  • the ionized flexible pressure sensor provided by the embodiment of the present invention can be prepared by the following method.
  • the preparation method of the ionized flexible pressure sensor includes the following steps:
  • the ion paper substrate is the ion paper described in the embodiment of the present invention, and can be prepared by various methods.
  • the preparation method of the ionic paper substrate is:
  • the liquid ionic material, polymer and cellulose are dispersed in water or an organic solvent to form a slurry containing the ionic material.
  • the organic solvent is an organic solvent capable of dispersing the liquid ionic material, polymer and cellulose.
  • the organic solvent is selected from alcohols, sulfones, amides, esters and the like.
  • the formed film layer is peeled from the substrate to obtain an ionic paper substrate.
  • drying to remove the solvent can be done by heating.
  • the slurry is directly coated on the surface of the substrate, and after drying to remove the solvent, the formed The film layer is peeled off from the substrate to obtain an ion paper substrate.
  • the cellulose fibers are picked up from the slurry to form a cellulose pulp layer on the screen, after heating to evaporate the dry solvent, after peeling off the screen Obtain the required ion paper material.
  • the preparation method of the ionic paper substrate is:
  • the liquid ionic material and polymer are dissolved in water or an organic solvent at a ratio of 1 to 80: 1 to 80 to form a slurry. Further, the slurry is deposited on the substrate to form a liquid ion coating.
  • the paper substrate of cellulose material is impregnated into the liquid ion coating, that is, the cellulose material of paper substrate can be impregnated into the liquid ion coating, so that the coating contains a certain amount of The content of cellulosic material will eventually form ionic paper with paper characteristics.
  • the method of dipping the paper substrate into the liquid ion coating may be: dipping the paper substrate of cellulosic material into the ion coating by the method of dipping, after uniformly pulling up , Heating the volatile solvent to obtain the required ion paper material.
  • drying to remove the solvent can be done by heating.
  • the preparation method of the ionic paper substrate is:
  • Liquid ionic materials, polymers and additives are dissolved in water or organic solvents to form ionic ink, the ionic ink is printed on a paper substrate of cellulose material, dried to remove the solvent, and ionic paper is prepared.
  • the additive is an additive capable of improving the performance of the film layer, including but not limited to defoaming agent and leveling agent;
  • the deposition method includes but not limited to conventional deposition methods such as screen printing, inkjet printing, blade coating, etc.; Drying to remove the solvent can be done by heating.
  • a patterned electrode is prepared on the ion paper substrate according to a preset electrode pattern.
  • the conductive material for preparing the patterned electrode may be selected from, but not limited to, at least one of conductive silver paste, conductive carbon paste, nano silver conductive ink, and conductive polymer ink.
  • the area where the patterned electrode is located forms an electrode area; the area other than the patterned electrode forms an ion area.
  • an adhesive is provided at the design part of the ion paper substrate.
  • the design part is understood to be a functional area where the sensor performs a sensing function, and a position around the edge, if the sensor area is relatively small Large, in addition to the position of the sensor edge, there will also be an adhesive inside the sensor in the open space to ensure the tight fit of the sensor after bonding and encapsulation.
  • the adhesive is a liquid adhesive, and at this time, the liquid adhesive is deposited on the design portion of the paper substrate; in some embodiments, the adhesive is double-sided adhesive, At this time, the double-sided tape is directly adhered to the design portion of the paper substrate.
  • the ion paper substrate is folded by an adhesive, so that the ion area and the electrode area are face-to-face bonded to form a preset electrode pattern to obtain a foldable flexible pressure sensor.
  • a special folding design can be performed, and a three-dimensional folding structure with a pressure sensing function on the surface can be obtained.
  • the manufacturing method of the flexible pressure sensor includes the following steps:
  • D01 Provide a paper substrate of cellulose material, print electrode material on a predetermined electrode area of the paper substrate according to a predetermined electrode pattern, and print ion ink on a predetermined ion area of the paper substrate to form an electrode area And ionic region; wherein, the ionic ink contains liquid ionic materials, polymers and additives;
  • An adhesive is provided at the design part of the paper substrate, and the paper substrate is folded, so that the ion region and the electrode region are face-to-face bonded to form a preset electrode pattern to obtain foldable flexibility Pressure Sensor.
  • the paper substrate of cellulose material is conventional paper.
  • an electrode material is printed on a preset electrode area of the paper substrate, and an ion ink is printed on a preset ion area of the paper substrate to form an electrode area and an ion area.
  • the electrode materials used for printing electrode patterns include, but are not limited to, conductive silver paste, conductive carbon paste, nano silver conductive ink, conductive polymer ink; the ion ink used in the printed ion area is an aqueous solution of liquid ionic material and polymer or Organic solutions of liquid ionic materials and polymers.
  • the organic solvent can select an organic solvent capable of dissolving the liquid ionic material and the polymer, including but not limited to alcohols, sulfones, amides, esters, etc.
  • the ionic ink further contains additives, that is, the ionic ink contains liquid ionic materials, polymers and additives.
  • the additives are additives that can improve the performance of the film layer, including but not limited to defoamers and leveling agents.
  • Printing methods include but are not limited to screen printing, inkjet printing, scraping, drying after printing Solvent is sufficient.
  • the ionic ink is printed on the surface of the conventional paper material, and after heating the volatilized solvent, the desired ion pattern area is obtained.
  • an adhesive is provided on the design part of the paper substrate.
  • the design part is understood as the functional area where the sensor performs the sensing function, and the position of the edge is a circle. If the sensor area is large In addition to a circle around the edge of the sensor, the sensor will also be provided with adhesive in the open area to ensure that the sensor fits tightly after bonding and encapsulation.
  • the adhesive is a liquid adhesive, and at this time, the liquid adhesive is deposited on the design portion of the paper substrate; in some embodiments, the adhesive is double-sided adhesive, At this time, the double-sided tape is directly adhered to the design portion of the paper substrate.
  • the paper substrate is folded by an adhesive, so that the ion region and the electrode region are face-to-face bonded to form a preset electrode pattern to obtain a foldable flexible pressure sensor.
  • a special folding design can be performed, and a three-dimensional folding structure with a pressure sensing function on the surface can be obtained.
  • the preparation method of the flexible pressure sensor provided by the embodiment of the present invention directly uses ion paper as the substrate to prepare the patterned electrode, and then performs the folding process; or firstly deposit the electrode material and the liquid ion-containing material on the cellulose substrate of the paper substrate, The ion ink of polymer and additives, after forming the electrode area and the ion area, is folded, so as to not only give the obtained flexible pressure sensor excellent foldability, but also the obtained flexible pressure sensor has better weather resistance and higher Sensitivity.
  • a two-dimensional or multi-dimensional flexible pressure sensor can be obtained by folding.
  • a preparation method of a foldable ionized flexible pressure sensor includes the following steps:
  • Ionic 1-butyl-3-methylimidazole bistrifluoromethanesulfonimide salt ionic liquid, polyvinylidene fluoride, and nitromethylpyrrolidone are mixed uniformly in a mass ratio of 1:2:20 to prepare an ionic coating;
  • the electrode is led out to the test circuit through the anisotropic conductive tape to obtain the required two-dimensional ionized flexible pressure sensor.
  • a preparation method of a foldable ionized flexible pressure sensor includes the following steps:
  • the electrode area and the ion area are in face-to-face contact to form a pressure sensing unit; through a special folding design, a three-dimensional folding structure with a pressure sensing function on the surface can be obtained.
  • the two-dimensional ionized flexible pressure sensor prepared in Example 2 is shown in FIG. 4.
  • a preparation method of a foldable ionized flexible pressure sensor includes the following steps:
  • the slurry is coated on the substrate, dried in a blast oven at a temperature of 100°C for 3 hours, and then taken out to obtain ionized paper;
  • the electrode is led out to the test circuit through the anisotropic conductive tape to obtain the required two-dimensional ionized flexible pressure sensor.
  • a preparation method of a foldable ionized flexible pressure sensor includes the following steps:
  • the electrode is led out to the test circuit through the anisotropic conductive tape to obtain the required two-dimensional ionized flexible pressure sensor.

Abstract

一种离子纸、离电子式柔性压力传感器及其制备方法。该离子纸采用纤维素增强的离子凝胶复合材料制成,该纤维素增强的离子凝胶复合材料包括液态离子材料、聚合物和纤维素,且以纤维素增强的离子凝胶复合材料的总重量为100%计,该液态离子材料、聚合物和纤维素的重量百分含量如下:液态离子材料1~80%;聚合物1~80%;纤维素19~80%,其中,该纤维素选自造纸用纤维素。将该纤维素增强的离子凝胶复合材料作为离子纸的制备原料,可以赋予该离子纸优异的灵敏度离子导通性、耐候性和可折叠性,得到的离子纸可以用作柔性压力传感器的功能材料,制备可折叠、可剪切的柔性压力传感器。

Description

离子纸、离电子式柔性压力传感器及其制备方法 技术领域
本发明属于传感器技术领域,尤其涉及一种离子纸,以及一种采用离子凝胶复合材料制成的离电子式柔性压力传感器的制备方法。
背景技术
由于人们对于仿生触觉传感技术在未来智能机器人技术、医疗假肢及神经修复和消费类电子产品等应用领域中的期望愈加强烈,新型便携式、可折叠、可贴附、可穿戴的柔性电子学器件的研究受到国内外研究者的广泛关注,并迅速成为了当前最为重要的科技前沿研究领域之一。对于这些新兴应用中的需求,柔性材料以其对于不同表面材质及形状的良好适应性获得了研究人员的密切关注和广泛使用。因此,柔性压力传感技术应运而生,多种柔性压力传感技术和器件得到了长足的发展,并已经在可穿戴医疗健康监测设备,机器人仿生触觉,触觉人工假肢等领域得应用。
柔性压力传感技术是采用柔性材料制备的一种二维形式的压力传感原件.传统的非柔性压力传感原件采用金属悬臂梁、硅基应力片等不可弯曲材料。柔性压力传感器则不同,其多使用高分子膜、纤维结构材料等作为传感器的构建材料。柔性压力传感器主要由电极和功能材料层构成,电极多使用高导电性的金属、导电碳材料、导电陶瓷类材料、导电高分子类材料,并形成特定电路图形。功能材料层根据机理不同,主要有导体材料、介电材料、压电材料、摩擦电材料、离子材料等,而相应的柔性传感机理也主要分为压阻式、平行班电容式、压电式、摩擦电式、离电子式。
离电子式压力传感器是一种基于界面双电层电容原理的新型压力传感技术。这种压力传感器使用了富含可自由移动的阴阳离子的材料,比如电解质的高沸点溶液、离子液体、聚电解质、离子液体凝胶等。在这种离子材料上施加电压,这时离子材料中的正、负离子就会在电场的作用下迅速向两极运动,并分别在两个电极的表面形成紧密电荷层,即双电层。这种双电层是一种由离子排布形成的纳米级电容结构,由于正负离子之间的距离极短,其单位面积电容是传统平行板电容的1000倍以上。对于同种离子材料来说,界面电容主要与电极和离子材料之间的接触面积呈正相关关系,而离电子式压力传感器则依据这一点,在压力作用下,离子材料与电极之间接触面积增加,传感器电容也相应增加。界面电容式压力传感机理是一种不同于现有的电阻式、电容式和压电式传感的一种全新的传感机理。由于界面电容的值可达到几百nF甚至uF级别,相比于几十pF的平行板电容式传感器,其灵敏度提高了1000倍以上,而且对人体及环境电容噪声有很强的抗干扰能力。相比于压阻式压力传感器,界面电容式压力传感器在一定压力范围内具有较好的线性响应度,相比如石墨烯、碳纳米管等导电材料,离子材料可以制备成溶液、油墨、浆料等形式,可更加方便的通过浸涂、刮涂、喷墨、印刷等多种加工方式制备成离子材料层。相比如压电式和摩擦电式压力传感器,界面电容式压力传感器在具备了快速的机械响应速度的同时,可以对静态压力进行检测。离电子式压力传感技术已经发展出了多种形式,包括基于高分子薄膜、纳米织物、离子凝胶弹性体、表面贴敷超薄涂层等多种柔性压力传感形式。但目前的离电子式压力传感器,在可折叠性方面存在不足。
技术问题
本发明实施例提供了一种种离子纸、采用离子凝胶复合材料制成的离电子式柔性压力传感器的制备方法,旨在解决现有的离电子式压力传感器可折叠性不足的问题。
技术解决方案
为实现上述发明目的,本发明采用的技术方案如下:
一种离子纸,所述离子纸采用纤维素增强的离子凝胶复合材料制成,所述纤维素增强的离子凝胶复合材料包括液态离子材料、聚合物和纤维素,且以纤维素增强的离子凝胶复合材料的总重量为100%计,所述液态离子材料、聚合物和纤维素的重量百分含量如下:
液态离子材料         1~80%;
聚合物               1~80%;
纤维素              19~80%,
其中,所述纤维素选自造纸用纤维素,所述聚合物选自能与所述液态离子材料形成凝胶材料的聚合物。
一种离电子式柔性压力传感器,所述离电子式柔性压力传感器为可折叠柔性压力传感器,包括电极区域和离子区域,其中,至少所述离子区域采用纤维素增强的离子凝胶复合材料制成,且所述纤维素增强的离子凝胶复合材料包括液态离子材料、聚合物和纤维素,且以纤维素增强的离子凝胶复合材料的总重量为100%计,所述液态离子材料、聚合物和纤维素的重量百分含量如下:
液态离子材料         1~80%;
聚合物               1~80%;
纤维素              19~80%,
其中,所述纤维素选自造纸用纤维素,所述聚合物选自能与所述液态离子材料形成凝胶材料的聚合物。
一种离电子式柔性压力传感器的制备方法,所述离电子式柔性压力传感器的制备方法包括以下步骤:
提供离子纸基材,根据预设的电极图案,在所述离子纸基材制备图案化电极,其中,所述离子纸基材为本发明所述离子纸;
在所述离子纸基材的设计部位设置粘合剂,将所述离子纸基材进行折叠处理,使所述离子区域和所述电极区域面对面贴合,形成预设电极图案,得到可折叠离电子式柔性压力传感器;或
所述柔性压力传感器的制备方法包括以下步骤:
提供纤维素材料的纸质基板,根据预设的电极图案,在所述纸质基板的预设电极区域印刷电极材料,在所述纸基板的预设离子区域印刷离子油墨,形成电极区域和离子区域;其中,所述离子油墨含有液态离子材料、聚合物和添加剂;
在所述纸质基板的设计部位设置粘合剂,将所述纸质基板进行折叠处理,使所述离子区域和所述电极区域面对面贴合,形成预设电极图案,得到可折叠离电子式柔性压力传感器。
有益效果
本发明提供的离子纸,所述离子纸采用纤维素增强的离子凝胶复合材料制成,所述纤维素增强的离子凝胶复合材料包括液态离子材料、聚合物和纤维素。其中,所述液态离子材料作为基体功能材料,赋予所述离子纸优异的离子导通性能;所述聚合物用于将所述液态离子材料固定在所述离子纸中,防止其扩散或析出,提高其耐候性;所述纤维素的引入,提供了纤维状微观结构,为所述离子纸用作传感器时感知压力变化提供了粗糙表面,同时赋予所述离子纸优异的折叠性能。将所述纤维素增强的离子凝胶复合材料作为离子纸的制备原料,可以赋予所述离子纸优异的离子导通性、可印刷性、耐候性和可折叠性,得到的离子纸可以用作柔性压力传感器的功能材料,制备可折叠、可剪切的柔性压力传感器。
本发明提供的离电子式柔性压力传感器,所述离电子式柔性压力传感器包括电极区域和离子区域,其中,至少所述离子区域采用本发明所述离子纸制成。由于所述离子纸具有优异的离子导通性、耐候性和可折叠性,因此,可以提高柔性压力传感器的可折叠、灵敏度和耐候性。
本发明提供的离电子式柔性压力传感器的制备方法,直接采用离子纸作为基板制备图案化电极后,进行折叠处理;或先分别在纤维素材料的纸质基板上沉积电极材料和含有液态离子材料、聚合物和添加剂的离子油墨,形成电极区域和离子区域后,进行折叠处理,从而不仅赋予得到的柔性压力传感器优异的可折叠性,而且得到的柔性压力传感器具有较好的耐候性和较高的灵敏度。此外,通过本发明方法,可以通过折叠制备得到二维或多维的柔性压力传感器。
附图说明
图1是本发明实施例提供的第一种柔性压力传感器的制备流程示意图;
图2是本发明实施例提供的第二种柔性压力传感器的制备流程示意图;
图3是本发明实施例1提供二维离电子式柔性压力传感器的压强-电容曲线图;
图4是本发明实施例2提供三维离电子式柔性压力传感器的示意图。
本发明的实施方式
为了使本发明要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
在本发明的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
纸,是一种主要成分为天然纤维素或人造纤维素的聚集体材料,具有特殊的纤维状微结构,以及可降解、生物相容性高、低成本的特点。此外,纸还具备其他材料所不完全具备的多种特性,比如可印刷性、可剪裁性、可粘接性和可折叠性。有鉴于此,
本发明实施例第一方面提供一种离子纸,所述离子纸采用纤维素增强的离子凝胶复合材料制成,所述纤维素增强的离子凝胶复合材料包括液态离子材料、聚合物和纤维素,且以纤维素增强的离子凝胶复合材料的总重量为100%计,所述液态离子材料、聚合物和纤维素的重量百分含量如下:
液态离子材料         1~80%;
聚合物               1~80%;
纤维素              19~80%,
其中,所述纤维素选自造纸用纤维素,所述聚合物选自能与所述液态离子材料形成凝胶材料的聚合物。
本发明实施例提供的离子纸,所述离子纸采用纤维素增强的离子凝胶复合材料制成,所述纤维素增强的离子凝胶复合材料包括液态离子材料、聚合物和纤维素。其中,所述液态离子材料作为基体功能材料,赋予所述离子纸优异的离子导通性能;所述聚合物用于将所述液态离子材料固定在所述离子纸中,防止其扩散或析出,提高其耐候性;所述纤维素的引入,提供了纤维状微观结构,为所述离子纸用作传感器时感知压力变化提供了粗糙表面,同时赋予所述离子纸优异的折叠性能。将所述纤维素增强的离子凝胶复合材料作为离子纸的制备原料,可以赋予所述离子纸优异的离子导通性、可印刷性、耐候性和可折叠性,得到的离子纸可以用作柔性压力传感器的功能材料,制备可折叠、可剪切的柔性压力传感器。
具体的,所述液态离子材料作为基体功能材料,赋予所述离子纸优异的离子导通性能,从而为采用离子纸制备离电子式压力传感器提供了功能保障。在一些实施例中,所述液态离子材料选自离子液体、离子液体溶液、固态电解质溶液中的至少一种,且所述离子液体溶液、固态电解质溶液中的溶剂在所述离子纸中保留。
具体的,所述离子液体为在温度为10℃~35℃条件下呈液态的离子化合物。在一些实施例中,所述离子液体可选自咪唑类离子液体、季铵盐类离子液体、吡啶类离子液体、吡咯类离子液体、哌啶类离子液体中的至少一种,当然,不限于此。优选的离子液体类型,在常温(10℃~35℃)下为液态,且具有较好的离子导通性,进而使得得到的离子纸作为离电子式传感器使用时,能有效发挥其功能。
所述离子液体高沸点有机溶液为离子液体溶解在高沸点高极性有机溶剂中形成的溶液(可以理解为在离子液体中添加不同程度含量的高沸点高极性有机溶剂,形成对应的离子液体溶液),且所述高沸点高极性有机溶剂为沸点不低于200℃、且分子结构中含有羟基、胺基、酯基、酰胺基、羧基中的至少一种的有机溶剂。此时,所述高沸点高极性有机溶剂沸点高,不易挥发,且由于溶剂极性较大,能够很好地将本身极性较大的离子化合物有效溶解。在一些实施例中,所述离子液体溶液中,所述离子液体选自咪唑类离子液体、季铵盐类离子液体、吡啶类离子液体、吡咯类离子液体、哌啶类离子液体中的至少一种;所述高沸点高极性有机溶剂选自邻苯二甲酸二丁酯、柠檬酸三丁酯、氮甲基吡咯烷酮、二甲亚砜、甘油、乙二醇中的至少一种。优选的离子液体类型,在常温(10℃~35℃)下为液态,且具有较好的离子导通性,进而使得得到的离子纸作为离电子式传感器使用时,能有效发挥其功能。优选的有机溶剂类型,对所述离子液体具有很好的溶解性,更重要的是,上述有机溶剂的沸点高,不易挥发,制备离子纸时可以适当保留在离子纸中,作为离子导通介质,进一步提高离子液体的离子导通作用。进一步优选的,以所述离子液体溶液的总重量为100%计,所述离子液体的重量百分含量为50%~70%,所述高沸点高极性有机溶剂的重量百分含量为30%~50%,此时,制成的离子纸具有更优异的离子导通性。
所述固态电解质高沸点有机溶液为在温度为10℃~35℃条件下呈固态的离子化合物在高沸点高极性有机溶剂中形成的溶液,且所述高沸点高极性有机溶剂为沸点不低于200℃、且分子结构中含有羟基、胺基、酯基、酰胺基、羧基中的至少一种的有机溶剂。此时,所述高沸点高极性有机溶剂沸点高,不易挥发,且由于溶剂极性较大,能够很好地将本身极性较大的离子化合物有效溶解。在一些实施例中,所述固态电解质溶液中,所述离子化合物选自小分子电解质(非聚合物小分子电解质)、聚合物电解质中的至少一种;所述高沸点高极性有机溶剂选自邻苯二甲酸二丁酯、柠檬酸三丁酯、氮甲基吡咯烷酮、二甲亚砜、甘油、乙二醇中的至少一种。优选的有机溶剂类型,对所述离子化合物具有很好的溶解性,更重要的是,上述有机溶剂的沸点高,不易挥发,制备离子纸时可以适当保留在离子纸中,作为离子导通介质,进一步提高离子化合物的离子导通作用。进一步优选的,以所述固态电解质高沸点有机溶液的总重量为100%计,所述离子化合物的重量百分含量为50%~70%,所述高沸点高极性有机溶剂的重量百分含量为30%~50%,此时,制成的离子纸具有更优异的离子导通性。
本发明实施例中,以纤维素增强的离子凝胶复合材料的总重量为100%计,所述液态离子材料的重量百分含量为1%~80%,具体可为1%、5%、10%、15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%。
所述聚合物用于将所述液态离子材料固定在所述离子纸中,防止其扩散或析出,并提高其耐候性。特别的,当所述离子纸用作离电子式柔性压力传感器的基体材料时,在聚合物的作用下,液态离子材料会与聚合物形成凝胶,从而被固定,因此,其不会扩散或析出,从而避免液态离子材料扩散到电极区域或析出脱离后含量降低,导致离电子式柔性压力传感器灵敏度降低的问题。此外,通过所述聚合物对所述液态离子材料的固定作用,可以提高离子纸的耐候性和安全性(有些液态离子材料有一定毒性),进而当所述离子纸用于离电子式柔性传感器时,提高离电子式柔性传感器的耐候性。本发明实施例中,所述聚合物选自能与所述液态离子材料形成凝胶材料的聚合物。
具体的,所述聚合物选自聚合物单体中含有羟基、羧基、酰胺基、氨基、硝基、卤原子、酯基、氰基、氨基甲酸酯基中的至少一种。含有上述活性官能团的单体形成的聚合物,极性较强,对所述液态离子材料具有较好的固定作用。
在一些实施例中,所述聚合物选自聚乙烯醇、聚氨酯、聚酰胺、聚偏氟乙烯、聚丙烯酸酯中的至少一种。此类聚合物均具有较强的极性,能够与液态离子材料之间结合,将液态离子材料禁锢在离子纸中不发生扩散、转移或析出。
在优选实施例中,根据所用液态离子材料的溶解性,选择在形成凝胶的过程中与液态离子材料稳定性更好、更为匹配的聚合物。在一些实施例中,亲水性的液态离子材料六氟磷酸锂的甘油溶液优与选聚乙烯醇组合形成凝胶,疏水性的六氟甲磺酸锂的邻苯二甲酸二丁酯溶液优选与聚丙烯酸酯类聚合物组合形成凝胶,亲疏水性适中的液态离子材料1-丁基-3-甲基咪唑三氟甲磺酸盐优选与聚氨酯类聚合物组合形成凝胶。聚乙烯醇含有羟基,聚氨酯含有氨基甲酸酯基,聚酰胺含有酰胺基,聚偏氟乙烯含有卤原子基,聚丙烯酸酯含有酯基。上述优选组合的配合,相互之间具有较好的匹配性,从而能够形成凝胶,且得到的凝胶具有较好的稳定性。
本发明实施例中,以纤维素增强的离子凝胶复合材料的总重量为100%计,所述聚合物的重量百分含量为1%~80%,具体可为1%、5%、10%、15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%。
本发明实施例中,作为离子纸的另一重要原料为纤维素,所述纤维素可以选择天然纤维素,也可以选择人造纤维素。但值得注意的是,所述纤维素一定是造纸用纤维素,使形成的离子纸具有较好的高生物相容性、可降解、可印刷、可剪切、可粘接和可折叠性。特别的,所述纤维素的引入,可以形成表面具有纤维状微观结构的离子纸,从而使得离子纸用作传感器材料时,可以有效传感。
在一些实施例中,所述纤维素可选择但不限于树木类植物纤维、韧皮纤维、矿物纤维、合成造纸纤维等,优选树木类植物纤维。
本发明实施例中,以纤维素增强的离子凝胶复合材料的总重量为100%计,所述纤维素的重量百分含量为19%~80%,具体可为19%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%。若所述纤维素的重量过低,则由于表面粗糙度不够,得到的离子纸用作传感器材料时,感知压力变化不明显,从而降低传感器的综合性能。作为优选实施例,以纤维素增强的离子凝胶复合材料的总重量为100%计,所述纤维素的重量百分含量为20%~50%,此时得到的离子纸用作传感器材料时灵敏度好,分辨率高,响应速度快。
本发明实施例第二方面提供一种离电子式柔性压力传感器,所述离电子式柔性压力传感器为可折叠柔性压力传感器,包括电极区域和离子区域,其中,至少所述离子区域采用纤维素增强的离子凝胶复合材料制成,且所述纤维素增强的离子凝胶复合材料包括液态离子材料、聚合物和纤维素,且以纤维素增强的离子凝胶复合材料的总重量为100%计,所述液态离子材料、聚合物和纤维素的重量百分含量如下:
液态离子材料         1~80%;
聚合物               1~80%;
纤维素              19~80%,
其中,所述纤维素选自造纸用纤维素,所述聚合物选自能与所述液态离子材料形成凝胶材料的聚合物。
本发明实施例提供的离电子式柔性压力传感器为可折叠式离电子式压力传感器,包括电极区域和离子区域,其中,至少所述离子区域采用本发明所述离子纸制成。由于所述离子纸具有优异的离子导通性、耐候性和可折叠性,因此,可以提高柔性压力传感器的可折叠、灵敏度和耐候性。
在一些实施例中,所述可折叠离电子式柔性压力传感器包括离子纸基底,以及结合在所述离子纸基底上的图案化电极。所述图案化电极所在区域形成电极区域,所述图案化电极以外的区域,形成离子区域。进一步的,所述离子区域和电极区域相对折叠,形成折叠柔性压力传感器。
在一些实施例中,所述可折叠离电子式柔性压力传感器包括纸质基底,以及形成在所述纸质基底上的图案化电极,以及结合在所述纸质基底上、且图案化电极以外的图案化离子纸图案。进一步的,所述离子区域和电极区域相对折叠,形成折叠柔性压力传感器。
本发明实施例中,纤维素增强的离子凝胶复合材料即为本发明制备离子纸的材料。其中,液态离子材料、聚合物和纤维素的选择与上述离子纸中的相同。
具体的,所述液态离子材料选自离子液体、离子液体高沸点有机溶液、固态电解质高沸点有机溶液中的至少一种,其中,
所述离子液体为在温度为10℃~35℃条件下呈液态的离子化合物;
所述离子液体高沸点有机溶液为离子液体溶解在高沸点高极性有机溶剂中形成的溶液,且所述高沸点高极性有机溶剂为沸点不低于200℃、且分子结构中含有羟基、胺基、酯基、酰胺基、羧基中的至少一种的有机溶剂;
所述固态电解质高沸点有机溶液为在温度为10℃~35℃条件下呈固态的离子化合物在高沸点高极性有机溶剂中形成的溶液,且所述高沸点高极性有机溶剂为沸点不低于200℃、且分子结构中含有羟基、胺基、酯基、酰胺基、羧基中的至少一种的有机溶剂。
优选的,所述离子液体溶液选自选自咪唑类离子液体、季铵盐类离子液体、吡啶类离子液体、吡咯类离子液体、哌啶类离子液体中的至少一种。
优选的,所述离子液体溶液中,所述离子液体选自咪唑类离子液体、季铵盐类离子液体、吡啶类离子液体、吡咯类离子液体、哌啶类离子液体中的至少一种;所述高沸点高极性有机溶剂选自邻苯二甲酸二丁酯、柠檬酸三丁酯、氮甲基吡咯烷酮、二甲亚砜、甘油、乙二醇中的至少一种。
优选的,所述固态电解质溶液中,所述离子化合物选自小分子电解质、聚合物电解质中的至少一种;所述高沸点高极性有机溶剂选自邻苯二甲酸二丁酯、柠檬酸三丁酯、氮甲基吡咯烷酮、二甲亚砜、甘油、乙二醇中的至少一种。
具体的,所述聚合物选自能与所述液态离子材料形成凝胶材料的聚合物。
优选的,所述聚合物选自聚合物单体中含有羟基、羧基、酰胺基、氨基、硝基、卤原子、酯基、氰基、氨基甲酸酯基中的至少一种。
优选的,所述聚合物选自聚乙烯醇、聚氨酯、聚酰胺、聚偏氟乙烯、聚丙烯酸酯中的至少一种。
本发明实施例提供的离电子式柔性压力传感器,除了具备离电子型柔性压力传感机理所具备的高灵敏度、高信噪比、高抗干扰性等优势,还具备了纸所特有的低成本、高生物相容性、可降解、可印刷、可剪切、可粘接、可折叠性。
本发明实施例提供的离电子式柔性压力传感器可以通过下述方法制备获得。
在一种实施方式中,如图1、图3所示,所述离电子式柔性压力传感器的制备方法包括以下步骤:
S01. 提供离子纸基材,根据预设的电极图案,在所述离子纸基材制备图案化电极,其中,所述离子纸基材为本发明实施例所述离子纸;
S02. 在所述离子纸基材的设计部位设置粘合剂,将所述离子纸基材进行折叠处理,使所述离子区域和所述电极区域面对面贴合,形成预设电极图案,得到可折叠柔性压力传感器。
具体的,上述步骤S01中,所述离子纸基材为本发明实施例所述离子纸,可以通过多种方法制备获得。
在一些实施例中,所述离子纸基材的制备方法为:
S111. 按照本发明所述离子纸的配方称取各组分,将液态离子材料、聚合物和纤维素分散在水或有机溶剂中,形成浆料。
具体的,所述离子纸的配方如前文所述,为了节约篇幅,此处不再赘述。
在称取配方组分后,将液态离子材料、聚合物和纤维素分散在水或有机溶剂中,形成含有离子材料的浆料。其中,所述有机溶剂为能分散所述液态离子材料、聚合物和纤维素的有机溶剂,在一些实施例中,所述有机溶剂选自醇类、砜类、酰胺类、酯类等。
S112. 将所述浆料沉积在基底表面,干燥去除溶剂,将成型的离子纸从所述基底剥离。
将所述浆料沉积在基底表面,干燥去除溶剂后,将成型的膜层从所述基底剥离,即得到离子纸基材。其中,干燥去除溶剂可以采用加热的方式。
本发明将所述浆料沉积在基底表面形成离子纸基材有多种方式,在一些具体实施例中,直接将所述浆料涂布在所述基底表面,干燥去除溶剂后,将成型的膜层从所述基底剥离,即得到离子纸基材。在一些具体实施例中,使用网版,将所述纤维素纤维从所述浆状中捞起,在网版上形成纤维素浆层,待加热蒸发干溶剂后,从网版上剥离下来后得到所需离子纸材料。
在一些实施例中,所述离子纸基材的制备方法为:
S211. 将液态离子材料、聚合物溶解在水或有机溶剂中,形成浆料,将所述浆料制备成液态离子涂层。
本发明实施例中,所述液态离子材料、聚合物以1~80:1~80的比例溶解在水或有机溶剂,形成浆料。进一步的,将所述浆料沉积在基底上,形成液态离子涂层。
S212. 提供纤维素材料的纸质基材,将所述纸质基材浸渍到所述液态离子涂层中,干燥去除溶剂,制备离子纸。
本发明实施例中,将纤维素材料的纸质基材浸渍到所述液态离子涂层,即可以将所述纸质基材纤维素材料浸渍到液态离子涂层中,使得涂层中含有一定含量的纤维素材料,最终形成具有纸质特性的离子纸。
具体的,将所述纸质基材浸渍到所述液态离子涂层的方法可为:通过浸涂的方法,将纤维素材料的纸质基材浸渍到离子涂层当中,均速提拉后,加热挥发溶剂,获得所需离子纸材料。
其中,干燥去除溶剂可以采用加热的方式。
在一些实施例中,所述离子纸基材的制备方法为:
将液态离子材料、聚合物和添加剂溶解在水或有机溶剂中,形成离子油墨,将所述离子油墨印刷在纤维素材料的纸质基板上,干燥去除溶剂,制备离子纸。
其中,所述添加剂为能够提高膜层性能的添加剂,包括但不限于消泡剂、流平剂;所述沉积方法包括但不限于丝网印刷、喷墨打印、刮涂等常规的沉积方法;干燥去除溶剂可以采用加热的方式。
在提供离子纸基材后,根据预设的电极图案,在所述离子纸基材制备图案化电极。具体的,制备图案化电极的导电材料可选择但不限于导电银浆、导电碳浆、纳米银导电油墨、导电高分子油墨中的至少一种。
在所述离子纸基材制备图案化电极后,图案化电极所在区域形成电极区域;图案化电极以外的区域,形成离子区域。
上述步骤S02中,在所述离子纸基材的设计部位设置粘合剂,本发明实施例中,所述设计部位理解为传感器发挥传感作用的功能区域,边缘一圈位置,如果传感器面积较大,除了传感器边缘一圈位置外,传感器内部也将在交空旷部位设置粘合剂,保证粘接封装后传感器的紧密贴合。在一些实施例中,所述粘合剂采用液态粘合剂,此时,将液态粘合剂沉积在纸质基板的设计部位;在一些实施例中,所述粘合剂为双面胶,此时,将双面胶直接粘合在纸质基板的设计部位。
进一步的,通过粘合剂将所述离子纸基材进行折叠处理,使所述离子区域和所述电极区域面对面贴合,形成预设电极图案,得到可折叠柔性压力传感器。当然,应当理解,可以根据离电子式柔性压力传感器的设计,可以进行特殊折叠设计,可以得到表面具有压力传感功能的三维折叠结构。
如图2所示,所述柔性压力传感器的制备方法包括以下步骤:
D01. 提供纤维素材料的纸质基板,根据预设的电极图案,在所述纸质基板的预设电极区域印刷电极材料,在所述纸基板的预设离子区域印刷离子油墨,形成电极区域和离子区域;其中,所述离子油墨含有液态离子材料、聚合物和添加剂;
D02. 在所述纸质基板的设计部位设置粘合剂,将所述纸质基板进行折叠处理,使所述离子区域和所述电极区域面对面贴合,形成预设电极图案,得到可折叠柔性压力传感器。
具体的,上述步骤D01中,所述纤维素材料的纸质基板即为常规纸。根据预设的电极图案,在所述纸质基板的预设电极区域印刷电极材料,在所述纸基板的预设离子区域印刷离子油墨,形成电极区域和离子区域。其中,印刷电极图形所使用的电极材料包括但不限于导电银浆、导电碳浆、纳米银导电油墨、导电高分子油墨;印刷离子区域采用的离子油墨,为液态离子材料和聚合物的水溶液或液态离子材料和聚合物的有机溶液。其中,液态离子材料和聚合物的有机溶液中,有机溶剂选择能够溶解液态离子材料和聚合物的有机溶剂,包括但不限于醇类、砜类、酰胺类、酯类等。进一步的,所述离子油墨中还含有添加剂,即所述离子油墨含有液态离子材料、聚合物和添加剂。所述添加剂为能够提高膜层性能的添加剂,包括但不限于消泡剂、流平剂。
在所述纸质基板的预设电极区域印刷电极材料,在所述纸基板的预设离子区域印刷离子油墨,印刷方法包括但不限于丝网印刷、喷墨打印、刮涂,印刷后干燥去除溶剂即可。
然后通过丝网印刷、喷墨印刷等印刷方式,将离子油墨印刷在常规纸材料表面,加热挥发溶剂后,获得所需离子图形区域。
上述步骤D02中,在所述纸质基板的设计部位设置粘合剂,本发明实施例中,所述设计部位理解为传感器发挥传感作用的功能区域,边缘一圈位置,如果传感器面积较大,除了传感器边缘一圈位置外,传感器内部也将在交空旷部位设置粘合剂,保证粘接封装后传感器的紧密贴合。在一些实施例中,所述粘合剂采用液态粘合剂,此时,将液态粘合剂沉积在纸质基板的设计部位;在一些实施例中,所述粘合剂为双面胶,此时,将双面胶直接粘合在纸质基板的设计部位。
进一步的,通过粘合剂将所述纸质基板进行折叠处理,使所述离子区域和所述电极区域面对面贴合,形成预设电极图案,得到可折叠柔性压力传感器。当然,应当理解,可以根据离电子式柔性压力传感器的设计,可以进行特殊折叠设计,可以得到表面具有压力传感功能的三维折叠结构。
本发明实施例提供的柔性压力传感器的制备方法,直接采用离子纸作为基板制备图案化电极后,进行折叠处理;或先分别在纤维素材料的纸质基板上沉积电极材料和含有液态离子材料、聚合物和添加剂的离子油墨,形成电极区域和离子区域后,进行折叠处理,从而不仅赋予得到的柔性压力传感器优异的可折叠性,而且得到的柔性压力传感器具有较好的耐候性和较高的灵敏度。此外,通过本发明实施例方法,可以通过折叠制备得到二维或多维的柔性压力传感器。
下面结合具体实施例进行说明。
实施例1
一种可折叠离电子式柔性压力传感器的制备方法,包括以下步骤:
将1-丁基-3-甲基咪唑双三氟甲磺酰亚胺盐离子液体、聚偏氟乙烯、氮甲基吡咯烷酮以质量比为1:2:20混合均匀,制备成离子涂料;
将无尘纸浸入所述离子涂料中,以1mm/s的速度匀速提拉,然后放置在柔性聚酯薄膜表面;
将浸涂离子涂料的无尘纸放置在鼓风烘箱中,在温度为100℃的条件下烘干3小时,取出后获得离子纸;
将离子纸表面设计区域丝网印刷导电银浆,形成特定电极图案;
在离子纸表面设计区域贴合压敏双面胶;将离子纸折叠,使得电极/离子纸/电极之间互相面对面接触,形成三明治结构;
将电极通过各向异性导电胶带引出到测试电路上,得到所需二维离电子式柔性压力传感器。
将实施例1制备得到的二维离电子式柔性压力传感器进行性能测试,其压强-电容曲线如图3所示。
实施例2
一种可折叠离电子式柔性压力传感器的制备方法,包括以下步骤:
将1-乙基-3-甲基咪唑六氟甲磺酸盐离子液体、聚醚类聚氨酯75A、气相二氧化硅和二甲亚砜以质量比为1:1:0.1:6的比例混合,制备成离子油墨;
在80g/m 2的纸张表面,通过丝网印刷的方法,在设计区域印刷导电碳浆,得到叉指电极图形,形成电极区域;在80g/m 2的纸张表面,通过丝网印刷的方法,在设计区域印刷离子油墨,形成离子区域;
在80g/m 2的纸张表面,通过丝网印刷的方法,在设计区域印刷压敏丙烯酸粘合剂乳液,形成粘合剂区域;将印刷后的纸张放置在鼓风烘箱中,在温度为100℃的条件下烘干3小时;
通过折叠,将电极区域与离子区域面对面接触,形成压力传感单元;通过特殊折叠设计,可以得到表面具有压力传感功能的三维折叠结构。
实施例2制备得到的二维离电子式柔性压力传感器如图4所示。
实施例3
一种可折叠离电子式柔性压力传感器的制备方法,包括以下步骤:
将1-丁基-3-甲基咪唑双三氟甲磺酰亚胺盐离子液体、聚乙烯醇、天然杨木纤维素、水以质量比为1:2:3:150混合均匀,制备成浆料;
将所述浆料涂布在基底上,在鼓风烘箱中以温度为100℃的条件下烘干3小时,取出后获得离子纸;
将离子纸表面设计区域丝网印刷导电银浆,形成特定电极图案;
在离子纸表面设计区域贴合压敏双面胶;将离子纸折叠,使得电极/离子纸/电极之间互相面对面接触,形成三明治结构;
将电极通过各向异性导电胶带引出到测试电路上,得到所需二维离电子式柔性压力传感器。
实施例4
一种可折叠离电子式柔性压力传感器的制备方法,包括以下步骤:
将三氟甲磺酸锂的10%wt甘油溶液、聚乙烯醇、水按照1:1:8混合均匀,制备成离子油墨;
在无尘纸上涂覆离子油墨,将涂覆离子油墨的无尘纸放置在鼓风烘箱中,在温度为100℃的条件下烘干3小时,取出后获得离子纸;
将离子纸表面设计区域丝网印刷导电银浆,形成特定电极图案;
在离子纸表面设计区域贴合压敏双面胶;将离子纸折叠,使得电极/离子纸/电极之间互相面对面接触,形成三明治结构;
将电极通过各向异性导电胶带引出到测试电路上,得到所需二维离电子式柔性压力传感器。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种离子纸,其特征在于,所述离子纸采用纤维素增强的离子凝胶复合材料制成,所述纤维素增强的离子凝胶复合材料包括液态离子材料、聚合物和纤维素,且以纤维素增强的离子凝胶复合材料的总重量为100%计,所述液态离子材料、聚合物和纤维素的重量百分含量如下:
    液态离子材料         1~80%;
    聚合物               1~80%;
    纤维素              19~80%,
    其中,所述纤维素选自造纸用纤维素,所述聚合物选自能与所述液态离子材料形成凝胶材料的聚合物。
  2. 如权利要求1所述的离子纸,其特征在于,所述液态离子材料选自离子液体、离子液体高沸点有机溶液、固态电解质高沸点有机溶液中的至少一种,其中,
    所述离子液体为在温度为10℃~35℃条件下呈液态的离子化合物;
    所述离子液体高沸点有机溶液为离子液体溶解在高沸点高极性有机溶剂中形成的溶液,且所述高沸点高极性有机溶剂为沸点不低于200℃、且分子结构中含有羟基、胺基、酯基、酰胺基、羧基中的至少一种的有机溶剂;
    所述固态电解质高沸点有机溶液为在温度为10℃~35℃条件下呈固态的离子化合物在高沸点高极性有机溶剂中形成的溶液,且所述高沸点高极性有机溶剂为沸点不低于200℃、且分子结构中含有羟基、胺基、酯基、酰胺基、羧基中的至少一种的有机溶剂。
  3. 如权利要求1所述的离子纸,其特征在于,所述离子液体选自咪唑类离子液体、季铵盐类离子液体、吡啶类离子液体、吡咯类离子液体、哌啶类离子液体中的至少一种;和/或
    所述离子液体溶液中,所述离子液体选自咪唑类离子液体、季铵盐类离子液体、吡啶类离子液体、吡咯类离子液体、哌啶类离子液体中的至少一种;所述高沸点高极性有机溶剂选自邻苯二甲酸二丁酯、柠檬酸三丁酯、氮甲基吡咯烷酮、二甲亚砜、甘油、乙二醇中的至少一种;和/或
    所述固态电解质溶液中,所述离子化合物选自小分子电解质、聚合物电解质中的至少一种;所述高沸点高极性有机溶剂选自邻苯二甲酸二丁酯、柠檬酸三丁酯、氮甲基吡咯烷酮、二甲亚砜、甘油、乙二醇中的至少一种。
  4. 如权利要求3所述的离子纸,其特征在于,所述固态电解质溶液中,所述离子化合物选自三氟甲磺酸锂、六氟磷酸锂、聚苯磺酸钠中的至少一种。
  5. 如权利要求1所述的离子纸,其特征在于,所述聚合物选自聚合物单体中含有羟基、羧基、酰胺基、氨基、硝基、卤原子、酯基、氰基、氨基甲酸酯基中的至少一种。
  6. 如权利要求5所述的离子纸,其特征在于,所述聚合物选自聚乙烯醇、聚氨酯、聚酰胺、聚偏氟乙烯、聚丙烯酸酯中的至少一种。
  7. 一种离电子式柔性压力传感器,其特征在于,所述离电子式柔性压力传感器为可折叠柔性压力传感器,包括电极区域和离子区域,其中,至少所述离子区域采用纤维素增强的离子凝胶复合材料制成,且所述纤维素增强的离子凝胶复合材料包括液态离子材料、聚合物和纤维素,且以纤维素增强的离子凝胶复合材料的总重量为100%计,所述液态离子材料、聚合物和纤维素的重量百分含量如下:
    液态离子材料         1~80%;
    聚合物               1~80%;
    纤维素              19~80%,
    其中,所述纤维素选自造纸用纤维素,所述聚合物选自能与所述液态离子材料形成凝胶材料的聚合物。
  8. 一种离电子式柔性压力传感器的制备方法,其特征在于,所述离电子式柔性压力传感器的制备方法包括以下步骤:
    提供离子纸基材,根据预设的电极图案,在所述离子纸基材表面制备图案化电极,其中,所述离子纸基材为权利要求1至6任一项所述离子纸;
    在所述离子纸基材的设计部位设置粘合剂,将所述离子纸基材进行折叠处理,使所述离子区域和所述电极区域面对面贴合,形成预设电极图案,得到可折叠离电子式柔性压力传感器。
  9. 如权利要求8所述的离电子式柔性压力传感器的制备方法,其特征在于,所述离子纸基材的制备方法为:
    按照权利要求1至6任一项所述离子纸的配方称取各组分,将液态离子材料、聚合物和纤维素分散在水或有机溶剂中,形成浆料;
    将所述浆料沉积在基底表面,干燥去除溶剂,将成型的离子纸从所述基底剥离;或
    将液态离子材料、聚合物溶解在水或有机溶剂中,形成浆料,将所述浆料制备成液态离子涂层;
    提供纤维素材料的纸质基材,将所述纸质基材浸渍到所述液态离子涂层中,干燥去除溶剂,制备离子纸;或
    将液态离子材料、聚合物和添加剂溶解在水或有机溶剂中,形成离子油墨,将所述离子油墨印刷在纤维素材料的纸质基板上,干燥去除溶剂,制备离子纸。
  10. 一种离电子式柔性压力传感器的制备方法,其特征在于,所述离电子式柔性压力传感器的制备方法包括以下步骤:
    提供纤维素材料的纸质基板,根据预设的电极图案,在所述纸质基板的预设电极区域印刷电极材料,在所述纸基板的预设离子区域印刷离子油墨,形成电极区域和离子区域;其中,所述离子油墨含有液态离子材料、聚合物和添加剂;
    在所述纸质基板的设计部位设置粘合剂,将所述纸质基板进行折叠处理,使所述离子区域和所述电极区域面对面贴合,形成预设电极图案,得到离电子式可折叠柔性压力传感器。
PCT/CN2018/123781 2018-12-18 2018-12-26 离子纸、离电子式柔性压力传感器及其制备方法 WO2020124628A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811551798.3 2018-12-18
CN201811551798.3A CN109764979B (zh) 2018-12-18 2018-12-18 离子纸、离电子式柔性压力传感器及其制备方法

Publications (1)

Publication Number Publication Date
WO2020124628A1 true WO2020124628A1 (zh) 2020-06-25

Family

ID=66450278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/123781 WO2020124628A1 (zh) 2018-12-18 2018-12-26 离子纸、离电子式柔性压力传感器及其制备方法

Country Status (2)

Country Link
CN (1) CN109764979B (zh)
WO (1) WO2020124628A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112982013A (zh) * 2021-02-18 2021-06-18 陕西科技大学 一种纤维素基柔性电子材料的制备方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111141426A (zh) * 2019-08-10 2020-05-12 东北师范大学 一种制备全纸基全有机可折叠的聚吡咯压力传感器的方法
CN110575144A (zh) * 2019-09-18 2019-12-17 钛深科技(深圳)有限公司 基于压力传感阵列监测人体健康信息的头戴设备
CN110793677A (zh) * 2019-10-25 2020-02-14 天津大学 一种可降解的纸质电容式柔性压力传感器及其制备方法
WO2021212272A1 (zh) * 2020-04-20 2021-10-28 中国科学院深圳先进技术研究院 一种用于接近接触检测的传感器及其制备方法
CN111595506B (zh) * 2020-06-05 2021-04-27 中国科学院兰州化学物理研究所 一种基于复合微纳米纤维的柔性力敏传感器及其制备方法
CN114414106B (zh) * 2021-12-13 2024-04-26 中国科学院深圳先进技术研究院 一种主动供电柔性压力传感器
CN114456641A (zh) * 2021-12-14 2022-05-10 深圳先进技术研究院 可喷墨打印的离子油墨、离子膜和离子触觉传感器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101171717A (zh) * 2005-03-04 2008-04-30 霍尼韦尔国际公司 聚合物离子电解质
CN105448532A (zh) * 2015-12-24 2016-03-30 深圳先进技术研究院 一种纸纤维基柔性超级电容器复合电极材料的制备方法
CN107044891A (zh) * 2016-08-28 2017-08-15 美国钛晟科技股份有限公司 基于离子膜的电容式压力传感器
JP2018189513A (ja) * 2017-05-08 2018-11-29 国立大学法人 東京大学 圧力センサ及び圧力センサアレイ
CN108948380A (zh) * 2018-07-18 2018-12-07 贵州大学 纤维素聚质子型离子液体凝胶/纳米金属复合材料及其制备方法与应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101171717A (zh) * 2005-03-04 2008-04-30 霍尼韦尔国际公司 聚合物离子电解质
CN105448532A (zh) * 2015-12-24 2016-03-30 深圳先进技术研究院 一种纸纤维基柔性超级电容器复合电极材料的制备方法
CN107044891A (zh) * 2016-08-28 2017-08-15 美国钛晟科技股份有限公司 基于离子膜的电容式压力传感器
JP2018189513A (ja) * 2017-05-08 2018-11-29 国立大学法人 東京大学 圧力センサ及び圧力センサアレイ
CN108948380A (zh) * 2018-07-18 2018-12-07 贵州大学 纤维素聚质子型离子液体凝胶/纳米金属复合材料及其制备方法与应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112982013A (zh) * 2021-02-18 2021-06-18 陕西科技大学 一种纤维素基柔性电子材料的制备方法

Also Published As

Publication number Publication date
CN109764979A (zh) 2019-05-17
CN109764979B (zh) 2020-08-28

Similar Documents

Publication Publication Date Title
WO2020124628A1 (zh) 离子纸、离电子式柔性压力传感器及其制备方法
Ge et al. Transparent and flexible electrodes and supercapacitors using polyaniline/single-walled carbon nanotube composite thin films
Yong et al. Solid‐State Supercapacitor Fabricated in a Single Woven Textile Layer for E‐Textiles Applications
KR102071237B1 (ko) 도공액, 도공막, 및 복합 재료
Hu et al. Flexible solid-state paper based carbon nanotube supercapacitor
CN110970232B (zh) 以水凝胶为基底的可拉伸微型电子器件及制备方法
KR101296183B1 (ko) 전기 이중층 커패시터용 집전체, 전기 이중층 커패시터용 전극, 전기 이중층 커패시터, 및 그들의 제조 방법
EP2983186B1 (en) Electrode composition for supercapacitor, cured product of said composition, electrode comprising said cured product, capacitor comprising said electrode, and manufacturing method for said supercapacitor
CN103113786A (zh) 一种石墨烯导电油墨及其制备方法
JP2014526117A (ja) 透明導電性積層電極及びその製法
Seo et al. Mulberry-paper-based composites for flexible electronics and energy storage devices
WO2011087458A1 (en) Superhydrophilic and water-capturing surfaces
CN109323781A (zh) 一种制备柔性自供能集成压力传感阵列的方法
CN107527675A (zh) 一种柔性的导电膜及其制备方法
Jeong et al. Flexible polycaprolactone (PCL) supercapacitor based on reduced graphene oxide (rGO)/single-wall carbon nanotubes (SWNTs) composite electrodes
Lee et al. Attachable micropseudocapacitors using highly swollen laser-induced-graphene electrodes
US20150280156A1 (en) Transparent electrode and associated production method
TW201440277A (zh) 導電性透明電極及其製造方法
Yoon et al. Fabrication and characterization of flexible thin film super-capacitor with silver nano paste current collector
JP2017123471A (ja) 電流導電性電極及びそれを製造する方法
Joshi et al. Ultrathin, Breathable, Permeable, and Skin‐Adhesive Charge Storage Electronic Tattoos Based on Biopolymer Nanofibers and Carbon Nanotubes
CN109841426A (zh) 石墨烯基柔性电极及其制备方法
JP2002353074A (ja) 電気二重層コンデンサ、該コンデンサに用いる電極用ペースト及び電極
JP7054164B2 (ja) 容量性エネルギー貯蔵デバイス及び同デバイスを作製する方法
Mostafalu et al. based super-capacitor using micro and nano particle deposition for paper-based diagnostics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18943987

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02/11/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18943987

Country of ref document: EP

Kind code of ref document: A1