WO2020054270A1 - 投射型液晶表示装置及び電子機器 - Google Patents

投射型液晶表示装置及び電子機器 Download PDF

Info

Publication number
WO2020054270A1
WO2020054270A1 PCT/JP2019/031031 JP2019031031W WO2020054270A1 WO 2020054270 A1 WO2020054270 A1 WO 2020054270A1 JP 2019031031 W JP2019031031 W JP 2019031031W WO 2020054270 A1 WO2020054270 A1 WO 2020054270A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal panel
light
blue
green
Prior art date
Application number
PCT/JP2019/031031
Other languages
English (en)
French (fr)
Inventor
鳥山 亜希子
寛雄 八木
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US17/250,751 priority Critical patent/US11624970B2/en
Publication of WO2020054270A1 publication Critical patent/WO2020054270A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/005Projectors using an electronic spatial light modulator but not peculiar thereto
    • G03B21/006Projectors using an electronic spatial light modulator but not peculiar thereto using LCD's
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2066Reflectors in illumination beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2073Polarisers in the lamp house

Definitions

  • the present disclosure relates to a projection type liquid crystal display device and an electronic device.
  • a projection-type liquid crystal display device that generates an image by modulating light emitted from a light source with a liquid crystal panel and projects the generated image on a projection surface such as a screen has been widely used.
  • a projection type liquid crystal display device light emitted from a light source is separated into red light, green light and blue light, and the separated color lights are modulated by a liquid crystal panel, respectively, and the modulated color lights are combined. To generate an image.
  • a liquid crystal panel that modulates each color light for example, a vertical alignment type liquid crystal panel in which liquid crystal molecules are vertically aligned with respect to a substrate in a state where no voltage is applied is used.
  • a vertical alignment type liquid crystal panel when a voltage is applied, liquid crystal molecules are tilted in a direction parallel to the substrate, thereby controlling the polarization of light transmitted through the liquid crystal panel and controlling dark display or bright display of the liquid crystal panel.
  • Patent Literature 1 discloses that in a projection type liquid crystal display device, an appropriate color image is obtained by individually adjusting the level of each drive voltage of a liquid crystal panel that modulates each color light. I have.
  • a first optical system that splits light emitted from a light source into red light, green light, and blue light, a red liquid crystal panel that modulates the red light, and a green liquid crystal panel that modulates the green light
  • a blue liquid crystal panel that modulates the blue light
  • a second optical system that combines the modulated red light, green light, and blue light into one optical path, and projects light emitted from the second optical system.
  • the red liquid crystal panel, the green liquid crystal panel, and the blue liquid crystal panel have the same drive voltage
  • the liquid crystal layer of the red liquid crystal panel has a configuration of the green liquid crystal panel.
  • a projection type liquid crystal display device having a configuration different from that of the liquid crystal layer of the blue liquid crystal panel.
  • a first optical system that splits light emitted from a light source into red light, green light, and blue light, a red liquid crystal panel that modulates the red light, and a green liquid crystal that modulates the green light
  • a red liquid crystal panel that modulates the red light
  • a green liquid crystal that modulates the green light
  • a liquid crystal panel that modulates the blue light
  • a second optical system that combines the modulated red light, green light, and blue light into one optical path, and light emitted from the second optical system.
  • a projection lens system for projecting the light onto the projection surface, the driving voltage of the red liquid crystal panel, the green liquid crystal panel, and the blue liquid crystal panel are the same, the configuration of the liquid crystal layer of the red liquid crystal panel,
  • An electronic device is provided which has a different configuration from the liquid crystal layers of the green liquid crystal panel and the blue liquid crystal panel.
  • the present disclosure it is possible to make the applied voltage-light transmittance characteristics of the red liquid crystal panel close to the applied voltage-light transmittance characteristics of the green liquid crystal panel and the blue liquid crystal panel.
  • FIG. 1 is an explanatory diagram schematically illustrating an example of the overall configuration of a projection type liquid crystal display device. It is explanatory drawing which shows an example of the light source and optical system used for a projection type liquid crystal display device.
  • FIG. 5 is an explanatory diagram showing another example of a light source and an optical system used in a projection type liquid crystal display device.
  • FIG. 3 is a schematic explanatory diagram illustrating a configuration of a light modulation unit.
  • FIG. 2 is a schematic cross-sectional view illustrating a configuration of a liquid crystal panel.
  • FIG. 3 is a schematic plan view illustrating a configuration of a liquid crystal panel.
  • FIG. 3 is a circuit diagram illustrating a control circuit that controls driving of one pixel of a liquid crystal panel.
  • FIG. 1 is an explanatory diagram schematically illustrating an example of the overall configuration of a projection type liquid crystal display device. It is explanatory drawing which shows an example of the light source and optical system used for a projection type liquid crystal display device
  • FIG. 5 is a graph schematically showing a relationship between an applied voltage and a light transmittance in a liquid crystal panel that modulates each color light.
  • FIG. 8 is a graph showing a relative luminosity curve at a light wavelength of 380 nm to 780 nm.
  • FIG. 4 is a graph schematically showing a relationship between an applied voltage and a light transmittance in a liquid crystal panel to which a first specific example of the technology according to the present disclosure is applied. 4 is a graph of the applied voltage-light transmittance characteristics of each of red light, green light, and blue light of the liquid crystal panel according to Example 1.
  • 9 is a graph of the applied voltage-light transmittance characteristics of each of red light, green light, and blue light of the liquid crystal panel according to Example 2.
  • FIG. 6 is a graph showing applied voltage-light transmittance characteristics of red light, green light, and blue light of the liquid crystal panel according to Comparative Example 1.
  • FIG. 4 is a graph schematically showing a temporal change in the light transmittance of each color light in the projection type liquid crystal display device using the liquid crystal panel according to the first embodiment.
  • FIG. 7 is a graph schematically showing a change over time in light transmittance of each color light in a projection type liquid crystal display device using a liquid crystal panel according to Comparative Example 1.
  • FIG. 1 is an explanatory diagram schematically illustrating an example of the overall configuration of a projection type liquid crystal display device.
  • the projection type liquid crystal display device 1 is a so-called liquid crystal projector. Specifically, the projection type liquid crystal display device 1 splits the light h from the light source 40 into three colors of red light hR, green light hG, and blue light hB, and splits the red light hR, green light hG, and This is a display device that generates a color image by modulating the blue light hB with the light modulators 10, 13, and 19, respectively. Such a projection type liquid crystal display device 1 is also called, for example, a three-panel type liquid crystal projector.
  • the light h emitted from the light source 40 passes through the cut filter 2, the first fly-eye lens 3, the second fly-eye lens 4, the polarization conversion element 5, and the plano-convex lens 6. After passing sequentially, the light enters the dichroic mirror 7.
  • the light source 40 emits white light h including, for example, three primary colors of light, red light, green light, and blue light. By using such a light source 40, the projection type liquid crystal display device 1 can generate a full-color image.
  • the light source 40 may be, for example, an ultra-high pressure mercury lamp, an LED (Light Emitting Diode) laser light source, or a semiconductor laser light source.
  • the cut filter 2 is a plane mirror that removes light in the ultraviolet region included in the white light h emitted from the light source 40.
  • the cut filter 2 may be configured by, for example, applying a coating that reflects light in an ultraviolet region on a glass substrate.
  • the first fly-eye lens 3 and the second fly-eye lens 4 uniform the illuminance distribution of the white light h emitted from the light source 40, and change the shape of the white light h to the light modulators 10, 13, and 19 at the subsequent stage. Is changed to a shape corresponding to the effective area of. As a result, the red light hR, the green light hG, and the blue light hB, which are obtained by dispersing the white light h, are uniformly applied to the effective areas of the light modulators 10, 13, and 19.
  • the first fly-eye lens 3 is provided in a structure in which a plurality of microlenses are arranged in an array.
  • the first fly-eye lens 3 forms a point light source group by condensing the white light h by each microlens.
  • the light from each of the point light source groups is combined by the second fly-eye lens 4 to form a light beam having a shape corresponding to the effective area of the light modulators 10, 13, and 19.
  • the outer shapes of the first fly-eye lens 3 and the second fly-eye lens 4 correspond to the effective area of the light modulators 10, 13, 19 (that is, correspond to the irradiated areas of the light modulators 10, 13, 19). ) May have similar aspect ratios.
  • the polarization conversion element 5 converts the light collected by the first fly-eye lens 3 and the second fly-eye lens 4 into light having a predetermined polarization direction.
  • the polarization conversion element 5 converts non-polarized light (for example, P-polarized light and S-polarized light) emitted from the light source 40 into light (for example, P-polarized light) having a predetermined polarization direction corresponding to the light modulators 10, 13, and 19. (Polarized wave).
  • the polarization conversion element 5 may be a known polarizer such as a birefringent crystal, a film polarizer, or a reflective polarizer.
  • the light emitted from the polarization conversion element 5 is condensed by the plano-convex lens 6, and the light h emitted from the plano-convex lens 6 is split by the dichroic mirror 7 into red light hR, green light hG, and blue light hB.
  • the red light hR enters the light modulator 10 via the mirror 8 and the plano-convex lens 9.
  • the green light hG is split into blue light hB by the dichroic mirror 11 and enters the light modulation unit 13 via the plano-convex lens 12. Further, the blue light hB enters the light modulator 19 via the lens 14, the mirror 15, the lens 16, the mirror 17, and the plano-convex lens 18.
  • the dichroic mirrors 7 and 11 are wavelength-selective mirrors in each of which a plurality of dielectric films are laminated on one main surface such as a glass substrate. Specifically, the dichroic mirror 7 splits the red light hR, the green light hG, and the blue light hB by transmitting the red light hR and reflecting the green light hG and the blue light hB. The dichroic mirror 11 separates the green light hG and the blue light hB by transmitting the blue light hB and reflecting the green light hG.
  • the light modulators 10, 13, and 19 include liquid crystal panels and function as light valves of the projection type liquid crystal display device 1. The details of the light modulators 10, 13, and 19 will be described later.
  • the cross prism 20 has, for example, an outer shape in which a plurality of glass prisms are joined, and is configured by providing interference filters 21a and 21b having predetermined optical characteristics on the joining surface of the glass prisms.
  • the interference filter 21a is provided to reflect the red light hR and transmit the green light hG
  • the interference filter 21b is provided to reflect the blue light hB and transmit the green light hG.
  • the green light hG reaches the projection lens 22 by transmitting through the interference filters 21a and 21b. Therefore, the cross prism 20 can combine the red light hR, the green light hG, and the blue light hB into one optical axis.
  • the light combined by the cross prism 20 is projected by a projection lens 22 onto a projection surface such as a screen.
  • FIG. 2A is an explanatory diagram illustrating an example of a light source and an optical system used in the projection-type liquid crystal display device 1
  • FIG. 2B is an explanatory diagram illustrating another example of the light source and the optical system used in the projection-type liquid crystal display device 1.
  • the light source used in the projection type liquid crystal display device 1 may be a blue laser light source 41. Even when such a light source is used, the projection type liquid crystal display device 1 can generate the red light hR, the green light hG, and the blue light hB.
  • the blue light emitted from the blue laser light source 41 is converted into a white light h by the phosphor wheel 42.
  • the white light h is separated into, for example, blue light hB and yellow light hY by the dichroic mirror 25, and the blue light hB enters the light modulation unit 19.
  • the yellow light hY is further split into red light hR and green light hG by the dichroic mirror 26, for example.
  • the red light hR enters the light modulator 10 and the green light hG enters the light modulator 13.
  • the projection type liquid crystal display device 1 can control the red light hR, the green light hG, and the blue light hB modulated by the light modulators 10, 13, and 19 respectively. Can be generated.
  • the light source used in the projection type liquid crystal display device 1 may be a plurality of blue laser light sources 41A and 41B. Even when such a light source is used, the projection type liquid crystal display device 1 can generate the red light hR, the green light hG, and the blue light hB.
  • the blue light hB emitted from the blue laser light source 41A enters the light modulation unit 19.
  • the blue light emitted from the blue laser light source 41B is wavelength-converted into yellow light hY by the phosphor wheel 43, and the wavelength-converted yellow light hY is converted into red light hR and green light hG by the dichroic mirror 26, for example. It is split.
  • the red light hR enters the light modulator 10 and the green light hG enters the light modulator 13.
  • the projection type liquid crystal display device 1 can control the red light hR, the green light hG, and the red light hR modulated by the light modulators 10, 13, and 19, respectively. And blue light hB.
  • the light source used in the projection type liquid crystal display device 1 is not limited to an ultra-high pressure mercury lamp, an LED laser light source or a semiconductor laser light source capable of emitting white light h.
  • the projection type liquid crystal display device 1 it is possible to use a light source that emits light of a predetermined wavelength such as blue light.
  • FIG. 3 is a schematic explanatory diagram illustrating the configuration of the light modulation units 10, 13, and 19.
  • each of the light modulators 10, 13, and 19 has a configuration in which an incident-side polarizing plate 101, a liquid crystal cell 102, and an emission-side polarizing plate 103 are sequentially arranged on the optical path of the projection light hI.
  • the light modulators 10, 13, and 19 may be, for example, liquid crystal panels.
  • the light modulators 10, 13, and 19 are configured so that the projection light hI that enters from the incident-side polarizing plate 101 and exits from the emission-side polarizing plate 103 enters the cross prism 20 (not shown in FIG. 3) and the projection lens 22. Is disposed inside the projection type liquid crystal display device 1.
  • the projection light hI modulated by the light modulation units 10, 13, and 19 is synthesized by the cross prism 20, and is then enlarged and projected on the projection surface 30 via the projection lens 22.
  • the incident-side polarizing plate 101 and the outgoing-side polarizing plate 103 are optical elements that transmit only light polarized in a specific direction.
  • the entrance-side polarizing plate 101 and the exit-side polarizing plate 103 are arranged such that the directions of polarized light to be transmitted are orthogonal to each other (that is, in crossed Nicols).
  • the light modulators 10, 13, and 19 can control the transmittance of the projection light hI in the emission-side polarizing plate 103 by controlling the polarization of the projection light hI in the liquid crystal cell 102.
  • the entrance-side polarizing plate 101 and the exit-side polarizing plate 103 may be, for example, film polarizers formed of polyvinyl alcohol or the like.
  • the liquid crystal cell 102 is provided between the incident-side polarizing plate 101 and the outgoing-side polarizing plate 103, and controls the polarization direction of the projection light hI. Both surfaces of the liquid crystal cell 102 may be protected by dustproof glasses 104 and 105. As described later, the liquid crystal cell 102 may be driven in a so-called vertical alignment (VA) type.
  • VA vertical alignment
  • FIG. 4 is a schematic sectional view illustrating the configuration of the liquid crystal panel
  • FIG. 5 is a schematic plan view illustrating the configuration of the liquid crystal panel.
  • the liquid crystal panel 100 includes an incident side polarizing plate 101, a circuit substrate 112, a pixel electrode 114, a liquid crystal layer 110 including a liquid crystal material 111, a counter substrate 113, and an output side polarizing plate 103. , Is provided.
  • the incident side polarizing plate 101 and the outgoing side polarizing plate 103 are substantially the same as the above-described configuration, and thus description thereof is omitted.
  • the circuit board 112 is a board on which circuits such as transistors for controlling the driving of each of the pixels provided in the pixel region of the liquid crystal cell 102 are provided.
  • the circuit board 112 may be, for example, a quartz substrate or a glass substrate that can transmit light.
  • a circuit such as a transistor may be formed in a semiconductor layer provided in a peripheral region of the pixel region P of the circuit board 112.
  • the pixel electrode 114 is provided on the surface of the circuit board 112 on the liquid crystal layer 110 side for each pixel region P.
  • the pixel electrode 114 controls the alignment of the liquid crystal material 111 by generating an electric field with the counter electrode 115 by applying a pixel signal.
  • the pixel electrode 114 may be, for example, a transparent conductive thin film such as an indium tin oxide (ITO) film.
  • the opposing substrate 113 is arranged to face the circuit substrate 112.
  • the opposite substrate 113 may be, for example, a quartz substrate or a glass substrate that can transmit light.
  • the counter electrode 115 is provided over the entire surface of the counter substrate 113 on the liquid crystal layer 110 side.
  • the counter electrode 115 controls the alignment of the liquid crystal material 111 by generating an electric field between the counter electrode 115 and the pixel electrode 114 to which the pixel signal is applied.
  • the counter electrode 115 may be, for example, a transparent conductive thin film such as an indium tin oxide (ITO) film.
  • the liquid crystal layer 110 is a layer in which liquid crystal materials 111 are arranged in a predetermined orientation.
  • the liquid crystal material 111 is a material in which the orientation or order of the molecular assembly changes depending on the magnitude of the applied electric field.
  • the liquid crystal layer 110 controls the orientation or the order of the molecular assembly of the liquid crystal material 111 so that the projected light is controlled. Modulates the polarization direction. By modulating the polarization direction of the projection light by the liquid crystal layer 110, the transmittance of the projection light in the emission-side polarizing plate 103 is modulated. Therefore, in the liquid crystal cell 102, the projection light expressed in gradation according to the pixel signal. Can be generated.
  • the liquid crystal material 111 may be a known thermosetting or photocurable liquid crystal polymer material.
  • the liquid crystal material 111 may be a negative nematic liquid crystal material or the like.
  • the liquid crystal material 111 is aligned in a vertical alignment (Vertical Alignment: VA) type.
  • VA Vertical Alignment
  • the liquid crystal material 111 having negative dielectric anisotropy is used so that the liquid crystal material 111 is vertically aligned with respect to the circuit substrate 112 and the counter substrate 113 when no voltage is applied. Is controlled. Further, the liquid crystal material 111 is controlled so as to fall in a direction parallel to the circuit substrate 112 and the counter substrate 113 when a voltage is applied.
  • the liquid crystal material 111 can control the polarization direction of the projection light incident on the liquid crystal layer 110 by the difference between the refractive indices of the major axis and the minor axis of the liquid crystal material 111.
  • the pixel on the left of FIG. 4 shows the alignment state of the liquid crystal material 111 when no voltage is applied. According to this, it is understood that the liquid crystal material 111 is oriented in a direction perpendicular to the circuit substrate 112 and the counter substrate 113 when no voltage is applied. At this time, the liquid crystal panel 100 performs dark display.
  • the right pixel opposite to FIG. 4 shows the alignment state of the liquid crystal material 111 when a voltage is applied. According to this, it can be seen that the liquid crystal material 111 falls down in the direction parallel to the circuit board 112 and the counter substrate 113 when a voltage is applied. At this time, the liquid crystal panel 100 performs bright display. Note that the liquid crystal material 111 in the vicinity of the circuit substrate 112 and the counter substrate 113 has a high alignment regulating force (also referred to as anchoring energy), and thus does not change much in alignment with application of a voltage.
  • a high alignment regulating force also referred to as anchoring energy
  • FIG. 5 shows the direction in which the liquid crystal material 111 falls on the plane when a voltage is applied.
  • the optical axis direction 101P of the incident-side polarizing plate 101 polarization direction that can transmit through the incident-side polarizing plate 101
  • the optical axis direction 103P of the output-side polarizing plate 103 transmitting through the output-side polarizing plate 103.
  • (Possible polarization directions) are orthogonal to each other, and the liquid crystal material 111 is oriented in a direction inclined by an angle ⁇ with respect to the optical axis direction 101P when a voltage is applied. Accordingly, the projection light is polarized when transmitting the liquid crystal layer 110 when a voltage is applied.
  • FIG. 6 is a circuit diagram showing a control circuit for controlling driving of one pixel of the liquid crystal panel 100.
  • a control circuit for controlling the driving of one pixel of the liquid crystal panel 100 includes a pixel electrode 114, a switching transistor 51, a signal line 53, a scanning line 54, a storage capacitor 52, a common electrode line 55.
  • a plurality of pixel electrodes 114 are arranged in a matrix in a pixel area of the liquid crystal panel 100. When a voltage is applied to the pixel electrode 114, the alignment of the liquid crystal material 111 included in the liquid crystal layer 110 is controlled.
  • the switching transistor 51 is a thin film transistor (TFT), and controls switching of voltage application to the pixel electrode 114. Specifically, the pixel electrode 114 is electrically connected to the drain 51D of the switching transistor, and the signal line 53 for supplying a pixel signal is electrically connected to the source 51S of the switching transistor 51.
  • TFT thin film transistor
  • the scanning line 54 is electrically connected to the gate of the switching transistor 51.
  • a scan signal is applied to the scan line 54 in a pulsed manner at a predetermined timing.
  • a pixel signal supplied from the signal line 53 is applied to the pixel electrode 114.
  • a pixel signal applied to the pixel electrode 114 is held between the pixel electrode 114 and the counter electrode 115 for a certain period of time.
  • the orientation of the liquid crystal material 111 included in the liquid crystal layer 110 between the pixel electrode 114 and the counter electrode 115 is controlled.
  • the storage capacitor 52 is provided in parallel with a capacitor formed between the pixel electrode 114 and the counter electrode 115 in order to prevent a pixel signal applied to the pixel electrode 114 from leaking. Specifically, the storage capacitor 52 is provided between a wiring electrically connected to the pixel electrode 114 and the common electrode line 55. By providing the storage capacitor 52, the retention characteristics of the pixel signal written to the pixel electrode 114 can be further improved, so that the contrast ratio of the liquid crystal panel 100 can be further increased.
  • the light modulators 10, 13, and 19 that is, the liquid crystal panel 100
  • the light modulators 10, 13, and 19 that is, the liquid crystal panel 100
  • they are provided in a substantially common configuration.
  • the light transmittance of the liquid crystal panel 100 is a rate at which the projection light whose polarization direction is modulated by the liquid crystal layer 110 is transmitted through the emission-side polarizing plate 103. That is, the light transmittance of the liquid crystal panel 100 indicates how much the polarization direction of the projection light is polarized by the liquid crystal layer 110 toward the optical axis direction 103P of the emission side polarizing plate 103.
  • the light transmittance of the liquid crystal panel 100 depends on the inclination ⁇ of the orientation direction of the liquid crystal material 111 with respect to the optical axis direction 101P of the incident side polarizing plate 101 and the front phase difference of the liquid crystal layer 110 in the projected light. Can be expressed by Equation 1.
  • I 0 is the intensity of light incident on the liquid crystal panel 100
  • I is the intensity of light transmitted through the liquid crystal panel 100
  • is the angle between the optical axis direction 101P of the incident side polarizing plate 101 and the orientation direction of the liquid crystal material 111.
  • d is the distance between the pixel electrode 114 and the counter electrode 115 (that is, the thickness of the liquid crystal layer 110), and
  • ⁇ n is the refractive index anisotropy of the liquid crystal material 111 viewed from the incident direction.
  • is the wavelength of the projection light.
  • the light transmittance of the liquid crystal panel 100 depends on the wavelength of the projection light incident on the liquid crystal panel 100. Therefore, the relationship between the applied voltage of the liquid crystal panel 100 for each color light and the light transmittance of the liquid crystal panel 100 is as shown in the graph of FIG.
  • FIG. 7 is a graph schematically showing the relationship between the applied voltage and the light transmittance in the liquid crystal panel 100 that modulates each color light.
  • the characteristics of the liquid crystal panel that modulates the red light hR are shown as R-ch
  • the characteristics of the liquid crystal panel that modulates the green light hG are shown as G-ch
  • the characteristics of the liquid crystal panel that modulates the blue light hB are shown as B-ch. .
  • the light transmittance reaches a peak at an applied voltage near 3 V, and in the liquid crystal panel that modulates the green light hG, the applied light nears 4 V.
  • the light transmittance has reached a peak
  • in a liquid crystal panel that modulates red light hR the light transmittance has reached a peak at an applied voltage near 5 V. That is, as the liquid crystal panel 100 modulates light having a shorter wavelength, the light transmittance reaches a peak at a lower applied voltage. Therefore, when the same driving voltage is applied to the liquid crystal panel 100 having the characteristics shown in FIG. 7 to modulate each color light, it is difficult to maximize the light transmittance of the liquid crystal panel 100 for all the color lights. Become.
  • each liquid crystal panel 100 that modulates each color light it is conceivable to adjust the level of the driving voltage for each liquid crystal panel 100 that modulates each color light so that the light transmittance of each liquid crystal panel 100 that modulates each color light can take the maximum value.
  • the liquid crystal panel 100 that modulates the red light hR is driven by an applied voltage of 0 V to 5 V
  • the liquid crystal panel 100 that modulates the green light hG is driven by an applied voltage of 0 V to 4 V.
  • the liquid crystal panel 100 for modulating is driven by an applied voltage of 0 V to 3 V.
  • the white light h emitted from the light source 40 is split into red light hR, green light hG, and blue light hB, and each of the split color lights is modulated. After that, a color image is generated by compositing. Therefore, when the magnitude of light loss of each color light on the optical path is different, a difference occurs in the energy of each color light. In such a case, when the respective color lights are combined, there is a possibility that the white balance of the projected light after the combination is different from the white balance of the white light h emitted from the light source 40. Therefore, it is important that the light transmittance of each of the liquid crystal panels 100 that modulates each color light is set to an appropriate level so that the white balance of the color image of the projection type liquid crystal display device 1 is appropriate.
  • FIG. 8 is a graph showing a relative luminous efficiency curve at a light wavelength of 380 nm to 780 nm.
  • the human eye has the highest sensitivity to light having a wavelength of 555 nm, and the light having a wavelength farther from 555 nm has lower sensitivity. Therefore, in order to adjust the white balance of the color image of the projection type liquid crystal display device 1 to an appropriate state, the relative light amounts of the red light hR and the blue light hB are determined in consideration of the relative luminous efficiency of the human eye. It is also important to reduce the amount of green light hG.
  • an attenuation filter for reducing the light amount on the optical path of the green light hG.
  • new components are added on the optical path of the green light hG, so that the total mass and the manufacturing cost of the projection type liquid crystal display device 1 increase.
  • the maximum value of the light transmittance of the liquid crystal panel 100 that modulates the green light hG is reduced by lowering the level of the drive voltage of the liquid crystal panel 100 that modulates the green light hG. It is conceivable that the light transmittance of the light modulating unit 10 for modulating light and the liquid crystal panel 100 for modulating the blue light hB are lower than the maximum values.
  • the liquid crystal panel 100 that modulates the green light hG is used in an unstable region where the characteristics of the applied voltage and the light transmittance are easily changed. Therefore, when the characteristics of the liquid crystal panel 100 that modulates the green light hG change over time or due to environmental factors, the light transmittance of the liquid crystal panel 100 greatly changes, and the white balance of the projection type liquid crystal display device 1 greatly changes. May be lost.
  • the red light hR, the green light hG, and the red light hR while adjusting the characteristics of the applied voltage-light transmittance different in each of the liquid crystal panels 100 that modulate each color light. It is required to appropriately adjust the balance of the amount of blue light hB. Further, in the projection-type liquid crystal display device 1, it is also required that the respective configurations of the liquid crystal panels 100 that modulate the respective color lights are made substantially common in order to improve productivity. Furthermore, in the projection type liquid crystal display device 1, high light resistance is required because the liquid crystal panel 100 is irradiated with a large amount of light for a long time.
  • the amount of light applied to the liquid crystal panel 100 provided in the projection type liquid crystal display device 1 has been reduced. It is increasing, and higher light resistance is required.
  • the liquid crystal panel 100 on which short-wavelength blue light is incident is more affected by light irradiation, and if sufficient light resistance cannot be obtained, the color reproducibility of the projection type liquid crystal display device 1 may be reduced. is there.
  • the technology according to the present disclosure has been made in view of the circumstances described above.
  • the technology according to the present disclosure described below proposes a projection-type liquid crystal display device 1 that can easily achieve desired characteristics.
  • FIG. 9 is a graph schematically showing the relationship between the applied voltage and the light transmittance in the liquid crystal panel 100 to which the first specific example of the technology according to the present disclosure is applied.
  • the technology according to the present disclosure provides a liquid crystal panel 100 that modulates red light hR (hereinafter, referred to as a red liquid crystal panel 100R) and a liquid crystal panel 100 that modulates green light hG (hereinafter, green) in the projection-type liquid crystal display device 1.
  • a red liquid crystal panel 100R red liquid crystal panel
  • a green liquid crystal panel 100G green
  • the configuration of the red liquid crystal panel 100R is changed to the green liquid crystal panel 100G and the liquid crystal panel 100G. It is provided differently from the configuration of the blue liquid crystal panel 100B.
  • the liquid crystal material 111 used for the red liquid crystal panel 100R is more anisotropic than the liquid crystal material 111 used for the green liquid crystal panel 100G and the blue liquid crystal panel 100B (for example, with 550 nm green light).
  • the configuration of the red liquid crystal panel 100R is provided so as to be different from the configurations of the green liquid crystal panel 100G and the blue liquid crystal panel 100B.
  • the distances (also referred to as cell gaps) between the pixel electrodes 114 and the opposing electrodes 115 of the red liquid crystal panel 100R, the green liquid crystal panel 100G, and the blue liquid crystal panel 100B may be the same. That is, when the configuration of the red liquid crystal panel 100R is made different from the configurations of the green liquid crystal panel 100G and the blue liquid crystal panel 100B by the liquid crystal material 111, the cell gaps of the red liquid crystal panel 100R, the green liquid crystal panel 100G, and the blue liquid crystal panel 100B are the same. It may be.
  • the size of the cell gap of the liquid crystal panel 100 is easily limited from the viewpoint of image quality. Specifically, when the cell gap of the liquid crystal panel 100 is excessively large, there is a possibility that the horizontal electric field generated between adjacent pixels disturbs the alignment of liquid crystal molecules around the pixels and deteriorates image quality.
  • a liquid crystal material having a high refractive index anisotropy is used in order to obtain a sufficient light transmittance in the liquid crystal layer 110.
  • a liquid crystal material having a high value generally has low stability or light resistance, and may reduce the reliability of the liquid crystal panel 100. Therefore, the red liquid crystal panel 100R may be provided differently from the green liquid crystal panel 100G and the blue liquid crystal panel 100B by the liquid crystal material 111 having less restrictions.
  • the red liquid crystal panel 100R it is considered that the use of a liquid crystal material having a high refractive index anisotropy hardly affects the image quality. This is because the red light hR has lower energy than the green light hG and the blue light hB, and the damage to the liquid crystal panel 100 is extremely small.
  • a sealing material or a sealing material which is a peripheral material dissolved in the liquid crystal material 111 by blue light hB having a short wavelength or the like when the liquid crystal panel 100 is irradiated with strong light for a long time, a sealing material or a sealing material which is a peripheral material dissolved in the liquid crystal material 111 by blue light hB having a short wavelength or the like. Free radicals are generated from chemicals or environmental impurities. The free radicals generated by this cause the chemical bond of the liquid crystal material 111 to be cut, thereby deteriorating the characteristics of the liquid crystal panel 100.
  • the configurations of the green liquid crystal panel 100G and the blue liquid crystal panel 100B may be the same.
  • the green liquid crystal panel 100G and the blue liquid crystal panel 100B can be manufactured in the same production process, so that the productivity of the projection type liquid crystal display device 1 is improved. be able to.
  • the configuration other than the liquid crystal material 111 of the red liquid crystal panel 100R may be the same as the configuration of the green liquid crystal panel 100G and the blue liquid crystal panel 100B other than the liquid crystal material 111.
  • the production efficiency of the red liquid crystal panel 100R, the green liquid crystal panel 100G, and the blue liquid crystal panel 100B can be improved by increasing the common configuration, and therefore, the productivity of the projection type liquid crystal display device 1 can be improved. .
  • the applied voltage at which the light transmittance becomes the highest value becomes higher as the wavelength of the light to be modulated becomes longer.
  • the characteristics of the applied voltage-light transmittance in each of the red liquid crystal panel 100R, the green liquid crystal panel 100G, and the blue liquid crystal panel 100B are brought closer. Can be done. According to this, in the first specific example, in each of the red liquid crystal panel 100R, the green liquid crystal panel 100G, and the blue liquid crystal panel 100B, it is possible to approach the value of the applied voltage at which the light transmittance becomes the maximum value.
  • the applied voltage at which the light transmittance of the red liquid crystal panel 100 ⁇ / b> R has the highest value is applied to the blue liquid crystal panel.
  • the applied voltage can be lower than the applied voltage at which the light transmittance has the maximum value.
  • the characteristics of the red liquid crystal panel 100R are indicated by R-ch
  • the characteristics of the green liquid crystal panel 100G are indicated by G-ch
  • the characteristics of the blue liquid crystal panel 100B are indicated by R-ch.
  • the upper limit of the voltage that can be supplied to the liquid crystal panel 100 and the like is determined. Therefore, for example, the configuration of the liquid crystal panel 100 that modulates each color light is optimized so that the applied voltage that maximizes the light transmittance of the red liquid crystal panel 100R that modulates the red light having the longest wavelength becomes the maximum voltage. It is possible to do.
  • the applied voltage-light transmittance characteristic of the red liquid crystal panel 100R by controlling the applied voltage-light transmittance characteristic of the red liquid crystal panel 100R, the applied voltage at which the light transmittance becomes the highest in the blue liquid crystal panel 100B becomes the maximum voltage.
  • the configuration of the liquid crystal panel 100 that modulates each color light can be optimized.
  • the applied voltage-light of the red liquid crystal panel 100R and the blue liquid crystal panel 100B is set such that the light transmittance of both the red liquid crystal panel 100R and the blue liquid crystal panel 100B becomes the maximum value at the applied voltage of about 5V.
  • the transmittance characteristics can be adjusted.
  • the light transmittance of the green liquid crystal panel 100G has not reached the maximum value, and is lower than the light transmittance of the red liquid crystal panel 100R and the blue liquid crystal panel 100B.
  • the light amount of the green light hG is smaller than the light amounts of the red light hR and the blue light hB in order to correspond to the relative luminous efficiency of human eyes. . Therefore, according to the projection type liquid crystal display device 1 according to the first specific example, the relative luminous efficiency of human eyes can be achieved without using an attenuation filter or the like or reducing the driving voltage level of the green liquid crystal panel 100G only. White balance can be achieved.
  • the variation of the light transmittance with respect to the applied voltage in the green liquid crystal panel 100G is gentler than the characteristic of the applied voltage-light transmittance shown in FIG. Becomes Therefore, in the projection type liquid crystal display device 1 according to the first specific example, even when the characteristic of the applied voltage-light transmittance of the liquid crystal panel 100 is changed due to aging or the environment, it is possible to prevent the image quality from being affected. can do.
  • the configuration of the liquid crystal panel 100 that modulates each color light is optimized so that the applied voltage at which the light transmittance becomes the maximum in the red liquid crystal panel 100R becomes the maximum voltage. is there. That is, in the graph shown in FIG. 7, the applied voltage-light transmittance characteristics of the green liquid crystal panel 100G and the blue liquid crystal panel 100B are adjusted in accordance with the red liquid crystal panel 100R, which has a low light transmittance change sensitivity with respect to the applied voltage. Therefore, the change sensitivity of the light transmittance to the applied voltage of the green liquid crystal panel 100G and the blue liquid crystal panel 100B becomes sensitive.
  • the configuration of the liquid crystal panel 100 that modulates each color light is optimized such that the applied voltage at which the light transmittance becomes the maximum in the blue liquid crystal panel 100B becomes the maximum voltage. That is, since the characteristic of the applied voltage-light transmittance of the green liquid crystal panel 100G is adjusted in accordance with the blue liquid crystal panel 100B having a high sensitivity of change of the light transmittance with respect to the applied voltage, the light with respect to the applied voltage of the green liquid crystal panel 100G is adjusted. The change sensitivity of the transmittance can be made more gentle.
  • the technology according to the present disclosure uses the configuration of the red liquid crystal panel 100R in the projection type liquid crystal display device 1 in order to drive the red liquid crystal panel 100R, the green liquid crystal panel 100G, and the blue liquid crystal panel 100B with the same driving voltage. Are provided differently from the configurations of the green liquid crystal panel 100G and the blue liquid crystal panel 100B.
  • the configuration of the red liquid crystal panel 100R is made by making the cell gap of the liquid crystal layer 110 of the red liquid crystal panel 100R larger than the cell gaps of the liquid crystal layers 110 of the green liquid crystal panel 100G and the blue liquid crystal panel 100B. It is provided differently from the configuration of the green liquid crystal panel 100G and the blue liquid crystal panel 100B.
  • the liquid crystal materials 111 of the red liquid crystal panel 100R, the green liquid crystal panel 100G, and the blue liquid crystal panel 100B may be the same. That is, when the configuration of the red liquid crystal panel 100R is made different from the configurations of the green liquid crystal panel 100G and the blue liquid crystal panel 100B due to the cell gap, the liquid crystal materials 111 of the red liquid crystal panel 100R, the green liquid crystal panel 100G, and the blue liquid crystal panel 100B are the same. It may be. According to this, in the red liquid crystal panel 100R, the green liquid crystal panel 100G, and the blue liquid crystal panel 100B, the step of injecting the liquid crystal material 111 at the time of manufacturing can be simplified.
  • the configurations of the green liquid crystal panel 100G and the blue liquid crystal panel 100B may be the same.
  • the green liquid crystal panel 100G and the blue liquid crystal panel 100B can be manufactured in the same production process, so that the productivity of the projection type liquid crystal display device 1 is improved. be able to.
  • the configuration other than the liquid crystal material 111 of the red liquid crystal panel 100R may be the same as the configuration of the green liquid crystal panel 100G and the blue liquid crystal panel 100B other than the liquid crystal material 111.
  • the production efficiency of the red liquid crystal panel 100R, the green liquid crystal panel 100G, and the blue liquid crystal panel 100B can be improved by increasing the common configuration, and therefore, the productivity of the projection type liquid crystal display device 1 can be improved. .
  • a photoresist is applied to a desired thickness on a counter substrate using a spin coating method, and an exposure process is performed by ultraviolet irradiation using a photomask, and then the photoresist is developed to form a columnar spacer.
  • the TFT array substrate in which TFTs were formed in an array on a quartz substrate, and the above-mentioned counter substrate were washed with a neutral detergent, and dried at 120 ° C. for 20 minutes after washing.
  • each of the TFT array substrate and the counter substrate was introduced into a vapor deposition device, and SiO 2 was obliquely vapor-deposited with a thickness of about 50 nm to form an alignment film.
  • a seal pattern was formed on the surface of the TFT array substrate and the counter substrate on which the alignment film was formed, except for an injection port for injecting a liquid crystal material in a later stage.
  • the TFT array substrate and the opposing substrate are attached to each other so that the surfaces on which the alignment films are formed face each other, and a liquid crystal material is injected from an injection port under a vacuum environment and sealed with a UV (Ultra Violet) curable resin.
  • a nematic liquid crystal material having a negative dielectric anisotropy was used as the liquid crystal material.
  • the liquid crystal panel which modulates each color light according to Examples 1 and 2 and Comparative Example 1 was manufactured by changing the liquid crystal material and the cell gap by using the above manufacturing method.
  • the physical properties and cell gap values of the liquid crystal material of each liquid crystal panel are shown in Tables 1 and 2 below. Note that the refractive index anisotropy ( ⁇ n) of the liquid crystal material is a value measured with light having a wavelength of 550 nm.
  • FIGS. 10 to 12 Graphs showing the results are shown in FIGS. 10 to 12, respectively.
  • FIG. 10 is a graph showing the relationship between the applied voltage and the light transmittance of the liquid crystal panel according to the first embodiment.
  • FIG. 11 is a graph showing the relationship between the applied voltage and the light transmittance of the liquid crystal panel according to the second embodiment.
  • 7 is a graph of the applied voltage-light transmittance characteristics of the liquid crystal panel according to Comparative Example 1. 10 to 12, the characteristics of the red liquid crystal panel are indicated by R-ch, the characteristics of the green liquid crystal panel are indicated by G-ch, and the characteristics of the blue liquid crystal panel are indicated by R-ch.
  • the light transmittances of the red light and the blue light are almost the highest, and the light transmittance of the green light is It is about 70% of the peak value. Therefore, in the liquid crystal panels according to the first and second embodiments, even when the liquid crystal panels corresponding to the respective color lights are driven at a constant voltage, the amount of red light and blue light is large, and the amount of green light is small. It can be seen that an image with an appropriate white balance can be obtained.
  • FIG. 13 is a graph schematically showing a temporal change in light transmittance of a liquid crystal panel that modulates each color light in the projection type liquid crystal display device using the liquid crystal panel according to the first embodiment.
  • FIG. 14 is a graph schematically showing a temporal change of the light transmittance of the liquid crystal panel that modulates each color light in the projection type liquid crystal display device using the liquid crystal panel according to Comparative Example 1.
  • the horizontal axis indicates the use time of the projection type liquid crystal display device
  • the vertical axis indicates the maximum value of the light transmittance of the liquid crystal panel that modulates each color light.
  • the characteristics of the liquid crystal panel that modulates red light are indicated by R-ch
  • the characteristics of the liquid crystal panel that modulates green light are indicated by G-ch
  • the characteristics of the liquid crystal panel that modulates blue light Is denoted by R-ch.
  • the liquid crystal panel that modulates blue light has a liquid crystal panel that modulates red light and a liquid crystal panel that modulates green light. It can be seen that it deteriorated earlier and the maximum value of the light transmittance was lowered as compared with the case of FIG.
  • each of the liquid crystal panel that modulates red light, the liquid crystal panel that modulates green light, and the liquid crystal panel that modulates blue light has a light transmittance. It can be seen that the maximum value is maintained and no deterioration has occurred.
  • Comparative Example 1 since a liquid crystal material having a larger refractive index anisotropy ⁇ n than that of Example 1 was used as a liquid crystal material of a liquid crystal panel that modulates blue light, it is considered that light degradation occurred early.
  • the application of the technology according to the present disclosure is to a projection type liquid crystal display device, but the present technology is not limited to such an example.
  • the technology according to the present disclosure may be applied to all electronic devices including other display devices.
  • a first optical system that splits light emitted from the light source into red light, green light, and blue light
  • a red liquid crystal panel that modulates the red light A green liquid crystal panel that modulates the green light, A blue liquid crystal panel that modulates the blue light
  • a second optical system that combines the modulated red light, green light, and blue light into one optical path
  • a projection lens system that projects light emitted from the second optical system onto a projection surface
  • the liquid crystal material included in the liquid crystal layer of the red liquid crystal panel has a higher refractive index anisotropy than the liquid crystal material included in the liquid crystal layers of the green liquid crystal panel and the blue liquid crystal panel.
  • the projection type liquid crystal display device according to 1. (3) The projection liquid crystal display device according to (2), wherein the red liquid crystal panel, the green liquid crystal panel, and the blue liquid crystal panel have the same cell gap.
  • the projection type liquid crystal display device according to any one of (1) to (10), wherein the red liquid crystal panel, the green liquid crystal panel, and the blue liquid crystal panel perform dark display in a state where no voltage is applied.
  • (12) A first optical system that splits light emitted from the light source into red light, green light, and blue light; A red liquid crystal panel that modulates the red light, A green liquid crystal panel that modulates the green light, A blue liquid crystal panel that modulates the blue light, A second optical system that combines the modulated red light, green light, and blue light into one optical path; A projection lens system for projecting light emitted from the second optical system onto a projection surface, With The driving voltages of the red liquid crystal panel, the green liquid crystal panel, and the blue liquid crystal panel are the same, An electronic device, wherein a configuration of a liquid crystal layer of the red liquid crystal panel is different from a configuration of a liquid crystal layer of the green liquid crystal panel and the blue liquid crystal panel.
  • Reference Signs List 1 projection-type liquid crystal display device 2 cut filter 3 first fly-eye lens 4 second fly-eye lens 5 polarization conversion element 6, 9, 12, 18 plano-convex lens 7, 11, 25, 26 dichroic mirror 8, 15, 17 Mirrors 10, 13, 19 Light modulator 14, 16 Lens 20 Cross prism 21a, 21b Interference filter 22 Projection lens 30 Projection surface 40
  • Light source 100 Liquid crystal panel 100B Blue liquid crystal panel 100G Green liquid crystal panel 100R Red liquid crystal panel 101 Incident side polarizing plate 102 Liquid crystal cell 103 Outgoing side polarizing plate 104, 105 Dustproof glass 110 Liquid crystal layer 111 Liquid crystal material 112 Circuit board 113 Counter substrate 114 Pixel electrode 115 Counter electrode

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Projection Apparatus (AREA)

Abstract

光源(40)から出射された光を赤色光、緑色光及び青色光に分光する第1光学系と、前記赤色光、前記緑色光、及び前記青色光をそれぞれ変調する赤色液晶パネル(100R)、緑色液晶パネル(100G)、及び青色液晶パネル(100B)と、変調された前記赤色光、緑色光及び青色光を1つの光路に合成する第2光学系と、前記第2光学系から出射された光を投射面(30)に投射する投射レンズ系と、を備え、前記赤色液晶パネル(100R)、前記緑色液晶パネル(100G)及び前記青色液晶パネル(100B)の駆動電圧は、同一であり、前記赤色液晶パネル(100R)の液晶層(110)の構成は、前記緑色液晶パネル(100G)及び前記青色液晶パネル(100B)の液晶層(110)の構成と異なる、投射型液晶表示装置(1)。

Description

投射型液晶表示装置及び電子機器
 本開示は、投射型液晶表示装置及び電子機器に関する。
 近年、光源から出射された光を液晶パネルにて光変調することで画像を生成し、生成された画像をスクリーン等の投射面に投射する投射型液晶表示装置が広く普及している。このような投射型液晶表示装置では、光源から出射された光を赤色光、緑色光及び青色光に分光し、分光された各色光を液晶パネルにてそれぞれ変調し、変調された各色光を合成することで画像を生成している。
 投射型液晶表示装置において、各色光を変調する液晶パネルとしては、例えば、電圧無印加状態で液晶分子を基板に対して垂直に配向させた垂直配向型の液晶パネルが用いられる。垂直配向型の液晶パネルでは、電圧印加時に液晶分子を基板に平行な方向に倒すことで、液晶パネルを透過する光の偏光を制御し、液晶パネルの暗表示又は明表示を制御している。
 ここで、垂直配向型の液晶パネルでは、印加電圧と光透過率との関係は、入射光の波長に依存して変化することが知られている。そのため、投射型液晶表示装置に適切なカラー画像を表示させるためには、各色光を変調する液晶パネルにおける印加電圧と光透過率との関係をそれぞれ個別に調整する必要があった。
 例えば、下記の特許文献1には、投射型液晶表示装置において、各色光を変調する液晶パネルの各々の駆動電圧のレベルを個別に調整することで、適切なカラー画像を得ることが開示されている。
特開平11-223808号公報
 しかし、特許文献1に開示された技術では、液晶パネルの駆動電圧と、光透過性との関係をそれぞれ把握した上で、液晶パネルの駆動電圧のレベルをそれぞれ調整する必要があるため、投射型液晶表示装置の調整が煩雑になっていた。
 そのため、各色光を変調する液晶パネルの調整がより容易である投射型液晶表示装置が求められていた。
 本開示によれば、光源から出射された光を赤色光、緑色光及び青色光に分光する第1光学系と、前記赤色光を変調する赤色液晶パネルと、前記緑色光を変調する緑色液晶パネルと、前記青色光を変調する青色液晶パネルと、変調された前記赤色光、緑色光及び青色光を1つの光路に合成する第2光学系と、前記第2光学系から出射された光を投射面に投射する投射レンズ系と、を備え、前記赤色液晶パネル、前記緑色液晶パネル及び前記青色液晶パネルの駆動電圧は、同一であり、前記赤色液晶パネルの液晶層の構成は、前記緑色液晶パネル及び前記青色液晶パネルの液晶層の構成と異なる、投射型液晶表示装置が提供される。
 また、本開示によれば、光源から出射された光を赤色光、緑色光及び青色光に分光する第1光学系と、前記赤色光を変調する赤色液晶パネルと、前記緑色光を変調する緑色液晶パネルと、前記青色光を変調する青色液晶パネルと、変調された前記赤色光、緑色光及び青色光を1つの光路に合成する第2光学系と、前記第2光学系から出射された光を投射面に投射する投射レンズ系と、を備え、前記赤色液晶パネル、前記緑色液晶パネル、及び前記青色液晶パネルの駆動電圧は、同一であり、前記赤色液晶パネルの液晶層の構成は、前記緑色液晶パネル及び前記青色液晶パネルの液晶層の構成と異なる、電子機器が提供される。
 本開示によれば、赤色液晶パネルの印加電圧-光透過率特性を、緑色液晶パネル及び青色液晶パネルの印加電圧-光透過率特性に近づけることができる。
 以上説明したように本開示によれば、投射型液晶表示装置において、各色光を変調する液晶パネルの各々をより容易に調整することが可能である。
 なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。
投射型液晶表示装置の全体構成の一例を模式的に説明する説明図である。 投射型液晶表示装置に用いられる光源及び光学系の一例を示す説明図である。 投射型液晶表示装置に用いられる光源及び光学系の他の例を示す説明図である。 光変調部の構成を説明する模式的な説明図である。 液晶パネルの構成を説明する模式的な断面図である。 液晶パネルの構成を説明する模式的な平面図である。 液晶パネルの一画素の駆動を制御する制御回路を示す回路図である。 各色光を変調する液晶パネルにおける印加電圧と、光透過率との関係を模式的に示したグラフ図である。 光の波長380nm~780nmでの比視感度曲線を示したグラフ図である。 本開示に係る技術の第1の具体例を適用した液晶パネルにおける印加電圧と、光透過率との関係を模式的に示したグラフ図である。 実施例1に係る液晶パネルの赤色光、緑色光及び青色光の各々の印加電圧-光透過率特性のグラフである。 実施例2に係る液晶パネルの赤色光、緑色光及び青色光の各々の印加電圧-光透過率特性のグラフである。 比較例1に係る液晶パネルの赤色光、緑色光及び青色光の各々の印加電圧-光透過率特性のグラフである。 実施例1に係る液晶パネルを用いた投射型液晶表示装置における各色光の光透過率の時間変化を模式的に示すグラフ図である。 比較例1に係る液晶パネルを用いた投射型液晶表示装置における各色光の光透過率の時間変化を模式的に示すグラフ図である。
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 なお、説明は以下の順序で行うものとする。
 1.本開示に係る技術の適用対象
  1.1.投射型液晶表示装置
  1.2.光源
  1.3.光変調部
 2.本開示に係る技術内容
  2.1.本開示に係る技術の背景
  2.2.第1の具体例
  2.3.第2の具体例
 3.実施例
 <1.本開示に係る技術の適用対象>
 (1.1.投射型液晶表示装置)
 まず、図1を参照して、本開示に係る技術が適用される投射型液晶表示装置について説明する。図1は、投射型液晶表示装置の全体構成の一例を模式的に説明する説明図である。
 図1に示すように、投射型液晶表示装置1は、いわゆる液晶プロジェクタである。具体的には、投射型液晶表示装置1は、光源40からの光hを赤色光hR、緑色光hG、及び青色光hBの三色に分光し、分光した赤色光hR、緑色光hG、及び青色光hBをそれぞれ光変調部10、13、19にて変調することで、カラー画像を生成する表示装置である。このような投射型液晶表示装置1は、例えば、三板方式の液晶プロジェクタとも称される。
 投射型液晶表示装置1では、まず、光源40から出射された光hは、カットフィルタ2、第1のフライアイレンズ3、第2のフライアイレンズ4、偏光変換素子5、及び平凸レンズ6を順次通過した後、ダイクロイックミラー7に入射する。
 光源40は、例えば、光の三原色である赤色光、緑色光、及び青色光を含む白色光hを出射する。このような光源40を用いることにより、投射型液晶表示装置1は、フルカラー画像を生成することが可能となる。光源40は、例えば、超高圧水銀ランプであってもよく、LED(Light Emitting Diode)レーザ光源又は半導体レーザ光源であってもよい。
 カットフィルタ2は、光源40から出射された白色光hに含まれる紫外領域の光を除去する平面ミラーである。カットフィルタ2は、例えば、ガラス基材上に紫外領域の光を反射するコーティングを施すことで構成されてもよい。
 第1のフライアイレンズ3及び第2のフライアイレンズ4は、光源40から出射された白色光hの照度分布を均一化し、かつ白色光hの形状を後段の光変調部10、13、19の有効面積に対応する形状に変化させる。これにより、白色光hを分光した赤色光hR、緑色光hG、及び青色光hBは、光変調部10、13、19の有効面積内に均一に照射されることになる。
 例えば、第1のフライアイレンズ3は、複数のマイクロレンズをアレイ状に配列させた構造にて設けられる。第1のフライアイレンズ3は、白色光hを各マイクロレンズによって集光することで点光源群を形成する。点光源群の各々からの光は、第2のフライアイレンズ4によって合成されることで、光変調部10、13、19の有効面積に対応する形状の光束となる。なお、第1のフライアイレンズ3及び第2のフライアイレンズ4の外形形状は、光変調部10、13、19の有効面積(すなわち、光変調部10、13、19の被照射領域に対応)とほぼ等しいアスペクト比の相似形であってもよい。
 偏光変換素子5は、第1のフライアイレンズ3及び第2のフライアイレンズ4によって集光された光を所定の偏光方向の光に変換する。偏光変換素子5は、光源40から出射された非偏光の光(例えば、P偏光波及びS偏光波)を、光変調部10、13、19に対応した所定の偏光方向の光(例えば、P偏光波)に変換する。偏光変換素子5は、例えば、複屈折性結晶、フィルム偏光子又は反射型偏光子等の公知の偏光子であってもよい。
 偏光変換素子5から出射された光は、平凸レンズ6によって集光され、平凸レンズ6から出射された光hは、ダイクロイックミラー7によって赤色光hRと、緑色光hG及び青色光hBとに分光される。赤色光hRは、ミラー8及び平凸レンズ9を介して、光変調部10に入射する。また、緑色光hGは、ダイクロイックミラー11によって青色光hBと分光され、平凸レンズ12を介して、光変調部13に入射する。さらに、青色光hBは、レンズ14、ミラー15、レンズ16、ミラー17、及び平凸レンズ18を介して、光変調部19に入射する。
 ダイクロイックミラー7、11は、ガラス基板等の一主面上に複数の誘電体膜を積層させた波長選択性のミラーである。具体的には、ダイクロイックミラー7は、赤色光hRを透過させ、緑色光hG及び青色光hBを反射することによって、赤色光hRと、緑色光hG及び青色光hBとを分光する。ダイクロイックミラー11は、青色光hBを透過させ、緑色光hGを反射することによって、緑色光hGと、青色光hBとを分光する。
 光変調部10、13、19は、液晶パネルを備え、投射型液晶表示装置1のライトバルブとして機能する。光変調部10、13、19の詳細については、後述する。
 光変調部10、13、19にて変調された赤色光hR、緑色光hG、及び青色光hBは、クロスプリズム20にて合成される。クロスプリズム20は、例えば、複数のガラスプリズムを接合した外形を有し、ガラスプリズムの接合面に所定の光学特性を有する干渉フィルタ21a、21bを設けることで構成される。干渉フィルタ21aは、赤色光hRを反射し、かつ緑色光hGを透過させるように設けられ、干渉フィルタ21bは、青色光hBを反射し、かつ緑色光hGを透過させるように設けられる。これにより、赤色光hRは、干渉フィルタ21aにて投射レンズ22側に反射され、青色光hBは、干渉フィルタ21bにて投射レンズ22側に反射されるようになる。また、緑色光hGは、干渉フィルタ21a、21bを透過することで、投射レンズ22側に到達する。したがって、クロスプリズム20は、赤色光hR、緑色光hG、及び青色光hBを1つの光軸に合成することができる。クロスプリズム20にて合成された光は、投射レンズ22によってスクリーン等の投射面に投射される。
 (1.2.光源)
 続いて、図2A及び図2Bを参照して、投射型液晶表示装置1に用いられる光源について説明する。図2Aは、投射型液晶表示装置1に用いられる光源及び光学系の一例を示す説明図であり、図2Bは、投射型液晶表示装置1に用いられる光源及び光学系の他の例を示す説明図である。
 図2Aに示すように、投射型液晶表示装置1に用いられる光源は、青色レーザ光源41であってもよい。このような光源を用いた場合でも、投射型液晶表示装置1では、赤色光hR、緑色光hG、及び青色光hBを生成することが可能である。
 具体的には、青色レーザ光源41から出射された青色光は、蛍光体ホイール42によって白色光hに波長変換される。白色光hは、例えば、ダイクロイックミラー25によって青色光hB及び黄色光hYに分光され、青色光hBは光変調部19に入射する。黄色光hYは、例えば、ダイクロイックミラー26によって赤色光hR及び緑色光hGにさらに分光される。赤色光hRは光変調部10に入射し、緑色光hGは光変調部13に入射する。これによれば、光源として青色レーザ光源41を用いた場合でも、投射型液晶表示装置1は、光変調部10、13、19にて変調される赤色光hR、緑色光hG、及び青色光hBを生成することが可能である。
 また、図2Bに示すように、投射型液晶表示装置1に用いられる光源は、複数の青色レーザ光源41A、41Bであってもよい。このような光源を用いた場合でも、投射型液晶表示装置1では、赤色光hR、緑色光hG、及び青色光hBを生成することが可能である。
 具体的には、青色レーザ光源41Aから出射された青色光hBは光変調部19に入射する。また、青色レーザ光源41Bから出射された青色光は、蛍光体ホイール43によって黄色光hYに波長変換され、波長変換された黄色光hYは、例えば、ダイクロイックミラー26によって赤色光hR及び緑色光hGに分光される。赤色光hRは光変調部10に入射し、緑色光hGは光変調部13に入射する。これによれば、光源として複数の青色レーザ光源41A、41Bを用いた場合でも、投射型液晶表示装置1は、光変調部10、13、19にて変調される赤色光hR、緑色光hG、及び青色光hBを生成することが可能である。
 すなわち、投射型液晶表示装置1で用いられる光源は、白色光hを出射可能な超高圧水銀ランプ、LEDレーザ光源又は半導体レーザ光源に限定されない。投射型液晶表示装置1では、青色光等の所定の波長の光を出射する光源も用いることが可能である。
 (1.3.光変調部)
 次に、図3~図6を参照して、投射型液晶表示装置1に設けられる光変調部10、13、19の具体的な構成について説明する。図3は、光変調部10、13、19の構成を説明する模式的な説明図である。
 図3に示すように、光変調部10、13、19は、それぞれ投射光hIの光路上に、入射側偏光板101、液晶セル102、及び出射側偏光板103を順次配置した構成を備える。光変調部10、13、19は、例えば、液晶パネルであってもよい。
 光変調部10、13、19は、入射側偏光板101から入射し、出射側偏光板103から出射する投射光hIがクロスプリズム20(図3では図示せず)及び投射レンズ22に入射するように、投射型液晶表示装置1の内部に配置される。光変調部10、13、19で変調された投射光hIは、クロスプリズム20にて合成された後、投射レンズ22を介して投射面30に拡大投射される。
 入射側偏光板101及び出射側偏光板103は、特定方向に偏光した光のみを透過させる光学素子である。入射側偏光板101及び出射側偏光板103は、互いに透過させる偏光の方向が直交するように(すなわち、クロスニコルにて)配置される。これにより、光変調部10、13、19は、液晶セル102にて投射光hIの偏光を制御することで、出射側偏光板103における投射光hIの透過率を制御することができる。入射側偏光板101及び出射側偏光板103は、例えば、ポリビニルアルコール等で形成されたフィルム偏光子であってもよい。
 液晶セル102は、入射側偏光板101及び出射側偏光板103に挟持されて設けられ、投射光hIの偏光方向を制御する。液晶セル102の両面は、防塵ガラス104、105で保護されていてもよい。後述するように、液晶セル102は、いわゆる垂直配向(Vertical Alignment:VA)型で駆動してもよい。
 ここで、図4及び図5を参照して、光変調部10、13、19のより具体的な構成である液晶パネル100について説明する。図4は、液晶パネルの構成を説明する模式的な断面図であり、図5は、液晶パネルの構成を説明する模式的な平面図である。
 図4に示すように、液晶パネル100は、入射側偏光板101と、回路基板112と、画素電極114と、液晶材料111を含む液晶層110と、対向基板113と、出射側偏光板103と、を備える。
 入射側偏光板101及び出射側偏光板103については、上述した構成と実質的に同様であるため、ここでの説明は省略する。
 回路基板112は、液晶セル102の画素領域に設けられた画素の各々の駆動を制御するトランジスタ等の回路が設けられる基板である。回路基板112は、例えば、光を透過可能な石英基板又はガラス基板等であってもよい。このような場合、トランジスタ等の回路は、回路基板112の画素領域Pの周辺領域に設けられた半導体層に形成されてもよい。
 画素電極114は、回路基板112の液晶層110側の面に画素領域Pごとに離隔されて設けられる。画素電極114は、画素信号の印加により、対向電極115との間で電界を発生させることで、液晶材料111の配向を制御する。画素電極114は、例えば、酸化インジウムスズ(ITO)膜等の透明導電性薄膜であってもよい。
 対向基板113は、回路基板112と対向して配置される。対向基板113は、例えば、光を透過可能な石英基板又はガラス基板等であってもよい。
 対向電極115は、対向基板113の液晶層110側の面に全面に亘って設けられる。対向電極115は、画素信号が印加された画素電極114との間で電界を発生させることで、液晶材料111の配向を制御する。対向電極115は、例えば、酸化インジウムスズ(ITO)膜等の透明導電性薄膜であってもよい。
 液晶層110は、所定の配向にて液晶材料111が配列された層である。液晶材料111は、印加される電界の大きさによって分子集合の配向又は秩序が変化する材料であり、液晶層110は、液晶材料111の分子集合の配向又は秩序を制御することで、投射光の偏光方向を変調する。液晶層110によって投射光の偏光方向が変調されることで、出射側偏光板103における投射光の透過率が変調されるため、液晶セル102では、画素信号に応じて階調表現された投射光を生成することが可能となる。具体的には、液晶材料111は、公知の熱硬化型又は光硬化型の液晶ポリマー材料であってもよい。例えば、液晶材料111は、ネガ型のネマティック液晶材料等であってもよい。
 ここで、液晶層110では、液晶材料111は、垂直配向(Vertical Alignment:VA)型にて配向される。垂直配向型の液晶層110では、負の誘電率異方性を有する液晶材料111を用いることで、電圧無印加時に液晶材料111が回路基板112及び対向基板113に対して垂直方向に配向するように制御される。また、液晶材料111は、電圧印加時には、回路基板112及び対向基板113に対して平行方向に倒れるように制御される。これにより、液晶材料111は、液晶材料111の長軸及び短軸の屈折率の差によって、液晶層110に入射した投射光の偏光方向を制御することができる。
 例えば、図4に正対して左の画素では、電圧無印加時の液晶材料111の配向状態を示している。これによれば、液晶材料111は、電圧無印加時には、回路基板112及び対向基板113に対して垂直方向に配向していることがわかる。このとき、液晶パネル100は、暗表示となる。
 一方、図4に正対して右の画素では、電圧印加時の液晶材料111の配向状態を示している。これによれば、液晶材料111は、電圧印加時には、回路基板112及び対向基板113に対して平行方向に倒れていることがわかる。このとき、液晶パネル100は、明表示となる。なお、回路基板112及び対向基板113の近傍の液晶材料111は、配向規制力(アンカリングエネルギーともいう)が高いため、電圧印加によっても配向はあまり変化しない。
 また、図5では、電圧印加時の液晶材料111の平面における倒れる方向を示す。図5に示すように、入射側偏光板101の光軸方向101P(入射側偏光板101を透過可能な偏光方向)と、出射側偏光板103の光軸方向103P(出射側偏光板103を透過可能な偏光方向)とは、互いに直交しており、液晶材料111は、電圧印加時に光軸方向101Pに対して角度θだけ傾いた方向に配向される。これにより、投射光は、電圧印加時の液晶層110を透過する際に偏光されることになる。
 さらに、図6を参照して、液晶パネル100の一画素を制御する制御回路について説明する。図6は、液晶パネル100の一画素の駆動を制御する制御回路を示す回路図である。
 図6に示すように、液晶パネル100の一画素の駆動を制御する制御回路は、画素電極114と、スイッチングトランジスタ51と、信号線53と、走査線54と、蓄積容量52と、共通電極線55と、を備える。
 画素電極114は、液晶パネル100の画素領域にマトリクス状に複数配列される。画素電極114に電圧が印加されることで、液晶層110に含まれる液晶材料111の配向が制御される。
 スイッチングトランジスタ51は、薄膜トランジスタ(Thin Film Transistor:TFT)であり、画素電極114への電圧印加をスイッチング制御する。具体的には、スイッチングトランジスタのドレイン51Dには、画素電極114が電気的に接続され、スイッチングトランジスタ51のソース51Sには、画素信号を供給する信号線53が電気的に接続される。
 また、スイッチングトランジスタ51のゲートには、走査線54が電気的に接続されている。走査線54には、所定のタイミングでパルス的に走査信号が印加され、走査信号によってスイッチングトランジスタ51がオン状態となることで、信号線53から供給される画素信号が画素電極114に印加される。画素電極114に印加された画素信号は、対向電極115との間で一定時間保持される。これにより、画素電極114及び対向電極115の間の液晶層110に含まれる液晶材料111の配向が制御される。
 蓄積容量52は、画素電極114に印加された画素信号がリークされることを防止するために、画素電極114及び対向電極115の間に形成される容量と並列になるように設けられる。具体的には、蓄積容量52は、画素電極114と電気的に接続する配線と、共通電極線55との間に設けられる。蓄積容量52を設けることにより、画素電極114に書き込まれた画素信号の保持特性をより向上させることができるため、液晶パネル100のコントラスト比をより高めることができる。
 以上にて、本開示に係る技術の適用対象である投射型液晶表示装置1について具体的に説明した。
 <2.本開示に係る技術内容>
 (2.1.本開示に係る技術の背景)
 次に、図7及び図8を参照して、本開示に係る技術の背景について説明する。
 上述した投射型液晶表示装置1では、各色光を変調する光変調部10、13、19(すなわち、液晶パネル100)は、照射される光の波長が異なるだけであるため、生産性を向上させるために略共通の構成にて設けられる。
 しかしながら、各色光を変調する液晶パネル100の各々を略共通の構成とする場合、以下で説明する各事情により、各色光を変調する液晶パネル100の各々の調整が煩雑になってしまう。
 まず、第1の事情として、照射される光の波長が異なる場合、液晶パネル100では、印加電圧に対する光透過率の変動特性が変化してしまう。
 具体的には、液晶パネル100の光透過率とは、液晶層110にて偏光方向が変調された投射光が出射側偏光板103を透過する割合である。すなわち、液晶パネル100の光透過率は、出射側偏光板103の光軸方向103Pに向かって、液晶層110によって投射光の偏光方向がどの程度偏光されたのかということを表す。
 ここで、液晶パネル100の光透過度は、入射側偏光板101の光軸方向101Pに対する液晶材料111の配向方向の傾きθと、投射光における液晶層110の正面位相差とに依存し、以下の数式1で表すことができる。
Figure JPOXMLDOC01-appb-M000001
 数式1において、Iは液晶パネル100に入射する光の強度であり、Iは液晶パネル100を透過した光の強度である。θは、入射側偏光板101の光軸方向101Pと、液晶材料111の配向方向とがなす角度である。dは、画素電極114及び対向電極115の距離(すなわち、液晶層110の厚さ)であり、Δnは、入射方向から見た液晶材料111の屈折率異方性である。λは、投射光の波長である。
 数式1に示すように、液晶パネル100の光透過性は、液晶パネル100に入射する投射光の波長に依存する。したがって、各色光に対する液晶パネル100の印加電圧と、液晶パネル100の光透過率との関係は、図7に示すグラフのようになる。図7は、各色光を変調する液晶パネル100における印加電圧と、光透過率との関係を模式的に示したグラフ図である。図7では、赤色光hRを変調する液晶パネルの特性をR-ch、緑色光hGを変調する液晶パネルの特性をG-ch、青色光hBを変調する液晶パネルの特性をB-chとして示す。
 図7を参照すると、青色光hBを変調する液晶パネルでは、3V近傍の印加電圧にて光透過率がピークに達しており、緑色光hGを変調する液晶パネルでは、4V近傍の印加電圧にて光透過率がピークに達しており、赤色光hRを変調する液晶パネルでは、5V近傍の印加電圧にて光透過率がピークに達している。すなわち、波長が短い光を変調する液晶パネル100ほど、低い印加電圧で光透過率がピークに達してしまう。したがって、図7に示す特性を有する液晶パネル100に同一の駆動電圧を印加して、各色光をそれぞれ変調した場合、各色光のすべてで液晶パネル100の光透過率を最大化することが困難となる。
 そのため、例えば、各色光を変調する液晶パネル100ごとに駆動電圧のレベルを調整することで、各色光を変調する液晶パネル100の各々の光透過率が最高値を取り得るようにすることが考えられる。具体的には、赤色光hRを変調する液晶パネル100は、0V~5Vの印加電圧で駆動させ、緑色光hGを変調する液晶パネル100は、0V~4Vの印加電圧で駆動させ、青色光hBを変調する液晶パネル100は、0V~3Vの印加電圧で駆動させることが考えられる。
 ただし、上述した各色光を変調する液晶パネル100ごとに駆動電圧を調整するためには、液晶パネル100の各々の光透過率の特性を把握する必要があるため、液晶パネル100の調整が煩雑になってしまう。
 また、第2の事情として、投射型液晶表示装置1では、光源40から出射された白色光hを赤色光hR、緑色光hG、及び青色光hBに分光し、分光された各色光をそれぞれ変調した後で合成することで、カラー画像を生成している。そのため、各色光の光路上での光損失の大きさが異なる場合、各色光のエネルギに差が生じてしまう。このような場合、各色光を合成した際に、合成後の投射光のホワイトバランスが光源40から出射された白色光hのホワイトバランスと異なってしまう可能性がある。そのため、投射型液晶表示装置1のカラー画像のホワイトバランスが適切となるように、各色光を変調する液晶パネル100の各々の光透過率を適切なレベルとすることが重要となる。
 さらに、第3の事情として、人間の目は、同じ強さの光であっても波長によって強さの感じ方に差がある。具体的には、人間の目による光の波長ごとの強さの感じ方は、図8に示す比視感度曲線としてモデル化して表すことができる。図8は、光の波長380nm~780nmでの比視感度曲線を示したグラフ図である。
 図8に示すように、人間の目では、555nmの波長の光に対する感度が最も強く、555nmから離れた波長の光ほど感度が低くなる。そのため、投射型液晶表示装置1のカラー画像のホワイトバランスを適切な状態に調整するためには、人間の目の比視感度を考慮して、赤色光hR及び青色光hBの光量に対して、緑色光hGの光量を減少させることも重要となる。
 ここで、緑色光hGの光量を減少させる手段としては、例えば、緑色光hGの光路上に光量を低減する減衰フィルタを配置することが考えられる。しかし、減衰フィルタを設けた場合、緑色光hGの光路上に新たな部品を追加することになるため、投射型液晶表示装置1の全体質量及び製造コストを増加させてしまう。
 また、他の手段としては、緑色光hGを変調する液晶パネル100の駆動電圧のレベルを低下させることで、緑色光hGを変調する液晶パネル100の光透過率の最高値を、赤色光hRを変調する光変調部10及び青色光hBを変調する液晶パネル100の光透過率の最高値よりも低下させることが考えられる。
 具体的には、図7に示す特性を有する液晶パネル100において、緑色光hGを変調する液晶パネル100を0V~3Vの印加電圧で駆動させることで、緑色光hGの光量を減少させることが考えられる。
 ただし、このような場合、緑色光hGを変調する液晶パネル100を印加電圧及び光透過率の特性が変わりやすい不安定な領域で使用することになってしまう。そのため、緑色光hGを変調する液晶パネル100の特性が経年又は環境要因にて変化した場合、液晶パネル100の光透過率が大きく変動し、投射型液晶表示装置1のホワイトバランスが大きく変動してしまう可能性がある。
 以上にて説明したように、投射型液晶表示装置1では、各色光を変調する液晶パネル100の各々で異なる印加電圧-光透過率の特性を調整しつつ、赤色光hR、緑色光hG、及び青色光hBの光量のバランスを適切に調整することが求められる。また、投射型液晶表示装置1では、生産性を向上させるために、各色光を変調する液晶パネル100のそれぞれの構成を略共通とすることも求められる。さらに、投射型液晶表示装置1では、液晶パネル100に大きな光量の光を長時間照射するため、高い耐光性が求められる。特に、投射型液晶表示装置1は、近年の市場要求に伴って、より高精細化及び高輝度化しているため、投射型液晶表示装置1に備えられる液晶パネル100に照射される光の光量がより増加しており、より高い耐光性が求められている。例えば、短波長の青色光が入射する液晶パネル100は、光照射による影響がより大きいため、十分な耐光性を得られない場合、投射型液晶表示装置1の色再現性が低下する可能性がある。
 これらの事情を考慮して、各色光を変調する液晶パネル100の各々で調整及び最適化を行うことは、極めて煩雑であり、投射型液晶表示装置1の調整の時間及びコストを増加させてしまう。
 本開示に係る技術は、上述した事情を鑑みてなされたものである。以下で説明する本開示に係る技術は、所望の特性をより簡易に実現することが可能な投射型液晶表示装置1を提案するものである。
 (2.2.第1の具体例)
 まず、図9を参照して、本開示に係る技術の第1の具体例について説明する。図9は、本開示に係る技術の第1の具体例を適用した液晶パネル100における印加電圧と、光透過率との関係を模式的に示したグラフ図である。
 本開示に係る技術は、投射型液晶表示装置1において、赤色光hRを変調する液晶パネル100(以下では、赤色液晶パネル100Rと称する)、緑色光hGを変調する液晶パネル100(以下では、緑色液晶パネル100Gと称する)、青色光hBを変調する液晶パネル100(以下では、青色液晶パネル100Bと称する)を同じ駆動電圧で駆動させるために、赤色液晶パネル100Rの構成を、緑色液晶パネル100G及び青色液晶パネル100Bの構成と異なるように設けるものである。
 第1の具体例では、赤色液晶パネル100Rに用いられる液晶材料111として、緑色液晶パネル100G及び青色液晶パネル100Bに用いられる液晶材料111よりも屈折率異方性(例えば、550nmの緑色光にて測定した値)が高い液晶材料を用いることで、赤色液晶パネル100Rの構成を緑色液晶パネル100G及び青色液晶パネル100Bの構成と異なるように設けるものである。
 このとき、赤色液晶パネル100R、緑色液晶パネル100G及び青色液晶パネル100Bの各々の画素電極114及び対向電極115の間の距離(セルギャップとも称する)は、同一であってもよい。すなわち、液晶材料111によって、赤色液晶パネル100Rの構成を緑色液晶パネル100G及び青色液晶パネル100Bの構成と異ならせる場合、赤色液晶パネル100R、緑色液晶パネル100G及び青色液晶パネル100Bのセルギャップは、同一であってもよい。
 液晶パネル100のセルギャップの大きさは、画質の観点から制限を受けやすい。具体的には、液晶パネル100のセルギャップが過剰に大きい場合、隣接する画素間に生じる横電界によって、画素周辺の液晶分子の配向が乱れ、画質が低下する可能性がある。また、液晶パネル100のセルギャップが過剰に小さい場合、液晶層110で十分な光透過率を得るために、屈折率異方性が高い液晶材料を使用することになるが、屈折率異方性が高い液晶材料は一般的に安定性又は耐光性が低く、液晶パネル100の信頼性を低下させる可能性がある。そのため、赤色液晶パネル100Rは、制限がより少ない液晶材料111によって、緑色液晶パネル100G及び青色液晶パネル100Bと異なるように設けられてもよい。
 なお、赤色液晶パネル100Rでは、屈折率異方性が高い液晶材料を用いることによる画質への影響はほぼないと考えられる。これは、赤色光hRは、緑色光hG及び青色光hBよりもエネルギが低く、液晶パネル100に対するダメージが極めて小さいためである。具体的には、投射型液晶表示装置1では、液晶パネル100に強い光を長時間照射した場合、短波長の青色光hB等によって、液晶材料111に溶け込んだ周辺材料であるシール材若しくは封止剤、又は環境の不純物等からフリーラジカルが発生してしまう。これにより発生したフリーラジカルは、液晶材料111の化学結合を切断することで、液晶パネル100の特性を低下させてしまう。
 一方で、緑色液晶パネル100G及び青色液晶パネル100Bの構成は、同一であってもよい。緑色液晶パネル100G及び青色液晶パネル100Bの構成が共通である場合、緑色液晶パネル100G及び青色液晶パネル100Bを同じ生産工程で製造することができるため、投射型液晶表示装置1の生産性を向上させることができる。
 なお、赤色液晶パネル100Rの液晶材料111以外の構成は、緑色液晶パネル100G及び青色液晶パネル100Bの液晶材料111以外の構成と同一であってもよい。赤色液晶パネル100R、緑色液晶パネル100G及び青色液晶パネル100Bは、共通の構成を増加させることで、生産効率を向上させることができるため、投射型液晶表示装置1の生産性を向上させることができる。
 図7を参照して上述したように、液晶パネル100では、光透過率が最高値となる印加電圧は、変調する光の波長が長くなるほど、より高くなってしまう。第1の具体例では、赤色液晶パネル100Rの液晶材料111のみを変更することで、赤色液晶パネル100R、緑色液晶パネル100G及び青色液晶パネル100Bの各々における印加電圧-光透過率の特性をより接近させることができる。これによれば、第1の具体例では、赤色液晶パネル100R、緑色液晶パネル100G及び青色液晶パネル100Bの各々で、光透過率が最高値となる印加電圧の値を接近させることができる。
 具体的には、図9に示すように、第1の具体例では、赤色液晶パネル100Rで光透過率が最高値(ピークであってもよい。以下同じ)となる印加電圧を、青色液晶パネル100Bで光透過率が最高値となる印加電圧よりも低くすることができる。なお、図9では、赤色液晶パネル100Rの特性をR-chで示し、緑色液晶パネル100Gの特性をG-chで示し、青色液晶パネル100Bの特性をR-chで示した。
 投射型液晶表示装置1では、液晶パネル100等に供給可能な電圧の上限が決まっている。そのため、例えば、最も長波長である赤色光を変調する赤色液晶パネル100Rで光透過率が最高値となる印加電圧が最大電圧となるように、各色光を変調する液晶パネル100の構成を最適化することが考えられる。一方、第1の具体例では、赤色液晶パネル100Rの印加電圧-光透過率特性を制御することで、青色液晶パネル100Bで光透過率が最高値となる印加電圧が最大電圧となるように、各色光を変調する液晶パネル100の構成を最適化することができる。これによれば、5V近傍の印加電圧にて、赤色液晶パネル100R及び青色液晶パネル100Bの双方の光透過率が最高値となるように、赤色液晶パネル100R及び青色液晶パネル100Bの印加電圧-光透過率の特性を調整することができる。
 このとき、5V近傍の印加電圧では、緑色液晶パネル100Gの光透過率は、最高値に到達しておらず、赤色液晶パネル100R及び青色液晶パネル100Bの光透過率よりも低くなっている。しかし、上述したように、投射型液晶表示装置1では、人間の目の比視感度に対応させるために、緑色光hGの光量は、赤色光hR及び青色光hBの光量よりも少ないことが好ましい。そのため、第1の具体例に係る投射型液晶表示装置1によれば、減衰フィルタ等を用いたり、緑色液晶パネル100Gだけ駆動電圧のレベルを低下させたりすることなく、人間の目の比視感度に合わせたホワイトバランスを達成することができる。
 また、図9に示すように、第1の具体例では、緑色液晶パネル100Gにおける印加電圧に対する光透過率の変動は、図7で示した印加電圧-光透過率の特性と比較して、穏やかとなる。したがって、第1の具体例に係る投射型液晶表示装置1では、経時又は環境に起因して液晶パネル100の印加電圧-光透過率の特性が変化した場合でも、画質に影響が生じることを抑制することができる。
 これは、図7で示すグラフでは、赤色液晶パネル100Rで光透過率が最高値となる印加電圧が最大電圧となるように、各色光を変調する液晶パネル100の構成を最適化しているためである。すなわち、図7で示すグラフでは、印加電圧に対する光透過率の変化感度が低い赤色液晶パネル100Rに合わせて、緑色液晶パネル100G及び青色液晶パネル100Bの印加電圧-光透過率の特性を調整しているため、緑色液晶パネル100G及び青色液晶パネル100Bの印加電圧に対する光透過率の変化感度が敏感になってしまう。
 一方、第1の具体例では、青色液晶パネル100Bで光透過率が最高値となる印加電圧が最大電圧となるように、各色光を変調する液晶パネル100の構成を最適化している。すなわち、印加電圧に対する光透過率の変化感度が高い青色液晶パネル100Bに合わせて、緑色液晶パネル100Gの印加電圧-光透過率の特性を調整しているため、緑色液晶パネル100Gの印加電圧に対する光透過率の変化感度をより穏やかにすることができる。
 (2.3.第2の具体例)
 次に、本開示に係る技術の第2の具体例について説明する。
 本開示に係る技術は、上述したように、投射型液晶表示装置1において、赤色液晶パネル100R、緑色液晶パネル100G、青色液晶パネル100Bを同じ駆動電圧で駆動させるために、赤色液晶パネル100Rの構成を、緑色液晶パネル100G及び青色液晶パネル100Bの構成と異なるように設けるものである。
 第2の具体例では、赤色液晶パネル100Rの液晶層110のセルギャップを、緑色液晶パネル100G及び青色液晶パネル100Bの液晶層110のセルギャップよりも大きくすることで、赤色液晶パネル100Rの構成を緑色液晶パネル100G及び青色液晶パネル100Bの構成と異なるように設けるものである。
 このとき、赤色液晶パネル100R、緑色液晶パネル100G及び青色液晶パネル100Bの各々の液晶材料111は、同一であってもよい。すなわち、セルギャップによって、赤色液晶パネル100Rの構成を緑色液晶パネル100G及び青色液晶パネル100Bの構成と異ならせる場合、赤色液晶パネル100R、緑色液晶パネル100G及び青色液晶パネル100Bの液晶材料111は、同一であってもよい。これによれば、赤色液晶パネル100R、緑色液晶パネル100G及び青色液晶パネル100Bは、製造時に液晶材料111を注入する工程を簡略化することができる。
 一方で、緑色液晶パネル100G及び青色液晶パネル100Bの構成は、同一であってもよい。緑色液晶パネル100G及び青色液晶パネル100Bの構成が共通である場合、緑色液晶パネル100G及び青色液晶パネル100Bを同じ生産工程で製造することができるため、投射型液晶表示装置1の生産性を向上させることができる。
 なお、赤色液晶パネル100Rの液晶材料111以外の構成は、緑色液晶パネル100G及び青色液晶パネル100Bの液晶材料111以外の構成と同一であってもよい。赤色液晶パネル100R、緑色液晶パネル100G及び青色液晶パネル100Bは、共通の構成を増加させることで、生産効率を向上させることができるため、投射型液晶表示装置1の生産性を向上させることができる。
 <3.実施例>
 以下では、実施例及び比較例を参照しながら、本開示に係る技術についてより具体的に説明する。なお、以下に示す実施例は、あくまでも一例であって、本開示に係る技術が下記の例に限定されるものではない。
 実施例及び比較例に係る液晶パネルの製造方法について説明する。
 まず、対向基板の上にスピンコート法を用いてフォトレジストを所望の厚さで塗布し、フォトマスクを用いた紫外線照射による露光処理を行った後、フォトレジストを現像することで、柱状のスペーサとなる透明レジスト層を形成した。次に、石英基板上にTFTをアレイ状に形成したTFTアレイ基板、及び上記の対向基板を中性洗剤にて洗浄し、洗浄後120℃で20分間乾燥させた。
 続いて、TFTアレイ基板及び対向基板の各々を蒸着装置に導入し、SiOを約50nmの膜厚で斜め蒸着することで、配向膜を形成した。次に、TFTアレイ基板及び対向基板の配向膜を形成した面に、後段で液晶材料を注入する注入口を除いてシールパターンを形成した。その後、配向膜を形成した面が対向するように、TFTアレイ基板及び対向基板を貼り合わせて、真空環境下で注入口から液晶材料を注入し、UV(Ultra Violet)硬化性樹脂で封止した。なお、液晶材料は、誘電体異方性が負であるネマティック液晶材料を用いた。
 上記の製造方法を用いて、液晶材料及びセルギャップを変更して、実施例1、2及び比較例1に係る各色光を変調する液晶パネルを製造した。各液晶パネルの液晶材料の物性値及びセルギャップの値を以下の表1及び表2に示す。なお、液晶材料の屈折率異方性(Δn)は、波長550nmの光による測定値である。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 ここで、実施例1、2及び比較例1に係る各色光を変調する液晶パネルの各々の印加電圧-光透過率特性をシミュレーションによって導出した。その結果を示すグラフ図を図10~図12にそれぞれ示す。図10は、実施例1に係る液晶パネルの印加電圧-光透過率特性のグラフであり、図11は、実施例2に係る液晶パネルの印加電圧-光透過率特性のグラフであり、図12は、比較例1に係る液晶パネルの印加電圧-光透過率特性のグラフである。なお、図10~図12では、赤色液晶パネルの特性をR-chで示し、緑色液晶パネルの特性をG-chで示し、青色液晶パネルの特性をR-chで示した。
 図10及び図11に示すように、実施例1及び2に係る液晶パネルでは、印加電圧5Vにて、赤色光及び青色光の光透過率がほぼ最高値となり、かつ緑色光の光透過率がピーク値の70%程度となる。したがって、実施例1及び2に係る液晶パネルでは、各色光に対応する液晶パネルを一定電圧で駆動させた場合でも、赤色光及び青色光の光量が多く、緑色光の光量が少なくなるような良好なホワイトバランスの画像が得られることがわかる。
 一方、図12に示すように、比較例1に係る液晶パネルでは、印加電圧3Vにて青色光の光透過率がほぼ最高値となり、かつ緑色光の光透過率がピーク値の70%程度となる。ただし、赤色光の光透過率は、印加電圧5Vにてほぼ最高値となる。したがって、比較例1に係る液晶パネルでは、各色光に対応する液晶パネルを異なる電圧で駆動させなければ、赤色光及び青色光の光量が多く、緑色光の光量が少なくなるような良好なホワイトバランスの画像が得られないことがわかる。
 (ホワイトバランスの信頼性評価)
 続いて、表3を参照して、実施例1及び比較例1に係る液晶パネルの環境試験の評価結果について説明する。具体的には、実施例1及び比較例1に係る液晶パネルを用いた投射型液晶表示装置を温度60℃湿度90%の高温高湿環境下に長時間放置した後、白表示の画質を目視で評価した。その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000004
 表3に示すように、比較例1に係る液晶パネルを用いた投射型液晶表示装置では、250時間(250h)経過後から、白表示にマゼンダの色づきが見られることが確認された(NG)。これは、比較例1に係る液晶パネルを用いた投射型液晶表示装置では、経時変化によって、緑色光を変調する液晶パネルの光透過率が低下し、画像のホワイトバランスが乱れたためと考えられる。
 一方、実施例1に係る液晶パネルを用いた投射型液晶表示装置では、500時間(500h)経過後でも、白表示に色づきは見られなかった(OK)。これは、実施例1に係る液晶パネルを用いた投射型液晶表示装置では、緑色光を変調する液晶パネルの光透過率の変動が小さくなるように設定されているため、画像のホワイトバランスは乱れなかったものと考えられる。
 (耐光性の評価)
 さらに、図13及び図14を参照して、実施例1及び比較例1に係る液晶パネルの耐光性の評価結果について説明する。具体的には、実施例1及び比較例1に係る液晶パネルを用いた投射型液晶表示装置を長時間使用した際の各色光の光透過率の時間変化を測定した。
 図13は、実施例1に係る液晶パネルを用いた投射型液晶表示装置において、各色光を変調する液晶パネルの光透過率の時間変化を模式的に示すグラフ図である。図14は、比較例1に係る液晶パネルを用いた投射型液晶表示装置にいて、各色光を変調する液晶パネルの光透過率の時間変化を模式的に示すグラフ図である。図13及び図14では、横軸は、投射型液晶表示装置の使用時間を示し、縦軸は、各色光を変調する液晶パネルの光透過率の最高値を示す。また、図13及び図14では、赤色光を変調する液晶パネルの特性をR-chで示し、緑色光を変調する液晶パネルの特性をG-chで示し、青色光を変調する液晶パネルの特性をR-chで示す。
 図13及び図14に示すように、比較例1に係る液晶パネルを用いた投射型液晶表示装置では、青色光を変調する液晶パネルが赤色光を変調する液晶パネル及び緑色光を変調する液晶パネルと比較して早期に劣化し、光透過率の最高値が低下していることがわかる。一方、実施例1に係る液晶パネルを用いた投射型液晶表示装置では、赤色光を変調する液晶パネル、緑色光を変調する液晶パネル、及び青色光を変調する液晶パネルのいずれも光透過率の最高値が維持されており、劣化していないことがわかる。
 比較例1では、青色光を変調する液晶パネルの液晶材料として、実施例1よりも屈折率異方性Δnが大きい液晶材料を使用しているため、早期に光劣化が生じたと考えられる。
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
 例えば、上記では、本開示に係る技術の適用対象は、投射型液晶表示装置であるとしたが、本技術はかかる例に限定されない。例えば、本開示に係る技術は、他の表示装置を含む電子機器全般に適用されてもよい。
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 光源から出射された光を赤色光、緑色光及び青色光に分光する第1光学系と、
 前記赤色光を変調する赤色液晶パネルと、
 前記緑色光を変調する緑色液晶パネルと、
 前記青色光を変調する青色液晶パネルと、
 変調された前記赤色光、緑色光及び青色光を1つの光路に合成する第2光学系と、
 前記第2光学系から出射された光を投射面に投射する投射レンズ系と、
を備え、
 前記赤色液晶パネル、前記緑色液晶パネル及び前記青色液晶パネルの駆動電圧は、同一であり、
 前記赤色液晶パネルの液晶層の構成は、前記緑色液晶パネル及び前記青色液晶パネルの液晶層の構成と異なる、投射型液晶表示装置。
(2)
 前記赤色液晶パネルの液晶層に含まれる液晶材料の屈折率異方性は、前記緑色液晶パネル及び前記青色液晶パネルの液晶層に含まれる液晶材料の屈折率異方性よりも高い、前記(1)に記載の投射型液晶表示装置。
(3)
 前記赤色液晶パネル、前記緑色液晶パネル及び前記青色液晶パネルのセルギャップは、同一である、前記(2)に記載の投射型液晶表示装置。
(4)
 前記赤色液晶パネルの液晶層のセルギャップは、前記緑色液晶パネル及び前記青色液晶パネルの液晶層のセルギャップよりも大きい、前記(1)に記載の投射型液晶表示装置。
(5)
 前記赤色液晶パネル、前記緑色液晶パネル及び前記青色液晶パネルの液晶層に含まれる液晶材料の屈折率異方性は、同一である、前記(4)に記載の投射型液晶表示装置。
(6)
 前記緑色液晶パネルの構成は、前記青色液晶パネルの液晶層の構成と同一である、前記(1)~(5)のいずれか一項に記載の投射型液晶表示装置。
(7)
 前記赤色液晶パネルの前記液晶層以外の構成は、前記緑色液晶パネル及び前記青色液晶パネルの前記液晶層以外の構成と同一である、前記(1)~(6)のいずれか一項に記載の投射型液晶表示装置。
(8)
 前記緑色液晶パネルの光透過率の最高値は、前記赤色液晶パネル及び前記青色液晶パネルの光透過率の最高値よりも低い、前記(1)~(7)のいずれか一項に記載の投射型液晶表示装置。
(9)
 前記赤色液晶パネル、前記緑色液晶パネル及び前記青色液晶パネルの駆動方式は、垂直配向型である、前記(1)~(8)のいずれか一項に記載の投射型液晶表示装置。
(10)
 前記赤色液晶パネル、前記緑色液晶パネル及び前記青色液晶パネルは、透過光を変調する、前記(1)~(9)のいずれか一項に記載の投射型液晶表示装置。
(11)
 前記赤色液晶パネル、前記緑色液晶パネル及び前記青色液晶パネルは、電圧無印加状態で暗表示である、前記(1)~(10)のいずれか一項に記載の投射型液晶表示装置。
(12)
 光源から出射された光を赤色光、緑色光及び青色光に分光する第1光学系と、
 前記赤色光を変調する赤色液晶パネルと、
 前記緑色光を変調する緑色液晶パネルと、
 前記青色光を変調する青色液晶パネルと、
 変調された前記赤色光、緑色光及び青色光を1つの光路に合成する第2光学系と、
 前記第2光学系から出射された光を投射面に投射する投射レンズ系と、
を備え、
 前記赤色液晶パネル、前記緑色液晶パネル、及び前記青色液晶パネルの駆動電圧は、同一であり、
 前記赤色液晶パネルの液晶層の構成は、前記緑色液晶パネル及び前記青色液晶パネルの液晶層の構成と異なる、電子機器。
 1    投射型液晶表示装置
 2    カットフィルタ
 3    第1のフライアイレンズ
 4    第2のフライアイレンズ
 5    偏光変換素子
 6、9、12、18   平凸レンズ
 7、11、25、26  ダイクロイックミラー
 8、15、17     ミラー
 10、13、19    光変調部
 14、16       レンズ
 20   クロスプリズム
 21a、21b     干渉フィルタ
 22   投射レンズ
 30   投射面
 40   光源
 100  液晶パネル
 100B  青色液晶パネル
 100G  緑色液晶パネル
 100R  赤色液晶パネル
 101  入射側偏光板
 102  液晶セル
 103  出射側偏光板
 104、105     防塵ガラス
 110  液晶層
 111  液晶材料
 112  回路基板
 113  対向基板
 114  画素電極
 115  対向電極

Claims (12)

  1.  光源から出射された光を赤色光、緑色光及び青色光に分光する第1光学系と、
     前記赤色光を変調する赤色液晶パネルと、
     前記緑色光を変調する緑色液晶パネルと、
     前記青色光を変調する青色液晶パネルと、
     変調された前記赤色光、緑色光及び青色光を1つの光路に合成する第2光学系と、
     前記第2光学系から出射された光を投射面に投射する投射レンズ系と、
    を備え、
     前記赤色液晶パネル、前記緑色液晶パネル及び前記青色液晶パネルの駆動電圧は、同一であり、
     前記赤色液晶パネルの液晶層の構成は、前記緑色液晶パネル及び前記青色液晶パネルの液晶層の構成と異なる、投射型液晶表示装置。
  2.  前記赤色液晶パネルの液晶層に含まれる液晶材料の屈折率異方性は、前記緑色液晶パネル及び前記青色液晶パネルの液晶層に含まれる液晶材料の屈折率異方性よりも高い、請求項1に記載の投射型液晶表示装置。
  3.  前記赤色液晶パネル、前記緑色液晶パネル及び前記青色液晶パネルのセルギャップは、同一である、請求項2に記載の投射型液晶表示装置。
  4.  前記赤色液晶パネルの液晶層のセルギャップは、前記緑色液晶パネル及び前記青色液晶パネルの液晶層のセルギャップよりも大きい、請求項1に記載の投射型液晶表示装置。
  5.  前記赤色液晶パネル、前記緑色液晶パネル及び前記青色液晶パネルの液晶層に含まれる液晶材料の屈折率異方性は、同一である、請求項4に記載の投射型液晶表示装置。
  6.  前記緑色液晶パネルの構成は、前記青色液晶パネルの液晶層の構成と同一である、請求項1に記載の投射型液晶表示装置。
  7.  前記赤色液晶パネルの前記液晶層以外の構成は、前記緑色液晶パネル及び前記青色液晶パネルの前記液晶層以外の構成と同一である、請求項1に記載の投射型液晶表示装置。
  8.  前記緑色液晶パネルの光透過率の最高値は、前記赤色液晶パネル及び前記青色液晶パネルの光透過率の最高値よりも低い、請求項1に記載の投射型液晶表示装置。
  9.  前記赤色液晶パネル、前記緑色液晶パネル及び前記青色液晶パネルの駆動方式は、垂直配向型である、請求項1に記載の投射型液晶表示装置。
  10.  前記赤色液晶パネル、前記緑色液晶パネル及び前記青色液晶パネルは、透過光を変調する、請求項1に記載の投射型液晶表示装置。
  11.  前記赤色液晶パネル、前記緑色液晶パネル及び前記青色液晶パネルは、電圧無印加状態で暗表示である、請求項1に記載の投射型液晶表示装置。
  12.  光源から出射された光を赤色光、緑色光及び青色光に分光する第1光学系と、
     前記赤色光を変調する赤色液晶パネルと、
     前記緑色光を変調する緑色液晶パネルと、
     前記青色光を変調する青色液晶パネルと、
     変調された前記赤色光、緑色光及び青色光を1つの光路に合成する第2光学系と、
     前記第2光学系から出射された光を投射面に投射する投射レンズ系と、
    を備え、
     前記赤色液晶パネル、前記緑色液晶パネル、及び前記青色液晶パネルの駆動電圧は、同一であり、
     前記赤色液晶パネルの液晶層の構成は、前記緑色液晶パネル及び前記青色液晶パネルの液晶層の構成と異なる、電子機器。
PCT/JP2019/031031 2018-09-10 2019-08-07 投射型液晶表示装置及び電子機器 WO2020054270A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/250,751 US11624970B2 (en) 2018-09-10 2019-08-07 Projection liquid crystal display device and electronic apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-168620 2018-09-10
JP2018168620A JP2021192071A (ja) 2018-09-10 2018-09-10 投射型液晶表示装置及び電子機器

Publications (1)

Publication Number Publication Date
WO2020054270A1 true WO2020054270A1 (ja) 2020-03-19

Family

ID=69777100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/031031 WO2020054270A1 (ja) 2018-09-10 2019-08-07 投射型液晶表示装置及び電子機器

Country Status (3)

Country Link
US (1) US11624970B2 (ja)
JP (1) JP2021192071A (ja)
WO (1) WO2020054270A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022050028A1 (ja) * 2020-09-02 2022-03-10 ソニーグループ株式会社 光位相変調素子、および表示装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021026089A (ja) * 2019-08-02 2021-02-22 ソニー株式会社 プロジェクションシステム及びプロジェクションシステムの制御方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63104019A (ja) * 1986-10-21 1988-05-09 Matsushita Electric Ind Co Ltd 投射型カラ−表示装置
JPH02222926A (ja) * 1988-11-08 1990-09-05 Casio Comput Co Ltd 液晶表示装置
JPH036524A (ja) * 1989-06-02 1991-01-14 Matsushita Electric Ind Co Ltd 投写型液晶表示装置
JPH04106540A (ja) * 1990-08-27 1992-04-08 Seiko Epson Corp 投写型液晶表示装置
JP2008170764A (ja) * 2007-01-12 2008-07-24 Seiko Epson Corp 液晶装置
US20090021699A1 (en) * 2007-07-20 2009-01-22 Hon Hai Precision Industry Co., Ltd. Color management system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2742788B2 (ja) * 1986-10-31 1998-04-22 セイコーエプソン株式会社 投射型表示装置
JP2795618B2 (ja) * 1994-07-15 1998-09-10 セイコーエプソン株式会社 投射型表示装置
JPH11223808A (ja) 1997-11-20 1999-08-17 Sanyo Electric Co Ltd 液晶表示装置
JP2012145854A (ja) * 2011-01-14 2012-08-02 Seiko Epson Corp プロジェクター
CN110554552A (zh) * 2018-05-30 2019-12-10 台达电子工业股份有限公司 投影装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63104019A (ja) * 1986-10-21 1988-05-09 Matsushita Electric Ind Co Ltd 投射型カラ−表示装置
JPH02222926A (ja) * 1988-11-08 1990-09-05 Casio Comput Co Ltd 液晶表示装置
JPH036524A (ja) * 1989-06-02 1991-01-14 Matsushita Electric Ind Co Ltd 投写型液晶表示装置
JPH04106540A (ja) * 1990-08-27 1992-04-08 Seiko Epson Corp 投写型液晶表示装置
JP2008170764A (ja) * 2007-01-12 2008-07-24 Seiko Epson Corp 液晶装置
US20090021699A1 (en) * 2007-07-20 2009-01-22 Hon Hai Precision Industry Co., Ltd. Color management system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022050028A1 (ja) * 2020-09-02 2022-03-10 ソニーグループ株式会社 光位相変調素子、および表示装置

Also Published As

Publication number Publication date
US11624970B2 (en) 2023-04-11
US20220113611A1 (en) 2022-04-14
JP2021192071A (ja) 2021-12-16

Similar Documents

Publication Publication Date Title
US7808587B2 (en) Liquid crystal display apparatus and liquid crystal panel
US7982848B2 (en) Variable transmission light quantity element with dielectric layers and projection display
US8330907B2 (en) Liquid crystal display element, and liquid crystal display device
WO2020054270A1 (ja) 投射型液晶表示装置及び電子機器
JP2006184872A (ja) 液晶表示装置
JP7068660B2 (ja) 光学補償素子、液晶ライトバルブ組立体及び液晶プロジェクタ装置
KR20060097124A (ko) 액정 표시 소자 및 투사형 표시장치
KR101418838B1 (ko) 액정 표시 장치 및 투사형 표시 장치
JP2013015815A (ja) 投射型表示装置および光学ユニット
JPH0387721A (ja) 投射型カラー液晶表示装置
JP5444641B2 (ja) 画像表示装置およびその調整方法
JP2932645B2 (ja) 投射型表示装置及び照明装置
JP6277728B2 (ja) 投射型表示装置および照明装置
JP4929744B2 (ja) 電子機器
WO2022064999A1 (ja) 液晶表示装置および投射型表示装置
JP6369025B2 (ja) 表示装置
JP6263840B2 (ja) プロジェクター
JP4862460B2 (ja) 反射型液晶表示素子及びその製造方法並びに液晶表示装置
KR100464291B1 (ko) 고분자분산액정패널및이를이용한영상투사장치와그제조방법
JP4141813B2 (ja) 投射型表示装置
JP2006030748A (ja) 投射型表示装置
WO2005060268A1 (en) Brightness regulation in lcd projection systems
JP2022190312A (ja) 表示装置及び表示装置の制御方法
JP2000347158A (ja) 投射型表示装置
JP2008165192A (ja) 液晶表示素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19861100

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19861100

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP