WO2020045138A1 - フィルム及びフィルムの製造方法 - Google Patents

フィルム及びフィルムの製造方法 Download PDF

Info

Publication number
WO2020045138A1
WO2020045138A1 PCT/JP2019/032240 JP2019032240W WO2020045138A1 WO 2020045138 A1 WO2020045138 A1 WO 2020045138A1 JP 2019032240 W JP2019032240 W JP 2019032240W WO 2020045138 A1 WO2020045138 A1 WO 2020045138A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
polymer
less
alicyclic structure
elastic modulus
Prior art date
Application number
PCT/JP2019/032240
Other languages
English (en)
French (fr)
Inventor
恭輔 井上
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2020539359A priority Critical patent/JPWO2020045138A1/ja
Publication of WO2020045138A1 publication Critical patent/WO2020045138A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/04Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
    • C08G61/06Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to a film and a method for producing the film.
  • the film is used, for example, for protecting the surface of an image display element included in a portable information terminal, manufacturing a polarizing plate, optical compensation, and the like.
  • the demand has been increasing with the recent increase in the number of portable information terminals shipped.
  • a film formed from a material mainly composed of cellulose ester is being developed (Patent Documents 1 and 2).
  • the inventors of the present invention have intensively studied to solve the above-mentioned problems. As a result, the inventors have found that the above problems can be solved by setting the thickness, elastic modulus, and elongation at break of the film in a predetermined range, and have completed the present invention. That is, the present invention provides the following.
  • [1] A film having a thickness of 20 ⁇ m or less, an elastic modulus of 2000 MPa or more, and a breaking elongation of 20% or more.
  • [2] The film according to [1], wherein cracks having a length of 30 ⁇ m or more are less than 1 per 1 mm of the length of the end of the film.
  • a water vapor transmission rate is 5g / (m 2 ⁇ 24h) or less, according to [1] or [2] Film.
  • a film having good transportability a method for producing a film having good transportability can be provided.
  • FIG. 1 is an explanatory diagram of cracks that may exist at an edge of a film.
  • a “long” film refers to a film having a length of 5 times or more with respect to the width, and preferably has a length of 10 times or more, and specifically, a roll.
  • the upper limit of the length of the film is not particularly limited, and may be, for example, 100,000 times or less the width.
  • the directions of the elements are “parallel”, “vertical” and “orthogonal”, unless otherwise specified, within a range that does not impair the effects of the present invention, for example, ⁇ 3 °, ⁇ 2 ° or ⁇ 1 °. May be included.
  • the longitudinal direction of a long film is generally parallel to the film transport direction in the production line, and the width direction of the film is generally perpendicular to the film transport direction.
  • (meth) acryl includes “acryl”, “methacryl”, and combinations thereof.
  • the film according to one embodiment of the present invention has a thickness of 20 ⁇ m or less, an elastic modulus of 2000 MPa or more, and a breaking elongation of 20% or more. When the film has the above characteristics, good transportability can be realized.
  • the thickness of the film is usually 20 ⁇ m or less, preferably less than 20 ⁇ m, more preferably 18 ⁇ m or less, and still more preferably 15 ⁇ m or less.
  • the lower limit of the thickness of the film is usually larger than 0 ⁇ m, preferably 1 ⁇ m or more, more preferably 3 ⁇ m or more, and further preferably 5 ⁇ m or more.
  • the film of the present embodiment can improve transportability even when the thickness is within the above range.
  • the film thickness is the sum of the thicknesses of the layers constituting the multilayer structure when the film has a multilayer structure.
  • the thickness of the film can be measured by, for example, a contact type film thickness meter (eg, “Digimatic thickness gauge” manufactured by Mitutoyo Corporation).
  • a contact type film thickness meter eg, “Digimatic thickness gauge” manufactured by Mitutoyo Corporation.
  • the elastic modulus of the film is usually at least 2,000 MPa, preferably at least 2,300 MPa, more preferably at least 2,500 MPa, preferably at most 5,000 MPa, more preferably at most 4,000 MPa, still more preferably at most 3,500 MPa.
  • the elastic modulus of the film is equal to or more than the lower limit value, the transportability can be improved, and when the film is equal to or less than the upper limit value, the elastic modulus and the elongation at break can be balanced to improve the transportability.
  • the elastic modulus of the film can be measured, for example, by the following method. According to JIS K7161, a dumbbell-shaped test piece is prepared, and at a test temperature of 25 ° C. ⁇ 1 ° C., the test piece is stretched by a tensile tester to measure the stress and strain, and the elastic modulus is calculated.
  • the elongation at break of the film is usually at least 20%, preferably at least 40%, more preferably at least 60%, preferably at most 500%, more preferably at most 300%, further preferably at most 200%.
  • wrinkles can be suppressed while suppressing breakage of the film during conveyance. For example, by reducing cracks at the edges of the film, the elongation at break of the film can be increased.
  • the breaking elongation of the film can be measured, for example, by the following method.
  • a dumbbell-shaped test piece was prepared according to JIS K7161, and the test piece was stretched with a tensile tester at a test temperature of 25 ° C. ⁇ 1 ° C., and the elongation ⁇ L when fractured was measured.
  • the film preferably has less than one crack per edge length of 1 mm having a length of 30 ⁇ m or more at the end.
  • the edge 110 of the film 100 is a portion of the film 100 whose distance from the edge 120 of the film 100 is L or less.
  • L is, for example, greater than 0 mm and 5 mm or less, preferably greater than 0 mm and 0.5 mm or less.
  • the width at the end in the width direction is L.
  • the length direction LD of the end portion 110 of the film 100 is generally parallel to the transport direction when the film 100 is a long film.
  • the direction of the crack 130 is not particularly limited, and may be any direction.
  • the film is preferably a film cut by a laser beam. It is more preferable that the film is long, and it is further preferable that the film is long and cut by a laser beam in a direction parallel to the transport direction of the film.
  • Examples of the laser beam for cutting the film include a CO 2 laser beam and a YAG laser beam.
  • Water vapor permeability of the film is preferably not 5g / (m 2 ⁇ 24h) or less, more preferably 4g / (m 2 ⁇ 24h) or less, more preferably be 3g / (m 2 ⁇ 24h) or less , ideally a 0g / (m 2 ⁇ 24h), may be a 0g / (m 2 ⁇ 24h) or more.
  • the film can be suitably used as a protective film for a member that is easily affected by, for example, humidity.
  • the water vapor transmission rate can be measured at a temperature of 40 ° C. and a humidity of 90% RH in accordance with JIS K7129 B method.
  • the water vapor transmission rate can be set in the preferable range.
  • the film preferably has an ultraviolet transmittance at a wavelength of 380 nm of 5% or less, more preferably 3% or less, still more preferably 1% or less, ideally 0%, or 0% or more.
  • the UV transmittance at a wavelength of 380 nm of the film is equal to or less than the upper limit, the film can be suitably used, for example, as a protective film for a member that is easily affected by ultraviolet light.
  • the ultraviolet light transmittance of the film at a wavelength of 380 nm can be set in the preferable range.
  • the material forming the film usually comprises a polymer.
  • the polymer that can be included in the material forming the film include polyolefins such as polyethylene and polypropylene; polyesters such as polyethylene terephthalate and polybutylene terephthalate; polyarylene sulfides such as polyphenylene sulfide; polyvinyl alcohol; polycarbonate; Ester polymers; polyether sulfones; polysulfones; polyarylsulfone; polyvinyl chloride; norbornene-based polymers and other alicyclic structure-containing polymers; rod-shaped liquid crystal polymers; and polystyrene-based polymers.
  • polystyrene resin may be used alone, or two or more thereof may be used in combination at an arbitrary ratio. Further, the polymer may be a homopolymer or a copolymer. Among these, an alicyclic structure-containing polymer is preferred because of its excellent mechanical properties, heat resistance, transparency, low moisture absorption, dimensional stability and light weight.
  • Alicyclic structure-containing polymer is a polymer in which the structural unit of the polymer contains an alicyclic structure.
  • the alicyclic structure-containing polymer may have an alicyclic structure in the main chain, may have an alicyclic structure in the side chain, and may have an alicyclic structure in the main chain and the side chain. You may have.
  • a polymer containing an alicyclic structure in the main chain is preferable from the viewpoint of mechanical strength and heat resistance.
  • alicyclic structure examples include a saturated alicyclic hydrocarbon (cycloalkane) structure and an unsaturated alicyclic hydrocarbon (cycloalkene, cycloalkyne) structure.
  • cycloalkane saturated alicyclic hydrocarbon
  • cycloalkene unsaturated alicyclic hydrocarbon
  • cycloalkyne unsaturated alicyclic hydrocarbon
  • a cycloalkane structure and a cycloalkene structure are preferable, and a cycloalkane structure is particularly preferable.
  • the number of carbon atoms constituting the alicyclic structure is preferably 4 or more, more preferably 5 or more, preferably 30 or less, more preferably 20 or less, particularly preferably, per one alicyclic structure. Is in the range of 15 or less. By setting the number of carbon atoms constituting the alicyclic structure in this range, the mechanical strength, heat resistance and moldability of the resin containing the alicyclic structure-containing polymer are highly balanced.
  • the proportion of the structural unit having an alicyclic structure in the alicyclic structure-containing polymer is preferably 55% by weight or more, more preferably 70% by weight or more, and particularly preferably 90% by weight or more.
  • the proportion of the structural unit having an alicyclic structure in the alicyclic structure-containing polymer is within this range, the transparency and heat resistance of the resin containing the alicyclic structure-containing polymer are improved.
  • Examples of the alicyclic structure-containing polymer include norbornene-based polymers, monocyclic cycloolefin-based polymers, cyclic conjugated diene-based polymers, vinyl alicyclic hydrocarbon polymers, and hydrides thereof. .
  • a norbornene-based polymer is more preferable because of its excellent transparency and moldability.
  • Examples of the norbornene-based polymer include a ring-opened polymer of a monomer having a norbornene structure and a hydrogenated product thereof; an addition polymer of a monomer having a norbornene structure and a hydrogenated product thereof.
  • Examples of the ring-opening polymer of a monomer having a norbornene structure include a ring-opening homopolymer of one kind of monomer having a norbornene structure and a ring-opening polymer of two or more kinds of monomers having a norbornene structure.
  • Examples of the copolymer include a copolymer, a monomer having a norbornene structure, and a ring-opening copolymer of any monomer copolymerizable therewith.
  • examples of the addition polymer of a monomer having a norbornene structure include an addition homopolymer of one kind of monomer having a norbornene structure and an addition copolymer of two or more kinds of monomers having a norbornene structure.
  • an addition copolymer of a monomer having a norbornene structure and an arbitrary monomer copolymerizable therewith Among these, a hydrogenated product of a ring-opened polymer of a monomer having a norbornene structure is particularly suitable from the viewpoints of moldability, heat resistance, low moisture absorption, dimensional stability and light weight.
  • Examples of commercially available products of the alicyclic structure-containing polymer include ZEONEX and ZEONOR (norbornene-based resin) manufactured by Zeon Corporation; Sumilite FS-1700 manufactured by Sumitomo Bakelite Co .; and Arton (modified norbornene-based resin) manufactured by JSR Corporation.
  • Apel cyclic olefin copolymer manufactured by Mitsui Chemicals, Inc .
  • Topas cyclic olefin copolymer manufactured by Ticona
  • Optrez OZ-1000 series alicyclic acrylic resin manufactured by Hitachi Chemical Co., Ltd. No.
  • the content of the alicyclic structure-containing polymer in the material forming the film is preferably at least 50% by weight, more preferably at least 70% by weight, further preferably at least 90% by weight, and usually at most 100% by weight. , 99% by weight or less.
  • the content of the alicyclic structure-containing polymer is not less than the lower limit, moldability, heat resistance, low hygroscopicity, dimensional stability and light weight, etc., the alicyclic structure-containing polymer is excellent. Properties can be effectively imparted to the film.
  • each material forming each of the films constituting the film contains the alicyclic structure-containing polymer in the preferable content range.
  • the material forming the film preferably comprises a crystalline alicyclic structure containing polymer.
  • the crystalline alicyclic structure-containing polymer is excellent in transparency, low hygroscopicity, dimensional stability and lightness.
  • the crystalline polymer refers to a polymer having a melting point that can be observed with a differential scanning calorimeter (DSC).
  • DSC differential scanning calorimeter
  • molecular chains are regularly arranged with regular long-range order.
  • the amorphous polymer refers to a polymer having no melting point that can be observed by a differential scanning calorimeter (DSC).
  • Amorphous polymers typically do not have long-range order in which the molecular chains are crystalline.
  • the measurement of the melting point by a differential scanning calorimeter can be performed, for example, under the following conditions.
  • a sample heated to 300 ° C. in a nitrogen atmosphere is rapidly cooled with liquid nitrogen, and the temperature is raised at a rate of 10 ° C./min using a differential scanning calorimeter (DSC) to determine the melting point of the sample.
  • DSC differential scanning calorimeter
  • Preferred examples of the crystalline alicyclic structure-containing polymer include the following polymers ( ⁇ ) to ( ⁇ ). Among these, the polymer ( ⁇ ) is particularly preferable because a film having excellent heat resistance is easily obtained.
  • Polymer ( ⁇ ) an addition polymer of a cyclic olefin monomer having crystallinity.
  • Polymer ( ⁇ ) a hydride of polymer ( ⁇ ), etc., having crystallinity.
  • the crystalline polymer is a ring-opening polymer of dicyclopentadiene and has crystallinity, and a hydrogenated product of a ring-opening polymer of dicyclopentadiene and has crystallinity.
  • a hydride of a ring-opening polymer of dicyclopentadiene having crystallinity is particularly preferable.
  • the ring-opened polymer of dicyclopentadiene means that the ratio of structural units derived from dicyclopentadiene to all structural units is usually 50% by weight or more, preferably 70% by weight or more, more preferably 90% by weight or more, More preferably, it refers to a polymer of 100% by weight.
  • the crystalline alicyclic structure-containing polymer can be produced by a conventionally known method, for example, a method described in JP-A-2002-249553.
  • the material forming the film may include any components in addition to the polymer.
  • Optional components include, for example, antioxidants such as phenolic antioxidants, phosphorus antioxidants, and sulfur antioxidants; light stabilizers such as hindered amine light stabilizers; petroleum wax, Fischer-Tropsch wax, Waxes such as polyalkylene waxes; sorbitol compounds, metal salts of organic phosphoric acids, metal salts of organic carboxylic acids, nucleating agents such as kaolin and talc; diaminostilbene derivatives, coumarin derivatives, azole derivatives (for example, benzoxazole derivatives, Benzotriazole derivatives, benzimidazole derivatives, and benzothiazole derivatives), carbazole derivatives, pyridine derivatives, naphthalic acid derivatives, and imidazolone derivatives; fluorescent whitening agents; inorganic fillers such as talc, silica, calcium carbonate, and glass fibers; pigments Coloring of dyes, etc.
  • Dispersant heat stabilizer; light stabilizer; flame retardant; flame retardant aid; antistatic agent; antioxidant; plasticizer; laser light absorber; near-infrared absorber; Fillers and the like.
  • one type may be used alone, or two or more types may be used in combination at an arbitrary ratio.
  • the material forming the film preferably contains an ultraviolet absorber.
  • the ultraviolet absorber include organic ultraviolet absorbers such as a triazine-based ultraviolet absorber, a benzophenone-based ultraviolet absorber, a benzotriazole-based ultraviolet absorber, and an acrylonitrile-based ultraviolet absorber.
  • organic ultraviolet absorbers such as a triazine-based ultraviolet absorber, a benzophenone-based ultraviolet absorber, a benzotriazole-based ultraviolet absorber, and an acrylonitrile-based ultraviolet absorber.
  • a triazine-based ultraviolet absorber is preferred in that it has excellent ultraviolet absorption performance near a wavelength of 380 nm.
  • the ultraviolet absorber those having a molecular weight of 400 or more are preferable.
  • the triazine-based ultraviolet absorber a compound having a 1,3,5-triazine ring can be preferably used.
  • Specific examples of the triazine-based ultraviolet absorber include 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5-[(hexyl) oxy] -phenol and 2,4-bis (2-hydroxy-4-butoxyphenyl) -6- (2,4-dibutoxyphenyl) -1,3,5-triazine and the like.
  • Commercially available triazine-based UV absorbers include, for example, "Tinuvin 1577" (manufactured by Ciba Specialty Chemicals).
  • the material of all the layers constituting the film may contain an ultraviolet absorber, or the material of some of the layers may contain the ultraviolet absorber.
  • the film may have a single-layer structure or a multilayer structure.
  • the film having a multilayer structure include a film that is a laminate of two or more layers containing different kinds of polymers; a laminate of two or more layers containing the same kind of polymer but different in the content of each polymer. And a film that is a laminate of two or more layers containing the same type of polymer but different in the type and / or content of the additive.
  • a further specific example of the film having a multilayer structure includes a film including a first skin layer, a core layer, and a second skin layer in this order, wherein the core layer contains an ultraviolet absorber.
  • the core layer contains an ultraviolet absorber.
  • Examples and preferable examples of the polymer that can be included in each of the first skin layer, the core layer, and the second skin layer are described in [1.5. Material of Film] and the preferred examples described above.
  • the first skin layer and the second skin layer preferably contain the same polymer at the same content, and more preferably contain the same alicyclic structure-containing polymer at 50% by weight or more.
  • the core layer preferably contains 50% by weight or more of the same kind of alicyclic structure-containing polymer as the first skin layer and the second skin layer, and an ultraviolet absorber.
  • the content of the ultraviolet absorber may be, for example, 1% by weight or more and 20% by weight or less in the material forming the layer containing the ultraviolet absorber (eg, the core layer).
  • the film can be manufactured by any method.
  • a film before cut having a thickness of 20 ⁇ m or less is cut with a laser beam, the thickness is 20 ⁇ m or less, the elastic modulus is 2000 MPa or more, and the elongation at break is 20% or more. And obtaining a film.
  • Examples and preferable examples of the material for forming the pre-cut film and the preferable layer structure of the cut film are described in [1.5. Examples and Preferred Examples described in the section of [Film Material], [1.6. Structure of Film], respectively.
  • a laser light having an arbitrary wavelength can be used, but a laser light having a wavelength in an infrared region is preferable.
  • a laser device that emits laser light having a wavelength in the infrared region a CO 2 laser can be used.
  • the film manufacturing method may include an optional step in addition to the above steps.
  • Examples of the optional steps include a step of transporting the film cut by the laser beam and a step of winding the film on a take-up roll.
  • thermoplastic resin The melting point of the thermoplastic resin was measured under the following conditions. The sample heated to 300 ° C. in a nitrogen atmosphere was quenched with liquid nitrogen and heated at a rate of 10 ° C./min using a differential scanning calorimeter (“DSC6220S11” manufactured by Nanotechnology) to determine the melting point of the sample. In the measurement under the above conditions, the thermoplastic resin having no endothermic peak indicating the melting point was determined to be amorphous.
  • the thickness of the film was measured by a contact type film thickness meter (“Digimatic Thickness Gauge” manufactured by Mitutoyo Corporation).
  • the elastic modulus of the film was measured by the following method according to JIS K7161.
  • a dumbbell-shaped test piece according to JIS K7161 was cut out from the film by the methods described in Examples and Comparative Examples.
  • the test piece was stretched with a tensile tester (“Tensile tester with constant temperature and humidity chamber” manufactured by Instron Japan) to measure the stress and strain, and the elastic modulus was calculated.
  • the breaking elongation of the film was measured by the following method according to JIS K7161. At a test temperature of 25 ° C. ⁇ 1 ° C., the test piece is stretched by a tensile tester, and the elongation ⁇ L at break is measured. From the initial length L0 and ⁇ L, the elongation at break is calculated according to the formula for calculating the elongation at break. The degree was calculated.
  • the water vapor permeability of the film was measured under the conditions of a temperature of 40 ° C. and a humidity of 90% RH according to JIS K7129 B method.
  • a water vapor permeability measuring device (“PERMATRAN-W” manufactured by MOCON) was used.
  • UV transmittance The ultraviolet transmittance of the film at a wavelength of 380 nm was measured in accordance with JIS K0115 (general rules for absorption spectroscopy).
  • a spectrophotometer (“UV-visible-near-infrared spectrophotometer V-570” manufactured by JASCO Corporation) was used.
  • Transportability A long, roll-shaped film sample was set in a transport device, and the film sample was transported at a transport speed of 10 m / min for 30 minutes.
  • the transport device has ten free rolls and two nip rolls. If the film sample did not break or bend during the transport of the film sample for 30 minutes, it was determined that the transportability was good, and if the film sample was broken or bent once or more, the transportability was poor. It was determined.
  • a solution was prepared by dissolving 0.014 part of a tetrachlorotungstenphenylimide (tetrahydrofuran) complex in 0.70 part of toluene. To this solution was added 0.061 part of a 19% strength diethylaluminum ethoxide / n-hexane solution, and the mixture was stirred for 10 minutes to prepare a catalyst solution. This catalyst solution was added to the pressure-resistant reactor to initiate a ring-opening polymerization reaction. Thereafter, the reaction was carried out for 4 hours while maintaining the temperature at 53 ° C. to obtain a solution of a ring-opened polymer of dicyclopentadiene.
  • the number-average molecular weight (Mn) and weight-average molecular weight (Mw) of the obtained ring-opened polymer of dicyclopentadiene were 8,750 and 28,100, respectively, and the molecular weight distribution (Mw / Mn) determined from these. was 3.21.
  • the hydrogenated product of the ring-opened polymer of dicyclopentadiene having crystallinity was separated by separating the hydrogenated product and the solution contained in the reaction solution using a centrifugal separator and drying at 60 ° C. under reduced pressure for 24 hours. 28.5 parts were obtained.
  • the hydrogenation rate of this hydrogenated product was 99% or more, the glass transition temperature Tg was 93 ° C., the melting point (Tm) was 262 ° C., and the ratio of racemo dyad was 89%.
  • An antioxidant tetrakis [methylene-3- (3 ', 5'-di-tert-butyl-4'-hydroxyphenyl) propionate] was added to 100 parts of the hydrogenated product of the ring-opened polymer of dicyclopentadiene.
  • thermoplastic resin K (melting point: 265 ° C.) containing the crystalline alicyclic structure-containing polymer produced in Production Example 1 has a UV absorber concentration of 0% by weight and contains a crystalline alicyclic structure-containing polymer. Contains 99% by weight of polymer in resin. ) was introduced into a melt extruder and melted.
  • the thermoplastic resin K in a molten state was extruded from a die having a width of about 700 mm into a film on a cast roll and cooled by a cooling roll to obtain a film before cutting. The speed of the cooling roll was adjusted so that the thickness of the film before cutting became 20 ⁇ m.
  • Both ends in the width direction of the obtained pre-cut film were cut off by an infrared laser irradiator in parallel with the transport direction of the film to obtain a cut film having a width of about 400 mm.
  • Cutting was performed by irradiating a laser beam from the surface of the film.
  • the obtained cut film was taken up by a take-up roll provided downstream of the laser beam irradiator to obtain a roll-shaped film sample having a length of about 300 m.
  • the transportability of the obtained film sample was evaluated by the method described above. Further, a film piece was cut out from the obtained film sample, and the number of cracks, the water vapor transmission rate, and the ultraviolet ray transmission rate were evaluated by the above methods.
  • dumbbell-shaped test piece according to JIS K7161 was cut out from the obtained film sample using an infrared laser light irradiator, and the elastic modulus and the elongation at break were measured by the methods described above. Table 1 shows the evaluation results.
  • Example 2 A film before cutting was manufactured in the same manner as in Example 1 except that the thickness of the film before cutting was 10 ⁇ m. The thickness was changed by adjusting the speed of the cooling roll. Using the obtained film before cutting, a film sample was obtained in the same manner as in Example 1, and in the same manner as in Example 1, transportability, the number of cracks, water vapor transmission rate, ultraviolet ray transmission rate, elastic modulus, and The elongation at break was evaluated. Table 1 shows the evaluation results.
  • thermoplastic resin K 85 parts by weight of the thermoplastic resin K and 15 parts by weight of an ultraviolet absorber (“LA-31” manufactured by ADEKA) are charged into an extruder, melt-mixed, extruded from the extruder, and the ultraviolet absorber is added at 15 parts by weight.
  • thermoplastic resin K for forming the first skin layer, the thermoplastic resin K ′ for forming the core layer, and the thermoplastic resin K for forming the second skin layer is supplied to an extruder and melted.
  • the resin was fed to a multi-manifold die and co-extruded from the multi-manifold die onto a cast.
  • the supply of each resin to the multi-manifold die is performed by a layer of thermoplastic resin K as a first skin layer, a layer of thermoplastic resin K ′ as a core layer, and a layer of thermoplastic resin K as a second skin layer. , So as to be discharged in the form of a film containing three layers.
  • the thickness of each layer was adjusted by adjusting the feed amount from the feeder of the extruder.
  • the film coextruded on the cast was cooled by a cooling roll to obtain a film before cutting.
  • the speed of the cooling roll was adjusted so that the thickness of the film before cutting became 15 ⁇ m.
  • the core layer was 10 ⁇ m, and the first skin layer and the second skin layer were each 2.5 ⁇ m.
  • Example 1 Using the obtained film before cutting, a film sample was obtained in the same manner as in Example 1, and in the same manner as in Example 1, transportability, the number of cracks, water vapor transmittance, ultraviolet transmittance, elastic modulus, And elongation at break was evaluated. Table 1 shows the evaluation results.
  • Example 4 Except that the thermoplastic resin K was changed to a thermoplastic resin H containing an amorphous alicyclic structure-containing polymer (“ZEONOR1430” manufactured by Zeon Corporation, glass transition temperature 135 ° C.), in the same manner as in Example 1.
  • the film before cutting was manufactured.
  • a film sample was obtained in the same manner as in Example 1, and in the same manner as in Example 1, transportability, the number of cracks, water vapor transmission rate, ultraviolet ray transmission rate, elastic modulus, and The elongation at break was evaluated. Table 1 shows the evaluation results.
  • Example 1 A film before cutting was produced in the same manner as in Example 1. Both ends in the width direction of the obtained pre-cut film were cut off by a cutter having a metal blade in parallel with the transport direction of the film to obtain a cut film having a width of about 400 mm. The obtained cut film was taken up by a take-up roll provided downstream of the cutter to obtain a long roll-shaped film sample having a length of about 300 m. The transportability of the obtained film sample was evaluated by the method described above. Further, a film piece was cut out from the obtained film sample at an arbitrary length, and the number of cracks, water vapor transmittance, and ultraviolet transmittance were evaluated by the above-described methods.
  • Example 2 A film before cutting was manufactured in the same manner as in Example 1 except that the thickness of the film before cutting was 10 ⁇ m. The thickness was changed by adjusting the speed of the cooling roll. Using the obtained film before cutting, a film sample was obtained in the same manner as in Comparative Example 1, and in the same manner as in Comparative Example 1, transportability, the number of cracks, water vapor transmission rate, ultraviolet ray transmission rate, elastic modulus, and The elongation at break was evaluated. Table 2 shows the evaluation results.
  • Example 3 A film before cutting was manufactured in the same manner as in Example 1 except that the thermoplastic resin K was changed to the thermoplastic resin H described above. Using the obtained film before cutting, a film sample was obtained in the same manner as in Comparative Example 1, and in the same manner as in Comparative Example 1, transportability, the number of cracks, water vapor transmission rate, ultraviolet ray transmission rate, elastic modulus, and The elongation at break was evaluated. Table 2 shows the evaluation results.
  • thermoplastic resin K was changed to a thermoplastic resin PMMA (polymethyl methacrylate, “Delpet 80NH” manufactured by Asahi Kasei Corporation).
  • PMMA polymethyl methacrylate, “Delpet 80NH” manufactured by Asahi Kasei Corporation.
  • a film sample was obtained in the same manner as in Comparative Example 1, and in the same manner as in Comparative Example 1, transportability, the number of cracks, water vapor transmission rate, ultraviolet ray transmission rate, elastic modulus, and The elongation at break was evaluated. Table 2 shows the evaluation results.
  • Example 5 A film before cutting was manufactured in the same manner as in Example 1 except that the thermoplastic resin K was changed to the thermoplastic resin PMMA. Using the obtained film before cutting, a film sample was obtained in the same manner as in Example 1, and in the same manner as in Example 1, transportability, the number of cracks, water vapor transmission rate, ultraviolet ray transmission rate, elastic modulus, and The elongation at break was evaluated. Table 3 shows the evaluation results.
  • thermoplastic resin K was changed to a thermoplastic resin PE (polyethylene, "Novatec UF421” manufactured by Japan Polyethylene Co., Ltd.).
  • PE polyethylene, "Novatec UF421” manufactured by Japan Polyethylene Co., Ltd.
  • a film sample was obtained in the same manner as in Example 1, and the transportability, the number of cracks, the water vapor transmission rate, the ultraviolet ray transmission rate, the elastic modulus, and the elongation at break were evaluated in the same manner as in Example 1. Table 3 shows the evaluation results.
  • K thermoplastic resin containing a crystalline alicyclic structure-containing polymer
  • K ′ thermoplastic resin containing a crystalline alicyclic structure-containing polymer and an ultraviolet absorber H: containing an amorphous alicyclic structure
  • PE cutting polyethylene film: means for cutting film before cutting
  • the films according to Examples 1 to 4 having an elastic modulus of 2000 MPa or more, a breaking elongation of 20% or more, and less than one crack have good transportability.
  • the films according to Examples 1 to 4 obtained by cutting the film before cutting with a laser beam had an elastic modulus of 2000 MPa or more, an elongation at break of 20% or more, and less than one crack.
  • the transportability is good.
  • the films according to Comparative Example 6 having an elastic modulus of less than 2000 MPa and the films according to Comparative Examples 1 to 5 having a breaking elongation of less than 20% have poor transportability.
  • the films according to Comparative Examples 1 to 4 having one or more cracks have poor transportability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Polarising Elements (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laser Beam Processing (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

厚みが20μm以下であり、弾性率が2000MPa以上であり、破断伸度が20%以上であるフィルム。好ましくは、前記フィルムの端部において、長さ30μm以上であるクラックが、前記端部の長さ1mmあたり1本未満である。

Description

フィルム及びフィルムの製造方法
 本発明は、フィルム及びフィルムの製造方法に関する。
 フィルムは、例えば、携帯情報端末が備える画像表示素子の表面保護、偏光板の製造、光学補償などのために用いられ、近年の携帯情報端末の出荷台数の増大に伴い、需要が伸びている。
 特に偏光板を製造するために、セルロースエステルを主体とした材料から形成されるフィルムの開発が進んでいる(特許文献1、2)。
特開2010-204616号公報 特開2007-284570号公報
 さて、需要の増加に対応してフィルムを大量生産するため、通常フィルムを搬送しながら種々の処理を行う。しかしながら、搬送中にフィルムが破断すると、通常搬送ラインを停止させて、破断したフィルムを搬送ラインに再導入する必要がある。そのため、フィルムの搬送性が良好であることが求められる。
 すなわち、搬送性が良好なフィルム;及び、搬送性が良好なフィルムを製造する方法が、求められる。
 本発明者は、前記課題を解決するべく、鋭意検討した。その結果、フィルムの厚み、弾性率、及び破断伸度を所定の範囲とすることで、前記課題が解決されることを見出し、本発明を完成させた。
 すなわち、本発明は、以下を提供する。
 [1] 厚みが20μm以下であり、弾性率が2000MPa以上であり、破断伸度が20%以上であるフィルム。
 [2] 前記フィルムの端部において、長さ30μm以上であるクラックが、前記端部の長さ1mmあたり1本未満である、[1]に記載のフィルム。
 [3] 水蒸気透過率が、5g/(m・24h)以下である、[1]又は[2]に記載のフィルム。
 [4] 波長380nmの紫外線透過率が5%以下である、[1]~[3]のいずれか1項に記載のフィルム。
 [5] 脂環式構造含有重合体を50重量%以上含む材料で形成されている、[1]~[4]のいずれか1項に記載のフィルム。
 [6] 前記脂環式構造含有重合体が結晶性である、[5]に記載のフィルム。
 [7] 長尺である、[1]~[6]のいずれか1項に記載のフィルム。
 [8] レーザー光により切断されている、[1]~[5]のいずれか1項に記載のフィルム。
 [9] 厚みが20μm以下であるカット前フィルムをレーザー光により切断して、厚みが20μm以下であり、弾性率が2000MPa以上であり、破断伸度が20%以上であるフィルムを得る工程を含む、フィルムの製造方法。
 本発明によれば、搬送性が良好なフィルム;搬送性が良好なフィルムを製造する方法を提供できる。
図1は、フィルム端部に存在しうるクラックの説明図である。
 以下、本発明について実施形態及び例示物を示して詳細に説明する。ただし、本発明は以下に示す実施形態及び例示物に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。
 以下の説明において、「長尺」のフィルムとは、幅に対して、5倍以上の長さを有するフィルムをいい、好ましくは10倍若しくはそれ以上の長さを有し、具体的にはロール状に巻き取られて保管又は運搬される程度の長さを有するフィルムをいう。フィルムの長さの上限は、特に制限は無く、例えば、幅に対して10万倍以下としうる。
 以下の説明において、要素の方向が「平行」、「垂直」及び「直交」とは、別に断らない限り、本発明の効果を損ねない範囲内、例えば±3°、±2°又は±1°の範囲内での誤差を含んでいてもよい。
 長尺のフィルムの長手方向は、通常、製造ラインにおけるフィルム搬送方向と平行であり、フィルムの幅方向は、通常、フィルム搬送方向と直交する。
 以下の説明において、「(メタ)アクリル」の文言は、「アクリル」、「メタクリル」、及びこれらの組み合わせを包含する。
[1.フィルムの概要]
 本発明の一実施形態に係るフィルムは、厚みが20μm以下であり、弾性率が2000MPa以上であり、破断伸度が20%以上である。
 フィルムが、前記特徴を備えることにより、良好な搬送性を実現できる。
[1.1.フィルムの厚み]
 フィルムの厚みは、通常20μm以下、好ましくは20μm未満、より好ましくは18μm以下、更に好ましくは、15μm以下である。フィルムの厚みの下限は、通常0μmより大きく、好ましくは1μm以上、より好ましくは3μm以上、更に好ましくは、5μm以上である。
 本実施形態のフィルムは、厚みが前記範囲である場合にも搬送性を良好にしうる。
 フィルムの厚みは、フィルムが複層構造を有している場合は、複層構造を構成する各層の厚みの合計である。
 フィルムの厚みは、例えば接触式膜厚計(例、ミツトヨ社製「デジマチック シックネスゲージ」)により測定されうる。
[1.2.フィルムの弾性率]
 フィルムの弾性率は、通常2000MPa以上、好ましくは2300MPa以上、更に好ましくは2500MPa以上であり、好ましくは5000MPa以下、より好ましくは4000MPa以下、更に好ましくは3500MPa以下である。フィルムの弾性率が、前記下限値以上であることにより、搬送性を良好にでき、前記上限値以下であることにより、弾性率と破断伸度とがバランスして搬送性を向上させうる。
 フィルムの弾性率は、例えば下記の方法により測定されうる。
 JIS K7161に準じ、ダンベル形の試験片を準備し、試験温度25℃±1℃において、引張試験器で試験片を延伸して応力及び歪みを計測し、弾性率を算出する。
 フィルムの材料として、種々の弾性率を有する材料が市場より入手可能であるので、材料を適宜選択することにより、弾性率を前記範囲に収めることができる。
[1.3.フィルムの破断伸度]
 フィルムの破断伸度は、通常20%以上、好ましくは40%以上、より好ましくは60%以上であり、好ましくは500%以下、より好ましくは300%以下、更に好ましくは200%以下である。フィルムの破断伸度が、前記範囲に収まることにより、搬送中のフィルムの破断を抑制しつつ、シワの発生を抑制しうる。
 例えば、フィルム端部のクラックを少なくすることにより、フィルムの破断伸度を大きくしうる。
 フィルムの破断伸度は、例えば下記の方法により測定されうる。
 JIS K7161に準じ、ダンベル形の試験片を準備し、試験温度25℃±1℃において、引張試験機で試験片を延伸し、破断したときの伸び量ΔLを測定して、初期長さL0とΔLとから下記式により破断伸度を算出する。
 破断伸度(%)=ΔL/L0×100
[1.4.フィルムのその他物性]
 フィルムは、好ましくは、端部において、長さ30μm以上であるクラックが、端部の長さ1mmあたり1本未満である。フィルムの端部において、長さ30μm以上であるクラックが端部の長さ1mmあたり1本未満であることにより、搬送性を効果的に向上させうる。
 図1は、フィルムの端部に存在しうるクラックの説明図である。
 フィルム100の端部110は、フィルム100の端120からの距離がL以下であるフィルム100の部分である。Lは、例えば、0mmより大きく5mm以下、好ましくは0mmより大きく0.5mm以下である。フィルム100が長尺フィルムである場合は、幅方向端部の幅はLである。
 ここで、フィルム100の端部110の長さ方向LDは、フィルム100が長尺のフィルムである場合、通常搬送方向に平行である。クラック130の方向は、特に限定されず、任意の方向でありうる。
 フィルムの端部において、長さ30μm以上であるクラックの本数を端部の長さ1mmあたり1本未満とすることは、例えば、フィルムをレーザー光で切断することにより実現できる。
 したがって、フィルムは、レーザー光で切断されたフィルムであることが好ましい。
フィルムは長尺であることがより好ましく、長尺であってフィルムの搬送方向と平行な方向にレーザー光で切断されたフィルムであることが更に好ましい。
 フィルムを切断する際のレーザー光としては、例えば、COレーザー光、及びYAGレーザー光が挙げられる。
 フィルムの水蒸気透過率は、好ましくは5g/(m・24h)以下であり、より好ましくは4g/(m・24h)以下であり、更に好ましくは3g/(m・24h)以下であり、理想的には0g/(m・24h)であり、0g/(m・24h)以上としうる。フィルムの水蒸気透過率が、前記上限値以下であることにより、例えば湿度により影響を受けやすい部材の保護フィルムとしてフィルムを好適に用いうる。
 水蒸気透過率は、JIS K7129 B法に従い、温度40℃、湿度90%RHの条件にて測定しうる。
 フィルムの材料として、脂環式構造含有重合体を含む材料を用いることにより、水蒸気透過率を前記好ましい範囲としうる。
 フィルムは、好ましくは波長380nmの紫外線透過率が5%以下であり、より好ましくは3%以下であり、更に好ましくは1%以下であり、理想的には0%であり、0%以上としうる。フィルムの波長380nmの紫外線透過率が前記上限値以下であることにより、例えば紫外線により影響を受けやすい部材の保護フィルムとしてフィルムを好適に用いうる。
 例えば、フィルムの材料に少なくとも波長380nmの紫外線を吸収しうる紫外線吸収剤を含有させることにより、フィルムの波長380nmの紫外線透過率を前記好ましい範囲としうる。
[1.5.フィルムの材料]
 フィルムを形成する材料は、通常重合体を含む。フィルムを形成する材料に含まれうる重合体としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン;ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル;ポリフェニレンサルファイド等のポリアリーレンサルファイド;ポリビニルアルコール;ポリカーボネート;ポリアリレート;セルロースエステル重合体;ポリエーテルスルホン;ポリスルホン;ポリアリルサルホン(polyarylsulfone);ポリ塩化ビニル;ノルボルネン系重合体等の、脂環式構造含有重合体;棒状液晶ポリマー;ポリスチレン系重合体などが挙げられる。これらの重合体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。また、重合体は、単独重合体でもよく、共重合体でもよい。これらの中でも、機械特性、耐熱性、透明性、低吸湿性、寸法安定性及び軽量性に優れることから、脂環式構造含有重合体が好ましい。
 脂環式構造含有重合体とは、その重合体の構造単位が脂環式構造を含有する重合体である。脂環式構造含有重合体は、主鎖に脂環式構造を有していてもよく、側鎖に脂環式構造を有していてもよく、主鎖及び側鎖に脂環式構造を有していてもよい。中でも、機械的強度及び耐熱性の観点から、主鎖に脂環式構造を含有する重合体が好ましい。
 脂環式構造としては、例えば、飽和脂環式炭化水素(シクロアルカン)構造、不飽和脂環式炭化水素(シクロアルケン、シクロアルキン)構造などが挙げられる。中でも、機械強度及び耐熱性の観点から、シクロアルカン構造及びシクロアルケン構造が好ましく、中でもシクロアルカン構造が特に好ましい。
 脂環式構造を構成する炭素原子数は、一つの脂環式構造あたり、好ましくは4個以上、より好ましくは5個以上であり、好ましくは30個以下、より好ましくは20個以下、特に好ましくは15個以下の範囲である。脂環式構造を構成する炭素原子数をこの範囲にすることにより、脂環式構造含有重合体を含む樹脂の機械強度、耐熱性及び成形性が高度にバランスされる。
 脂環式構造含有重合体における脂環式構造を有する構造単位の割合は、好ましくは55重量%以上、更に好ましくは70重量%以上、特に好ましくは90重量%以上である。脂環式構造含有重合体における脂環式構造を有する構造単位の割合がこの範囲にあると、脂環式構造含有重合体を含む樹脂の透明性及び耐熱性が良好となる。
 脂環式構造含有重合体としては、例えば、ノルボルネン系重合体、単環の環状オレフィン系重合体、環状共役ジエン系重合体、ビニル脂環式炭化水素重合体、及びこれらの水素化物が挙げられる。これらの中でも、透明性及び成形性が良好であるので、ノルボルネン系重合体がより好ましい。
 ノルボルネン系重合体の例としては、ノルボルネン構造を有する単量体の開環重合体及びその水素添加物;ノルボルネン構造を有する単量体の付加重合体及びその水素添加物が挙げられる。また、ノルボルネン構造を有する単量体の開環重合体の例としては、ノルボルネン構造を有する1種類の単量体の開環単独重合体、ノルボルネン構造を有する2種類以上の単量体の開環共重合体、並びに、ノルボルネン構造を有する単量体及びこれと共重合しうる任意の単量体との開環共重合体が挙げられる。更に、ノルボルネン構造を有する単量体の付加重合体の例としては、ノルボルネン構造を有する1種類の単量体の付加単独重合体、ノルボルネン構造を有する2種類以上の単量体の付加共重合体、並びに、ノルボルネン構造を有する単量体及びこれと共重合しうる任意の単量体との付加共重合体が挙げられる。これらの中で、ノルボルネン構造を有する単量体の開環重合体の水素添加物は、成形性、耐熱性、低吸湿性、寸法安定性及び軽量性の観点から、特に好適である。
 脂環式構造含有重合体の市販品の例としては、日本ゼオン社製のゼオネックス及びゼオノア(ノルボルネン系樹脂);住友ベークライト社製のスミライトFS-1700;JSR社製のアートン(変性ノルボルネン系樹脂);三井化学社製のアペル(環状オレフィン共重合体);Ticona社製のTopas(環状オレフィン共重合体);及び、日立化成社製のオプトレッツOZ-1000シリーズ(脂環式アクリル樹脂);が挙げられる。
 フィルムを形成する材料における脂環式構造含有重合体の含有率は、好ましくは50重量%以上、より好ましくは70重量%以上、更に好ましくは90重量%以上であり、通常100重量%以下であり、99重量%以下としてもよい。
 脂環式構造含有重合体の含有率が、前記下限値以上であることにより、成形性、耐熱性、低吸湿性、寸法安定性及び軽量性などの、脂環式構造含有重合体の優れた特性を、フィルムに効果的に付与しうる。
 フィルムが、複層構造を有する場合、フィルムを構成する各々のフィルムを形成する各々の材料が、脂環式構造含有重合体を前記好ましい含有率の範囲で含むことが好ましい。
 フィルムを形成する材料は、好ましくは結晶性の脂環式構造含有重合体を含む。結晶性の脂環式構造含有重合体は、透明性、低吸湿性、寸法安定性及び軽量性に優れる。
 ここで、結晶性の重合体とは、示差走査熱量計(DSC)で観測できる融点を有する重合体をいう。このような結晶性の重合体は、通常、分子鎖が規則正しく長距離秩序を持って配列する。また、非晶性の重合体とは、示差走査熱量計(DSC)で観測できる融点を有さない重合体をいう。非晶性の重合体は、通常、分子鎖が結晶のような長距離秩序を有さない。
 示差走査熱量計による融点の測定は、例えば下記の条件により行いうる。
 窒素雰囲気下で300℃に加熱した試料を液体窒素で急冷し、示差走査熱量計(DSC)を用いて、10℃/分で昇温して試料の融点を求める。
 結晶性の脂環式構造含有重合体の好ましい例としては、下記の重合体(α)~重合体(δ)が挙げられる。これらの中でも、耐熱性に優れるフィルムが得られ易いことから、重合体(β)が特に好ましい。
 重合体(α):環状オレフィン単量体の開環重合体であって、結晶性を有するもの。
 重合体(β):重合体(α)の水素化物であって、結晶性を有するもの。
 重合体(γ):環状オレフィン単量体の付加重合体であって、結晶性を有するもの。
 重合体(δ):重合体(γ)の水素化物等であって、結晶性を有するもの。
 より具体的には、結晶性の重合体としては、ジシクロペンタジエンの開環重合体であって結晶性を有するもの、及び、ジシクロペンタジエンの開環重合体の水素化物であって結晶性を有するものがより好ましく、ジシクロペンタジエンの開環重合体の水素化物であって結晶性を有するものが特に好ましい。ここで、ジシクロペンタジエンの開環重合体とは、全構造単位に対するジシクロペンタジエン由来の構造単位の割合が、通常50重量%以上、好ましくは70重量%以上、より好ましくは90重量%以上、更に好ましくは100重量%の重合体をいう。
 結晶性である脂環式構造含有重合体は、従前公知の方法により製造でき、例えば、特開2002-249553号公報に記載の方法により製造しうる。
 フィルムを形成する材料は、前記重合体に加えて、任意の成分を含みうる。
 任意の成分としては、例えば、フェノール系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤等の酸化防止剤;ヒンダードアミン系光安定剤等の光安定剤;石油系ワックス、フィッシャートロプシュワックス、ポリアルキレンワックス等のワックス;ソルビトール系化合物、有機リン酸の金属塩、有機カルボン酸の金属塩、カオリン及びタルク等の核剤;ジアミノスチルベン誘導体、クマリン誘導体、アゾール系誘導体(例えば、ベンゾオキサゾール誘導体、ベンゾトリアゾール誘導体、ベンゾイミダゾール誘導体、及びベンゾチアゾール誘導体)、カルバゾール誘導体、ピリジン誘導体、ナフタル酸誘導体、及びイミダゾロン誘導体等の蛍光増白剤;タルク、シリカ、炭酸カルシウム、ガラス繊維等の無機充填材;顔料、染料等の着色剤;分散剤;熱安定剤;光安定剤;難燃剤;難燃助剤;帯電防止剤;酸化防止剤;可塑剤;レーザー光吸収剤;近赤外線吸収剤;紫外線吸収剤;界面活性剤;滑剤;フィラー;などが挙げられる。
 また、任意の成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 フィルムを形成する材料は、紫外線吸収剤を含むことが好ましい。
 紫外線吸収剤の例としては、トリアジン系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤、アクリロニトリル系紫外線吸収剤等の有機紫外線吸収剤が挙げられる。中でも、波長380nm付近における紫外線吸収性能が優れているという点で、トリアジン系紫外線吸収剤が好ましい。また、紫外線吸収剤としては、分子量は400以上であるものが好ましい。
 トリアジン系紫外線吸収剤の例としては、1,3,5-トリアジン環を有する化合物を好ましく用いうる。トリアジン系紫外線吸収剤の具体例としては、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-[(へキシル)オキシ]-フェノール、2,4-ビス(2-ヒドロキシ-4-ブトキシフェニル)-6-(2,4-ジブトキシフェニル)-1,3,5-トリアジン等が挙げられる。また、トリアジン系紫外線吸収剤の市販品としては、例えば、「チヌビン1577」(チバスペシャリティーケミカルズ社製)等を挙げることができる。
 フィルムが複層構造である場合は、フィルムを構成するすべての層の材料に紫外線吸収剤が含まれていてもよく、一部の層の材料にのみ紫外線吸収剤が含まれていてもよい。
[1.6.フィルムの構成]
 フィルムは、単層構造であってもよく、複層構造であってもよい。複層構造のフィルムの例としては、異種の重合体を含む2以上の層の積層体であるフィルム;同種の重合体を含むが各重合体の含有率が異なる2以上の層の積層体であるフィルム;及び、同種の重合体を含むが添加剤の種類及び/又は含有量が異なる2以上の層の積層体であるフィルム;が挙げられる。
 複層構造のフィルムの更なる具体例としては、第1スキン層、コア層、及び第2スキン層をこの順で含み、コア層が、紫外線吸収剤を含むフィルムが挙げられる。第1スキン層、コア層、及び第2スキン層それぞれが含みうる重合体の例及び好ましい例は、前記[1.5.フィルムの材料]の項で説明した例及び好ましい例と同様としうる。
 第1スキン層及び第2スキン層は、好ましくは同種の重合体を同一の含有率で含み、更に好ましくは同種の脂環式構造含有重合体を50重量%以上含む。コア層は、好ましくは、第1スキン層及び第2スキン層と同種の脂環式構造含有重合体を50重量%以上と紫外線吸収剤とを含む。
 紫外線吸収剤の含有率は、紫外線吸収剤を含む層(例えば、コア層)を形成する材料において、例えば1重量%以上20重量%以下としうる。
[2.フィルムの製造方法]
 前記フィルムは、任意の方法で製造しうる。好ましくは、フィルムの製造方法は、厚みが20μm以下であるカット前フィルムをレーザー光により切断して、厚みが20μm以下であり、弾性率が2000MPa以上であり、破断伸度が20%以上であるフィルムを得る工程を含む。
 カット前フィルムを形成する材料の例及び好ましい例、カットフィルムの好ましい層構成については、前記[1.5.フィルムの材料]の項で説明した例及び好ましい例、前記[1.6.フィルムの構成]で説明した好ましい層構成とそれぞれ同様としうる。
 レーザー光としては、任意の波長のレーザー光を用いうるが、赤外領域の波長を有するレーザー光が好ましい。赤外領域の波長を有するレーザー光を発するレーザー装置としては、COレーザーが挙げられる。
 フィルムの製造方法は、前記工程に加えて、任意の工程を含んでいてもよい。任意の工程の例としては、レーザー光により切断されたフィルムを、搬送する工程、巻取ロールに巻き取る工程が挙げられる。
 以下、実施例を示して本発明について具体的に説明する。ただし、本発明は以下に示す実施例に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。
 以下の説明において、量を表す「%」及び「部」は、別に断らない限り、重量基準である。また、以下に説明する操作は、別に断らない限り、常温及び常圧の条件において行った。
[評価方法]
(融点)
 熱可塑性樹脂の融点を、下記条件により測定した。
 窒素雰囲気下で300℃に加熱した試料を液体窒素で急冷し、示差走査熱量計(ナノテクノロジー社製「DSC6220S11」)を用いて、10℃/分で昇温して試料の融点を求めた。
 前記条件の測定において、融点を示す吸熱ピークが現れない熱可塑性樹脂は、非晶性であると判断した。
(フィルム厚み)
 フィルムの厚みを、接触式膜厚計(ミツトヨ社製「デジマチック シックネスゲージ」)により測定した。
(弾性率)
 フィルムの弾性率を、JIS K7161に準じて下記の方法により測定した。
 JIS K7161に準じたダンベル形の試験片を、フィルムから各実施例及び比較例に記載した方法で切り出して作製した。試験温度25℃±1℃において、引張試験器(インストロンジャパン社製「恒温恒湿槽付き引張試験機」)で試験片を延伸して応力及び歪みを計測し、弾性率を算出した。
(破断伸度)
 フィルムの破断伸度を、JIS K7161に準じて下記の方法により測定した。
 試験温度25℃±1℃において、引張試験機で試験片を延伸し、破断したときの伸び量ΔLを測定して、初期長さL0とΔLとから、前記破断伸度の算出式により破断伸度を算出した。
(クラック)
 長尺であるロール状フィルムサンプルから任意の長さでフィルム片を切り出した。フィルム片の幅方向における端部を、幅0.5mm長さ1mmに亘って、光学顕微鏡により観察した。観察したフィルムの端部において、長さ30μm以上のクラックがフィルムの端部1mmあたり1本以上存在する場合は、「クラック有」と判定し、長さ30μm以上のクラックがフィルムの端部1mmあたり存在しない場合は、「クラック無」と判定した。
(水蒸気透過率)
 フィルムの水蒸気透過率を、JIS K7129 B法に従い、温度40℃、湿度90%RHの条件にて測定した。測定装置として、水蒸気透過度測定装置(MOCON社製「PERMATRAN-W」)を用いた。
(紫外線透過率)
 フィルムの波長380nmの紫外線透過率を、JIS K0115(吸光光度分析通則)に準拠して測定した。測定装置として、分光光度計(日本分光社製「紫外可視近赤外分光光度計V-570」)を用いた。
(搬送性)
 長尺である、ロール状のフィルムサンプルを、搬送装置にセットし、フィルムサンプルを搬送速度10m/minで30分間搬送した。搬送装置は、10本のフリーロールと、2本のニップロールを備えている。30分間のフィルムサンプルの搬送中に、フィルムサンプルの破断又は折れ曲がりが発生しなかった場合に、搬送性が良と判定し、フィルムサンプルの破断又は折れ曲がりが一度以上発生した場合に、搬送性が不良と判定した。
[製造例1]
(熱可塑性樹脂Kの製造)
 金属製の耐圧反応器を、充分に乾燥した後、窒素置換した。この金属製耐圧反応器に、シクロヘキサン154.5部、ジシクロペンタジエン(エンド体含有率99%以上)の濃度70%シクロヘキサン溶液42.8部(ジシクロペンタジエンの量として30部)、及び1-ヘキセン1.9部を加え、53℃に加温した。
 テトラクロロタングステンフェニルイミド(テトラヒドロフラン)錯体0.014部を0.70部のトルエンに溶解し、溶液を調製した。この溶液に、濃度19%のジエチルアルミニウムエトキシド/n-ヘキサン溶液0.061部を加えて10分間攪拌して、触媒溶液を調製した。
 この触媒溶液を耐圧反応器に加えて、開環重合反応を開始した。その後、53℃を保ちながら4時間反応させて、ジシクロペンタジエンの開環重合体の溶液を得た。
 得られたジシクロペンタジエンの開環重合体の数平均分子量(Mn)及び重量平均分子量(Mw)は、それぞれ、8,750および28,100であり、これらから求められる分子量分布(Mw/Mn)は3.21であった。
 得られたジシクロペンタジエンの開環重合体の溶液200部に、停止剤として1,2-エタンジオール0.037部を加えて、60℃に加温し、1時間攪拌して重合反応を停止させた。ここに、ハイドロタルサイト様化合物(協和化学工業社製「キョーワード(登録商標)2000」)を1部加えて、60℃に加温し、1時間攪拌した。その後、濾過助剤(昭和化学工業社製「ラヂオライト(登録商標)#1500」)を0.4部加え、PPプリーツカートリッジフィルター(ADVANTEC東洋社製「TCP-HX」)を用いて吸着剤と溶液を濾別した。
 濾過後のジシクロペンタジエンの開環重合体の溶液200部(重合体量30部)に、シクロヘキサン100部を加え、クロロヒドリドカルボニルトリス(トリフェニルホスフィン)ルテニウム0.0043部を添加して、水素圧6MPa、180℃で4時間水素化反応を行なった。これにより、ジシクロペンタジエンの開環重合体の水素添加物を含む反応液が得られた。この反応液は、水素添加物が析出してスラリー溶液となっていた。
 前記の反応液に含まれる水素添加物と溶液とを、遠心分離器を用いて分離し、60℃で24時間減圧乾燥して、結晶性を有するジシクロペンタジエンの開環重合体の水素添加物を28.5部得た。この水素添加物の水素添加率は99%以上、ガラス転移温度Tgは93℃、融点(Tm)は262℃、ラセモ・ダイアッドの割合は89%であった。
 得られたジシクロペンタジエンの開環重合体の水素添加物100部に、酸化防止剤(テトラキス〔メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート〕メタン;BASFジャパン社製「イルガノックス(登録商標)1010」)1.1部を混合して熱可塑性樹脂Kを得て、次いで内径3mmΦのダイ穴を4つ備えた二軸押出し機(製品名「TEM-37B」、東芝機械社製)に投入し、熱溶融押出し成形によりストランド状の成形体にした後、ストランドカッターにて細断し、ペレット形状である、熱可塑性樹脂Kの熱溶融押出し成形体を得た。熱可塑性樹脂Kの融点は、265℃であった。
 二軸押出し機の運転条件を、以下に箇条書きで記す。
 ・バレル設定温度=270~280℃
 ・ダイ設定温度=250℃
 ・スクリュー回転数=145rpm
 ・フイーダー回転数=50rpm
[実施例1]
 製造例1で製造した結晶性の脂環式構造含有重合体を含む熱可塑性樹脂K(融点265℃)、樹脂中の紫外線吸収剤濃度が0重量%であり、結晶性の脂環式構造含有重合体を樹脂中99重量%含む。)を、溶融押出機に導入して溶融し、溶融状態の熱可塑性樹脂Kを、約700mm幅のダイスよりキャストロール上にフィルム状に押し出し、冷却ロールで冷却し、カット前フィルムを得た。冷却ロールの速度は、カット前フィルムの厚みが20μmになるように調整した。
 得られたカット前フィルムの幅方向両端部を、フィルムの搬送方向と平行に赤外線レーザー光照射機により切り落とし、幅約400mmのカットフィルムを得た。切断は、レーザー光をフィルムの表面より照射することにより行われた。得られたカットフィルムを、レーザー光照射機の下流に設けた巻取りロールにより巻き取り、約300m長さの長尺である、ロール状のフィルムサンプルを得た。得られたフィルムサンプルの搬送性を、前記の方法により評価した。
 また、得られたフィルムサンプルから、フィルム片を切り出して、クラックの本数、水蒸気透過率、及び紫外線透過率を前記の方法により評価した。
 更に、得られたフィルムサンプルから、赤外線レーザー光照射機によりJIS K7161に準じたダンベル形の試験片を切り出して、弾性率及び破断伸度を前記の方法により測定した。
 評価結果を表1に示す。
[実施例2]
 カット前フィルムの厚みを10μmとした以外は実施例1と同様にして、カット前フィルムを製造した。厚みの変更は、冷却ロールの速度を調整することにより行われた。得られたカット前フィルムを用いて実施例1と同様にしてフィルムサンプルを得て、実施例1と同様の方法により、搬送性、クラックの本数、水蒸気透過率、紫外線透過率、弾性率、及び破断伸度を評価した。
 評価結果を表1に示す。
[実施例3]
 前記の熱可塑性樹脂K85重量部と、紫外線吸収剤15重量部(ADEKA社製「LA-31」)とを押出機に投入して溶融混合し、押出機から押出して、紫外線吸収剤を15重量%含む熱可塑性樹脂K’を得た。
 第1スキン層形成用の熱可塑性樹脂K、コア層形成用の熱可塑性樹脂K’、及び第2スキン層形成用の熱可塑性樹脂Kを、それぞれ押出機に供給して溶融し、溶融した各樹脂をマルチマニホールドダイに供給し、マルチマニホールドダイからキャスト上に共押し出しした。マルチマニホールドダイへの各樹脂の供給は、第1スキン層である熱可塑性樹脂Kの層、コア層である熱可塑性樹脂K’の層、及び、第2スキン層である熱可塑性樹脂Kの層の、3層を含むフィルム状に吐出されるように行った。共押し出しの際、各層の厚みを、押出機のフィーダーからの送り出し量を調整することにより調整した。
 キャスト上に共押し出しされたフィルムを冷却ロールで冷却し、カット前フィルムを得た。冷却ロールの速度は、カット前フィルムの厚みが15μmになるように調整した。カット前フィルムにおいて、コア層は10μmであり、第1スキン層及び第2スキン層はそれぞれ2.5μmであった。
 得られたカット前フィルムを用いて、実施例1と同様にしてフィルムサンプルを得て、実施例1と同様の方法により、搬送性、クラックの本数、水蒸気透過率、紫外線透過率、弾性率、及び破断伸度を評価した。
 評価結果を表1に示す。
[実施例4]
 熱可塑性樹脂Kを、非晶性の脂環式構造含有重合体を含む熱可塑性樹脂H(日本ゼオン社製「ZEONOR1430」、ガラス転移温度135℃)に変更した以外は実施例1と同様にして、カット前フィルムを製造した。得られたカット前フィルムを用いて実施例1と同様にしてフィルムサンプルを得て、実施例1と同様の方法により、搬送性、クラックの本数、水蒸気透過率、紫外線透過率、弾性率、及び破断伸度を評価した。
 評価結果を表1に示す。
[比較例1]
 実施例1と同様にしてカット前フィルムを製造した。
 得られたカット前フィルムの幅方向両端部を、フィルムの搬送方向と平行に金属刃を有するカッターにより切り落とし、幅約400mmのカットフィルムを得た。得られたカットフィルムを、カッターの下流に設けた巻取りロールにより巻き取り、約300m長さの長尺である、ロール状のフィルムサンプルを得た。得られたフィルムサンプルの搬送性を、前記の方法により評価した。
 また、得られたフィルムサンプルから、任意の長さでフィルム片を切り出して、クラックの本数、水蒸気透過率、及び紫外線透過率を前記の方法により評価した。
 更に、得られたフィルムサンプルから、ダンベル形の打ち抜き刃により、JIS K7161に準じたダンベル形の試験片を切り出して、弾性率及び破断伸度を前記の方法により測定した。
 評価結果を表2に示す。
[比較例2]
 カット前フィルムの厚みを10μmとした以外は実施例1と同様にして、カット前フィルムを製造した。厚みの変更は、冷却ロールの速度を調整することにより行われた。得られたカット前フィルムを用いて比較例1と同様にしてフィルムサンプルを得て、比較例1と同様の方法により、搬送性、クラックの本数、水蒸気透過率、紫外線透過率、弾性率、及び破断伸度を評価した。
 評価結果を表2に示す。
[比較例3]
 熱可塑性樹脂Kを、前記の熱可塑性樹脂Hに変更した以外は実施例1と同様にして、カット前フィルムを製造した。得られたカット前フィルムを用いて比較例1と同様にしてフィルムサンプルを得て、比較例1と同様の方法により、搬送性、クラックの本数、水蒸気透過率、紫外線透過率、弾性率、及び破断伸度を評価した。
 評価結果を表2に示す。
[比較例4]
 熱可塑性樹脂Kを、熱可塑性樹脂PMMA(ポリメチルメタクリレート、旭化成社製「デルペット80NH」)に変更した以外は実施例1と同様にして、カット前フィルムを製造した。得られたカット前フィルムを用いて比較例1と同様にしてフィルムサンプルを得て、比較例1と同様の方法により、搬送性、クラックの本数、水蒸気透過率、紫外線透過率、弾性率、及び破断伸度を評価した。
 評価結果を表2に示す。
[比較例5]
 熱可塑性樹脂Kを、前記の熱可塑性樹脂PMMAに変更した以外は実施例1と同様にして、カット前フィルムを製造した。得られたカット前フィルムを用いて実施例1と同様にしてフィルムサンプルを得て、実施例1と同様の方法により、搬送性、クラックの本数、水蒸気透過率、紫外線透過率、弾性率、及び破断伸度を評価した。
 評価結果を表3に示す。
[比較例6]
 熱可塑性樹脂Kを、熱可塑性樹脂PE(ポリエチレン、日本ポリエチレン社製「ノバテックUF421」に変更した以外は実施例1と同様にして、カット前フィルムを製造した。得られたカット前フィルムを用いて実施例1と同様にしてフィルムサンプルを得て、実施例1と同様の方法により、搬送性、クラックの本数、水蒸気透過率、紫外線透過率、弾性率、及び破断伸度を評価した。
 評価結果を表3に示す。
 下記表中の略号は、下記の意味を表す。
K:結晶性の脂環式構造含有重合体を含む熱可塑性樹脂
K’:結晶性の脂環式構造含有重合体及び紫外線吸収剤を含む熱可塑性樹脂
H:非晶性の脂環式構造含有重合体を含む熱可塑性樹脂
PMMA:ポリメチルメタクリレート
PE:ポリエチレン
フィルムのカット:カット前フィルムの切断手段
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 以上の結果によれば、以下が分かる。
 弾性率が2000MPa以上であり、破断伸度が20%以上であり、クラックが1本未満である実施例1~4に係るフィルムは、搬送性が良好であることが分かる。
 また、カット前フィルムをレーザー光により切断して得られた実施例1~4に係るフィルムは、弾性率が2000MPa以上であり、破断伸度が20%以上であり、クラックが1本未満であって、搬送性が良好であることが分かる。
 一方、弾性率が2000MPa未満である比較例6に係るフィルム、破断伸度が20%未満である比較例1~5に係るフィルムは、搬送性が不良であることが分かる。
 また、クラックが1本以上である比較例1~4に係るフィルムは、搬送性が不良であることがわかる。
 前記結果は、本発明により、搬送性に優れたフィルムを提供できることを示す。
 100 フィルム
 110 端部
 120 端
 130 クラック
 LD 長さ方向

Claims (9)

  1.  厚みが20μm以下であり、弾性率が2000MPa以上であり、破断伸度が20%以上であるフィルム。
  2.  前記フィルムの端部において、長さ30μm以上であるクラックが、前記端部の長さ1mmあたり1本未満である、請求項1に記載のフィルム。
  3.  水蒸気透過率が、5g/(m・24h)以下である、請求項1又は2に記載のフィルム。
  4.  波長380nmの紫外線透過率が5%以下である、請求項1~3のいずれか1項に記載のフィルム。
  5.  脂環式構造含有重合体を50重量%以上含む材料で形成されている、請求項1~4のいずれか1項に記載のフィルム。
  6.  前記脂環式構造含有重合体が結晶性である、請求項5に記載のフィルム。
  7.  長尺である、請求項1~6のいずれか1項に記載のフィルム。
  8.  レーザー光により切断されている、請求項1~5のいずれか1項に記載のフィルム。
  9.  厚みが20μm以下であるカット前フィルムをレーザー光により切断して、厚みが20μm以下であり、弾性率が2000MPa以上であり、破断伸度が20%以上であるフィルムを得る工程を含む、フィルムの製造方法。
PCT/JP2019/032240 2018-08-30 2019-08-19 フィルム及びフィルムの製造方法 WO2020045138A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020539359A JPWO2020045138A1 (ja) 2018-08-30 2019-08-19 フィルム及びフィルムの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018161769 2018-08-30
JP2018-161769 2018-08-30

Publications (1)

Publication Number Publication Date
WO2020045138A1 true WO2020045138A1 (ja) 2020-03-05

Family

ID=69643534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/032240 WO2020045138A1 (ja) 2018-08-30 2019-08-19 フィルム及びフィルムの製造方法

Country Status (3)

Country Link
JP (1) JPWO2020045138A1 (ja)
TW (1) TW202023733A (ja)
WO (1) WO2020045138A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013105834A (ja) * 2011-11-11 2013-05-30 Hitachi Chemical Co Ltd 半導体装置の製造方法、半導体装置及び電子部品
WO2016031776A1 (ja) * 2014-08-28 2016-03-03 日本ゼオン株式会社 光学フィルム
WO2016080342A1 (ja) * 2014-11-19 2016-05-26 東レ株式会社 積層フィルム
JP2016138280A (ja) * 2010-07-22 2016-08-04 宇部興産株式会社 共重合ポリイミド前駆体及び共重合ポリイミド
JP2016206641A (ja) * 2015-04-17 2016-12-08 日東電工株式会社 偏光子、偏光板および偏光子の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016138280A (ja) * 2010-07-22 2016-08-04 宇部興産株式会社 共重合ポリイミド前駆体及び共重合ポリイミド
JP2013105834A (ja) * 2011-11-11 2013-05-30 Hitachi Chemical Co Ltd 半導体装置の製造方法、半導体装置及び電子部品
WO2016031776A1 (ja) * 2014-08-28 2016-03-03 日本ゼオン株式会社 光学フィルム
WO2016080342A1 (ja) * 2014-11-19 2016-05-26 東レ株式会社 積層フィルム
JP2016206641A (ja) * 2015-04-17 2016-12-08 日東電工株式会社 偏光子、偏光板および偏光子の製造方法

Also Published As

Publication number Publication date
JPWO2020045138A1 (ja) 2021-09-02
TW202023733A (zh) 2020-07-01

Similar Documents

Publication Publication Date Title
KR102145087B1 (ko) 필름
JP7020486B2 (ja) 積層フィルム
JP5913035B2 (ja) 延伸フィルムとその製造方法
JPWO2020175217A1 (ja) 樹脂フィルムの製造方法、並びに、位相差フィルム及びその製造方法
WO2020045138A1 (ja) フィルム及びフィルムの製造方法
JP6922933B2 (ja) 光学フィルム、製造方法、及び多層フィルム
WO2016002665A1 (ja) 光学フィルム及びその製造方法
JP2021053888A (ja) 樹脂フィルムの製造方法、及び、樹脂フィルム
JP2014069436A (ja) 斜め延伸フィルムとその製造方法
JP6578723B2 (ja) 積層フィルム及び、それから得られる偏光板保護フィルム
JP6834991B2 (ja) 熱可塑性樹脂積層延伸フィルム
JP6834992B2 (ja) 熱可塑性樹脂積層延伸フィルム
JPWO2018173762A1 (ja) 熱可塑性樹脂積層延伸フィルム
WO2021153695A1 (ja) 位相差フィルムの製造方法
JP2022116919A (ja) 光学フィルム、複合光学フィルム及び製造方法
WO2021107108A1 (ja) 位相差フィルム及びその製造方法
JP7103125B2 (ja) 樹脂フィルムの製造方法
WO2022145174A1 (ja) 光学フィルム及びその製造方法
KR20230121734A (ko) 광학 필름 및 그 제조 방법
CN116635209A (zh) 多层膜及其制造方法
CN116583397A (zh) 多层膜、光学膜以及制造方法
JP2022103719A (ja) 光学フィルム、その製造方法及び用途
JP2022103573A (ja) 光学フィルム及びその製造方法、並びに延伸フィルムの製造方法
JP2022103558A (ja) 多層フィルム及びその製造方法、並びに光学フィルム及びその製造方法
JP2022116820A (ja) 光学フィルムの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19855016

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020539359

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19855016

Country of ref document: EP

Kind code of ref document: A1