WO2017135335A1 - 熱可塑性樹脂積層延伸フィルム - Google Patents

熱可塑性樹脂積層延伸フィルム Download PDF

Info

Publication number
WO2017135335A1
WO2017135335A1 PCT/JP2017/003681 JP2017003681W WO2017135335A1 WO 2017135335 A1 WO2017135335 A1 WO 2017135335A1 JP 2017003681 W JP2017003681 W JP 2017003681W WO 2017135335 A1 WO2017135335 A1 WO 2017135335A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
stretched film
resin
structural unit
film according
Prior art date
Application number
PCT/JP2017/003681
Other languages
English (en)
French (fr)
Inventor
謙 田桑
小池 信行
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to CN201780009527.2A priority Critical patent/CN108602328B/zh
Priority to JP2017565606A priority patent/JP6834991B2/ja
Priority to KR1020187024930A priority patent/KR102596086B1/ko
Priority to US16/073,975 priority patent/US20190039359A1/en
Priority to EP17747487.1A priority patent/EP3412449B1/en
Publication of WO2017135335A1 publication Critical patent/WO2017135335A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • G02B5/305Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/30Drawing through a die
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0012Mechanical treatment, e.g. roughening, deforming, stretching
    • B32B2038/0028Stretching, elongating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • B32B2250/242All polymers belonging to those covered by group B32B27/32
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/418Refractive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/42Polarizing, birefringent, filtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/518Oriented bi-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2398/00Unspecified macromolecular compounds
    • B32B2398/20Thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/202LCD, i.e. liquid crystal displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2551/00Optical elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2553/00Packaging equipment or accessories not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2571/00Protective equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/03Viewing layer characterised by chemical composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/03Viewing layer characterised by chemical composition
    • C09K2323/035Ester polymer, e.g. polycarbonate, polyacrylate or polyester
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation

Definitions

  • the present invention relates to a stretched thermoplastic resin laminate film suitable for optical applications such as a polarizer protective film.
  • a polarizing plate is used to convert transmitted light into linearly polarized light.
  • a polarizing plate is composed of three layers in which a polarizer protective film is bonded to both sides of a polarizer.
  • polarizer a uniaxially oriented film in which iodine or a dye is adsorbed and dispersed in polyvinyl alcohol (hereinafter abbreviated as “PVA”) is usually used.
  • PVA polarizer has mechanical properties. Since it is low and shrinks easily due to heat and moisture, or its polarizing function is likely to deteriorate, it is used as a laminate in which a polarizer protective film is bonded on both sides.
  • This polarizer protective film has no birefringence, high light transmittance, excellent moisture resistance and heat resistance, excellent mechanical properties, adhesion to PVA polarizer The property is required to be good.
  • the polarizer protective film excellent in moisture resistance it is common to use a UV curable adhesive for adhesion between the polarizer and the polarizer protective film.
  • a UV cut property of 380 nm or less is also required for the purpose of preventing the function of the polarizer from being deteriorated at the time of UV curing. is increasing.
  • TAC triacetyl cellulose
  • the TAC film has insufficient moisture resistance, for example, in a high temperature and high humidity environment, there are problems such as peeling from the polarizer, lowering of transparency, and lowering of the degree of polarization of the polarizer.
  • TAC has a large photoelastic coefficient, it is likely to cause a phase difference change due to an external stress.
  • a large liquid crystal display device is particularly affected by distortion when actually used for a polarizing plate or a dimensional change of a bonded PVA.
  • problems such as occurrence of color unevenness and a decrease in contrast at the peripheral portion.
  • Patent Document 1 a photoelastic coefficient is obtained by using, as a main component, an acrylic copolymer having a lactone ring structural unit giving a positive phase difference and a structural unit derived from an aromatic monomer giving a negative phase difference. Discloses that a polarizer protective film having a high optical isotropy even when stretched can be obtained.
  • a large amount of UV absorber in order to obtain the required UV-cutting property with the polarizer protective film of Patent Document 1, it is necessary to add a large amount of UV absorber, so that roll contamination occurs due to bleeding out of the UV absorber during film formation, In some cases, continuous productivity was poor.
  • the acrylic copolymer of patent document 1 has high water absorption, a dimensional change and the film surface accuracy deterioration may be produced under high humidity, such as a high temperature, high humidity environment.
  • Patent Document 2 70% of the aromatic double bond of the copolymer having a molar ratio of the structural unit derived from the (meth) acrylate monomer to the structural unit derived from the aromatic vinyl monomer is 0.25 to 4. It is disclosed that a stretched film excellent in heat resistance, mechanical strength and optical isotropy can be obtained by stretching a thermoplastic transparent resin obtained by hydrogenating the above. However, even in the stretched film of Patent Document 2, in order to obtain the required UV-cutting properties, it is necessary to add a large amount of an ultraviolet absorber, and therefore roll contamination occurs due to bleeding out of the ultraviolet absorber during film formation. In some cases, continuous productivity was poor.
  • the orientation degree is high and the degree of orientation is high, so that sufficient mechanical properties are easily obtained, but birefringence is likely to increase, and the stretching temperature is too low. In some cases, the film may break during stretching.
  • the stretching temperature is high, the degree of orientation can be kept low, so that the increase in birefringence is suppressed, but sufficient mechanical properties are difficult to obtain, and if the stretching temperature is too high, the film breaks during stretching. May occur or the appearance may deteriorate.
  • the present invention is preferably used for a polarizer protective film, and has adhesiveness, stretchability, optical isotropy, mechanical strength, dimensional stability in a high humidity environment, and continuous productivity. It aims at providing the outstanding thermoplastic resin laminated stretched film.
  • thermoplastic resin laminated stretched films As a result of intensive studies to solve the above problems, the present inventors have stretched a thermoplastic resin laminate satisfying specific characteristics, thereby providing continuous productivity, adhesion, stretchability, optical isotropy, mechanical The inventors have found that a film having both strength and dimensional stability in a high humidity environment can be obtained, and the present invention has been achieved.
  • the present invention provides the following thermoplastic resin laminated stretched films.
  • (meth) acrylic acid means acrylic acid or methacrylic acid.
  • thermoplastic resin laminated stretched film having a layer containing a thermoplastic resin (B) on at least one surface of a layer containing a thermoplastic resin (A), the thermoplastic resin (A) and the thermoplastic resin
  • the intrinsic birefringence of the resin (B) is in the range of ⁇ 0.005 to 0.005, respectively, and the glass transition temperature of the thermoplastic resin (B) is 110 ° C. or higher, and the thermoplastic resin (B)
  • a thermoplastic resin laminated stretched film having a saturated water absorption of less than 1.1 wt%.
  • thermoplastic resin (B) is a (meth) acrylic acid ester structural unit (a) represented by the following general formula (1) and an aliphatic vinyl structural unit represented by the following general formula (2) ( b), and the total proportion of the (meth) acrylic ester structural unit (a) and the aliphatic vinyl structural unit (b) is based on the total of all the structural units in the thermoplastic resin (B). [1] or [2] in which the molar ratio of the (meth) acrylic ester structural unit (a) to the aliphatic vinyl structural unit (b) is 55:45 to 85:15. ]
  • the thermoplastic resin laminated stretched film of description is a (meth) acrylic acid ester structural unit (a) represented by the following general formula (1) and an aliphatic vinyl structural unit represented by the following general formula (2) ( b), and the total proportion of the (meth) acrylic ester structural unit (a) and the aliphatic vinyl structural unit (b) is based on the total of all the structural units in the thermoplastic resin (B). [
  • thermoplastic resin laminated stretched film according to [3] wherein R1 and R2 in the general formula (1) are methyl groups.
  • R4 in the general formula (2) is a cyclohexyl group.
  • the ratio of the thickness of the layer containing the thermoplastic resin (B) to the total thickness of the layer containing the thermoplastic resin (A) and the layer containing the thermoplastic resin (B) is in the range of 5 to 70%.
  • the layer containing the thermoplastic resin (A) is any one selected from the group consisting of an ultraviolet absorber, an antioxidant, an anticolorant, an antistatic agent, a release agent, a lubricant, a dye, and a pigment.
  • a polarizer protective film comprising the optical film according to [12].
  • TgB glass transition temperature
  • thermoplastic resin laminated stretched film obtained by the present invention has adhesiveness, stretchability, optical isotropy, mechanical strength, and dimensional stability in a high humidity environment. Can be suitably used. Further, the stretched thermoplastic resin stretched film of the present invention is excellent in continuous productivity even when a low molecular additive such as an ultraviolet absorber is added, because roll contamination due to bleed-out is little or not generated during film formation.
  • the thermoplastic resin laminated stretched film of the present invention is a thermoplastic resin laminated stretched film in which a layer containing a thermoplastic resin (B) is laminated on at least one surface of a layer containing a thermoplastic resin (A).
  • the intrinsic birefringence of the thermoplastic resin (A) and the thermoplastic resin (B) is in the range of ⁇ 0.005 to 0.005, and the glass transition temperature TgB of the thermoplastic resin (B). It can be produced by stretching a thermoplastic resin laminate satisfying that (° C.) is 110 ° C. or higher and the saturated water absorption of the thermoplastic resin (B) is less than 1.1 wt%.
  • the glass transition temperature in this invention is a temperature when using a differential scanning calorimetry apparatus, measuring with 10 mg of samples, a temperature increase rate of 10 degree-C / min, and calculating by the midpoint method in 2nd heating.
  • thermoplastic resin (A) used for the thermoplastic resin laminated stretched film of the present invention is not particularly limited, but when obtaining a thermoplastic resin laminated stretched film excellent in optical isotropy, the thermoplastic resin (A) is unique.
  • the birefringence is preferably ⁇ 0.005 to 0.005, and more preferably ⁇ 0.003 to 0.003.
  • the intrinsic birefringence of the thermoplastic resin (A) is in the range of ⁇ 0.005 to 0.005, the obtained stretched thermoplastic resin film exhibits excellent optical isotropy.
  • thermoplastic resin (A) examples include, for example, polymethyl methacrylate, an acrylic copolymer containing a lactone ring structure and a styrene structural unit (for example, described in Patent Document 1), a cyclic polyolefin resin, and methyl methacrylate-phenyl.
  • thermoplastic resin (A) examples include, for example, polymethyl methacrylate, an acrylic copolymer containing a lactone ring structure and a styrene structural unit (for example, described in Patent Document 1), a cyclic polyolefin resin, and methyl methacrylate-phenyl.
  • examples thereof include a maleimide-cyclohexylmaleimide copolymer and an acrylic copolymer having a glutarimide structural unit.
  • thermoplastic resin (A) used for the thermoplastic resin laminated stretched film of the present invention in addition to the thermoplastic resin (A), other resins and rubbers as long as the transparency and optical isotropy are not impaired. Particles can be blended.
  • other resins include polystyrene, methyl methacrylate-styrene copolymer resin, acrylonitrile-styrene copolymer resin, polymethyl methacrylate, methyl methacrylate-styrene-maleic anhydride copolymer resin, styrene-maleic anhydride, and the like.
  • Examples include acid copolymer resins, cyclic polyolefin resins, maleimide-modified acrylic resins, polycarbonates, polyesters, and acrylic rubber particles. Specific examples include Regisphi R-100 (manufactured by Denki Kagaku Kogyo Co., Ltd.) and XIRAN SZ15170 (manufactured by Polyscope).
  • the thermoplastic resin (B) used in the thermoplastic resin laminated stretched film of the present invention is a thermoplastic resin having a glass transition temperature TgB (° C.) of 110 ° C. or higher and a saturated water absorption of less than 1.1 wt%. It is characterized by that.
  • TgB glass transition temperature
  • the saturated water absorption is 1.1 wt% or more, the dimensional change under wet heat environment becomes large.
  • it is used as a polarizer protective film, it is not preferable because peeling from the substrate or unevenness in display quality occurs.
  • the glass transition temperature TgB (° C.) of the thermoplastic resin (B) is 110 to 160 ° C., and particularly preferably 120 to 145 ° C. More preferably, the saturated water absorption of the thermoplastic resin (B) is less than 1.0 wt%.
  • the glass transition temperature TgB (° C.) of the thermoplastic resin (B) is 110 ° C. or higher and the saturated water absorption is less than 1.1 wt%, the obtained stretched film has improved dimensional stability in a high humidity environment. It will be excellent.
  • the intrinsic birefringence of the thermoplastic resin (B) is preferably ⁇ 0.005 to 0.005, and ⁇ 0.003 to 0.
  • thermoplastic resin laminated stretched film of the present invention has excellent optical isotropy.
  • the photoelastic coefficient of the thermoplastic resin (B) is more preferably in the range of ⁇ 1.0 ⁇ 10 ⁇ 11 to 1.0 ⁇ 10 ⁇ 11 m 2 / N.
  • the photoelastic coefficient of the thermoplastic resin (B) is smaller than ⁇ 1.0 ⁇ 10 ⁇ 11 m 2 / N or larger than 1.0 ⁇ 10 ⁇ 11 m 2 / N, the thermoplastic resin (B ), The birefringence easily develops, and the change in phase difference due to external stress increases, which may be impractical depending on the application.
  • thermoplastic resin (B) examples include, for example, a vinyl copolymer resin (B1), a heat-resistant methacrylic resin having improved heat resistance by a structural unit such as maleic anhydride, a lactone ring structure, and a styrene structural unit.
  • a vinyl copolymer resin (B1) a heat-resistant methacrylic resin having improved heat resistance by a structural unit such as maleic anhydride, a lactone ring structure, and a styrene structural unit.
  • -Containing acrylic copolymer for example, described in Patent Document 1
  • cyclic polyolefin resin methyl methacrylate-phenylmaleimide-cyclohexylmaleimide copolymer
  • resin composition containing acrylic copolymer having glutarimide constituent units The vinyl copolymer resin (B1) is most preferable because of its excellent optical isotropy.
  • the vinyl copolymer resin (B1) will be described in detail.
  • the vinyl copolymer resin (B1) suitably used as the thermoplastic resin (B) in the present invention includes a structural unit (a) derived from a (meth) acrylic acid ester monomer represented by the following general formula (1) and the following general formula A thermoplastic resin comprising a structural unit (b ′) derived from an aromatic vinyl monomer represented by the formula (2 ′), wherein the structural unit (a) is the sum of the structural unit (a) and the structural unit (b ′). ) Is obtained by hydrogenating 70% or more of the aromatic double bond in the structural unit (b ′) derived from the aromatic vinyl monomer in the vinyl copolymer resin (B1 ′) having a proportion of 55 to 85 mol%. It is a thermoplastic resin.
  • the vinyl copolymer resin (B1 ′) is a thermoplastic resin before hydrogenating the aromatic double bond of the vinyl copolymer resin (B1).
  • R1 is a hydrogen atom or a methyl group
  • R2 is a hydrocarbon group having 1 to 16 carbon atoms.
  • R3 is a hydrogen atom or a methyl group
  • R4 ′ is a phenyl group or a phenyl group having a hydrocarbon substituent having 1 to 4 carbon atoms.
  • the (meth) acrylate structural unit (a) represented by the general formula (1) and the aliphatic vinyl structural unit (b) represented by the general formula (2) Is preferably in the range of 55:45 to 85:15, more preferably in the range of 60:40 to 80:20.
  • thermoplastic resin When the molar ratio of the (meth) acrylate structural unit (a) to the total of the (meth) acrylic ester structural unit (a) and the aliphatic vinyl structural unit (b) is less than 55%, a thermoplastic resin ( This is not preferable because the adhesion with the layer containing A) may be lowered. Moreover, when the molar ratio is in a range exceeding 85%, the dimensional change of the obtained stretched film in a high-humidity environment becomes large, and the accuracy of the film surface may be deteriorated.
  • the total proportion of the (meth) acrylic ester structural unit (a) and the aliphatic vinyl structural unit (b) is 90 to 100 mol% with respect to the total of all the structural units in the thermoplastic resin (B). Is preferable, and 95 to 100 mol% is more preferable.
  • R1 is a hydrogen atom or a methyl group
  • R2 is carbon. It is a hydrocarbon group of the number 1-16.
  • the plurality of R1 and R2 may be the same or different.
  • R2 is at least one selected from the group consisting of a methyl group, an ethyl group, a butyl group, a lauryl group, a stearyl group, a cyclohexyl group, and an isobornyl group.
  • ester monomer It is preferably an ester monomer.
  • methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, (meth) Examples include (meth) acrylic acid alkyl esters such as cyclohexyl acrylate and isobornyl (meth) acrylate.
  • the structural unit (a) is more preferably a structural unit derived from at least one selected from methyl methacrylate and methyl acrylate.
  • the thermoplastic resin laminated stretched film of the present invention is used.
  • the vinyl copolymer resin (B1) is excellent in transparency.
  • R3 is a hydrogen atom or a methyl group
  • R4 ′ is a phenyl group or a hydrocarbon group having 1 to 4 carbon atoms. It is a phenyl group having a group.
  • the plurality of R3 and R4 ′ may be the same or different.
  • the aromatic vinyl monomer include at least one selected from styrene, ⁇ -methylstyrene, o-methylstyrene, and p-methylstyrene.
  • the vinyl copolymer resin (B1) used in the thermoplastic resin laminated stretched film of the present invention has excellent dimensional stability in a high humidity environment. Become.
  • the vinyl copolymer resin (B1) that is suitably used as the thermoplastic resin (B) in the present invention is obtained from the aromatic vinyl monomer-derived structural unit (b ′) in the vinyl copolymer resin (B1 ′) by the method described later. It can be obtained by hydrogenating 70% or more of the total aromatic double bond.
  • a part of the aromatic double bond of the phenyl group of R4 ′ phenyl group or phenyl group having a hydrocarbon substituent having 1 to 4 carbon atoms
  • the structural unit (b ′) is present.
  • a hydrogenated structural unit may be included, and a structural unit in which R4 ′ is a phenyl group (that is, a structural unit in which the aromatic double bond of the phenyl group is not hydrogenated) may be included.
  • a structural unit in which a part of the aromatic double bond of the phenyl group of R4 ′ is hydrogenated include cyclohexane, cyclohexene, cyclohexadiene, ⁇ -methylcyclohexane, ⁇ -methylcyclohexene, ⁇ -methylcyclohexane.
  • a structural unit may be included. Among them, it is preferable to include a structural unit derived from at least one selected from cyclohexane and ⁇ -methylcyclohexane.
  • the vinyl copolymer resin (B1 ′) before the hydrogenation of the vinyl copolymer resin (B1) suitably used as the thermoplastic resin (B) in the present invention is composed of the (meth) acrylate monomer and the aromatic vinyl. It can be produced by polymerizing with a monomer. A known method can be used for the polymerization. For example, it can be produced by a bulk polymerization method, a solution polymerization method or the like. The bulk polymerization method is performed by a method in which a monomer composition containing the monomer and the polymerization initiator is continuously supplied to a complete mixing tank and continuously polymerized at 100 to 180 ° C. The monomer composition may contain a chain transfer agent as necessary.
  • the polymerization initiator is not particularly limited, but t-amylperoxy-2-ethylhexanoate, t-butylperoxy-2-ethylhexanoate, benzoyl peroxide, 1,1-di (t-hexylperoxy) -3,3,5-trimethylcyclohexane, 1,1-di (t-hexylperoxy) cyclohexane, 1,1-di (t-butylperoxy) cyclohexane, t-hexylperoxyisopropyl monocarbonate, t-amylperoxynormal Organic peroxides such as octoate, t-butylperoxyisopropyl monocarbonate, di-t-butyl peroxide, 2,2′-azobisisobutyronitrile, 2,2′-azobis (2-methylbutyronitrile) ), 2,2'-azobis (2,4-dimethylvaleronitrile) and
  • the chain transfer agent is used as necessary, and examples thereof include ⁇ -methylstyrene dimer.
  • Examples of the solvent used in the solution polymerization method include hydrocarbon solvents such as toluene, xylene, cyclohexane and methylcyclohexane, ester solvents such as ethyl acetate and methyl isobutyrate, ketone solvents such as acetone and methyl ethyl ketone, tetrahydrofuran, Examples include ether solvents such as dioxane and alcohol solvents such as methanol and isopropanol.
  • hydrocarbon solvents such as toluene, xylene, cyclohexane and methylcyclohexane
  • ester solvents such as ethyl acetate and methyl isobutyrate
  • ketone solvents such as acetone and methyl ethyl ketone
  • tetrahydrofuran examples include ether solvents such as dioxane and alcohol solvents such as methanol and isopropanol.
  • the vinyl copolymer resin (B1) suitably used as the thermoplastic resin (B) in the present invention was obtained by polymerizing a (meth) acrylate monomer and an aromatic vinyl monomer to obtain a vinyl copolymer resin (B1 ′). Later, 70% or more of the aromatic double bond in the structural unit derived from the aromatic vinyl monomer in the vinyl copolymer resin (B1 ′) is obtained by hydrogenation.
  • the solvent used for the hydrogenation reaction may be the same as or different from the polymerization solvent.
  • hydrocarbon solvents such as cyclohexane and methylcyclohexane
  • ester solvents such as ethyl acetate and methyl isobutyrate
  • ketone solvents such as acetone and methyl ethyl ketone
  • ether solvents such as tetrahydrofuran and dioxane
  • alcohol solvents such as methanol and isopropanol A solvent
  • the method for hydrogenation is not particularly limited, and a known method can be used. For example, it can be carried out batchwise or continuously with a hydrogen pressure of 3 to 30 MPa and a reaction temperature of 60 to 250 ° C. By setting the temperature to 60 ° C. or higher, the reaction time does not take too long, and by setting the temperature to 250 ° C. or lower, there is little occurrence of molecular chain cleavage or ester site hydrogenation.
  • Examples of the catalyst used in the hydrogenation reaction include metals such as nickel, palladium, platinum, cobalt, ruthenium, and rhodium or oxides or salts or complex compounds of these metals, carbon, alumina, silica, silica / alumina, and diatomaceous earth. And a solid catalyst supported on a porous carrier.
  • the vinyl copolymer resin (B1) suitably used as the thermoplastic resin (B) in the present invention is an aromatic double bond in a structural unit derived from an aromatic vinyl monomer in the vinyl copolymer resin (B1 ′). It was obtained by hydrogenating 70% or more. That is, the ratio of the aromatic double bond remaining in the structural unit derived from the aromatic vinyl monomer is 30% or less. If it is in the range exceeding 30%, the transparency of the vinyl copolymer resin (B1) is lowered, and as a result, the transparency of the stretched thermoplastic resin laminate film of the present invention may be lowered.
  • the ratio of the aromatic double bond remaining in the structural unit derived from the aromatic vinyl monomer is preferably less than 10%, more preferably less than 5%.
  • the vinyl copolymer resin (B1) is a commonly used additive such as an antioxidant, an anti-coloring agent, an ultraviolet absorber, a light diffusing agent, a flame retardant, a release agent, a lubricant, an antistatic agent, and a dye / pigment. May be included.
  • the weight average molecular weight of the vinyl copolymer resin (B1) is not particularly limited, but is preferably 40,000 to 500,000, and preferably 50,000 to 300,000 from the viewpoint of strength and moldability. Is more preferable.
  • the said weight average molecular weight is a weight average molecular weight of standard polystyrene conversion measured by gel permeation chromatography (GPC).
  • the glass transition temperature of the vinyl copolymer resin (B1) is preferably in the range of 110 to 160 ° C. More preferably, it is 120 to 145 ° C.
  • the thermoplastic resin laminated stretched film provided in the present invention may cause a dimensional change or warpage in a high temperature environment or a high humidity environment.
  • the glass transition temperature of the vinyl copolymer resin (B1) is higher than 160 ° C., the resin must be stretched at a high temperature. Therefore, when a general-purpose resin having a low glass transition temperature is used as the thermoplastic resin (A), The degree of orientation of the layer containing the thermoplastic resin (A) is difficult to increase, and sufficient mechanical properties may not be obtained.
  • the layer containing the vinyl copolymer resin (B1) suitably used as the thermoplastic resin (B) in the present invention in addition to the vinyl copolymer resin (B1), other resins are blended within a range not impairing transparency. I can do it.
  • other resins include polystyrene, methyl methacrylate-styrene copolymer resin, acrylonitrile-styrene copolymer resin, polymethyl methacrylate, polycarbonate, polyester, and the like.
  • the vinyl copolymer resin (B1) includes various commonly used antioxidants, anti-coloring agents, ultraviolet absorbers, light diffusing agents, flame retardants, mold release agents, lubricants, antistatic agents, dyes and pigments. An additive may be included.
  • thermoplastic resin (A) layer a layer containing the thermoplastic resin (A) layer
  • a layer containing the thermoplastic resin (B) may be referred to as a “thermoplastic resin (B) layer”.
  • thermoplastic resin (B) layer examples of the layer structure of the thermoplastic resin laminated stretched film of the present invention include, for example, two layers of thermoplastic resin (A) layer / thermoplastic resin (B) layer, thermoplastic resin (B) layer / thermoplastic.
  • the layer structure such as two types and three layers of resin (A) layer / thermoplastic resin (B) layer can be illustrated, but the resulting thermoplastic resin laminated stretched film has heat resistance, mechanical strength, and dimensional change in a high humidity environment.
  • thermoplastic resin (B) layer / thermoplastic resin (A) layer / thermoplastic resin (B) layer is preferable.
  • the stretched thermoplastic resin film of the present invention has heat resistance, mechanical strength, and high humidity. Excellent dimensional stability in the environment.
  • thermoplastic resin (A) layer and / or the thermoplastic resin (B) layer of the thermoplastic resin laminated stretched film of the present invention may contain an ultraviolet absorber.
  • the thermoplastic resin (B) layer / thermoplastic resin (A) layer / thermoplastic resin (B) layer is composed of two layers and three layers, and is thermoplastic. It is preferable to add an ultraviolet absorber only to the resin (A) layer.
  • the thermoplastic resin (B) layer / thermoplastic resin (A) layer / thermoplastic resin (B) layer is composed of two types and three layers, and an ultraviolet absorber is applied only to the thermoplastic resin (A) layer.
  • UV absorber examples include 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-n-octoxybenzophenone, 2-hydroxy-4-dodecyloxybenzophenone, 2 -Hydroxy-4-octadecyloxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxybenzophenone, 2,2 ', 4,4'-tetrahydroxybenzophenone
  • Benzophenone ultraviolet absorbers such as 2- (2-hydroxy-5-methylphenyl) benzotriazole, 2- (2-hydroxy-3,5-di-t-butylphenyl) benzotriazole, 2- (2-hydroxy -3-tert-butyl-5-methylphenyl) benzoto Benzotriazole
  • additives other than the ultraviolet absorber can be mixed in the thermoplastic resin (A) layer and / or the thermoplastic resin (B) layer of the thermoplastic resin laminated stretched film of the present invention.
  • additives other than ultraviolet absorbers include, for example, antioxidants, anti-colorants, antistatic agents, mold release agents, lubricants, dyes, pigments and the like.
  • the method of mixing is not particularly limited, and a method of compounding the whole amount, a method of dry blending the master batch, a method of dry blending the whole amount, and the like can be used.
  • the thermoplastic resin laminated stretched film of the present invention may be produced by a known multicolor injection molding method, film insert method, melt extrusion method, extrusion lamination method, hot press method, solution casting method, or the like.
  • the laminate can be a raw film for a stretched film (hereinafter simply referred to as a raw film). From the viewpoint of productivity, the melt extrusion method is particularly preferably used.
  • the melt extrusion method is used, the sheet may be continuously subjected to a stretching step without taking out the raw material as a sheet-like molded body as an intermediate. In this case, in the present invention, the state immediately before the film is substantially stretched is defined as the original fabric.
  • the raw material of the thermoplastic resin used in the present invention can be a known melt extrusion method, such as a T-die extrusion method, an inflation method, or the like. It is desirable to select.
  • a generally used extruder may be used, and a single-screw extruder or a multi-screw extruder may be used.
  • the extruder may have one or more vents, and may remove moisture, low molecular weight substances, and the like from the molten resin by reducing the vents.
  • a method of laminating the resin a known method such as a feed block method or a multi-manifold method can be used.
  • T-die such as a coat hanger die, a fish tail die, and a stack plate die, and any of them can be selected.
  • the resin temperature during extrusion is preferably 200 to 300 ° C. If it is less than 200 ° C., the fluidity of the resin is insufficient, and the shape of the surface of the transfer roll is not transferred, resulting in poor smoothness. On the other hand, when the temperature exceeds 300 ° C., the resin is decomposed, which causes undesirable appearance, coloring, deterioration of heat distortion resistance, deterioration of working environment due to odor, and the like. More preferably, the resin temperature during extrusion is 220 to 280 ° C. When the extrusion temperature is in the above range, the resulting raw fabric has excellent smoothness and transparency.
  • thermoplastic resin (A) and the thermoplastic resin (B) used in the present invention are substantially amorphous resins, the temperature of the cooling roll can be set widely.
  • the temperature of the cooling roll is preferably 30 ° C. above and below the glass transition temperature of the thermoplastic resin (B), more preferably glass of the thermoplastic resin (B).
  • the temperature is 20 ° C. above and below the transition temperature.
  • the thermoplastic resin laminated stretched film of the present invention can be obtained by stretching a raw material. By stretching, it is possible to obtain a stretched thermoplastic resin laminate film that has high mechanical strength, is less likely to break or break, and has excellent handling properties.
  • the stretching method is not particularly limited, and a known method can be used. Examples thereof include uniaxial stretching such as a free end uniaxial stretching method and a fixed end uniaxial stretching method, and biaxial stretching such as a simultaneous biaxial stretching method and a sequential biaxial stretching method. Biaxial stretching is preferred in that unevenness in mechanical strength can be suppressed.
  • the stretching ratio in the stretching direction is preferably in the range of 1.1 to 3.0 times, and more preferably 1.2 to 2.0 times. When it is in the range of 1.2 to 2.0 times, the effect of improving the mechanical strength is high. If it is out of the range of 1.1 to 3.0 times, the mechanical strength improvement effect may not be sufficiently obtained. Further, the draw ratio in each of the biaxial directions may be equal or may be different.
  • the stretching temperature is usually not lower than the glass transition temperature TgB (° C.) of the thermoplastic resin (B), preferably in the range of TgB + 25 (° C.) to TgB + 85 (° C.), and preferably TgB + 30 (° C.) to TgB + 60 (° C. Is more preferable.
  • the stretching temperature is lower than TgB + 25 (° C.)
  • the film may be broken, which is not preferable.
  • the stretching speed in the stretching direction is preferably in the range of 0.1 to 3.0 m / min. When it is slower than 0.1 m / min, it is difficult to increase the stretching strength, and it takes time to obtain a sufficient stretching ratio, which is not sufficient in terms of productivity. If it is faster than 3.0 m / min, the film may be broken or uneven.
  • the thickness of the stretched thermoplastic resin laminate film of the present invention is preferably in the range of 10 to 1000 ⁇ m, more preferably 20 to 200 ⁇ m. If the thickness is less than 10 ⁇ m, in the case of manufacturing by extrusion molding, a thickness accuracy defect often occurs, and breakage or the like is likely to occur at the time of stretching processing, so that the probability of production failure increases. On the other hand, if it exceeds 1000 ⁇ m, it takes time for the stretching process and the effect of improving the mechanical properties is small, which is not realistic.
  • the thickness of the thermoplastic resin laminated stretched film of the present invention can be adjusted by adjusting the film forming speed, the thickness of the T-die discharge port, the roll gap, etc. during film formation, or by adjusting the stretch ratio during stretching. Can be adjusted.
  • the ratio of the thickness of the layer containing the thermoplastic resin (B) to the total thickness of the layer containing the thermoplastic resin (A) and the layer containing the thermoplastic resin (B) in the thermoplastic resin laminated stretched film of the present invention is 5 to A range of 70% is preferable. If the thickness of the layer containing the thermoplastic resin (B) is less than 5%, the resulting thermoplastic resin laminate stretched film has a large dimensional change in a high humidity environment, and the thermoplastic resin (B) during water absorption and moisture absorption. In some cases, the mechanical strength of the layer containing the thermoplastic resin (A) cannot withstand the dimensional change of the layer containing the thermoplastic resin (A), and the layer containing the thermoplastic resin (B) may crack.
  • the ratio of the thickness of the layer containing the thermoplastic resin (B) to the total thickness of the layer containing the thermoplastic resin (A) and the layer containing the thermoplastic resin (B) is in the range of 5 to 50%.
  • thermoplastic resin laminated stretched film of the present invention may be subjected to any one or more of hard coat treatment, antireflection treatment, antifouling treatment, antistatic treatment, weather resistance treatment and antiglare treatment on one side or both sides thereof. I can do it.
  • the method for these treatments is not particularly limited, and a known method can be used. For example, a method of applying a thermosetting or photocurable film, a method of applying a reflection reducing coating, a method of depositing a dielectric thin film, a method of applying an antistatic coating, and the like can be mentioned.
  • Known coating agents can be used, for example, organic coating agents such as melamine resin, urethane resin, acrylic resin and ultraviolet curable acrylic resin, silicon coating agents such as silane compounds, and inorganic such as metal oxides.
  • organic coating agents such as melamine resin, urethane resin, acrylic resin and ultraviolet curable acrylic resin
  • silicon coating agents such as silane compounds
  • inorganic such as metal oxides.
  • the in-plane retardation Re of the thermoplastic resin laminated stretched film of the present invention is preferably in the range of 0.0 to 3.0 nm, and more preferably in the range of 0.0 to 1.0 nm.
  • the thickness direction retardation Rth of the thermoplastic resin laminated stretched film of the present invention is preferably in the range of -10.0 to 10.0 nm, and more preferably in the range of -6.0 to 6.0 nm.
  • Re and Rth can be calculated by the following equations by measuring the main refractive index nx, ny (where nx> ny) and the main refractive index nz in the thickness direction in the film plane.
  • Re (nx ⁇ ny) ⁇ d (d: film thickness)
  • Rth ((nx + ny) / 2 ⁇ nz) ⁇ d
  • thermoplastic resin laminated stretched films obtained in Examples and Comparative Examples was performed as follows.
  • the dielectric polarization difference in each binding unit of the structural unit is calculated by the molecular orbital method, and the intrinsic birefringence value is calculated as the volume average by the following Lorentz-Lorentz equation. Calculated.
  • ⁇ n 0 2 / 9 ⁇ ⁇ (n 2 +2) 2 / n ⁇ ⁇ P ⁇ d ⁇ N / M ( ⁇ n 0 : intrinsic birefringence value, ⁇ P: difference between dielectric polarizability in the molecular chain axis direction and dielectric polarizability perpendicular to the molecular chain axis, n: refractive index, d: density, N: Avogadro number, M: Molecular weight)
  • thermoplastic resin laminated stretched films obtained in the following Examples and Comparative Examples were measured using a digital micrometer (manufactured by Sony Magnescale Co., Ltd .: M-30), and obtained thermoplastic resin laminated stretched films. The average of 10 measurement points was taken as the thickness of the film.
  • ⁇ Extendability evaluation> For the raw film obtained in the following examples and comparative examples, a test piece was cut into 110 mm ⁇ 110 mm, and at a fixed-end simultaneous biaxial stretching machine, a predetermined stretching temperature, a preheating time of 40 seconds, and a stretching speed of 300 mm. / Min, with a draw ratio of 1.85 times in length and 1.85 times in width, perform biaxial stretching, and pass 9 or more out of 10 sheets that do not cause breakage or uneven thickness during stretching ( ⁇ ) Other than that, it was set as a failure (x).
  • thermoplastic resin laminated stretched films obtained in the following examples and comparative examples, the test piece was cut into 100 mm ⁇ 300 mm, and the test piece was pressed against a cylinder with a diameter of 80 mm so that the long side was in the circumferential direction, and laminated. The presence or absence of peeling at the resin interface was evaluated. The number of sheets where peeling occurred was 2 or less out of 10 sheets, which was accepted ( ⁇ ), and the others were rejected ( ⁇ ).
  • thermoplastic resin laminated stretched films obtained in the following examples and comparative examples a slow axis was detected at a measurement wavelength of 590 nm with a spectroscopic ellipsometer (manufactured by JASCO Corporation: M-220), and three-dimensional In the refractive index measurement mode (tilt angle ⁇ 8 to 8 °), the main refractive index nx, ny (where nx> ny) in the film plane and the main refractive index nz in the thickness direction are measured. Retardation Re and thickness direction retardation Rth were calculated. The in-plane retardation Re of 0.0 to 3.0 nm was determined to be acceptable ( ⁇ ), and the others were unacceptable (x).
  • a thickness direction retardation Rth of ⁇ 10.0 to 10.0 nm was determined to be acceptable ( ⁇ ), and the others were determined to be unacceptable ( ⁇ ).
  • Re (nx ⁇ ny) ⁇ d (d: film thickness)
  • Rth ((nx + ny) / 2 ⁇ nz) ⁇ d
  • thermoplastic resin laminated stretched films obtained in the following examples and comparative examples the bending angle is centered by a MIT type bending fatigue tester (manufactured by Toyo Seiki Seisakusho Co., Ltd.) in accordance with JIS P 8115. The number of bendings until breaking at 135 ° to the left and right, a load of 500 g, and a speed of 180 times / minute was measured. Those in which the number of bendings until breakage was 50 times or more were regarded as acceptable ( ⁇ ), and others were regarded as unacceptable (x).
  • thermoplastic resin laminated stretched films obtained in the following examples and comparative examples test pieces left for 24 hours or more in an environment of a temperature of 23 ° C. and a relative humidity of 50% were cut out to 120 mm square.
  • a standard line of 100 mm was drawn in the extrusion direction (MD) of the test piece and a direction perpendicular to the extrusion direction (TD), and the average value of the standard line lengths drawn in the MD direction and the TD direction was used as the initial dimension.
  • the test piece was kept in an environment of a temperature of 85 ° C. and a humidity of 85% RH for 48 hours.
  • Synthesis Example 1 [Production of vinyl copolymer resin (B1)] Purified methyl methacrylate (Mitsubishi Gas Chemical Co., Ltd.) 77.0 mol%, purified styrene (Wako Pure Chemical Industries, Ltd.) 23.0 mol%, and t-amylperoxy-2-ethyl as a polymerization initiator A monomer composition consisting of 0.002 mol% of hexanoate (Arkema Yoshitomi Co., Ltd., trade name: Luperox 575) is continuously supplied at 1 kg / h to a 10 L complete mixing tank with a helical ribbon blade, and an average residence time of 2 Continuous polymerization was carried out at a polymerization temperature of 150 ° C.
  • the obtained vinyl copolymer resin (B1 ′) was dissolved in methyl isobutyrate (manufactured by Kanto Chemical Co., Inc.) to prepare a 10 wt% methyl isobutyrate solution.
  • a 1000 mL autoclave apparatus was charged with 500 parts by weight of a 10% by weight methyl isobutyrate solution of (B1 ′) and 1 part by weight of 10% by weight Pd / C (manufactured by NE Chemcat), and maintained at a hydrogen pressure of 9 MPa and 200 ° C. for 15 hours.
  • the benzene ring site was hydrogenated.
  • the catalyst was removed by a filter and introduced into a solvent removal apparatus to obtain a pellet-like vinyl copolymer resin (B1).
  • the proportion of the methyl methacrylate structural unit was 75 mol%, and as a result of the absorbance measurement at a wavelength of 260 nm, the hydrogenation reaction rate at the benzene ring site was 99%.
  • the obtained vinyl copolymer resin (B1) had a glass transition temperature of 120 ° C. and a saturated water absorption rate of 0.9 wt%. Further, the intrinsic birefringence of the obtained vinyl copolymer resin (B1) was ⁇ 0.0003.
  • Synthesis Example 2 [Production of vinyl copolymer resin (B2)] Vinyl copolymer resin (B2) in the same manner as in Synthesis Example 1 except that the amount of methyl methacrylate used in Synthesis Example 1 was changed to 62.0 mol% and the amount of styrene used was changed to 38.0 mol%. Got. As a result of measurement by 1 H-NMR, the proportion of the methyl methacrylate structural unit was 60 mol%, and as a result of absorbance measurement at a wavelength of 260 nm, the hydrogenation reaction rate at the benzene ring site was 99%. The obtained vinyl copolymer resin (B2) had a glass transition temperature of 120 ° C. and a saturated water absorption rate of 0.6 wt%. In addition, the intrinsic birefringence of the obtained vinyl copolymer resin (B2) was +0.0021.
  • Synthesis Example 3 [Production of vinyl copolymer resin (B3)] Vinyl copolymer resin (B3) in the same manner as in Synthesis Example 1 except that the amount of methyl methacrylate used in Synthesis Example 1 was 92.0 mol% and the amount of styrene was 8.0 mol%. Got. 1 H-NMR by the result of the measurement, the proportion of methyl methacrylate structural unit is 90 mol%, the results of the absorbance measurement at the wavelength 260 nm, the hydrogenation reaction rate of the benzene ring moiety was 99%.
  • the obtained vinyl copolymer resin (B3) had a glass transition temperature of 112 ° C. and a saturated water absorption rate of 1.3 wt%. In addition, the intrinsic birefringence of the obtained vinyl copolymer resin (B3) was ⁇ 0.0027.
  • Synthesis Example 4 [Production of vinyl copolymer resin (B4)] A vinyl copolymer resin (B4) was obtained in the same manner as in Synthesis Example 1 except that the hydrogenation reaction time at the benzene ring site in Synthesis Example 1 was changed to 5 hours. As a result of measurement by 1 H-NMR, the proportion of the methyl methacrylate structural unit was 75 mol%, and as a result of absorbance measurement at a wavelength of 260 nm, the hydrogenation reaction rate at the benzene ring site was 82%. The vinyl copolymer resin (B4) obtained had a glass transition temperature of 116 ° C. and a saturated water absorption rate of 0.9 wt%. Further, the intrinsic birefringence of the obtained vinyl copolymer resin (B4) was ⁇ 0.0055.
  • thermoplastic resin (A1) 100 parts by weight of methyl methacrylate (Sumitex MG5 manufactured by Sumitomo Chemical Co., Ltd. (inherent birefringence: ⁇ 0.0043, glass transition temperature: 105 ° C.)) and 1.2 parts by weight of triazine-based ultraviolet absorber (Corporation) ADEKA ADK STAB LA-F70) is continuously introduced into a twin screw extruder with a shaft diameter of 30 mm, extruded under the conditions of a cylinder temperature of 250 ° C. and a discharge speed of 25 kg / h, and a thermoplastic resin obtained by adding an ultraviolet absorber to methyl methacrylate. (A1) was obtained.
  • Example 1 [resin (B1) / resin (A1) / resin (B1), layer ratio 1: 1: 1] Laminate using a multilayer extruder having a single screw extruder with a shaft diameter of 32 mm, a single screw extruder with a shaft diameter of 65 mm, a feed block connected to all the extruders, and a T-die connected to the feed block was molded.
  • the vinyl copolymer resin (B1) obtained in Synthesis Example 1 was continuously introduced into a single-screw extruder having a shaft diameter of 32 mm and extruded under conditions of a cylinder temperature of 250 ° C. and a discharge speed of 40.0 kg / h.
  • thermoplastic resin (A1) obtained in Production Example 1 was continuously introduced into a single screw extruder having a shaft diameter of 65 mm and extruded at a cylinder temperature of 250 ° C. and a discharge speed of 20.0 kg / h.
  • the feed block connected to the whole extruder was provided with two types and three layers of distribution pins, and the thermoplastic resin (A1) and the vinyl copolymer resin (B1) were introduced and laminated at a temperature of 250 ° C.
  • a stretched thermoplastic resin laminate film was prepared at a stretching temperature of 160 ° C., a sufficient preheating time, a stretching speed of 300 mm / min, a stretching ratio of 1.85 times in length and 1.85 times in width.
  • the ratio of the thickness of the vinyl copolymer resin (B1) to the total thickness of the plastic resin (A1) was 65%.
  • the results of continuous productivity evaluation, adhesion evaluation, stretchability evaluation, optical isotropy evaluation, mechanical strength evaluation, and dimensional stability evaluation were all good, and the overall judgment was a pass ( ⁇ ).
  • Example 2 [resin (B1) / resin (A1) / resin (B1), layer ratio 1: 3: 1]
  • the single-screw extruder having a shaft diameter of 32 mm in Example 1 was extruded under the condition of 24.0 kg / h. Further, the vinyl copolymer resin (B1) is laminated and stretched on both sides of the thermoplastic resin (A1) in the same manner as in Example 1 except that the discharge speed is 36.0 kg / h of a single screw extruder having a shaft diameter of 65 mm.
  • the obtained thermoplastic resin laminated stretched film was obtained. There was no roll contamination during continuous forming of the original fabric.
  • the ratio of the thickness of the vinyl copolymer resin (B1) to the total thickness of the plastic resin (A1) was 40%.
  • Example 3 [resin (B1) / resin (A1) / resin (B1), layer ratio 1: 4: 1]
  • the discharge speed of the single-screw extruder having a shaft diameter of 32 mm in Example 1 was extruded under the condition of 20.0 kg / h. Further, the vinyl copolymer resin (B1) is laminated on both sides of the thermoplastic resin (A1) and stretched in the same manner as in Example 1 except that the discharge speed is 40.0 kg / h of a single screw extruder having a shaft diameter of 65 mm.
  • the obtained thermoplastic resin laminated stretched film was obtained. There was no roll contamination during continuous forming of the original fabric.
  • the results of continuous productivity evaluation, adhesion evaluation, stretchability evaluation, optical isotropy evaluation, mechanical strength evaluation, and dimensional stability evaluation were all good, and the overall judgment was a pass ( ⁇ ).
  • Example 4 [resin (B1) / resin (A1) / resin (B1), layer ratio 1: 5: 1]
  • the single-screw extruder having a shaft diameter of 32 mm in Example 1 was extruded under the condition of 17.0 kg / h. Further, the vinyl copolymer resin (B1) is laminated and stretched on both sides of the thermoplastic resin (A1) in the same manner as in Example 1 except that the discharge speed of the single-screw extruder having a shaft diameter of 65 mm is 43.0 kg / h.
  • the obtained thermoplastic resin laminated stretched film was obtained. There was no roll contamination during continuous forming of the original fabric.
  • the ratio of the thickness of the vinyl copolymer resin (B1) to the total thickness of B1) and the thermoplastic resin (A1) was 28%.
  • the results of continuous productivity evaluation, adhesion evaluation, stretchability evaluation, optical isotropy evaluation, mechanical strength evaluation, and dimensional stability evaluation were all good, and the overall judgment was a pass ( ⁇ ).
  • thermoplastic resin (A1) were the same as in Example 1 except that the vinyl copolymer resin (B2) obtained in Synthesis Example 2 was introduced instead of the vinyl copolymer resin (B1) used in Example 1.
  • a thermoplastic resin laminated stretched film was obtained by laminating and stretching a vinyl copolymer resin (B2) on the substrate. There was no roll contamination during continuous forming of the original fabric.
  • the ratio of the thickness of the vinyl copolymer resin (B2) to the total thickness of the plastic resin (A1) was 40%.
  • thermoplastic resin (A1) were the same as in Example 1 except that the vinyl copolymer resin (B3) obtained in Synthesis Example 3 was introduced instead of the vinyl copolymer resin (B1) used in Example 1.
  • a thermoplastic resin laminated stretched film was obtained by laminating and stretching a vinyl copolymer resin (B3) on the substrate. There was no roll contamination during continuous forming of the original fabric.
  • the ratio of the thickness of the vinyl copolymer resin (B3) to the total thickness of the plastic resin (A1) was 40%.
  • Comparative Example 2 [resin (B4) / resin (A1) / resin (B4), layer ratio 1: 3: 1]
  • the vinyl copolymer resin (B1) was introduced on both sides of the thermoplastic resin (A1) in the same manner as in Example 1, except that the vinyl copolymer resin (B4) was introduced instead of the vinyl copolymer resin (B1) used in Example 1.
  • a thermoplastic resin laminated stretched film obtained by laminating and stretching B4) was obtained. There was no roll contamination during continuous forming of the original fabric.
  • the ratio of the thickness of the vinyl copolymer resin (B4) to the total thickness of the plastic resin (A1) was 40%.
  • thermoplastic resin (A1) obtained in Production Example 1 was continuously introduced into a single screw extruder and extruded at a cylinder temperature of 250 ° C. and a discharge speed of 50.0 kg / h. Extruded into a sheet shape with a T-die with a temperature of 250 ° C connected to the tip, cooled with three mirror rolls at temperatures of 90 ° C, 82 ° C, and 105 ° C from the upstream side, and the raw material of the thermoplastic resin (A1) Got.
  • the thickness of the obtained raw fabric was 140 ⁇ m. Roll stains occurred during continuous forming of the original fabric.
  • the obtained raw material was biaxially stretched with a fixed-end simultaneous biaxial stretching machine.
  • the thermoplastic resin (A1) is 45 ° C higher than the glass transition temperature, 150 ° C, a sufficient preheating time is provided, the stretching speed is 300 mm / min, the stretching ratio is 1.85 times longer, and 1.85 times wide.
  • Resin (A1) A stretched film was produced.
  • the thickness of the obtained thermoplastic resin (A1) stretched film was 40 ⁇ m. Although both the stretchability evaluation and the mechanical strength evaluation were good, the continuous productivity evaluation, the optical isotropy evaluation, and the dimensional stability evaluation were poor, and the overall judgment was rejected (x).

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Laminated Bodies (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Polarising Elements (AREA)

Abstract

本発明によれば、熱熱可塑性樹脂(A)を含む層の少なくとも一方の面に、熱可塑性樹脂(B)を含む層を有する熱可塑性樹脂積層延伸フィルムであって、前記熱可塑性樹脂(A)および熱可塑性樹脂(B)の固有複屈折がそれぞれ-0.005~0.005の範囲であり、かつ前記熱可塑性樹脂(B)のガラス転移温度が110℃以上であり、前記熱可塑性樹脂(B)の飽和吸水率が1.1wt%未満であることを特徴とする熱可塑性樹脂積層延伸フィルムを提供することができる。

Description

熱可塑性樹脂積層延伸フィルム
 本発明は偏光子保護フィルム等の光学用途に好適な熱可塑性樹脂積層延伸フィルムに関する。
 液晶表示装置には、透過光を直線偏光に変換するために偏光板が使用されている。一般的に偏光板は、偏光子の両面に偏光子保護フィルムが貼合された3層で構成されている。
 偏光子としては、通常、ポリビニルアルコール(以下「PVA」と略記)にヨウ素や染料を吸着・分散させた一軸配向フィルムが使用されているが、このようなPVA系偏光子は、機械的特性が低く、また、熱や水分によって収縮したり、偏光機能が低下したりしやすいため、その両面に偏光子保護フィルムが接着された積層体にして使用されている。この偏光子保護フィルムには、複屈折性を示さないこと、光線透過率が高いこと、防湿性・耐熱性が優れていること、機械的特性が優れていること、PVA系偏光子との接着性が良好であること等が要求される。また、防湿性に優れた偏光子保護フィルムを用いる場合、偏光子と偏光子保護フィルムとの接着には、UV硬化型の接着剤が使用されるのが一般的である。しかし、硬化時のUV照射によって偏光子の偏光機能が低下してしまうため、近年ではUV硬化時の偏光子の機能低下防止を目的に、380nm以下のUVカット性も合わせて要求されるケースが増えている。
 従来、偏光子保護フィルムとしては、トリアセチルセルロース(以下「TAC」と略記)フィルムが使用されていた。しかし、TACフィルムは防湿性が不充分であるため、例えば高温高湿環境下では、偏光子からの剥離、透明性の低下、偏光子の偏光度低下が発生する等の問題があった。また、TACは光弾性係数も大きいため、外部応力により位相差変化が生じやすく、例えば、実際に偏光板に使用する際の歪みや貼り合せたPVAの寸法変化によって、特に、大型の液晶表示装置において、色ムラが発生したり、周辺部のコントラストが低下したりする等の問題があった。
 特許文献1では、正の位相差を与えるラクトン環構造単位と負の位相差を与える芳香族単量体由来の構造単位とを有するアクリル系共重合体を主成分として用いることで、光弾性係数が小さく、延伸しても光学等方性が高い偏光子保護フィルムが得られることを開示している。しかしながら、特許文献1の偏光子保護フィルムで要求のUVカット性を得るためには、多量のUV吸収剤を添加する必要があるため、製膜時にUV吸収剤のブリードアウトによりロール汚れが生じ、連続生産性に乏しい場合があった。また、特許文献1のアクリル系共重合体は吸水性が高いため、高温高湿環境等の高湿度下では寸法変化やフィルム面精度悪化を生じる場合があった。
 また、特許文献2では、芳香族ビニルモノマー由来の構成単位に対する(メタ)アクリル酸エステルモノマー由来の構成単位のモル比が0.25~4である共重合体の芳香族二重結合の70%以上を水素化して得られる熱可塑性透明樹脂を延伸することにより、耐熱性、機械強度、光学等方性に優れた延伸フィルムが得られることを開示している。しかしながら、特許文献2の延伸フィルムにおいても、要求のUVカット性を得るためには、多量の紫外線吸収剤を添加する必要があるため、製膜時に紫外線吸収剤のブリードアウトによりロール汚れが生じ、連続生産性に乏しい場合があった。
 また、従来の延伸フィルムにおいては、延伸加工の際、延伸加工温度が低いと配向度が高くなるため、十分な機械物性が得られやすいが、複屈折が増大しやすく、延伸温度が低すぎる場合には延伸加工時にフィルムに破断が生じてしまう場合があった。一方で延伸加工温度が高いと、配向度が低く抑えられるため、複屈折の増大は抑えられるが、十分な機械物性が得られにくく、延伸加工温度が高すぎる場合には延伸加工時にフィルムに破断が生じたり、外観が悪化したりしてしまう場合があった。
特許第4878302号公報 特開2008-115314号公報
 本発明は以上のような状況から、偏光子保護フィルムに好適に使用される、密着性、延伸性、光学等方性、機械強度、高湿環境での寸法安定性を併せ持ち、連続生産性に優れた熱可塑性樹脂積層延伸フィルムを提供することを目的とする。
 本発明者らは、上記の課題を解決するため鋭意検討した結果、特定の特性を満たす熱可塑性樹脂積層体を延伸することにより、連続生産性、密着性、延伸性、光学等方性、機械強度、高湿環境での寸法安定性を併せ持つフィルムが得られることを見出し、本発明に到達した。本発明は、以下の熱可塑性樹脂積層延伸フィルムを提供するものである。
 なお、本明細書において「(メタ)アクリル酸」とは、アクリル酸またはメタクリル酸を意味するものとする。
[1] 熱可塑性樹脂(A)を含む層の少なくとも一方の面に、熱可塑性樹脂(B)を含む層を有する熱可塑性樹脂積層延伸フィルムであって、前記熱可塑性樹脂(A)および熱可塑性樹脂(B)の固有複屈折がそれぞれ-0.005~0.005の範囲であり、かつ前記熱可塑性樹脂(B)のガラス転移温度が110℃以上であり、前記熱可塑性樹脂(B)の飽和吸水率が1.1wt%未満であることを特徴とする熱可塑性樹脂積層延伸フィルム。
[2] 面内レタデーションReが0.0~3.0nmであり、かつ厚み方向レタデーションRthが-10.0~10.0nmの範囲である[1]に記載の熱可塑性樹脂積層延伸フィルム。
[3] 前記熱可塑性樹脂(B)が下記一般式(1)で表される(メタ)アクリル酸エステル構成単位(a)と、下記一般式(2)で表される脂肪族ビニル構成単位(b)とを含み、前記(メタ)アクリル酸エステル構成単位(a)と前記脂肪族ビニル構成単位(b)との合計割合が前記熱可塑性樹脂(B)中の全構成単位の合計に対して90~100モル%であり、前記(メタ)アクリル酸エステル構成単位(a)と前記脂肪族ビニル構成単位(b)とのモル比が55:45~85:15である[1]または[2]に記載の熱可塑性樹脂積層延伸フィルム。
Figure JPOXMLDOC01-appb-C000003
(式中、R1は水素原子またはメチル基であり、R2は炭素数1~16の炭化水素基である。)
Figure JPOXMLDOC01-appb-C000004
(式中、R3は水素原子またはメチル基であり、R4はシクロヘキシル基または炭素数1~4の炭化水素置換基を有するシクロヘキシル基である。)
[4] 前記一般式(1)のR1及びR2がメチル基である[3]に記載の熱可塑性樹脂積層延伸フィルム。
[5] 前記一般式(2)のR4がシクロヘキシル基である[3]または[4]に記載の熱可塑性樹脂積層延伸フィルム。
[6] 前記熱可塑性樹脂(A)を含む層の両面に前記熱可塑性樹脂(B)を含む層が積層されてなる[1]~[5]のいずれかに記載の熱可塑性樹脂積層延伸フィルム。
[7] 前記延伸が、二軸延伸である[1]~[6]のいずれかに記載の熱可塑性樹脂積層延伸フィルム。
[8]少なくとも1つの延伸方向への延伸倍率が1.1~3.0倍である[1]~[7]のいずれかに記載の熱可塑性樹脂積層延伸フィルム。
[9] 全体の厚さが10~1000μmである[1]~[8]のいずれかに記載の熱可塑性樹脂積層延伸フィルム。
[10] 前記熱可塑性樹脂(A)を含む層と熱可塑性樹脂(B)を含む層の合計厚みに対する前記熱可塑性樹脂(B)を含む層の厚みの割合が5~70%の範囲である[1]~[9]のいずれかに記載の熱可塑性樹脂積層延伸フィルム。
[11] 前記熱可塑性樹脂(A)を含む層が紫外線吸収剤、抗酸化剤、抗着色剤、抗帯電剤、離型剤、滑剤、染料、及び顔料からなる群より選ばれるいずれか一つ以上を含む[1]~[10]のいずれかに記載の熱可塑性樹脂積層延伸フィルム。
[12] [1]~[11]のいずれかに記載の熱可塑性樹脂積層延伸フィルムを含む光学フィルム。
[13] [12]に記載の光学フィルムを含む偏光子保護フィルム。
[14] [1]~[11]のいずれかに記載の熱可塑性樹脂積層延伸フィルムの製造方法であって、前記熱可塑性樹脂(B)のガラス転移温度TgB(℃)以上の延伸加工温度で延伸する工程を含むことを特徴とする熱可塑性樹脂積層延伸フィルムの製造方法。
 本発明により得られる熱可塑性樹脂積層延伸フィルムは、密着性、延伸性、光学等方性、機械強度、高湿環境での寸法安定性を有しているため、偏光子保護フィルム等の光学用途に好適に使用することが出来る。さらに本発明の熱可塑性樹脂積層延伸フィルムは、紫外線吸収剤等の低分子添加剤を添加しても、製膜時にブリードアウトによるロール汚れを生じることが少ないまたは無いため、連続生産性に優れる。
 以下で本発明について詳細に説明する。本発明の熱可塑性樹脂積層延伸フィルムは、熱可塑性樹脂(A)を含む層の少なくとも一方の面に、熱可塑性樹脂(B)を含む層が積層されてなる熱可塑性樹脂積層延伸フィルムである。該延伸フィルムは、前記熱可塑性樹脂(A)および熱可塑性樹脂(B)の固有複屈折が-0.005~0.005の範囲であり、かつ前記熱可塑性樹脂(B)のガラス転移温度TgB(℃)が110℃以上であり、前記熱可塑性樹脂(B)の飽和吸水率が1.1wt%未満であることを満たす熱可塑性樹脂積層体を延伸することによって製造することができる。なお、本発明におけるガラス転移温度とは、示差走査熱量測定装置を用い、試料10mg、昇温速度10℃/分で測定し、セカンドヒーティングでの中点法で算出したときの温度である。また、本発明における飽和吸水率とは、予め100℃で24時間乾燥した直径50mm、厚さ3mmの円盤状成形板を23℃の水中に浸し、定期的に取り出してその重量を測定して吸水による重量増加が無くなった時点での吸水率を下記式から計算したものである。
 吸水率(wt%)=(吸水後の成形板の質量-吸水前の成形板の質量)/吸水前の成形板の質量×100
 本発明の熱可塑性樹脂積層延伸フィルムに用いる熱可塑性樹脂(A)は、特に限定されないが、光学等方性に優れた熱可塑性樹脂積層延伸フィルムを取得する場合、熱可塑性樹脂(A)は固有複屈折が-0.005~0.005であることが好ましく、-0.003~0.003であることがより好ましい。熱可塑性樹脂(A)の固有複屈折が-0.005~0.005の範囲であることにより、得られる熱可塑性樹脂積層延伸フィルムは優れた光学等方性を示す。熱可塑性樹脂(A)の例としては、例えば、ポリメチルメタクリレート、ラクトン環構造とスチレン構成単位とを含有するアクリル系共重合体(例えば特許文献1に記載)、環状ポリオレフィン樹脂、メチルメタクリレート-フェニルマレイミド-シクロヘキシルマレイミド共重合体、グルタルイミド構成単位を有するアクリル系共重合体等が挙げられる。
 本発明の熱可塑性樹脂積層延伸フィルムに用いる熱可塑性樹脂(A)を含む層には、熱可塑性樹脂(A)の他に、透明性や光学等方性を損なわない範囲で他の樹脂およびゴム粒子をブレンドすることが出来る。他の樹脂の例としては、例えば、ポリスチレン、メタクリル酸メチル-スチレン共重合樹脂、アクリロニトリル-スチレン共重合樹脂、ポリメタクリル酸メチル、メタクリル酸メチル-スチレン-無水マレイン酸共重合樹脂、スチレン-無水マレイン酸共重合樹脂、環状ポリオレフィン樹脂、マレイミド変性アクリル樹脂、ポリカーボネート、ポリエステル、アクリルゴム粒子等が挙げられる。具体的には、レジスファイR-100(電気化学工業(株)製)、XIRAN SZ15170(Polyscope社製)等が挙げられる。
 本発明の熱可塑性樹脂積層延伸フィルムに用いる熱可塑性樹脂(B)は、ガラス転移温度TgB(℃)が110℃以上であり、かつ飽和吸水率が1.1wt%未満である熱可塑性樹脂であることを特徴とする。ガラス転移温度TgBが110℃よりも低い場合は実用上の耐熱性に乏しい場合がある。飽和吸水率が1.1wt%以上の場合は湿熱環境化での寸法変化が大きくなり、例えば偏光子保護フィルムとして使用した場合に、基材からのはがれや表示品質にムラが生じる等好ましくない。より好ましくは熱可塑性樹脂(B)のガラス転移温度TgB(℃)が110~160℃であり、特に好ましくは120~145℃である。また、より好ましくは熱可塑性樹脂(B)の飽和吸水率が1.0wt%未満である。熱可塑性樹脂(B)のガラス転移温度TgB(℃)が110℃以上であり、かつ飽和吸水率が1.1wt%未満であることにより、得られる延伸フィルムは高湿環境での寸法安定性に優れたものになる。
 さらに光学等方性に優れた熱可塑性樹脂積層延伸フィルムを取得する場合、熱可塑性樹脂(B)の固有複屈折は-0.005~0.005であることが好ましく、-0.003~0.003であることがより好ましい。熱可塑性樹脂(B)の固有複屈折が-0.005より小さい、もしくは0.005より大きい場合、延伸加工時に熱可塑性樹脂(B)を含む層で複屈折が発現してしまうため、光学等方性に優れた熱可塑性樹脂積層延伸フィルムが得られにくい。熱可塑性樹脂(A)および熱可塑性樹脂(B)の固有複屈折がともに-0.005~0.005であることにより、本発明の熱可塑性樹脂積層延伸フィルムは光学等方性に優れたものになる。また、熱可塑性樹脂(B)の光弾性係数は-1.0×10-11~1.0×10-11/Nの範囲であるとより好ましい。熱可塑性樹脂(B)の光弾性係数が-1.0×10-11/Nより小さい、もしくは1.0×10-11/Nより大きい場合、延伸加工時に熱可塑性樹脂(B)を含む層で複屈折が発現しやすくなるうえ、外部応力による位相差変化が大きくなるため、用途によっては実用的ではない場合がある。上記を満たす熱可塑性樹脂(B)の例としては、例えば、ビニル共重合樹脂(B1)、無水マレイン酸などの構成単位によって耐熱性を向上させた耐熱メタクリル樹脂、ラクトン環構造とスチレン構成単位とを含有するアクリル系共重合体(例えば特許文献1に記載)、環状ポリオレフィン樹脂、メチルメタクリレート-フェニルマレイミド-シクロヘキシルマレイミド共重合体、グルタルイミド構成単位を有するアクリル系共重合体を含有する樹脂組成物等が挙げられるが、光学等方性に優れていることから、ビニル共重合樹脂(B1)が最も好ましい。以下ではビニル共重合樹脂(B1)について詳述する。
 本発明における熱可塑性樹脂(B)として好適に用いられるビニル共重合樹脂(B1)は、下記一般式(1)で示される(メタ)アクリル酸エステルモノマー由来の構成単位(a)と、下記一般式(2’)で示される芳香族ビニルモノマー由来の構成単位(b’)とを含む熱可塑性樹脂であって、その構成単位(a)と構成単位(b’)の合計に対する構成単位(a)の割合が55~85モル%であるビニル共重合樹脂(B1’)において、芳香族ビニルモノマー由来の構成単位(b’)中の芳香族二重結合の70%以上を水素化して得られる熱可塑性樹脂である。すなわち、ビニル共重合樹脂(B1’)は、ビニル共重合樹脂(B1)の芳香族二重結合を水素化する前の熱可塑性樹脂である。
Figure JPOXMLDOC01-appb-C000005
(式中、R1は水素原子またはメチル基であり、R2は炭素数1~16の炭化水素基である。)
Figure JPOXMLDOC01-appb-C000006
(式中、R3は水素原子またはメチル基であり、R4’はフェニル基または炭素数1~4の炭化水素置換基を有するフェニル基である。)
 ビニル共重合樹脂(B1)において、前記一般式(1)で表される(メタ)アクリル酸エステル構成単位(a)と、前記一般式(2)で表される脂肪族ビニル構成単位(b)とのモル比は、55:45~85:15の範囲が好ましく、60:40~80:20の範囲がより好ましい。(メタ)アクリル酸エステル構成単位(a)と脂肪族ビニル構成単位(b)との合計に対する(メタ)アクリル酸エステル構成単位(a)のモル比が55%未満であると、熱可塑性樹脂(A)を含む層との密着性が低くなる場合があるので好ましくない。また、該モル比が85%を超える範囲であると、得られる延伸フィルムの高湿環境での寸法変化が大きくなるうえ、フィルム面の精度悪化が生じる場合があり、好ましくない。
 前記(メタ)アクリル酸エステル構成単位(a)と前記脂肪族ビニル構成単位(b)との合計割合は、前記熱可塑性樹脂(B)中の全構成単位の合計に対して90~100モル%が好ましく、95~100モル%がより好ましい。
 ビニル共重合樹脂(B1’)を構成する前記一般式(1)で表される(メタ)アクリル酸エステルモノマー由来の構成単位(a)において、R1は水素原子またはメチル基であり、R2は炭素数1~16の炭化水素基である。構成単位(a)が複数存在する場合、複数存在するR1、R2はそれぞれ同一であっても異なっていてもよい。前記(メタ)アクリル酸エステルモノマーとしては、R2がメチル基、エチル基、ブチル基、ラウリル基、ステアリル基、シクロヘキシル基、およびイソボルニル基からなる群より選ばれる少なくとも1種である(メタ)アクリル酸エステルモノマーであることが好ましく、具体的には(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸イソボルニル等の(メタ)アクリル酸アルキルエステル類が挙げられる。構成単位(a)は、より好ましくは、メタアクリル酸メチルおよびアクリル酸メチルから選ばれる少なくとも1種に由来する構成単位である。ビニル共重合樹脂(B1’)の構成単位(a)をメタアクリル酸メチルおよびアクリル酸メチルから選ばれる少なくとも1種に由来する構成単位とすることで、本発明の熱可塑性樹脂積層延伸フィルムに用いるビニル共重合樹脂(B1)は透明性に優れたものになる。
 前記一般式(2’)で表される芳香族ビニルモノマー由来の構成単位(b’)において、R3は水素原子又はメチル基であり、R4’はフェニル基又は炭素数1~4の炭化水素置換基を有するフェニル基である。構成単位(b’)が複数存在する場合、複数存在するR3、R4’はそれぞれ同一であっても異なっていてもよい。前記芳香族ビニルモノマーとしては、スチレン、α―メチルスチレン、o―メチルスチレン及びp―メチルスチレンから選ばれる少なくとも1種が挙げられる。より好ましくは、R3が水素原子、R4’がフェニル基である、スチレン由来の構成単位である。構成単位(b’)をスチレン由来の構成単位とすることで、本発明の熱可塑性樹脂積層延伸フィルムに用いるビニル共重合樹脂(B1)は、高湿環境での寸法安定性に優れたものになる。
 本発明における熱可塑性樹脂(B)として好適に用いられるビニル共重合樹脂(B1)は、後述する方法により、ビニル共重合樹脂(B1’)における芳香族ビニルモノマー由来の構成単位(b’)中の全芳香族二重結合の70%以上を水素化することにより得られる。ビニル共重合樹脂(B1)は、構成単位(b’)におけるR4’(フェニル基又は炭素数1~4の炭化水素置換基を有するフェニル基)のフェニル基の芳香族二重結合の一部が水添された構成単位を含んでよく、R4’がフェニル基である構成単位(すなわちフェニル基の芳香族二重結合が水素化していない構成単位)を含んでもよい。R4’のフェニル基の芳香族二重結合の一部が水添された構成単位としては、具体的には、シクロヘキサン、シクロヘキセン、シクロヘキサジエン、α―メチルシクロヘキサン、α―メチルシクロヘキセン、α―メチルシクロヘキサジエン、o―メチルシクロヘキサン、o―メチルシクロヘキセン、o―メチルシクロヘキサジエン、p―メチルシクロヘキサン、p―メチルシクロヘキセン、p―メチルシクロヘキサジエンに由来する構成単位が挙げられ、これらから選ばれる少なくとも1種の構成単位を含んでもよい。中でも、シクロヘキサンおよびα―メチルシクロヘキサンから選ばれる少なくとも1種に由来する構成単位を含むことが好ましい。
 本発明における熱可塑性樹脂(B)として好適に用いられるビニル共重合樹脂(B1)の水素化する前のビニル共重合樹脂(B1’)は、前記(メタ)アクリル酸エステルモノマーと、芳香族ビニルモノマーとを重合することにより製造することが出来る。重合には、公知の方法を用いることが出来るが、例えば、塊状重合法、溶液重合法などにより製造することが出来る。塊状重合法は、上記モノマー及び重合開始剤を含むモノマー組成物を完全混合槽に連続的に供給し、100~180℃で連続重合する方法等により行われる。上記モノマー組成物は、必要に応じて連鎖移動剤を含んでもよい。
 重合開始剤は特に限定されないが、t-アミルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート、過酸化ベンゾイル、1,1-ジ(t-ヘキシルペルオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ジ(t-ヘキシルペルオキシ)シクロヘキサン、1,1-ジ(t-ブチルペルオキシ)シクロヘキサン、t-ヘキシルペルオキシイソプロピルモノカーボネート、t-アミルパーオキシノルマルオクトエート、t-ブチルペルオキシイソプロピルモノカーボネート、ジ-t-ブチルパーオキサイド等の有機過酸化物、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)等のアゾ化合物が挙げられる。これらは単独で又は2種以上を組み合わせて用いることが出来る。
 連鎖移動剤は必要に応じて使用し、例えば、α-メチルスチレンダイマーが挙げられる。
 溶液重合法に用いられる溶媒としては、例えば、トルエン、キシレン、シクロヘキサン、メチルシクロヘキサン等の炭化水素系溶媒、酢酸エチル、イソ酪酸メチルなどのエステル系溶媒、アセトン、メチルエチルケトンなどのケトン系溶媒、テトラヒドロフラン、ジオキサン等のエーテル系溶媒、メタノール、イソプロパノール等のアルコール系溶媒を挙げることが出来る。
 本発明における熱可塑性樹脂(B)として好適に用いられるビニル共重合樹脂(B1)は、(メタ)アクリル酸エステルモノマーと芳香族ビニルモノマーを重合してビニル共重合樹脂(B1’)を得た後に、該ビニル共重合樹脂(B1’) における芳香族ビニルモノマー由来の構成単位中の芳香族二重結合の70%以上を水素化して得られる。上記水素化反応に用いられる溶媒は、前記の重合溶媒と同じであっても異なっていてもよい。例えば、シクロヘキサン、メチルシクロヘキサン等の炭化水素系溶媒、酢酸エチル、イソ酪酸メチル等のエステル系溶媒、アセトン、メチルエチルケトン等のケトン系溶媒、テトラヒドロフラン、ジオキサン等のエーテル系溶媒、メタノール、イソプロパノール等のアルコール系溶媒を挙げることが出来る。
 水素化の方法は特に限定されず、公知の方法を用いることが出来る。例えば、水素圧力3~30MPa、反応温度60~250℃でバッチ式あるいは連続流通式で行うことが出来る。温度を60℃以上とすることにより反応時間がかかり過ぎることがなく、また250℃以下とすることにより分子鎖の切断やエステル部位の水素化を起こすことが少ない。
 水素化反応に用いられる触媒としては、例えば、ニッケル、パラジウム、白金、コバルト、ルテニウム、ロジウム等の金属又はそれら金属の酸化物あるいは塩あるいは錯体化合物を、カーボン、アルミナ、シリカ、シリカ・アルミナ、珪藻土等の多孔性担体に担持した固体触媒等が挙げられる。
 本発明における熱可塑性樹脂(B)として好適に用いられるビニル共重合樹脂(B1)は、前記ビニル共重合樹脂(B1’)において、芳香族ビニルモノマー由来の構成単位中の芳香族二重結合の70%以上を水素化して得られたものである。即ち、芳香族ビニルモノマー由来の構成単位中に残存する芳香族二重結合の割合は30%以下である。30%を超える範囲であるとビニル共重合樹脂(B1)の透明性が低下し、その結果、本発明の熱可塑性樹脂積層延伸フィルムの透明性が低下する場合がある。上記芳香族ビニルモノマー由来の構成単位中に残存する芳香族二重結合の割合は、好ましくは10%未満の範囲であり、より好ましくは5%未満の範囲である。また、ビニル共重合樹脂(B1)は、酸化防止剤、着色防止剤、紫外線吸収剤、光拡散剤、難燃剤、離型剤、滑剤、帯電防止剤、染顔料等の、一般に用いられる添加剤を含んでも良い。
 ビニル共重合樹脂(B1)の重量平均分子量は、特に制限はないが、強度及び成形性の観点から、40,000~500,000であることが好ましく、50,000~300,000であることがより好ましい。上記重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)により測定される、標準ポリスチレン換算の重量平均分子量である。
 ビニル共重合樹脂(B1)のガラス転移温度は110~160℃の範囲であることが好ましい。より好ましくは120~145℃である。ビニル共重合樹脂(B1)のガラス転移温度が110℃未満であると、本発明で提供される熱可塑性樹脂積層延伸フィルムが高温環境あるいは高湿環境において寸法変化や反りを生じる場合がある。また、ビニル共重合樹脂(B1)のガラス転移温度が160℃より高温であると、高温で延伸加工しなければならないため、熱可塑性樹脂(A)としてガラス転移温度の低い汎用樹脂を用いる場合、熱可塑性樹脂(A)を含む層の配向度が上がりにくく、十分な機械物性を得られない場合がある。
 本発明における熱可塑性樹脂(B)として好適に用いられるビニル共重合樹脂(B1)を含む層には、ビニル共重合樹脂(B1)の他に、透明性を損なわない範囲で他の樹脂をブレンドすることが出来る。他の樹脂の例としては、例えば、ポリスチレン、メタクリル酸メチル-スチレン共重合樹脂、アクリロニトリル-スチレン共重合樹脂、ポリメタクリル酸メチル、ポリカーボネート、ポリエステル等が挙げられる。具体的には、商品名:エスチレンMS200(新日鉄住金化学(株)製)、レジスファイR-100(電気化学工業(株)製)、XIRAN SZ15170(Polyscope社製)、トーヨースチロールT080(東洋スチレン(株)製)等が挙げられる。また、ビニル共重合樹脂(B1)は、酸化防止剤、着色防止剤、紫外線吸収剤、光拡散剤、難燃剤、離型剤、滑剤、帯電防止剤、染顔料等の、一般に用いられる各種の添加剤を含んでも良い。
 以下、熱可塑性樹脂(A)を含む層を「熱可塑性樹脂(A)層」と呼び、熱可塑性樹脂(B)を含む層を「熱可塑性樹脂(B)層」と呼ぶことがある。
 本発明の熱可塑性樹脂積層延伸フィルムの層構成の例としては、例えば、熱可塑性樹脂(A)層/熱可塑性樹脂(B)層の2種2層、熱可塑性樹脂(B)層/熱可塑性樹脂(A)層/熱可塑性樹脂(B)層の2種3層のような層構成が例示出来るが、得られる熱可塑性樹脂積層延伸フィルムの耐熱性、機械強度、高湿環境での寸法変化やフィルム面精度の悪化の点から、熱可塑性樹脂(B)層/熱可塑性樹脂(A)層/熱可塑性樹脂(B)層の2種3層の構成が好ましい。上記のように熱可塑性樹脂(A)層の少なくとも一方の面に、熱可塑性樹脂(B)層を積層とすることで、本発明の熱可塑性樹脂積層延伸フィルムは耐熱性、機械強度、高湿環境での寸法安定性に優れたものになる。
 本発明の熱可塑性樹脂積層延伸フィルムの熱可塑性樹脂(A)層および/または熱可塑性樹脂(B)層は、紫外線吸収剤を含有しても良い。多量の紫外線吸収剤を添加する必要がある場合には、熱可塑性樹脂(B)層/熱可塑性樹脂(A)層/熱可塑性樹脂(B)層の2種3層の層構成とし、熱可塑性樹脂(A)層のみに紫外線吸収剤を添加するのが好ましい。上記のように熱可塑性樹脂(B)層/熱可塑性樹脂(A)層/熱可塑性樹脂(B)層の2種3層の層構成とし、熱可塑性樹脂(A)層のみに紫外線吸収剤を添加することで、製膜時に紫外線吸収剤のブリードアウトによるロール汚れが少ないかまたは発生することがなく、連続生産性に優れたものになる。添加する紫外線吸収剤としては、例えば、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-n-オクトキシベンゾフェノン、2-ヒドロキシ-4-ドデシロキシベンゾフェノン、2-ヒドロキシ-4-オクタデシロキシベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノン等のベンゾフェノン系紫外線吸収剤、2-(2-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジ-t-ブチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3-t-ブチル-5-メチルフェニル)ベンゾトリアゾール、(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノール等のベンゾトリアゾール系紫外線吸収剤、サリチル酸フェニル、2,4-ジ-t-ブチルフェニル-3,5-ジ-t-ブチル-4-ヒドロキシベンゾエート等のベンゾエート系紫外線吸収剤、ビス(2,2,6,6-テトラメチルピペリジン-4-イル)セバケート等のヒンダードアミン系紫外線吸収剤、2,4-ジフェニル-6-(2-ヒドロキシ-4-メトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-エトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-(2-ヒドロキシ-4-プロポキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-(2-ヒドロキシ-4-ブトキシフェニル)1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ブトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ヘキシルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-オクチルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ドデシルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ベンジルオキシフェニル)-1,3,5-トリアジン等のトリアジン系紫外線吸収剤等が挙げられる。混合の方法は特に限定されず、全量コンパウンドする方法、マスターバッチをドライブレンドする方法等を用いることが出来る。
 また、本発明の熱可塑性樹脂積層延伸フィルムの熱可塑性樹脂(A)層および/または熱可塑性樹脂(B)層には紫外線吸収剤以外の各種添加剤を混合することが出来る。紫外線吸収剤以外の添加剤の例としては、例えば、抗酸化剤や抗着色剤、抗帯電剤、離型剤、滑剤、染料、顔料等が挙げられる。混合の方法は特に限定されず、全量コンパウンドする方法、マスターバッチをドライブレンドする方法、全量ドライブレンドする方法等を用いることが出来る。
 本発明の熱可塑性樹脂積層延伸フィルムの製造方法としては、公知の多色射出成形法、フィルムインサート法、溶融押出法、押出ラミネート法、熱プレス法、溶液流延法等により成形した熱可塑性樹脂積層体を延伸フィルム用の原反フィルム(以降、単に原反と呼ぶ)とすることが出来る。生産性の観点から、特に溶融押出法が好適に用いられる。溶融押出法が用いられる場合には、中間体としての面状成形体として、原反を取り出さずに、連続的に延伸工程に供されることがある。この場合、本発明ではフィルムが実質的に延伸される直前の状態を原反と定義する。
 溶融押出法による原反の作製について更に詳述する。本発明に用いる熱可塑性樹脂の原反は公知の溶融押出法である、Tダイ押出法、インフレーション法等を用いることが出来るが、厚みムラの少ない原反を得るという点から、Tダイ押出法を選択することが望ましい。樹脂を溶融させる装置としては一般的に用いられる押出機を使用すればよく、単軸押出機でも多軸押出機でもよい。押出機は一つ以上のベントを有していても良く、ベントを減圧にして溶融している樹脂から水分や低分子物質等を除去しても良い。また、押出機の先端あるいは下流側には必要に応じて金網フィルターや焼結フィルター、ギヤポンプ等を設けても良い。樹脂を積層させる方法としては、フィードブロック法やマルチマニホールド法等の公知の方法を用いることが出来る。Tダイには、コートハンガーダイ、フィッシュテールダイ、スタックプレートダイ等の種類があり、いずれを選択することも出来る。
 押出時の樹脂温度は200~300℃が好ましい。200℃未満では樹脂の流動性が不足し、転写ロール表面の形状が転写されないため、平滑性に乏しいものとなってしまう。一方、300℃を超えると、樹脂が分解し、外観不良、着色、耐熱変形性の低下、臭気による作業環境の悪化等の原因となるので好ましくない。より好ましくは押出時の樹脂温度が220~280℃である。押出温度が上記範囲にある場合、得られる原反の平滑性や透明性は優れたものになる。
 Tダイから押出された溶融樹脂の冷却方法は従来公知の方法を用いることが出来るが、一般的には冷却ロールにて冷却する。本発明に使用する熱可塑性樹脂(A)および熱可塑性樹脂(B)は実質的に非晶性の樹脂であるため、冷却ロールの温度は幅広く設定することが可能である。光学等方性に優れた原反を得るには、冷却ロールの温度は熱可塑性樹脂(B)のガラス転移温度の上下30℃とするのが好ましく、さらに好ましくは熱可塑性樹脂(B)のガラス転移温度の上下20℃とする。光学等方性に優れた原反を得るには実質的に延伸されることが無いよう、装置に応じて吐出速度と引き取り速度と冷却ロールの温度をコントロールすることが好ましい。
 本発明の熱可塑性樹脂積層延伸フィルムは原反を延伸加工することで得られる。延伸加工によって、機械的強度が高まり、割れや破断を生じにくく、ハンドリング性に優れた熱可塑性樹脂積層延伸フィルムを得ることが出来る。延伸方法は特に限定されず、公知の方法を用いることが出来る。例えば、自由端一軸延伸法や固定端一軸延伸法等の一軸延伸、同時二軸延伸法や逐次二軸延伸法等の二軸延伸が挙げられる。機械強度のムラを抑制しうる点で、二軸延伸が好ましい。
 二軸延伸を行う場合、延伸方向への延伸倍率は1.1~3.0倍の範囲であるのが好ましく、1.2~2.0倍であるのがより好ましい。1.2~2.0倍の範囲内であると、機械強度の向上効果が高い。1.1~3.0倍の範囲外であると、機械強度の向上効果を十分に得られない場合がある。また、二軸方向それぞれの延伸倍率は等倍であっても良く、倍率が異なっていても良い。延伸加工温度は、通常、熱可塑性樹脂(B)のガラス転移温度TgB(℃)以上であり、TgB+25(℃)~TgB+85(℃)の範囲であるのが好ましく、TgB+30(℃)~TgB+60(℃)であるのがより好ましい。延伸加工温度がTgB+25(℃)よりも低いと、フィルムに破断が生じる場合があるため、好ましくない。また、TgB+85(℃)よりも高いと、樹脂の流動により外観が悪化する場合があるため、実用的ではない。延伸方向への延伸速度は、0.1~3.0m/minの範囲であることが好ましい。0.1m/minよりも遅いと、延伸強度が高くなりにくいうえ、十分な延伸倍率を得るために時間がかかり、生産性の点でも十分でない。3.0m/minよりも速いと、フィルムに破断や偏肉が生じる場合がある。
 本発明の熱可塑性樹脂積層延伸フィルムの厚みは、10~1000μmの範囲であることが好ましく、より好ましくは20~200μmである。10μm未満では、押出成形で製造する場合、厚み精度不良が発生することが多く、延伸加工時に破断等が起きやすいため、生産不具合の発生確率が高くなる。また、1000μmを超えると、延伸加工に時間がかかるうえ、機械物性の向上効果が小さく、現実的ではない。本発明の熱可塑性樹脂積層延伸フィルムの厚さは、原反製膜時に製膜速度、Tダイの吐出口厚み、ロール間隙等を調整したり、延伸加工時に延伸倍率を調節したりすることにより、調整出来る。
 本発明の熱可塑性樹脂積層延伸フィルムにおける熱可塑性樹脂(A)を含む層と熱可塑性樹脂(B)を含む層の厚みの合計に対する熱可塑性樹脂(B)を含む層の厚みの割合は5~70%の範囲であることが好ましい。熱可塑性樹脂(B)を含む層の厚みが5%未満であると、得られる熱可塑性樹脂積層延伸フィルムの高湿環境での寸法変化が大きくなるうえ、吸水・吸湿時に熱可塑性樹脂(B)を含む層の機械強度が熱可塑性樹脂(A)を含む層の寸法変化に耐えきれず、熱可塑性樹脂(B)を含む層にクラックを生じてしまう場合がある。熱可塑性樹脂(B)を含む層の厚みが70%を超えると、寸法変化抑制効果が小さいうえ、原反成形条件および延伸加工条件によっては機械強度が乏しくなりやすい場合がある。より好ましくは熱可塑性樹脂(A)を含む層と熱可塑性樹脂(B)を含む層の厚みの合計に対する熱可塑性樹脂(B)を含む層の厚みの割合が5~50%の範囲である。
 本発明の熱可塑性樹脂積層延伸フィルムには、その片面または両面にハードコート処理、反射防止処理、防汚処理、帯電防止処理、耐候性処理および防眩処理のいずれか一つ以上を施すことが出来る。それらの処理の方法は特に限定されず、公知の方法を用いることが出来る。例えば、熱硬化性あるいは光硬化性皮膜を塗布する方法、反射低減塗料を塗布する方法、誘電体薄膜を蒸着する方法、帯電防止塗料を塗布する方法等が挙げられる。コーティング剤は公知のものを用いることが出来、例えば、メラミン樹脂、ウレタン樹脂、アクリル樹脂、紫外線硬化型アクリル樹脂等の有機系コーティング剤、シラン化合物等のシリコン系コーティング剤、金属酸化物等の無機系コーティング剤、有機無機ハイブリッド系コーティング剤が挙げられる。
 本発明の熱可塑性樹脂積層延伸フィルムの面内レタデーションReは0.0~3.0nmの範囲であることが好ましく、0.0~1.0nmの範囲であることがより好ましい。また、本発明の熱可塑性樹脂積層延伸フィルムの厚み方向レタデーションRthは-10.0~10.0nmの範囲であることが好ましく、-6.0~6.0nmの範囲であることがより好ましい。ReおよびRthは、フィルム面内の主屈折率nx、ny(ただし、nx>ny)および厚み方向の主屈折率nzを測定し、下記式により算出できる。
  Re=(nx-ny)×d (d:フィルム厚み)
  Rth=((nx+ny)/2-nz)×d
 以下、実施例により本発明を具体的に説明する。ただし、本発明はこれらの実施例および比較例により何ら制限されるものではない。実施例および比較例で得られた熱可塑性樹脂積層延伸フィルムの評価は以下のように行った。
<共重合体の水素化率>
 以下の合成例にて得られた熱可塑性樹脂について、水素化反応前後のUVスペクトル測定における260nmの吸収の減少率により求めた。水素化反応前の樹脂の濃度C1における吸光度A1、水素化反応後の樹脂の濃度C2における吸光度A2から、以下の式より算出した。
   水素化率=100×[1-(A2×C1)/(A1×C2)]
<固有複屈折値>
 以下の合成例にて得られた熱可塑性樹脂について、分子軌道法によって、構成単位それぞれの結合単位における誘電分極差を計算し、その体積平均として下記ローレンツ-ローレンツの式によって固有複屈折値を算出した。
   Δn=2/9π×(n+2)/n×ΔP・d・N/M
(Δn:固有複屈折値、ΔP:分子鎖軸方向の誘電分極率と分子鎖軸に直角方向の誘電分極率との差、n:屈折率、d:密度、N:アボガドロ数、M:分子量)
<連続生産性評価>
 以下の実施例、比較例の原反フィルムの作製において、連続で6時間成形した後に鏡面ロール表面を目視で観察し、鏡面ロール表面に添加剤のブリードアウトに由来する汚れが生じていなかったものを合格(○)とし、それ以外を不合格(×)とした。
<厚み>
 以下の実施例、比較例にて得られた熱可塑性樹脂積層延伸フィルムについて、デジタルマイクロメーター(ソニーマグネスケール(株)製:M-30)を用いて測定し、取得した熱可塑性樹脂積層延伸フィルムの測定点10点の平均をフィルムの厚みとした。
<延伸性評価>
 以下の実施例、比較例にて得られた原反フィルムについて、試験片を110mm×110mmに切り出し、固定端同時二軸延伸機にて、所定の延伸温度、予熱時間40秒、延伸速度を300mm/分、延伸倍率を縦1.85倍、横1.85倍として、二軸延伸を行い、延伸加工時に破断や偏肉を生じない枚数が10枚中9枚以上のものを合格(○)とし、それ以外を不合格(×)とした。
<密着性評価>
 以下の実施例、比較例にて得られた熱可塑性樹脂積層延伸フィルムについて、試験片を100mm×300mmに切り出し、試験片を直径80mmの円筒に長辺が円周方向となるように押し付け、積層樹脂の界面の剥離の有無を評価した。剥離の生じる枚数が10枚中2枚以下のものを合格(○)とし、それ以外を不合格(×)とした。
<光学等方性>
 以下の実施例、比較例にて得られた熱可塑性樹脂積層延伸フィルムについて、分光エリプソメータ(日本分光(株)製:M-220)にて、測定波長590nmで遅相軸を検出し、3次元屈折率測定モード(あおり角-8~8°)で、フィルム面内の主屈折率nx、ny(ただし、nx>ny)および厚み方向の主屈折率nzを測定し、下記式により、面内レタデーションReおよび厚み方向レタデーションRthを算出した。面内レタデーションReが0.0~3.0nmのものを合格(○)とし、それ以外を不合格(×)とした。また、厚み方向レタデーションRthが-10.0~10.0nmのものを合格(○)とし、それ以外を不合格(×)とした。
  Re=(nx-ny)×d (d:フィルム厚み)
  Rth=((nx+ny)/2-nz)×d
<機械強度(耐折性)>
 以下の実施例、比較例にて得られた熱可塑性樹脂積層延伸フィルムについて、JIS P 8115に準拠し、MIT型耐折疲労試験機((株)東洋精機製作所製)により、折り曲げ角度を中心から左右に135°、荷重500g、180回/分の速度で破断するまでの折り曲げ回数を測定した。破断するまでの折り曲げ回数が50回以上であるものを合格(○)とし、それ以外を不合格(×)とした。
<吸湿時の寸法安定性>
 以下の実施例、比較例にて得られた熱可塑性樹脂積層延伸フィルムについて、温度23℃、相対湿度50%の環境に24時間以上放置した試験片を120mm四方に切り出した。試験片の押出方向(MD)および押出方向と垂直をなす方向(TD)に100mmのそれぞれ標線を引き、MD方向およびTD方向に引いた標線長さの平均値を初期寸法とした。試験片は温度85℃、湿度85%RHの環境中で48時間保持した。取り出した試験片のMD方向およびTD方向に引いた標線長さを再度測定し、その平均値を試験後寸法とし、下記式により寸法変化率を算出した。温度85℃、相対湿度85%RHでの寸法変化が-0.0~-5.0%(収縮)のものを合格(○)とし、それ以外を不合格(×)とした。
  寸法変化率(%)=((試験後寸法-初期寸法)/初期寸法)×100
合成例1〔ビニル共重合樹脂(B1)の製造〕
 精製したメタクリル酸メチル(三菱ガス化学社製)77.0モル%と、精製したスチレン(和光純薬工業社製)23.0モル%と、重合開始剤としてt-アミルパーオキシ-2-エチルヘキサノエート(アルケマ吉富社製、商品名:ルペロックス575)0.002モル%からなるモノマー組成物を、ヘリカルリボン翼付き10L完全混合槽に1kg/hで連続的に供給し、平均滞留時間2.5時間、重合温度150℃で連続重合を行った。重合槽の液面が一定となるよう底部から連続的に抜き出し、脱溶剤装置に導入してペレット状のビニル共重合樹脂(B1’)を得た。
 得られたビニル共重合樹脂(B1’)をイソ酪酸メチル(関東化学社製)に溶解し、10重量%イソ酪酸メチル溶液を調製した。1000mLオートクレーブ装置に(B1’)の10重量%イソ酪酸メチル溶液を500重量部、10重量%Pd/C(NEケムキャット社製)を1重量部仕込み、水素圧9MPa、200℃で15時間保持してベンゼン環部位を水素化した。フィルターにより触媒を除去し、脱溶剤装置に導入してペレット状のビニル共重合樹脂(B1)を得た。H-NMRによる測定の結果、メタクリル酸メチル構成単位の割合は75モル%であり、また、波長260nmにおける吸光度測定の結果、ベンゼン環部位の水素化反応率は99%であった。得られたビニル共重合樹脂(B1)のガラス転移温度は120℃、飽和吸水率は0.9wt%であった。また、得られたビニル共重合樹脂(B1)の固有複屈折は-0.0003であった。
合成例2〔ビニル共重合樹脂(B2)の製造〕
 合成例1で使用したメタクリル酸メチルの使用量を62.0モル%とし、またスチレンの使用量を38.0モル%とした以外は、合成例1と同様にしてビニル共重合樹脂(B2)を得た。H-NMRによる測定の結果、メタクリル酸メチル構成単位の割合は60モル%であり、波長260nmにおける吸光度測定の結果、ベンゼン環部位の水素化反応率は99%であった。得られたビニル共重合樹脂(B2)のガラス転移温度は120℃、飽和吸水率は0.6wt%であった。また、得られたビニル共重合樹脂(B2)の固有複屈折は+0.0021であった。
合成例3〔ビニル共重合樹脂(B3)の製造〕
 合成例1で使用したメタクリル酸メチルの使用量を92.0モル%とし、またスチレンの使用量を8.0モル%とした以外は、合成例1と同様にしてビニル共重合樹脂(B3)を得た。H-NMRによる測定の結果、メタクリル酸メチル構成単位の割合は90モル%であり、波長260nmにおける吸光度測定の結果、ベンゼン環部位の水素化反応率は99%であった。得られたビニル共重合樹脂(B3)のガラス転移温度は112℃、飽和吸水率は1.3wt%であった。また、得られたビニル共重合樹脂(B3)の固有複屈折は-0.0027であった。
合成例4〔ビニル共重合樹脂(B4)の製造〕
 合成例1でベンゼン環部位の水素化反応時間を5時間とした以外は、合成例1と同様にしてビニル共重合樹脂(B4)を得た。H-NMRによる測定の結果、メタクリル酸メチル構成単位の割合は75モル%であり、波長260nmにおける吸光度測定の結果、ベンゼン環部位の水素化反応率は82%であった。得られたビニル共重合樹脂(B4)のガラス転移温度は116℃、飽和吸水率は0.9wt%であった。また、得られたビニル共重合樹脂(B4)の固有複屈折は-0.0055であった。
製造例1〔熱可塑性樹脂(A1)の製造〕
 メタクリル酸メチル(住友化学(株)製スミペックスMG5(固有複屈折:-0.0043、ガラス転移温度:105℃))100重量部と、1.2重量部のトリアジン系紫外線吸収剤((株)ADEKA製アデカスタブLA-F70)を、軸径30mmの二軸押出機に連続導入し、シリンダ温度250℃、吐出速度25kg/hの条件で押し出し、メタクリル酸メチルに紫外線吸収剤を添加した熱可塑性樹脂(A1)を得た。
実施例1〔樹脂(B1)/樹脂(A1)/樹脂(B1)、層比1:1:1〕
 軸径32mmの単軸押出機と、軸径65mmの単軸押出機と、全押出機に連結されたフィードブロックと、フィードブロックに連結されたTダイとを有する多層押出装置を用いて積層体を成形した。軸径32mmの単軸押出機に合成例1で得たビニル共重合樹脂(B1)を連続的に導入し、シリンダ温度250℃、吐出速度40.0kg/hの条件で押し出した。また軸径65mmの単軸押出機に製造例1で得た熱可塑性樹脂(A1)を連続的に導入し、シリンダ温度250℃、吐出速度20.0kg/hで押し出した。全押出機に連結されたフィードブロックは2種3層の分配ピンを備え、温度250℃として熱可塑性樹脂(A1)とビニル共重合樹脂(B1)を導入し積層した。その先に連結された温度250℃のTダイでシート状に押し出し、上流側から温度110℃、95℃、90℃とした3本の鏡面ロールで冷却し、熱可塑性樹脂(A1)の両側にビニル共重合樹脂(B1)を積層した原反を得た。得られた原反の厚みは140μmであり、連続成形時にロール汚れの発生は無かった。得られた原反を固定端同時二軸延伸機にて、二軸延伸した。延伸温度は160℃とし、予熱時間は十分に設け、延伸速度を300mm/分、延伸倍率を縦1.85倍、横1.85倍として、熱可塑性樹脂積層延伸フィルムを作製した。得られた熱可塑性樹脂積層延伸フィルムの厚みは40μm、各層の厚みは中央付近で(B1)/(A1)/(B1)=13μm/14μm/13μmであり、ビニル共重合樹脂(B1)と熱可塑性樹脂(A1)の合計厚みに対するビニル共重合樹脂(B1)の厚みの割合は65%であった。連続生産性評価、密着性評価、延伸性評価、光学等方性評価、機械強度評価、寸法安定性評価の結果はいずれも良好であり、総合判定は合格(○)であった。
実施例2〔樹脂(B1)/樹脂(A1)/樹脂(B1)、層比1:3:1〕
 実施例1の軸径32mmの単軸押出機の吐出速度を24.0kg/hの条件で押し出した。また軸径65mmの単軸押出機の吐出速度36.0kg/hとした以外は、実施例1と同様にして熱可塑性樹脂(A1)の両側にビニル共重合樹脂(B1)を積層して延伸した熱可塑性樹脂積層延伸フィルムを得た。原反の連続成形時に、ロール汚れの発生は無かった。得られた熱可塑性樹脂積層延伸フィルムの厚みは40μm、各層の厚みは中央付近で(B1)/(A1)/(B1)=8μm/24μm/8μmであり、ビニル共重合樹脂(B1)と熱可塑性樹脂(A1)の合計厚みに対するビニル共重合樹脂(B1)の厚みの割合は40%であった。連続生産性評価、密着性評価、延伸性評価、光学等方性評価、機械強度評価、寸法安定性評価の結果はいずれも良好であり、総合判定は合格(○)であった。
実施例3〔樹脂(B1)/樹脂(A1)/樹脂(B1)、層比1:4:1〕
 実施例1の軸径32mmの単軸押出機の吐出速度を20.0kg/hの条件で押し出した。また軸径65mmの単軸押出機の吐出速度40.0kg/hとした以外は、実施例1と同様にして熱可塑性樹脂(A1)の両側にビニル共重合樹脂(B1)を積層して延伸した熱可塑性樹脂積層延伸フィルムを得た。原反の連続成形時に、ロール汚れの発生は無かった。得られた熱可塑性樹脂積層延伸フィルムの厚みは40μm、各層の厚みは中央付近で(B1)/(A1)/(B1)=6.5μm/27μm/6.5μmであり、ビニル共重合樹脂(B1)と熱可塑性樹脂(A1)の合計厚みに対するビニル共重合樹脂(B1)の厚みの割合は33%であった。連続生産性評価、密着性評価、延伸性評価、光学等方性評価、機械強度評価、寸法安定性評価の結果はいずれも良好であり、総合判定は合格(○)であった。
実施例4〔樹脂(B1)/樹脂(A1)/樹脂(B1)、層比1:5:1〕
 実施例1の軸径32mmの単軸押出機の吐出速度を17.0kg/hの条件で押し出した。また軸径65mmの単軸押出機の吐出速度43.0kg/hとした以外は、実施例1と同様にして熱可塑性樹脂(A1)の両側にビニル共重合樹脂(B1)を積層して延伸した熱可塑性樹脂積層延伸フィルムを得た。原反の連続成形時に、ロール汚れの発生は無かった。得られた熱可塑性樹脂積層延伸フィルムの厚みは40μm、各層の厚みは中央付近で(B1)/(A1)/(B1)=5.5μm/29μm/5.5μmであり、ビニル共重合樹脂(B1)と熱可塑性樹脂(A1)の合計厚みに対するビニル共重合樹脂(B1)の厚みの割合は28%であった。連続生産性評価、密着性評価、延伸性評価、光学等方性評価、機械強度評価、寸法安定性評価の結果はいずれも良好であり、総合判定は合格(○)であった。
実施例5〔樹脂(B2)/樹脂(A1)/樹脂(B2)、層比1:3:1〕
 実施例1で使用したビニル共重合樹脂(B1)の代わりに合成例2で得たビニル共重合樹脂(B2)を導入した以外は、実施例1と同様にして熱可塑性樹脂(A1)の両側にビニル共重合樹脂(B2)を積層して延伸した熱可塑性樹脂積層延伸フィルムを得た。原反の連続成形時に、ロール汚れの発生は無かった。得られた熱可塑性樹脂積層延伸フィルムの厚みは40μm、各層の厚みは中央付近で(B2)/(A1)/(B2)=8μm/24μm/8μmであり、ビニル共重合樹脂(B2)と熱可塑性樹脂(A1)の合計厚みに対するビニル共重合樹脂(B2)の厚みの割合は40%であった。連続生産性評価、密着性評価、延伸性評価、光学等方性評価、機械強度評価、寸法安定性評価の結果はいずれも良好であり、総合判定は合格(○)であった。
比較例1〔樹脂(B3)/樹脂(A1)/樹脂(B3)、層比1:3:1〕
 実施例1で使用したビニル共重合樹脂(B1)の代わりに合成例3で得たビニル共重合樹脂(B3)を導入した以外は、実施例1と同様にして熱可塑性樹脂(A1)の両側にビニル共重合樹脂(B3)を積層して延伸した熱可塑性樹脂積層延伸フィルムを得た。原反の連続成形時に、ロール汚れの発生は無かった。得られた熱可塑性樹脂積層延伸フィルムの厚みは40μm、各層の厚みは中央付近で(B3)/(A1)/(B3)=8μm/24μm/8μmであり、ビニル共重合樹脂(B3)と熱可塑性樹脂(A1)の合計厚みに対するビニル共重合樹脂(B3)の厚みの割合は40%であった。連続生産性評価、密着性評価、延伸性評価、光学等方性評価、機械強度評価の結果はいずれも良好であったものの、寸法安定性評価は不良であり、総合判定は不合格(×)であった。
比較例2〔樹脂(B4)/樹脂(A1)/樹脂(B4)、層比1:3:1〕
 実施例1で使用したビニル共重合樹脂(B1)の代わりにビニル共重合樹脂(B4)を導入した以外は、実施例1と同様にして熱可塑性樹脂(A1)の両側にビニル共重合樹脂(B4)を積層して延伸した熱可塑性樹脂積層延伸フィルムを得た。原反の連続成形時に、ロール汚れの発生は無かった。得られた熱可塑性樹脂積層延伸フィルムの厚みは40μm、各層の厚みは中央付近で(B4)/(A1)/(B4)=8μm/24μm/8μmであり、ビニル共重合樹脂(B4)と熱可塑性樹脂(A1)の合計厚みに対するビニル共重合樹脂(B4)の厚みの割合は40%であった。連続生産性評価、密着性評価、延伸性評価、機械強度評価、寸法安定性評価の結果はいずれも良好であったものの、光学等方性評価は不良であり、総合判定は不合格(×)であった。
比較例3〔樹脂(A1)〕
 軸径65mmの単軸押出機と、押出機に連結されたTダイとを有する単層押出装置を用いて単層体を成形した。単軸押出機に製造例1で得た熱可塑性樹脂(A1)を連続的に導入し、シリンダ温度250℃、吐出速度50.0kg/hで押し出した。その先に連結された温度250℃のTダイでシート状に押し出し、上流側から温度90℃、82℃、105℃とした3本の鏡面ロールで冷却し、熱可塑性樹脂(A1)の原反を得た。得られた原反の厚みは140μmであった。原反の連続成形時に、ロール汚れが発生した。得られた原反を固定端同時二軸延伸機にて、二軸延伸した。熱可塑性樹脂(A1)のガラス転移温度より45℃高い150℃とし、予熱時間は十分に設け、延伸速度を300mm/分、延伸倍率を縦1.85倍、横1.85倍として、熱可塑性樹脂(A1)延伸フィルムを作製した。得られた熱可塑性樹脂(A1)延伸フィルムの厚みは40μmであった。延伸性評価、機械強度評価はいずれも良好であったものの、連続生産性評価、光学等方性評価、寸法安定性評価は不良であり、総合判定は不合格(×)であった。
Figure JPOXMLDOC01-appb-T000007
 

Claims (14)

  1.  熱可塑性樹脂(A)を含む層の少なくとも一方の面に、熱可塑性樹脂(B)を含む層を有する熱可塑性樹脂積層延伸フィルムであって、前記熱可塑性樹脂(A)および熱可塑性樹脂(B)の固有複屈折がそれぞれ-0.005~0.005の範囲であり、かつ前記熱可塑性樹脂(B)のガラス転移温度が110℃以上であり、前記熱可塑性樹脂(B)の飽和吸水率が1.1wt%未満であることを特徴とする熱可塑性樹脂積層延伸フィルム。
  2.  面内レタデーションReが0.0~3.0nmであり、かつ厚み方向レタデーションRthが-10.0~10.0nmの範囲である請求項1に記載の熱可塑性樹脂積層延伸フィルム。
  3.  前記熱可塑性樹脂(B)が下記一般式(1)で表される(メタ)アクリル酸エステル構成単位(a)と、下記一般式(2)で表される脂肪族ビニル構成単位(b)とを含み、前記(メタ)アクリル酸エステル構成単位(a)と前記脂肪族ビニル構成単位(b)との合計割合が前記熱可塑性樹脂(B)中の全構成単位の合計に対して90~100モル%であり、前記(メタ)アクリル酸エステル構成単位(a)と前記脂肪族ビニル構成単位(b)とのモル比が55:45~85:15である請求項1または2に記載の熱可塑性樹脂積層延伸フィルム。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1は水素原子またはメチル基であり、R2は炭素数1~16の炭化水素基である。)
    Figure JPOXMLDOC01-appb-C000002
    (式中、R3は水素原子またはメチル基であり、R4はシクロヘキシル基または炭素数1~4の炭化水素置換基を有するシクロヘキシル基である。)
  4.  前記一般式(1)のR1及びR2がメチル基である請求項3に記載の熱可塑性樹脂積層延伸フィルム。
  5.  前記一般式(2)のR4がシクロヘキシル基である請求項3または4に記載の熱可塑性樹脂積層延伸フィルム。
  6.  前記熱可塑性樹脂(A)を含む層の両面に前記熱可塑性樹脂(B)を含む層を有する請求項1~5のいずれかに記載の熱可塑性樹脂積層延伸フィルム。
  7.  前記延伸が、二軸延伸である請求項1~6のいずれかに記載の熱可塑性樹脂積層延伸フィルム。
  8.  少なくとも1つの延伸方向への延伸倍率が1.1~3.0倍である請求項1~7のいずれかに記載の熱可塑性樹脂積層延伸フィルム。
  9.  全体の厚さが10~1000μmである請求項1~8のいずれかに記載の熱可塑性樹脂積層延伸フィルム。
  10.  前記熱可塑性樹脂(A)を含む層と熱可塑性樹脂(B)を含む層の合計厚みに対する前記熱可塑性樹脂(B)を含む層の厚みの割合が5~70%の範囲である請求項1~9のいずれかに記載の熱可塑性樹脂積層延伸フィルム。
  11.  前記熱可塑性樹脂(A)を含む層が紫外線吸収剤、抗酸化剤、抗着色剤、抗帯電剤、離型剤、滑剤、染料、及び顔料からなる群より選ばれるいずれか一つ以上を含む請求項1~10のいずれかに記載の熱可塑性樹脂積層延伸フィルム。
  12.  請求項1~11のいずれかに記載の熱可塑性樹脂積層延伸フィルムを含む光学フィルム。
  13.  請求項12に記載の光学フィルムを含む偏光子保護フィルム。
  14.  請求項1~11のいずれかに記載の熱可塑性樹脂積層延伸フィルムの製造方法であって、前記熱可塑性樹脂(B)のガラス転移温度TgB(℃)以上の延伸加工温度で延伸する工程を含むことを特徴とする熱可塑性樹脂積層延伸フィルムの製造方法。
PCT/JP2017/003681 2016-02-05 2017-02-02 熱可塑性樹脂積層延伸フィルム WO2017135335A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201780009527.2A CN108602328B (zh) 2016-02-05 2017-02-02 热塑性树脂叠层拉伸膜
JP2017565606A JP6834991B2 (ja) 2016-02-05 2017-02-02 熱可塑性樹脂積層延伸フィルム
KR1020187024930A KR102596086B1 (ko) 2016-02-05 2017-02-02 열가소성 수지 적층 연신 필름
US16/073,975 US20190039359A1 (en) 2016-02-05 2017-02-02 Stretched multilayer thermoplastic resin film
EP17747487.1A EP3412449B1 (en) 2016-02-05 2017-02-02 Stretched multilayer thermoplastic resin film

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-021139 2016-02-05
JP2016021139 2016-02-05
JP2016-171668 2016-09-02
JP2016171668 2016-09-02

Publications (1)

Publication Number Publication Date
WO2017135335A1 true WO2017135335A1 (ja) 2017-08-10

Family

ID=59500730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003681 WO2017135335A1 (ja) 2016-02-05 2017-02-02 熱可塑性樹脂積層延伸フィルム

Country Status (7)

Country Link
US (1) US20190039359A1 (ja)
EP (1) EP3412449B1 (ja)
JP (1) JP6834991B2 (ja)
KR (1) KR102596086B1 (ja)
CN (1) CN108602328B (ja)
TW (1) TWI770005B (ja)
WO (1) WO2017135335A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018173762A1 (ja) * 2017-03-22 2018-09-27 三菱瓦斯化学株式会社 熱可塑性樹脂積層延伸フィルム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000266901A (ja) * 1999-03-17 2000-09-29 Hitachi Chem Co Ltd 光学用共重合体、光学用共重合体の製造方法、及び光学用部品
JP2006106185A (ja) * 2004-10-01 2006-04-20 Kuraray Co Ltd 光拡散性多層板
WO2011162183A1 (ja) * 2010-06-21 2011-12-29 三菱瓦斯化学株式会社 熱可塑性樹脂積層体
JP2013114198A (ja) * 2011-11-30 2013-06-10 Keio Gijuku 光学フィルム、光学フィルム用樹脂材料及び画像表示装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4878302U (ja) 1971-12-27 1973-09-27
JP2000264928A (ja) * 1999-03-17 2000-09-26 Hitachi Chem Co Ltd 光学用共重合体、光学用共重合体の製造方法、及び光学用部品
KR20020026474A (ko) * 1999-06-28 2002-04-10 이사오 우치가사키 저흡습 저복굴절 수지 조성물, 이로부터 수득된 성형재,시트 또는 필름 및 광학용 부품
JP2005300967A (ja) * 2004-04-13 2005-10-27 Mitsubishi Gas Chem Co Inc 背面投射型スクリーン
EP2813522B1 (en) * 2004-05-31 2018-05-02 Mitsubishi Gas Chemical Company, Inc. Thermoplastic transparent resin
WO2007069474A1 (ja) * 2005-12-12 2007-06-21 Konica Minolta Opto, Inc. 偏光板の製造方法、偏光板及び液晶表示装置
JP5252611B2 (ja) * 2006-09-15 2013-07-31 日東電工株式会社 位相差フィルム、光学積層体、液晶パネル、及び液晶表示装置
JP2008115314A (ja) 2006-11-07 2008-05-22 Mitsubishi Gas Chem Co Inc 延伸フィルム
JP2009196125A (ja) * 2008-02-19 2009-09-03 Mitsubishi Gas Chem Co Inc 熱可塑性樹脂積層体
JP2010113054A (ja) * 2008-11-05 2010-05-20 Nippon Shokubai Co Ltd 偏光板
JP5011450B2 (ja) * 2009-07-24 2012-08-29 帝人化成株式会社 光学レンズ用ポリエステルカーボネート共重合体および光学レンズ
CN104245311A (zh) * 2012-04-17 2014-12-24 三菱瓦斯化学株式会社 层叠体
KR20150079630A (ko) * 2012-10-26 2015-07-08 니폰 제온 가부시키가이샤 적층체 및 그의 제조 방법, 위상차 필름, 편광판, 및 ips 액정 패널
TWI515252B (zh) * 2013-04-05 2016-01-01 Kaneka Corp Resin composition, and film thereof
JP2015212818A (ja) * 2014-04-16 2015-11-26 三菱化学株式会社 位相差フィルム、円偏光板及び画像表示装置
WO2015159929A1 (ja) * 2014-04-16 2015-10-22 三菱化学株式会社 位相差フィルム、円偏光板及び画像表示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000266901A (ja) * 1999-03-17 2000-09-29 Hitachi Chem Co Ltd 光学用共重合体、光学用共重合体の製造方法、及び光学用部品
JP2006106185A (ja) * 2004-10-01 2006-04-20 Kuraray Co Ltd 光拡散性多層板
WO2011162183A1 (ja) * 2010-06-21 2011-12-29 三菱瓦斯化学株式会社 熱可塑性樹脂積層体
JP2013114198A (ja) * 2011-11-30 2013-06-10 Keio Gijuku 光学フィルム、光学フィルム用樹脂材料及び画像表示装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018173762A1 (ja) * 2017-03-22 2018-09-27 三菱瓦斯化学株式会社 熱可塑性樹脂積層延伸フィルム
JPWO2018173762A1 (ja) * 2017-03-22 2020-01-30 三菱瓦斯化学株式会社 熱可塑性樹脂積層延伸フィルム
JP7040515B2 (ja) 2017-03-22 2022-03-23 三菱瓦斯化学株式会社 熱可塑性樹脂積層延伸フィルム

Also Published As

Publication number Publication date
TWI770005B (zh) 2022-07-11
EP3412449B1 (en) 2020-11-04
JP6834991B2 (ja) 2021-02-24
KR102596086B1 (ko) 2023-10-30
TW201800249A (zh) 2018-01-01
CN108602328B (zh) 2020-07-31
CN108602328A (zh) 2018-09-28
EP3412449A1 (en) 2018-12-12
JPWO2017135335A1 (ja) 2018-12-06
EP3412449A4 (en) 2019-08-07
KR20180104737A (ko) 2018-09-21
US20190039359A1 (en) 2019-02-07

Similar Documents

Publication Publication Date Title
JP2014182274A (ja) 偏光板、液晶表示装置、および液晶表示装置の製造方法。
KR20160062901A (ko) 편광소자 보호필름 및 이를 포함하는 편광판
JP6834991B2 (ja) 熱可塑性樹脂積層延伸フィルム
JP6834992B2 (ja) 熱可塑性樹脂積層延伸フィルム
JP7040515B2 (ja) 熱可塑性樹脂積層延伸フィルム
JP2019028385A (ja) 易接着性光学フィルム
WO2016002665A1 (ja) 光学フィルム及びその製造方法
JP2013154546A (ja) 積層体およびそれを備えた保護部材
JP2019072946A (ja) 熱可塑性樹脂積層フィルム
WO2019026512A1 (ja) 合成樹脂積層延伸フィルム
JP6668826B2 (ja) 熱可塑性樹脂積層体
JP2024008420A (ja) 一軸延伸シートおよびその応用
JP2019094447A (ja) 熱可塑性透明樹脂組成物延伸フィルム
JP2019094446A (ja) 熱可塑性透明樹脂組成物延伸フィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17747487

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017565606

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187024930

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017747487

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017747487

Country of ref document: EP

Effective date: 20180905