JP2019028385A - 易接着性光学フィルム - Google Patents

易接着性光学フィルム Download PDF

Info

Publication number
JP2019028385A
JP2019028385A JP2017150499A JP2017150499A JP2019028385A JP 2019028385 A JP2019028385 A JP 2019028385A JP 2017150499 A JP2017150499 A JP 2017150499A JP 2017150499 A JP2017150499 A JP 2017150499A JP 2019028385 A JP2019028385 A JP 2019028385A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
optical film
resin
structural unit
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017150499A
Other languages
English (en)
Inventor
謙 田桑
Ken Takuwa
謙 田桑
紀明 越智
Noriaki Ochi
紀明 越智
樹 乳井
Tatsuki Chichii
樹 乳井
浩隆 鶴谷
Hirotaka Tsuruya
浩隆 鶴谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2017150499A priority Critical patent/JP2019028385A/ja
Publication of JP2019028385A publication Critical patent/JP2019028385A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Laminated Bodies (AREA)

Abstract

【課題】 偏光子保護フィルムに好適に使用される、光学等方性、機械強度、高湿環境での寸法安定性を併せ持ち、偏光子および親水性接着剤との接着性、アンチブロッキング性に優れた光学フィルムを提供すること。【解決手段】 熱可塑性樹脂積層延伸フィルム(I)の少なくとも一方の面に易接着層(II)を有する光学フィルムであって、前記熱可塑性樹脂積層延伸フィルム(I)が熱可塑性樹脂(A)を含む層の両面に、熱可塑性樹脂(B)を含む層を有し、前記熱可塑性樹脂(A)および熱可塑性樹脂(B)の固有複屈折がそれぞれ−0.005〜0.005の範囲であり、前記熱可塑性樹脂(B)のガラス転移温度が110℃以上であり、前記熱可塑性樹脂(B)の飽和吸水率が1.1wt%未満であり、かつ前記易接着層(II)がカルボキシル基を有するポリウレタン樹脂(a)、架橋剤(b)、アンチブロッキング剤(c)を含有する易接着剤組成物であることを特徴とする光学フィルム。【選択図】 なし

Description

本発明は偏光子保護フィルム等の光学用途に好適な光学フィルムに関する。
液晶表示装置には、透過光を直線偏光に変換するために偏光板が使用されている。一般的に偏光板は、偏光子の両面に偏光子保護フィルムが貼合された少なくとも3層で構成されている。
偏光子としては、通常、ポリビニルアルコール(以下「PVA」と略記)にヨウ素や染料を吸着・分散させた一軸配向フィルムが使用されているが、このようなPVA系偏光子は、機械的特性が低く、また、熱や水分によって収縮したり、偏光機能が低下したりしやすいため、その両面に偏光子保護フィルムが接着された積層体にして使用されている。この偏光子保護フィルムには、複屈折性を示さないこと、光線透過率が高いこと、防湿性・耐熱性が優れていること、機械強度が優れていること、打ち抜き加工性が優れていること、PVA系偏光子との接着性が良好であること等が要求される。
従来、偏光子保護フィルムとしては、トリアセチルセルロース(以下「TAC」と略記)フィルムが使用されていた。しかし、TACフィルムは防湿性が不充分であるため、例えば高温高湿環境下では、偏光子からの剥離、透明性の低下、偏光子の偏光度低下が発生する等の問題があった。また、TACは光弾性係数も大きいため、外部応力により位相差変化が生じやすく、例えば、実際に偏光板に使用する際の歪みや貼り合せたPVAの寸法変化によって、特に、大型の液晶表示装置において、色ムラが発生したり、周辺部のコントラストが低下したりする等の問題があった。
近年では、光学物性や防湿性に優れる点で、アクリル系樹脂フィルムが用いられるケースが増加しているが、アクリル系樹脂フィルムは機械強度が低いことから、二軸延伸処理を施して機械強度を付与する方法が用いられている。
特許文献1では、正の位相差を与えるラクトン環構造単位と負の位相差を与える芳香族単量体由来の構造単位とを有するアクリル系共重合体を主成分として用いることで、光弾性係数が小さく、延伸しても光学等方性が高い偏光子保護フィルムが得られることを開示している。しかしながら、特許文献1のアクリル系共重合体は吸水性が高いため、高温高湿環境下では寸法変化やフィルム面精度悪化を生じる場合があった。
特許文献2〜3では、一般にアクリル系樹脂フィルムは、TACフィルムと比較し、偏光子や親水性接着剤との親和性が乏しいことから、接着性を向上させるために、アクリル系樹脂フィルムに親水化処理(コロナ放電処理やプラズマ処理)を施すことや、易接着層を設けることが提案されている。しかしながら、高温高湿環境下では、ロール状態でブロッキングを生じる場合があるうえ、アクリル系樹脂と易接着層の接着性が低下する問題があった。
また、特に打ち抜き性が必要とされる用途では、弾性体粒子を含むアクリル系樹脂フィルムが適用される場合があるが、弾性体粒子を含むアクリル系樹脂の場合、弾性体粒子を含まないアクリル系樹脂と比較して、偏光子や親水性接着剤との密着性が不足する問題があった。
また、従来の延伸フィルムにおいては、延伸加工の際、延伸温度が低いと配向度が高くなるため、十分な機械物性が得られやすいが、複屈折が増大しやすく、延伸温度が低すぎる場合には延伸加工時にフィルムに破断が生じてしまう場合があった。一方で延伸温度が高いと、配向度が低く抑えられるため、複屈折の増大は抑えられるが、十分な機械物性が得られにくく、延伸加工温度が高すぎる場合には延伸加工時にフィルムに破断が生じたり、外観が悪化したりしてしまう場合があった。また、従来の延伸フィルムにおいては、機械物性を上げるために配向度を十分に高くする場合、同時にフィルム厚み方向での裂けやすさが増大するため、打ち抜き加工時にクラックや厚み方向での裂けに由来する外観不良を生じる場合があった。
特許第4878302号公報 特開2007−127893号公報 特開2008−216910号公報
本発明は以上のような状況から、偏光子保護フィルムに好適に使用される、光学等方性、機械強度、高湿環境での寸法安定性、偏光子や親水性接着剤との易接着性、アンチブロッキング性を併せ持つ光学フィルムを提供することを目的とする。
本発明者らは、上記の課題を解決するため鋭意検討した結果、特定の特性を満たす熱可塑性樹脂積層延伸フィルムに、カルボキシル基を有するポリウレタン樹脂、架橋剤、アンチブロッキング剤を有する易接着剤組成物から成る易接着層を形成することにより、光学等方性、機械強度、高湿環境での寸法安定性、偏光子や親水性接着剤との易接着性、アンチブロッキング性を併せ持つフィルムが得られることを見出し、本発明に到達した。本発明は、以下の光学フィルムを提供するものである。
なお、本明細書において「(メタ)アクリル酸」とは、アクリル酸またはメタクリル酸を意味するものとする。
[1] 熱可塑性樹脂積層延伸フィルム(I)の少なくとも一方の面に易接着層(II)を有する光学フィルムであって、前記熱可塑性樹脂積層延伸フィルム(I)が熱可塑性樹脂(A)を含む層の両面に、熱可塑性樹脂(B)を含む層を有し、前記熱可塑性樹脂(A)および熱可塑性樹脂(B)の固有複屈折がそれぞれ−0.005〜0.005の範囲であり、前記熱可塑性樹脂(B)のガラス転移温度が110℃以上であり、前記熱可塑性樹脂(B)の飽和吸水率が1.1wt%未満であり、かつ前記易接着層(II)がカルボキシル基を有するポリウレタン樹脂(a)、架橋剤(b)、アンチブロッキング剤(c)を含有する易接着剤組成物であることを特徴とする光学フィルム。
[2] 前記易接着層(II)に含まれる架橋剤(b)がカルボジイミド系化合物である[1]に記載の光学フィルム。
[3] 前記熱可塑性樹脂(A)を含む層が弾性体粒子(C)を含有する[1]または[2]に記載の光学フィルム。
[4] 波長590nmにおける面内レタデーションReが0.0〜3.0nmであり、かつ厚み方向レタデーションRthが−10.0〜10.0nmの範囲である[1]〜[3]のいずれかに記載の光学フィルム。
[5] 前記熱可塑性樹脂(B)が下記一般式(1)で表される(メタ)アクリル酸エステル構成単位(a)と、下記一般式(2)で表される脂肪族ビニル構成単位(b)とを含み、前記(メタ)アクリル酸エステル構成単位(a)と前記脂肪族ビニル構成単位(b)との合計割合が前記熱可塑性樹脂(B)中の全構成単位の合計に対して90〜100モル%であり、前記(メタ)アクリル酸エステル構成単位(a)と前記脂肪族ビニル構成単位(b)とのモル比が55:45〜85:15である[1]〜[4]のいずれかに記載の光学フィルム。
Figure 2019028385
(式中、R1は水素原子またはメチル基であり、R2はヒドロキシル基およびアルコキシ基から選ばれる置換基を有していても良い、炭素数1〜18の炭化水素基である。)
Figure 2019028385
(式中、R3は水素原子またはメチル基であり、R4は炭素数1〜4の炭化水素基、ヒドロキシル基、アルコキシ基およびハロゲン原子から選ばれる置換基を有していても良い、シクロヘキシル基である。)
[6] 前記一般式(1)のR1及びR2がメチル基である[5]に記載の光学フィルム。
[7] 前記一般式(2)のR4がシクロヘキシル基である[5]または[6]に記載の光学フィルム。
[8] 前記弾性体粒子(C)がメタクリル酸メチル構成単位およびアクリル酸アルキルエステル構成単位を含む[1]〜[7]のいずれかに記載の光学フィルム。
[9] 前記熱可塑性樹脂積層延伸フィルム(I)が、二軸延伸フィルムである[1]〜[8]のいずれかに記載の光学フィルム。
[10] 前記熱可塑性樹脂(A)を含む層が紫外線吸収剤、抗酸化剤、抗着色剤、抗帯電剤、離型剤、滑剤、染料、及び顔料からなる群より選ばれるいずれか一つ以上を含む[1]〜[9]のいずれかに記載の光学フィルム。
[11] [1]〜[10]のいずれかに記載の光学フィルムを含む偏光子保護フィルム。
[12] [11]に記載の偏光子保護フィルムおよび偏光子を有する偏光板。
本発明により得られる光学フィルムは、光学等方性、機械強度、高湿環境での寸法安定性、偏光子や親水性接着剤との易接着性、アンチブロッキング性を併せ持つため、偏光子保護フィルム等の光学用途に好適に使用することが出来る。
以下で本発明について詳細に説明する。本発明の光学フィルムは、熱可塑性樹脂(A)を含む層の両面に、熱可塑性樹脂(B)を含む層が積層されてなる熱可塑性樹脂積層延伸フィルム(I)の少なくとも一方の面に易接着層(II)を有する光学フィルムである。該光学フィルムは、前記熱可塑性樹脂積層延伸フィルム(I)が熱可塑性樹脂(A)を含む層の両面に、熱可塑性樹脂(B)を含む層を有し、前記熱可塑性樹脂(A)および熱可塑性樹脂(B)の固有複屈折がそれぞれ−0.005〜0.005の範囲であり、前記熱可塑性樹脂(B)のガラス転移温度が110℃以上であり、前記熱可塑性樹脂(B)の飽和吸水率が1.1wt%未満であり、かつカルボキシル基を有するポリウレタン樹脂(a)、架橋剤(b)、アンチブロッキング剤(c)を含有する易接着剤組成物から成る易接着層(II)を形成することによって製造することが出来る。なお、本発明におけるガラス転移温度とは、示差走査熱量測定装置を用い、試料10mg、昇温速度10℃/分で測定し、セカンドヒーティングでの中点法で算出したときの温度である。また、本発明における飽和吸水率とは、予め100℃で24時間乾燥した直径50mm、厚さ3mmの円盤状成形板を23℃の水中に浸し、定期的に取り出してその重量を測定して吸水による重量増加が無くなった時点での吸水率を下記式から計算したものである。
吸水率(wt%)=(吸水後の成形板の質量−吸水前の成形板の質量)/吸水前の成形板の質量×100
本発明における熱可塑性樹脂(A)は、特に限定されないが、光学等方性に優れた熱可塑性樹脂積層延伸フィルムを取得する場合、熱可塑性樹脂(A)は固有複屈折が−0.005〜0.005であり、−0.003〜0.003であることが好ましい。熱可塑性樹脂(A)の固有複屈折が−0.005〜0.005の範囲であることにより、得られる熱可塑性樹脂積層延伸フィルムは優れた光学等方性を示す。熱可塑性樹脂(A)の例としては、例えばポリメタクリル酸メチル、ラクトン環構造とスチレン構成単位とを含有するアクリル系共重合体(例えば特許文献1に記載)、環状ポリオレフィン樹脂、メタクリル酸メチル−フェニルマレイミド−シクロヘキシルマレイミド共重合体、グルタルイミド構成単位を有するアクリル系共重合体等が挙げられる。
本発明における熱可塑性樹脂(A)には、弾性体粒子(C)(すなわち、ゴム状弾性体からなる粒子)を含んでいても良い。弾性体粒子(C)としては、アクリル酸エステル系ゴム状重合体、ブタジエンを主成分とするゴム状重合体、エチレン−酢酸ビニル共重合体等が挙げられる。アクリル酸エステル系ゴム状重合体としては、アクリル酸ブチル、2−エチルヘキシルアクリレート等を主成分とするものがある。中でも、アクリル酸ブチルを主成分としたアクリル酸エステル系重合体が好ましい。また、これら弾性体粒子は、数種の重合体が層状になったものでもよく、その代表例としては、アクリル酸ブチル等のアクリル酸アルキルエステルとスチレンのグラフト化ゴム弾性成分と、(メタ)アクリル酸メチルおよび/又は(メタ)アクリル酸メチルとアクリル酸アルキルエステルの共重合体からなる硬質樹脂層とがコア−シェル構造で層を形成している多層弾性体粒子が挙げられる。
本発明の光学フィルムにおいて、熱可塑性樹脂(A)を含む層と熱可塑性樹脂(B)を含む層との層間密着性を向上させる場合、多層弾性体粒子である弾性体粒子(C)を含み、かつ前記多層弾性体粒子の最外層が特定の構成単位からなることが好ましい。最外層を構成する単量体単位としては、メタクリル酸メチルのほか、これと共重合可能な他の単量体として、以下に示すものが用いられる。メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸ベンジル、メタクリル酸シクロヘキシル等のメタクリル酸メチル以外のメタクリル酸エステル、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸−2−エチルヘキシル、アクリル酸シクロヘキシル、アクリル酸ベンジル等のアクリル酸エステル、スチレン、ビニルトルエン、α−メチルスチレン等の芳香族ビニル化合物、N−シクロヘキシルマレイミド、N−o−クロロフェニルマレイミド、N−tert−ブチルマレイミド等のN−置換マレイミド化合物、アクリロニトリル、メタクリロニトリル等のシアン化ビニル化合物が挙げられ、それらは単独または併用して用いられる。また、前記多層弾性体粒子の最外層は、分子量を必要に応じ連鎖移動剤により調整することが好ましい。その理由は、前記熱可塑性樹脂(A)と多層弾性体粒子の溶融流動性や相溶性、および熱可塑性樹脂(B)と熱可塑性樹脂を含む層との層間密着性の点で重要であるからである。必要に応じて用いられる連鎖移動剤としては、n−オクチルメルカプタン、n−ドデシルメルカプタン、tert−ドデシルメルカプタン、sec−ブチルメルカプタン等が挙げられる。上記を満たす多層弾性体粒子の例としては、(1)最内層として(メタ)アクリル酸メチル単位および(メタ)アクリル酸アリル等の多官能性単量体からなる第(i)層、(2)中間層として(メタ)アクリル酸ブチル単位、スチレン単位および(メタ)アクリル酸アリル等の多官能性単量体からなり、第(i)層を内部に含有する第(ii)層、(3)最外層として(メタ)アクリル酸メチル単位からなり、上記の第(ii)層を内部に含有する第(iii)層からなる3層構造の多層弾性体粒子等が挙げられる。
また、本発明において、弾性体粒子(C)の波長380〜700nmにおける屈折率n(λ)は、熱可塑性樹脂(A)の波長380〜700nmにおける屈折率nA(λ)との間に、|n(λ)−nA(λ)|≦0.05の関係を満たすことが好ましく、|n(λ)−nA(λ)|≦0.04の関係であることがより好ましい。なお、n(λ)およびnA(λ)は、波長λにおける主屈折率の平均値である。|n(λ)−nA(λ)|の値が上記関係式を満たすことにより、得られる光学フィルムは透明性に優れたものになる。
本発明における熱可塑性樹脂(A)を含む層には、熱可塑性樹脂(A)および弾性体粒子(C)の他に、透明性や光学等方性を損なわない範囲で他の樹脂をブレンドすることが出来る。他の樹脂の例としては、例えば、ポリスチレン、メタクリル酸メチル−スチレン共重合樹脂、アクリロニトリル−スチレン共重合樹脂、ポリメタクリル酸メチル、メタクリル酸メチル−スチレン−無水マレイン酸共重合樹脂、スチレン−無水マレイン酸共重合樹脂、環状ポリオレフィン樹脂、マレイミド変性アクリル樹脂、ポリカーボネート、ポリエステル等が挙げられる。具体的には、レジスファイR−100(デンカ(株)製)、XIRAN SZ15170(Polyscope社製)等が挙げられる。
本発明の熱可塑性樹脂積層延伸フィルム(I)に用いる熱可塑性樹脂(B)は、ガラス転移温度TgB(℃)が110℃以上であり、かつ飽和吸水率が1.1wt%未満である熱可塑性樹脂であることを特徴とする。ガラス転移温度TgBが110℃よりも低い場合は実用上の耐熱性に乏しい場合がある。飽和吸水率が1.1wt%以上の場合は高温高湿環境化での寸法変化が大きくなり、例えば偏光子保護フィルムとして使用した場合に、基材からのはがれや表示品質にムラが生じる等好ましくない。より好ましくは熱可塑性樹脂(B)のガラス転移温度TgB(℃)が110〜160℃であり、特に好ましくは120〜145℃である。また、より好ましくは熱可塑性樹脂(B)の飽和吸水率が1.0wt%未満である。熱可塑性樹脂(B)のガラス転移温度TgB(℃)が110℃以上であり、かつ飽和吸水率が1.1wt%未満であることにより、得られる光学フィルムは高湿環境での寸法安定性に優れたものになる。
さらに光学等方性に優れた光学フィルムを取得する場合、熱可塑性樹脂(B)の固有複屈折は−0.005〜0.005であり、−0.003〜0.003であることが好ましい。熱可塑性樹脂(B)の固有複屈折が−0.005より小さい、もしくは0.005より大きい場合、延伸加工時に熱可塑性樹脂(B)を含む層で複屈折が発現してしまうため、光学等方性に優れた光学フィルムが得られにくい。熱可塑性樹脂(A)および熱可塑性樹脂(B)の固有複屈折がともに−0.005〜0.005であることにより、本発明の光学フィルムは光学等方性に優れたものになる。また、熱可塑性樹脂(B)の光弾性係数は−1.0×10−11〜1.0×10−11/Nの範囲であるとより好ましい。熱可塑性樹脂(B)の光弾性係数が−1.0×10−11/Nより小さい、もしくは1.0×10−11/Nより大きい場合、延伸加工時に熱可塑性樹脂(B)を含む層で複屈折が発現しやすくなるうえ、外部応力による位相差変化が大きくなるため、用途によっては実用的ではない場合がある。上記を満たす熱可塑性樹脂(B)の例としては、例えば、ビニル共重合樹脂(B1)、無水マレイン酸等の構成単位によって耐熱性を向上させた耐熱メタクリル樹脂、ラクトン環構造とスチレン構成単位とを含有するアクリル系共重合体(例えば特許文献1に記載)、環状ポリオレフィン樹脂、メタクリル酸メチル−フェニルマレイミド−シクロヘキシルマレイミド共重合体、グルタルイミド構成単位を有するアクリル系共重合体を含有する樹脂組成物等が挙げられるが、光学等方性と低吸水性を両立しやすいことから、ビニル共重合樹脂(B1)が最も好ましい。以下ではビニル共重合樹脂(B1)について詳述する。
本発明における熱可塑性樹脂(B)として、好適に用いられるビニル共重合樹脂(B1)の製造方法は特に限定されないが、下記一般式(1)で示される(メタ)アクリル酸エステルモノマー由来の構成単位(a)と、下記一般式(2’)で示される芳香族ビニルモノマー由来の構成単位(b’)とを含む熱可塑性樹脂であって、その構成単位(a)と構成単位(b’)の合計に対する構成単位(a)の割合が55〜85モル%であるビニル共重合樹脂(B1’)において、芳香族ビニルモノマー由来の構成単位(b’)中の芳香族二重結合の70%以上を水素化して得られる熱可塑性樹脂である。すなわち、ビニル共重合樹脂(B1’)は、ビニル共重合樹脂(B1)の芳香族二重結合を水素化する前の熱可塑性樹脂である。
Figure 2019028385
(式中、R1は水素原子またはメチル基であり、R2はヒドロキシル基およびアルコキシ基から選ばれる置換基を有していても良い、炭素数1〜18の炭化水素基である。)
Figure 2019028385
(式中、R3は水素原子またはメチル基であり、R4’は炭素数1〜4の炭化水素基、ヒドロキシル基、アルコキシ基およびハロゲン原子から選ばれる置換基を有していても良い、フェニル基である。)
ビニル共重合樹脂(B1)において、前記一般式(1)で表される(メタ)アクリル酸エステル構成単位(a)と、前記一般式(2)で表される脂肪族ビニル構成単位(b)とのモル比は、55:45〜85:15の範囲が好ましく、60:40〜80:20の範囲がより好ましい。(メタ)アクリル酸エステル構成単位(a)と脂肪族ビニル構成単位(b)との合計に対する(メタ)アクリル酸エステル構成単位(a)のモル比が55%未満であると、熱可塑性樹脂(A)を含む層との密着性が低くなる場合があるので好ましくない。また、該モル比が85%を超える範囲であると、得られる光学フィルムの高湿環境での寸法変化が大きくなるうえ、フィルム面の精度悪化が生じる場合があり、好ましくない。
前記(メタ)アクリル酸エステル構成単位(a)と前記脂肪族ビニル構成単位(b)との合計割合は、前記熱可塑性樹脂(B)中の全構成単位の合計に対して90〜100モル%が好ましく、95〜100モル%がより好ましい。
ビニル共重合樹脂(B1’)を構成する前記一般式(1)で表される(メタ)アクリル酸エステルモノマー由来の構成単位(a)において、R1は水素原子またはメチル基であり、R2は炭素数1〜18の炭化水素基であり、ヒドロキシル基およびアルコキシ基から選ばれる置換基を有していても良い。構成単位(a)が複数存在する場合、複数存在するR1、R2はそれぞれ同一であっても異なっていてもよい。前記(メタ)アクリル酸エステルモノマーのR2としては、メチル基、エチル基、ブチル基、ラウリル基、ステアリル基、シクロヘキシル基、およびイソボルニル基等のアルキル基類;2−ヒドロキシエチル基、2−ヒドロキシプロピル基、2−ヒドロキシ−2−メチルプロピル基等のヒドロキシアルキル基類;2−メトキシエチル基、2−エトキシエチル基、2−フェノキシエチル基等のアルコキシアルキル基類;ベンジル基、フェニル基などのアリール基類等が挙げられる。なかでもアルキル基類であることが好ましく、具体的には(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸イソボルニル等の(メタ)アクリル酸アルキルエステル類が挙げられる。構成単位(a)は、より好ましくは、メタクリル酸メチルおよびアクリル酸メチルから選ばれる少なくとも1種に由来する構成単位である。ビニル共重合樹脂(B1’)の構成単位(a)をメタクリル酸メチルおよびアクリル酸メチルから選ばれる少なくとも1種に由来する構成単位とすることで、本発明の熱可塑性樹脂積層延伸フィルム(I)に用いるビニル共重合樹脂(B1)は透明性に優れたものになる。
前記一般式(2’)で表される芳香族ビニルモノマー由来の構成単位(b’)において、R3は水素原子またはメチル基であり、R4’は炭素数1〜4の炭化水素基、ヒドロキシル基、アルコキシ基およびハロゲン原子から選ばれる置換基を有していても良い、フェニル基である。構成単位(b’)が複数存在する場合、複数存在するR3、R4’はそれぞれ同一であっても異なっていてもよい。前記芳香族ビニルモノマーとしては、スチレン、α―メチルスチレン、o―メチルスチレン及びp―メチルスチレンから選ばれる少なくとも1種が挙げられる。より好ましくは、R3が水素原子、R4’がフェニル基である、スチレン由来の構成単位である。構成単位(b’)をスチレン由来の構成単位とすることで、本発明の熱可塑性樹脂積層延伸フィルム(I)に用いるビニル共重合樹脂(B1)は、高温高湿環境での寸法安定性に優れたものになる。
本発明における熱可塑性樹脂(B)として好適に用いられるビニル共重合樹脂(B1)は、後述する方法により、ビニル共重合樹脂(B1’)における芳香族ビニルモノマー由来の構成単位(b’)中の全芳香族二重結合の70%以上を水素化することにより得られる。ビニル共重合樹脂(B1)は、構成単位(b’)におけるR4’(フェニル基又は炭素数1〜4の炭化水素置換基を有するフェニル基)のフェニル基の芳香族二重結合の一部が水添された構成単位を含んでよく、R4’がフェニル基である構成単位(すなわちフェニル基の芳香族二重結合が水素化していない構成単位)を含んでもよい。R4’のフェニル基の芳香族二重結合の一部が水添された構成単位としては、具体的には、シクロヘキサン、シクロヘキセン、シクロヘキサジエン、α―メチルシクロヘキサン、α―メチルシクロヘキセン、α―メチルシクロヘキサジエン、o―メチルシクロヘキサン、o―メチルシクロヘキセン、o―メチルシクロヘキサジエン、p―メチルシクロヘキサン、p―メチルシクロヘキセン、p―メチルシクロヘキサジエンに由来する構成単位が挙げられ、これらから選ばれる少なくとも1種の構成単位を含んでもよい。中でも、シクロヘキサンおよびα―メチルシクロヘキサンから選ばれる少なくとも1種に由来する構成単位を含むことが好ましい。
本発明における熱可塑性樹脂(B)として好適に用いられるビニル共重合樹脂(B1)の水素化する前のビニル共重合樹脂(B1’)は、前記(メタ)アクリル酸エステルモノマーと、芳香族ビニルモノマーとを重合することにより製造することが出来る。重合には、公知の方法を用いることが出来るが、例えば、塊状重合法、溶液重合法などにより製造することが出来る。塊状重合法は、上記モノマー及び重合開始剤を含むモノマー組成物を完全混合槽に連続的に供給し、100〜180℃で連続重合する方法等により行われる。上記モノマー組成物は、必要に応じて連鎖移動剤を含んでもよい。
重合開始剤は特に限定されないが、t−アミルパーオキシ−2−エチルヘキサノエート、t−ブチルパーオキシ−2−エチルヘキサノエート、過酸化ベンゾイル、1,1−ジ(t−ヘキシルペルオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ジ(t−ヘキシルペルオキシ)シクロヘキサン、1,1−ジ(t−ブチルペルオキシ)シクロヘキサン、t−ヘキシルペルオキシイソプロピルモノカーボネート、t−アミルパーオキシノルマルオクトエート、t−ブチルペルオキシイソプロピルモノカーボネート、ジ−t−ブチルパーオキサイド等の有機過酸化物、2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス(2−メチルブチロニトリル)、2,2’−アゾビス(2,4−ジメチルバレロニトリル)等のアゾ化合物が挙げられる。これらは単独で又は2種以上を組み合わせて用いることが出来る。
連鎖移動剤は必要に応じて使用し、例えば、α−メチルスチレンダイマーが挙げられる。
溶液重合法に用いられる溶媒としては、例えば、トルエン、キシレン、シクロヘキサン、メチルシクロヘキサン等の炭化水素系溶媒、酢酸エチル、イソ酪酸メチルなどのエステル系溶媒、アセトン、メチルエチルケトンなどのケトン系溶媒、テトラヒドロフラン、ジオキサン等のエーテル系溶媒、メタノール、イソプロパノール等のアルコール系溶媒を挙げることが出来る。
本発明における熱可塑性樹脂(B)として好適に用いられるビニル共重合樹脂(B1)は、(メタ)アクリル酸エステルモノマーと芳香族ビニルモノマーを重合してビニル共重合樹脂(B1’)を得た後に、該ビニル共重合樹脂(B1’) における芳香族ビニルモノマー由来の構成単位中の芳香族二重結合の70%以上を水素化して得られる。上記水素化反応に用いられる溶媒は、前記の重合溶媒と同じであっても異なっていてもよい。例えば、シクロヘキサン、メチルシクロヘキサン等の炭化水素系溶媒、酢酸エチル、イソ酪酸メチル等のエステル系溶媒、アセトン、メチルエチルケトン等のケトン系溶媒、テトラヒドロフラン、ジオキサン等のエーテル系溶媒、メタノール、イソプロパノール等のアルコール系溶媒を挙げることが出来る。
水素化の方法は特に限定されず、公知の方法を用いることが出来る。例えば、水素圧力3〜30MPa、反応温度60〜250℃でバッチ式あるいは連続流通式で行うことが出来る。温度を60℃以上とすることにより反応時間がかかり過ぎることがなく、また250℃以下とすることにより分子鎖の切断やエステル部位の水素化を起こすことが少ない。
水素化反応に用いられる触媒としては、例えば、ニッケル、パラジウム、白金、コバルト、ルテニウム、ロジウム等の金属又はそれら金属の酸化物あるいは塩あるいは錯体化合物を、カーボン、アルミナ、シリカ、シリカ・アルミナ、珪藻土等の多孔性担体に担持した固体触媒等が挙げられる。
本発明における熱可塑性樹脂(B)として好適に用いられるビニル共重合樹脂(B1)は、前記ビニル共重合樹脂(B1’)において、芳香族ビニルモノマー由来の構成単位中の芳香族二重結合の70%以上を水素化して得られたものである。即ち、芳香族ビニルモノマー由来の構成単位中に残存する芳香族二重結合の割合は30%以下である。30%を超える範囲であるとビニル共重合樹脂(B1)の透明性が低下し、その結果、本発明の熱可塑性樹脂積層延伸フィルムの透明性が低下する場合がある。上記芳香族ビニルモノマー由来の構成単位中に残存する芳香族二重結合の割合は、好ましくは10%未満の範囲であり、より好ましくは5%未満の範囲である。また、ビニル共重合樹脂(B1)は、酸化防止剤、着色防止剤、紫外線吸収剤、光拡散剤、難燃剤、離型剤、滑剤、帯電防止剤、染顔料等の、一般に用いられる添加剤を含んでも良い。
ビニル共重合樹脂(B1)の重量平均分子量は、特に制限はないが、強度及び成形性の観点から、40,000〜500,000であることが好ましく、50,000〜300,000であることがより好ましい。上記重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)により測定される、標準ポリスチレン換算の重量平均分子量である。
ビニル共重合樹脂(B1)のガラス転移温度は110〜160℃の範囲であることが好ましい。より好ましくは120〜145℃である。ビニル共重合樹脂(B1)のガラス転移温度が110℃未満であると、本発明で提供される熱可塑性樹脂積層延伸フィルムが高温環境あるいは高湿環境において寸法変化や反りを生じる場合がある。また、ビニル共重合樹脂(B1)のガラス転移温度が160℃より高温であると、高温で延伸加工しなければならないため、熱可塑性樹脂(A)としてガラス転移温度の低い樹脂を用いる場合、熱可塑性樹脂(A)を含む層の配向度が上がりにくく、十分な機械物性を得られない場合がある。
本発明における熱可塑性樹脂(B)として好適に用いられるビニル共重合樹脂(B1)を含む層には、ビニル共重合樹脂(B1)の他に、透明性を損なわない範囲で他の樹脂をブレンドすることが出来る。他の樹脂の例としては、例えば、ポリスチレン、メタクリル酸メチル−スチレン共重合樹脂、アクリロニトリル−スチレン共重合樹脂、ポリメタクリル酸メチル、ポリカーボネート、ポリエステル等が挙げられる。具体的には、商品名:エスチレンMS200(新日鉄住金化学(株)製)、レジスファイR−100(デンカ(株)製)、XIRAN SZ15170(Polyscope社製)、トーヨースチロールT080(東洋スチレン(株)製)等が挙げられる。また、ビニル共重合樹脂(B1)は、酸化防止剤、着色防止剤、紫外線吸収剤、光拡散剤、難燃剤、離型剤、滑剤、帯電防止剤、染顔料等の、一般に用いられる各種の添加剤を含んでも良い。
以下、熱可塑性樹脂(A)を含む層を「熱可塑性樹脂(A)層」と呼び、熱可塑性樹脂(B)を含む層を「熱可塑性樹脂(B)層」と呼ぶことがある。
本発明の熱可塑性樹脂積層延伸フィルム(I)の層構成の例としては、得られる光学フィルムの耐熱性、機械強度、高湿環境での寸法変化やフィルム面精度の悪化の点から、熱可塑性樹脂(B)層/熱可塑性樹脂(A)層/熱可塑性樹脂(B)層の2種3層の構成が好ましい。上記のように熱可塑性樹脂(A)層の両面に、熱可塑性樹脂(B)層を積層した熱可塑性樹脂積層延伸フィルム(I)とすることで、本発明の光学フィルムは耐熱性、機械強度、高湿環境での寸法安定性に優れたものになる。
本発明の熱可塑性樹脂積層延伸フィルム(I)の熱可塑性樹脂(A)層および/または熱可塑性樹脂(B)層は、紫外線吸収剤を含有しても良い。多量の紫外線吸収剤を添加する必要がある場合には、熱可塑性樹脂(B)層/熱可塑性樹脂(A)層/熱可塑性樹脂(B)層の2種3層の層構成とし、熱可塑性樹脂(A)層のみに紫外線吸収剤を添加するのが好ましい。上記のように熱可塑性樹脂(B)層/熱可塑性樹脂(A)層/熱可塑性樹脂(B)層の2種3層の層構成とし、熱可塑性樹脂(A)層のみに紫外線吸収剤を添加することで、製膜時に紫外線吸収剤のブリードアウトによるロール汚れが少ないかまたは発生することがなく、連続生産性に優れたものになる。添加する紫外線吸収剤としては、例えば、2,4−ジヒドロキシベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−n−オクトキシベンゾフェノン、2−ヒドロキシ−4−ドデシロキシベンゾフェノン、2−ヒドロキシ−4−オクタデシロキシベンゾフェノン、2,2’−ジヒドロキシ−4−メトキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシベンゾフェノン、2,2’,4,4’−テトラヒドロキシベンゾフェノン等のベンゾフェノン系紫外線吸収剤、2−(2−ヒドロキシ−5−メチルフェニル)ベンゾトリアゾール、2−(2−ヒドロキシ−3,5−ジ−t−ブチルフェニル)ベンゾトリアゾール、2−(2−ヒドロキシ−3−t−ブチル−5−メチルフェニル)ベンゾトリアゾール、(2H−ベンゾトリアゾール−2−イル)−4,6−ビス(1−メチル−1−フェニルエチル)フェノール等のベンゾトリアゾール系紫外線吸収剤、サリチル酸フェニル、2,4−ジ−t−ブチルフェニル−3,5−ジ−t−ブチル−4−ヒドロキシベンゾエート等のベンゾエート系紫外線吸収剤、ビス(2,2,6,6−テトラメチルピペリジン−4−イル)セバケート等のヒンダードアミン系紫外線吸収剤、2,4−ジフェニル−6−(2−ヒドロキシ−4−メトキシフェニル)−1,3,5−トリアジン、2,4−ジフェニル−6−(2−ヒドロキシ−4−エトキシフェニル)−1,3,5−トリアジン、2,4−ジフェニル−(2−ヒドロキシ−4−プロポキシフェニル)−1,3,5−トリアジン、2,4−ジフェニル−(2−ヒドロキシ−4−ブトキシフェニル)1,3,5−トリアジン、2,4−ジフェニル−6−(2−ヒドロキシ−4−ブトキシフェニル)−1,3,5−トリアジン、2,4−ジフェニル−6−(2−ヒドロキシ−4−ヘキシルオキシフェニル)−1,3,5−トリアジン、2,4−ジフェニル−6−(2−ヒドロキシ−4−オクチルオキシフェニル)−1,3,5−トリアジン、2,4−ジフェニル−6−(2−ヒドロキシ−4−ドデシルオキシフェニル)−1,3,5−トリアジン、2,4−ジフェニル−6−(2−ヒドロキシ−4−ベンジルオキシフェニル)−1,3,5−トリアジン等のトリアジン系紫外線吸収剤等が挙げられる。混合の方法は特に限定されず、全量コンパウンドする方法、マスターバッチをドライブレンドする方法等を用いることが出来る。
また、本発明における熱可塑性樹脂積層延伸フィルム(I)の熱可塑性樹脂(A)層および/又は熱可塑性樹脂(B)層には紫外線吸収剤以外の各種添加剤を混合することが出来る。紫外線吸収剤以外の添加剤の例としては、例えば、抗酸化剤や抗着色剤、抗帯電剤、離型剤、滑剤、染料、顔料等が挙げられる。混合の方法は特に限定されず、全量コンパウンドする方法、マスターバッチをドライブレンドする方法、全量ドライブレンドする方法等を用いることが出来る。
本発明における熱可塑性樹脂積層延伸フィルム(I)の表面の濡れ張力は、40mN/m以上が好ましく、50mN/m以上がより好ましい。表面濡れ張力が40mN/m未満であると、本発明の熱可塑性樹脂積層延伸フィルム(I)と偏光子および/又は親水性接着剤との接着強度が低下する場合がある。
本発明における熱可塑性樹脂積層延伸フィルム(I)の表面の濡れ張力を高めるために、コロナ放電処理、プラズマ処理、オゾン処理、紫外線照射、火炎処理、化学薬品処理等を施しても良い。これらの中で、コロナ放電処理、プラズマ処理が好ましい。
本発明における易接着層(II)は、熱可塑性樹脂積層延伸フィルム(I)の表面上に、カルボキシル基を有するポリウレタン樹脂(a)、架橋剤(b)、アンチブロッキング剤(c)を含有する易接着剤組成物(以下、「本発明における易接着剤組成物」と呼ぶことがある。)を塗布後、乾燥することで形成される。本発明の易接着剤組成物を、熱可塑性樹脂積層延伸フィルム(I)の偏光子および水系接着剤との接着面に塗布、乾燥させることにより、偏光子との密着性が大幅に向上する。
本発明における易接着剤組成物には、水系のものと有機系のものが適用出来るが、環境面や作業性の観点から、水系の易接着剤組成物が好ましいが、分散性や溶解性、架橋剤との反応性の観点から、少量の有機溶媒を含有しても良い。有機溶媒としては、水との相性や取扱いの容易さから、アルコール系、ケトン系、エステル系、エーテル系溶剤が好ましい。アルコール系溶剤の具体例としては、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、エチレングリコール、プロピレングリコール等、ケトン系溶剤の具体例としては、アセトン、メチルエチルケトン、イソブチルケトン等、エステル系溶剤の具体例としては、酢酸エチル、酢酸ブチル等、エーテル系溶剤の具体例としては、ジメトキシエタン、テトラヒドロフラン等が挙げられる。
本発明における易接着剤組成物に含まれるカルボキシル基を有するポリウレタン樹脂(a)は、分子内にカルボキシル基を有するポリウレタン樹脂であれば、特に限定されず使用可能である。カルボキシル基を有するポリウレタン樹脂(a)の数平均分子量は、特に制限はないが、水分散性及び架橋剤との反応性の観点から、5,000〜600,000であることが好ましく、10,000〜400,000であることがより好ましい。上記数平均分子量は、ゲル浸透クロマトグラフィー(GPC)により測定される、標準ポリスチレン換算の数平均分子量である。また、カルボキシル基を有するポリウレタン樹脂(a)の酸価は、特に制限はないが、架橋剤(b)との反応性の観点から、10以上であることが好ましく、10〜50であることがより好ましく、20〜45であることがさらに好ましい。上記を満たすカルボキシル基を有するポリウレタン樹脂(a)としては、具体的には、商品名:スーパーフレックス210(第一工業製薬(株)製)、スーパーフレックス460S(第一工業製薬(株)製)等が挙げられる。
本発明における易接着剤組成物に含まれる架橋剤(b)としては、カルボキシル基と架橋反応を示す官能基を分子内に少なくとも1つ以上有しているものであれば、特に限定されず使用可能である。架橋剤の例としては、水溶性メラミン樹脂、水溶性エポキシ樹脂、オキサゾリン系化合物、カルボジイミド系化合物、イソシアネート系化合物が挙げられるが、中でも親水性セグメントで末端イソシアネートを封止して得られるカルボジイミド系化合物であり、水に溶解するものが特に好ましい。上記を満たす架橋剤(b)としては、具体的には、商品名:カルボジライトSV−02(日清紡ケミカル(株)製)、カルボジライトV−02−L2(日清紡ケミカル(株)製)、カルボジライトV−02(日清紡ケミカル(株)製)、カルボジライトV−04(日清紡ケミカル(株)製)、カルボジライトV−10(日清紡ケミカル(株)製)等が挙げられる。
本発明における易接着剤組成物に含まれるアンチブロッキング剤(c)としては、特に限定されるものではないが、所望の機能に合わせて任意の適切な微粒子、好ましくは水分散性微粒子を選択出来る。微粒子としては、無機系微粒子、有機系微粒子のいずれも用いることが出来る。無機系微粒子の例としては、シリカ、チタニア、アルミナ、ジルコニア等の無機酸化物、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム、リン酸カルシウム等が挙げられる。有機系微粒子の例としては、シリコーン系樹脂、フッ素系樹脂、(メタ)アクリル系樹脂、(メタ)アクリロニトリル系樹脂等が挙げられる。アンチブロッキング性や透明性の観点から、シリカ、(メタ)アクリル系樹脂、(メタ)アクリロニトリル系樹脂であり、水分散体であるものが好ましい。上記を満たすアンチブロッキング剤(c)の例としては、具体的には、商品名:クォートロンPL−10H(扶桑化学工業(株)製)、タフチックF−167(東洋紡(株)製)、タフチックF−120(東洋紡(株)製)等が挙げられる。
本発明における易接着剤組成物に含まれるアンチブロッキング剤(c)の平均粒子径は、特に限定されるものではないが、易接着層の透明性を維持する観点から、好ましくは1〜500nm、より好ましくは50〜350nm、さらに好ましくは80〜300nmである。上記の平均粒子径のアンチブロッキング剤を用いることにより、易接着層表面に適切に凹凸を形成し、熱可塑性樹脂積層延伸フィルム(I)と易接着層(II)および/又は易接着層(II)同士の接触面における摩擦力を効果的に低減することが出来、またブロッキングを抑制することが出来る。上記の平均粒子径とは、レーザ回折/散乱式粒度分布測定にて測定されるメジアン径(d50)である。
本発明における易接着剤組成物は、任意の適切な添加剤をさらに含むことが出来る。添加剤としては、例えば、分散安定剤、揺変剤、酸化防止剤、紫外線吸収剤、消泡剤、増粘剤、分散剤、界面活性剤、触媒、滑剤、帯電防止剤等が挙げられる。また、架橋反応を促進させるため、触媒等を必要に応じて適宜使用しても良い。
本発明における熱可塑性樹脂積層延伸フィルム(I)の製造方法としては、公知の多色射出成形法、フィルムインサート法、溶融押出法、押出ラミネート法、熱プレス法、溶液流延法等により成形した熱可塑性樹脂積層体を延伸フィルム用の原反フィルム(以降、単に原反と呼ぶ)とすることが出来る。生産性の観点から、特に溶融押出法が好適に用いられる。溶融押出法が用いられる場合には、中間体としての面状成形体として、原反を取り出さずに、連続的に延伸工程に供されることがある。この場合、本発明ではフィルムが実質的に延伸される直前の状態を原反と定義する。
溶融押出法による原反の作製について更に詳述する。本発明における熱可塑性樹脂積層延伸フィルム(I)の原反は公知の溶融押出法である、Tダイ押出法、インフレーション法等を用いることが出来るが、厚みムラの少ない原反を得るという点から、Tダイ押出法を選択することが望ましい。樹脂を溶融させる装置としては一般的に用いられる押出機を使用すればよく、単軸押出機でも多軸押出機でもよい。押出機は一つ以上のベントを有していても良く、ベントを減圧にして溶融している樹脂から水分や低分子物質等を除去しても良い。また、押出機の先端あるいは下流側には必要に応じて金網フィルターや焼結フィルター、ギヤポンプ等を設けても良い。樹脂を積層させる方法としては、フィードブロック法やマルチマニホールド法等の公知の方法を用いることが出来る。Tダイには、コートハンガーダイ、フィッシュテールダイ、スタックプレートダイ等の種類があり、いずれを選択することも出来る。
押出時の樹脂温度は200〜300℃が好ましい。200℃未満では樹脂の流動性が不足し、転写ロール表面の形状が転写されないため、平滑性に乏しいものとなってしまう。一方、300℃を超えると、樹脂が分解し、外観不良、着色、耐熱変形性の低下、臭気による作業環境の悪化等の原因となるので好ましくない。より好ましくは押出時の樹脂温度が220〜280℃である。押出温度が上記範囲にある場合、得られる原反の平滑性や透明性は優れたものになる。
Tダイから押出された溶融樹脂の冷却方法は従来公知の方法を用いることが出来るが、一般的には冷却ロールにて冷却する。本発明に用いる熱可塑性樹脂(A)および熱可塑性樹脂(B)は実質的に非晶性の樹脂であるため、冷却ロールの温度は幅広く設定することが可能である。光学等方性に優れた原反を得るには、冷却ロールの温度は熱可塑性樹脂(B)のガラス転移温度の上下30℃とするのが好ましく、さらに好ましくは熱可塑性樹脂(B)のガラス転移温度の上下20℃とする。光学等方性に優れた原反を得るには実質的に延伸されることが無いよう、装置に応じて吐出速度と引き取り速度と冷却ロールの温度をコントロールすることが好ましい。
本発明における熱可塑性樹脂積層延伸フィルム(I)は原反を延伸加工することで得られる。延伸加工は、易接着層の形成前に行っても良く、易接着層の形成後に行っても良い。また、易接着層の形成と延伸加工を同時に行っても良い。易接着層の形成と延伸加工を同時に行う場合、例えば、塗布工程の後に、易接着層組成物の塗布膜を形成した原反を加熱雰囲気下で延伸すれば良い。延伸のために当該フィルムに加える熱により、熱可塑性樹脂積層フィルムの表面に形成された易接着組成物の塗布膜が乾燥し、熱可塑性樹脂積層延伸フィルム(I)表面に易接着層(II)が形成された光学フィルムとなる。このようにすれば、フィルムの延伸加工と易接着組成物の乾燥とを同時に実施出来、生産性に優れるから好ましい。延伸加工によって、機械的強度が高まり、割れや破断を生じにくく、ハンドリング性に優れた熱可塑性樹脂積層延伸フィルムを得ることが出来る。延伸方法は特に限定されず、公知の方法を用いることが出来る。例えば、自由端一軸延伸法や固定端一軸延伸法等の一軸延伸、同時二軸延伸法や逐次二軸延伸法等の二軸延伸が挙げられる。機械強度のムラを抑制しうる点で、二軸延伸が好ましい。
二軸延伸を行う場合、それぞれの延伸方向への延伸倍率は1.1〜3.0倍の範囲であるのが好ましく、1.2〜2.0倍であるのがより好ましい。1.2〜2.0倍の範囲内であると、機械強度の向上効果が高い。1.1〜3.0倍の範囲外であると、機械強度の向上効果を十分に得られない場合がある。また、二軸方向それぞれの延伸倍率は等倍であっても良く、倍率が異なっていても良い。延伸加工温度は、通常、熱可塑性樹脂(B)のガラス転移温度TgB(℃)以上であり、TgB+25(℃)〜TgB+85(℃)の範囲であるのが好ましく、TgB+30(℃)〜TgB+60(℃)であるのがより好ましい。延伸加工温度がTgB+25(℃)よりも低いと、フィルムに破断が生じたり、ヘイズ(曇り度)が高くなる場合があるうえ、過度に配向度が高くなることで、打ち抜き加工時にクラックや厚み方向での裂けを生じる場合があり、好ましくない。また、TgB+85(℃)よりも高いと、樹脂の流動により外観が悪化する場合があるため、実用的ではない。延伸方向への延伸速度は、0.1〜3.0m/minの範囲であることが好ましい。0.1m/minよりも遅いと、延伸強度が高くなりにくいうえ、十分な延伸倍率を得るために時間がかかり、生産性の点でも十分でない。3.0m/minよりも速いと、フィルムに破断や偏肉が生じる場合がある。
本発明における熱可塑性樹脂積層延伸フィルム(I)の厚みは、10〜1000μmの範囲であることが好ましく、より好ましくは20〜200μmである。10μm未満では、押出成形で製造する場合、厚み精度不良が発生することが多く、延伸加工時に破断等が起きやすいため、生産不具合の発生確率が高くなる。また、1000μmを超えると、延伸加工に時間がかかるうえ、機械物性の向上効果が小さく、現実的ではない。本発明の熱可塑性樹脂積層延伸フィルム(I)の厚さは、原反製膜時に製膜速度、Tダイの吐出口厚み、ロール間隙等を調整したり、延伸加工時に延伸倍率を調節したりすることにより、調整出来る。
本発明における易接着層(II)の厚みは、任意に適切な値に設定することが出来る。好ましくは0.05〜10μm、より好ましくは0.05〜5μm、さらに好ましくは0.1〜1.0μmである。このような範囲に設定することにより、他の機能性フィルムとの密着性に優れ、易接着層に位相差が発現するのを抑制することが出来る。
本発明の熱可塑性樹脂積層延伸フィルム(I)における熱可塑性樹脂(A)を含む層と熱可塑性樹脂(B)を含む層の厚みの合計に対する熱可塑性樹脂(B)を含む層の厚みの割合は5〜70%の範囲であることが好ましい。熱可塑性樹脂(B)を含む層の厚みが5%未満であると、得られる熱可塑性樹脂積層延伸フィルムの高湿環境での寸法変化が大きくなるうえ、吸水・吸湿時に熱可塑性樹脂(B)を含む層の機械強度が熱可塑性樹脂(A)を含む層の寸法変化に耐えきれず、熱可塑性樹脂(B)を含む層にクラックを生じてしまう場合がある。熱可塑性樹脂(B)を含む層の厚みが70%を超えると、寸法変化抑制効果が小さいうえ、原反成形条件および延伸加工条件によっては機械強度が乏しくなりやすい場合がある。より好ましくは熱可塑性樹脂(A)を含む層と熱可塑性樹脂(B)を含む層の厚みの合計に対する熱可塑性樹脂(B)を含む層の厚みの割合が5〜50%の範囲である。
本発明の光学フィルムにおける易接着層(II)が形成されている表面と反対側の表面には、必要に応じて、ハードコート処理、反射防止処理、防汚処理、帯電防止処理、耐候性処理および防眩処理のいずれか一つ以上を施すことが出来る。それらの処理の方法は特に限定されず、公知の方法を用いることが出来る。例えば、熱硬化性あるいは光硬化性皮膜を塗布する方法、反射低減塗料を塗布する方法、誘電体薄膜を蒸着する方法、帯電防止塗料を塗布する方法等が挙げられる。コーティング剤は公知のものを用いることが出来、例えば、メラミン樹脂、ウレタン樹脂、アクリル樹脂、紫外線硬化型アクリル樹脂等の有機系コーティング剤、シラン化合物等のシリコン系コーティング剤、金属酸化物等の無機系コーティング剤、有機無機ハイブリッド系コーティング剤が挙げられる。
本発明の光学フィルムの波長590nmにおける面内レタデーションReは0.0〜3.0nmの範囲であることが好ましく、0.0〜1.0nmの範囲であることがより好ましい。また、本発明の光学フィルムの波長590nmにおける厚み方向レタデーションRthは−10.0〜10.0nmの範囲であることが好ましく、−6.0〜6.0nmの範囲であることがより好ましい。ReおよびRthは、フィルム面内の主屈折率nx、ny(ただし、nx>ny)および厚み方向の主屈折率nzを測定し、下記式により算出できる。
Re=(nx−ny)×d (d:フィルム厚み)
Rth=((nx+ny)/2−nz)×d
以下、実施例により本発明を具体的に説明する。ただし、本発明はこれらの実施例および比較例により何ら制限されるものではない。実施例および比較例で得られた光学フィルムの評価は以下のように行った。
<共重合体の水素化率>
以下の合成例にて得られた熱可塑性樹脂について、水素化反応前後のUVスペクトル測定における260nmの吸収の減少率により求めた。水素化反応前の樹脂の濃度C1における吸光度A1、水素化反応後の樹脂の濃度C2における吸光度A2から、以下の式より算出した。
水素化率(%)=100×[1−(A2×C1)/(A1×C2)]
<固有複屈折値>
以下の合成例にて得られた熱可塑性樹脂について、分子軌道法によって、構成単位それぞれの結合単位における誘電分極差を計算し、その体積平均として下記ローレンツ−ローレンツの式によって固有複屈折値を算出した。
Δn=2/9π×(n+2)/n×ΔP・d・N/M
(Δn:固有複屈折値、ΔP:分子鎖軸方向の誘電分極率と分子鎖軸に直角方向の誘電分極率との差、n:屈折率、d:密度、N:アボガドロ数、M:分子量)
<厚み>
以下の実施例、比較例にて得られた光学フィルムについて、デジタルマイクロメーター(ソニーマグネスケール(株)製:M−30)を用いて測定し、取得した光学フィルムの測定点10点の平均をフィルムの厚みとした。
<光学等方性評価>
以下の実施例、比較例にて得られた光学フィルムについて、分光エリプソメータ(日本分光(株)製:M−220)にて、測定波長590nmで遅相軸を検出し、3次元屈折率測定モード(あおり角−8〜8°)で、波長590nmにおけるフィルム面内の主屈折率nx、ny(ただし、nx>ny)および厚み方向の主屈折率nzを測定し、下記式により、面内レタデーションReおよび厚み方向レタデーションRthを算出した。面内レタデーションReが0.0〜3.0nmのものを合格(○)とし、それ以外を不合格(×)とした。また、厚み方向レタデーションRthが−10.0〜10.0nmのものを合格(○)とし、それ以外を不合格(×)とした。
Re=(nx−ny)×d (d:フィルム厚み)
Rth=((nx+ny)/2−nz)×d
<機械強度(耐折性)評価>
以下の実施例、比較例にて得られた光学フィルムについて、JIS P 8115に準拠し、MIT型耐折疲労試験機((株)東洋精機製作所製)により、折り曲げ角度を中心から左右に135°、荷重500g、180回/分の速度で破断するまでの折り曲げ回数を測定した。破断するまでの折り曲げ回数が100回以上であるものを合格(○)とし、それ以外を不合格(×)とした。
<寸法安定性評価>
以下の実施例、比較例にて得られた光学フィルムについて、温度23℃、相対湿度50%の環境に24時間以上放置した試験片を120mm四方に切り出した。試験片の押出方向(MD)および押出方向と垂直をなす方向(TD)に100mmのそれぞれ標線を引き、MD方向およびTD方向に引いた標線長さの平均値を初期寸法とした。試験片は温度85℃、湿度85%RHの環境中で96時間保持した。取り出した試験片のMD方向およびTD方向に引いた標線長さを再度測定し、その平均値を試験後寸法とし、下記式により寸法変化率を算出した。温度85℃、相対湿度85%RHでの寸法変化が−0.0〜−5.0%(収縮)のものを合格(○)とし、それ以外を不合格(×)とした。
寸法変化率(%)=((試験後寸法−初期寸法)/初期寸法)×100
<接着性評価>
アセトアセチル基含有ポリビニルアルコール系樹脂(平均重合度:1200、鹸化度:98.5モル%、アセトアセチル基変性度:5モル%)100重量部に対し、メチロールメラミン20重量部を70℃の温度条件下でイオン交換水に溶解し、固形分濃度1.0%とし、ポリビニルアルコール系接着剤組成物を得た。以下の実施例、比較例にて得られた光学フィルムの易接着層側に、ポリビニルアルコール系接着剤組成物を塗布した。また、鹸化処理を施した厚さ40μmのトリアセチルセルロースフィルム(保護フィルム)の片側にもポリビニルアルコール系接着剤組成物を塗布した。厚さ30μmの偏光子の両側それぞれに光学フィルムおよび保護フィルムをポリビニルアルコール系接着剤塗布層を介して積層し、得られた積層体を熱風乾燥機(70℃)に投入して5分乾燥させて偏光板を作製した。上記で得られた偏光板から50mm×150mmの寸法の試験片を切り出し、試験片の片面に粘着加工を施した後、ガラス板に貼り付け、測定用サンプルを得た。この測定用サンプルを温度85℃、湿度85%RHの環境中で96時間保持した後に、熱可塑性樹脂積層延伸フィルム(I)と易接着層(II)の界面で剥離を生じなかったものを合格(○)、剥離を生じたものを不合格(×)とした。
<アンチブロッキング性評価>
以下の実施例、比較例にて得られた光学フィルムから60mm×90mmの試験片を切り出して、光学フィルムを熱可塑性樹脂積層延伸フィルム(I)面と易接着層(II)面がそれぞれ接するように10枚重ね合わせ、これに3.0kgの重り(底面60mm×90mm)を乗せ、温度60℃、湿度90%RHの環境中で96時間保持した後に、光学フィルム間での凝集性ブロッキングを生じなかったものを合格(○)、凝集性ブロッキングを生じたものを不合格(×)とした。
合成例1〔ビニル共重合樹脂(B1)の製造〕
精製したメタクリル酸メチル(三菱ガス化学(株)製)77.0モル%と、精製したスチレン(和光純薬工業(株)製)23.0モル%と、重合開始剤としてt−アミルパーオキシ−2−エチルヘキサノエート(アルケマ吉富(株)製、商品名:ルペロックス575)0.002モル%からなるモノマー組成物を、ヘリカルリボン翼付き10L完全混合槽に1kg/hで連続的に供給し、平均滞留時間2.5時間、重合温度150℃で連続重合を行った。重合槽の液面が一定となるよう底部から連続的に抜き出し、脱溶剤装置に導入してペレット状のビニル共重合樹脂(B1’)を得た。
得られたビニル共重合樹脂(B1’)をイソ酪酸メチル(関東化学(株)製)に溶解し、10重量%イソ酪酸メチル溶液を調製した。1000mLオートクレーブ装置に(B1’)の10重量%イソ酪酸メチル溶液を500重量部、10重量%Pd/C(NEケムキャット(株)製)を1重量部仕込み、水素圧9MPa、200℃で15時間保持してベンゼン環部位を水素化した。フィルターにより触媒を除去し、脱溶剤装置に導入してペレット状のビニル共重合樹脂(B1)を得た。H−NMRによる測定の結果、メタクリル酸メチル構成単位の割合は75モル%であり、また、波長260nmにおける吸光度測定の結果、ベンゼン環部位の水素化反応率は99%であった。得られたビニル共重合樹脂(B1)のガラス転移温度は120℃、飽和吸水率は0.9wt%であった。また、得られたビニル共重合樹脂(B1)の固有複屈折は−0.0003であった。
合成例2〔弾性体粒子の製造〕
還流冷却器付き反応容器に、イオン交換水300重量部、ステアリン酸ナトリウム1.0重量部、N−ラウロイルザルコシン酸ナトリウム0.08重量部を投入し、撹拌しながら窒素雰囲気中で70℃に昇温し、メタクリル酸メチル50重量部、アクリル酸メチル2重量部、メタクリル酸アリル0.15重量部からなる単量体混合物を投入した。ついで10%過硫酸カリウム水溶液0.6重量部を投入し、80℃に昇温して60分保持した。次いでこのラテックスの存在下に、10%過硫酸カリウム水溶液0.3重量部を投入し、アクリル酸ブチル28.0重量部、スチレン5.8重量部、メタクリル酸アリル0.8重量部からなる単量体混合物を60分かけて連続的に添加し、添加終了後30分間保持した。次いでこのラテックスの存在下に、10%過硫酸カリウム水溶液0.3重量部を投入し、メタクリル酸メチル29重量部、アクリル酸メチル1重量部、n−オクチルメルカプタン0.06重量部からなる単量体混合物を30分かけて連続的に添加し、添加終了後60分間保持して三層構造重合体ラテックスを得た。
重合中および重合終了時のサンプリングにより得られたラテックスを走査型電子顕微鏡により観察し、平均粒子径を求めたところ、最内層のみで0.17μm、中間層までが0.20μm、最外層までが0.21μmであった。
このようにして得られたラテックスをステンレス製容器に入れ、凍結し、70℃で融解させた後、濾別して重合体を分離した。さらに70℃温水で水洗脱水を3回繰り返した後、80℃で10時間乾燥し、多層弾性体粒子を得た。
製造例1〔熱可塑性樹脂組成物(A1)の製造〕
ポリメタクリル酸メチル(住友化学(株)製スミペックスMG5(固有複屈折:−0.0043、ガラス転移温度:105℃))100重量部と、1.2重量部のトリアジン系紫外線吸収剤((株)ADEKA製アデカスタブLA−F70)を、軸径30mmの二軸押出機に連続導入し、シリンダ温度250℃、吐出速度25kg/hの条件で押し出し、メタクリル酸メチルに紫外線吸収剤を添加した熱可塑性樹脂組成物(A1)を得た。
製造例2〔熱可塑性樹脂組成物(A2)の製造〕
製造例1でポリメタクリル酸メチル(住友化学(株)製スミペックスMG5(固有複屈折:−0.0043、ガラス転移温度:105℃))を80重量部、合成例2で得た弾性体粒子を20重量部とした以外は、製造例1と同様にして熱可塑性樹脂組成物(A2)を得た。
製造例3〔熱可塑性樹脂組成物(A3)の製造〕
製造例1で使用したポリメタクリル酸メチル(住友化学(株)製スミペックスMG5(固有複屈折:−0.0043、ガラス転移温度:105℃))の代わりにメタクリル酸メチル−スチレン共重合樹脂(新日鉄住金化学(株)製エスチレンMS200(固有複屈折:−0.0889、ガラス転移温度:99℃))を使用した以外は、製造例1と同様にして熱可塑性樹脂組成物(A3)を得た。
製造例4〔易接着剤組成物(II−1)の製造〕
カルボキシル基を有する水分散性ポリウレタン樹脂エマルジョン(第一工業製薬(株)製スーパーフレックス210(固形分量35重量%))100重量部と、水溶性カルボジイミド化合物を含む水溶液(日清紡ケミカル(株)製カルボジライトV−02−L2(固形分量40重量%))2重量部と、シリカ系微粒子を含むエマルジョン(扶桑化学工業(株)製クォートロンPL−10H(粒子径90nm、固形分量23wt%))3重量部を混合し、水系溶媒としてイオン交換水を使用し、固形分量が2.5wt%となるよう調製し、易接着剤組成物(II−1)を得た。
製造例5〔易接着剤組成物(II−2)の製造〕
製造例4で水溶性カルボジイミド化合物を含む水溶液(日清紡ケミカル(株)製カルボジライトV−02−L2(固形分量40重量%))を5重量部とした以外は、製造例4と同様にして易接着剤組成物(II−2)を得た。
製造例6〔易接着剤組成物(II−3)の製造〕
製造例4で水溶性カルボジイミド化合物を含む水溶液(日清紡ケミカル(株)製カルボジライトV−02−L2(固形分量40重量%))を0重量部とした以外は、製造例4と同様にして易接着剤組成物(II−3)を得た。
製造例7〔易接着剤組成物(II−4)の製造〕
製造例4でシリカ系微粒子を含むエマルジョン(扶桑化学工業(株)製クォートロンPL−10H(粒子径90nm、固形分量23wt%))を0重量部とした以外は、製造例4と同様にして易接着剤組成物(II−4)を得た。
実施例1〔樹脂(B1)/樹脂(A1)/樹脂(B1)、易接着剤組成物(II−1)〕
軸径32mmの単軸押出機と、軸径65mmの単軸押出機と、全押出機に連結されたフィードブロックと、フィードブロックに連結されたTダイとを有する多層押出装置を用いて積層体を成形した。軸径32mmの単軸押出機に合成例1で得たビニル共重合樹脂(B1)を連続的に導入し、シリンダ温度250℃、吐出速度20.0kg/hの条件で押し出した。また軸径65mmの単軸押出機に製造例1で得た熱可塑性樹脂組成物(A1)を連続的に導入し、シリンダ温度250℃、吐出速度30.0kg/hで押し出した。全押出機に連結されたフィードブロックは2種3層の分配ピンを備え、温度250℃として熱可塑性樹脂組成物(A1)とビニル共重合樹脂(B1)を導入し積層した。その先に連結された温度250℃のTダイでシート状に押し出し、上流側から温度110℃、95℃、90℃とした3本の鏡面ロールで冷却し、熱可塑性樹脂組成物(A1)の両側にビニル共重合樹脂(B1)を積層した原反を得た。得られた原反の厚みは140μmであった。得られた原反の一方の表面に、製造例4で得た易接着剤組成物(II−1)をバーコーターを用いて塗布した後、熱風乾燥機に投入して100℃で3分間乾燥した。上記で得られたフィルムを固定端同時二軸延伸機にて、二軸延伸した。延伸温度は160℃とし、予熱時間は十分に設け、延伸速度を300mm/分、延伸倍率を縦1.85倍、横1.85倍として、光学フィルムを作製した。得られた光学フィルムの厚みは40μm、熱可塑性樹脂積層延伸フィルム(I)の各層の厚みは中央付近で(B1)/(A1)/(B1)=8μm/24μm/8μmであり、易接着層(II−1)の厚みは0.1μmであった。。光学等方性評価、機械強度評価、寸法安定性評価、接着性評価、アンチブロッキング性評価の結果はいずれも良好であり、総合判定は合格(○)であった。
実施例2〔樹脂(B1)/樹脂(A2)/樹脂(B1)、易接着剤組成物(II−1)〕
実施例1で使用した熱可塑性樹脂組成物(A1)の代わりに製造例2で得た熱可塑性樹脂組成物(A2)を導入した以外は、実施例1と同様にして光学フィルムを得た。得られた光学フィルムの厚みは40μm、熱可塑性樹脂積層延伸フィルム(I)の各層の厚みは中央付近で(B1)/(A2)/(B1)=8μm/24μm/8μmであり、易接着層(II−1)の厚みは0.1μmであった。光学等方性評価、機械強度評価、寸法安定性評価、接着性評価、アンチブロッキング性評価の結果はいずれも良好であり、総合判定は合格(○)であった。
実施例3〔樹脂(B1)/樹脂(A1)/樹脂(B1)、易接着剤組成物(II−2)〕
実施例1で使用した易接着剤組成物(II−1)の代わりに製造例5で得た易接着剤組成物(II−2)を導入した以外は、実施例1と同様にして光学フィルムを得た。得られた光学フィルムの厚みは40μm、熱可塑性樹脂積層延伸フィルム(I)の各層の厚みは中央付近で(B1)/(A1)/(B1)=8μm/24μm/8μmであり、易接着層(II−2)の厚みは0.1μmであった。光学等方性評価、機械強度評価、寸法安定性評価、接着性評価、アンチブロッキング性評価の結果はいずれも良好であり、総合判定は合格(○)であった。
比較例1〔樹脂(B2)/樹脂(A1)/樹脂(B2)、易接着剤組成物(II−1)〕
実施例1で使用したビニル共重合樹脂(B1)の代わりにポリメタクリル酸メチル(住友化学(株)製スミペックスMG5(固有複屈折:−0.0043、ガラス転移温度:105℃))(樹脂(B2))を導入した以外は、実施例1と同様にして光学フィルムを得た。得られた熱可塑性樹脂積層延伸フィルムの厚みは40μm、各層の厚みは中央付近で(B2)/(A1)/(B2)=8μm/24μm/8μmであり、易接着層(II−1)の厚みは0.1μmであった。機械強度評価、接着性評価、アンチブロッキング性評価の結果はいずれも良好であったものの、光学等方性評価、寸法安定性評価は不良であり、総合判定は不合格(×)であった。
比較例2〔樹脂(B1)/樹脂(A3)/樹脂(B1)、易接着剤組成物(II−1)〕
実施例1で使用した熱可塑性樹脂組成物(A1)の代わりに製造例3で得た熱可塑性樹脂組成物(A3)を導入した以外は、実施例1と同様にして光学フィルムを得た。得られた熱可塑性樹脂積層延伸フィルムの厚みは40μm、各層の厚みは中央付近で(B1)/(A3)/(B1)=8μm/24μm/8μmであり、易接着層(II−1)の厚みは0.1μmであった。機械強度評価、寸法安定性評価、接着性評価、アンチブロッキング性評価の結果はいずれも良好であったものの、光学等方性評価は不良であり、総合判定は不合格(×)であった。
比較例3〔樹脂(B1)/樹脂(A1)/樹脂(B1)、易接着剤組成物(II−3)〕
実施例1で使用した易接着剤組成物(II−1)の代わりに製造例6で得た易接着剤組成物(II−3)を導入した以外は、実施例1と同様にして光学フィルムを得た。得られた熱可塑性樹脂積層延伸フィルムの厚みは40μm、各層の厚みは中央付近で(B1)/(A1)/(B1)=8μm/24μm/8μmであり、易接着層(II−3)の厚みは0.1μmであった。光学等方性評価、機械強度評価、寸法安定性評価の結果はいずれも良好であったものの、接着性評価、アンチブロッキング性評価は不良であり、総合判定は不合格(×)であった。
比較例4〔樹脂(B1)/樹脂(A1)/樹脂(B1)、易接着剤組成物(II−4)〕
実施例1で使用した易接着剤組成物(II−1)の代わりに製造例7で得た易接着剤組成物(II−4)を導入した以外は、実施例1と同様にして光学フィルムを得た。得られた熱可塑性樹脂積層延伸フィルムの厚みは40μm、各層の厚みは中央付近で(B1)/(A1)/(B1)=8μm/24μm/8μmであり、易接着層(II−4)の厚みは0.1μmであった。光学等方性評価、機械強度評価、寸法安定性評価、接着性評価の結果はいずれも良好であったものの、アンチブロッキング性評価は不良であり、総合判定は不合格(×)であった。
比較例5〔樹脂(B1)/樹脂(A1)/樹脂(B1)〕
軸径32mmの単軸押出機と、軸径65mmの単軸押出機と、全押出機に連結されたフィードブロックと、フィードブロックに連結されたTダイとを有する多層押出装置を用いて積層体を成形した。軸径32mmの単軸押出機に合成例1で得たビニル共重合樹脂(B1)を連続的に導入し、シリンダ温度250℃、吐出速度20.0kg/hの条件で押し出した。また軸径65mmの単軸押出機に製造例1で得た熱可塑性樹脂組成物(A1)を連続的に導入し、シリンダ温度250℃、吐出速度30.0kg/hで押し出した。全押出機に連結されたフィードブロックは2種3層の分配ピンを備え、温度250℃として熱可塑性樹脂組成物(A1)とビニル共重合樹脂(B1)を導入し積層した。その先に連結された温度250℃のTダイでシート状に押し出し、上流側から温度110℃、95℃、90℃とした3本の鏡面ロールで冷却し、熱可塑性樹脂組成物(A1)の両側にビニル共重合樹脂(B1)を積層した原反を得た。得られた原反の厚みは140μmであった。得られた原反を固定端同時二軸延伸機にて、二軸延伸した。延伸温度は160℃とし、予熱時間は十分に設け、延伸速度を300mm/分、延伸倍率を縦1.85倍、横1.85倍として、光学フィルムを作製した。得られた光学フィルムの厚みは40μm、熱可塑性樹脂積層延伸フィルム(I)の各層の厚みは中央付近で(B1)/(A1)/(B1)=8μm/24μm/8μmであった。光学等方性評価、機械強度評価、寸法安定性評価、アンチブロッキング性評価の結果はいずれも良好であったものの、接着性評価の結果は不良であり、総合判定は不合格(×)であった。
Figure 2019028385

Claims (12)

  1. 熱可塑性樹脂積層延伸フィルム(I)の少なくとも一方の面に易接着層(II)を有する光学フィルムであって、前記熱可塑性樹脂積層延伸フィルム(I)が熱可塑性樹脂(A)を含む層の両面に、熱可塑性樹脂(B)を含む層を有し、前記熱可塑性樹脂(A)および熱可塑性樹脂(B)の固有複屈折がそれぞれ−0.005〜0.005の範囲であり、前記熱可塑性樹脂(B)のガラス転移温度が110℃以上であり、前記熱可塑性樹脂(B)の飽和吸水率が1.1wt%未満であり、かつ前記易接着層(II)がカルボキシル基を有するポリウレタン樹脂(a)、架橋剤(b)、およびアンチブロッキング剤(c)を含有する組成物からなることを特徴とする光学フィルム。
  2. 前記易接着層(II)に含まれる架橋剤(b)がカルボジイミド系化合物である請求項1に記載の光学フィルム。
  3. 前記熱可塑性樹脂(A)を含む層が弾性体粒子(C)を含有する請求項1または2に記載の光学フィルム。
  4. 波長590nmにおける面内レタデーションReが0.0〜3.0nmであり、かつ厚み方向レタデーションRthが−10.0〜10.0nmの範囲である請求項1〜3のいずれかに記載の光学フィルム。
  5. 前記熱可塑性樹脂(B)が下記一般式(1)で表される(メタ)アクリル酸エステル構成単位(a)と、下記一般式(2)で表される脂肪族ビニル構成単位(b)とを含み、前記(メタ)アクリル酸エステル構成単位(a)と前記脂肪族ビニル構成単位(b)との合計割合が前記熱可塑性樹脂(B)中の全構成単位の合計に対して90〜100モル%であり、前記(メタ)アクリル酸エステル構成単位(a)と前記脂肪族ビニル構成単位(b)とのモル比が55:45〜85:15である請求項1〜4のいずれかに記載の光学フィルム。
    Figure 2019028385
    (式中、R1は水素原子またはメチル基であり、R2はヒドロキシル基およびアルコキシ基から選ばれる置換基を有していても良い、炭素数1〜18の炭化水素基である。)
    Figure 2019028385
    (式中、R3は水素原子またはメチル基であり、R4は炭素数1〜4の炭化水素基、ヒドロキシル基、アルコキシ基およびハロゲン原子から選ばれる置換基を有していても良い、シクロヘキシル基である。)
  6. 前記一般式(1)のR1及びR2がメチル基である請求項5に記載の光学フィルム。
  7. 前記一般式(2)のR4がシクロヘキシル基である請求項5または6に記載の光学フィルム。
  8. 前記弾性体粒子(C)がメタクリル酸メチル構成単位およびアクリル酸アルキルエステル構成単位を含む請求項1〜7のいずれかに記載の光学フィルム。
  9. 前記熱可塑性樹脂積層延伸フィルム(I)が、二軸延伸フィルムである請求項1〜8のいずれかに記載の光学フィルム。
  10. 前記熱可塑性樹脂(A)を含む層が紫外線吸収剤、抗酸化剤、抗着色剤、抗帯電剤、離型剤、滑剤、染料、及び顔料からなる群より選ばれるいずれか一つ以上を含む請求項1〜9のいずれかに記載の光学フィルム。
  11. 請求項1〜10のいずれかに記載の光学フィルムを含む偏光子保護フィルム。
  12. 請求項11に記載の偏光子保護フィルムおよび偏光子を有する偏光板。
JP2017150499A 2017-08-03 2017-08-03 易接着性光学フィルム Pending JP2019028385A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017150499A JP2019028385A (ja) 2017-08-03 2017-08-03 易接着性光学フィルム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017150499A JP2019028385A (ja) 2017-08-03 2017-08-03 易接着性光学フィルム

Publications (1)

Publication Number Publication Date
JP2019028385A true JP2019028385A (ja) 2019-02-21

Family

ID=65476188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017150499A Pending JP2019028385A (ja) 2017-08-03 2017-08-03 易接着性光学フィルム

Country Status (1)

Country Link
JP (1) JP2019028385A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023042576A1 (ja) 2021-09-17 2023-03-23 東レ株式会社 積層ポリエステルフィルム、積層体、および積層ポリエステルフィルムの製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023042576A1 (ja) 2021-09-17 2023-03-23 東レ株式会社 積層ポリエステルフィルム、積層体、および積層ポリエステルフィルムの製造方法

Similar Documents

Publication Publication Date Title
JP2009052036A (ja) アクリル系フィルム、積層フィルムおよび偏光板
JP2005314534A (ja) アクリル樹脂フィルム、積層フィルムおよび光学フィルター
KR20160062901A (ko) 편광소자 보호필름 및 이를 포함하는 편광판
WO2018110447A1 (ja) 光学積層体
JP2019028385A (ja) 易接着性光学フィルム
JP7040515B2 (ja) 熱可塑性樹脂積層延伸フィルム
JP6834991B2 (ja) 熱可塑性樹脂積層延伸フィルム
JP6834992B2 (ja) 熱可塑性樹脂積層延伸フィルム
JP2013154546A (ja) 積層体およびそれを備えた保護部材
JP5965612B2 (ja) 光学フィルム及びその製造方法
JP2019072946A (ja) 熱可塑性樹脂積層フィルム
WO2019026512A1 (ja) 合成樹脂積層延伸フィルム
JP2009227905A (ja) 二軸配向アクリル樹脂フィルム
JP6668826B2 (ja) 熱可塑性樹脂積層体
JP2013186212A (ja) 位相差フィルム
JP2019094447A (ja) 熱可塑性透明樹脂組成物延伸フィルム
JP2019094446A (ja) 熱可塑性透明樹脂組成物延伸フィルム